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Abstract—As a result in the rapid growth of explainability
methods, there is a significant interest, driven by industry to
develop methods for quantitative evaluation of such explanations.
The availability of standard explainability evaluation methods
would result in the ability to develop models that suit different
stakeholders in different use cases. To address this issue, we
propose three measures of the complexity of explanations based
on Linear correlation, Monotonicity and ¢x. We evaluate these
measures on three tabular datasets (Ames House Price, Auto
Price, and Wind). We investigate how these complexity measures
vary with model accuracy. Our results show that model accuracy
varies with complexity measures across the datasets. These
variations indicate that models can be developed with the same
accuracy but with of models less complex explanations as a result
of varying the hyperparameters. We observe a trade-off between
complexity measures and model accuracy which is evidenced
in Pareto-fronts. We suggest that our metrics could be used
for the development of multi-objective optimisation methods for
machine learning models with tunable accuracy and simplicity
of explanation.

Index Terms—Explainable Artificial Intelligence, Model Ac-
curacy, Explainability, Monotonicity, Linear Correlation, ¢,
Complexity Measures, Evaluation, Quantification

I. INTRODUCTION

The rapid penetration and extensive adoption of Artificial
Intelligence systems in critical applications such as healthcare,
judiciary, employment, and finance has demonstrated how
indispensable these systems are becoming in our world. The
high predictive power of such systems makes them attractive
to increase efficiency, however, a consequence is that they are
often “black box” and not explainable to human stakeholders.
Examples of such systems include AlphaGo, which outper-
formed humans in playing online games [1], rapid diagnosis of
diseases by Al systems that are typically difficult to detect by
health professionals [2], [3] self-driving cars, question—answer
systems and medical assistance systems [4]. Although we
know that these systems are powered by black boxes, such
systems may be deemed harmful rather than beneficial to
the public [5], [6] as a result of a lack of transparency
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on the algorithmic behaviour of the AI systems. Previous
studies have shown that decisions from opaque systems (i.e.,
systems that hide information on how it makes a decision)
are sometimes misleading and characterised by trust issues
[6], [7]. Consequently, there has been an impetus to make Al
systems more explainable. Furthermore, there is an increasing
need, driven by legislation and regulatory bodies, to make
every Al system transparent and understandable [8], [9] to
all stakeholders from within the developer pipeline, operators
in the field and the users themselves [4].

To address the need to explain black box models, numerous
explainable (XAI) methods and frameworks have been de-
veloped and have been categorised into inherent interpretable
models and post hoc methods [4]. Typical examples of expla-
nations are permutation feature importance, partial dependence
plot, and global and local explanations [10]. However, these
explanations have been subject to criticism. Studies have
argued that many of the explanations fail to meet users’
objectives because they seem to be inaccurate or deceiving
[11], [12]. No standardized objective metrics to evaluate
explanation methods [13] currently exist. As a result, the need
for explainability evaluation escalated [14], [15], [16] and
several methods were developed. As a consequence, previous
scholars categorised explainability methods into qualitative
and quantitative evaluation methods [13], [17]. Evaluation
of explanations prior to deployment becomes a necessity to
build the trust and confidence of the public in the use of
Al systems. Initially, qualitative measures tend to be the
preferable option for stakeholders to assess the quality of an
explanation however they been criticised in the literature as
anecdotal evidence “showing individual convincing examples
that pass the first test of having face validity” [18], [19] where
the evaluation is based on the “researchers intuition of what
constitutes a good explanation” [20]. Other researchers argue
that the outcome of such assessments tend to be biased and
subjective because humans could change their opinions. In
addition, the process can be time-consuming and expensive
[21] when compared with quantitative evaluation. On the



other hand, quantitative explainability evaluation does not
involve users to assess the quality of explanations rather it
adopts criteria of “some measurements that serve as proxies”
in evaluating explanations [4], [18]. Quantitative measures
seem to be faster in evaluation and more effective when
compared with qualitative measures. Recently, a handful of
quantitative (functionally — grounded i.e. — no human in the
loop) metrics have been suggested such as Faithfulness [22],
Localization accuracy [22], Completeness [16], Stability [23]
and Sensitivity [22] to measure properties of interest of XAI
methods [4]. Although these metrics are gradually being tested
in other contexts [22], a recent study has argued that these
metrics were introduced as a result of assessing properties
of interest in XAl methods [4] which serves as a limiting
factor because the properties that were assessed are domain
dependent and could not be generalised. The XAI community
is still far from reaching an agreement for common quantitative
metrics to automate the efficacy of XAI methods because
most of the existing quantitative metrics are customised (i.e.,
based on context, e.g., Healthcare) and cannot be generalised
to other explainability methods which have been highlighted
[24]. Within explainability research, both XAI methods and
evaluation metrics are expanding rapidly, and there is a need
to arrive at common quantitative measurement scales [17].
Considering the need to have a generalised evaluation metric,
SHAP (Shapley Additive Explanations) [25] is to be the
most widely used post hoc explainability method to create
explanations across domains [13].

In this paper we propose complexity measures based on Lin-
ear correlation, Monotonicity, and ¢, to determine the com-
plexity of explanations. We hypothesise that such complexity
measures can be used as proxy measures of the explainability
of the model. SHAP as an explainability method is selected be-
cause of its popularity in high stakes domains, its widespread
use in explaining black box models [12], and because of its
grounding in theory, in contrast to other explainability methods
[24]. Since SHAP is utilised to interpret the inner working
of the machine learning models, rather than attempting to
measure the complexity of the models themselves, we use
measures of the complexity of the SHAP explanation since this
is the way the model is presented to the user and can be used
as a proxy for the complexity of the model. It is worth noting
that this study is not measuring explainability, which is best
measured in a human-centred study, rather we are proposing
some measures of the complexity of explanations. We used
feature importance-weighted average of these measures over
the SHAP explanations for each feature to give a single
measure of complexity for a model. Using this idea, the study
aims to answer the following research questions:

RQ1: How do feature importance-weighted averages of
typical correlation measures vary between different instances
of a black box model?

RQ2: Can we observe a trade-off between these measures
of the complexity of explanations and the model accuracy?

A positive answer to RQ2 opens the possibility of tuning
models for explainability; with a quantitative measure of the

complexity of the explanation, and a method for determining
the Pareto-optimal set in the trade-off between explainability
and accuracy. Models could be selected based on objective
criteria for different use cases. Using our three-correlation
metrics, we will examine across three open-source datasets the
trade-off between explainability and accuracy. Furthermore,
we introduce some relevant terminologies for uniformity un-
derstanding within the scope of this study.

Previous scholars are yet to reach a consensus about
definitions of Explainability and interpretability [18], [26],
[27]. Some researchers believed both terms differ [15], [28],
[29] whilst other scholars used them interchangeably [16],
[18], [30], [31]. However, this study aligns with the latter
to postulate that the two terms will be used interchangeably
since both definitions’ goal is to provide transparency in Al
systems. In the research presented in this paper, we defined
explainability as an act of explaining any Al systems’ predic-
tions to real people (i.e., with the purpose of building public
trust. Similarly, quantifying explainability means the process
of assessing explanation through the lenses of objective or
subjective measures. This study contributes to the growing
knowledge of explainability evaluation by providing empirical
evidence on the quantification of the complexity of explain-
ability in Black box models. To the best of our knowledge,
this is the first study that employs objective metrics such as
Linear Correlation, Monotonicity and ¢, are used to measure
the explainability complexity of the SHAP method.

This paper is structured as follows: section II briefly reviews
the related work on model accuracy and explainability. Section
IIT describes the experimental methodology of the empirical
study using three measures of the complexity of explainability
across three open-source datasets. Section IV discusses the
experimental results and finally, section V presents the con-
clusion and directions for further work.

II. RELATED WORK
A. Trade-off Between Model Accuracy and Explainability

In recent years, there has been a growing number of
publications focusing on the trade-off between model accuracy
and explainability in diverse contexts which is traceable to the
theoretical assumption that the higher the predictive power of
machine models, the lower the explainability and vice versa
[12], [15], [32]. In the existing literature, model accuracy
has been assumed as a good indicator of high predictive
performances of black box models which makes such models
attractive, yet there are cases where explainability is more
desired over model accuracy [15]. Sometimes, the decision
to select a model based on its accuracy on unseen data over a
high explainability model seems to be dependent on the type of
data (context), the context of the decision and the background
knowledge of the user [18]. Miller [26] argues that explainabil-
ity is contextualised meaning that what users want in an indi-
vidual case differs across domains [26]. In critical domains like
healthcare, machine models with high predictive power have
been in demand because some researchers believed that not all
Al systems need to be transparent [11], [12]. Molnar [33], in



their groundbreaking paper, proposed three measures: number
of features, interaction strength and main effect complexity
to demonstrate a trade-off between performance and post-hoc
interpretability. This could only be achieved by minimising
these measures which tend to improve the interpretability of
machine learning models. While Molnar’s paper focuses on
model complexities using the mentioned measures, this paper
measures the complexity of the explanations. Research has
supported the opinion that high predictive models are sought
after in high-stakes domains like healthcare, finance, and
judiciary where the accuracy of decision-making is preferred
[34]. Findings from a study in healthcare with citizen juries
indicate that high-performing machine models’ accuracy was
preferred over model transparency [34] as a result of the need
for increased efficiency of healthcare services. In contrast, the
citizens’ juries voted for explainable machine learning models
in low-stakes domains [34]. In a related study with physicians,
an explainable machine model decision was preferred on
the ground that trust was important to them [35]. Building
trust with end-users could be achieved when the underlying
mechanisms of any Al systems decisions are comprehensible
to the users [35], [36]. Aside from healthcare, a recent study by
Bell [37] used two real-world policy datasets to demonstrate
a trade-off between model accuracy and explainability and
the finding indicate no “direct trade-off between accuracy and
explainability nor found interpretable models to be superior in
terms of explainability” [37]. This study has been the closest
to our study to date, but they focus on binary classification
tasks rather than regression. In a similar study, Herm [3§]
empirically explored this trade-off in a user-centred study
where the outcome indicated that the theoretical assumptions
or recommendation cannot be generalised across contexts
rather it seems to be a situational concept, meaning that end-
users’ perception and context under study tend to affect the
trade-off. As a result, this theoretical assumption needs more
empirical work to widen the discourse about model accuracy
versus explainability trade-off. Overall, our study indicates
the importance of further examining the trade-off in different
contexts.

III. EXPERIMENTAL METHODOLOGY

In this study described in this paper, we adopt an em-
pirical experimentation approach to investigating complexity
measures of explanations. The experimental methodology of
this study is largely categorised into four stages which will be
explained accordingly. Figure 1 depicts the strategy adopted in
this study. Each stage is briefly defined as defined as follows:

Stage 1: Datasets selection, pre-processing of the datasets
and modelling of the Random Forest Regressors (black box
models).

Stage 2: Model Prediction explanations using SHAP Global
explanation method.

Stage 3: Quantification of complexity measures of SHAP
explanations.

Stage 4: Evaluation of the trade-off between explainability
and model accuracy.

Research Questions
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Fig. 1. Overview of the experimental methodology

A. Datasets Selection, Pre-processing, and modelling of the
Random Forest Regressor

This section discusses how the datasets have been selected,
and pre-processed and Random Forest Regressor models have
been trained. In this paper, we selected the Random Forest
Regressor because it is a widely used black box model.

1) Dataset Selection and Pre-processing: We employed
datasets taken from the widely used repositories Kaggle and
Penn machine learning benchmark namely Ames house price,
Auto price and Wind [39] which are widely used and well-
known to researchers working on tabular regression. Table II
summarises the characteristics of the datasets used in this
paper. Standard pre-processing techniques were applied to
clean the data and perform feature selection. For each dataset,
the correlation coefficient [40] with a threshold of 0.5 was used
to select the best-correlated features with the target variable.
Previous researchers have argued that the selection of the
correlated features with the target variable improves the model
predictions [41], [42].

2) Modelling of the Random Forest Regressor: The selected
features, which are those with a correction coefficient with
the target > 0.5, were used in the next phase of training the
Random Forest (RF) models. The train test split method was
used to evaluate the models, with the data randomly split into
train and test set in a ratio of 80 / 20. We trained 1000 models
with hyperparameters randomly selected from the ranges given
in Table II. For each model, we calculated R? and the feature
importance-weighted average of the correlation measures for
the test data, and plotted these as scatter plots.

B. Model Predictions’ explanations using SHAP Method

Predictions from the trained models were explained using
the SHAP method. The SHAP method is classified into two
types: Local explanations and Global explanations [10]. Local
explainability is interested in explaining a specific instance
of model predictions whereas Global explanation support how
Machine learning models make predictions from a global point
of view.

1) SHAP Global explanation Method: In this study, we
take SHAP an acronym for Shapley Additive exPlanations is
a typical explainability method that is rooted in the famous
Shapley values which was introduced by Lord Shapley in 1951



TABLE I
OVERVIEW OF DATASETS

Dataset

Description

Instances

Instances
used

Features

Features
used

Ames House Price [43]

Auto Price [39]

Wind [39]

Ames house price is a well-known
dataset in the community. This
dataset describes the sale of prop-
erties in Ames, Towa from 2006 to
2010.

Auto Price is a small dataset from
a curated set of benchmarking
datasets from the PMLB repository.
Wind Dataset is from the public
repository of Penn Machine Learn-
ing Benchmark (PMLB)

1460

159

6574

1460

159

1500

81

10

10

TABLE II
RANDOM HYPERPARAMETERS TUNING FOR RANDOM FOREST MODELS

Parameters

Settings

N-estimators
Max-features
Max-depth

start = 10, stop = 300
auto, sqrt, log2
2,4,6,8,12, 16

Min-samples-split | 2, 5, 10, 20
Min-samples-leat | 2, 5, 10, 20
Booststrap True, False

[25], [10]. Shapley values is a theoretical framework in which
players’ collective payoff or contribution were strategically
shared according to how each of the players contributed to the
game [44]. Furthermore, SHAP explanations could be used for
a single prediction as well as the global prediction of any ML
model predictions.

2) SHAP Feature importance weighted averages: The
SHAP values for a given feature, plotted against the feature
value for each instance in a dataset is referred to as a SHAP
Dependence Plot. We compute a measure of the complexity
of this distribution of SHAP values versus feature values for
each feature, and then combine these into a single value by
weighting with the global feature importance and averaging.
Feature importance is defined as a process of determining
which feature is more important than another in a model
prediction. Similarly, the feature importance depends on how
“important” the feature is in the model prediction. In this
study, feature importances are used as the weights in the
average when combining complexity measures for the different
features. Figure 2 shows the SHAP feature importance for
the random forest trained on Ames House Price dataset [43].
For each dataset, feature importance-weighted averages of the
complexity measures over the SHAP explanations for each
feature were calculated to give a single measure of complexity
for a model. The values from the feature importance-weighted
average scores are then compared with the model accuracy for
each dataset.

OverallQual
GrLivArea
YearBuilt
GarageCars
TotalBsmtSF
GarageArea

1stFIrSF

YearRemodAdd

0.000 0.025 0.050 0075 0.100 0125 0150 0175 0.200
mean(|SHAP value|) (average impact on model output magnitude)

Fig. 2. A typical SHAP feature importance plot

C. Quantification of complexity measures of SHAP explana-
tions

In this section, the implementation of the complexity mea-
sures (Linear Correlation, Monotonicity and ¢, measures) of
SHAP explanations adopted in this study will be defined.

1) Linear Correlation: Linear correlation as should be is
a measure to determine correlation of association in two or
more random numbers. In this study, we adopted this measure
along with two correlation measures (Monotonicity and ¢y)
to measure complexity of explainability in black box models.
The linear correlation coefficient p, , between two variables
x and y is given in equation 1

plz,y) = ——— ey



where Cov(z,y) is the covariance between the two variables,
and o, o, are the standard deviations of each variable. The
correlation coefficient takes values in the range p(z,y) €
[—1, 1], with negative values representing anti-correlation. We
disregard the sense of the correlation and henceforth use the
absolute value |pz |-

2) Monotonicity: Monotonicity is a metric to either validate
or test the monotonic relationship between predictor and target
variables of machine learning model predictions [45], [46],
[47], [48]. To date, several studies have tested the efficacy of
Monotonicity to determine the degree of dependence between
features. Kachapova [45] shed light on light on the application
of the Monotonicity coefficient to ascertain the dependence
of random variables. The coefficient properties were found to
be similar to the Pearson correlation which is in the range
(-1 to 1). Adopting a similar position, findings from other
authors have used insight from the study to reduce social
harm and violate ethical principles [47]. Drawing from an
extensive range of sources, the Monotonicity measure has been
applied to solve classification problems specifically in medi-
cal diagnosis and credit scoring by confirming the machine
models’ predictions through the use of Monotonicity measure
[49], [50], although these authors use a different measure to
the one due to Kachapova’s, which we use in this paper.
Taken together, these studies provide converging evidence for
Monotonicity as a measurement to determine the degree of
association of random variables, but the metric has not been
explored to measure explainability [51].

We use Kachapova’s monotonicity coefficient [45] p,, (z, y)
is given by

Cov(z,y)

Covier v Cov(z,y) >0
pm(z,y) =10 COV((I}, y) =0 (2)
Cov(z,
- CO(\)/\(IE"*Z)/) COV(‘T; y) <0

where the superscripts * and / refer to the samples of x or y
with their values sorted into ascending and descending order
respectively. As with the linear correlation coefficient, negative
values indicate anticorrelation, and we use |p,,(z,y)| € [0,1].

3) ¢r: This recently proposed correlation coefficient [52]
was based on several refinements of the Pearson correlation
of random variables which has been a de facto standard in
diverse contexts [52]. While the Pearson coefficient is used to
detect a linear association between two random variables, ¢y
tends to be used to determine non-linear dependence for more
than two dichotomous variables. ¢ was selected because of its
ability to detect nonlinearity unlike the other measures (Linear
Correlation and Monotonicity). According to [52], [53], the ¢
coefficient tends to work well with categorical, ordinal and
interval variables which ¢ as the best preferable correlation
coefficient. ¢, values range from -1 to +1 or O to +1 where
zero (0) means no correlation, +1 means strongest possible
correlation and -1 means negative as relation. Although ¢y is
a relatively new measure,we will apply the measurement to
measure the complexity of explainability and compare it with

other established metrics such as Monotonicity and Linear
correlation.

IV. EXPERIMENTAL RESULTS

This section summarises the experimental results in figure 3
and 4 of this study. As previously stated, the aim of our exper-
iments is to observe the variation of the complexity measures
with the accuracy across the datasets and determine if there is
a trade-off (Pareto-Front) between complexity measures and
model accuracy as a result of the hyperparameters tuning of
1000 models. We demonstrate how the feature importance-
weighted averages of complexity measures vary with the
model accuracy.

For the Ames dataset, the models produce values of R?
between -0.4 and 0.8 (figure 3). Varying the hyperparameters
resulted in a wide range of models. With such low values RZ,
some of the models are poor predictors. With higher values of
R?, we see wide variations in complexity measures, even at
the same accuracy. For instance, at the upper end of accuracy,
the Monotonicity varies from around 0.8 to close to 1, with
similar ranges in the other measures. In some cases, the linear
correlation is close to 1, suggesting that plots for these models
will be approximately linear.

For the Auto dataset, R? varies between 0.55 and 0.85
(figure 3), meaning that the range of model accuracy in this
dataset is better than the former. However, at higher model
accuracy, complexity measures seem to vary. For instance,
as accuracy increases from 0.70, values of linear correlation
coefficient tend to cluster between 0.2 and 0.5 on the y-axis,
while values of Monotonicity and ¢, coefficients vary towards
1.

In the Wind dataset, the varying hyperparameters still pro-
duce wide range of model accuracy of R? between 0.20 to
0.55 (figure 3). At the same accuracy, values of complexity
measures are steadily on the rise. For example, At model
accuracy between R? 0.20 and 0.30 (figure 3), values of
complexity measures increase from 0.80 towards 1.

With these variations in both model accuracy and complex-
ity measures across the cases, we see that it is possible to
produce models with the same accuracy but with more or
less complex explanations by varying the hyperparameters of
a black box regressor.

Further, the Pareto optimal sets shown in Figures 3 and
4 clearly indicate a trade-off between the complexity of
explanations and model accuracy. These envelopes represent
the Pareto front in a multi-objective optimization problem in
which the two objectives are to maximise explainability and
accuracy.

A. Discussion

Based on the experimental results in figure 3 and 4, we dis-
covered variations in model accuracy and complexity measures
and a trade-off was clearly observed across the cases.

As the model accuracy and complexity measures vary in all
the use cases, it appears that as the model accuracy increases,
the complexity measures decrease meaning less correlated in
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Fig. 3. Scatter plots of Complexity measures against R2 for 1000 random forest models trained on
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Fig. 4. Pareto optimal sets for the three complexity measures vs R2 for each dataset, demonstrating the complexity-accuracy trade-off.

explanation. In addition, the variation of complexity measures
across datasets indicates that Monotonicity was high when
compared with others, meaning that this criterion is easier to
satisfy. In general, there is a trade-off between complexity
measures and model accuracy which is exemplified in the
Pareto-fronts in figure 4.

Interestingly, there is a difference in the Auto Price dataset
which seems to have the lowest values (figure 3) of Linear
correlation coefficient which is clearly seen in both scatterplots
and Pareto fronts. This suggests that it is producing explana-
tions which are monotonic and correlated, but the relationship
is not a simple linear one. These sorts of differences between
datasets will be investigated further in a human-centred study
and underlining the importance of our further work in which

we will investigate which of these metrics provides the best
measure of the usefulness of SHAP explanations to practition-
ers.

V. FURTHER WORK AND CONCLUSION

In this paper, we proposed three complexity measures of
feature importance-weighted averages of Linear correlation,
Monotonicity, ¢ to quantitatively measure the complexity
of SHAP explanations. The complexity measures and model
accuracy have been investigated to determine how the feature
importance-weighted average of the measures vary with the
Random Forest model accuracy across the three datasets.
Also, we investigate the trade-off between the complexity of
explainability and model accuracy as a result of models hy-



perparameters tuning. We found that all three of our proposed
measures behaved in accordance with the hypothesis that more
accurate models have more complex explanations. The relative
values of the three measures differed over the three datasets
we used. We were able to observe the complexity-accuracy
trade-off by plotting the Pareto front.

As a consequence, further work is needed to determine
which of these three measures aligns with how useful post-
hoc explanations are to practitioners. It may be different for
different groups, and it may be a mixture of different measures.
In addition, this paves the way for a multi-objective approach
to hyperparameter tuning which balances explainability (mea-
sured through the proxy of the complexity of the post-hoc
explanations) and accuracy. Further, it is possible that this
tuning could be tailored to individual use cases and stakeholder
needs.
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