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Abstract: The binding of conidia to surfaces is a prerequisite for biofouling by fungal species. In
this study, Aspergillus niger subtypes 1957 and 1988 were used which produced differently shaped
conidia (round or spikey respectively). Test surfaces were characterised for their surface topography,
wettability, and hardness. Conidial assays included perpendicular and lateral force measurements, as
well as attachment, adhesion and retention assays. Anionic surfaces were less rough (Ra 2.4 nm), less
wettable (54◦) and harder (0.72 GPa) than cationic surfaces (Ra 5.4 nm, 36◦ and 0.5 GPa, respectively).
Perpendicular and lateral force assays demonstrated that both types of conidia adhered with more
force to the anionic surfaces and were influenced by surface wettability. Following the binding
assays, fewer A. niger 1957 and A. niger 1988 conidia bound to the anionic surface. However, surface
wettability affected the density and dispersion of the conidia on the coatings, whilst clustering was
affected by their spore shapes. This work demonstrated that anionic surfaces were more repulsive to
A. niger 1998 spores than cationic surfaces were, but once attached, the conidia bound more firmly to
the anionic surfaces. This work informs on the importance of understanding how conidia become
tightly bound to surfaces, which can be used to prevent biofouling.

Keywords: cationic; anionic; fungal conidia; Aspergillus; multifractal analysis; atomic force microscopy
force measurements

1. Introduction

An ever-increasing global public health concern is that of fungal infections [1]. Re-
sistant microorganisms prevent the efficacy of a number of available medicines, resulting
in the persistence and spread of antimicrobial-resistant organisms [2]. Aspergillus niger is
an opportunistic pathogen that is usually considered to be of low virulence [3]. However,
although Aspergillus fumigatus is a predominant etiological agent, when clinical samples
have been analysed, Aspergillus flavus and A. niger isolates have both been recovered [4]. In
a small number of instances, A. niger can colonise the body opportunistically if patients are
severely ill or immunosuppressed [5]. People most at risk are those with underlying health
problems or a weakened immune system, such as those with chronic lung disease, prior
tuberculosis (TB), human immunodeficiency virus, cancer, or diabetes mellitus [1]. When
present as a co-species with Candida albicans, A. niger has been known to cause chronic
necrotising semi-invasive pneumonia [6]. A. niger can also cause pulmonary infections [7,8],
and although rare, necrotizing A. niger fungal pneumonia has been reported to be the cause
of invasive pulmonary aspergillosis [9], which has also been found following bilateral lung
transplantation [3]. In addition, A. niger infections have been found in patients with haema-
tological diseases and this fungus constitutes the most frequent agent of otomycosis [10–12].
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Such infections are of extreme importance, since the treatment of invasive fungal infections
involves the use of systemic antifungal drugs which must be used for long periods of time
and these may have severe side effects [13].

Fungal transmission can occur because conidia can survive in a number of extreme
environments [14]. Additionally, it has been shown that A. niger has the ability to form
biofilms on polymeric structures [15–17], a process which is preceded by spore adhesion.
In an attempt to reduce infections arising from contamination in hospitals, a number of
potential solutions have been suggested. One such solution is to produce antiadhesive
surfaces that are repellent to fungal conidia. Research on antimicrobial surfaces is increasing,
but only a few studies have been carried out on antiadhesive surfaces [13]. One advantage
of using antiadhesive surfaces is that fungal spores are particularly resistant to many types
of antimicrobial and biocidal agents that may be released from antimicrobial surfaces, so
this should always be considered in such investigations.

When fungal binding was compared between different types of surfaces, it was found
that fewer studies investigated the effects of anionic polymers on biofouling, compared
to cationic surfaces [18,19]. In addition, although there has been some exploration in
this context, most studies on cationic surfaces have been carried out using yeast, rather
than filamentous fungi or spores [13]. Adherence between spores and/or hyphae and the
substratum is a complex process, which is dependent on a number of physicochemical
(e.g., charge and hydrophobicity) and surface interactions that are not well understood [20].
In addition to the surface properties, the properties of the conidia, such as the presence
of glycoproteins, hydrophobins, carbohydrates, and lipids, also influence their binding
behaviour [21].

The methods generally used to determine the antiadhesive efficacy of fungal spore
binding to surfaces include counting methods. However, atomic force microscopy (AFM)
has allowed for force measurements of individual conidia attachment to a surface [14,22].
This involves using a single sphere or fungal spore, which has been bound to a cantilever,
to create a particle probe. The force of the attachment between the conidia and the surface
can then be determined. The AFM can also be used to carry out lateral force measurements,
which can be used to determine the force needed to remove microorganisms from a surface
under liquid [23–25].

The use of microscopy enables the use of percentage coverage to determine the number
of microorganisms bound to a surface [26]. However, the percentage of coverage only yields
the total amount of cells across the surface and does not describe the distribution of the
microorganisms. MATLAB® is a mathematical package that enables multifractal analysis to
be used to describe the dispersion, distribution, or clustering of microorganisms across sur-
faces [27], since it uses a box-counting method used to calculate fractal dimensions [28,29].
This is important, since determining the distribution and pattern of conidia across surfaces
may inform how surface properties affect binding. There has been continuing interest in
multifractal analysis for such concepts, and these have been gradually more widely used in
a variety of scientific disciplines [29–31].

The aim of this work was to determine how the properties of anionic and cationic
surfaces influenced the perpendicular and lateral forces on fungal conidia removal, as well
as the amount and distribution of binding, in order to determine the antiadhesive nature of
the test surfaces.

2. Methods and Materials
2.1. Spin Coated Surfaces

Silicon wafers (Montco Technologies, Spring City, PA, USA) were used as substrates on
which to produce the spin-coated surfaces, using polymers dissolved in 20% tetrahydrofu-
ran (THF). Methacylic acid, polymerised with γ-MPS (3-methacryloxypropyltrimethoxysilane),
was used to produce the anionic surface, and a quaternary ammonium functional methacry-
late, copolymerised with γ-MPS, was used to produce the cationic surface. The polymeris-
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ing mixture was dropped onto silicon wafer disks covering them and the samples were
spun at 2000 rpm for 10–15 s.

2.2. Determination of Surface Topography Images and Roughness Values (Ra)

An Explorer Atomic Force Microscope (AFM) (Veeco, Cambridge, UK) was used to
obtain topographic images and Ra measurements (average deviation from a mean centre
line), in non-contact mode, using a cantilever with a spring constant of 50 N m−1. Three
images, from surfaces at a 5 µm × 5 µm scan size, from differently produced samples were
taken to calculate the surface roughness measurements (n = 3).

2.3. Hardness of the Coatings

A Micro Materials Nanotest Nanoindentor (Micro Materials Limited, Wrexham, UK)
was used to collect the nanoindentor results, using a Berkovich diamond. The diamond
had a maximum to minimum load of 10–0.5 mN and maximum depth of 50 nm (n = 3).

2.4. Wettability of the Surfaces

A goniometer was used to measure the water contact angles of the surfaces. The
sample was placed on a stage, and 5 µL of sterile distilled water was placed on the sample
surface using a 5 µL micro syringe (Hamilton, Bonaduz, Switzerland) (n = 5).

2.5. Preparation of Conidia

The Aspergillus species were inoculated from a short-term agar slope onto an agar
plate using a sterile swab dipped into Sabouraud broth (Lab M, Bury, UK). The inoculated
agar was incubated for 4 days at 29 ◦C. Five millilitres of Sabouraud broth was added
to the fungal culture and using a sterile glass Pasteur pipette, the conidia were removed
from the culture by rubbing the surface. A sterile beaker with a sterile magnetic stirrer
was used to collect 5 mL aliquots of conidia, and the suspension was stirred for 30 min
to separate the spores. The suspension was filtered through glass wool (VWR, Poole,
Dorset) then conidia in the filtrate were harvested at 3000 g for 10 min. The conidia were
washed three times in sterile distilled water and re-suspended to an optical density of 1.0
at 610 nm which equated to approximately 5.0 ± 0.3 × 106 spores cm2 for A. niger 1957 and
5.3 ± 0.6 × 106 spores cm2 for A. niger 1988. A haemocytometer was used to determine the
number of conidia. The suspensions were stored at 4 ◦C and used within 4 weeks.

2.6. Imaging of Fungal Spores

Ten microliters of washed conidia were applied to a 1 µm × 1 µm polished silicon
wafer (Montco Silicon Technologies, Spring City, PA, USA) and dried for 1 h in a Class
2 flow hood. The samples were transferred to 4% v/v glutaraldehyde (Agar Scientific
Ltd., Stansted, UK) made with sterile distilled water which was stored at 4 ◦C for 24 h,
before removal and washing in sterile distilled water. Following drying, the surfaces were
removed and subjected to an ethanol (Fisher Scientific, Loughborough, UK) gradient in
concentrations of 30% v/v in sterile distilled water for 10 min to 50% v/v, 70% v/v, 90%
v/v, and finally 100% v/v. The samples were then stored in a desiccator until use. The
samples were gold sputter coated. This was carried out using a Polaron E5100 sputter
coater (Quorum, East Sussex, UK) at 0.09 mbar, for 3 min, at 2500 V, in argon gas at a power
of 18–20 mA. Images of substrata were obtained using a JEOL JSM 5600L SEM (n = 3).

2.7. Perpendicular Force Measurements

Tipless cantilevers (Veeco, Cambridge, UK) were glued onto cantilever stubs (Veeco,
Cambridge, UK) using a two-phase silver mounting adhesive. A glass cover slip
(20 cm × 20 cm) was attached to an AFM mounting disc (Veeco, Cambridge, UK) using
double-sided sticky tape. Ten microliters of washed spore suspension were placed onto the
glass coverslip and dried in air for 1 h in a Class 2 flow hood. Cyanoacrylate gel (Bostik,
Leicester, UK) was added to the coverslip. The attached coverslip on the mounting disc was
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placed onto the AFM stage, then the AFM camera and XY automated translation stage were
used to move the tipless cantilever to the edge of the cyanoacrylate gel. The tip was lowered
in the z plane until the cantilever momentarily touched the gel, and then the cantilever was
immediately moved in the z plane away from the gel. The cantilever was moved across the
coverslip until a suitable conidium was found. The cantilever was lowered until it touched
the conidium. Once the gel had made contact with the conidium, the cantilever was left
in place for 10 s before being lifted. The cantilever was removed from the AFM and left
for 24 h to allow the adhesive to fully cure. Light and electron microscopy were used to
check the quality and validity of the conidium glued to the cantilevers. Following quality
control of the force data and cantilever spring constant, it was found that the conidium-
cantilevers could each be used for up to twenty force measurements before they became
unstable. The spring constant of the cantilever was determined before each perpendicular
or lateral force experiment using the NanoScope AFM software v6.13. This was carried out
by measuring the mechanical response of the cantilever to thermal noise as a function of
time. To determine the perpendicular force of attachment between the particle probe and
the substratum, the particle probe was brought into contact momentarily with the surface
and the measurements calculated from force–distance curves where the distance travelled
by the particle probe was plotted against the deflection of the cantilever. The deflection of
the cantilever was converted into force (F) using Hooke’s law:

F = −k × d (1)

where d was the deflection of the cantilever and k the cantilever spring constant. By plotting
F as a function of (z–d), the curve was corrected, where z was the vertical displacement
of the piezoelectric scanner. The spring constant was multiplied using Hooke’s Law to
calculate the force required to retract the particle probe from the surface. By subtracting
the reciprocal of the slope, the displacement was calculated. The Hertz model was used to
calculate Young’s modulus. The applied force was calculated by subtracting the zero of
the force from the image setpoint and converted to nN from nA [23]. Ten replicates of each
spore type were taken per surface sample.

2.8. Lateral Force Measurements Using Fungal Spores

One hundred microlitres of conidial suspension was pipetted onto the surface and
dried for 1 h in a Class 2 hood. The AFM was used in contact mode and the cantilevers
(pyramidal MLCT probes with a 35◦ angle) were calibrated before each use. One millilitre
of sterile distilled water was added to the surface and the laser realigned. Lateral force
assays were carried out at a speed of 1 Hz with a scan size of 50 µm × 50 µm. The number
of spores remaining on the scanned surface was counted following each scan and the
percentage calculated. Five separate scans and measurements were carried out per conidial
type per sample. To determine the lateral force measurements, the applied force normal
to the plane of interaction was calculated where Θ and ϕ were the probe geometry and
cantilever orientation, respectively [32]:

Fapp = kd × sin (Θ + ϕ). (2)

The lateral force was determined using Equation (3) [32]:

Flat = Fapp × cos(Θ) (3)

2.9. Attachment Assays

Replicate substrata (1 cm × 1 cm) were attached to a stainless steel tray using adhesive
gum (Bostick, Leicester, UK) which was placed vertically in a Class 2 flow hood. A spore
suspension at an OD of 1.0 ± 0.1 was sprayed onto the surface using an airbrush set to
the finest spray setting (Badger Airbrush, London, UK), propelled by a Letraset 600 mL
liquid gas canister (Esselte Letraset Ltd., Kent, UK). The distance between the spray and
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the airbrush was 10 cm and the speed of the spray was 50 mm s−1 with a flow rate of
0.2 mL s−1 as it was passed ten times from left to right. Following spraying, the substrata
were held and rinsed once with 5 cm3 of distilled H2O, to remove loosely attached spores.

2.10. Adhesion Assays

For the adhesion assay, the replicate substrata were prepared as for the attachment
assay but following spraying, the tray containing the substrata was laid horizontally and
air-dried without rinsing.

2.11. Retention Assays

Spores were prepared as previously and then 20 mL of spore suspension was pipetted
onto three replicate substrata which had been placed horizontally in a glass Petri dish.
These were incubated at room temperature for 1 h without agitation, then the test pieces
were removed and rinsed once and dried as in the adhesion assay. All the substrata with
spores were stained for 2 min using 0.03% acridine orange in 2% glacial acetic acid (Sigma,
Dorset, UK), rinsed then air-dried and visualised and determined using epifluorescence
microscopy (Nikon Eclipse E600, Nikon, Surrey, UK).

2.12. Multifractal Analysis (MFA)

The epifluorescent images of the spores were converted to black (surface) and white
(cells) binary files using the MathWorks Image Processing Toolbox, where black pixels were
assigned values of zero and white pixels one (Figure 1A,C). Multifractal analysis was carried
out on both sets of images and the computed f (α) multifractal curves plotted. Images
of each of the surfaces with retained microorganisms were processed and the averages
were calculated. The numerical multifractal spectra were computed for −10 ≤ q ≤ 10,
in all cases, and boxes of sizes 4, 8, 16, 32, 64, 128, and 256 were used in the computation
of box-counting dimension, from which the f (α) curves were generated. This enabled
the relative density, dispersion, and clustering of the white pixels to be computed. Two
binary images and the corresponding multifractal f (α) curves are shown (Figure 1), where
numerical measures of density D0, dispersion ∆α, and clustering ∆ f are also given. For
a gentle introduction to fractals and multifractals, see [33]; for the mathematical theory
behind multifractals, see [34]; and for a more detailed example in surface morphology,
see [35].

2.13. Statistical Analysis

Statistical analysis was determined using a Student t-test, whereby significance was
determined if p < 0.05.
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(Figure 2B) and this was representative across the surfaces (±20 nm). 

Figure 1. Binary images and multifractal spectra. (A) A binary image of A. niger 1957 on the cationic
surface following the retention assay. (B) Multifractal f (α) curve for image (A). Density is measured
by the fractal dimension, D0 = 1.87, a measure of dispersion is given by ∆α = 0.73, and a measure
of clustering is given by ∆ f = 0.66, indicating clustering of cells. (C) A binary image of A. niger
1957 on the cationic surface following the attachment assay. (D) Multifractal f (α) curve for image
(C). Density is measured by the fractal dimension, D0 = 1.25, a measure of dispersion is given by
∆α = 1.14, and a measure of clustering is given by ∆ f = −0.39, indicating clustering of gaps. The
black dash dot lines are f (α) = α.

3. Results

AFM was used to demonstrate the topography of the anionic and cationic surfaces
(Figure 2A,B). Apart from some linear features on the surfaces, the cationic surface also
showed some small surface peaks. The z height in the images of the anionic surface was
much lower (266 nm) (Figure 2A), whereas the z height of the cationic surface was 676 nm
(Figure 2B) and this was representative across the surfaces (±20 nm).

To determine the effect of the surface properties on the binding and force of binding
of the conidia using different methodological conditions, the hardness, Ra, and wettability
measurements of the anionic and cationic surfaces were assessed (Table 1). The results
demonstrated that there were no significant differences in the results for the hardness values
of the surfaces (p > 0.05) or for the Ra values of the surfaces (p > 0.05). However, significant
differences were demonstrated in the wettability on the surfaces (p < 0.05) (anionic 55◦;
cationic 37◦).
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Figure 2. Surface topography of the (A) anionic and (B) cationic surfaces using a 50 µm × 50 µm
scan.

Table 1. Hardness, Ra, and contact angle measurements of the anionic and cationic surfaces.

Nanoindentation
(GPa)

Ra
(nm)

Contact Angle
(◦)

Anionic 0.7 ± 0.2 2.4 ± 0.6 55 ± 0.8

Cationic 0.5 ± 0.01 21.9 ± 11.5 37 ± 3.1

The conidia of A. niger 1957 (Figure 3A) and A. niger 1988 (Figure 3B) were imaged
to demonstrate their differences in their surface features. It was demonstrated that the
A. niger 1957 conidia, although wrinkled in appearance, did not have the spikey protrusions
demonstrated by the conidia of the A. niger 1988. The mean sizes of the conidia spores were
between 5.5 and 6 µm in diameter.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

                          
Figure 3. SEM images of the conidia of (A) A. niger 1957 and (B) A. niger 1988. 

3.1. Perpendicular force measurements 
Perpendicular force measurements using cantilevers modified with conidia were 

used to determine the force of attachment of the spore to the surfaces (Figure 4). The high-
est perpendicular force was demonstrated by A. niger 1957 on anionic surfaces, whilst the 
least was shown by A. niger 1988 on the cationic surface. On the anionic surface, it was 
demonstrated that there was a significant difference in the amount of perpendicular force 
for the A. niger 1957 force of conidia attachment when compared to the A. niger 1988 on 
the anionic (p < 0.005) or cationic surface (p < 0.001). There was also a significant difference 
in the results for the A. niger 1988 when compared between the anionic (8.2 nN) and cati-
onic (3.6 nN) surfaces (p < 0.005), however, there was no significant difference for the A. 
niger 1957 when compared between the anionic (14.8 nN) and cationic (13.4 nN) surfaces 
(p > 0.05). 

 
Figure 4.Perpendicular force measurements of the conidia on the anionic and cationic surfaces. 
A57 = A. niger 1957, A88 = A. niger 1988, *** = p < 0.005, **** = p < 0.001. 

  

Figure 3. SEM images of the conidia of (A) A. niger 1957 and (B) A. niger 1988.



Nanomaterials 2023, 13, 2932 8 of 15

3.1. Perpendicular force measurements

Perpendicular force measurements using cantilevers modified with conidia were used
to determine the force of attachment of the spore to the surfaces (Figure 4). The highest
perpendicular force was demonstrated by A. niger 1957 on anionic surfaces, whilst the
least was shown by A. niger 1988 on the cationic surface. On the anionic surface, it was
demonstrated that there was a significant difference in the amount of perpendicular force
for the A. niger 1957 force of conidia attachment when compared to the A. niger 1988 on the
anionic (p < 0.005) or cationic surface (p < 0.001). There was also a significant difference
in the results for the A. niger 1988 when compared between the anionic (8.2 nN) and
cationic (3.6 nN) surfaces (p < 0.005), however, there was no significant difference for the
A. niger 1957 when compared between the anionic (14.8 nN) and cationic (13.4 nN) surfaces
(p > 0.05).
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3.2. Lateral Force Measurements

Lateral force measurements were carried out on the surfaces to determine the force
needed to push conidia from the surfaces (Figure 5). It was determined that A. niger 1988 on
anionic surfaces were the most easily removed, whilst A. niger 1957 on the cationic surfaces
were the most difficult spores to remove.

3.3. Attachment, Adhesion, and Retention Assays

Following the attachment (Figure 6A), adhesion (Figure 6B), and retention
(Figure 6C) assays, the results demonstrated that the greatest numbers of spores following
the binding assays for A. niger 1957 on the cationic surfaces were 8.9 × 104; 8.4 × 104;
7.8 × 105 cm2, respectively, and the least for A. niger 1988 on the anionic surfaces (0.0;
1.4 × 104; 9.4 × 101 spores cm2, respectively). There was a significant difference between
the attachment, adhesion, and retention of A. niger 1957 on the anionic and cationic sur-
faces, A. niger 1957 and A. niger 1988 on the cationic surfaces, and A. niger 1988 on the
anionic and cationic surfaces. In addition, for the attachment assays there was a significant
difference in the numbers of A. niger 1988 on the anionic surface compared to the A. niger
1957 on the anionic and cationic surface and also when compared to A. niger 1988 on the
cationic surfaces.
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Following the adhesion assays, significant differences were determined. These were
seen between A. niger 1957 and the anionic and cationic surface, A. niger 1988 and the
anionic and cationic surface, and A. niger 1957 and A. niger 1988 and the cationic surface.

The retention assays demonstrated significant differences between A. niger 1957 and
A. niger 1988 on the anionic surfaces (p < 0.001). The assays demonstrated the same pattern
whereby A. niger 1957 on cationic surfaces > A. niger 1988 on cationic surfaces > A. niger
1957 on anionic surfaces and A. niger 1988 on anionic surfaces.

3.4. Multifractal Analysis (MFA)

The results from the multifractal analysis (Figure 7) demonstrated that both the A. niger
1957 and A. niger 1988 were most densely distributed across the cationic surfaces, regardless
of the assay used (attachment, adhesion, or retention). Both the A. niger 1957 and A. niger
1988 were more evenly dispersed on the cationic surfaces following the attachment and ad-
hesion assays, whereas they were more evenly dispersed on the anionic surfaces following
the retention assays. The results for the clustering were the most difficult to elucidate in
that all the A. niger 1988 conidia following the attachment, adhesion, or retention assays
were the most clustered on the anionic surfaces and for the A. niger 1957 following the
adhesion assays. However, following the attachment or retention assays, the conidia were
more highly clustered on the cationic surfaces.
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4. Discussion

One way to combat the transmission of organisms from fomites to patients has been
the use of antiadhesive polymeric coatings. A. niger is an opportunistic pathogen and can
form biofilms on polymeric structures [15–17]. The properties of a surface that affect the
binding of conidia are still poorly understood, and the conidia of Aspergillus niger spp. are
still of concern in terms of the potential development of infections on biomaterials and
from surface transmission.
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In this work, there were no significant differences in the results for the hardness
or the Ra values of the surfaces. However, significant differences were demonstrated in
the wettability of the surfaces. In addition, although of similar sizes, SEM imaging of
the conidia of the A. niger 1957 and A. niger 1988 demonstrated them to be of different
morphologies, whereby the A. niger 1957 had a round shape with wrinkled surfaces, whilst
A. niger 1988 demonstrated spikey protrusions from the surface, thus adding a further
complexity to this work.

4.1. Perpendicular and Lateral Force Measurements

Perpendicular force measurements may be used to determine the force of attachment
of conidia to a surface. The highest perpendicular force measurement was demonstrated by
A. niger 1957 and A. niger 1988 on anionic surfaces which was the less wettable surface. This
finding is in agreement with work carried out on the strength of attachment of the spores
on several surfaces which found that perpendicular force measurements could be related
to the wettability of the surfaces [23]. Lateral force measurements were carried out on the
surfaces to determine the force needed to push conidia from the surfaces. Both the A. niger
1957 and A. niger 1988 were more difficult to remove using the lateral force measurements
from the anionic surface. This is in agreement with work carried out on PMMA surfaces,
whereby A. niger 1988 spores were the most difficult to remove from a p(γ-MPS-co-LMA)
spin-coated surface which was also the least wettable surface [25]. This similarity in results
for the perpendicular and lateral force measurements may have occurred since in both
instances a force was applied, and the surfaces and conidia were similar in their surface
properties. Although the negatively charged conidium will be attracted to the positively
charged cationic surface, they could be more easily removed due to the forces enabling
effects from the Stern layer to come into play, thus resulting in the ease of removal of the
conidium from the cationic surface.

4.2. Binding Assays and Multifractal Analysis

The results of the binding assays (attachment, adhesion, or retention) demonstrated
that both the A. niger 1957 and A. niger 1988 conidia bound in greater numbers to the
cationic surfaces and they were also found to be distributed in the highest density across
these surfaces. Given that the conidia were of different shapes, this result negates in this
instance that the shape of the conidia influenced the results. It may be speculated that the
attachment of the conidia to the surfaces was influenced by electrostatic forces. Fungal
spores generate an electrical surface charge, and it has been suggested that this may have a
function in spore–surface attraction [36]. It is also known that Aspergillus spp. have on their
surface small amphipathic proteins which are known as hydrophobins and these can self-
assemble at water–air interfaces [17,37]. It is thought that hydrophobins may be responsible
for conidia binding to surfaces [38–40]. It is also known that the outside of the conidia
of A. niger is composed in part of proteins and lipids [21,41], although a small amount of
carbohydrate is also present. A. niger also contains melanin pigments which influence the
net surface charge of the conidia due to the incomplete dissociation of carboxyl groups,
and these pigments are found on top of the outer spore wall layer [42]. In agreement with
these findings, diffuse reflectance for infrared Fourier transform spectroscopy (DRIFTS)
demonstrated that both types of A. niger spores demonstrated broad hydrogen-bonded
-OH stretching bands, C-H stretching vibrations ester carbonyl bands, amide I and II
carbonyl bands, and C-O-C bending vibrations [43]. Work by Grunér [44] demonstrated
that hydrophobins bound to cationic but not anionic surfaces immersed in aqueous solution
and that it was electrostatic forces that were important for the interaction between the
hydrophobins and the polar surface. They speculated that on the hydrophobic surface, the
hydrophilic side of the layer was turned toward the solution, and on the cationic surface
the more hydrophobic side of the layer was turned toward the solution [44,45].

In agreement with the findings of our binding assays, work by others has shown
similarities with a variety of cells and biomolecules. It has been demonstrated that protein
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adsorption and macrophage adhesion on cationic surfaces was higher than on zwitterionic
and anionic polyurethanes [46]. The effect of biofouling to charged polymers has been
investigated by using cationic and anionic brushes to test their resistance to protein adsorp-
tion, bacterial and green alga zoospore adhesion, and settlement of barnacle larvae, and it
was found that anionic surfaces showed lower biofouling due to a higher surface wettability
and repulsive electrostatic interactions between the anionic polymer and the negatively
charged bacterial cell wall [47]. However, in contrast, Yang et al. [48] demonstrated that
anionic poly(sodium styrene sulfonate) did not reduce bacterial attachment as effectively
as zwitterionic or neutral polymers [48].

The tendency to form conidial aggregates at the early stage of cultivation by A. niger has
long been recognized [42] and the aggregation behaviour has been attributed to electrostatic
surface properties [44,49–52]. The use of mathematical analysis can be used to provide
further information on the density, dispersion, and clustering of microorganisms across
a surface. The theory and applications of MFA have been described [53,54]. The results
from the multifractal analysis demonstrated that both the A. niger 1957 and A. niger 1988
were most densely distributed across the cationic surfaces, regardless of the assay used
(attachment, adhesion, or retention). The dispersion of conidia across the surfaces was
found to be more homogeneous on the cationic surfaces following the attachment and
adhesion assays whereby the conidia were forced onto the surface via the spraying assays,
whereas following the retention assays the conidia were more homogeneously dispersed
across the anionic surfaces. One of the key surface properties that is thought to contribute
to microbial binding to a surface is substratum hydrophobicity [52], and this may have
affected the dispersion of the spores across the surfaces.

The results from the clustering assays were more difficult to explain. However, a clear
trend was observed with the A. niger 1988 conidia whereby the greatest spore clustering was
observed on the anionic surfaces and the cationic surfaces following the use of the A. niger
1957 conidia after the attachment and retention assays, suggesting that the spore shape
influenced the pattern on clustering. The effect of spore shape has also been demonstrated
by Whitehead et al. [55], whereby in the presence of a washing step, both the properties of
the surfaces and the conidia affected conidial adhesion and retention.

The disparity in the results between studies may be explained in part due to the ranges
of the properties of the surfaces tested. For example, when PVAc and PVOH moulded
surfaces were used to determine the binding of A. niger 1957 and 1988 conidia to surfaces
and following adhesion and retention assays it was found that in contrast to the results
presented here, the more polar surface retained all the types of conidia and that binding to
the surfaces was influenced by the wettability of the surfaces and spores. However, the more
polar surfaces were significantly rougher in the Liauw study [56]. Such position-dependent
interactions give a theoretical equilibrium distance at which the binding between the spores
is most stable [44]. Hence, different systems, depending on their individual properties, will
act in a variety of ways since the equilibrium distance between two interacting bodies will
be a question of the entirety of reversible interactions. These interactions are complex and
will involve a number of facets [44], the most important of which will become apparent
depending on the variation in the surface properties.

5. Conclusions

The highest perpendicular force (i.e., strongest attachment) was demonstrated by
A. niger 1957 and A. niger 1988 on anionic surfaces. Both conidial types were more difficult
to remove using the lateral force measurements from the anionic surface, although fewer
spores remained on the anionic surfaces after the physical treatments of the traditional
washing assays. Dispersion of conidia across the surfaces was more homogeneous on the
cationic surfaces following the attachment and adhesion assays, whereas following the re-
tention assays the conidia were more homogeneously dispersed across the anionic surfaces.
The results of the binding assays (attachment, adhesion, or retention) demonstrated that
both the A. niger 1957 and A. niger 1988 conidia bound in higher numbers to the cationic
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surfaces and they were also found to be distributed most densely across these surfaces. The
use of such a wide range of analytical tools and methods illustrates the complexity of the
interactions between the spore and the surface. The results suggest that in this instance,
surface wettability was a major factor in influencing conidial interactions with the surface.
Further, this work demonstrated that there were more tightly bound conidia that remained
after physical and washing treatments and these are important since these retained spores
are likely to be those which can proliferate to create biofilms and colonies. This observation
indicates the next direction for study, namely removing these tightly bound conidia and
observing structural or surface differences between these and other conidial genus.
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