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ABSTRACT  

 

A diet rich in vegetables is known to provide cardioprotection.  However, it is unclear how 

the consumption of different vegetables might interact to influence vascular health.  This 

study tested the hypothesis that nitrate-rich vegetable consumption would lower systolic 

blood pressure but that this effect would be abolished when nitrate-rich and thiocyanate-rich 

vegetables are co-ingested.  On four separate occasions, and in a randomised cross-over 

design, eleven healthy males reported to the laboratory and consumed a 750 mL vegetable 

smoothie that was either: low in nitrate (~ 0.3 mmol) and thiocyanate (~ 5 μmol), low in 

nitrate and high in SCN- (~ 72 μmol), high in nitrate (~ 4 mmol) and low in SCN- and high in 

nitrate and SCN-.  Blood pressure as well as plasma and salivary [thiocyanate], [nitrate] and 

[nitrite] were assessed before and 3 hours after smoothie consumption.  Plasma [nitrate] and 

[nitrite] and salivary [nitrate] were not different after consuming the two high-nitrate 

smoothies, but salivary [nitrite] was higher after consuming the high-nitrate low-thiocyanate  

smoothie (1183 ± 625 µM) compared to the high-nitrate high-thiocyanate smoothie (941 ± 

532 µM; P<0.001).  Systolic blood pressure was only lowered after consuming the high-

nitrate low-thiocyanate smoothie (-3 ± 5 mmHg; P<0.05).  The acute consumption of 

vegetables high in nitrate and low in thiocyanate lowered systolic blood pressure.  However, 

when the same dose of nitrate-rich vegetables was co-ingested with thiocyanate-rich 

vegetables the increase in salivary [nitrite] was smaller and systolic blood pressure was not 

lowered.  These findings might have implications for optimising dietary guidelines aimed at 

improving cardiovascular health. 

 

Key Words: Entero-salivary circulation; nitrite; nitric oxide; vascular health; nutrition  
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1. INTRODUCTION  

Cardiovascular disease (CVD) is the leading cause of mortality globally and places a 

significant burden on healthcare services [1].  In an effort to attenuate CVD morbidity cost-

effectively, many governments actively promote the consumption of a diet rich in fruit and 

vegetables [2-4] based on evidence that adhering to such diets can mitigate the risks 

associated with CVD morbidity [5,6].  However, emerging evidence indicates that the 

cardioprotective effect afforded by vegetable consumption outweighs that of fruit 

consumption [7], and that leafy green vegetables rich in inorganic nitrate (NO3
-) might be 

particularly effective at improving the health of the cardiovascular system [8-10,11]. 

 

The cardiovascular benefits associated with NO3
--rich vegetable consumption has been 

ascribed to the stepwise reduction of NO3
- to nitrite (NO2

-) and then nitric oxide (NO) [12].  

Since humans have a limited capacity to directly reduce NO3
- to NO2

-, with this being 

critically dependent on the NO3
- reducing bacteria on the tongue [13,14], a rate limiting step 

for the chemical reduction of NO3
- is the delivery of NO3

- to the oral cavity through the 

enterosalivary circulation [15].  The uptake of NO3
- into the salivary glands occurs in 

competition with other anions, including thiocyanate (SCN-), with evidence that SCN- has a 

higher affinity for transport into the salivary glands compared to NO3
- [16].  It has recently 

been reported that cigarette smokers, who manifest higher plasma and salivary [SCN-], 

exhibited smaller increases in salivary [NO3
-] and plasma [NO2

-] compared to non-smokers 

after ingesting the same NO3
- dose, and that blood pressure was only lowered post NO3

- 

supplementation in the non-smokers [17].  Therefore, increased exposure to SCN- has the 

potential to perturb dietary NO3
- metabolism and its beneficial effect on vascular health.  
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Although some green vegetables, including spinach and rocket, are a rich source of NO3
- 

[18,19], other green vegetable varieties, including members of the Brassica family such as 

cabbage, cauliflower and broccoli, have been reported to increase serum [SCN-] [20].  

Brassica vegetables are rich in glucosinolates [21,22].  During processes that damage plant 

cell membranes, such as mastication, glucosinolates are exposed to myrosinase which 

catalyses the hydrolysis of glucosinolates to SCN- [23,24].  Therefore, co-ingestion of 

glucosinolate/SCN--rich vegetables with NO3
--rich vegetables has the potential to perturb 

dietary NO3
- metabolism and the beneficial effect of NO3

- on vascular health markers.   

 

The purpose of this study was therefore to investigate the independent and combined effect of 

ingesting NO3
--rich and SCN--rich vegetables on dietary NO3

- metabolism and blood pressure 

at doses within the recommended daily fruit and vegetable intake of 400 g·day-1 [3,25].  We 

hypothesised that, compared to the ingestion of vegetables high in NO3
- and low in SCN-, the 

increases in salivary [NO3
-] and [NO2

-] and plasma [NO2
-] would be blunted, and the lowering 

of blood pressure would be attenuated when the same dose of NO3
--rich vegetables was co-

ingested with SCN--rich vegetables.  We also hypothesised that the ingestion of vegetables 

low in NO3
- would not alter blood pressure, irrespective of their SCN- content, due to a lack 

of change in plasma [NO2
-].               

 

2. SUBJECTS AND METHODS 

 

2.1 Subjects characteristics 

Eleven healthy, non-smoking males (mean ± SD, age 21 ± 1 yr, height 1.82 ± 0.03 m, body 

mass 80 ± 9 kg) were recruited from the University student community to participate in this 

trial.  The participant number was determined a priori via a statistical power calculation. 
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Specifically, to detect an effect size of 1, which was based on the peak reduction in systolic 

blood pressure following the ingestion of NO3
--rich beetroot juice providing 4 mmol NO3

- 

from the study by Wylie et al. [26], with a high statistical power (0.80) and an α error 

probability of 0.05, 10 subjects were required.  We recruited 11 participants to account for 

potential participant drop out.  This calculation was conducted using G*Power (Version 

3.1.9.2).  All procedures employed in this study were approved by the Institutional Research 

Ethics Committee.  Subjects gave their written informed consent to participate in this trial 

prior to the commencement of the study and after the experimental procedures, associated 

risks, and potential benefits of participation had been explained.  Subjects were instructed to 

arrive at each laboratory testing session in a rested state after an overnight fast.  Since the 

chemical reduction of NO3
- to NO2

- in the oral cavity is thwarted by antibacterial mouthwash 

[13], subjects were required to refrain from mouthwash use for the duration of the study.  

Each subject was also asked to avoid consumption of NO3
--rich and glucosinolate/SCN--rich 

foods for 48 h, and from caffeine and alcohol ingestion 12 and 24 h before each test, 

respectively.  All subjects were instructed to maintain their habitual physical activity pattern 

for the duration of the study, and to avoid strenuous exercise in the 24 h preceding the testing 

sessions.   All tests were performed at the same time of day (± 1 hour).    

 

2.2 Experimental design  

Subjects were required to report to the laboratory on five occasions over a 3-5 week period to 

complete the experimental testing.  Since environmental (e.g. humidity, temperature, water 

content and exposure to sunlight) and agricultural factors can influence vegetable NO3
- and 

SCN- concentrations [19,22,27,28], each vegetable was obtained from the same supplier 

(Tesco Stores Ltd, UK) and the trial was completed within a 4-month period to limit the 

potential for variability in these factors.   



6 
 

 

On the first visit to the laboratory, subjects were familiarized with the blood pressure 

measures and venous blood and saliva collection methods described below.  On the 

subsequent four laboratory visits, seated blood pressure was assessed, and saliva and venous 

blood samples were obtained, after arrival at the laboratory.  Subjects then consumed a 

vegetable smoothie beverage prepared using vegetables either low in NO3
- and SCN- (LoN-

LoT);  low in NO3
-, high in SCN- (LoN-HiT); high in NO3

-, low in SCN- (HiN-LoT); or high 

in NO3
- and SCN- (HiN-HiT) along with a standardised breakfast of 54 g of porridge oats 

(“Oats So Simple”, Quaker Oats) prepared with 180 mL of tap water and one 20 g sachet of 

golden syrup (Lyle’s golden syrup).  The smoothies were administered in a randomized, 

doubled-blind, counter-balanced, cross-over experimental design.  Blood pressure was 

measured and venous blood and saliva were collected three hours post vegetable smoothie 

consumption to align with the peak plasma [NO2
-] and blood pressure reduction following 

dietary supplementation with 4.2 mmol NO3
- [26].  Plasma and salivary [NO3

-], [NO2
-] and 

[SCN-] were determined using the procedures described below.  Subjects were naive to the 

experimental hypotheses and were informed that the aim of this study was to investigate the 

effects of consuming different vegetables on vascular health. 

 

2.3 Supplementation procedures 

To inform the composition of the vegetable smoothie beverages administered in this study, 

the NO3
- and SCN- content of a variety of vegetables was assessed prior to experimental 

testing.  These preliminary analyses revealed that garden peas were low in both NO3
- (~ 0.8 

mg/100 g) and SCN- (< 0.1 mg/100 g), spinach and rocket were high in NO3
- (~ 143.0 and 

360.5 mg/100 g, respectively) and low in SCN- (both < 0.1 mg/100 g), and the inner leaves of 

a cabbage were high in SCN- (~ 5.0 mg/100 g) and low in NO3
- (~ 7.3 mg/100 g).  Therefore, 
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these vegetables were selected to prepare the four vegetable smoothie beverages administered 

in this study.  Further pilot work to assess drink palatability and the potential for side effects, 

including gastrointestinal (GI) discomfort, revealed that subjects were able to ingest 750 mL 

of each of the four vegetable smoothie beverages prepared in this study with minimal GI 

discomfort.   

 

The four vegetable smoothies administered in this study were all 750 mL and comprised 250 

mL tap water, 150 mL of Ribena blackcurrant cordial (Ribena, Lucozade Ribena Suntory 

Limited, United Kingdom) and 340 g of blended green vegetables.  The 340 g of green 

vegetables comprised 340 g garden peas in the LoN-LoT beverage; 122 g garden peas and 

218 g inner cabbage leaves in the LoN-HiT beverage; 218 g garden peas, 87 g spinach and 35 

g rocket in the HiN-LoT beverage; and 218 g inner cabbage leaves, 87 g spinach and 35 g 

rocket in the HiN-HiT beverage. Vegetables were weighed using digital scales sensitive to 

100 mg (Ohaus Valor 3000 Xtreme, Ohaus Corporation, USA) and blended on the morning of 

testing.  Each smoothie was then refrigerated at 4°C for > 15 min prior to consumption.  

Vegetables were blended raw to preserve nutritional content, since conventional cooking 

methods reduce the intake of glucosinolates/SCN- [22] and NO3
- [29].  A 30 mL aliquot was 

obtained from each of the four vegetable smoothies from which subsequent 1.5 mL aliquots 

were collected and analyzed to determine the NO3
- and SCN- content of the vegetable 

smoothie beverages (see below for further details).  These analyses were completed at the 

start and end of the study to gauge any changes in the vegetable NO3
- and SCN- content 

across the study.  The NO3
- and SCN- content of the four vegetable smoothie beverages at the 

start and end of the study are presented in table 1, with the mean of these two samples used to 

indicate the mean NO3
- and SCN- contents of the beverages across the duration of the study.    
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2.4 Measurements 

2.4.1 Blood pressure 

Subjects were required to rest seated for 10 min in an isolated temperature-controlled room. 

Thereafter, blood pressure of the brachial artery was measured whilst the subject was seated 

using an automated sphygmomanometer (Dinamap Pro, GE Medical Systems, Tampa, USA).  

Five measurements were taken and the mean of the five measurements was used for analysis. 

 

2.4.2 Blood and saliva collection 

Venous blood samples were drawn into 6 mL lithium-heparin tubes (Sarstedt, Leicester, UK).   

Samples were centrifuged at 4,000 rpm and 4°C for 10 min, within 1 min of collection.  

Plasma was subsequently extracted and immediately frozen at -80°C for later analysis of 

[NO3
-], [NO2

-] and [SCN-].  Unstimulated saliva samples (~ 3 mL) were collected into 30 mL 

universal containers and 1 mL aliquots were frozen at -80°C for later analysis of [NO3
-], 

[NO2
-] and [SCN-].   

 

2.5 Data analysis procedures 

2.5.1 Plasma and salivary [NO3
-] and [NO3

-] determination 

All glassware, utensils, and surfaces were rinsed with deionized water to remove residual NO 

intermediates prior to [NO3
-] and [NO2

-] analysis.  Plasma samples were deproteinized using 

zinc sulfate (ZnSO4)/sodium hydroxide (NaOH) precipitation prior to determination of [NO3
-

]. Firstly, 500 μL of 0.18 N NaOH was added to 100 µL of sample followed by a 5 min 

incubation at room temperature.  Subsequently, samples were treated with 300 μL of aqueous 

ZnSO4 (5% w/v) and vortexed for 30 seconds before undergoing an additional 10 min 

incubation period at room temperature. Samples were then centrifuged at 4,000 rpm for 5 

min, and the supernatant was removed for subsequent analysis.  The [NO3
-] of the 
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deproteinized plasma sample was determined by its reduction to NO in the presence of 0.8 % 

(w/v) vanadium chloride (VCl3) in 1 M HCl within an air-tight purging vessel.  Plasma 

samples were introduced to the vessel via 50 uL injections into the septum at the top of the 

vessel.  The spectral emission of electronically excited nitrogen dioxide, derived from the 

reaction of NO with ozone, was detected by a thermoelectrically cooled, red-sensitive 

photomultiplier tube housed in a Sievers gas-phase chemiluminescence nitric oxide analyzer 

(Sievers NOA 280i, Analytix Ltd, Durham, UK). The [NO3
-] was determined by plotting 

signal (mV) area against a calibration plot of sodium nitrate standards.  The [NO2
-] of the 

undiluted (non-deproteinized) plasma was determined by its reduction to NO in the presence 

of glacial acetic acid and aqueous sodium iodide (4% w/v).  Sodium nitrite standards were 

used.  Injections of 100 uL of plasma were used for [NO2
-] determination.  After thawing at 

room temperature, saliva samples were centrifuged for 10 min at 14000 rpm and the 

supernatant was removed for subsequent analysis.  The supernatant was diluted 100-fold with 

deionized water and [NO3
-] and [NO2

-] were determined from 50 uL injections, using the 

same reagents describe above for the plasma analyses. 

 

2.5.2 Plasma and salivary [SCN-] determination 

Plasma and salivary [SCN-] were measured in duplicate using the procedures described by 

Tsuge et al. [30].  Briefly, 300 μL of plasma was treated with 200 μL of trichloroacetic acid   

(25% w/v) and centrifuged for 10 min at 14000 rpm.  The supernatant was then removed for 

subsequent analysis. 50 μL of sample, 15 μL of 1 M of ice-cold potassium hydrogen 

phosphate solution (pH 5.5), 5 μL of 5M NaOH solution, and 10 μL of 6.25 mg/ml 

chloramine T solution were added to a 96-well microtiter plate (Sterilin Ltd., Caerphilly, UK) 

and incubated on ice for 2 min.  Subsequently, 120 μL of cyanoline blue solution (0.27 % 

w/v) was added to the microtiter plate and the plate was incubated for 20 min at room 
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temperature.  Following incubation, sample absorbance was measured at 620 nm using a 

microplate reader (EnSpire 2300, Perkin Elmer, Hamburg, Germany).  Thawed saliva samples 

were centrifuged for 10 min at 14000 rpm and the supernatant was removed for subsequent 

analysis.  Samples were diluted 25 fold, and 40 μL of the diluted sample was added to a 96-

well microtiter plate in addition to 20 μL of 1 M potassium phosphate buffer solution and 20 

μL of 6.25 mg/ml choramine T solution, and incubated on ice for 2 min.  Cyanoline blue 

solution (140 μL 0.27 % w/v in pyridine-water, 1:5, v/v) was added to the microtiter plate 

followed by a 20 min incubation at room temperature.  Following incubation, sample 

absorbance was measured at 620 nm using a microplate reader.  

 

2.5.3 Vegetable smoothie beverage [NO3
-] and [SCN-] determination 

Prior to analysis of the vegetable smoothie beverage NO3
- content, a 1.5 mL aliquot of each 

vegetable smoothie beverage was transferred to a heat-resistant microcentrifuge tube.  

Subsequently, samples were heated at 130ºC for 60 min using a heat plate (Grant QBD2, 

Cambridge, UK) to disintegrate the cell membranes for release of intracellular NO3
-.   

Samples were then centrifuged at 12,000 g and 4ºC for 8 min and the supernatant was 

removed for subsequent analysis.  The supernatant was diluted 100-fold with deionized water 

and [NO3
-] was determined from 50 μL injections using the same reagents and procedures 

described above for plasma [NO3
-] analysis.  

 

For determination of the vegetable smoothie beverage SCN- content, a 1.5 mL aliquot of each 

vegetable smoothie beverage was transferred to a standard microcentrifuge tube.  These 

samples were not heated, as it was necessary to avoid the denaturation of the enzyme, 

myrosinase, which hydrolyzes glucosinolates to SCN- [22].  Vegetable smoothie samples 

were centrifuged at 12,000 g and 4ºC for 10 min and the supernatant was removed for 
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subsequent analysis.  The [SCN-] of the supernatant was determined using the same reagents 

and procedures described above for salivary [SCN-] analysis. 

 

2.6 Statistical analysis 

A two-way (supplement × time) repeated-measures ANOVA was employed to assess pre-post 

supplement changes in blood pressure variables and plasma and salivary [NO3
-], [NO2

-] and 

[SCN-] for the four vegetable smoothie beverages administered in this study (LoN-LoT, LoN-

HiT, HiN-LoT and HiN-HiT).  Where the ANOVA revealed significant differences, Fishers 

Least Significant Difference tests were employed to determine the origin of such effects.  

Pearson’s product moment correlation coefficient was used to assess the relationship between 

changes in variables across conditions.  All data are presented as mean ± SD unless otherwise 

indicated.  Statistical significance was accepted when P<0.05. All statistical analyses were 

conducted using IBM SPSS Statistics version 23.   

 

3. RESULTS 

Participants self-reported that their diet and exercise patterns were consistent for the 48 hours 

preceding each laboratory visit. 

 

3.1 Plasma and salivary [SCN-]  

The plasma and salivary [SCN-] across the four experimental conditions are illustrated in 

figure 1.  There was a significant supplement × time interaction effect for plasma and salivary 

[SCN-] (both P<0.001).  Compared to the pre-supplementation values, plasma [SCN-] was 

higher in the LoN-HiT (12 ± 4 vs. 20 ± 7 µM) and HiN-HiT (11 ± 4 vs. 20 ± 6 µM) 

conditions (P<0.01), but not different in the LoN-LoT (16 ± 6 vs. 15 ± 8 µM) and HiN-LoT 

(16 ± 5 vs. 17 ± 7 µM) conditions (P>0.05; Figure 1).  Likewise, compared to the pre-
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supplementation values, salivary [SCN-] was higher post smoothie consumption in the LoN-

HiT (1061 ± 377 vs. 1463 ± 378 µM) and HiN-HiT (976 ± 519 vs. 1286 ± 393 µM) 

conditions (P<0.01), but not different in the LoN-LoT (1219 ± 495 vs. 1176 ± 575 µM) and 

lower in the HiN-LoT (1283 ± 485 vs. 922 ± 368 µM) conditions (P>0.05; Figure 1). 

 

3.2 Plasma and salivary [NO3
-] and [NO2

-] 

The plasma and salivary [NO3
-] and [NO2

-] across the four experimental conditions are 

illustrated in figure 2.  There were significant supplement × time interaction effects for 

plasma and salivary [NO3
-] and [NO2

-] (P<0.001 for all comparisons).  The post-

supplementation plasma [NO3
-] was higher than the pre-supplementation values in the HiN-

LoT (44 ± 24 vs. 276 ± 62 µM) and HiN-HiT (42 ± 13 vs. 257 ± 54 µM) conditions 

(P<0.001), but not the LoN-LoT (44 ± 30 vs. 41 ± 20 µM) and LoN-HiT (42 ± 17 vs. 41 ± 14 

µM) conditions (P>0.05; Figure 2).  Moreover, the post-supplementation plasma [NO3
-] 

values were higher in the HiN-LoT and HiN-HiT conditions compared to both the LoN-LoT 

and LoN-HiT conditions (P<0.001), but were not different between the HiN-LoT and HiN-

HiT conditions (P>0.05).  Salivary [NO3
-] was higher post-supplementation compared to pre-

supplementation in the HiN-LoT (513 ± 705 vs. 3114 ± 2110 µM) and HiN-HiT (382 ± 525 

vs. 3362 ± 2232 µM) conditions (P<0.001), but not the LoN-LoT (445 ± 438 vs. 403 ± 387 

µM) and LoN-HiT (428 ± 375 vs. 315 ± 252 µM) conditions (P>0.05; Figure 2).  The post-

supplementation salivary [NO3
-] values were also higher in the HiN-LoT and HiN-HiT 

conditions compared to both the LoN-LoT and LoN-HiT conditions (P<0.001), but were not 

different between the HiN-LoT and HiN-HiT conditions (P>0.05). The change in the pre-to-

post-supplementation plasma and salivary [NO3
-] were not different between the HiN-LoT 

and HiN-HiT conditions (P>0.05).     
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Post-supplementation plasma [NO2
-] was higher than the pre-supplementation values in the 

HiN-LoT (121 ± 32 vs. 327 ± 110 nM) and HiN-HiT (137 ± 59 vs. 336 ± 108 nM) conditions 

(P<0.001), but not the LoN-LoT (123 ± 45 vs. 115 ± 40 nM) and LoN-HiT (117 ± 37 vs. 123 

± 37 nM) conditions (P>0.05; Figure 2).  The post-supplementation plasma [NO2
-] values 

were higher in the HiN-LoT and HiN-HiT conditions compared to both the LoN-LoT and 

LoN-HiT conditions (P<0.001), but were not different between the HiN-LoT and HiN-HiT 

conditions (P>0.05).  Salivary [NO2
-] was higher post-supplementation compared to pre-

supplementation in the HiN-LoT (233 ± 127 vs. 1183 ± 625 µM) and HiN-HiT (171 ± 107 vs. 

941 ± 532 µM) conditions (P<0.001), but not the LoN-LoT (289 ± 220 vs. 192 ± 118 µM) 

and LoN-HiT (283 ± 249 vs. 177 ± 123 µM) conditions (P>0.05; Figure 2).  The post-

supplementation salivary [NO2
-] values were also higher in the HiN-LoT and HiN-HiT 

conditions compared to both the LoN-LoT and LoN-HiT conditions (P<0.001).  However, 

salivary [NO2
-] was higher post-supplementation in the HiN-LoT condition compared to the 

HiN-HiT condition (P<0.05; Figure 2).  The change in the pre-to-post-supplementation 

plasma [NO2
-] was not different between the HiN-LoT and HiN-HiT conditions (P>0.05), but 

there was a trend (P=0.09) for a greater increase in pre-to-post-supplementation salivary 

[NO2
-] in the HiN-LoT condition compared to the HiN-HiT condition.   

 

3.3 Blood pressure 

The systolic, diastolic and mean arterial blood pressures across the four experimental 

conditions are illustrated in figure 3.  Systolic blood pressure was not different pre- and post-

supplementation in the LoN-LoT (119 ± 7 vs. 119 ± 8 mmHg), LoN-HiT (118 ± 5 vs. 117 ± 8 

mmHg) and HiN-HiT (119 ± 6 vs. 119 ± 7 mmHg) conditions (P>0.05), but was lower post-

supplementation in the HiN-LoT condition (118 ± 6 vs. 115 ± 5 mmHg; P<0.05; Figure 3).  

Diastolic blood pressure was not different pre- and post-supplementation in the LoN-LoT (66 
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± 5 vs. 64 ± 5 mmHg), LoN-HiT (65 ± 5 vs. 63 ± 5 mmHg), HiN-LoT (63 ± 5 vs. 64 ± 5 

mmHg) and HiN-HiT (64 ± 4 vs. 64 ± 6 mmHg) conditions (P>0.05).  Similarly, mean 

arterial pressure was not different pre- and post-supplementation in the LoN-LoT (83 ± 4 vs. 

82 ± 5 mmHg), LoN-HiT (83 ± 5 vs. 81 ± 5 mmHg), HiN-LoT (82 ± 4 vs. 81 ± 4 mmHg) and 

HiN-HiT (83 ± 3 vs. 83 ± 6 mmHg) conditions (P>0.05).  The lowering in systolic blood 

pressure in the HiN-LoT condition was not correlated with the increase in salivary [NO2
-] (r = 

0.08; P>0.05).  Moreover, there was no correlation between the differences in systolic blood 

pressure and salivary [NO2
-] post smoothie ingestion between the HiN-LoT condition and the 

LoN-LoT (r = -0.02; P>0.05) and HiN-HiT (r = 0.06; P>0.05) conditions.      

 

4. DISCUSSION  

The important novel finding from this study was that co-ingestion of NO3
--rich and SCN--rich 

vegetables blunted the increase in salivary [NO2
-] and the lowering of systolic blood pressure 

compared to the same portion of NO3
--rich vegetables ingested without SCN--rich vegetables.  

The ingestion of vegetables low in both NO3
- and SCN-, and low in NO3

- but high in SCN-, 

did not impact plasma and salivary [NO3
-] and [NO2

-] or blood pressure responses.  These 

results may have a potentially important public health message by suggesting that consuming 

340 g of green vegetables, a dose within the recommended daily intake of fruit and vegetables 

[3,24], evokes disparate effects on blood pressure dependent on the composition of the 

vegetables consumed.  Specifically, it appears that blood pressure is lowered following the 

acute consumption of NO3
--rich vegetables without co-ingestion of SCN--rich vegetables, but 

not after consumption of vegetables rich in SCN- and low in NO3
- or when NO3

--rich and 

SCN--rich vegetables are co-ingested.  Our findings may have implications for finessing 

dietary guidelines aimed at enhancing cardiovascular health, particularly since current 
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nutritional guidelines do not differentiate between low- and high-NO3
- vegetable consumption 

[3,4].      

 

When the cell membranes of glucosinolate-rich plants are damaged, as occurs during 

mastication and during the blending procedures used to prepare the vegetable smoothie 

beverages administered in this study, glucosinolates are presented to myrosinase and 

subsequently hydrolysed to form SCN- [23,24].  Therefore, our observation of increased 

salivary and plasma [SCN-] after consuming a glucosinolate-rich Brassica vegetable beverage 

in the LoN-HiT and HiN-HiT conditions is likely a function of myrosinase-catalyzed 

glucosinolate hydrolysis, and is consistent with previous reports of increased serum [SCN-] 

after the consumption of Brassica vegetables [20].  In addition, and also consistent with 

previous studies, ingestion of NO3
--rich vegetables in the HiN-LoT and HiN-HiT conditions 

increased salivary and plasma [NO3
-] and [NO2

-] [8,13,14,17,26].   

 

Salivary [SCN-] was lowered post supplementation compared to pre supplementation in the 

HiN-LoT condition consistent with previous observations [17] and with the notion that NO3
- 

and SCN- compete for a common salivary transporter [16,17].  However, in contrast with our 

hypothesis, salivary [NO3
-] increased by a similar magnitude in the HiN-LoT and HiN-HiT 

conditions despite increased salivary and plasma [SCN-] in the latter compared to the former.  

This finding also conflicts with our previous observation that the increase in salivary [NO3
-] 

after NO3
- ingestion was lower in smokers, who exhibited elevated plasma and salivary [SCN-

], compared to non-smokers [17].  These conflicting findings are likely attributable to greater 

differences in salivary (+ 1164 µM) and plasma (+ 22 µM) [SCN-] between the smokers and 

non-smokers in the control condition of our previous study [17] compared to the mean change 

in salivary (+ 356 µM) and plasma (+ 9 µM) [SCN-] after consuming the two HiT beverages 
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administered in the current study.  Therefore, the findings in the present study suggest that 

increasing dietary SCN- intake, via the consumption of glucosinolate-rich vegetables, is 

unlikely to perturb salivary NO3
- uptake at doses within the recommended daily fruit and 

vegetable consumption guidelines [3,25].  However, whilst the increase in salivary [NO3
-] 

was similar in the HiN-LoT and HiN-HiT conditions, the increase in salivary [NO2
-] above 

baseline tended (P=0.09) to be higher in the HiN-LoT condition compared to the HiN-HiT 

condition and the post-supplementation salivary [NO2
-] was higher in the HiN-LoT condition 

compared to the HiN-HIT condition.  This suggests that, at the lower exposure rates applied 

in the current study, SCN- has the potential to impede the reduction of NO3
- to NO2

- in the 

oral cavity, or to catalyze NO2
- degradation, rather than interfering with salivary NO3

- uptake, 

as was observed at higher SCN- exposure rates in our recent smoking study [17].  The lower 

salivary [NO2
-] in the HiN-HiT condition compared to the HiN-LoT condition might be 

linked to SCN--mediated activation of myeloperoxidase (MPO), which oxidizes NO2
- to 

nitrogen dioxide (NO2) [31].  In addition, MPO catalyses the oxidation of chloride (Cl-) to 

hypochlorite (OCl-) [32] which can react with SCN- to form hypothiocyanite (OSCN-) [33], a 

potent oral antimicrobial agent [34]. OSCN- can also be produced from SCN- through the 

activity of salivary peroxidase (SPO) [35].  Therefore, the increase in salivary [SCN-] in the 

HiN-HiT condition might have activated MPO and SPO resulting in increased synthesis of the 

antimicrobial species, OSCN- [34], and a corresponding blunting of the rate of NO3
- reduction 

to NO2
- by the oral  NO3

- reducing bacteria [13,14], compared to the HiN-LoT condition. 

 

Systolic blood pressure was lowered in the HiN-LoT condition but not the LoN-LoT, LoN-

HiT and HiN-HiT conditions in this study, consistent with our hypotheses.  This 3 mmHg 

reduction in systolic blood pressure in the HiN-LoT condition is consistent with the lowering 

of systolic blood pressure after the consumption of NO3
--rich spinach [36,37], rocket [27], 
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beetroot [11] or a mixture of NO3
--rich vegetables [8].  The magnitude by which blood 

pressure is lowered in these studies has potential clinical relevance having been associated 

with a lower incidence of future cardiovascular events [38].  It should also be acknowledged 

that systolic blood pressure has been reported to be lowered to a greater extent after ingesting 

8 mmol compared to 4 mmol of NO3
- (the same dose as administered in the current study in 

the NO3
--rich smoothies) when administered in the form of NO3

--rich beetroot juice [26].  

Therefore, while it is likely that we could have observed a greater fall in systolic blood 

pressure with a greater NO3
- dose, the requirements to combine different combinations of 

NO3
--rich, SCN--rich, NO3

--low and SCN--low vegetables, and to not exceed the 

recommended daily fruit and vegetable intake of 400 g·day-1 [3,25] restricted our ability to 

administer a higher NO3
- dose in the current study.       

 

The lowering of blood pressure after the consumption of NO3
--rich vegetables has been 

attributed to increased circulating plasma [NO2
-] [11,13,14,17,26,39,40], which can impact 

vascular function directly [41] or through the O2-independent reduction of NO2
- to NO 

production [42].  These changes in blood pressure after NO3
- ingestion might be linked to 

increased classical NO-cyclic guanosine monophosphate (cGMP) signalling [39] or changes 

in renal physiology [43].  Therefore, the lack of change in systolic blood pressure in the LoN-

LoT and LoN-HiT conditions is likely a function of a lack of increase in plasma [NO2
-] in 

these conditions.  However, plasma [NO2
-] was increased by a similar magnitude in the HiN-

LoT and HiN-HiT conditions, but blood pressure was only lowered in the former.  Although 

plasma [NO2
-] was increased to a similar extent in the HiN-LoT and HiN-HiT conditions, the 

increase in salivary [NO2
-] was greater in the HiN-LoT condition.  The increased salivary 

[NO2
-] in the HiN-LoT condition would have been expected in increase NO2

- delivery to the 

stomach, where the acidic pH facilitates the chemical reduction of NO2
- to NO and a number 
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of reactive nitrogen intermediates (RNI) including S-nitrosothiols (RSNO) [44].  It has 

recently been reported that the antihypertensive effect of oral NO2
- administration is closely 

associated with plasma [RSNO], but can be dissociated from plasma [NO2
-] [45,46].  

Therefore, whilst plasma [NO2
-] was not different between the HiN-LoT and HiN-HiT 

conditions, it is possible that the total circulating [RSNO] pool was greater in the HiN-LoT 

condition leading to a lower blood pressure in this condition compared to the HiN-HiT 

condition.   

 

There is evidence that SCN- can lower the acidity of the gastric juice [47].  Combined with a 

potential lowering in gastric NO2
- delivery, this might have contributed to a lowered gastric 

RSNO formation and passage into the circulation, and explained the lack of change in systolic 

blood pressure in the HiN-HiT condition and the lowering of systolic blood pressure in the 

HiN-LoT condition.  However, since SCN- has been reported to aid NO synthesis in the 

stomach [44,48], which through subsequent oxidation and autoxidation reactions might lead 

to the synthesis of RSNO [44,49], and since RSNO was not determined in the current study, 

further research is required to assess how different combinations of vegetables with varying 

NO3
- and SCN- contents influences circulating [RSNO] and blood pressure.  Moreover, the 

lowering of systolic blood pressure and the increase in salivary [NO2
-] in the HiN-LoT 

condition, and the differences in systolic blood pressure and salivary [NO2
-] post smoothie 

ingestion between the HiN-LoT condition and the LoN-LoT and HiN-HiT conditions were 

not correlated in the current study.  Accordingly, the link between the greater reduction of 

blood pressure and increase in salivary [NO2
-], and by extension stomach NO2

- delivery, in 

the HiN-LoT condition compared to the HiN-HiT is unclear and in need of further research.  

It should also be acknowledged that, although the NO3
- and SCN- content of the smoothies 

administered in the current study was quantified and controlled, we cannot exclude the 
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possibility that other nutrients differed between the smoothies and influenced systolic blood 

pressure either independently or synergistically with NO3
- or NO2

-.  For example, ascorbic 

acid and polyphenols [50-52] can aid the reduction of NO2
- to NO in the stomach which might 

have influenced our systolic blood pressure results.  Further research is required to resolve the 

underlying mechanisms for a lowering of systolic blood pressure in the HiN-LoT condition 

but not the HiN-HiT condition.                   

 

Although blood pressure was not improved in the LoN-HiT and HiN-HiT conditions in this 

study, glucosinolate-rich vegetables possess anti-cancer properties [53, 54] and their 

consumption may have other benefits, including a reduction in death from atherosclerotic 

vascular disease [55].  As such, consumption of glucosinolate-rich vegetables should certainly 

not be avoided, but further research is required to assess the longer-term and wider health 

implications of consuming different combinations of vegetables.  Moreover, since some 

cooking methods would denature myrosinase [22], and therefore the potential for SCN- 

ingestion, it is unclear whether these findings can be reproduced if glucosinolate-rich 

vegetables are cooked prior to consumption.   

 

In conclusion, the acute consumption of vegetables high in NO3
- and low in SCN-, lowered 

systolic blood pressure in association with increased plasma and salivary [NO3
-] and [NO2

-].  

However, when the same portion of high NO3
- vegetables was co-ingested with high SCN- 

vegetables the lowering of blood pressure was abolished and the increase in salivary [NO2
-] 

was attenuated.  Plasma and salivary [NO3
-] and [NO2

-] were not increased and systolic blood 

pressure was not lowered after consuming vegetables low in NO3
- and high SCN- or low in 

both NO3
- and SCN-.  These results suggest that green vegetables are not uniform in their 

potential to improve blood pressure and that NO3
--rich vegetables can lower blood pressure 
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when consumed with vegetables low, but not high, in SCN-.  Therefore, it appears that the 

potential of green vegetables to improve blood pressure, at portion sizes (340 g) within the 

recommended daily fruit and vegetable intake guidelines, is dependent on the nutritional 

composition of the vegetables consumed.  These findings might have implications for 

improving public health by helping to refine nutritional guidelines aimed at improving 

cardiovascular health and lowering the risk of cardiovascular disease morbidity.  
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Figure legends 

 

Figure 1. Plasma (upper panel) and salivary (lower panel) thiocyanate concentration ([SCN-]) 

in the low nitrate low thiocyanate (LoN-LoT), low nitrate high thiocyanate (LoN-HiT), high 

nitrate low thiocyanate (HiN-LoT) and high nitrate high thiocyanate (HiN-HiT) vegetable 

smoothie conditions.  Group mean (± SEM) responses prior to vegetable smoothie ingestion 

are shown as open bars with responses following vegetable smoothie ingestion shown as 

filled bars.  Individual responses to the vegetable smoothies are shown for each experimental 

condition as solid grey lines.   * indicates that the post supplementation value was 

significantly different to the pre supplementation value within the same experimental 

condition (P<0.01).  

 

Figure 2. Plasma (panel A) and salivary (panel B) nitrate concentration ([NO3
-]) and plasma 

(panel C) and salivary (panel D) nitrite concentration ([NO2
-]) in the low nitrate low 

thiocyanate (LoN-LoT), low nitrate high thiocyanate (LoN-HiT), high nitrate low thiocyanate 

(HiN-LoT) and high nitrate high thiocyanate (HiN-HiT) vegetable smoothie conditions.  

Group mean (± SEM) responses prior to vegetable smoothie ingestion are shown as open bars 

with responses following vegetable smoothie ingestion shown as filled bars.  Individual 

responses to the vegetable smoothies are shown for each experimental condition as solid grey 

lines.  * indicates that the post supplementation value was significantly different to the pre 

supplementation value within the same experimental condition (P<0.01). # indicates that the 

post supplementation value was significantly different to the post supplementation value in 

the HiN-LoT condition (P<0.05).   
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Figure 3. Systolic (panel A), diastolic (panel B) and mean arterial (panel C) blood pressures 

in the low nitrate low thiocyanate (LoN-LoT), low nitrate high thiocyanate (LoN-HiT), high 

nitrate low thiocyanate (HiN-LoT) and high nitrate high thiocyanate (HiN-HiT) vegetable 

smoothie conditions.  Group mean (± SEM) responses prior to vegetable smoothie ingestion 

are shown as open bars with responses following vegetable smoothie ingestion shown as 

filled bars.  Individual responses to the vegetable smoothies are shown for each experimental 

condition as solid grey lines.   * indicates that the post supplementation value was 

significantly different to the pre supplementation value within the same experimental 

condition (P<0.05).  Please note that in panel A two participants had the same systolic blood 

pressure values before and after the ingestion of the HiN-LoT beverage so there are only 10 

visible individual response lines for this condition.     
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