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ABSTRACT The prediction of protein-protein interactions (PPIs) is essential to understand the cellu-
lar processes from a medical perspective. Among the various machine learning techniques, kernel-based
Support Vector Machine (SVM) has been commonly employed to discriminate between interacting and
non-interacting protein pairs. The main drawback of employing the kernel-based SVM to datasets with
many features, such as the primary sequence-based protein-protein dataset, is the significant increase in
computational time of training stage. This increase in computational time is mainly due to the presence of
the kernel in solving the quadratic optimisation problem (QOP) involved in nonlinear SVM. In order to
fix this issue, we propose a novel and efficient computational algorithm by approximating the kernel-based
SVM using a low-rank truncated Mercer series as well as desired. As a result, the QOP for the approximated
kernel-based SVM will be very tractable in the sense that there is a significant reduction in computational
time of training and validating stages. We illustrate the novelty of the proposed method by predicting the
PPIs of ‘‘S. Cerevisiae’’ where the protein features extracted using the multiscale local descriptor (MLD),
and then we compare the predictive performance of the proposed low-rank approximation with the existing
methods. Finally, the new method results in significant reduction in computational time for predicting PPIs
with almost as accuracy as kernel-based SVM.

INDEX TERMS Kernel-based SVM, protein-protein interactions, quadratic optimisation problem, Mercer
series.

I. INTRODUCTION
The study of PPIs is very important for understanding the
biological cellular functions, and it would be also very use-
ful to better learning about the mechanisms of action of
several diseases [1]. However, detecting PPIs in the lab-
oratories (e.g. yeast two-hybrid systems (Y2H) [2], mass
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spectrometry (MS) [3], tandem affinity purification (TAP)
[4], and protein chip [5]) would be time-consuming and
very expensive [6]. Although, much progress has already
been achieved in this direction, the problem is still far
from being solved. For this reason, there has been much
recent effort to develop techniques for computational predic-
tion of PPIs including genomic context-based methods [7],
[8], structure-based methods [9], [10], and sequence-based
methods [11], [12].
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Given the problems that arise in the first two meth-
ods, sequence-based methods have shown the advantage
of generalisation because they require information only
from amino-acid sequences [13]. In the majority of the
sequence-based methods, the use of machine learning (ML)
techniques (e.g., Random Forest and Naive Bayse) for build-
ing classifiers [14] has been strongly recommended. Fur-
thermore, the existing approaches are typically focused on
the binary classification frameworks for the protein pairs
(interacting and non-interacting pairs), but they differ in a
way that how the features extracted from the protein pairs.
However, SVM [15] can be viewed as an efficient and
interesting ML algorithm for determining PPIs [12], [16],
[11]. Furthermore, the kernel-based SVM which resulted
from combining the conventional SVM with different ker-
nels provides even a more efficient tool to predict PPIs
for the highly complex cases. The flexibility and accu-
racy of the kernel-based SVMs for the classification can be
further enhanced by appropriately estimating the kernels’
parameters [17], [18].

Despite the usefulness of the kernel-based SVMs as
described above, but they would become computationally
very demanding for the datasets with many features [19],
[20]. In particular, this computational complexity would be
frequently observed when kernel-based SVM was used for
predicting the PPI. This can be expected due to the large
number of features/attributes of this dataset that would result
in making training and prediction very slow for the com-
plex cases and consequently increasing the required time for
classification [21]. This computational complexity is due to
the presence of kernel in the quadratic optimisation prob-
lem (QOP) involved in kernel-based SVMs, which makes
the required Hessian matrix in QOP to be very dense (for
dataset with many features), and subsequently becomes ill-
conditioned. It is thus very essential to develop an efficient
approach to resolve the above optimisation challenge for the
kernel-based SVMs, which could be resulted in overcoming
the discussed computational complexity, and consequently
reducing the computational time for predicting PPI while at
least the same accuracy can be achieved. In this regard, there
have been recently several efforts in reducing the computa-
tional complexity. For example, data reduction methods have
been used to reduce the computational complexity and costs
in the kernel-based SVMs by dimensional reduction of the
original data [22]. The main drawback of these methods to
predict PPIs with too many features, is that some valuable
information in the sequence-based protein or their impor-
tant features could be lost through the dimension reduction
techniques. Also, using such methods for predicting PPIs is
misleading because the attributes here aren’t original data
sets and only they are some indexes that extracted from
sequenced-based proteins. An alternative method to resolve
the above issue is to reduce the computational challenge
by randomly selecting some columns of the kernel in the
SVMs structure [23]. Selecting these columns are not always
straightforward, and this could create another computational
challenge. The methodology proposed in [24], which is based

on transforming the kernel matrix into a sparse matrix, also
has its own problems [25].

In this paper, we propose a novel method to predict
PPIs by constructing a low-rank approximation of the ker-
nel matrix, based on the truncated Mercer series expan-
sion of the underlying kernel. There are some techniques
for the kernel approximation based on the eigenvalues and
eigenfunctions (e.g. Cholesky decomposition method [37],
the RBF-QR method [38], and weighted SVD bases method
[39]). However, solving updated QOP by deriving the alterna-
tive bases via decomposing the kernel matrix based on these
strategies are still suffering from the same instabilities and
ill-conditioning presented in the primary QOP. Alternatively,
using the proposed method in this paper, the complex QOP
described above will be replaced by a significantly simpler
and computationally cheaper optimisation problem by resolv-
ing this issue by decomposition of the kernel matrix based on
the Hilbert–Schmidt (HS) SVD as an alternative bases which
enable us to numerically solve the QOP without any need
to decompose the kernel matrix in the same unstable way
as previous approaches. It is clear that SVD decomposition
for the kernel matrix is not new topic but to the best of our
knowledge this is the first time that we apply the decom-
position of the kernel matrix based on the Hilbert–Schmidt
(HS) SVD as an alternative basis for fixing computational
issues in the kernel-based SVM. Therefore, using the pro-
posed method, the complex QOP will be replaced by a sig-
nificantly simpler and computationally cheaper optimization
problemwithout any demand to decompose the kernel matrix.
By considering this approximation, which is based on the
truncatedMercer series theorem, we approximate matrix K in
the second-order Dual optimization problem involved in QOP
by using only the first M terms of the expansion. Fortunately,
in many kernels for very small amounts of M, we can obtain
very accurate approximations of the kernel K. The proposed
low-rank SVM is constructed as a function of eigenvalues and
eigenfunctions of Hilbert-Schmidt operator of the selected
kernel. Since these eigenvalues are decreasing, the kernel
approximation can be easily derived using the first several
terms of the expansions. The resulting low-rank approxima-
tion of the kernel in SVM can be made as accurate as desired
by appropriately truncating the Mercer series expansion at
the first several terms. In order to maintain this accuracy
and make the low-rank approximation computationally more
tractable, a new Hessian matrix involved in the quadratic
optimisation of the kernel-based SVM will be derived that
is sparse, and very straightforward to compute. It should be
noted that the computed Hessian matrix in the full-rank form
of the SVM kernel is highly dense, which would cause the
computation very complex. Finally, We apply the proposed
method in this paper for predicting PPIs in ‘‘S. Cerevisiae’’.
It is demonstrated that the proposed approach in this paper
results in significant reduction in computational time, and
would enhance flexibility and efficiency in predicting PPIs
as accurate as desired.

This paper is organised as follows. In Section II,
we describe the kernel-based SVM method very briefly,
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FIGURE 1. Observed data points are not linearly separable in the input
space, but they are in the feature space [26].

and discuss its computational challenges for predicting PPIs
with many features. Then, we define the low-rank kernel
approximation, and how the computational challenges of the
kernel-based SVMs can be fixed using the proposed method
in Section III. Section IV is devoted to the multiscale Local
Descriptor (MLD) technique for protein feature extractions
and generating data from protein sequence-based structure.
We present the numerical results for the proposed low-rank
approximation for predicting PPI in Section V. We also dis-
cuss the advantages of the proposed method in comparison
with the existing methods in this section. We evaluate the
proposedmethodology for predicting PPIs in ‘‘S. cerevisiae’’.
Finally, some concluding remarks are given in Section VI.

II. PRELIMINARIES ON KERNEL-BASED SVM
We first provide a preliminary introduction to the
kernel-based SVM technique. The main motivation behind
using the kernel-based SVM for classifying PPIs is that it
would not usually be possible to classify this data with the
hyperplane decision boundary as resulted of employing the
conventional SVM. An alternative way is to consider a fea-
ture space in place of the data itself or input space, and
attempt to separate data in feature space by linear SVM or
hyperplane. For example, the feature space can be considered
as the distance of data in input space from each other or
a function of this distance. It is evident from Figure 1, the
feature space of the measurements that is denoted by φx,
cannot be linearly separable within the input space, but they
are separable in the feature space. Note that this feature space
is potentially infinite-dimensional and therefore offers much
more flexibility for separating data than finite dimensional
input space. This remark has a theoretical foundation in the
form of Cover’s theorem [27], which ensures that data can
not be separated by a hyperplane in input space while most
likely will be linearly separable after being transformed into
feature space by a suitable feature map. Thus, feature space
based SVMs are viewed as proper techniques to resolve the
classification challenges of the intricate data, in particular for
prediction of PPIs.

Let us suppose the training dataset is given by D =

{(xi, yi)|i = 1, . . . , n}, where xi ∈ Rd are the features, and
the corresponding data values in the form of labels are given
by yi ∈ {−1,+1}. We denote xi as the specific attributes for
a given protein pair i. Furthermore, label yi indicates whether

the i-th protein pair interacts (+1) or does not interact (−1).
The kernel-based SVMwill allow us to assign an appropriate
label, either−1 or+1, to a future attributes for a given protein
pair. It should be noted that a linear SVM classifies data by
finding the best hyperplane, which separates all data points
of one class from another one. However, the algorithms for
non-linear classification are more or less similar to the lin-
ear one; but the measurements xi in input space are simply
replaced by their features φxi in the feature space.
The Dual problem for the kernel-based SVM for predicting

PPIs using the transformed input data is given by

min
α

1
2

n∑
i=1

n∑
j=1

αiαjyiyjφTxiφxj −
n∑
i=1

αi

s.t
n∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C, (1)

where αi are the Lagrange multipliers, and C is called box
constraint (or penalty coefficient), which is a free parameter.
When the given measurements are not perfectly separable the
penalty coefficient C would enable us to resolve this situa-
tion. It is now possible to obtain feature space of the data
using the framework of Reproducing Kernel Hilbert Space
(RKHS), which considers the mapping of the introduced fea-
ture as φ : � −→ HK (�) under the map

X 7−→ φX = K (.,X).

The map φ transfers X from input space � to feature space
HK (�), where HK (�) is RKHS corresponded to the kernel
K (., .) [17]. The RKHS can be characterised within the inner
product in the feature space, HK (�), using the kernel K , as:

K (X,Z) = φTXφZ. (2)

Using Eq. (2), a more general form of the dual problem given
in Eq. (1), can be defined, in the feature space, as follows:

min
α

1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi, xj) −
n∑
i=1

αi,

s.t
n∑
i=1

αiyi = 0 and, 0 ≤ αi ≤ C . (3)

which is the modified version of dual problem for kernel-
based SVM.

Given the crucial role of the kernels, the approach dis-
cussed above is named as a kernel-based SVM and pro-
vides the possibility of non-linear classification for the
observed data. There are several features that make the
kernel-based SVM more appealing. One of this features is
their promising flexibility and efficiency of interacting with
high-dimensional data, and the other one is their useful-
ness of encountering data that are non-linearly classified.
These appealing properties of the kernel-based SVM can be
achieved through some customisable parameters in the ker-
nels (e.g., shape or scale parameter). Despite these advan-
tages, this technique suffers from several shortcomings. One
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of the main drawbacks of this technique is that it will be com-
putationally very expensive when it is used for classifying
the data with many features (e.g., PPIs). This computational
complexity is due to the presence of kernel in QOP in the
structure of kernel-based SVMs. In fact, the corresponding
Hessian matrix, of kernel-based SVM, in QOP will become
very dense and ill-condition for data with many features.
On the other hand, as far as the kernels in the SVMs structure
has a high capacity for the classification of data with the non-
linear property, their computational challenges will mainly
increase. In addition, the involved optimisation problem in
the kernel-based SVMs will increase the computational cost
and plays a major role in the training time and performance
of this technique of classification. In this paper, we provide
an efficient method for significantly reducing the computa-
tional complexity of the above optimisation problem of the
kernel-based SVMs when they are used for classification of
the data with many features. In the sequel, we will show how
by using the low-rank approximation of the kernel, based on
the Mercer series expansion of the kernel, it is possible to
replace the QOP with a much simpler problem.

III. LOW-RANK APPROXIMATION FOR THE
KERNEL-BASED SVMs
According to the Mercer’s theorem [27], [29], each positive
definite kernel can be expressed in terms of an infinite series
expansion as follows:

K (x, z) =
∞∑
i=1

λiϕi(x)ϕi(z). (4)

In this expansion, λi and ϕi are positive eigenval-
ues and orthogonal eigenfunctions associated with the
Hilbert-Schmidt operator of the kernel K (., .), respectively.
It should be noted that the Hilbert Schmidt operator, κ :
L2(�) −→ L2(�), is defined as:

κ(f ) =
∫
�

K (x, z)f (z)dz,

such that the eigenvalues and eigenvectors used in the Mercer
expansion can be obtained by solving the following eigen-
value problem:

(κϕ)(X) = λϕ(X).

Note that it would not be feasible to work with the infinite
number of terms from the Mercer series to construct the
low-rank approximation. However, given this fact that the
eigenvalues of the Mercer expansion are naturally sorted in
a decreasing order, the initial terms of this extension have a
fundamental role in approximating the kernel K (., .). There-
fore, we present the low-rank approximation of the kernel by
truncating the series expansion given in Eq. (4) as illustrated
in Eq. (5):

K (x, z) =
m∑
k=1

λkϕk (x)ϕk (z). (5)

It is recommended to select m, the number of terms required
to build the low-rank approximation given in Eq. (5), much
smaller than n (the number of observed data). Furthermore,
given K (., .) being a positive definite kernel with the series
expansion given in Eq. (4), the truncated Mercer series based
onm terms as suggested in Eq. (5), is the bestm-term approx-
imation from the perspective of least squares in L2(�) for the
kernel K [17]. Now, by taking into account these conditions,
it is possible to present the matrix version of the approxima-
tion given in Eq. (5), satisfying in the dual problem Eq. (3),
as

K ' φ3φT , (6)

where a n× m matrix φ is defined as

φ =

ϕ(X1)T
...

ϕ(Xn)T

 ,
ϕ(X) is defined as

ϕ(X) =

ϕ1(X)
...

ϕm(X)

 ,
and the diagonal matrix 3m×m is also given by

3 =

λ1 . . .

λm

 .
In other words, using the truncated Mercer series theorem,
we approximate matrix K in the second-order dual optimisa-
tion problem defined in Eq. (3), using the expression given
in Eq. (6). Since only the first m terms of the expansion are
used, we use the symbol ‘‘ '′′ instead of ‘‘ =′′. However,
in many kernels for very small number of m, we can obtain
very accurate approximations of the kernel K (., .), at which
the symbol ‘‘ =′′ can be used instead of ‘‘ '′′.

We now intend to reconstruct the dual optimisation prob-
lem described above in the matrix form, based on the derived
approximation for matrix K as illustrated in Eq. (6). The
original optimisation problem introduced in Eq. (3) can then
be adapted in the matrix form as follows:

min
α

(
1
2
αTDyKDyα − eTα

)
Subject to yTα = 0, and α ∈ [0,C]n,

where Dy is a diagonal matrix with elements {yi}ni=1, on its
main diagonal, and e contains a vector with elements 1. It is
trivial to show that the approximatedmatrixK given in Eq. (6)
can be also illustrated as:

K =
(
3

1
2φ
)T (

3
1
2φ
)
.

Now, let us define V = Dyφ3
1
2 and consequently VVT

=

DyKDy, the dual optimisation problem, given in Eq. (3), can
then be rewritten as follows:

min
α

1
2

(
(VTα)

T
(VTα)− eTα

)
124348 VOLUME 10, 2022
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Subject to yTα = 0, and α ∈ [0,C]n.

The matrix VTα, which contains the unknown vector α can
be also written as

VTα = Imβ,

where Im is an identitymatrix of the orderm andβ ∈ Rm as an
arbitrary vector. With these considerations, the second-order
dual optimisation problem presented in Eq. (3) can be then
rewritten as follows:

min
α, β

1
2
(βT αT )

(
Im 0
0 0

)(
β

α

)
−
(
0 eT

) (β
α

)
Subject to

(
0 yT

IM VT

)(
β

α

)
= 0, β ∈ Rm, and

α ∈ [0,C]n.

It is noteworthy that, although the system of equations
is of a higher order of m + n (while the main system of
equations is of the order n), but due to the much simpler
structure, the computational cost of solving this system is far
cheaper than the original system in Eq. (3). In addition, the
Hessianmatrix obtained in the new structure will also become
very sparse, while the Hessian matrix for the kernel K (., .)
is quite dense in the original form, which was so-called the
full-rank form. Therefore, in the new structure, the vector
computations and matrix analyses required for solving the
second-order optimisation problem will be far less complex.
Both of these changes would significantly reduce the required
computational time for classification using the kernel-based
SVM for complex data with many features. In the sequel,
we pursue the obtained results to predict PPIs.

IV. PROTEIN FEATURE EXTRACTIONS
One of the most important steps in predicting proteins is
the extraction of suitable properties from the amino acid
sequence. Some feature extractions that succeeded in repre-
senting variable lengths of protein sequences are amino-acid
composition (AAC) [29], dipeptide composition (DC) [29],
tripeptide composition (TC) [30], pseudo-amino-acid com-
position (PseAAC) [31], and autocovariance (AC) [12]. Each
of these techniques has its own disadvantages and advantages
which a complete description of them is given in [14]. In this
study, multiscale Local Descriptor (MLD) ([14]) feature rep-
resentation scheme is used to extract features from a protein
sequence. This scheme can capture multiscale local informa-
tion by varying the length of protein-sequence segments. The
MLD feature representation scheme facilitates the mining
of interaction information from multiscale continuous amino
acid segments, making it easier to capture multiple overlap-
ping continuous binding patterns within a protein sequence.
In fact, the MLD transforms the protein sequences into fea-
ture vectors by using a binary coding scheme. A protein
sequence is transformed into groups based on the dipoles and
side-chain volumes. The entire sequence is then divided into
multiple sequence segments of varying lengths to describe
local regions. In MLD, the protein sequence is divided into
four equal-length segments (S1, S2, S3, and S4), following

which 16 different combinations are derived using a 4-bit
binary coding scheme. For example, 1100 refers to the con-
tinuous region constructed by S1 and S2. In MLD, only
nine continuous sub-sequences are considered: 0001, 0010,
0011, 0100, 0110, 0111, 1000, 1100, and 1110. For each sub-
sequence, the local descriptors Composition, Transition, and
Distribution (CTD) ([32]) are calculated and concatenated.
In CTD, the sequence is represented by seven groups of amino
acids, which is the same as TC. Composition calculates the
frequency of each group, Transition characterizes the fre-
quency with which amino acids in one group are followed
by amino acids in another group, and Distribution measures
the location of the first, 25%, 50%, 75%, and 100% of the
amino acids in the group. For example, the sub-sequence

AGCMTYCCACCCASYAGCCGYG,

would be transformed into

1123332212221331122131,

according to the amino-acid classification. The composition
is 36.36% (= 8/22) for ‘‘1,’’ 36.36% (= 8/22) for ‘‘2,’’ and
27.27% (= 6/22) for ‘‘3.’’ There are three types of transi-
tions in this transformed sequence, giving a Transition of
28.57% (= 6/21) for ‘‘1’’ to ‘‘2’’ or ‘‘2’’ to ‘‘1’’; 19%
(= 4/21) for ‘‘1’’ to ‘‘3’’ or ‘‘3’’ to ‘‘1’’; and 9.52% (= 2/21)
for ‘‘2’’ to ‘‘3’’ or ‘‘3’’ to ‘‘2.’’ In terms of Distribution, eight
residues are represented by ‘‘1’’, the rankings of which at the
first, 25%, 50%, 75%, and 100% of occurrences are 1st, 2nd
(= 8 × 25%), 4th (= 8 × 50%), 6th (= 8 × 75%), and 8th
(= 8 × 100%). The locations of ‘‘1’’ at the 1st, 2nd, 4th,
6th, and 8th positions in this sequence are 1, 2, 13, 17, and
22, respectively. Hence, the Distributions for ‘‘1’’ are 4.55%
(= 1/22), 9.09% (= 2/22), 59.09% (= 13/22), 77.27%
(= 17/22), and 100% (= 22/22). Similarly, the Distributions
for ‘‘2’’ and ‘‘3’’ are 13.64%, 31.82%, 45.45%, 54.55%, and
86.36%; and 18.18%, 18.18%, 27.27%, 63.64%, and 95.45%,
respectively. For each continuous region, CTD generates a
63-dimensional vector: 7 for composition, 21(= 7 × [6/2])
for Transition, and 35(= 7 × 5) for Distribution. Nine
sub-sequences are then calculated and concatenated for a
567(= 63 × 9)-dimensional feature vector. Finally, the PPI
pair is characterized by concatenating the two vector spaces
of two individual proteins. Thus, a very high-dimension vec-
tor of size ‘‘1134’’ has been constructed to represent each
protein pair and used as a feature vector for input into SVM
classifier.

Here, the PPI dataset whichwere derived byGuo et al. [12],
are used to build the first prediction model. The dataset was
downloaded from ‘‘S. Cerevisiae’’ core subset of database
of interacting proteins (DIP) [33]. After the protein pairs
that contain a protein with fewer than 50 residues or have
more than 40 percent sequence identity were removed, the
remaining 5594 protein pairs would form the golden stan-
dard positive dataset (GSP). The construction of a negative
PPI dataset is very important for training and evaluating
the prediction model. However, it is difficult to generate
such a dataset because limited information about proteins
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FIGURE 2. Flowchart for constructing the protein-protein interactions.

that are really non-interactive exists. Here, the negative
dataset is generated by first selecting non-interacting pairs,
uniformly at random from the set of all proteins pairs,
which are not known to be interacted. The protein pairs
with same subcellular localisation information must be then
excluded. Finally, the remaining 5594 protein pairs whose
subcellular localisation is different will constitute the golden
standard negative (GSN) dataset. By combining the above
GSP and GSN datasets, the complete dataset consists of
11188 protein pairs, where half of them are from the posi-
tive dataset and the other half are from the negative dataset.
A flowchart for construction of protein-protein interactions
using presented technique in this paper is presented in Fig-
ure 2. It should be noted that, in this paper, we have used
exactly the same PPI dataset as used in Guo et al [12]. The
names of protein pairs and their sequences of the dataset are
given in online supplementary material, which is available at
https://sites.google.com/site/zhuhongyou/data-sharing.

V. RESULTS
In this section, in order to compare the predictive and
computational performance of the full-rank kernel-based
SVM against the corresponded low-rank for predicting PPIs,
we first need to adjust the model parameters based on the
algorithm presented below.

The prediction of PPI, using full and low-rank approxi-
mations for the kernel-based SVM, heavily depends on the
parameters C (box constraint) and ε (Gaussian shape param-
eter). If the number of available features for each pair of
proteins was less than or equal to three, the decision con-
tours would be good way to show the impact of the various
Gaussian kernel parametrisations on the low-rank approxi-
mation of the SVM. Unfortunately, because of the very large
number of features per pair of available proteins (i.e., 1134)
presenting by contour plot is not possible. Clearly, the choice
of ε plays a significant role in classification performance,
where larger ε encourages an SVM with more locality and
smaller ε encourages less localized influence; this matches
the standard localization behaviour for Gaussian kernel in an
interpolation setting. A similar impact can occur for different
C values such that smaller C values produce a less active
decision contour, whereas large C encourages more local
fluctuations.

FIGURE 3. Surface plot allowing both ε and C to vary.

To determine optimal values for the parameters of the
SVM, a more common technique in the machine learning
community is to use k-fold cross-validation (CV) [36]. Here,
a 10-fold CV scheme is used to measure the effectiveness of
each of ε and C parameters. Figure 3 shows the computed
CV residuals in terms of various values of ε and C . The CV
residuals in this plot were computed by dividing the PPIs data
into training and testing data, where 70% of the available
pairs of the proteins (almost 7832) were selected as train-
ing data and remaining 30% (almost 3356) as testing data.
It is clear that there is an optimal region for the 10-fold CV
residuals, where decreases in ε are matched by increases inC .
Finally, from Figure 3, ‘‘0.01’’ and ‘‘166.81’’ are chosen as
the optimal values for ε andC , respectively. For these optimal
values, the full-rank SVM and its low-rank approximation
are compared against each other in terms of various metrics,
as reported in Table 1. Although the computation time for
the low-rank approximation has been dramatically reduced,
but no significant changes in the classification performance
measurements, including accuracy, precision, specificity, and
sensitivity, can be observed. As a result, it can be concluded
that there is no significant differences in the classification
accuracy of these two approximation, but the computational
time of classifying the PPIs data using the low-rank approx-
imation is at least 78 times faster than the full-rank SVM.
Note that the results illustrated in Table 1 are computed by
MATLAB software on a High performance computing (HPC)
with a dual 16-core 2.4GHz Intel CPU’s with 64 GB RAM
processor. Note that Matlab code is added as a Low-rank-
SVM.zip file. To implement low rank SVMand compare with
full rank and run these files first one should run rbfsetup.m
and the main.m file. In Figure (4), the Hessian matrix for
low-rank (a) and full-rank (b) Gaussian kernel-based SVM is
added. Also, the condition number (CN) that measures spar-
sity for for Full rank SVM is 1.3153× 106 while this amount
for the corresponded low-rank is 3.1850× 103. These results
point out essentially that low-rank Hessian matrix is sparser
and well-conditioned than Hessian matrix of the full-rank
method. Also, the low-rank Hessian matrix can be swiftly
implemented with considerably less computational cost
(In minutes).
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FIGURE 4. Hessian matrix for low-rank (a) and full-rank (b) Gaussian
kernel-based SVM.

TABLE 1. Comparison between the low-rank approximation and the
full-rank SVM when ε = 0.01, C = 166.81 and m = 0.1n.

FIGURE 5. Number of missed classification items in terms of M as a
percent of N.

Without considering the optimal values for the parame-
ters, it is necessary to compare the classification performance
metrics of the full-rank SVM with its correspond low-rank
approximation, for the different parameter values of ε and C .
Table 2 reports such a comparison for the different values
of ε when C = 1 and m = 0.01n. We first discuss how
the number of terms, m, required to construct the low-rank
approximation, can be determined. As can be seen from the
results of this table, as ε increases, although the classification
performance metrics (including accuracy, precision, speci-
ficity and sensitivity) do not noticeably change, but the CPU
time for the low-rank approximation will be considerably
reduced (by average at least 12 times faster than the full-rank
SVM).

Table 3 illustrates the results of comparing the classifi-
cation performance metrics of the full-rank SVM and its
low-rank approximation for the different values of C when
ε = 0.1 and m = 0.1n. As it can be deduced from the
results reported in Table 3, by increasing the parameter C ,
the CPU time will also increase for the both models. How-
ever, increasing in the CPU time for the full-rank SVM is

TABLE 2. Comparison between the low-rank approximation and the
full-rank SVM for different values of ε and when C = 1 and m = 0.1n.

TABLE 3. Comparison between the full-rank SVM and its the low-rank
approximation for different values of C when ε = 0.1 and m = 0.1n.

significantly (from 10 to 23 times) higher than the low-rank
SVM. However, increasing in C will improve the classifi-
cation performance metrics, but no noticeable differences
between the computed metrics for these two models can be
observed.

After finding the optimal values for ε and C using 10-
fold CV, one of the remaining challenges would be deter-
mining m, the minimum terms required to construct the
low-rank approximation (given in Eq. (5)) as accurate as
desire. Since the accuracy of the kernel approximation and
ultimately the low-rank kernel-based SVM are greatly depen-
dent on truncating the Mercer’s expansion at an appropri-
ate cutting point, it is thus necessary to develop a criterion
to effectively determine an appropriate truncating point, so-
called m-value, required to construct the low-rank approxi-
mation. An appropriate choice of m-value would also lead to
enhance accuracy of the classification performance metrics
as mentioned above (i.e., accuracy, precision, specificity, and
sensitivity). One could adapt a truncation criterion by only
considering the magnitude of the eigenvalues, as suggested
in [34] to approximate the radial basis functions. This trun-
cation scheme is somewhat not suitable for the kernel-based
SVM, because it requires the actual construction of the eigen-
functions to make a decision on the optimal value ofm, while
the entire construction process cannot be planned in advance.
This truncating criterion would not be straightforward in
practice.

An alternative method, which is based on analysing the
truncation lengths of the kernels, especially Gaussian kernel,
is proposed in [35]. It was shown that the truncation length
should be chosen in accordance to n. It can be illustrated if
the truncation length is determined according to this criterion,
then training of the kernel-based SVM with the truncated
kernel will have the same approximation order as with the
full kernel. In other words, in order to determine an optimal
value for m, we need to use an approach which is dependent
on the total sample, n. As illustrated in Table 1, the clas-
sification performance metrics (0.8653, 0.8870, 0.8685 and
0.8627, associated to accuracy, precision, specificity and sen-
sitivity, respectively) computed based on the full-rank SVM
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TABLE 4. Computed classification performance metrics and CPU time for
the low-rank approximation with different m values, but setting ε = 0.01,
and C = 168.81.

FIGURE 6. Training time in terms of the number of points in the low-rank
and full-rank kernel-based SVM.

are almost the same to the ones computed by employing the
low-rank approximation. However, the computational cost
of the low-rank model is significantly lower than the full-
rank. A more detailed study of comparing the classification
performance metrics and CPU time for low-rank approxima-
tion with different m values, ε = 0.01 and C = 168.81 is
presented in Table 4. We can see that there is a jump in
the values of classification performance metrics by setting
m = 0.1n (Fig. 5), and after that, no change was made. In
addition, for the low-rank model with m = 0.1n, although
there is negligible changes in the performance of this model
compared to the full-rank, but the computation time, using the
low-rank model, is significantly reduced. From now on, this
strategy will by setting the m-value at ‘‘m = 0.1n’’.
After studying the classification performance of the low-

rank kernel-based SVM based on the changes in the parame-
ters as discussed above, we will now examine the capability
of employing this new model structure in reducing train-
ing time in classification of the large-scale data in compar-
ison with the full-rank method. Furthermore, the quadratic
optimisation equation for the low-rank approximation of the
SVM will be highly straightforward to solve. As a result,
this will significantly reduce the training time in classifying
the large-scale data, using the low-rank approximation for
the kernel-based SVM. The relationship between the train-
ing time (in seconds) and the size of training data for the
both SVM models (i.e., low-rank and full-rank) is illustrated

in Figure 6. In order to draw this plot for the PPI dataset,
different numbers of pair of proteins are considered, varying
from 200 to 11188. For the small number of pairs of protein,
there is no significant difference between the training time of
the two models, although training time using the low-rank
approximation is slightly lower than the one based on the
full-rank model. However, a significant difference in training
time between these two models can be observed for the large
numbers of pair of proteins. It is very evident to observe that
the time required to train the low-rank SVM model for the
large number of proteins pairs is significantly lower, which
suggests the performance of this model by taking into account
achieving the same accuracy performance (in comparison
to the full-rank model) is considerably better. For example,
for the 11188 pair of proteins, the training time using the
full-rank model is 2635.3386 (seconds), while this time using
the low-rank approximation reduced to 26.0913 (seconds).
This training time for the low-rank SVM is over 100 times
faster than the Full-rank SVM. This comparison was imple-
mented by setting ε = 0.01, C = 168.81, and m = 0.1n.

VI. CONCLUSION
In this paper, we introduced a novel low-rank approxi-
mation for the kernel-based SVM in order to predicting
protein-protein interactions in ‘‘S. Cerevisiae’’ based on the
truncated Mercer series expansion of the underlying kernel.
In this methodology, the computational challenges due to
the complex QOP associated with the standard kernel-based
SVMare fixed by replacing the QOPwith amuch simpler and
computationally efficient optimisation problem. This would
significantly reduce the training time required for the clas-
sification using the approximated kernel-based SVM. The
numerical results reveal significant reduction in computa-
tional time for predicting PPIs without losing noticeable
accuracy and sensible changes to the other classification per-
formance metrics. However, for a small number of training
pair of proteins, this difference in computational time was
negligible, but when the training number of proteins pairs
increased, a significant difference between the computational
performance of the two models was observed which sug-
gests the overall performance of the low-rank SVM is con-
siderably better. In other words, it can be concluded that the
approximated kernel-based SVM outperforms the full-rank
kernel-based by achieving the same classification accuracy
rates, but by significantly reducing the computational cost
(over 100 times faster in training the classifier) for classifica-
tion/prediction of a dataset with many features like protein-
protein interactions. Finally, the introduced technique in this
paper can applied for reducing computational time in clas-
sification using kernel-based SVMs for another dataset like
promoter recognition in DNA sequences.
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