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a b s t r a c t 

Human epidermal growth factor receptor 2 (HER2) is an important prognostic and predictive factor which 

is overexpressed in 15–20% of breast cancer (BCa). The determination of its status is a key clinical deci- 

sion making step for selection of treatment regimen and prognostication. HER2 status is evaluated using 

transcriptomics or immunohistochemistry (IHC) through in-situ hybridisation (ISH) which incurs addi- 

tional costs and tissue burden and is prone to analytical variabilities in terms of manual observational 

biases in scoring. In this study, we propose a novel graph neural network (GNN) based model (Slide- 

Graph + ) to predict HER2 status directly from whole-slide images of routine Haematoxylin and Eosin 

(H&E) stained slides. The network was trained and tested on slides from The Cancer Genome Atlas (TCGA) 

in addition to two independent test datasets. We demonstrate that the proposed model outperforms 

the state-of-the-art methods with area under the ROC curve (AUC) values > 0.75 on TCGA and 0.80 

on independent test sets. Our experiments show that the proposed approach can be utilised for case 

triaging as well as pre-ordering diagnostic tests in a diagnostic setting. It can also be used for other 

weakly supervised prediction problems in computational pathology. The SlideGraph + code repository is 

available at https://github.com/wenqi006/SlideGraph along with an IPython notebook showing an end-to- 

end use case at https://github.com/TissueImageAnalytics/tiatoolbox/blob/develop/examples/full-pipelines/ 

slide-graph.ipynb . 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Breast cancer (BCa) is the most commonly diagnosed cancer 

among women, and is the second leading cause of female can- 

cer related deaths worldwide ( Ahmad, 2019 ). Human epidermal 

growth factor receptor 2 (HER2) positivity accounts for around 15% 

of the early stage BCa. HER2 positivity in BCa is defined as evi- 

dence of HER2 protein overexpression and/or HER2 gene amplifi- 

cation ( Ross et al., 2009 ) which is proven to be associated with 

worse clinical outcome ( Slamon et al., 1987 ). HER2-positive BCa 

tumours tend to grow and spread faster than HER2-negative tu- 

mours, but are much more likely to respond to targeted therapy 

with anti-HER2 drugs ( Yarden, 2001; Nahta et al., 2006 ). 

∗ Corresponding author. 
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In routine diagnostic practice, BCa tissue sections are stained 

with Haematoxylin and Eosin (H&E) and visually examined for 

morphological assessment. It is then followed by ancillary tech- 

niques including immunohistochemistry (IHC) and in situ hybridi- 

sation (ISH) to assess the expression of specific proteins, including 

HER2, for prognostic and predictive purposes ( Fig. 1 (a)). The cur- 

rent guidelines ( Wolff et al., 2018 ) revised by the American Society 

of Clinical Oncology/College of American Pathologists (ASCO/CAP) 

assign a HER2 positivity score between 0 and 3+ based on vi- 

sual analysis of IHC slides. Cases scoring 0 or 1+ are classified as 

HER2-negative (HER2-), while cases with a score of 3+ are regarded 

as HER2-positive (HER2+). Cases with score 2+ refer to equivo- 

cal expression of HER2 that need further assessment using ISH 

to evaluate HER2 gene status. Operational and analytical limita- 

tions of aforementioned techniques in terms of cost, tissue usabil- 

ity and observer-subjectivity in manual scoring affect interpreta- 

tion of HER2 status and hence patient management. Consequently, 
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Fig. 1. HER2 status prediction from H&E images: (a) In routine diagnostic practice of BCa, tissue sections are commonly stained with H&E, followed by immunohistochemistry 

(IHC) staining to estimate the presence of specific protein receptors. We show that our deep learning algorithm can predict HER2 directly from H&E images; (b) Multi-centre 

datasets that are used to train, validate and test our proposed model; (c) Without pixel-level annotations, our algorithm is trained on the WSI-level graphs and predicts 

HER2 status directly. 

prediction of HER2 status directly from digitally scanned whole 

slide images (WSIs) of routine H&E-stained tissue sections through 

deep learning or Artificial Intelligence (AI) techniques is of signifi- 

cant clinical and scientific interest. 

Digital pathology and AI offer significant potential to overcome 

the aforementioned limitations and improve diagnostic consistency 

( Acs et al., 2020; Farahmand et al., 2022; Qaiser et al., 2018 ). Such 

computational pathology (CPath) models have been used for di- 

agnostics as well as prediction of genetic expression correlates. 

Kather et al. (2019a) proposed a deep learning method to pre- 

dict hormone receptor status from routine H&E WSIs. Morpho- 

logical correlates of specific mutations have also been observed 

in H&E stained BCa histology images. Rawat et al. (2020) intro- 

duced the concept of “tissue fingerprints” to learn H&E features 

that can distinguish one patient from another. However, a major 

limitation of existing AI methods stems from patch-level analysis 

employed by these methods. As an entire WSI at full-resolution 

can be of the order of 150,0 0 0 × 10 0,0 0 0 pixels, training a model 

on the full-resolution WSIs is computationally challenging and ex- 

pensive. A two-step patch-level approach is typically used to deal 

with large size WSIs ( Fig. 2 ) ( Janowczyk and Madabhushi, 2016; 

Bandi et al., 2018 ). First, the image is divided into small image tiles 

(or patches), where each patch is processed independently by the 

neural network ( Tizhoosh and Pantanowitz, 2018 ). Then predicted 

scores for each patch within the WSI are aggregated into a WSI- 

level score, usually by pooling their results with various aggregat- 

ing strategies such as average pooling, max pooling and majority 

voting ( Cruz-Roa et al., 2014; LeCun et al., 1998; Nguyen et al., 

2009 ). 

Patch-level analysis used in conventional CPath models has 

two major drawbacks. First, local patches have limited visual con- 

text. The optimal resolution and patch size for analysis are highly 

problem-dependent ( Hou et al., 2016 ). Image patches at a high 

magnification level lead to loss of contextual information whereas 

patches at lower magnification levels may not capture cell-level 

Fig. 2. The proposed SlideGraph model vs. conventional patch-based methods. Our 

proposed SlideGraph model is able to capture the overall organisation and structure 

of the tissue. 

features ( Fig. 2 ). Consequently, a patch-level machine learning 

method cannot capture the overall organisation and structure of 

the tissue in a WSI. Second, in most prediction problems in com- 

putational pathology, only WSI-level labels are available. It is non- 

trivial to model the association of each patch with a specific la- 

bel. Weakly supervised machine learning methods such as Multi- 

ple Instance Learning (MIL) have been proposed to alleviate these 

problems about labels of training patches and aggregate patch- 

level predictions into WSI-level classification ( Andrews et al., 2002; 
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Zhang et al., 2006; Zhang and Goldman, 2002; Campanella et al., 

2019; Kather et al., 2019b; Lu et al., 2021; Li et al., 2021 ). How- 

ever, these methods are unable to model the overall organisation 

and structure of the tissue at both global and local levels. As a 

consequence, graph-based approaches in computational pathology 

present a more principled way of modelling such prediction tasks. 

The cell-graph technique ( Prewitt, 1979; Gunduz et al., 2004; 

Demir et al., 2005; Jaume et al., 2021 ) was introduced to learn 

the structure-function relationship by modelling geometric struc- 

ture of the tissue using graph theory. It is based on the as- 

sumption that cells in a tissue can organise in a certain way 

for specific functional states. Such cell-graphs can have different 

types, such as Delaunay triangles ( Weyn et al., 1999; Chew, 1989 ), 

Voronoi diagrams, Minimum Spanning Trees (MST), and Cell Clus- 

ter Graphs (CCG) ( Ali et al., 2013 ). Yener (2016) explored vari- 

ous cell-graph constructions to establish a quantitative relationship 

between the geometric structure and functional states. Cell-graph 

constructions have been successfully used to characterise spatial 

proximity of histopathological primitives in tasks, such as survival 

prediction in lung cancer ( Lu et al., 2018 ), risk stratification in BCa 

( Whitney et al., 2018 ) and distant metastasis prediction in col- 

orectal cancer ( Sirinukunwattana et al., 2018 ). However, all these 

graph-based methods with deep learning classifiers were trained 

on image patches which have limited visual context. In addition, 

since these methods have not been applied on the WSI level, extra 

patch-based voting methods are necessary to predict the label of a 

given WSI. 

In this study, we propose a graph neural network model, 

termed as SlideGraph 

+ to address the limitations of existing meth- 

ods. Instead of extracting small patches from the WSI and doing 

analysis on a limited visual field for prediction, we introduce a 

novel pipeline which operates on a graph at the entire WSI-level 

for prediction of HER2 status. Specifically, we model the patch- 

level features as a graph that can capture both cell-level and con- 

textual information and does not require any patch-level labels. A 

graph neural network is then used for WSI-level prediction. This 

work is a significant extension of our previously proposed Slide- 

Graph ( Lu et al., 2020 ) and employs an extended network archi- 

tecture that makes the model more interpretable. Outputs from the 

proposed network not only cover the overall prediction score, but 

also show the active graph nodes corresponding to image regions 

which contribute to the overall prediction. The proposed Slide- 

Graph 

+ model also incorporates a novel message passing technique 

and a modified loss function. This method accounts for both cell- 

level information and contextual information by modelling cellular 

architecture and interactions in the form of a graph. We demon- 

strate the effectiveness of the proposed scheme on clinically rele- 

vant prediction problems from BCa H&E WSIs. Specifically, we train 

a classification model to predict the status of HER2 and test it on 

another two independent cohorts ( Fig. 1 (b)). Overall, our main con- 

tributions in this paper can be summarised as follows: 

• SlideGraph is the first method which can generate whole slide 

image level predictions by using a graph representation of the 

cellular interconnection geometry in a WSI. 
• The proposed SlideGraph 

+ network architecture is an extension 

of our previously proposed SlideGraph ( Lu et al., 2020 ) with 

an architecture layout which makes the network more inter- 

pretable by generating node-level predictions. 
• SlideGraph 

+ makes use of nuclear composition, nuclear mor- 

phology, neural network embeddings or DAB density estimates 

features to represent the complex organisation of cells and the 

overall tissue micro-architecture. The proposed network outper- 

forms the state-of-the-art methods by a significant margin in 

HER2 status prediction. 

• The DAB density regression model proposed in this paper is the 

first method to predict DAB intensity directly from H&E stained 

images. It carries potential of removing the necessity of IHC 

staining when evaluating the HER2 expression. 
• Instead of annotating invasive tumour regions which is very 

time-consuming, SlideGraph 

+ is trained on all tissue regions 

and is able to precisely localise the regions that contribute to 

the HER2 positivity and expression. 
• Our trained HER2 status prediction model is tested on two in- 

dependent cohorts, demonstrating its generalisation on multi- 

centre datasets. 
• SlideGraph is computationally more efficient than patch-based 

models and opens the avenue of using WSI graph representa- 

tions for solving other problems in computational pathology. 

2. Methodology 

The proposed framework for predicting the receptor status from 

H&E images is shown in Fig. 1 (c). A typical weakly supervised 

machine learning problem in computational pathology involves a 

training dataset { (X i , y i ) | i = 1 . . . M} of M WSIs denoted by X i , each 

with a label y i ∈ { 0 , 1 } . The objective is then to develop a ma- 

chine learning model that can predict the label for unseen cases. 

In this work, we build a graph representation G i = G ( X i ) of each 

X i in the training set and train a graph neural network with train- 

able parameters θ to generate slide-level predictions F ( G (X i ) ; θ ) . 

The trained model F is used for inference to predict status for WSIs 

which are not included in the training set. 

The overall framework consists of four steps: first, we extract 

features from local regions in the WSI after preprocessing. Specifi- 

cally, a given WSI X is modelled as a set of image patches x j ∈ X of 

size 512 × 512 pixels at 40 × magnification. Each patch x j ≡
(
g j , h j 

)

is represented as a tuple consisting of a d-dimensional feature vec- 

tor representation h j ∈ R 

d and the corresponding geometric coor- 

dinates g j ∈ R 

2 of the top-left corner of the patch. Second, we use 

spatial clustering to group neighbouring image patches with sim- 

ilar features into clusters. Third, a graph representation based on 

these clusters is generated to capture the cellular and morphologi- 

cal topology of the WSI. Finally, the graph constructed from the en- 

tire WSI is taken as an input to a graph neural network to predict 

the receptor status at the graph node-level and also at the slide- 

level. Below, we give details of the datasets and individual steps in 

the proposed pipeline. 

2.1. Datasets 

The training dataset used in this study was obtained from The 

Cancer Genome Atlas in breast cancer (TCGA-BRCA) ( Network et al., 

2012 ). Molecular status of HER2 was assessed clinically on the 

patient level. We used five-fold stratified cross-validation for a 

direct comparison with other patch-based classification methods 

( Rawat et al., 2020; Kather et al., 2019a ). In each fold-run, 20% 

of the dataset (at the patient level) was held out as unseen test 

data whereas the remaining 80% was used for training and val- 

idation. We then tested the trained model on other two indepen- 

dent cohorts, the publicly available HER2Contest challenge (HRE2C) 

dataset ( Qaiser et al., 2018 ) and an internal Nottingham University 

Hospital (Nott-HER2) dataset, respectively. Some high-level infor- 

mation of all three datasets is shown in Fig. 1 (b). 

2.2. Pre-processing 

We use stain normalisation technique by 

Vahadane et al. (2016) to normalise the stain distribution across 

slides especially those from different centres. Tissue segmentation 
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Fig. 3. DAB density estimation using a small subset of the HER2C dataset ( Qaiser et al., 2018 ): (a) Image registration between H&E and corresponding IHC images using con- 

trol points (yellow points left ) on both WSIs; right : three examples of H&E patches and corresponding registered IHC patches; (b) Convolutional neural network architecture 

for regressing DAB density from H&E images. ‘T’ represents the number of resnet blocks used; (c) Scatter plots between model prediction and true DAB density using 4-fold 

cross validation (averaged Pearson correlation coefficient 0.90 with p-value < 0.0 0 01). 

Fig. 4. Visualisation of the estimated DAB density on test WSIs from the HER2C dataset ( Qaiser et al., 2018 ): (a) HER2-negative case; (b) HER2-positive case. From left to 

right column: raw H&E stained WSI; estimated DAB density using the trained regression model; zoomed-in version of two local regions; corresponding IHC stained WSI as 

the reference. 
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is performed to remove background regions. The segmented tissue 

region is then divided into a set of uniformly sized patches. 

2.3. Feature extraction 

Given a stain normalised patch x j , a variety of representative 

features h j can be extracted. The objective of this feature extrac- 

tion step is to obtain features that are associated with tissue char- 

acteristics in the patch and the target variable of interest as well. 

These features include nuclear composition features (e.g., counts 

of different types of nuclei in the patch), morphological features, 

receptor expression features ( Section 2.3.4 ), deep features (or neu- 

ral feature embdeddings from a pre-trained neural network) and a 

combination of these. These features are then used for construc- 

tion of the WSI-level graph. We explore the association between 

different kinds of features and the HER2 status. It is important to 

note that the proposed framework is generic and not restricted to 

any particular type of features and the graph neural network (dis- 

cussed later) can be used to accumulate a variety of node level 

features. 

2.3.1. Nuclear composition features (NCF) 

HER2 status has been shown to be associated with the presence 

of different types of nuclei in BCa tissues ( Lu et al., 2020 ). Here, 

we extract nuclear composition features which cover the counts of 

nuclei of different types of cells in a patch. Specifically, for a given 

patch x j , we use HoVer-Net ( Graham et al., 2019 ) trained on the 

BCa PanNuke dataset ( Gamper et al., 2019 ) to localise nuclei and 

predict their types. HoVer-Net is a convolutional neural network 

for simultaneous nuclear segmentation and classification. This net- 

work leverages instance-rich information encoded within vertical 

and horizontal distance maps of nuclear pixels to their centres of 

mass and achieves accurate segmentation even in areas with over- 

lapping instances. Five categories of nuclei are predicted: nuclei of 

neoplastic, non-neoplastic epithelial, inflammatory, connective tis- 

sue and necrotic cells. For each image patch, HoVer-Net generates a 

set of nuclear centroids together with their cell type and the cor- 

responding nuclear segmentation mask. Nuclear composition fea- 

tures in a patch can then be collected by counting the number of 

the five types of nuclei in it. 

2.3.2. Nuclear morphological features (NMF) 

Assuming that the morphology of different types of nuclei is 

associated with HER2 status, we extract 15 nuclear morphological 

features such as nuclear size, eccentricity, orientation, and length 

of the major axis (see Table S3) using the output binary mask of 

each nucleus. Therefore, each detected nucleus is represented by 

a 15-dimensional feature vector which contains 15 different mor- 

phological properties. We use the mean and standard deviation of 

the 15 feature values resulting in a 30-dimensional feature vector 

for each patch. 

2.3.3. Neural embeddings (NE) 

One of the strengths of deep neural networks is their ability to 

learn high-level features based on colour, frequency domain, edge 

detectors, texture and so on from image pixels. An image patch is 

fed into the network and transformed several times through con- 

volutional layers in the network. During these transformations, the 

network is able to learn new and increasingly complex features of 

the input image. In this work, we experiment with two different 

types of neural embedding features. In order to extract a strong 

and representative set of features, the first neural embedding fea- 

ture is obtained from the last convolutional layer of ResNet50 

( He et al., 2016 ) due to its excellent performance in recent com- 

puter vision tasks. The model was trained on the ImageNet dataset 

( Deng et al., 2009 ) which is a large visual database designed for vi- 

sual object recognition research. For the second neural embedding 

feature, we extracted a domain-specific 2048-dimensional repre- 

sentation from our in-house cellular composition prediction model 

called ALBRT ( Dawood et al., 2021 ). ALBRT has been trained on the 

TCGA Breast cancer dataset (TCGA-BRCA) for predicting the counts 

of different types of cells in a given patch and is based on the 

Xception ( Chollet, 2017 ) network with depthwise separable convo- 

lution along with self-supervised learning for rotational invariance. 

2.3.4. DAB density estimates (DDE) 

Areas of membranous DAB staining in IHC images can reveal 

the level of HER2 protein expression at a cellular level. Based on 

this, we utilised paired H & E and IHC images in the HER2C dataset 

to develop a deep convolutional neural network predictor to es- 

timate the level of HER2 expression (DAB density estimates) in a 

given H & E image region which is then used as a node-level fea- 

ture in the graph neural network. First, we performed affine regis- 

tration on 5 H&E and IHC paired images from the HER2C dataset 

( Qaiser et al., 2018 ) by taking the H&E WSIs as the reference im- 

age and extracting several control points pairs at 40 × resolution 

from each image pair. Fig. 3 (a) shows an example H & E and IHC 

pair and the corresponding control points (yellow dots). The cal- 

culated affine transform matrix consisting of rotation, scaling and 

translation components is applied on all H&E image patches to 

get the corresponding IHC images. Fig. 3 (a) gives three examples 

of the H&E and registered IHC images which shows high regis- 

tration accuracy even at the highest resolution ( 40 ×). Second, in 

the registered IHC images, we convert their RGB colour space to 

Haematoxylin-Eosin-DAB (HED) colour space and calculate the per- 

centage of DAB staining from the DAB channel. 

In total, we collect more than 60 0 0 H&E patches (size 

512 × 512 pixels) and their corresponding DAB density values. Ar- 

chitecture of the proposed regression model is shown in Fig. 3 (b). 

The feature extraction component of the network is inspired by 

ResNet50. Compared to the standard ResNet50 implementation, 

we add two fully connected layers after the feature extraction 

component with 2048 and 128 neurons, respectively. In order to 

evaluate the performance of our DAB-density regression model, 

we performed leave-one-WSI-out cross validation using the col- 

lected dataset and calculate the Pearson correlation coefficient 

(PCC) to measure the linear correlation between the ground truth 

and model prediction ( Fig. 3 (c)). Strongly positive correlation can 

be observed in all the 4 folds, achieving the averaged PCC 0.90 

( p < 0 . 0 0 01 ). Fig. 4 shows the visualisation of the estimated DAB 

density on a HER2-negative (first row) and a HER2-positive (sec- 

ond row) case, respectively. The WSIs shown in Fig. 4 are unseen 

by the trained model. It can be observed from the HER2-negative 

case that the majority of the tissue region have low estimated DAB 

density revealing the lack of HER2 protein expression. Compared 

to the negative case, the HER2-positive case has larger areas with 

high estimated DAB density as observed from the orange and red 

areas in the heatmap. The highlighted activation areas (zoomed-in) 

in the generated heatmap are consistent with the DAB density in 

the corresponding IHC images. This supports the idea of using DAB 

density as a potential feature for HER2 status prediction from H&E 

WSIs in computational pathology. 

2.4. Adaptive spatial agglomerative clustering 

As the number of patches in a WSI can be quite large, we 

group spatially neighbouring regions with high degree of similar- 

ity in the feature space in order to reduce the computational cost 

of downstream analysis. This is achieved using adaptive spatial ag- 

glomerative clustering which relies on a patch-level similarity ker- 

nel (see Algorithm 1 ). We use a feature space Gaussian kernel 
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Algorithm 1 WSI graph construction. 

INPUT : A set of n patches in a given WSI - each represented by its 

spatial coordinates g j and feature vector h j . 

OUTPUT : Graph representation G = ( V , E ) of the WSI. 

PARAMETERS : 

s min = 0 . 8 , d max = 40 0 0 pixels at 0.25mpp 

STEPS : 

1: Perform agglomerative clustering using the similarity metric 

k (·, ·) with average linkage. Cluster agglomeration takes place up 

to a minimum similarity threshold of s min . For a given WSI X , this 

results in a cluster set C(X ) with each patch x j ≡
(
g j , h j 

)
∈ X 

assigned to exactly one cluster c ∈ C(X ) . 

2: For each cluster set c, compute the geometric centre of all its 

constituent patches p c = 

1 
| c| 

∑ 

(g j ,h j ) ∈ c g j . 
3: For each cluster set c, compute the aggregated feature vector of 

all its constituent patches u c = 

1 
| c| 

∑ 

(g j ,h j ) ∈ c h j . 

4: Construct a vertex set V for the given WSI X with each cluster 

c ∈ C(X ) as a node represented by v c ≡ ( p c , u c ) . 

5: Use Delauney triangulation to construct the edge set E based 

on the geometric coordinates of cluster centres with a maximum 

distance connectivity threshold of d max pixels. 

k h ( h a , h b ) = exp ( −λh ‖ h a − h b ‖ ) and a geometric Gaussian kernel 

k g ( g a , g b ) = exp 

(
−λg ‖ g a − g b ‖ 

)
to determine the degree of similar- 

ity between feature space representations and geometric coordi- 

nates of two patches in a given WSI (indexed by a and b), where 

λh and λg control the degree of similarity in feature space and dis- 

tance in the geometric coordinates, respectively. We use a joint 

product kernel k ( x a , x b ) = k h ( h a , h b ) k g ( g a , g b ) to model the over- 

all similarity between two patches in a WSI. Note that the kernel 

product implies a tensor product of underlying features. The pair- 

wise similarity matrix of all patches in a given WSI is then used 

as a similarity metric in Agglomerative clustering ( Müllner, 2011 ) 

with average linkage. This is done such that cluster agglomeration 

takes place up to a minimum similarity threshold of s min . s min ∈ 

[0 , 1] affects the number of clusters in the WSI with large values 

of the parameter resulting in fewer and more heterogeneous clus- 

ters and vice-versa. Ideally, we would like to have small clusters 

to capture minor variations in the histological landscape. However, 

this has an impact on computational complexity of the model. In 

this work, we set s min = 0 . 8 to get a reasonable compromise be- 

tween these two factors and evaluate the model performance with 

different s min settings in Section 3.3 . For a given WSI X , this results 

in a cluster set C(X ) with each patch x j ≡
(
g j , h j 

)
∈ X assigned to 

exactly one cluster c ∈ C(X ) . It is important to note that each clus- 

ter contains a number of patches and the number of clusters across 

all the WSIs can be different depending upon the sizes and mor- 

phological complexity of the WSIs. 

2.5. Graph construction 

We construct a WSI-level graph representation G (X ) ≡ (V, E) of 

a given WSI X based on its clusters ( Sharma et al., 2015; Lu et al., 

2019b; 2019a ). The graph representation of a WSI X consists of 

a vertex set V with each cluster c ∈ C(X ) as a node represented 

by v c ≡ ( p c , u c ) based on the geometric centre p c = 

1 
| c| 

∑ 

(g j ,h j ) ∈ c g j 
and aggregated feature vector of all its constituent patches u c = 

1 
| c| 

∑ 

(g j ,h j ) ∈ c h j . The edge set E ⊆ V × V represents a finite set of 

edges between nodes. In order to capture signalling patterns be- 

tween components of the tissue, the edge set is constructed by 

using Delauney triangulation based on the geometric coordinates 

of cluster centres with a maximum distance connectivity threshold 

of d max pixels ( Chew, 1989 ). This results in a planar graph, i.e., no 

two edges in the graph intersect each other. d max controls the con- 

nectivity among clusters and is conceptually associated with the 

range of histological signaling. Larger d max increases the number 

of connected neighbours of each cluster and the size of sub-graphs. 

It allows for progressively information sharing between neighbour- 

ing graph nodes. In this work, we choose d max as 40 0 0 pixels (at 

0.25 microns per pixel) which ensures that most clusters have con- 

nected neighbours within 1 mm. 

2.6. GNN architecture 

The proposed architecture uses a Graph Neural Network (GNN) 

to generate both regional (node-level) and WSI-level predictions 

based on the above WSI-level graph representation. GNNs have 

the advantage of being inherently invariant to rotation and trans- 

lation of graph nodes ( Chami et al., 2020 ) and can learn pro- 

gressively abstract node-level feature embdeddings across their 

layers through message passing or information sharing between 

neighbouring graph nodes. The architecture of the proposed graph 

neural network is shown in Fig. 5 . It consists of multiple edge- 

convolution (EdgeConv) layers with each layer using a multi-layer 

perceptron (MLP) to produce a feature embedding of a node in 

the graph based on the feature embeddings of the node itself and 

its neighbouring nodes generated by previous layers ( Wang et al., 

2019 ). The first layer uses the original node-level features dis- 

cussed above. The MLP in each layer uses the embedding of a node 

and the difference of its node embedding from its neighbours. Con- 

sequently, each GNN layer accumulates information from progres- 

sively higher order neighbours of each node. Mathematically, the 

output feature representation of an EdgeConv layer l = 1 . . . L in the 

GNN with L layers for a given node at index k in the input graph 

can be written as: 

u 

( l ) 
k 

= 

∑ 

j∈ N k 
H 

( l ) ( u 

( l−1 ) 
k 

, u 

( l−1 ) 
j 

− u 

( l−1 ) 
k 

; θl ) . (1) 

In the above equation, u 

( 0 ) 
k 

= u k , N k denotes the neighbourhood 

of node k and H 

( l ) represents the multi-layer perceptron (MLP) 

with trainable weights θl . EdgeConv constructs a local neighbour- 

hood graph centred at u k and applies a convolution-like operation 

on the edge connecting the neighbourhood pair of node u k . As il- 

lustrated in Eq. (1) , it can explicitly combine global shape structure 

captured by the features of node u k with local neighbourhood in- 

formation, captured by u j − u k ( Wang et al., 2019 ). As shown in 

Fig. 5 , the feature embedding u 

( l ) 
k 

of a node v k ≡ ( p k , u k ) ∈ V from 

a GNN layer is passed to a corresponding linear layer to gener- 

ate node level predictions f l ( v k ) = w 

T 
l 

u 

( l ) 
k 

. These node level predic- 

tion scores are then pooled to generate layer-wise WSI-level pre- 

dictions, i.e., F l ( G ) = 

∑ 

∀ v ∈ V f l (v ) . These scores are then summed 

to produce the overall WSI-level prediction score, i.e., F ( G ; θ ) = ∑ L 
l=0 F l ( G ) with all trainable parameters θ . It is important to note 

that SlideGraph 

+ uses node-level aggregation as opposed to Slide- 

Graph ( Lu et al., 2020 ) which only has WSI-level output. 

In this work, we use three EdgeConv layers ( L = 3 ) which have 

16, 16 and 8 neurons respectively in their MLP with a linear layer, 

followed by a batch normalisation (BN) and a Rectified Linear Unit 

activation (RELU) layers. 

2.7. Loss function and hyperparameter settings 

The proposed SlideGraph 

+ is implemented using the PyTorch 

Geometric (PyG) library ( Fey and Lenssen, 2019 ; Paszke et al., 

2017 ). During the training, WSI-level prediction score is compared 

to the WSI-level target and weights in the EdgeConv layers and the 

base neural network block are updated through backpropagation. 

In each training batch, a set of positive cases B + and a set of nega- 

tive cases B − are chosen in a stratified manner. The loss function is 
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Fig. 5. Architecture of the proposed SlideGraph + model for graph based WSI classification. The Base Net block is composed of a convolutional layer, Batch Normalisation and 

Rectified Linear Unit activation (RELU) layers. Graph neural network layer is structured with edge convolution (EdgeConv) layers whose mathematical expression is shown in 

(1) . Pooling, Linear refer to the pooling and linear layers. 

Table 1 

A comparison of SlideGraph + and the state-of-the-art methods using 5-fold cross 

validation on the TCGA-BRCA dataset. ∗: No standard deviation was reported in the 

original paper. 

Method Feature (dimension) AUROC (mean ± std) 

Campanella et al. (2019) Resnet34 0.67 ± 0.05 

Kather et al. (2019a) Shufflenet 0.62 ∗

Kather et al. (2019b) Resnet18 0.68 ± 0.06 

Rawat et al. (2020) Fingerprints (512) 0.71 ∗

Lu et al. (2021) CLAM (1024) 0.64 ± 0.06 

Li et al. (2021) DSMIL (512) 0.65 ± 0.09 

SlideGraph + DAB density estimates (4) 0.75 ± 0.02 

designed as a pairwise ranking based hinge-loss function with the 

mathematical formulation as follows: 

L (B 

+ , B 

−; θ ) = 

∑ 

i ∈ B + 

∑ 

j∈ B −
max 

(
0 , 1 − (F (G i ; θ ) − F (G j ; θ )) 

)
. (2) 

The minimisation of the loss function is implemented by using 

adaptive momentum-based optimisation ( Kingma and Ba, 2014 ) 

with the learning rate 0.001 and a weight decay 0.0 0 01. After 

training, the performance of the predictor is evaluated over test 

datasets. We use Area under Receiver Operator Characteristic (AU- 

ROC) curve and Precision-Recall (AUPR) curve to evaluate the pre- 

dictive performance over test sets ( Davis and Goadrich, 2006 ). 

3. Results and discussion 

3.1. HER2 status prediction 

The current published state-of-the-art method by 

Rawat et al. (2020) gives AUROC values of 0.71 under five- 

fold cross-validation. In line with previous methods, we report 

AUROC for comparison. Table 1 shows the AUROC values by the 

proposed SlideGraph 

+ , existing methods and state-of-the-art re- 

sults. Using the same cross-validation strategy ( Rawat et al., 2020 ), 

our proposed SlideGraph 

+ model with DAB density estimates 

achieves the best AUROC with 0.75 ± 0.02. 

Table 2 

A comparison of different features under SlideGraph + architecture. For all the re- 

sults shown, the training is done using the TCGA-BRCA dataset. 

Method Feature (dimension) 

AUROC 

(mean ± std) 

SlideGraph + Nuclear composition (5) 0.71 ± 0.02 

(5-fold cross validation on Cellular morphology (30) 0.72 ± 0.05 

TCGA-BRCA dataset) Embedding (Resnet50) (2048) 0.72 ± 0.07 

Embedding (ALBRT) (2048) 0.69 ± 0.04 

DAB density estimates (4) 0.75 ± 0.02 

Nuclear composition + Cellular 

morphology (35) 

0.75 ± 0.04 

Nuclear composition + Cellular 

morphology + DAB (39) 

0.75 ± 0.08 

Performance of all proposed feature compositions under the 

SlideGraph 

+ framework are presented in Table 2 . The Distribu- 

tions of AUROC values achieved using different feature composi- 

tions are shown as box-plots in Fig. 6 . It can be observed that most 

feature compositions under the SlideGraph 

+ framework achieve 

higher AUROC values than the state-of-the-art methods. Among all 

the features, feature combinations ‘Nuclear composition + Nuclear 

morphology + DAB density estimates’, ‘Nuclear composition + Nu- 

clear morphology’ and ‘DAB density estimates’ exceed the state-of- 

the-art by a large margin, obtaining the maximum AUROC value of 

0.75. The SlideGraph 

+ model with DAB density estimates achieves 

the smallest standard deviation with 0.02 in AUROC, proving its 

stability in HER2 status prediction. In addition, the estimated DAB 

density feature only has 4 dimensions, leading to the fewest num- 

ber of training parameters and highest computational efficiency. 

In order to compare the performance of the GNN in comparison 

to a naive aggregation of DAB density prediction scores, we aver- 

age the estimated DAB densities from the four trained regression 

models on each patch and use three aggregating strategies (average 

pooling, max pooling and majority voting) to generate the overall 

WSI-level DAB density. Here we confine the average pooling and 

majority voting strategies on patches whose estimated DAB den- 

sity is higher than 0.1. We calculate three type of DAB features –

namely maximum DAB density estimates, majority DAB density es- 

7 



W. Lu, M. Toss, M. Dawood et al. Medical Image Analysis 80 (2022) 102486 

Fig. 6. AUROC values using different f eature com positions during the five-fold cross 

validation on TCGA-BRCA. Dashed lines show the state-of-the-art AUROC values. 

NCF: Nuclear composition features; NMF: Nuclear morphological features; NE: Neu- 

ral embeddings (Resnet50); DDE: DAB density estimates. 

timates and average DAB density estimates respectively – on each 

WSI. As can be seen from Table S1, among all the three DAB den- 

sity estimates features, the average DAB density estimates obtains 

the highest AUROC 0.598. The above results demonstrate the supe- 

riority of our proposed SlideGraph 

+ architecture. Combining DAB 

density estimates with the help of a graph gives much higher AU- 

ROC and better HER2 prediction performance than the DAB density 

estimates on its own. 

DAB density feature would be most helpful for further stud- 

ies. DAB density feature represents the level of membranous DAB 

staining on IHC images which is widely used by pathologists to 

evaluate the level of HER2 protein expression and predict HER2 

status. This feature can be applied on other receptor status pre- 

diction as long as corresponding DAB density estimating model is 

trained on the specific receptor data. In addition, the dimension of 

Fig. 8. AUROC values using different s min values during the five-fold cross validation 

on TCGA-BRCA. 

DAB density feature is small (4 in this paper) resulting in lower 

computational burden. 

Nuclear composition and nuclear morphology capture cellu- 

lar composition and morphological information from H&E images. 

However, these two features are collected from cell detection and 

classification results at the WSI-level which can be computation- 

ally expensive. In addition, the accuracy of the trained cell detec- 

tion and classification model can have a significant impact on pre- 

dictive performance of the WSI-level prediction task. 

Embedding features learn high-level features based on colour, 

frequency domain, edge detectors, texture and so on from image 

pixels. However, this feature has very high dimension (1024 or 

2048 in this paper) which significantly increases the computational 

complexity. 

It is interesting to see that, between the two neural embedding 

features, feature collected from the model trained on breast can- 

cer dataset does not give superior performance than the one on 

ImageNet dataset. It may due to the reason that the feature repre- 

Fig. 7. ROC curves when testing the trained SlideGraph + classification model on the TCGA test dataset and on the other two independent test datasets (HER2C and Nott- 

HER2). 
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Fig. 9. Example heatmaps of node-level prediction scores: (a) cases from TCGA-BRCA; (b) cases from HER2C. Top row: HER2 negative; Bottom row: HER2 positive. Boundary 

colour of each zoomed-in region represents its contribution to HER2 positivity (prediction score). A-D in (a) denotes the positions of the zoomed-in regions. IHC images in 

(b) illustrate that the H&E regions with high HER2 prediction scores are consistent with the strongly stained DAB areas in the corresponding IHC images. 

Table 3 

External validation of SlideGraph + with DAB density estimates on datasets from 

multiple centres. (0 / 3+): differentiating negatives cases (status 0) and positive 

cases (3+); (0, 1+ / 3+): add 1+ cases to the negative group; ( −/ + ): taking 2+ into 

consideration and differentiating all negative cases and positive cases. ∗: Baseline 

results are not available on these datasets. 

Method Test set AUROC (mean ± std) 

SlideGraph + HER2C (0 / 3 + ) 0.78 ± 0.03 

(Independent validation HER2C (0, 1 + / 3+) 0.75 ± 0.02 

on HER2C and Nott-HER2 (0 / 3 + ) 0.80 ± 0.02 

Nott-HER2 datasets) ∗ Nott-HER2 (0, 1 + / 3+) 0.79 ± 0.01 

Nott-HER2 (- / + ) 0.71 ± 0.01 

sentation from ALBRT model is problem specific (i.e cellular com- 

position specific) but Resnet gives more generic features. 

3.2. Independent validation 

We then test our trained model on two independent test 

datasets: HER2C and Nott-HER2. Here, we utilise the model trained 

using DAB density estimates due to its superior performance and 

simplicity. As can be seen from Table 3 , on HER2C dataset, the 

model achieves mean AUROC of 0.78 when differentiating nega- 

tives cases (status 0) and positive cases (3+). When we add 1+ 

cases to the negative group, our trained model achieves mean 

0.75 AUROC value. For the Nott-HER2 dataset, our trained model 

achieves mean AUROC of 0.80 (0/3+), 0.79 (0, 1+/3+) and 0.71 

( −/ + ) respectively. Corresponding ROC curves can be seen in Fig. 7 . 

The independent validation on multi-centre datasets demonstrates 

the generalisation ability of the proposed SlideGraph 

+ model. 

3.3. Performance comparison with different s min settings 

Here, we choose s min ranging from 0.6 to 0.9 to evaluate 

model’s sensitivity on the number of clusters. We use DAB den- 

sity feature for computational efficiency and do 5-fold cross vali- 

dation on the TCGA-BRCA dataset. The distribution of AUROC using 

different s min values are shown as box-plots in Fig. 8 . It can be ob- 

served that the model performance remains stable and reaches the 

best average AUROC value (0.75) when s min is 0.7 or 0.8. The av- 

erage AUROC value decrease slightly (0.74) when s min is 0.6 or 0.9. 

Therefore, setting s min as 0.8 gives the most reasonable compro- 

mise between cluster homogeneity and computational complexity. 
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Fig. 10. Visualisation of node-level prediction on independent HER2C test dataset. Top row: HER2-negative; Bottom row: HER2-positive. 

Fig. 11. Top: Correlation between nuclear pleomorphism and model prediction scores for ten patients from TCGA-BRCA cohort. Each row gives the mean and confidence 

interval (CI) of PCC between the graph node-level prediction score and a specific feature. For all features, p < 0 . 0 0 01 . Bottom: Density plots of nuclear pleomorphism related 

features and model prediction scores between positive cases (red) and negative cases (blue). 
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This experiment proves that the performance of the model is sta- 

ble and not sensitive to the hyperparameter s min . 

3.4. Performance comparison using AUPR 

Despite significant class imbalance, previously published works 

( Kather et al., 2019a; Rawat et al., 2020 ) did not report prediction 

results in terms of area under the precision-recall curve (AUPR). 

In this paper, in addition to AUROC, we also record the AUPR re- 

sults in each experimental setting and show the values in the sup- 

plementary Table S2 and Fig. S1. In five-fold cross-validation on 

the TCGA-BRCA dataset, the SlideGraph 

+ model with DAB den- 

sity estimates achieves the best AUPR 0.37 ± 0.03. In comparison, 

the DAB density estimate feature without the use of the proposed 

graph network achieves a maximum AUPR value of only 0.20. This 

shows the significant impact of our proposed SlideGraph 

+ archi- 

tecture. We also test our trained model on the other two indepen- 

dent test datasets. On the HER2C dataset, the model achieves mean 

AUPR 0.82 when differentiating definitive negative cases (status 0) 

and positive cases (3+). When we add 1+ cases to the negative 

group, our trained model achieves mean AUPR value of 0.64. For 

the Nott-HER2 dataset, our model achieves mean AUPR 0.25 (0/3+), 

0.20 (0, 1+/3+) and 0.28 ( −/ + ) respectively. It is important to note 

that AUPR in the independent test sets are not comparable across 

datasets because the number of cases in both classes and the ratio 

between them varies across different settings. 

3.5. Visualisation of HER2 predictions 

In order to understand the ability of WSI-level graphs to cap- 

ture tissue architecture and their predictive power for WSI-level 

prediction of receptor status, let us examine the node-level pre- 

diction performance on several cases from TCGA-BRCA and HER2C 

datasets. Fig. 9 (a) shows the overlay of heatmaps and four zoomed- 

in regions which have different levels of HER2 prediction score. It 

can be observed that only a few areas in the negative sample con- 

tribute to the HER2 positivity while majority of the tissue regions 

in the positive case have high HER2 prediction scores. Same can be 

observed on sample images from the HER2C dataset in Fig. 9 (b). It 

should also be noted that regions with high HER2 prediction scores 

are consistent with high DAB intensity areas in the corresponding 

IHC images. 

We then convert the node-level prediction score into a false 

colour representation of each node. This results in a WSI-level 

graph visualisation in which the colour of each node is based on its 

node-level prediction score. Fig. 10 shows the results of this visu- 

alisation for two HER2-negative (top row) and two HER2-positive 

(bottom row) WSIs. One can observe clear differences in the graphs 

of the two classes: note the prevalence of red and blue areas in 

HER2-positive WSIs and dark green areas in HER2-negative WSIs. 

This supports the overall idea of using WSI-level graphs proposed 

in this work and the utility of incorporating global context for ma- 

chine learning problems in computational pathology. 

3.6. Correlation between nuclear pleomorphism and model prediction 

score 

We conduct further analysis on nuclei pleomorphism related 

features that contribute to the HER2 prediction. We include five 

HER2-positive and five HER2 negative-cases in this experiment 

and calculate the Pearson correlation coefficient (PCC) between the 

node-level prediction score and cell nuclei pleomorphism related 

features. In Fig. 11 (top), we show the mean, confidence interval 

(CI) of PCC and limit our discussion to features whose mean PCC 

is above 0.3. We can see that the estimated DAB density feature 

gives the highest PCC value of 0.63 (95% CI 0.62, 0.64). Among 

the nuclear composition features, neoplastic cell counts contribute 

more to HER2 positivity prediction, with mean PCC 0.38 and 95% 

CI (0.34, 0.41). This is plausible because regions with HER2 over- 

expression normally have larger number of neoplastic cells. 

Among all the nuclear pleomorphism related features, standard 

deviation of the Euler number gives the strongest positive correla- 

tion value of 0.49 (95% CI 0.47–0.51, p < 0 . 0 0 01 ). Mathematically, 

in a 2D nuclear mask, the Euler number is the number of ob- 

jects minus the number of holes. Hence, the standard deviation of 

the Euler number may capture the diversity of nuclear morphol- 

ogy and chromatin texture. Higher values represent major morpho- 

logical differences. Standard deviation values of minor axis length, 

equivalent diameter, area, eccentricity and filled area are another 

five nuclear pleomorphism related features which give mean PCC 

above 0.3 with p < 0 . 0 0 01 . These five features are associated with 

the significance of variation in shape and sizes of the cells. Den- 

sity plots of features and model prediction scores between positive 

cases (red) and negative cases (blue) are shown in Fig. 11 (bottom). 

Clear separation can be observed between the positive and nega- 

tive groups. The observations here point to the association of nu- 

clear pleomorphism with HER2 positivity and cancer progression. 

3.7. Comparison of computational efficiency 

We have also compared the computational efficiency of patch- 

based and the proposed SlideGraph 

+ model using a single Nvidia 

Titan RTX GPU. Once the patches and graphs are obtained from the 

WSI, the average single-fold training time for the baseline model 

( Kather et al., 2019b ) is 5.3 h and the testing time for a WSI is 1.2 s 

from patches to the final prediction. In comparison, SlideGraph 

+ 

training for a single fold takes 2 min on average and 0.4 ms to 

get the label prediction from a single graph. In terms of the time 

of feature extraction on TCGA-BRCA dataset in which majority of 

the slides are tissue regions, extracting HoVer-Net related features 

(NCF and NMF) takes 29 min per slide on average. Neural em- 

bedding features (NE) takes 8.8 min while DAB density estimates 

(DDE) needs 4 min to process each slide on average. As patch level 

features only need to be extracted once, the graph-based modelling 

approach can save large amounts of time when we fine-tune pre- 

dictive model and run the training process multiple times for es- 

timation of predictive performance. In addition, extracted features 

can be used for other prediction tasks directly while other baseline 

methods need to be trained on patches for each task. 

4. Conclusions 

In this paper, we proposed SlideGraph 

+ as a generic method 

that couples WSI-level graph representation with a graph neu- 

ral network for capturing the global context of a WSI and 

showed its effectiveness for prediction of HER2 status directly 

from WSIs of H&E stained BCa tissue slides. This method can 

effectively overcome the drawbacks of patch-based methods by 

capturing the biological geometric structure of the cellular ar- 

chitecture at the entire WSI level. The proposed SlideGraph 

+ 

can effectively incorporate both cell-level and contextual informa- 

tion by using different feature compositions and graph convolu- 

tion. We also proposed a DAB density regression model which 

can predict HER2 specific DAB density directly from H&E im- 

ages. Experimental results for clinically important tasks of HER2 

status prediction show that the proposed SlideGraph 

+ method 

with estimated DAB density feature can produce higher accu- 

racy than the state-of-the-art techniques. SlideGraph 

+ can also be 

applied to other problems in computational pathology, such as 

recurrence and survival prediction, anti-HER2 treatment efficacy 

prediction. 
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