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KINECaL: a Dataset for Falls-Risk  
assessment and Balance 
Impairment analysis
Sean Maudsley-Barton ✉ & Moi Hoon Yap  

The field of human action recognition has made great strides in recent years, much helped by the 
availability of a wide variety of datasets that use Kinect to record human movement. Conversely, 
progress towards the use of Kinect in clinical practice has been hampered by the lack of appropriate 
data. In particular, datasets that contain clinically significant movements and appropriate metadata. 
This paper proposes a dataset to address this issue, namely KINECAL. It contains the recordings of 
90 individuals carrying out 11 movements, commonly used in the clinical assessment of balance. The 
dataset contains relevant metadata, including clinical labelling, falls history labelling and postural sway 
metrics. KINECAL should be of interest to researchers interested in the clinical use of motion capture 
and motion analysis.

Background & Summary
Complications associated with injurious falls are the most common cause of death for those aged over 651. In 
the UK, 1/3 of those aged over 65 and 1/2 of those aged 80 will fall once a year2. In addition to the immediate 
pain and discomfort, even a single fall can lead to a range of associated conditions, such as depression, anxiety 
and social isolation.

In order to identify those in need of help, a falls-risk assessment must be carried out2. However, there is a 
dichotomy at the heart of falls-risk assessment. Lab-based research tends to use expensive equipment (force 
plates and marker-based motion capture) to quantify balance impairment. Even here, the costs mean that force 
plate data tends to dominate. In clinical practice, observational tests are the dominant form of assessment. This 
means there is difficulty in translating state-of-the-art research into clinical practice. In addition, clinical tests 
that have shown great utility in falls risk assessment, such as the Sit to Stand x 5 (STS-5) and 3 m walk, are 
difficult to instrument using a force plate. These tests could be instrumented using marker-based motion cap-
ture, but even if one ignores the cost of such systems, the space required and set-up time makes this option 
impractical for everyday assessment. Markerless motion capture could provide a practical solution to bridge the 
gap between research and practice. Markerless solutions can provide joint angles, akin to those derived from 
marker-based solutions, and sway metrics, akin to those derived from force plates. These systems are not without 
issues, but they can provide insight, difficult to achieve any other way, away from the lab. However, research into 
their use as an objective method of assessing balance, frailty and falls-risk is under-researched. As is often the 
case, there is a chicken and egg situation when it comes to appropriate data on which to base the development of 
useful methods of assessment using these devices. The proposed dataset, named KINECAL addresses this need.

Kinect, and more generally Red Green Blue + Depth (RGB + D) data, is used extensively in human action 
recognition (HAR) research3. This area of research has made huge strides in recent years, driven forward by 
the availability of a diverse range of publicly available datasets4–6. On the face of it, it would seem this type of 
dataset would be useful in the clinical study of human movement. However, the focus is quite different. The pur-
pose of HAR, is to identify a small set of human movements (actions) from a nearly infinite set of possibilities. 
The clinical use of motion capture seeks to quantify the quality of a prescribed set of movements. In addition, 
anonymised clinically-important metadata such as age, height, weight, and meaningful labels of impairment are 
rarely included in HAR datasets.
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Firman4, in his review of RGB + D datasets, detailed 45 datasets, 44 of which were recorded using Kinect. Of 
these datasets, only one, the K3Da dataset7 had movements that are useful in the assessment of balance disor-
ders, it has some metadata, but it is limited to age, height and weight.

Since the publication of the Firman paper4, a few datasets have been created to address these issues. The 
Multimodal Dataset8 contains clinically relevant movements (Timed get-up-and-go (TUG), a single 30 second 
chair stand, a 45 second unilateral stance, and a 2 minute step test). However, the dataset comprises just 21 sub-
jects, evenly split between young and old, and none of the participants had known movement impairment at the 
time of testing. The KIMORE Dataset9, has 78 subjects, 44 healthy (mean age 36.7 ± 16.8 years) and 32 suffering 
from motor dysfunction (mean age 60.44 ± 14.2 years). The dataset includes clinical scoring of the movements. 
However, the movements do not relate directly to falls-risk. Table 1 provides a comparison between KINECAL 
and other datasets, containing clinical movements.

KINECAL contains the recordings of 90 participants carrying out 11 movements, commonly used in the 
clinical assessment of balance impairment, frailty and falls-risk. Details of how each movement was carried out 
are shown in Table 2. The participants are grouped by both age and falls-risk. This enables researchers to disam-
biguate factors which relate to each.

Methods
Participants. 90 participants, aged from 18 to 92, were recorded for the KINECAL dataset, carrying out 
a range of movements commonly used in clinical tests. The recordings were made using a Kinect V2. Further 
details of data collection are shown below. Ethical approval was obtained from the Manchester Metropolitan 
University Research Ethics Committee (ethics approval ref: 020517-ESS-CC(1), and ref: SE161757). All partici-
pants provided written informed consent. Participants were excluded if they had any of the following:

•	 Treatment for cancer in the previous 2 years
•	 Joint replacement in the previous year
•	 Broken a leg, or hip bone or had a joint replaced, e.g. hip or knee, in the previous 2 years
•	 Any lower limb amputation
•	 Suffering from neuromuscular conditions (e.g. multiple sclerosis)
•	 Have been diagnosed with Alzheimer’s or Dementia
•	 Cannot read and communicate in English, either verbal or written

Clinically significant movements. Table 2 provides a list of the clinically significant movements included 
in the dataset, along with the instructions given to each participant. The movements are: Quiet standing, eyes 
open (EO) and eyes closed (EC), semi-tandem stance EO, tandem stance EO, 3 m walk and 5 STS-5, (this con-
stitutes the Short Physical Performance Battery (SPPB) assessment). To assess a participant’s ability to react to 
perturbation, the quiet standing trials EO/EC were repeated while standing on a compliant surface (Airex balance 
pad). Finally, two movements which are often used as standalone tests are included, i.e. TUG and unilateral stance 
EO/EC.

Data collection. Recordings were made using a Kinect camera mounted on a tripod at a height of 1.14 m 
from the ground plane. Participants were asked to stand 3 m from the camera for static stances and 4 m for TUG, 
and 3 m walk (the additional meter was needed to capture the entire 3 m walk). Participants were recorded using 
custom software, skel recorder, written using Visual Studio 2015 and the Kinect SDK 2.0. skel recorder captures 
Depth and Skeleton data and stores it to hard disk. Figure 1 shows the equipment setup and Fig. 2 shows the out-
put from the Kinect. This image was taken in laboratory conditions, but other recordings in KINECAL were made 
in more informal settings, such as church halls.

Quality control. Kinect can miss-classify structures, such as tables, which are in the frame along with the 
participants. If this happens, aberrant and truncated skeletons are included in the recordings. These types of 
artefacts reduce the quality of the dataset. In addition, some of the initial recordings were started after the move-
ment had begun or stopped before the movement was completed. To ensure only good-quality recordings were 

Multimodal Dataset K3Da KIMORE

KINECAL8 7 9

Number of participants 21 54 78 90

Depth data ✗ ✓ ✓ ✓

Skeleton data ✓ ✓ ✓ ✓

Clinical evaluation ✗ ✗ ✓ ✓

Falls related labels ✗ ✗ ✗ ✓

Postural Sway Metrics ✗ ✗ ✗ ✓

Recordings in informal settings ✗ ✗ ✗ ✓

Table 1. A comparison of KINECAL and previous datasets that contain clinically significant movements.
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included in the dataset, videos were created from the depth and skeletal data. These videos were reviewed manu-
ally. Any recordings with issues were excluded from the dataset.

Dataset structure. In designing KINECAL, previous studies relating to ageing and falls-risk were reviewed. 
Some studies considered just age-related changes, e.g. young ( < 35 years old) vs older (≥65 years old) popula-
tions10–12. This polarisation is helpful if the question is, how does postural sway change with age. However, using 
this type of data alone can be problematic when applied to falls-risk. While ageing plays a part in falls-risk, it is 
not the whole story. For example, if we consider master athletes (individuals over the age of 30, but many of whom 
are aged over 80, who still take part in athletic competition). In spite of demanding regimes of training and com-
petition, the occurrence of falls for master athletes was found to be no higher than it was for younger athletes13. 
While they are seen as functionally fitter when compared to those of a similar age who do not compete in sporting 
events, the effects of ageing are still detectable as changes in motor neurons14,15, but this does not translate to an 
increase in the number of falls. McPhee et al.16 suggested that the protective effects of regular exercise are univer-
sal and not limited to elite athletes. An alternative approach, when considering falls-risk, is to control for age. This 
is the approach taken by17–19, who compared aged-matched populations of older fallers and non-fallers. However, 
this approach can make it just as challenging to understand the interaction of age and physical function.

With these factors in mind, KINECAL is structured to help aid the separation of falls-risk from age effects. 
The following section details how participants were labelled to provide a range of groupings when working with 
the data.

Standard instruction to the participants

STS-5 From a seated position, with your arms crossed over your chest, rise extending your legs fully, 
then sit down again. Repeat five times, as quickly as possible.

Quiet standing, Eyes open, Firm surface Stand feet close together, eyes open and arms by your side.
The test is terminated after 20 seconds, or if lost balance.

Quiet standing, Eyes closed, Firm surface Stand feet close together, eyes closed and arms by your side.
The test is terminated after 20 seconds, or if lost balance.

Quiet standing, Eyes open, Foam Same instructions as for standing on a firm surface, but perform on a foam.

Quiet standing, Eyes closed, Foam Same instructions as for standing on a firm surface, but perform on a foam.

Semi-tandem Stance
Stand with the toe of the back foot against the side of the heal of the front foot.
Ether foot can be forward, which ever is most comfortable. The test is terminated after 
20 seconds.

Tandem Stance Stand with the toe of the back foot against the back of the heal of the front foot. Ether foot can 
be forward, which ever is most comfortable The test is terminated after 20 seconds.

Unilateral stance, Eyes open
Stand on one leg, whichever is most comfortable, with the other leg flexed 6 inches off the 
ground, hands by your side, eyes open.
The test is terminated after 20 seconds or when the lifted leg touches the ground.

Unilateral stance, Eyes closed
Stand on one leg, whichever is most comfortable, with the other leg flexed 6 inches off the 
ground, hands by your side, eyes closed.
The test is terminated after 20 seconds or when the lifted leg touches the ground.

TUG From a seated position, stand, and walk to a marker 3 m away and return to the seat

3 m walk From a standing position, walk to a marker 3 m away, and return to the seat

Table 2. A description of movements in the recording of  KINECAL, and how they were described to the 
participants.

Fig. 1 The relationship between an individual being recorded and the Microsoft Kinect camera. The CoM is 
calculated as the Euclidean average of the HIP_LEFT, HIP_RIGHT and SPINE_MID joints.

https://doi.org/10.1038/s41597-023-02375-w
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Self-reported labels. All participants were asked the following question. “Have you had any fall, including a 
slip or trip in which you lost your balance and landed on the floor or ground or lower level in the past 12 
months?”20. Possible answers were [None, One, Two, Three, Four or more].

Based on the answer they gave and their age, participants were split into the following groups:

•	 Healthy-Adult, members of this group, were all <65 years old and gave the answer None
•	 Non-Faller, members of this group, were all ≥65 years old and gave the answer None
•	 Self-reported-Faller, members of this group, were all ≥65 years old and gave the answer One, Two, Three, 

Four or more

Table 3 details the numbers in each group, along with their age range and the gender split.

Single and multiple fallers. The Self-reported-Faller group can be further split into single and multiple fallers. 
We make this distinction because someone who answered one to the falls history question might simply be the 
victim of bad luck and not someone with a high likelihood of future falls. Someone who declared they have 
fallen multiple times is more likely to suffer future falls and could be thought of as a true faller21. It is up to the 
individual researcher to make the best use of these labels.

•	 Self-reported-Faller_s, members of this group, were all ≥65 years old and gave the answer One
•	 Self-reported-Faller_m members of this group, were all ≥65 years old and gave the answer Two, Three, Four 

or more

Table 4 details the numbers in each group, along with their age range and the gender split.
Note: the Self-reported-Faller_s and Self-reported-Faller_m groups are made up of members of the 

Self-Reported-Faller group. Participants are multipally labelled, which provides flexibility in use. However, it is up 
to the individual researcher to decide how to best use these labels.

Clinical labelling. The movements recorded in the dataset provide an alternative means of labelling partici-
pants. Moreover, one which relates to clinical tests of physical impairment, hence we call this clinical labelling.

Clinical labelling was a two-stage process. (1) The recordings for each participant were played back and 
marked against accepted thresholds for physical impairment and falls-risk, for each of the following tests: 
SPPB22; Slow 3 m walk23; TUG24,25 and slow time to complete STS-526. (2) Any individual categorised as impaired 
for a least two of these tests was labelled Clinically-At-Risk in the dataset. Using this method, six people were 
identified as belonging to the Clinically-At-Risk group. Details of this group are shown in Table 5. The thresh-
olds of impairment for each test are discussed below.

Note: the Clinically-At-Risk group is made up of members of the Non-Faller group (2) and Self-Reported-Faller 
group (4). Participants are multipally labelled, which provides flexibility in use. However, it is up to the individual 
researcher to decide how to best use these labels.

Fig. 2 Kinect point-of-view This figure is of a young participant in quiet stance. (a) is a depth image, (b) is the 
25-joint skeleton created by Kinect.

https://doi.org/10.1038/s41597-023-02375-w
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Thresholds of clinical-impairment. This section details the thresholds applied to each clinical test.

SPPB. The SPPB test was carried out using the protocol described in27 and scored based on the scoring system 
shown in Table 6. The participant was classified using the criteria detailed in Table 7. Those who were classified 
as having Moderate Limitations or Severe Limitations were marked as at-risk for this test.

3 m walk. Quach et al.28 used a 3 m walk to assess falls-risk in an 18-month-long, longitudinal study of 764 
community-dwelling older people, mean age: 78 ± 5 years. They concluded that a walking speed of <0.6 m/s 
was associated with an increased risk of falling inside. This is equivalent to a time of >5 seconds to complete. 
Applying this threshold to the 3 m walks in KINECAL, anyone who took >5 seconds to complete the 3 m walk 
was marked as at-risk, for this test.

STS-5. Another longitudinal study was undertaken by Ward et al.26. Over 4 years, they studied 755 
community-dwelling older people, mean age: 78.1 ± 5.4 years. The study looked at SPPB as a predictor of inju-
rious falls. The conclusion was that the STS-5 alone was enough to assess falls-risk. They suggested that a time 
to complete ≥16.7 seconds may be sufficient to identify those at risk of future falls. Applying this threshold to 
KINECAL, anyone who took >16.7 seconds to complete the STS-5 test was marked as at-risk, for this test.

TUG. Shumway-Cook et al.25 found TUG to be a powerful test for fallers. They used a population of 30 people, 
split evenly between two groups, i.e. Non-Fallers (no historic falls in the last 6 months) with mean age: 78 ± 6 
years, and fallers (≥2 falls in the last 6 months by history) with mean age: 86.2 ± 6 years. They suggested that 
those who take >14 seconds to complete the TUG are at elevated risk of falls. The Mc Kinly Laboratory29 pro-
vides a reference for normative scores for TUG, synthesised from the Shumway-Cook paper and 3 more24,30,31. 
This reference extends the recommendations of Shumway-Cook et al.25, as presented in Table 8. In spite of the 
other work, the value presented in25 remains the current recommendation to identify those at elevated risk 
of falls. Applying this threshold to KINECAL, anyone who took >14 seconds to complete the STS-5 test was 
marked as at-risk for this test.

Filtering. As with any system that digitises real-world data, Kinect’s signal is bound up with noise, which can 
be seen as jittering of the skeletal joints. To address this issue, the recordings were filtered using a Butterworth 
fourth-order zero-lag filter with a cut-off frequency of 8 Hz. The cut-off frequency was calculated using residual 
analysis of the filtered and unfiltered signal as a function of the filter cut-off frequency, as described by Winter32. 
8 Hz provided the best balance between the signal distortion and the amount of noise allowed through.

Pose normalisation. Each skeleton frame was aligned to the first frame of the recording, making all subsequent 
movements relative to this initial position33, using Eq. 1.

p x y z P x y z P x y z( , , ) ( , , ) ( , , ) (1)* _n i n i SPINE BASE, , 0,= −

Description Age (±95% CI) Total Number Male Female

Healthy-Adult <65 years, no history of falls in the last 12 months mean age 46.2 (±22.7) 33 22 11

Non-Faller ≥65 years, no history of falls in the last 12 months mean age 73.3 (±11.7) 33 16 17

Self-Reported-Faller ≥65 years, reported ≥1 falls in the last 12 months mean age 72.6 (±13.6) 24 15 9

Table 3. Grouping of Self-reported Labels: This table shows the split between the different groups in terms of 
mean age, total numbers and gender split. A description of each group is also included.

Description Age (±95% CI) Total Number Male Female

Self-reported-Faller_s ≥65 years, reported 1 fall, in the last 12 months mean age 72.3 (±15) 15 7 8

Self-reported-Faller_m ≥65 years, reported > 1 fall, in last 12 months mean age 73.1 (±11.7) 9 2 7

Table 4. Grouped Sub-labelling of Self-reported-Fallers: This table shows the split between the different single 
(_s) and multiple fallers (_m), in terms of mean age, total numbers and gender split. A description of each group 
is also included.

Description Age (±95% CI) Total Number Male Female

Clinically-At-Risk ≥65 years identified as impaired by ≥2 clinical tests mean age 80.3 
(±11.8) 6 1 5

Table 5. Details of the Clinically-At-Risk group: mean age, total numbers and gender split are shown.

https://doi.org/10.1038/s41597-023-02375-w
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where pn,i(x, y, z)* represents the normalised position of the x,y,z axis of joint i in frame n. P x y z( , , )_SPINE BASE0,  
represents the position of the SPINE_BASE joint in the first frame of the recording, and Pn,i(x, y, z) represents the 
positions of joint i in frame n.

Estimation of CoM. In posturography, postural sway relates to the change in the position of the body’s 
CoM over time. The most commonly used device for posturography is a force plate. When using force plates, 
CoM position is estimated from the Centre of Pressure (CoP) at the surface of a force plate34. Using the 
inverted-pendulum model, the position of the CoM is related to the position of the CoP by applying an offset 
related to an individual’s height35. In our work, we derive CoM using a method described in our previous work36. 
It calculates CoM to be the 3D Euclidean mean of 3 joints of the Kinect skeleton: Hip left, Hip right, and Spine 
mid, as described in Eq. 2. This method has been validated to be equivalent to the CoM derived from the Balance 
Master in a previous paper36.

Test Score

Quiet Standing

Held for 10 sec 1

Not Held for 10 sec 0

Not Attempted 0

Semi-Tandem Stance

Held for 10 sec 1

Not Held for 10 sec 0

Not Attempted 0

Tandem Stance

Held for 10 sec 2

Held for > 3 sec < 10 sec 1

Held for < 3 sec 0

Not Attempted 0

3 m Gait Speed

Unable to complete or > 1 minute 0

 > 6:31 1

 > 4:40 < 6:31 2

 > 3:37 < 4:40 3

 < 3:37 4

STS-5

Unable to complete or > 1 minute 0

 > 16:42 1

 > 13:42 < 16:42 2

 > 11:12 < 13:42 3

 < 11:12 4

Table 6. SPPB Scoring.

Score Classification

0–3 Severe Limitations

4–6 Moderate Limitations

7–9 Mild Limitations

10–12 Normal

Table 7. SPPB classification.

Time Classification

30 seconds Problems, cannot go outside alone, requires gait aid

20 seconds Good mobility, can go out alone, mobile without gait aid

14 seconds Elevated risk of falls

10 seconds Normal

Table 8. TUG classification.

https://doi.org/10.1038/s41597-023-02375-w
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where HIP_LEFT, HIP_RIGHT, SPINE_MID are Kinect joints, indicated on Figure 3. The Figure also shows the 
resultant position of the CoM for a single frame.

Generation of sway metrics. The 3D CoM time series is a useful asset for researchers, as is the full depth 
and skeleton data. However, a set of common force plate metrics has been included for all upright stances.  
In doing this, the dataset simulates the type of lab-based metrics you would obtain from a force plate. Hence in 
one dataset, you have clinical and lab-based tests for each participant.

Generally, when working with sway metrics derived from force plates, the CoM position is expressed 
in only two dimensions, i.e. the anatomical directions Anterior-Posterior (AP) and Mediolateral (ML).  
Kinect recordings are 3-dimensional, using a right-handed worldview. The origin is the centre of the camera, 
as shown in Fig. 4. To align the two views, the recordings were first normalised, and then the z-axis of Kinect 
was mapped to movement in the AP direction of the person being recorded. Similarly, the x-axis was mapped to 
movement in the ML direction. For this application, the y-axis was ignored.

Table 9 shows the abbreviations used for each metric, alongside a description of each metric. The abbrevia-
tions follow the form laid out in Prieto et al.10.

Sway metric - time series. Force plates often have marks on their surface proscribing foot positions or 
will automatically centre the recordings. In the case of the recordings presented here. Centring was achieved by 
subtracting the mean CoM position, for an entire recording, from the CoM value at each time step. This was done 
separately for movement in the AP and ML directions using Eq. 4. The mean position was calculated using Eq. 3.

The output of Eq. 4 were concatenated to produce the AP and ML time series. A third time series was calcu-
lated, which takes into account movements in the AP and ML directions in a single value. Known as the resultant 
distance time series (RD), it was calculated as the vector distance from the mean CoM position to a pair of points 
in the AP and ML time series, at each time step. Values for each time step were generated using Eq. 5 and then 
concatenated to produce RD. Each of the calculated sway metrics was calculated using all three time series.

∑

∑

=

=

=

=

ML raw
n

ML raw

AP raw
n

AP raw

_ 1 _

_ 1 _
(3)

i
i i

n

i

i
i i

n

i

Fig. 3 Kinect V2 Skeleton: the joints used to estimate the CoM are labelled, along with the estimate CoM position.
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AP AP raw AP raw
ML ML raw ML raw

_ _
_ _ (4)

i i

i i

= −
= −

= +RD ML AP( ) ( ) (5)i i i
2 2

If the AP is graphed against ML, the CoM path for each recording is revealed. Figure 5 compares the CoM 
paths of members of the Healthy-Adult and Clinically-Impaired groups Standing Quietly with eyes open (blue 
line). The 95% confidence ellipse is also shown (red ellipse) The calculation of the 95% confidence ellipse is 
detailed below.

Calculation of sway metrics. The following section gives details of the equations used to calculate the sway 
metrics. In these equations, _AP relates to the AP time series (AP). For the most part, these equations were also 
used to calculate the metrics in the ML and RD directions. The exceptions being MFREQ and the 95% confidence 
ellipse.

Fig. 4 Kinect coordinate system: z-axis projects from the depth camera, with x and y orthogonal to it. This 
image is recreated from here.

Description

MDIST Mean distance of the RD time series

RDIST RMS distance of the RD time series

MVELO Mean velocity of the RD time series

TOTEX Total excursions of the RD time series

MFREQ Mean frequency of the RD time series

MDIST_AP Mean distance of the AP time series

RDIST_AP RMS distance of the AP time series

MVELO_AP Mean velocity of the AP time series

TOTEX_AP Total excursions of the AP time series

MFREQ_AP Mean frequency of the AP time series

MDIST_ML Mean distance of the ML time series

RDIST_ML RMS distance of the ML time series

MVELO_ML Mean velocity of the ML time series

TOTEX_ML Total excursions of the ML time series

MFREQ_ML Mean frequency of the ML time series

AREA_CE 95% Confidence Area

Table 9. Table of sway metrics: This table details the sway metrics from the KINECAL dataset. Note. RD refers 
to the Resultant Distance, AP refers to Anterior-posterior, and ML refers to Mediolateral directions, details of 
how these metrics were calculated can be found in section 3.

https://doi.org/10.1038/s41597-023-02375-w
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Mean distance of CoM. The most straightforward metric to understand, and to calculate, is the mean dis-
tance of the CoM. This is simply the mean, absolute distance moved, from the mean position of the CoM over the 
time of each trial. Equation 6 was used to calculate MDIST_AP

MDIST AP
n

AP_ 1
(6)i∣ ∣∑=

Fig. 5 95% Confidence Ellipse and CoM path: This figure compares CoM paths and associated 95% Confidence 
Ellipses of a person labelled Healthy-Adult (25) to someone labelled Clinically-Impaired (201), Standing 
Quietly. Column (a) shows a tight view. Column (b) shows the 95% Confidence Ellipses plotted on the same 
scale. Note the majority of the increase in the area, for the Clinically-Impaired individual, come from movement 
in the AP direction.
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where AP is the AP time series, i is a single time step and n is the total number of times steps, in the time series. 
ML was used in place of AP, to calculate the MDIST_ML. RD was used in place of AP, to calculate the MDIST.

RMS distance. The root mean squared process removes the sign and gives more prominence to values fur-
ther away from the mean CoM position. Equation 7 was used to calculate RDIST_AP.

∑=RDIST AP
n

AP_ 1
(7)i

2

where AP is the AP time series, i is a single time step and n is the total number of times steps, in the time series. 
ML was used in place of AP, to calculate the RDIST_ML. RD was used in place of, AP to calculate the RDIST.

Total excursion (CoM Path Length). Total excursion is calculated by summing the distance between suc-
cessive time steps. This is also known as the CoM path length. Equation 8 was used to calculate TOTEX_AP.

TOTEX AP AP AP_ (8)i i1∑= −+∣ ∣

where AP is the AP time series and i is a single time step. ML was used in place of AP to calculate the TOTEX_
ML. RD was used, in place of AP, to calculate the TOTEX.

Mean velocity. Mean velocity is the total excursion divided by the time for the trial, in seconds. Equation 9 
was used to calculate the MVELO_AP.

=MVELO AP TOTEX AP t_ _ / (9)

where AP is the AP time series and t is the time for the trial in seconds. ML was used in place of AP to calculate 
the MVELO_ML. RD was used, in place of, AP to calculate the MVELO.

Mean angular frequency AP and ML. MFREQ_AP is the frequency, in Hz, of a sinusoidal oscillation with 
an average value of the mean MDIST_AP and a total path length of TOTEX_AP. This was calculated using Eq. 10.

=MFREQ AP MVELO AP
MDIST AP

_ _
4 2 _ (10)

where MVELO_AP is defined by Eq. 9 and MDIST_AP is defined by the Eq. 6. MVELO_ML was used in place of 
MVELO_AP and MDIST_ML was used in place of MDIST_AP to calculate the MFREQ_ML.

Mean angular frequency. MFREQ is the mean angular frequency, in Hz. This is the number of revolutions 
per second of the CoM if it had travelled the total excursion around a circle with a radius of the mean distance. It 
is calculated using values derived from RD, given by Eq. 11.

MFREQ MVELO
MDIST2 (11)π

=

where MVELO is defined by Eq. 9 and MDIST is defined by Eq. 6.

95% confidence elliptical area. The AREA_CE is given by the set of equations below (12). The elliptical 
area is an estimate of the area described by the maximum and minimum AP and ML values of the time series. To 
reduce the effect of rapid changes in direction, this value is scaled to 1.96 standard deviations of the mean value.

σ σ
σ

σ
π

=

= − .

= + .
=

p
cov

AP p
ML p
area AP ML

1 1 96
1 1 96

(12)

AP ML

AP ML

r AP

r ML

r r

,

where p is the Pearson correlation coefficient, MLr is the ML elliptical radius scaled to the 95% Confidence 
Interval (CI), and APr is the AP elliptical radius scaled to the 95% CI.

Data Records
The raw data files and the calculated sway metrics are stored in a physionet repository37. The section below pro-
vides details of the structure of the data found there.
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Data description. KINECAL contains the recordings of 90 participants carrying out 11 movements, com-
monly used in the clinical assessment of balance impairment, frailty and falls-risk.

Participant metadata. register.csv provides the headline information about each participant. The file con-
tains the following columns:

part_id: participant id
 group: healthy-adult (HA), non-fallers (NF), single-faller, by falls history (FHs), multiple-faller, by falls his-
tory (FHm)
age: chronological age at the time of recording.
sex: biological sex (m/f)
height: height in meters
weight: weight in kg
BMI: Kg/m2

recorded_in_the_lab: indicates if the recording was made in the lab
clinically-at-Risk: indicates if the participants were marked as clinically at risk

Sway metrics. sway_metric.csv contains common sway metrics for each movement, per participant. This 
file includes the following headers:

part_id: participant ID
movement: the movement that was recorded
group: non-faller, single-faller, by falls history (FHs), multiple-faller by falls history (FHm)
age: Chronological age
sex: Biological sex
recorded_in_the_lab: indicates if the recording was made in the lab
clinically-at-Risk: Indicates if the participants were marked as clinically at risk
RDIST_ML: Value for RMS distance in ML direction
RDIST_AP: Value for RMS distance in AP direction
RDIST: Value for the overall RMS distance
MDIST_ML: Value for mean distance in ML direction
MDIST_AP: Value for man distance in AP direction
MDIST: Value for the overall mean distance
TOTEX_ML: Value for total exertion in ML direction
TOTEX_AP: Value for total exertion in AP direction
TOTEX: Value for the overall total exertion
MVELO_ML: Value for mean velocity in ML direction
MVELO_AP: Value for mean velocity in ML direction
MVELO: Value for the overall mean velocity
MFREQ_ML: Value for mean frequency in ML direction
MFREQ_AP:Value for mean frequency in AP direction
MFREQ: Value for the overall mean frequency
AREA_CE: The area of the 95% confidence ellipsis

Depth data. A file has been created for each depth frame recorded by the Kinect camera (30 fps). The file stores 
the ushort values in binary format. The file is named DepthUshort < clock_tick > .bin. The binary file is a flattened 
2D array of pixel-by-pixel distances from the camera to objects in the frame. This array can be resized back to the 
original 424, 512 aspect to reconstitute the original image. See the usage notes for Python code that can achieve this.

Skeleton joint coordinates. In addition to raw depth data, the joint positions as defined by the Kinect 25 
joint model has also been stored (30 fps). These are stored in plain text. The files are named < clock_tick > .txt. 
The file format is as follows:

Joint_name: The name for an individual joint, e.g. SpineBase
Tracked: This indicates if the joint was tracked or inferred. Inferred positions happen in the case of occlusion
x-3D: The estimated x position in 3D space
y-3D: The estimated x position in 3D space
z-3D: The estimated x position in 3D space
x-pixel-pos: The x-pixel potion from the depth camera
y-pixel-pos: The y-pixel potion from the depth camera

Folder structure. This section provides details of the files and folders which make up the dataset. Figure 6  
shows the folder structure for the STS-5 movement. Similar folder structures exist for the other movements. They 
are not repeated here, for brevity’s sake.
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Fig. 7 Box and whisker plots for STS-5 movement of the KINECAL and K3Da datasets: The range of movement in 
each joint is shown for the sagittal and frontal planes. similar ranges are seen between the two datasets. Independent 
t-tests were used to demonstrate no significant difference between the two datasets, shown in Table 10.

Fig. 6 File structure for KINECAL dataset.

https://doi.org/10.1038/s41597-023-02375-w
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technical Validation
The recordings were undertaken as laid out in the Data Collection section.

After recording, a video was created from the movements of the extracted joints, over time. Each frame rep-
resents the 3D coordinates in space for one time-step. the videos were then viewed to ensure all recordings are 
free of artefacts. Any videos with artefacts were excluded.

KINECAL represents a unique dataset, and as such, it is difficult to compare to other datasets. However, the 
previously published K3Da dataset does share similar movements. Using this dataset as ground truth, we com-
pared the range of movement (ROM) for STS-5, in both the sagittal and frontal planes. In the comparison, we 
examined the healthy adult group in KINECAL and the participant’s ages < 65 years old in K3Da. The results are 
shown in Fig. 7 and Table 10. The KINECAL data compares very well to the K3Da data.

Usage Notes
Both raw depth and joint positions are provided. These files can be processed using many commonly used data 
processing tools, e.g. Python and Matlab.

The data can be used to study both postural sway metrics, akin to data derived from force plates and whole 
body metrics, such as joint angles, akin to metrics derived from marker-based motion capture, such as VICON. 
Sample code is available37 to demonstrate how this is achieved.

Code availability
The code used to process the files, along with some example scripts are available from a physionet repository37.
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