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a b s t r a c t

Garcinia livingstonei is a traditional herbal medicine that showed beneficial health effects and bioactivi-
ties. Four compounds have been isolated from the plant leaves and were elucidated as lupeol, betulin,
podocarpusflavone A, and amentoflavone. The inhibitory activities of G. livingstonei extract and isolated
metabolites against fatty acid synthase (FAS), a-glucosidase, and xanthine oxidase (XO) were investi-
gated in vitro. The affinity of the compounds toward the studied enzymes was investigated in silico.
The plant extract inhibited FAS, a-glucosidase, and XO with IC50 values of 26.34, 67.88, and 33.05 lg/
mL, respectively. Among the isolated metabolites, betulin exhibited the most inhibitory activity against
a-glucosidase and XO with IC50 values of 38.96 and 30.94 lg/mL, respectively. Podocarpusflavone A and
betulin were the most potent inhibitors of FAS with IC50 values of 24.08 and 27.96 lg/mL, respectively.
Computational studies corroborated these results highlighting the interactions between metabolites and
the enzymes. In conclusion, G. livingstonei and its constituents possess the potential to modulate enzymes
involved in metabolism and oxidative stress.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Herbal agents such as Garcinia cambogia have been traditionally
used all over the world to reduce body weight (Golzarand et al.,
2020). Garcinia (=Rheedia), a plant genus of Guttiferae, has many
important species with biflavonoids of important physiological

activities (Ogunwa 2018). Many species have edible fruits andmul-
tiple phytochemicals were reported in this genus such as xan-
thones (Delle Monache et al., 1984, Sordat-Diserens et al., 1992,
Mbwambo et al., 2006), benzophenones (Gustafson et al., 1992,
Baggett et al., 2005, Acuna et al., 2012) and biflavonoids (Acuna
et al., 2012). Garcinia species have many pharmacological uses as
antifungal (Sordat-Diserens et al., 1992), antioxidant (Merza
et al., 2004), antiviral against HIV (Gustafson et al., 1992) and
anti-inflammatory (Khanum et al., 2004). Garcinia livingstonei trees
are indigenous to Africa and traditionally used in South Africa for
the treatment of respiratory problems and tuberculosis (Kaikabo
and Eloff 2011). This plant is a rich source of xanthones, benzophe-
nones, flavonoids and phenolic acids (Muriithi et al., 2016). Studies
on the beneficial effects of G. livingstonei revealed the anti-
bacterial, antioxidant and antiparasitic activities of the leaves
and root bark, effects that were attributed to the contained active
constituents (Mbwambo et al., 2006, Kaikabo and Eloff 2011, Lyles
et al., 2014, Tabit et al., 2016).
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Obesity is a current prevalent problem among populations in
both developing and developed countries. It exacerbates numerous
health complications and in most cases it is associated with dis-
eases like type 2 diabetes mellitus (DM) and cardiovascular dis-
eases (Kopelman 2000). Fatty acid synthase (FAS) is considered a
potential target for the management of obesity since it performs
a crucial function in de novo lipogenesis. Previous researchers have
proved that the inhibition of FAS can lead to feeding inhibition and
dramatic decrease in body weight (Tian et al., 2004). Another sig-
nificant approach in controlling obesity is to inhibit digestive
enzymes such as a-glucosidase and hence delaying carbohydrates
absorption and extending the digestion time (Mahboubi 2019). a-
glucosidase is an intestinal enzyme that breaks down polysaccha-
rides into glucose that is absorbed into the blood (Zhang et al.,
2012). Acarbose, an inhibitor of a-glucosidase, is currently used
in combination with other treatments and diet to manage blood
glucose levels. It reduces body weight efficiently in communities
that have high carbohydrate consumption rates (Nakhaee and
Sanjari 2013).

Xanthine oxidase (XO) activity and levels of uric acid have been
found to be high with metabolic disorders like obesity and DM. XO
is responsible for uric acid production from purine nucleotides
(Battelli et al. 2016). It catalyzes the oxidation of hypoxanthine
to xanthine then to uric acid and generates the reactive oxygen
species (ROS) superoxide radicals. Nakamura et al. reported a
strong XO inhibitor that reduced weight gain and they explained
this by induction of the salvage pathway via increasing hepatic
hypoxanthine levels leading to tendency of the body to catabolism
(Nakamura et al., 2021).

In molecular docking analysis, the stability of drug-enzyme
complex is strongly influenced by polar and hydrophobic interac-
tions between the drug and protein’s active site amino acid resi-
dues (Antar et al., 2022). Particularly, the polar interactions are
important for the binding of the drugs into the enzyme active site
(Kamel and Lamsabhi 2021). Consequently, these polar interac-

tions contribute significantly to molecular recognition, drug affin-
ity and configuration (Abukhalil et al., 2020). Another leading
factor contributing to binding energy is the hydrophobic interac-
tion between the drug lipophilic surface and the enzyme active site
hydrophobic regions (Elsayed et al., 2020). Thus, for a thermody-
namically favorable drug-enzyme interaction, a suitable geometri-
cal coincidence between the drug and the active site is essential.

In this study, FAS, a-glucosidase, and XO inhibitory activities of
G. livingstonei extract and the isolated compounds have been eval-
uated and binding interactions between the isolated metabolites
and the target enzymes have been investigated using molecular
docking.

2. Materials and methods

2.1. General experimental procedures

Spectral data used for identification of the isolated compounds
were obtained using Bruker Avance III 400 MHz NMR machine
(Bruker AG, Switzerland) with Smart Probe and Topspin 3.1 Soft-
ware. CDCl3, acetone d6 were used as NMR solvents (Cambridge
Isotope Laboratories, Inc., (Andover, MA). For chromatography, sil-
ica gel for column chromatography technical grade, pore size 60 Å,
230–400 mesh particle size, 40–63 lm particle size (E. Merck) was
used. Thin layer chromatography (TLC) was performed using pre-
coated silica gel G60 F254 plates (20 � 20 cm) (Pharmacia Biotech
AB, Uppsala, Sweden). Analytical grade solvents were used as
mobile phase in chromatography. TLC Plates were visualized using
potable UV lamp followed by spraying with p-anisaldehyde
reagent, and heating with a heat gun.

2.2. Plant material

G. livingstonei was collected from El-Nabatate Island (Aswan,
Egypt) in June 2018 and identified by Dr. Hafeez R. Habeeb (Flora

Fig. 1. Chemical structures of compounds 1-4 isolated from G. livingstonei leaves.
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and Phytotaxonomy Research Department, Horticultural Research
Institute, Agricultural Research Centre, Egypt). A voucher specimen
(BUPD-35) was deposited in Pharmacognosy Department, Faculty
of Pharmacy, Beni-Suef University. The dried G. livingstonei leaves
(1.15 kg) were milled at room temperature and macerated with
70% ethanol (EtOH, 3x5L). Solvent evaporation was performed
under reduced pressure at 40 �C using rotary evaporator to yield
171.3 g dried crude extract that was kept at refrigerator for further
phytochemical and biological studies. The extract (161.3 g) was
fractionated by partition chromatography using a separating fun-

nel. It was suspended in water and successively fractionated using
solvents of increasing polarities to give the following extractives:
n-hexane (14.6 g), dichloromethane (DCM, 7.6 g), ethyl acetate
(EtOAc,16 g), and n-butanol saturated with water (13.5 g) (Suppl.
Fig. 1).

2.3. Phytochemical study

An aliquot of the DCM fraction (6 g) was chromatographed on
silica gel (300 g, 35 � 5 cm) and eluted with n-hexane-EtOAc in

Fig. 2. FAS inhibitory activity of compounds 1–4 and G. livingstonei extract. Data are mean ± SD, (N = 3).
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2.5% increment. Similar fractions were combined to give three sub-
fractions (D1-D2). Sub-fraction D1 (449 mg, eluted with 12.5–
22.5% EtOAc in n-hexane) was re-chromatographed twice on silica
gel with gradient elution using n-hexane-EtOAc in 1% increments
to yield compound 1 (4.4 mg). The sub-fraction D2 (490 mg, eluted
with 25–30% EtOAc in n-hexane) was re-chromatographed on sil-
ica gel CC with gradient elution using n-hexane-DCM mixtures
(100 % n-hexane then 50:50 n-hexane-DCM, and 100% DCM) to
yield compound 2 (3.9 mg). The EtOAc fraction (12 g) was chro-
matographed on a silica gel column (90 � 5 cm, 363 g) and a gra-
dient elution with DCM-MeOH mixtures with increasing polarity
(by 2.5 %) was applied. Fractions were TLC-monitored and com-
bined. The fraction eluted with 10% MeOH in DCM yielded a pure
compound 3 (52.1 mg). The sub-fraction eluted with 15% MeOH
in DCM (0.7619 g) was filtered on Sephadex LH-20 and eluted with
100% MeOH to yield compound 4 (18.7 mg). An isolation scheme is
presented in Suppl. Fig. 1. Chemical structures of isolated com-
pounds are presented in Fig. 1.

2.4. FAS inhibition assay

The inhibitory activity against FAS from chicken liver was deter-
mined as described by Jiang et al (2019). Chicken FAS shares 63%
identity with the sequence of human FAS (Tian et al., 1985). The
pure compound or extract (10–200 lg/mL) was mixed with potas-
sium phosphate buffer (100 mM), dithiothreitol (1 mM), EDTA
(1 mM), malonyl–CoA (10 lM), acetyl–CoA (3 lM), NADPH
(35 lM) and FAS (10 lg). The activity was determined at 37 �C
by monitoring the change in NADPH absorption at 340 nm. A neg-
ative control was run without the enzyme.

2.5. a-glucosidase inhibition assay

Different concentrations (0–200 lg/mL) of G. livingstonei
extract, isolated compounds and the standard inhibitor acarbose
were mixed with 100 mM phosphate buffer (pH6.8) and a-
glucosidase (maltase; Sisco, India) followed by 20 min incubation
at 37 �C. PNP-Glu (Sisco, India) was added and the obtained mix-
ture was incubated for 10 min at 37 �C. 0.1 N sodium carbonate
was used to terminate the reaction and the absorbance was deter-
mined at 410 nm (Pistia-Brueggeman and Hollingsworth 2001).

2.6. XO inhibition assay

XO inhibitory activity was determined as previously described
(Özyürek et al., 2009). Briefly, the tested material was mixed with
sodium phosphate buffer (50 mM), xanthine (0.5 mM) and XO.
After incubation for 30 min at 37 �C, perchloric acid (3.2%) was
used to stop the reaction. Equal volumes of the mixture, Cl2CuH4-
O2 (10 mM) and neocuproine (7.5 mM) were mixed with double
volume of NH4CH3CO2 (1 M) and left for 30 min. The absorbance
was determined at 450 nm.

2.7. In silico molecular docking study

The binding affinity of the isolated compounds and pharamaco-
logical inhibitors with XO, FAS and a-glucosidase was carried out
as previously reported. The DFT calculations performed in this
study were executed using Gaussian 09 software package. The geo-
metrical structures of isolated phytochemicals were optimized at
the B3LYP level of theory without constrains using the 6-311G

Fig. 3. Binding interactions of compounds 1–4 with TE domain of FAS.
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(d, p) basis set. UCSF Chimera software was employed for generat-
ing the.pdb 3D structures of ligands (Pettersen et al., 2004). Auto-
dock Tools (ADT) v1.5.6 and AutoDock Vina software packages
were used for performing the molecular docking assessment
(Trott and Vina 2010). The isolated compounds were optimized
for docking by means of ADT software. PyMOL v2.3.2 program
was used for molecular visualization, binding modes inspection
and drug-enzyme interactions analysis. The three-dimensional X-
ray crystal structures of XO and FAS were obtained from the pro-
tein data bank (PDB), where PDB ID: 3NVY was employed for XO,
two FAS domains were used, namely KS (PDB ID: 3HHD) and TE
(PDB ID: 1XKT) and a-glucosidase (PDB ID: 3A4A). The PDB struc-
tures of enzymes under investigation were optimized for docking
by solvent and nonstandard residues removal, addition of polar
hydrogens and adjusting the grid box to the most proper configu-
ration of the active site (Cheng et al., 2008, Kamel and Lamsabhi
2020).

3. Results

3.1. Phytochemical study

Fractionation of the ethanolic extract of G. livingstonei leaves
afforded compounds 1–4 (Fig. 1, Suppl. Table I and Suppl. Figs. 2-
10). The structures of the compounds were established by compar-
ison of their observed data (supplementary data) with previously
reported literature and they were identified as lupeol (1)
(Abdullahi et al., 2013), betulin (2) (Tijjani et al., 2012), podocar-

pusflavone (3) (Suárez et al., 2003), and amentoflavone (4)
(Elghondakly et al., 2020).

3.2. FAS inhibitory activity of G. livingstonei extract and the isolated
compounds

The data represented in Fig. 2 show FAS inhibition by the
extract and the isolated compounds and the IC50 values. G. living-
stonei extract and isolated compounds (1-4) exhibited inhibitory
effects against FAS with IC50 values of 26.34 ± 4.22, 41.93 ± 3.81,
27.96 ± 2.15, 24.04 ± 1.48, and 40.38 ± 3.65 lg/mL, respectively
(Fig. 2A-E).

Molecular docking simulations revealed the binding affinity of
the isolated compounds towards FAS TE (Fig. 3) and KS domains
(Fig. 4). The binding affinities of orlistat and cerulenin with FAS-
TE and FAS-KS domains, respectively, are represented in Suppl.
Fig. 11 and Suppl. Table II. The reported lowest binding energy
were �9.9, �10.4, �10.3 and �8.7 kcal/mol with FAS/TE and
�9.4, �9.6, �8.7 and �7.3 kcal/mol with FAS/KS for compounds
1, 2, 3, and 4, respectively (Table 1). The residues involved in polar
bonding and hydrophobic interactions are summarized in Table 1.

3.3. a-glucosidase inhibitory activity of G. livingstonei extract and the
isolated compounds

The inhibitory activity of the plant extract and isolated com-
pounds on a-glucosidase has been explored and all exhibited inhi-
bitory activity (Fig. 5A-E). Betulin (2) showed the highest activity

Fig. 4. Binding interactions of compounds 1–4 with KS domain of FAS.
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with IC50 value of 38.96 ± 5.57 lg/mL followed by lupeol (1) and
amentoflavone (4) with IC50 values of 43.15 ± 4.08 and 49.96 ± 1.
83 lg/mL, respectively, as compared to that of acarbose (29.72 ± 3
.11 lg/mL; Fig. 5F). In silico investigation (Figs. 6, 7 and Suppl.
Fig. 12, and Table 2 and Suppl. Table II) revealed the binding affin-
ity of the isolated compounds and acarbose towards a-glucosidase.
Compounds 1, 2, 3 and 4 exhibited binding energy values of �9.3,
�8.9, �10.8, and �10.3 kcal/mol, respectively and all interact
through polar and hydrophobic interactions (Table 2).

3.4. XO inhibition activity of G. livingstonei extract and its isolated
compounds

Investigation of XO inhibitory activity of the isolated com-
pounds (Fig. 8A-D) and the extract (Fig. 8E) revealed IC50 values
of compound 2 (30.94 ± 3.61 lg/ml) and the extract (33.05 ± 2.5
1 lg/ml) were the lowest and allopurinol (Fig. 8F) exhibited an
IC50 value of 9.04 ± 0.64 lg/ml. The results of our molecular dock-
ing simulations revealed the activities of the compounds and allop-

Fig. 5. a-glucosidase inhibitory activity of compounds 1–4, G. livingstonei extract and acarbose. Data are mean ± SD, (N = 3).
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urinol against XO (Figs. 9,10 and Suppl. Fig. 12). Interestingly, all
compounds were shown to dock into the main active site of XO
with polar interactions with Tyr592, His741, Phe742 and Gln
1194 only with compounds 1, 2 and 4 (Table 3).

4. Discussion

G. livingstonei is traditionally used for the treatment of respira-
tory problems and tuberculosis due to its rich content of phytocon-
stituents (Kaikabo and Eloff 2011). The ability of G. livingstonei

extract as well as isolated compounds (1–4) to inhibit FAS, a-
glucosidase, and XO enzymes was evaluated in this study. A visual
inspection of the interactions between isolated secondary metabo-
lites and the three enzymes has been performed through computa-
tional studies.

FAS is a critical enzyme in de novo lipogenesis (Jiang et al.,
2010), and previous studies proved that FAS inhibition is involved
in controlling appetite and body weight (Loftus et al., 2000). More-
over, it was observed that FAS is over-expressed in various types of
cancer (Zhang et al., 2016). Consequently, it emerged as a potential
target for anticancer and body weight control drugs. G. cambogia

Fig. 6. Binding interactions of compounds 1 and 2 with a-glucosidase.
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extract has been previously proved to inhibit FAS (Kim et al., 2013).
In this context, the isolated secondary metabolites from G. man-
gostana exhibited inhibitory effects on FAS (Jiang et al., 2010,
Liang et al., 2018). G. livingstonei extract and the isolated com-
pounds (1-4) were evaluated for FAS inhibition. To figure out the
modulatory influences of isolated phytochemicals on FAS, we car-
ried out molecular docking assessment to estimate their binding
modes. Our compounds were shown to invade an active binding
pocket on the surface of TE domain of FAS. Only compound 2
showed polar interactions with the FAS/TE domain active site resi-
dues Ser2221, Gln2374 and Arg2482. Meanwhile, all the remaining
compounds were encased in the active site surrounded by dense
network of hydrophobic residues. The binding energies ranged

from �8.7 to �10.4 kcal/mol, indicating a high probability for
forming a stable drug-enzyme complex. In addition, many pheny-
lalanine residues were observed in these hydrophobic interactions.
Such residues can exhibit thermodynamically favorable p-p inter-
actions and can contribute successfully to the binding of the com-
pounds with FAS/TE. The in silico docking model of the isolated
compounds with the KS domain of FAS was built by molecular
docking. The isolated phytochemicals were in the main binding
site on the enzyme surface with large number of polar and
hydrophobic interactions. Compounds 1, 2 and 4 formed hydrogen
bonds with the active site residues Arg224, Glu333, Thr126,
Val844, Ala846, Asp849, Trp836 and His838. Also, many hydropho-
bic residues were involved in this drug-enzyme interaction, and

Fig. 7. Binding interactions of compounds 3 and 4 with a-glucosidase.

A.M. Abdul-Rahman, A. Elwekeel, R.S. Alruhaimi et al. Saudi Pharmaceutical Journal 31 (2023) 101762

8



the binding energies for the formed complexes ranged from �7.3
to �9.6 kcal/mol. These outputs lead us to the conclusion that
stable complexes are formed between the isolated compounds
and FAS/KS. Similarly, phenylalanine residues involved in these
complexes hydrophobic interactions could exhibit the favorable
p-p interactions results in these complexes energy minimization.
Given its high expression levels in adipocytes and cancer cells
(Bauerschlag et al., 2015), the inhibitory activity of G. livingstonei
phytoconstituents towards FAS could be beneficial for the develop-
ment of new anti-cancer and anti-obesity agents.

Inhibition of a-glucosidase is of value for reducing postprandial
hyperglycemia and the inhibitors of this enzyme modestly
decrease glycated hemoglobin. Various Garcinia species extract
and secondary metabolites can inhibit a-glucosidase (Ngoupayo
et al., 2008, Ryu et al., 2011, Fouotsa et al., 2012, Raksat et al.,
2019, Nguyen et al., 2022). The inhibitory activity of the plant
extract and isolated compounds on a-glucosidase have been
explored and all exhibited inhibitory activity. Previous studies on
lupeol and betulin and betulinic acid mixture reported good a-
amylase and a-glucosidase inhibitory activities, and another work

Fig. 8. XO inhibitory activity of compounds 1–4, G. livingstonei extract and allopurinol. Data are mean ± SD, (N = 3).
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on amentoflavone showed its potent inhibitory activity against a-
glucosidase. (Rathinavel et al., 2021, Yuca et al., 2022, Li et al.,
2023). Molecular docking analysis was performed to explore the
binding modes of our isolated phytochemicals against a-
glucosidase. The three-dimensional crystal structure of a-
glucosidase is still under dispute. Therefore, the structure of the
isomaltose from S. cerevisiae was used because it exhibits 84% sim-
ilarity to S. cerevisiae a-glucosidase. Our docking model was vali-
dated by re-docking the native inhibitor to the binding site of the
protein. The compounds showed good binding affinities (-8.9 to
�10.8 kcal/mol), reflecting the compatibility of isolated com-

pounds. Interestingly, all isolated compounds occupied the same
binding pocket of the protein encased by dense network of
hydrophobic interacting residues. Also, two polar bonds were
detected for each tested ligand. These outputs led to the conclusion
that the isolated phytochemicals displayed inhibitory activity
against the target protein. Previous in silico testing for lupeol
showed excellent binding affinities to a-glucosidase and a-
amylase (Rathinavel et al., 2021).

The enzymatic activity of XO results in the production of uric
acid through the metabolism of purine nucleotides (Wang et al.,
2016). Inhibition of XO has been connected to weight gain suppres-

Fig. 9. Binding interactions of compounds 1 and 2 with XO.
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sion via induction of salvage pathway (Nakamura et al., 2021). G.
mangostana extract has been reported to inhibit XO (Kosem et al.,
2007), and various XO inhibitors were isolated from Garcinia spe-
cies (Lin et al., 2011, Zhu et al., 2014). The ability of G. livingstonei
extract and the isolated compounds to inhibit XO was tested and
the results revealed that betulin (2) and the extract were the most
active with IC50 values of 30.94 and 33.05 lg/mL, respectively.
Lupeol showed inhibitory activity with IC50 value of 46.35 lg/mL

compared to the positive control, allopurinol (9.04 lg/mL). The
results of molecular docking simulations revealed the activities
of the compounds against XO where all compounds were shown
to dock into the main active site with polar interactions with
Tyr592, His741, Phe742 and Gln 1194 only with compounds 1, 2
and 4. The common residues included in the polar interaction of
this complex reflect the compatibility of these compounds to the
main binding pocket of XO. This inference is mainly explained by

Fig. 10. Binding interactions of compounds 3 and 4 with XO.
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the relatively low binding energies obtained for these complexes (-
8.2 to �9.8 kcal/mol). These low binding affinities suggest the
potency of isolated phytochemicals as XO inhibitors. All com-
pounds occupied the same binding cavity with many common
amino acid residues involved in the drug-enzyme hydrophobic
interactions.

5. Conclusion

The inhibitory potential of G. livingstonei leaves extract and iso-
lated secondary metabolites against FAS, XO and a-glucosidase
was studied via in vitro testing and molecular docking simulations.
Both the extract and compounds exhibited inhibitory activities
against the studied enzymes. Podocarpusflavone A showed the

strongest FAS inhibition activity followed by betulin. Inhibition of
a-glucosidase and XO was best performed by lupeol. The in silico
docking studies revealed interactions and remarkable binding
affinities between the isolated metabolites and target enzymes
which may illustrate their inhibition efficacy. Therefore, G. living-
stonei is rich in phytochemicals with inhibitory activities against
enzymes involved in metabolism and oxidative stress. However,
in vivo studies are needed to explore the efficacy of this plant
and its secondary metabolites in disease models of obesity and
other diseases associated with oxidative stress.
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