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Fixed Point Algorithms for Estimating Power Means
of Positive Definite Matrices

Marco Congedo, Alexandre Barachant, and Ehsan Kharati Koopaei

Abstract—Estimating means of data points lying on the Rie-
mannian manifold of symmetric positive-definite (SPD) matrices
has proved of great utility in applications requiring interpolation,
extrapolation, smoothing, signal detection, and classification. The
power means of SPD matrices with exponent p in the interval [–1, 1]
interpolate in between the Harmonic mean (p = –1) and the Arith-
metic mean (p = 1), while the Geometric (Cartan/Karcher) mean,
which is the one currently employed in most applications, corre-
sponds to their limit evaluated at 0. In this paper, we treat the prob-
lem of estimating power means along the continuum p � (–1, 1)
given noisy observed measurement. We provide a general fixed
point algorithm (MPM) and we show that its convergence rate for
p = ±0.5 deteriorates very little with the number and dimension
of points given as input. Along the whole continuum, MPM is also
robust with respect to the dispersion of the points on the manifold
(noise), much more than the gradient descent algorithm usually
employed to estimate the geometric mean. Thus, MPM is an effi-
cient algorithm for the whole family of power means, including the
geometric mean, which by MPM can be approximated with a de-
sired precision by interpolating two solutions obtained with a small
±p value. We also present an approximated version of the MPM
algorithm with very low computational complexity for the special
case p = ±½. Finally, we show the appeal of power means through
the classification of brain–computer interface event-related poten-
tials data.

Index Terms—Brain-computer interface, geometric mean, high
dimension, power means, Riemannian manifold, symmetric
positive-definite matrix.

I. INTRODUCTION

THE study of means (centers of mass) for a set of symmet-
ric positive definite (SPD) matrices has recently attracted

much attention, driven by practical problems in radar data pro-
cessing, image and speech processing, computer vision, shape
and movement analysis, medical imaging (especially diffusion
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magnetic resonance imaging and brain-computer interface), sen-
sor networks, elasticity, numerical analysis and machine learn-
ing (e.g., [1]–[13]). In many applications the observed data can
be conveniently summarized by SPD matrices, for example,
some form of their covariance matrix in the time, frequency or
time-frequency domain, or autocorrelation matrices. In others,
SPD matrices arise naturally as kernels, tensors (or slice of),
density matrices, elements of a search space, etc. Averaging
such SPD matrices is a ubiquitous task. In signal processing
we find it in a wide variety of data-driven algorithms allow-
ing spatial filters, blind source separation, beamformers and
inverse solutions. While robust estimation of covariance matri-
ces and related quantities is a long-standing topic of research,
only recently an information/differential geometry perspective
has been considered [14]–[22].
Once observations are represented as SPD matrices, they may
be treated as points on a smooth Riemannian manifold in which
the fundamental geometrical notion of distance between two
points and the center of mass among a number of points are
naturally defined [14]. In turn, these notions allow useful opera-
tions such as interpolation, smoothing, filtering, approximation,
averaging, signal detection and classification. In classification
problems a simple Riemannian classifier based on a minimum
distance to mean (MDM) procedure [3] has been tested with
success on electroencephalographic data, in several kinds of
brain-computer interfaces [3]–[6] and in the analysis of sleep
stages [10], [11], as well as on motion capture data for the
classification of body movements [13]. A similar method has
been used for clustering in the context of video-based face and
scene recognition [7] and in radar detection [2]. These examples
demonstrate that simple machine learning algorithms, which are
known to allow poor performance using the Euclidean metric,
can be easily translated into equivalent Riemannian classifiers
using an appropriate metric, obtaining excellent performance.
Among the several means one may define from an information
geometry point of view, so far the geometric mean (sometimes
referred to as Karcher, Cartan or Fréchet mean) has been the
most studied and the most used in practical applications. It is
the natural definition of mean when the Fisher-Rao metric is
applied to multivariate Gaussian distributions [20], [21], but
also arises naturally from a pure geometrical and algebraic per-
spective without making assumptions on the data distribution
[14]. It so happens that the geometric mean satisfies a number
of desirable invariances, including congruence invariance, self-
duality, joint homogeneity and the determinant identity [23].
The simultaneous verification of all these properties is hard to



find for means based on other metrics, such as the arithmetic,
harmonic and log-Euclidean mean, thus the geometric mean of
SPD matrices is not just important in practice, but a fundamental
mathematical object per se.
For positive numbers the arithmetic, geometric and harmonic
mean are all members of the family of power means, also known
as Hölder or generalized mean. Given a set of K positive num-
bers {x1 , . . . xK} and K associated weights {w1 , . . . , wK} sat-
isfying Σkwk = 1, the w-weighted power mean of order p, g,
of {x1 , . . . xK} is

g =

(∑
k

wkx
p
k

)1/p

. (1)

Power means interpolate continuously in between the limit
p→ −∞ (the minimum of the set) and the limit p→ +∞ (the
maximum of the set), passing by p = −1 (harmonic mean) and
p = 1 (arithmetic mean), while the limit p→ 0 from both sides
allows the geometric mean. This generality of power means is
appealing from a signal processing perspective; in a typical engi-
neering scenario the sensor measurement is affected by additive
noise and varying p one can find an optimal mean depending on
the signal-to-noise-ratio (SNR), as we will show.
Recently [24] extended the concept of power means of positive
numbers to SPD matrices for the continuum p � [−1, 1], with
the case p = −1 being the matrix harmonic mean, p = 1 the
matrix arithmetic mean and the limit to zero from both sides
allowing the matrix geometric mean we have discussed (see also
[25]–[27]). So far power means of SPD matrices have not been
applied in signal processing. Also, only a “naive” fixed-point
algorithm has been proposed for their estimation [24] and its
convergence behavior is unsatisfactory. In this article we report
a fixed-point algorithm for computing power means of SPD
matrices along the interval p ∈ (−1, 1)\{0}. This algorithm
has been recently presented in [28] and therein we have named
it MPM (multiplicative power means). We then demonstrate a
procedure to use MPM for approximating the geometric mean
with a desired precision. By means of simulation we show that
the MPM displays better convergence properties as compared
to alternatives used for the geometric mean, with equal or lesser
computational complexity. We also show that it offers a better
estimation of the geometric mean as compared to the standard
gradient descent algorithm. Then, we show the advantage of
considering the whole family of power means, instead of the sole
geometric mean as it is customary, in classification problems,
by analyzing a data set of 38 subjects related to brain-computer
interface event-related potentials. Finally, in the appendix we
describe an approximation of the MPM algorithm with very
low computational complexity. This approximation is applicable
only for values of p = ±1/2 and is meant for applications when
the computational power and/or battery life is of importance,
like in mobile devices.

A. The Manifold of Symmetric Positive-Definite Matrices

In differential geometry, a smooth manifold is a topological
space that is locally similar to the Euclidean space and has a

Fig. 1. Schematic representation of the SPD manifold, the geometric mean
G of two points and the tangent space at G. Consider two points (e.g., two
covariance matrices) C1 and C2 on M. The geometric mean of these points is
the midpoint on the geodesic connecting C1 and C2 , i.e., it minimizes the sum of
the two squared distances δ2 (C1 , G) + δ2 (C2 , G). Now construct the tangent
space TG M at G. There exists one and only one tangent vector ζ1 (respectively
ζ2 ) departing from G and arriving at the projection of C1 (respectively C2 ) from
the manifold onto the tangent space; we see that the geodesics on M through
G are transformed into straight lines in the tangent space and that therein
distances are mapped logarithmically; the map from the manifold (symmetric
positive definite matrices S++ ) to the tangent space (symmetric matrices S) is
of logarithmic nature. The inverse map from the tangent space to the manifold
is of exponential nature. See [14] for details on these maps and [3] for their use
in classification problems.

globally defined differential structure. A smooth Riemannian
manifold M is equipped with an inner product on the tangent
space defined at each point and varying smoothly from point
to point. The tangent space TG M at point G is the vector space
containing the tangent vectors to all curves on M passing through
G. For the manifold M of SPD matrices S++ , this is the space S
of symmetric matrices (Fig. 1). For any two tangent vectors ζ1
and ζ2 , we are concerned here with the inner product given by
the Fisher-Rao metric at any base-point G [14]:

〈ζ1 , ζ2〉G = tr
(
G−1ζ1G

−1ζ2
)
. (2)

B. The Geodesic

The SPD manifold has non-positive curvature and is complete;
for any two points C1 and C2 on M, a unique path on M of
minimal length (at constant velocity) connecting the two points
always exists. The path is named the geodesic and the points
along it have analytical expressions given by

C1#tC2 = C
1/2
1

(
C
−1/2
1 C2C

−1/2
1

)t
C

1/2
1 , t ∈ [0, 1] , (3)

with t the arc-length parameter [14]. With t = 0 we are at C1 ,
with t = 1 we are at C2 and with t = 1/2 we are at the geometric
mean (or center of mass) of the two points (Fig. 1). As a spe-
cial case we note I#tC = C t and C#tI = C

1/2 C −t C
1/2 =

C 1−t . Geodesic equation (3) verifies C1#tC2 = C2#1−tC1
and (C1#tC2)−1 = C−1

1 #tC
−1
2 . The points along the

geodesic can be understood as means of C1 and C2 weighted
by t according to the Riemannian metric, in analogy with the
weighted mean according to the Euclidean metric given by
(1− t)C1 + tC2 , which still results in a SPD matrix, but greater
than C1#tC2 in the Loewner order sense [27].



C. The Distance

Given two matrices (points) C1 and C2 of dimension N·N on
M, their Riemannian distance is the length of the geodesic (3)
connecting them (Fig. 1). It is given by [14]

δ (C1 , C2) =
∥∥∥Log

(
C
−1/2
1 C2C

−1/2
1

)∥∥∥
F

=
√∑

n
log2λn ,

(4)

where λ1 , . . . , λN are the N eigenvalues of matrix C
−1/2
1 C2C

−1/2
1

or of the similar matrix C−1
1 C2 . This distance has a remarkable

number of properties, some of which are listed in [23]. Besides
the obvious symmetry and positivity, particularly useful in signal
processing are the following invariance properties, the first of
which is true for any invertible matrix B:

Congruence δ
(
BC1B

T , BC2B
T
)

= δ (C1 , C2) , (5)

Self−Duality δ
(
C−1

1 , C−1
2
)

= δ (C1 , C2) , (6)

D. Means of a Matrix Set: Variational Definition

Let C = {C1 , . . . , CK} be a set of K SPD matrices and w =
{w1 , . . . , wK} a set of associated K positive weights verifying
Σkwk = 1. Typically, in signal processing the elements of C are
noisy data points (recordings, observations, etc.) or quantities
derived thereof. Following Fréchet’s variational approach, the
center of mass G of set C given a distance function d(�,�) is
the point G minimizing the variance (dispersion) of points,
that is, Σkwkd

2(G, Ck). This definition applies in general. For
instance, the w-weighted Arithmetic and Harmonic Mean are
defined, respectively, as

GA (w;C) = arg min
G

∑
k

wk ‖Ck −G‖2F =
∑

k

wkCk , (7)

GH (w;C) = arg min
G

∑
k

wk
∥∥C−1

k −G−1
∥∥2

F

=

(∑
k

wkC
−1
k

)−1

. (8)

E. The Geometric Mean of a Matrix Set

In M the w-weighted Geometric Mean GG (w; C) is the point
realizing the minimum of Σkwkδ

2(Ck , G), where the Rieman-
nian distance function δ(·, ·) acting on M has been defined in
(4). The geometric mean is the unique point G on M satisfying
non-linear matrix equation [18]∑

k

wkLog
(
G
−1/2CkG

−1/2
)

= 0. (9)

In general, it has closed-form solution only for K = 2, in
which case it is indeed equal to C1#1/2 C2 (indicated shortly
as C1#C2)-see (3) and Fig. 1 - furthermore, for K = 2 it is the
unique solution to Riccati equation (C1#C2)C−1

2 (C1#C2) =
C1 [2] and is also equal to B−1D

1/2
1 D

1/2
2 B−T for whatever joint

diagonalizer B of C1 and C2 , i.e., for whatever matrix B sat-
isfying BC1B

T = D1 and BC2B
T = D2 , with D1 , D2 in-

vertible diagonal matrices [23]. The geometric mean enjoys all

10 properties of means postulated in the seminal work [29]. It
also enjoys the congruence invariance and self-duality, inher-
ited directly from the corresponding properties (5) and (6) of its
associated distance function:

GG
(
w;
{
BC1B

T , . . . , BCKBT
})

= BGG (w; {C1 , . . . , CK}) BT , (10)

G−1
G

(
w;
{
C−1

1 , . . . , C−1
K

})
= GG (w; {C1 , . . . , CK}) . (11)

F. Power Means

Given again C = {C1 , . . . , CK} and w = {w1 , . . . , wK}with
Σkwk = 1, we can generalize to SPD matrices the power mean
of real numbers in the continuum p ∈ [−1, 1] by the one-
parameter family of matrix power means GP(w;C; p) given
by the unique SPD solution G of non-linear matrix equation
[24]–[26]

G =
∑

k

(wkG#pCk), (12)

where for any pair (G, Ck ) in M, G #pCk with p ∈ [0, 1] is
the mean of G and Ck weighted by p (3). Since G#pCk =
Ck#1−pG (see Section I.B) we see that a power mean is
the arithmetic mean of the input matrices dragged along the
geodesic toward the desired mean by an arc-length equal to
1 − p. When the input matrices Ck all pair-wise commute, it
has been proved in [24] (Property 1, p. 1502) that their power
mean is

G =

(∑
k

wkC
p
k

)1/p

, (13)

which is the straightforward extension of (1) to SPD matrices. As
usual, such straightforward extensions work well in commuting
algebra, but not in general, thus a general solution to (12) must
be found by iterative algorithms. In the sequel, we will be using
the following definition of power means Gp covering the whole
interval p ∈ [−1, 1]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

GP (w;C; p = 1) = GA (w;C) ,

GP (w;C; p ∈ (0, 1)) =
∑

k wk (GP#pCk) ,

GP (w;C; p =0) = GG (w,C) ,

GP (w;C; p ∈ (−1, 0)) = G−1
P

(
w;C−1 ;−p

)
,

GP (w;C; p = −1) = GH (w;C)

, (14)

where C−1 = {C−1
1 , . . . , C−1

K , }GG (w;C) is the geometric
mean of Section II.E and GA (w;C), GH (w;C) are the arith-
metic mean (7) and the harmonic mean (8), respectively.
GP (w;C; p) is named the w-weighted power mean of order
p [24]–[26]. As per (14), the pair of power means obtained at
opposite values of p around zero are the dual of each other;
for a negative value of p the mean is defined as the inverse of
the mean for –p as applied on the inverted input matrices C −1 .
As for positive numbers, power means of SPD matrices so de-
fined interpolate continuously in between the harmonic mean
(p = −1), the geometric mean (p = 0) and the arithmetic mean



(p = 1). Thus, the power means family encompasses and gen-
eralizes all Pythagorean means we have encountered so far. All
of them enjoy the congruence invariance as the geometric mean
does (10), but their duality, expressed in the fourth line of (14),
coincides with the self-duality property (11) only for p = 0. The
numerous properties of the power means can be found in [24]
and a recent extension of this already quite general mathematical
object has been proposed in [27].

II. ALGORITHMS FOR POWER MEANS

A. Motivation

We sought a general algorithm for computing the w-weighted
power mean of order p, with p ∈ (−1, 1)\{0}. We are also
interested in an effective algorithm for estimating the geomet-
ric mean, the third line in (14). The most popular algorithm
for computing the geometric mean is a Riemannian gradient
descent flow with fixed step size [30]–[31]. The convergence
rate of this algorithm deteriorates rapidly as the SNR decreases
(high dispersion of points on the manifold). The same is true
for the method based on approximate joint diagonalization in
[23]. Second order methods have complexity growing very fast
with the size of the input matrices, thus they are little useful
in practical applications [31]. The algorithm proposed in [32]
has high complexity per iteration and slow convergence rate.
For a review of available algorithms for estimating the geomet-
ric mean see [23], [31]. Our algorithm does not need to make
use of Riemannian geometry optimization in the manifold of
SPD matrices, with consequent conceptual and computational
advantage. For instance, we will be able to derive a fast approx-
imation based exclusively on triangular matrix algebra and on
the Cholesky decomposition.

B. A General Multiplicative Fixed-Point Algorithm

Hereafter it will be convenient to lighten notation; let us denote
the weighted power mean of order p as P, which by (14) is
equal to GP (w;C; p) if p ∈ (0, 1) or to (GP (w;C−1 ;−p))−1

if p ∈ (−1, 0). This way we will need to handle only one ex-
pression for whatever value of p ∈ (−1, 1){0}, such as

P ∗ = GP (w;C∗; |p|) , (15)

where |p| = abs(p) and we define the dual operator ∗ = sgn(p).
Definition (15) is here introduced so as to state an algorithm with
identical convergence behavior for all pairs of values ±p for
|p| � (0, 1). Therefore we will show results only for p positive.
As initialization we take the closed form solution of the mean
in the case when all matrices in set C all pair-wise commute,
given by (13).
Let us now turn to the iterations. We write out (15) from defini-
tion (12) and using (3) to obtain

P ∗ = P
∗/2
(∑

k

wk

(
P−
∗/2C∗kP

−∗/2
)|p|)

P
∗/2 . (16)

In [24] the authors have shown that the map defined by
f(P ∗) = GP(w;C∗; |p|) is a strict contraction for the Thomp-
son metric with the least contraction coefficient less than or equal

to 1-|p| and as such has a unique SPD fixed point. Numerical
experiments show that iterating expression (16) as it is (here-
after referred to as “naive fixed-point”) results in a rather slow
convergence rate, maximal for |p| = 1/2 , but slower and slower
as |p| gets closer to 0 or to 1. In order to hasten convergence we
design a multiplicative algorithm as follows: post-multiplying
both sides of (16) by P−∗/2 and taking the inverse at both sides
we obtain

P−
∗/2 = H−1P−

∗/2 , (17)

where

H =
∑

k

wk

(
P−
∗/2C∗kP

−∗/2
)|p|

. (18)

From (16) we see that upon convergence H = I. H here plays
the role of the origin in the SPD manifold M for data linearly
transformed by P−∗/2 . In particular, the identity matrix I is the
point of symmetry in M corresponding to 0 in the Euclidean
space due to the logarithmic map; as P−1/2 is a whitening
matrix for the arithmetic mean (p = 1), so P−∗/2 is a whitening
matrix for the whole family of power means. We wish to proceed
by multiplicative updates according to (17). Rather than to P ∗

itself, we thus seek an algorithm converging to P−∗/2 , which is
its inverse square root for ∗ = 1, i.e., when p � (0, 1] and its
square root for ∗ = −1, i.e., when p � [−1, 0). The numerical
stability of fixed-point iterates (17) is ensured by the fact that
H converges toward I. Moreover, using our update rule any
update matrix with form H−ϕ in (17) is equivalent to H−1 upon
convergence. We have observed that replacing H−1 by H−ϕ

in the update rule (17) does not alter the convergence to the
fixed point. Nonetheless, the value of exponent ϕ impacts the
convergence rate. In practice, using an optimal value of ϕ leads
to a significantly faster convergence as compared to the one
achieved by setting ϕ = 1. This holds true for power means
in the whole interval p ∈ (−1, 1)\{0}. Therefore, we will use
iterate

P−
∗/2 = H−ϕP−

∗/2 . (19)

Interestingly, optimal convergence speed is observed taking ϕ
in an interval whose extremes vary proportionally to |p|−1 . An
heuristic rule that has proven adequate in intensive experiments
using both real and simulated data is

ϕ = 1
2 ε−1/|p|, ε ∈ [1, 2] , (20)

where ε is a constant eccentricity parameter for hyperbolas (20)
(Fig. 2).
The exponent−ϕ in (19) acts by retracting the jumps of the fixed
point iterations: since the fixed point is reached at H = I, and ϕ
is always positive in (20), H−ϕ = H #−ϕ I = I #1+ϕ H (see
Section I.B) is a move over the geodesic from I to H (i.e., in the
direction opposite to convergence) retracting H by a distance
equal to ϕ times the distance between I and H (here ϕ is the arc-
length parameter of Eq. (3)). The retraction is maximal for the
unit hyperbola (ε = 1) and minimal for ε = 2. By increasing ε
toward 2 we obtain faster convergence in general, up to a certain
value, which according to our observations mainly depends on
the signal to noise ratio. In this study we take ε as 4/3 and we



Fig. 2. The ϕ function of |p| (20) comprises a boomerang-shaped area enclosed
by two hyperbolas: the upper limit is the unit hyperbola (ε = 1) and the other
hyperbola obtained for ε = 2 is the lower limit. This area delimits an acceptable
range of ϕ values for any given |p|.

keep it fixed in all analyses; this value has proven nearly optimal
on the average of many combinations of SNR, input matrix size
and dimension we have tested. The MPM algorithm in algebraic
pseudo-code follows:

Algorithm: MPM (Multiplicative Power Means).

INPUT: p ∈ (−1, 1)\{0}, K positive weights w = w1 ,
. . . ,wK such that Σkwk = 1 and K N�N SPD matrices
C ∗ = {C∗1 , . . . , C∗K}, with ∗= sgn(p).
OUTPUT: P, the w-weighted Power Mean of order p.
Initialize X as the principal square root inverse of (13) if
p � (0, 1] or as its principal square root if p � [−1, 0).
Set ζ equal to a small floating precision number (e.g., 10−10)
Set ϕ = 0.375/|p|

REPEAT

H ←
∑

k

[
wk(XC∗kX

T )
|p|]

X ← H−ϕX

UNTIL 1√
N
‖H − I‖F < ζ

RETURN P =

{
X−1X−T if p ∈ ( 0, 1]

XT X if p ∈ [−1, 0)

}

C. Geometric Mean Approximation by Power Means

As an approximation of the geometric mean of Section I.E we
consider the midpoint of geodesic (3) joining a pair of power
means obtained by MPM at two small values ±p (in this arti-
cle we will use p = ±0.01). Using this procedure we aim at
improving current estimates of the geometric mean using the
MPM algorithm.

D. A Fast Approximation

We are also interested in reducing the complexity per iteration of
the MPM algorithm. This may be important when the computa-

tional complexity and/or the energy consumption are of interest,
like for example in portable devices. An approximated solution
is proposed for values of p =±½ and is detailed in the appendix.

III. STUDIES WITH SIMULATED DATA

A. Simulated Data Model

In many engineering applications, the matrix condition number
of the SPD matrices summarizing the data (observations, record-
ings, . . . ) tends to be positively correlated with the number of
sensors. Also, the dispersion in the manifold of the matrices is
proportional to the noise level. The following generative model
for input data matrices {C1 , . . . , CK} of size N·N is able to
reproduce these properties:

Ck = UDkU
T + ν

(
VkEkV

T
k
)

+ αI, (21)

where
- the signal part is given by UDkU

T , where U is a ma-
trix with elements drawn at random at each simulation
from a uniform distribution in [−1, 1] and then normal-
ized so as to have columns with unit norm and Dk are K
diagonal matrices with diagonal elements dk,n randomly
drawn at each simulation from a chi-squared random vari-
able divided by its degree of freedom and multiplied by
1/2n . So, the expectation of each element is 1/2n , where
n ∈ {1, . . . ,N} is the index of the N diagonal elements,
thus forming elements of a well-known geometrical series
absolutely converging to 1. The elements of the series rep-
resent the energy of N source processes, thus their sum is
supposed finite (e.g., N brain dipole source processes with
finite total energy).

- The uncorrelated noise part is given by α I , where I is the
identity matrix and α here is taken as 10−6 ;

- The structured noise part is given by VkEkV
T
k , where the

Vk matrices are generated as U above, the Ek matrices are
generated as Dk above and ν is a constant controlling the
SNR of the generated points (21) through

SNR =
tr
(∑

k UDkU
T
)

ν tr
(∑

k

(
VkEkV T

k + αI
)) . (22)

B. Simulation

In the ensuing simulations we study relevant outcome parame-
ters as a function of the SNR, which is inversely proportional
to noise level as per (22), as well as a function of the size (N)
and number (K) of input matrices. We compare the gradient
descent algorithm for estimating the geometric mean (GDGM:
Section II.A), the naive fixed point algorithm for power means
given in [24] (see (16) in Section II.B) and the MPM algorithm
here presented, the latter for several values of p. In comparing
the convergence rate of several algorithms the stopping criterion
should be chosen identical for all of them: the relative error of
matrix P with respect to a reference matrix Pref is a dimension-
less measure defined as [35]:

‖P − Pref ‖2F
/
‖Pref ‖2F . (23)



Fig. 3. Typical convergence behavior (on abscissa the number of iterations
and on the ordinate the convergence as defined in (24)) on simulated data for the
gradient descent algorithm for estimating the geometric mean (GDGM), naive
fixed point power mean with p = 0.5 and the MDM algorithm with p = {0.5,
0.001}, for N = 20 (dimension of input matrices), K = 100 (number of input
matrices) and SNR = {100, 10, 1, 0.1} (22).

As a stopping criterion, considering two successive iterations
P(i − 1) and P(i), we use

1
N

∥∥∥P−1
(i) P(i−1) − I

∥∥∥2

F
, (24)

which magnitude does not depend on the size nor on the norm
of the matrices.
We will also use simulated data to study the estimation of the
geometric mean obtained by the gradient descent algorithm
and by the procedure that uses the MPM algorithm as per
Section II.C. We are interested in the relative error (23) of
these estimations with respect to the ‘true’ geometric mean:
according to our data generating model (22), the true geometric
mean is the geometric mean of the signal part given by matrices
UDkU

T , where Dk , k = {1, . . . ,K} are diagonal matrices.
Because of the congruence invariance of the geometric mean, the
true geometric mean is GG (w; {UD1U

T , . . . , UDKUT }) =
UGG (w; {D1 , . . . , DK})UT and has algebraic solution, since
the geometric mean of diagonal matrices is their Log-Euclidean
mean [1], i.e.,

GG (w; {D1 , . . . , DK}) = Exp
∑

k

wkLog (Dk). (25)

C. Results

Figure 3 shows the typical convergence behavior for the gradient
descent algorithm for computing the geometric mean (GDGM),
the naive algorithm with p = 0.5 and the MPM algorithm
(p = 0.5 and p = 0.001), for K = 100 input SPD matrices
of dimension N = 20, and SNR = {100, 10, 1, 0.1}. This exam-
ple illustrates the typical observed trend: the MPM algorithm
is consistently faster as compared to both the naive and gradi-
ent descent algorithm. Moreover, it converges also in situations
when the gradient descent and the naive algorithm do not (see
also Fig. 4).
Figure 4 analyzes the convergence behavior of the naive fixed
point, the MPM fixed point and GDGM. We show there the main

Fig. 4. Main effects average (bars) and sd (lines) number of iterations obtained
across 50 repetitions for N = {10, 25, 50}, K = {10, 100, 500} and SNR =
{100, 1, 0.01} for the MPM algorithm with p = {0.5, 0.25, 0.01}, the naive
algorithm with p = {0.5, 0.01} and the gradient descent algorithm for estimating
the geometric mean (GDGM).

Fig. 5. Relative Error to the true geometric mean obtained with the GDGM
algorithm, MPM with p = 0.1, MPM with p = 0.01 and as the midpoint
of the geodesic joining the estimations obtained by MPM with p = ±0.01
(Section II.C). Left: N = 20, K = 5. Right: N = 20, K = 80. In both plots the
horizontal axis is the SNR sampling the range 10−3 , . . . , 103 .

effects (bars) and their standard deviation (sd: lines) across 50
simulations of N = {10, 25, 50}, K = {10, 100, 500} and SNR
= {100, 1, 0.01} on the number of iterations. “Main effects”
means that for each level of N, K and SNR the average and sd
of the number of iterations are computed across all levels of
the other two variables, as in a classical analysis of variance
(ANOVA). We see that the number of iterations required by
the MPM algorithm is always smaller as compared to the naive
algorithm and that the naive algorithm converges very slow or
does not converge at all for p = 0.01 (the maximum number of
iterations allowed was fixed to 50 for all algorithms).
Figure 5 shows the relative error to the true geometric mean of
the GDGM algorithm, MPM with p = 0.1, 0.01 and of the middle
point of the geodesic joining the two MPM estimations obtained
with p ± 0.01 (see Section II.C), for several SNR in the range
SNR = 10−3 , . . . , 103 , N = 20, and K = 5 (left) or K = 80
(right). We see that for negative SNR values (more noise than
signal) all MPM-based estimations are closer to the true geomet-
ric mean as compared to the estimation offered by the gradient
descent algorithm and that for all SNR values the midpoint of
the geodesic joining the MPM estimations obtained with p ±
0.01 is as good as the best competitor, or better. Considering this



Fig. 6. Main effects across 50 simulations of N = {5, 10, 20, 50}, K = {25,
50, 100} and SNR = {0.1, 1, 101} on the Relative Error of the mean obtained by
the½MPM algorithm with respect to the mean obtained by the MPM algorithm
with p = 1/2 . Identical results are found taking p = −1/2 .

and the convergence behavior of the MPM algorithm (Fig. 4),
we conclude that the procedure based on MPM described on
Section II.G is preferable for estimating the geometric mean.
Figure 6 shows the relative error of the mean obtained by the
½MPM algorithm (see Appendix) to the mean obtained by the
MPM algorithm for p = 1/2 . For N small (N < 20) the ap-
proximation found by the½MPM algorithm is good in absolute
terms, but it deteriorates fast as N increases. In tolerating the
error engendered by the approximation one should consider the
noise level. In fact, any relative error can be considered satis-
factory as long as the noise level is much higher than that and
usually in practical applications the noise level is much higher
than 10−1.

IV. STUDIES WITH REAL DATA

A. Procedures

We tested the classification performance obtained by several
power means on a real electroencephalography (EEG) data set
acquired at the GIPSA-lab in Grenoble on 38 pairs of subjects
participating to a Brain-Computer Interface (BCI) experiment.
The BCI we used is the multi-subject Brain Invaders [38], which
user-interface is similar to the joystick-controlled vintage video-
game Space Invaders [39]. The BCI shows for several levels of
the game 36 aliens on the screen and flash them in random pat-
terns of 6 aliens [39]. The task of the participant is to destroy
a TARGET alien only concentrating on it (i.e., without moving
at all). The on-line classifier analyzes the event-related poten-
tials (ERPs) produced during 1s after each flash and decides
after every sequence of 12 flashes what alien is to be destroyed.
The level continues until the TARGET alien is destroyed or 8
attempts have failed, after which a new level begins. For this
analysis power means of special covariance matrices (see [5])
for the TARGET and NON-TARGET ERPs are estimated on a
training set and the remaining trials are used for producing the
area under the ROC curve (AUC). An AUC equal to 1 indicates
perfect classification accuracy, while an AUC equal to 0.5 indi-
cates random classification accuracy. We employed the Rieman-
nian classifier described in [5], which uses only means of SPD
matrices and distance function (4) in order to reach a decision.
In the experiment, across subjects the average (sd) number of
TARGET and NON-TARGET trials available was 109.9 (26.2)

Fig. 7. A: from left to right and from top to bottom, AUC (disks) ± one
standard deviation (vertical bars) obtained for 38 healthy subjects sorted by
decreasing value of maximal AUC obtained across a sampling of power means
in the interval p = [−1, . . . ,1]. B: scatter plot and regression line of the maximal
AUC and the value of p allowing the maximal value. Each disk represents a
subject.

and 549.48 (130.1), respectively. In order to keep the amount
of data constant across subjects, only the first 80 TARGET and
400 NON-TARGET trials are used. AUC is evaluated by using
a Monte Carlo cross-validation (MCCV) procedure averaging
10 random samples comprising 25% of the data selected as the
test set and the remaining used as training set. EEG data were
acquired by 16 scalp electrodes. Power means were tested at
values of p = ±1, ±0.8, ±0.6, ±0.4, ±0.2, ±0.1, 0.

B. Results

The individual area under the ROC curve (AUC) for the brain-
computer interface experiment on 38 subjects is shown in
Fig. 7(A). The AUC as a function of p is a smooth curve.
The value of p offering the maximum AUC appears to grav-
itate around zero. This illustrates a reason why the geometric
mean is found useful in practice. However, the geometric mean
(p = 0) is optimal only for three out of the 38 subjects and the
optimal value of p is highly variable across individuals. This
demonstrates that the use of power means instead of the sole
geometric mean has potential to increase the accuracy. Finally,
the Pearson correlation between the maximal value of AUC
obtained and the value of p allowing such maximum is 0.49.
A statistical test for the null hypothesis that this correlation is
equal to zero against the alternative hypothesis that it is larger
than zero gives a probability of type I error equal to 0.002. We
therefore reject the null hypothesis and conclude that the higher
the AUC, that is, the higher the SNR of the data, the higher the
optimal value of p. This result matches our intuition; when the
noise is higher than the signal, a power mean with negative p
will suppress the noise more than the signal and vice versa.



Fig. 8. TraDe plot obtained with N = 10, K = 10 and SNR = 1, for power
means corresponding to p = 1 (Arithmetic), 0.5, 0.1, 0 (Geometric),−0.1,−0.5
and −1 (Harmonic). The relationship between the trace and the determinant of
power means is log-log linear.

V. MEAN FIELDS

The family of power means is continuous and monotonic.
Figure 8 is a TraDe plot (log-trace vs. log-determinant) for a
sampling of power means along continuum p � [−1, 1] illus-
trating the monotonicity of power means. We name a sampling
of power means like those in Fig. 7 and Fig. 8 a Pythagorean
Mean Field. Applications of mean fields include the possibility
to evaluate the most appropriate choice of mean depending on
its use and on the data at hand. Mean fields also allow robust
extensions of current Riemannian classifiers, such as in [2]–[6],
[10]–[13]. For instance, we may want to combine Riemannian
classifiers applied to all the points of a mean field. The appli-
cation of mean fields to real data will be the object of future
investigations.

VI. CONCLUSIONS

Power means are generalized means interpolating continuously
in the interval p ∈ [−1, 1], with p = 1 yielding the arithmetic
mean, the limit of p→0 from both sides yielding the geomet-
ric mean and p = −1 yielding the harmonic mean. We have
presented a new multiplicative algorithm for estimating power
means of SPD matrices in the interval p ∈ (−1, 1)\{0}. A nu-
merical analysis shows that its convergence rate is very fast
and quasi-uniform for values of p close to ½ and –½, while
for values of p close to 0 or ±1 it is still faster as compared
to the gradient descent with fixed step-size used for estimat-
ing the geometric mean. Furthermore, it converges also in low
SNR situations, whereas the gradient descent algorithm fails.
The approximation to the geometric mean we have proposed in
Section II.C gives better estimates of the geometric mean with
respect to the gradient descent algorithm. We can therefore pre-
fer MPM also for estimating the geometric mean. In conjunction
with the procedure for p = 0 of Section II.C and expression (7)
and (8) for p = 1 and p = −1, respectively, using the MPM
algorithm we can now estimate a number of means sampling
along the Pythagorean continuum p = [−1, 1].
The ½MPM algorithm offers a very efficient implementation to
approximate the p = ±1/2 power mean. We have shown that
the approximation is good in absolute terms for data matrices
of small dimension (N < 20), but it may turn useful also in
higher dimension for noisy data, whenever the noise level is

significantly higher than the error engendered by the approxi-
mation. However, while the MPM algorithm is computationally
robust,½MPM requires a careful implementation. In particular,
Partlett’s recurrence [33], [34] should be used for computing
the inverse of triangular matrices and input matrices may need
a normalization and/or regularization in order to allow proper
Cholesky decompositions (see the Appendix).
Some works have focused on estimating geometric medians on
Riemannian manifolds, extending the concept of median for
random variables. This may provide a better estimation of the
center of mass given a set of data points in the presence of
outliers [40], [41]. Another current research direction is the def-
inition of means of probability distributions rather than SPD
matrices from a pure geometrical perspective, as we have done
here. The geometric mean of Gaussian distributions and of mix-
tures of Gaussian distributions have been developed in [42],
[43]. A one-parameter family of “p-means” for probability dis-
tributions, leading to the geometric mean and median as special
cases, have been developed in [44], [45].

APPENDIX

We here develop a fast approximation to the MPM fixed point
for the case p = ±1/2 . The computational complexity of the
MPM algorithm is dominated by the computation of matrix
H at each iteration (see pseudo-code of the MPM algorithm
in Section II.B). This requires 2K matrix multiplications and
K eigenvalue-eigenvector (EVD) or Schur decompositions for
evaluating the pth power of XC∗kX

T . We here show how we
can approximate H using 2K products of two triangular matri-
ces and K matrix-triangular matrix multiplications. We wish an
algorithm completely EVD-free and Schur decomposition-free,
exploiting instead fast libraries for the Cholesky decomposition
and triangular matrix operations.
First, we renounce to smart initialization, since it also requires
EVD or Schur decompositions. Then, we factorize the products
XC∗kX

T as products of triangular matrices and we consider
a truncated iterative approach for approximating their square
root; the approximation of the final solution will depend on the
approximation engendered by this truncation. Finally, we will
fix to 1.0 the ϕ parameter for the power H−ϕ, that is, we will
stick to fixed point definition (17) as it is; for |p| = 1/2 this value
is acceptable in that it corresponds to the lower bound of the
optimal interval (20) (see Fig. 2).
Our goal here is to find an approximation to Fk =
(XC∗kX

T )
1/2 . Matrix X being an (inverse) square root of the

sought mean P, we may take it lower triangular so as to ver-
ify XPXT = I , hence (XT X)−1 = P ; what it matters is
that Fk is taken as the principal square root of XC∗kX

T ,
i.e., the unique symmetric one [14]. For computational rea-
sons we will also maintain in memory an upper triangular
matrix Y T = X−T . Before running the algorithm we will
compute the Cholesky lower triangular factors Lk of all in-
put matrices C∗k and all the inverse transpose of these factors
RT

k = L−T
k , which are upper triangular; these matrices are such

that LkL
T
k = C∗k and RT

k Rk = C∗−1
k . As a consequence, ma-

trices Mk = XLk are the Cholesky lower triangular factor of



Fig. 9. Typical convergence behavior of the successive unit-norm normaliza-
tion of the columns and rows of matrices with entry randomly drawn from a
standard Gaussian distribution for N (matrix dimension) = 10, 100 and 1000.
The convergence is the square root of the Euclidean mean square distance of
the row and columns norm from unity after each iteration, in dB. The stopping
criterion was set to convergence < −120 dB.

XLkL
T
k XT = XC∗kX

T , i.e., MkM
T
k = XC∗kX

T . The ap-
proximation of Fk goes like this: we know that

Fk = 1/2
(
UT

k Mk + MT
k Uk

)
, (26)

where Uk is the orthogonal polar factor in the right polar decom-
position Mk = FkUk [35]. Since in our algorithm Mk can be
computed easily by means of a triangular matrix multiplication,
we can considerably speed up the algorithm approximating Fk
by approximating Uk . We will obtain this by means of a suitable
Newton’s iteration converging to the polar factor Uk . We will
use a well-established Newton’s iteration known for its excellent
numerical accuracy and quadratic convergence rate [35]–[37].
Another reason for choosing these iterations is that the first one
turns out to be very efficient for us:

Uk = 1/2

(
σ−

1/2 Mk + σ
1/2 M−T

)
= 1/2

(
σ−

1/2 XLk + σ
1/2 Y T RT

k

)
,

(27)
where σ is a weight used for improving the convergence speed
and Y T = X−T can be computed fast by Parlett’s recurrence
[33], [34]. The optimal weight σ has been established to be a
function of the maximum and minimum singular values of Mk
[35]–[37]; in our case those can be found at no cost from the
maximum and minimum entry on the diagonal of XLk , which
is triangular. In addition to the cited studies on polar orthogonal
factor Newton’s algorithms, we introduce here the following
improved a-posteriori scaling: in order to make matrix Uk closer
to orthogonal form after the first iteration, we require it to verify
the following diag-orthogonality condition:

diag
(
UkU

T
k
)

= diag
(
UT

k Uk
)

= I, (28)

where the diag operator nullifies the off-diagonal elements of
the argument. A finite sequence of the successive normalizations
to unit norm of the columns and rows of Uk will converge to
condition (28). The convergence rate is proportional of the size
of Uk , as shown in Fig. 9 on random matrices. In this study we
will use only two successive normalizations (error � −20 dB
for N = 10 as shown in Fig. 9). Notice that each normalization
has only quadratic complexity on N, thus the diag-orthogonality
scaling does not increase significantly the overall computational
cost, however, it improves the final approximation. Finally, note

that although Fk = 1/2(UT
k Mk + MT

k Uk), in order to compute
the average of the Fk over K only the UT

k Mk terms need to be
averaged; we will symmetrize it once the mean over K has been
computed. The resulting fast approximated algorithm follows:

Algorithm: Multiplicative ½ Power Mean (½MPM).

INPUT p = 1/2 or p = −1/2 . Given K positive weights
w = {w1 , . . . ,wK} such that Σkwk = 1 and K N�N SPD
matrices C ∗ = {C∗1 , . . . , C∗K}, with ∗ = sgn(p), input the K
Cholesky lower triangular factors Lk and the K transpose
inverse RT

k = L−T
k of the input matrices.

OUTPUT P, an approximated w-weighted Power Mean of
order p.
Note: H and U are square matrices. X, Z and Lk are lower
triangular matrices. Y T , ZT and RT

k are upper triangular
matrices.
Initialize X to the identity lower triangular matrix and set
Y T = XT .
Set ζ equal to a small floating precision number (e.g., 10−10)

REPEAT
H ← 0
For k: = 1 to K do
Begin

M ← XLk
σ = min(diag(M)) ·max(diag(M))
U = σ

−1/2M + σ
1/2Y T RT

k
Normalize to unit norm the columns, then the
rows
of U, two times in this order.
H ← H + wkU

T M
End
H ← 1

2 (H + HT )
Do Cholesky (H) = ZZT ;
X ← Z−1X;
Y T ← ZT Y T

UNTIL 1√
N
‖(H − I)‖F < ε

RETURN P =

{
Y T Y if p =1/2

XT X if p = −1/2

}
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