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ABSTRACT
The term impact sound as referred to in this paper, can be broadly 
defined as the sudden burst of short-lasting impulsive noise gen-
erated by the collision of two objects. This type of sound effect 
is prevalent in multimedia productions. However, conventional 
methods of sourcing these materials are often costly in time and 
resources. This paper explores the potential of neural audio syn-
thesis for generating realistic impact sound effects, targeted for
use in multimedia such as films, games, and AR/VR. The designed
system uses a Realtime Audio Variational autoEncoder (RAVE) [2] 
model trained on a dataset of over 3,000 impact sound samples
for inference in a Digital Audio Workstation (DAW), with latent 
representations exposed as user controls. The performance of the
trained model is assessed using various objective evaluation metrics, 
revealing both the prospects and limitations of this approach. The
results and contributions of this paper are discussed, with audio 
examples and source code made available.
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1 INTRODUCTION
When it comes to sourcing sound materials for multimedia such as
games, films and AR/VR technologies, the use of large databases 
consisting of numerous audio recordings and sound effects is a com-
mon practice. Generally, this involves seeking through a library and 
auditioning one sample after another before fine-tuning and align-
ing to asynchronous visual cues. Although this could be regarded 
as a standard workflow in the industry, it is often a time-consuming 
process, especially when the desired sound possesses unique acous-
tic or timbral characteristics [5]. Aside from pre-recorded samples,

Figure 1: Synchronisation of customised impact sound effect
in a digital audio workstation.

audio synthesis is a popular technique for generating tailor-made
sounds. While versatile, different synthesis methods have their sets
of advantages and limitations; a plugin implementation of an al-
gorithm will typically only target one type of sound [11], and the
resultant product can often be audibly synthetic and lack realism
[9]. Traditionally, in films and TV shows, sound effects are dubbed
over by professional Foley artists, who use props to generate and
record the idea of everyday sounds [13]. In the blooming indus-
tries of games and VR/AR technologies, the demand for realistic
audio with subtle tonal quality differences in each action instance
is even more crucial to provide context-specific and immersive
soundscapes. Dependency on largely repetitive sample libraries or
data augmentation with signal processing techniques is not ideal
and usually lacks semantic controls.

With the high cost of resources and time for high-fidelity sam-
ples and professional recordings, this paper aims to provide an
alternative by offering a way to generate and manipulate realis-
tic impact sound effects with minimal and intuitive tonal controls.
The proposed plugin is designed to support audio production for
multimedia, ensuring smooth integration with existing workflows
through DAWs, and providing a seamless solution to aforemen-
tioned challenges.
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1.1 Background
Advances in deep learning algorithms have led to a substantial 
increase in applications across various domains; one of the most 
noteworthy being photorealistic image generation [12]. This tech-
nology has been adopted in the area of audio generation, primar-
ily focusing on speech and pitched instrument synthesis. Several 
studies have explored the use of neural synthesis for broadband 
impulsive sounds, particularly in the context of drum samples, 
which share tonal similarities with impact sounds. Past research 
on the synthesis of footstep and knocking sound effects using both 
neural networks [1, 3] and signal processing techniques [4, 7, 14] 
provided great inspiration for this project. However, recent devel-
opments in deep learning have yet to be fully explored in the field 
of sound effect synthesis for multimedia. While past research in 
impact sound generation often uses modal synthesis, novel architec-
tures in deep learning introduce the possibility of creating sounds 
using alternative methods [1]. This paper aims to contribute to 
the less-researched field of neural audio synthesis of sound effects 
by investigating the potential of state-of-the-art generative deep 
learning technology for impact sound generation.

2 METHOD
2.1 RAVE
The designed application builds upon a RAVE model as proposed 
by Caillon and Esling [2], which overcomes the common limita-
tion of low synthesis quality in variational autoencoders (VAEs) by 
introducing a novel training procedure consisting of two stages: 
representation learning and adversarial fine-tuning. The model first 
undergoes regular VAE training to retrieve high-level attributes of 
the dataset before being fine-tuned through an adversarial genera-
tion objective, attaining high-quality audio synthesis. In addition, 
by incorporating a multi-band decomposition step of raw audio in 
conjunction with classical synthesis techniques, RAVE is able to 
achieve a sampling rate of 48kHz with performance 20 times faster 
than real-time on a standard CPU and no substantial increase in 
computational complexity. This addresses the processing-intensive 
nature of raw waveform representation and enables efficient real-
time synthesis. Lastly, the dimensionality of the learnt representa-
tion is restricted to a minimum using singular value decomposition 
in order to find the informative parts and aid in the compactness 
and manipulation of latent trajectories.

In the first stage, a multiscale spectral loss 𝑆 (·, ·) introduced by 
Engel et al. [6] is employed to measure the distance between syn-
thesised and real samples, which encourages the model to learn 
key perceptual qualities of the data without penalising for inaccu-
rately reconstructed phase. This is used in conjunction with the 
loss derived from ELBO for the encoder and decoder training until 
convergence.

L𝑉𝐴𝐸 = E𝑥∼𝑝 (𝑥 |𝑧 ) [𝑆 (𝑥, 𝑥)] + 𝛽 × D𝐾𝐿 [𝑞𝜙 (𝑧 |𝑥) ∥ 𝑝 (𝑧)] (1)

In the above equation, 𝑥 , 𝑥 and 𝑧 represent the real sample, gener-
ated sample and latent variable respectively. 𝑞𝜙 (𝑧 |𝑥) and 𝑝 (𝑧) each
denote the approximate posterior distribution of 𝑧 given 𝑥 and the
prior distribution of 𝑧. The symbol ∥ signifies that the Kullback-
Leibler (KL) divergence, D𝐾𝐿 , measures the difference between the
two distributions. Lastly, 𝛽 is a weighting factor used to balance the

Figure 2: RAVE architecture (Callion and Esling [2]). The
yellow blocks are optimised and the grey blocks are frozen
during the training stages.

multiscale spectral loss and KL divergence term in the overall loss
function. The second stage focuses on enhancing the quality and
naturalness of the synthesised audio. This is achieved by freezing
the learnt latent representation of the encoder and using it as the
base distribution for GANs. The decoder then samples from this
and generates new data in adversary to discriminator 𝐷 . The hinge
loss version of the GAN objective is used for training, which is
defined as:

L𝑑𝑖𝑠 (𝑥, 𝑧) = max(0, 1 − 𝐷 (𝑥)) + E𝑥∼𝑝 (𝑥 |𝑧 ) [max(0, 1 + 𝐷 (𝑥))]
L𝑔𝑒𝑛 (𝑧) = −E𝑥∼𝑝 (𝑥 |𝑧 ) [𝐷 (𝑥)] (2)

In addition to the adversarial objective, the aforementioned spectral
distance and a feature matching loss are added to obtain the final
objective for the decoder:

L𝑡𝑜𝑡𝑎𝑙 (𝑥, 𝑧) = L𝑔𝑒𝑛 (𝑧) + E𝑥∼𝑝 (𝑥 |𝑧 ) [𝑆 (𝑥, 𝑥) + L𝐹𝑀 (𝑥, 𝑥)] (3)

Proposed by Kumar et al. [10], the feature matching loss L𝐹𝑀
can be considered as a learned similarity metric with the objective
to minimise the L1 distance between the discriminator feature
maps of real and synthetic audio. Similarly, the discriminator 𝐷
detailed in [10] is used. This features three Markovian window-
based discriminators with identical network structures operating
on different audio scales, creating a multiscale framework. The
first discriminator, 𝐷1, focuses on the raw audio, while the second
and third discriminators, 𝐷2 and 𝐷3, target the same signal but
downsampled by factors of 2 and 4. By employing this multiscale
approach, each discriminator is able to learn features specific to
different ranges of audio, which in turn facilitates the acquisition
of an inductive bias related to the overall audio structure.

Additionally, the RAVEmodel provides novel post-training analy-
sis of the latent space which enables direct control over the trade-off
between representation compactness and reconstruction fidelity
using fidelity parameter 𝑓 [2]. This works by employing singular
value decomposition (SVD) on a centred matrix derived from the
latent representation, separating the informative and uninformative
parts of the latent space. By defining 𝑓 for use with the associated
rank of the SVD, latent dimensionality is able to be reduced by pro-
jecting the concatenation of a low-rank representation and noise
sampled from the prior distribution.



2.2 Dataset
The collected dataset consists of just over 3000 single impact record-
ings taken from Zapsplat,1 a website which hosts a large variety 
of free sound effects. The collected samples consist of professional 
Foley recordings. Several key search terms, including single footstep, 
hit, impact, tapping, and knocking, are used in the Foley category on 
the site. From these, 122 samples are separated from the training 
set for evaluation, ensuring fair results. These samples feature in-
dividual footstep recordings of sneakers on various surfaces, with 
different levels of force or actions.

2.3 Training
Using the official RAVE source co de provided on  Gi tHub,2 the 
original implementation of the model as described in [2] is obtained, 
and training is conducted using the collected samples. The model 
is trained for a total of 1.5 million steps with 1 million steps for 
the first stage and 0.5 million for the second on a Tesla T4 GPU, 
running over a span of 3 days and 17 hours. The Adam optimisation 
algorithm [8] is deployed using the PyTorch library,3 with a learning 
rate 𝛼 of 10−4, 𝛽 of (0.5, 0.9), and a batch size of 8, in accordance 
with the default RAVE configuration. Upon completion of training, 
the model is exported as a TorchScript file, which can be loaded 
for inference purposes. The trained model is exported using two 
different values o f 𝑓  for comparison: 0 .9 and 0 .95, which result 
in representation lengths of 16 and 32 respectively in the second 
dimension.

2.4 Audio Plugin
The plugin utilises the encoder of the trained model and allows 
the user to load their own audio samples into the latent space. The 
encoded representation can be manipulated as desired with exposed 
latent controls, altering its key tonal qualities. For every modifica-
tion to the representation, the signal is decoded and can be played 
back for evaluation and further adjustments. Sample playback is 
triggered via MIDI note-on messages, which allows for automated 
playback with the use of a piano roll in a DAW. This feature closely 
resembles a sampler and enables users to place MIDI notes corre-
sponding to visual cues on a timeline. Additionally, as real-world 
impact sounds generated by even identical objects commonly pos-
sess slightly different qualities every time, a randomisation feature 
was added to simulate this natural variation. This feature sits at 
the end of the signal chain and alters the pitch and volume of each 
sample playback. The degree of this alteration depends on a user-
defined parameter, which specifies the range of the randomisation 
effect. Upon receiving a MIDI note-on message, the plugin gener-
ates two random numbers for pitch and volume modification before 
multiplying them by the random control parameter. These values 
are then used respectively for calculating the resampling ratio and 
gain. The signal flow diagram including this feature can be seen in 
Figure 3.

The plugin is written in C++ with the use of the JUCE frame-
work.4 JUCE provides the basis and tools for the development of

1https://www.zapsplat.com/
2https://github.com/acids-ircam/RAVE
3https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
4https://juce.com/

Figure 3: Audio plugin signal flow. The loaded raw signal is
encoded into a latent representation that can bemanipulated.
This is then decoded and stored in a buffer for MIDI note
triggers to playback.

audio and MIDI processing, graphical user interface, as well as the
handling of various operating systems for the application. LibTorch5
is employed to interface with the pre-trained PyTorch model. It is
a binary distribution of the PyTorch library that provides an API
for integrating PyTorch models in C++ applications. The plugin is
developed in consideration of functional cross-platform operation.

3 EVALUATION
3.1 Evaluation Methodology
In order to assess the generations of the trained model, objective
evaluation metrics are used. Although there are currently no stan-
dardised methods for the reliable assessment of the quality and
diversity of synthesised audio, some metrics are widely adopted
for the analysis and comparison of neural synthesis models [3]. For
this particular model, Maximum Mean Discrepancy (MMD) and
Frechet Audio Distance (FAD) are utilised to obtain the difference
between synthesised and real samples by comparing their embed-
ding distributions. The evaluations are carried out on the trained
RAVE models exported with different fidelity values specified.

3.2 Latent Controls
Using a fidelity parameter of 0.9 upon export, the encoded represen-
tation consists of three dimensions, where the third dimension 𝑁

is dependent on the length of the original input signal. The latent
control feature is designed to provide users with the ability to mod-
ify the elements of a specified vector in the second dimension by
adding or subtracting a scalar value, delta. The new representation
is calculated using the following formula:

𝐿𝑛𝑒𝑤 [𝑖] = 𝐿𝑜𝑙𝑑 [𝑖] + 𝑑𝑒𝑙𝑡𝑎, 𝑓 𝑜𝑟𝑖 = 0, 1, · · · , 𝑁 (4)

To observe the impact of each vector on the tonal quality of a
signal, a separate plugin build which exposes all latent controls is
generated for exploration.

The first five vectors of the second dimension in the latent repre-
sentation are selected to be added in the final plugin build, named
Splatter, Volume, Tail, Boost and Force. The effect of tweaking two
of the controls respectively is demonstrated in Figure 4.

5https://pytorch.org/cppdocs/
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Figure 4: Latent control demonstration. The first and second
columns show the effect of increasing the Tail and Boost
control respectively.

Table 1: Evaluation Metrics Results. MMD and FAD scores
measuring the differences between two datasets are noted.

MMD: avg / std Model095 Model090

Eval 30.05 / 2.6 32.49 / 2.48
Model095 - 3.35 / 0.74
FAD Score Model095 Model090

Eval 5.2 5.78
Model095 - 0.32

3.3 Results and Discussion
MMD and FAD scores are computed on the reconstructions of the
evaluation set by the two models exported using an 𝑓 of 0.95 and 0.9
respectively. For clarity, the former will be referred to as Model095
and the latter as Model090. The evaluation set is referred to as
Eval.

The top half of Table 1 presents the MMD results, displaying
both the average MMD score and the standard deviation for each
pair of datasets. Model095 achieved a higher average, indicating
better reconstruction quality and greater similarity with the eval-
uation set. This is expected because the lower fidelity parameter
specified for Model090 led to a more compact latent space, but also
a poorer approximation of the input due to the prior noise replacing
less critical latent information. Furthermore, Model090 has failed
to reproduce some data variation present in the original data, evi-
denced by the lower standard deviation score. A single FAD score is
generated for each dataset and shown in the bottom half of Table 1,
representing the perceived quality and distance measure. As a lower
score indicates better quality, Model095 is again demonstrated to
be more similar to the ground truth and superior in fidelity. This
further emphasises the impact of the fidelity parameter on recon-
struction quality, with Model095 outperforming Model090 in a
manner consistent with the MMD results discussed above. This
echoes the importance of selecting an appropriate fidelity param-
eter to achieve desired performance with regard to the balance

between reconstruction quality and representation compactness as
illustrated in [2].

4 CONCLUSIONS AND FUTUREWORK
In this work, we offer a novel solution using neural audio synthesis,
addressing the challenges faced by a large population of audio
professionals and hobbyists in sourcing and generating various
impact sounds. An audio plugin is developed that enables seamless
integration with existing workflows and provides intuitive tonal
controls. A RAVE model is trained on over 3,000 impact sound
samples, with the results evaluated using objective metrics. The
evaluation results demonstrate that the model achieves excellent
MMD scores, indicating high reconstruction quality. However, the
FAD scores revealed improvements can still be made in enhancing
the perceptual quality of generations. The trade-off between latent
space compactness and reconstruction quality is also emphasised.
Plugin source code and accompanying audio examples are available
online. 6 Future work could focus on refining the RAVE model to be
more suitable for short-lasting signals and improving its perceptual
quality. Performing subjective tests can also provide insights into
the usefulness and quality of generations. Increasing the duration
and variety of the training dataset could also enhance generalisation
to unseen data.
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