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ABSTRACT: DL_FFLUX is a force field based on quantum chemical
topology that can perform molecular dynamics for flexible molecules endowed
with polarizable atomic multipole moments (up to hexadecapole). Using the
machine learning method kriging (aka Gaussian process regression),
DL_FFLUX has access to atomic properties (energy, charge, dipole moment,
etc.) with quantum mechanical accuracy. Newly optimized and parallelized
using domain decomposition Message Passing Interface (MPI), DL_FFLUX is
now able to deliver this rigorous methodology at scale while still in reasonable
time frames. DL_FFLUX is delivered as an add-on to the widely distributed
molecular dynamics code DL_POLY 4.08. For the systems studied here (103−
105 atoms), DL_FFLUX is shown to add minimal computational cost to the
standard DL_POLY package. In fact, the optimization of the electrostatics in
DL_FFLUX means that, when high-rank multipole moments are enabled,
DL_FFLUX is up to 1.25× faster than standard DL_POLY. The parallel DL_FFLUX preserves the quality of the scaling of MPI
implementation in standard DL_POLY. For the first time, it is feasible to use the full capability of DL_FFLUX to study systems that
are large enough to be of real-world interest. For example, a fully flexible, high-rank polarized (up to and including quadrupole
moments) 1 ns simulation of a system of 10 125 atoms (3375 water molecules) takes 30 h (wall time) on 18 cores.

1. INTRODUCTION

A computational chemistry code needs to compete along two
axes: accuracy and speed. Generally, an improvement in one
comes at the expense of the other. Classical force fields are well
known to be fast but often lack accuracy.1,2 Ab initio methods
typically achieve greater accuracy than classical force fields, but
this accuracy comes at a high computational cost. This cost
limits ab initio methods to relatively small systems or short
simulation time scales. Thus, a holy grail of computational
chemistry is finding a method,3−17 often involving machine
learning nowadays, that is fast and accurate, the equivalent of
“having one’s cake and eat it”.
DL_FFLUX is a force field that aims to perform accurate

molecular dynamics (MD) calculations without sacrificing
speed too much. The accuracy of the FFLUX methodology has
been demonstrated at various levels of analysis from single
molecules18−21 to small clusters of molecules22 and even
ions.23 However, before the advances presented in the current
paper, the prohibitive computational cost of DL_FFLUX made
“bulk” simulations impossible. The current work describes, in
detail, a step change toward making DL_FFLUX a practical
but more reliable alternative to well-known and popular force
fields.
The accomplishment of DL_FFLUX up to now can be

attributed to its rigorous theoretical foundation24 and design
from scratch. At the heart of DL_FFLUX is the quantum
topological atom offered by the quantum theory of atoms in
molecules (QTAIM),25 which led to the energy partitioning

scheme called interacting quantum atoms (IQA).26 Both are
part of quantum chemical topology (QCT), a term coined27 in
2003 to refer to the collection of approaches28 sharing the idea
of a (gradient) vector field partitioning a quantum mechanical
function. If this function is the electron density, then the
(quantum) topological atom emerges.
The computational cost associated with QCT is mitigated in

two ways. First, the results of QCT calculations are used to
train machine learning models, specifically kriging or Gaussian
process regression29,30 method of machine learning. After
compute-intensive training, these kriging models can then
quickly predict atomic energies and multipole moments, using
only the nuclear coordinates of the given atom’s environment.
The predictions occur in real time, during the course of an MD
simulation, at considerably less cost than performing quantum
mechanical calculations. Moreover, kriging needs fewer data to
reach a given accuracy compared11,31 compared to neural nets.
It should also be mentioned here that polarization is taken care
of without the need for on-the-fly dipole moment iterations
using polarizabilities. Second, DL_FFLUX is now parallelized
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with Message Passing Interface (MPI),32 so it can take
advantage of high-performance computing hardware.
In summary, DL_FFLUX can perform MD simulations with

fully flexible molecules and polarizable atomic multipole
moments (up to hexadecapole moment). Molecular flexibility
and polarization are achieved without recourse to the usual
means of harmonic potentials,33 Drude oscillators,34 or other
methods.35,36 However, in DL_FFLUX, predicted (intra-
molecular) potential energy surfaces and atomic multipole
moments handle molecular flexibility, polarization, and intra-
molecular charge transfer. All this information is captured by
the kriging models trained on an effective paucity of
computationally expensive QCT data. The advance presented
here is that DL_FFLUX is currently optimized and parallelized
such that QCT data are now available during an MD
simulation at a relatively low extra cost.

2. THEORETICAL BACKGROUND

2.1. QTAIM. The gradient of the electron density, ∇ρ(r)⃗,
defines a topological atom as a naturally emerging subspace.
Each atom comprises an attractor (the nucleus) and a
particular portion of the total electron density. Each nucleus
attracts a bundle of trajectories of the gradient of the electron
density, which are commonly referred to as gradient paths. The
subspace spanned by this bundle is the topological atom. The
boundaries of an atom are interatomic surfaces, which are
surfaces of zero-flux of ∇ρ(r)⃗. In other words, each atom inside
a molecule is bounded by surfaces that obey eq 1

ρ∇ ⃗ · ⃗ ⃗ = ∀ ⃗ ∈r n r r S( ) ( ) 0; (1)

The constraint in eq 1 defines a surface that is not crossed
by any gradient paths, which is clear from Figure 1, where a
water dimer complex illustrates various topological objects.

Where an atom is not bordered by another atom, its electron
density extends out to infinity. However, to have a practical
boundary to an atom at the edge of a molecule, the atom can
be capped by an arbitrary constant electron density surface. We
also note that topological atoms are space-filling: they leave no
gaps and do not overlap.

2.2. IQA. This relatively recent scheme decomposes atomic
energies in a chemically meaningful way,37 without the
problems38 of older energy decomposition analyses such as
natural energy decomposition analysis (NEDA).39 Inspired by
early calculations40 of the electrostatic energy between
topological atoms, IQA extends QTAIM’s original virial-
based energy partitioning scheme such that atomic energies
are also valid for nonequilibrium geometries. IQA is a
reference-free and exhaustive partitioning scheme, two proper-
ties shown to be favorable.41 The IQA energy decomposition is
achieved by partitioning the one- and two-electron density
matrices. However, the derivation26 is not discussed here, only
the results.
Atomic IQA energies can be broken down into intra-atomic

and interatomic contributions
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B A
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(2)

Both terms in eq 2 can be broken down further as follows
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The superscripts in eqs 3 and 4 indicate the two atoms that
are interacting with each other, while the subscripts indicate
the type of interaction. The intra-atomic energy in eq 3 is
composed of the kinetic energy, TA, and nuclear−electron and
electron−electron interactions. The interatomic term in eq 4
also contains the nuclear−nuclear interaction. Note that the
interatomic electron−nuclear interaction needs to be
accounted for both ways: the nucleus of one atom must be
paired with the electrons of the other atom and vice versa.
DL_FFLUX does not see the finer details outlined in eqs 2−4.
Rather, DL_FFLUX works with EIQA

A values, which is the only
level of resolution necessary for MD.

2.3. Gaussian Process Regression or Kriging. Kriging is
a machine learning technique that takes inputs (features) and
maps them to a single output. In this case, the outputs are IQA
energies and atomic multipole moments. The features for a
given atom are geometric and defined in an atomic local frame
(ALF). Three atoms are required to construct the axes of the
ALF. The features of atoms that are not used to construct the
ALF are composed of spherical polar coordinates defined with
respect to this ALF. Each atom is the center of its own ALF.
Full details of this framework can be found in our previous
work.19 The choice of a local frame is significant as it means
that all multipole moments are invariant with respect to global
rotations and translations.
Kriging makes predictions based on some training set

containing Ntrain training points. The training of kriging models
is a topic unto itself20 and is not covered here as it is not
relevant. Predictions of a quantity of interest, ŶA, relating to
(topological) atom A, are made according to

Figure 1. Gradient paths for a water dimer. The circles represent
nuclei (attractors). Thick black lines are interatomic surfaces, and the
squares that lie on these lines are so-called bond critical points. The
second hydrogen of the left water is perpendicular to the plotting
plane and not shown.
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where μA is the average value of the output for all training
points, aj

A is the “weight” of the jth training point, and θk
A and

pk
A are hyperparameters optimized during training (although
the latter are typically set to “2” without much loss of
accuracy). The exponent’s argument contains Nfeat-dimen-
sional vectors of features where the number of features is equal
to the dimensionality of the system. Equation 5 essentially
finds the correlation between a set of (previously unseen)
input features fA⃗ and the features of the training data fj⃗

A and
predicts based on this correlation. The form of eq 5 follows
that, if a set of inputs is “far away” from any of the training
points, the exponent’s argument approaches zero and the
predicted output returns to the average, μA. This is a potential
weakness if the feature space has been trained for a narrow
sample of configuration space that does not cover the
geometries encountered during a simulation.
For the purposes of DL_FFLUX, ŶA is either ÊIQA

A or one of
the multipole moments, {Q̂l,m}. In the case of the IQA energy,
DL_FFLUX also calculates the forces42 resulting from these
energies. These are the intramodel forces, which for our
purposes are synonymous with intramolecular energies.
However, it is possible to have models describe and predict
quantum system than single molecules; molecular complexes
can also be treated by this methodology. The ith component of
the force on atom B is calculated as

∑ ∑
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Equation 6 is the sum of derivatives of the IQA energy of
every atom A with respect to the global Cartesian coordinates
of atom B, αi

B. This derivative is obtained via a chain rule
involving the features df k

A. Note that eq 6 replaces the use of
traditional harmonic bond and angle potentials in DL_FFLUX,
a hallmark of DL_FFLUX’s fresh approach to force field
design.
2.4. Electrostatics. Electrostatics in DL_FFLUX is worthy

of a brief discussion. Short-range electrostatics are captured by
the kriging models and are wrapped up inside EIQA

A . Short range
for our purposes means intramolecular. On the other hand,
long-range electrostatics (intermolecular) is then calculated
using smooth particle mesh Ewald43 with polarizable moments
predicted by kriging models. The rank of the electrostatic
interaction is denoted L′. This quantity refers to the highest-
rank multipole moments present in a given simulation. For
example, L′ = 2 means that monopole (l = 0), dipole moments
(l = 1) and quadrupole moments (l = 2) are present and that
monopole−monopole, monopole−dipole, monopole−quadru-
pole, dipole−dipole, dipole−quadrupole, and quadrupole−
quadrupole interactions are computed. At present, FFLUX
supports moments up to and including hexadecapole moments
(hence L′ = 4). It has been shown previously that point charge
only does not suffice for the convergence of long-range
electrostatic interactions in water.44 The need for high-rank
multipolar electrostatics has been observed in the small protein
crambin as well.45

Overall and in summary, DL_FFLUX is a truly new force
field, which is much closer to the underlying quantum reality.
DL_FFLUX “sees the electrons” and exploits a parameter-free

definition of an atom inside a system. Using machine learning,
DL_FFLUX learns how atomic energies, charges, and
multipole moments vary with the surrounding atoms’
geometry. As such it captures all polarization and many-body
effects, as well as charge transfer, in one streamlined scheme.
The approach avoids perturbation theory and thus benefits
from a clear treatment of short-range interactions. Moreover,
DL_FFLUX breaks free from the rigid-body constraints of
advanced polarizable force fields. The well-defined atom at the
heart of DL_FFLUX enables physics-based machine learning.
It uses kriging instead of neural nets, thereby reducing the
training data size. Finally, we point out DL_FFLUX’s
modularity: each energy term represents only the physical
phenomenon it describes and nothing else e.g., the electrostatic
energy is well defined. If this contribution is improved, then
the other nonelectrostatic terms will not be affected. Hence,
DL_FFLUX is systematically improvable; energy reliability
does not depend on fortuitous cancellation or compensation
between different force field terms, as is the case with classic
force fields.

2.5. Domain Decomposition (DD). There are several
approaches one can take to implementing MPI in a given
program. Discussed here is the domain decomposition (DD)
method.46 This method was chosen for DL_FFLUX primarily
because DD is already implemented in DL_POLY 4.08. The
domain decomposition method is relatively simple in principle.
In DD MPI, the simulation cell is partitioned into smaller cells
called domains such that each of the Np processes computes
some subset of the total system in parallel. Figure 2

demonstrates this concept for a simple two-dimensional
(2D) system: the space is split in half as there are two MPI
processes, where P = 0 and 1 denote the first and second
processes, respectively.
In the ideal case, Np domains would lead to a speed-up given

by

=t
t

Nparallel
1

p (7)

where t1 is the time on one single process (i.e., serial).
However, in practice, eq 7 is complicated by the need for
communications between domains. It is also possible that not
all of the code is parallelized and thus a more realistic equation
for speed-up is

Figure 2. Two-dimensional simulation cell split into two domains.
The dashed line represents the divide between the domains. The halo
of P = 0 is shown by the shaded area.
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t t N( )parallel

1 serial

p
serial comms p

(8)

where tserial and tcomms(Np), respectively, represent the time
spent in serial code and in MPI communications, the latter
being some possibly nontrivial function of Np. Serial code is a
hard limiting factor on speed-up. For example, if 10% of the
runtime is spent in serial code, then the maximum possible
speed-up is a factor of 10 according to Amdahl’s law. This
situation can only be improved by parallelizing any serial code.
MPI communications are typically necessary when calcu-

lations in a given domain require information from
neighboring domain(s) or for synchronization purposes,
among other reasons. In MD simulations, any pairwise (or
many-body) interactions between particles located on different
domains will require some degree of communication. In
practice, some particle i, located in a given domain, will interact
with all particles j that satisfy the condition rij < rcut, where rij =
|ri⃗j| is the distance between particles i and j, and rcut is the cutoff
radius. Any particle j that satisfies the cutoff condition but is
not in the same domain as i will require a communication
between the processes associated with the domains of j and i.
Information such as j’s coordinates and multipole moments
will have to be communicated. Note that communication is
also required in the DD method when a particle crosses the
boundary between domains during a simulation.
The way to deal with these communications is to construct a

so-called halo for each domain, which is shown in Figure 2. A
domain’s halo contains all of the information it needs about
neighboring domains. The data required by a process can then
be split into two parts: local and halo. The local part is the
information about the particles that reside in a process’ domain
and the halo is all of the extra information needed to compute
any interactions between particles in different domains. A halo
need only extend a distance rcut beyond a domain’s borders
because interactions between particles separated by a larger
distance are not computed. In practice, a halo typically extends
slightly further than rcut.
It is evident from Figure 2 that the smaller the rcut, the

smaller the halo. A useful ratio is given by eq 9

r
V

cut
3

Domain (9)

where VDomain is the volume of a domain. As this ratio
decreases, the proportion of particles in a given domain that
require communications also decreases. This ratio can be
decreased by reducing rcut but this may reduce the accuracy of
the simulation. Instead, the size of a domain can be increased.
This can be done by increasing the overall system size with a
fixed Np or by reducing Np for a given system size. For a given
system, there will come a point when increasing Np starts to
slow down the code due to the increased cost of
communications (note the optimal Np is highly system-
dependent). Another important factor to consider is load
balancing. If the density of the system is highly inhomoge-
neous, then different processes may have significantly different
amounts of computation to carry out, i.e., the computational
load is imbalanced. If this is the case, then some processes will
have to wait for others to finish, which negatively impacts
parallel performance. Provided the density is relatively
homogeneous, this issue should not occur when using domain
decomposition.

It is worth noting that the DD method must be extended if it
is combined with periodic boundary conditions (PBCs). In this
case, the DD halo must be combined with a PBC halo. Instead
of containing just particles from neighboring domains the halo
may also include image particles from neighboring image cells.
Figure 3 shows the full halo of the domain associated with P =

0 in the case of MPI and PBCs. The portion of the halo that
extends beyond the main simulation cell is the part that
contains image particles.

3. CODE STRUCTURE
3.1. Overview. DL_FFLUX is a FORTRAN90 code,

written as a modular attachment to the code DL_POLY
4.08.47,48 Note that some bug fixes from DL_POLY 4.09 have
been integrated into DL_FFLUX. DL_FFLUX implements the
FFLUX methodology and comprises 17 subroutines as well as
some changes to the DL_POLY source code to interface the
two. DL_FFLUX options can be set in the same way as typical
DL_POLY options using the CONTROL file. DL_POLY
provides the framework for the MD part of the code, i.e., the
parts of an MD simulation that are not changed by
DL_FFLUX. The role of DL_FFLUX can be split into two
parts. The first part makes predictions using kriging models
that have been trained prior to running the MD simulation. In
every time step, atomic IQA energies and multipole moments
(potentially up to hexadecapole moment) are predicted. The
multipole moments are fed into Ewald summation subroutines,
DL_FFLUX specific, as well as heavily modified versions of the
DL_POLY Ewald subroutines. The second part computes the
intramolecular forces that result from the gradient of the
predicted EIQA potential energy surface. Figure 4 demonstrates
a typical time step.
The flow diagram in Figure 4 does not imply that the

computation of intramolecular forces and the Ewald
summation is carried out simultaneously but rather that the
DL_FFLUX predictions feed into both sections of the code.
However, the two routines are independent and so they could
run concurrently, in principle. Concurrent computation is not
explored here but will be the subject of future work. Note that
the Ewald summation is a blend of colors as it involves a
mixture of DL_FFLUX, and modified DL_POLY, subroutines.

3.2. MPI. 3.2.1. DL_POLY. DL_POLY already implements
the DD method of MPI. However, the challenge remained of
suitably modifying the DL_FFLUX code to be compatible with
DL_POLY’s existing implementation. For a given time step in
a DL_POLY MD simulation, there are several places where

Figure 3. Two-dimensional simulation cell split into two domains.
The full halo of P = 0 is shown by the shaded area, accounting for
PBCs.
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calls to MPI routines are present. Most importantly, at the start
of a time step, the halos must be constructed, and at the end of
a time step, any particles crossing a domain boundary must be
relocated. MPI calls are also needed for the fast Fourier
transforms required in the reciprocal space part of the Ewald
summation as well as in I/O routines.
Full details of DL_POLY’s parallelization strategy can be

found in the user manual49 as well as in ref 50. However, a
brief overview is given here. At the beginning of a time step,
each domain calculates which of its particles each of its
neighbors will require in their halos. The information on these
particles is packed into a buffer and sent to the relevant
neighboring domain. Each domain can then build up its own
halo from the data it receives from its neighbors. The cost of
these communications is minimized by sending data in three
waves, that is, in the ±x, ±y, and ±z directions. Note that the
order of these waves does not matter.51 It is important to
mention here that DL_POLY actually divides domains further
into link cells. Each link cell has side lengths, l, which is as close
as possible to (but always greater than) rcut. Link cells enable
the construction of a link list for every atom. The link list is a
list of every atom inside a given atom’s cutoff radius. The main
benefit of the link list method over, for example, the Verlet
neighbor list relates to computational cost. The Verlet method
computes all pairs of distances, i.e., N(N − 1), to construct the
list of all pairs of atoms that interact. However, in the link list
approach, one divides space into so-called link cells
approximately of size Rcut such that, when constructing the
list of atoms that a given atom can interact with, one only has
to inspect the neighboring link cells (26 neighbors in three-
dimensional (3D)). Computing all pairwise distances for the
Verlet method is an O(N2) operation, whereas the link list
method turns out to be an approximately O(N) calculation.
However, the link cell method only becomes more efficient51

than the Verlet neighbor list when the number of link cells per
dimension is greater than 3 as it is only when this condition is
met that the method computes fewer than all pairwise
distances.
The final aspect of the DL_POLY DD implementation to

consider is the choice of indexing. Each process has a subset of
all of the relevant property arrays such as positions, velocities,

forces, etc. Approximately, the subsets will be of size natms/Np.
These arrays can either retain global indices or be indexed
locally.
In the global case, the indices of atoms do not change.

However, all loops must be altered so that each process
operates only on the indices corresponding to atoms that
reside in its domain. DL_POLY uses local indexing instead. In
this case, the arrays on each process are indexed from 1 to nlast,
which is the number of local atoms plus the number of halo
atoms on a given process. The variable natms, which stores the
total number of atoms in the system in the serial case, is
redefined on each process to be the number of local atoms in
that domain. This means that loops in the main code do not
need to be altered when going from serial to MPI, thus
preserving a single source code. However, this complicates
matters slightly as there needs to be a mapping from local to
global indices. It is also useful to have the reverse mapping.
This mapping is nontrivial, especially in the case of PBCs
because a global atom can appear multiple times in a domain’s
halo, which means that there may not be a unique mapping
from a global index to a single local index. This issue is solved
in DL_POLY by storing a list of the local indices and a local
list of global indices that have been sorted. A binary search
algorithm is then used to search the sorted list.

3.2.2. DL_FFLUX. One of the main parts of DL_FFLUX is
the IQA energy prediction and intramolecular force calculation
loop. This loop had to be modified to work with DD MPI. The
original structure of the loop is shown in Figure 5. There is a

loop over all natms local atoms. The IQA energy of atom i,
EIQA
i is predicted and then the force that is exerted by i on all

other atoms is computed in a second, interior loop. The force
calculation is subject to the constraint that atom j, the atom
that atom i exerts a force on, is part of the same kriging model
as i. For our current purposes, the term model is synonymous
with molecule, i.e., an atom can exert an IQA force on another
atom only if both atoms belong to the same molecule.
The routine has been changed in several ways as

demonstrated in Figure 6. Prior to any computation of
energies and forces, the globally indexed model arrays that
keep track of which atoms share a kriging model need to be
converted to local indices. Note that Figures 5 and 6 show only
the MODEL array for the sake of simplicity, but, in reality,
there are two arrays needed for this purpose. If this were not
done, then local indices would be fed into these arrays and
incorrect global indices would be returned. In other words,
DL_FFLUX would not keep proper track of which atoms
belong to the same model leading to incorrect predictions and
resulting forces. Note that while only the first “natms” entries
(the local part) of the MODEL array are needed for the force

Figure 4. Flow diagram demonstrating the stages of a typical
DL_FFLUX MD time step.

Figure 5. Pseudo code for DL_FFLUX IQA energy and force
calculation loop before modification.
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calculation in Figure 6, the rest of the array is required at a later
point and so it is necessary to convert to local indices for the
full array.
For the DD method to work properly, a given process must

compute all forces exerted on its local atoms by all local and
halo atoms. The original code in Figure 5 did not do this as
both loops were indexed from 1 to natms. Given the outer loop
corresponded to the atom exerting the force, only the forces
exerted on local atoms by local atoms would be computed.
This would pose an issue for any molecules that do not reside
entirely in a single domain. To resolve this issue, the inner loop
now occurs explicitly over all model atoms which, thanks to the
localization of the model arrays, could be local atoms or part of
the halo.
The other major change to the DL_FFLUX code concerns

the prediction of the multipole moments. In the case of point
charges, this is done in a routine called fflux_ewald. This
routine predicts atomic charges at every time step and then
feeds them into DL_FFLUX and modified versions of
DL_POLY’s Ewald routines to compute the long-range
electrostatics. In the serial case, moments are predicted in a
simple loop, as shown in Figure 7.

When PBCs are also included, there is a slight complication
as the image atoms also need charges. However, these are all
copies of main cell atoms, which means that the charges have
already been predicted. As such, the image atoms in the PBC
halo are just assigned the same charges as their main cell
counterparts without requiring extra predictions.
In the case of MPI, the modification to the loop is very

simple and is shown in Figure 8. The only difference here is
that the loop now runs to nlast rather than natms. This means
that charges are predicted for all local and halo atoms. This is
correct but involves some redundant work. The halo consists

of main cell atoms that reside in a neighboring domain, which
do require new charge predictions. However, it also consists of
image atoms, which may not require new charge predictions.
The impact of this redundant work is discussed in Section 4.
In the case of multipole moments of higher rank than point

charge, the construction of the multipole component of the
halo is done differently. Rather than re-predicting the halo
moments as in the case of point charges, the halo moments are
instead filled in by MPI communications. This is done in
exactly the same way as the rest of the halo is constructed. The
only difference is that it is done mid time step. Arguably this is
a less elegant solution than constructing every aspect of the
halo at the start of a time step. However, it does not appear to
impact performance. In the future, this could, with some
considerable restructuring of code, be integrated into the
DL_POLY halo construction. However, this would involve
considerable alteration of DL_POLY routines thus compro-
mising the modularity of DL_FFLUX.

4. RESULTS
Four systems were considered, which consist of water boxes of
different sizes: 5184 atoms; 10 125 atoms; 46 875 atoms, and
107 811 atoms. The dimensions of the boxes were chosen to
give approximately correct liquid densities at 300 K. All
simulations were carried out within the NVT ensemble using
the Nose−́Hoover thermostat with a 1 fs time step and a 9 Å
cutoff radius unless stated otherwise. Note that the simulations
also require nonbonded potentials, for example, Lennard-Jones
or Buckingham. For this work, Lennard-Jones potentials were
used for OO and OH with the following parameters: εOO =
0.753, σOO = 3.23, and εOH = 0.1063, σOH = 2.165 (units are
kJ/mol and Å for ε and σ, respectively). An MPI process
always binds to a single processor core. These four test cases
provide a reasonable range of system sizes. Unless stated
otherwise, all benchmarks were performed on a single node
comprising two Intel Xeon Gold 6152 “Skylake” chips, each
with 22 cores and a nominal clock speed of 2.10 GHz. The
node has 768 Gb of RAM.
The machine learning models used for these simulations

were trained on calculations of single molecules carried out at
the B3LYP/aug-cc-pVTZ level of theory. The geometries used
to train the models (as well as for the test set) were obtained
using ab initio molecular dynamics with the program CP2K.52

Thanks to recent advances in our training procedure using
adaptive sampling,20 the models are very compact (just 32
training points) while maintaining accuracy with a total root-
mean-square error (RMSE) of 1.3 kJ/mol on a test set of 500
points (the total RMSE is the sum of the RMSE for each
atom). The multipole moments are also well predicted. For
example, for the same test set, the RMSE of the oxygen charge
is 0.0007 e. Note that further improvements in training since
this work was done mean that the latest water model has 59
training points with an RMSE of 0.17 kJ/mol for the total
energy. The time to train the models was on the order of a few
hours (which is a one-off cost).
The focus of this paper is purely the performance of the

code in terms of timings and parallel efficiency. The quality of
the simulations as assessed by bulk properties is not discussed
as it will be the subject of an upcoming paper.
The Supporting Information (SI) provides extra information

such as Figures S1−S4, which examine how the runtime scales
as a function of system size for a given value of the number of
processes Np. Figures S1−S4 show the relationships for Np = 1,

Figure 6. Pseudo code for DL_FFLUX IQA energy and force
calculation loop after modification.

Figure 7. Original charge prediction loop.

Figure 8. Modified charge prediction loop.
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2, 4, and 8, respectively, with a range extending to more than
100 000 atoms. Second, Table S1 shows how the code scales
with cutoff radius (for the 107 811-atom system).
4.1. Optimization. Alongside parallelization, the

DL_FFLUX code has been extensively rewritten to be faster
and more memory-efficient when running in serial. This
section compares the serial un-optimized (original) and
optimized codes, that is, without any MPI. The optimized
code now uses up to a factor of 104 less memory for the
systems studied (the larger the system, the larger the saving).
The effects of optimization on the runtime are best
demonstrated by comparing timings and profiles of the serial
code before and after optimization. Time and memory
constraints of the un-optimized code22 mean that only the
smallest system (5184 atoms) could be studied prior to
optimization. More detail about the optimization is given in
Section S6 in the SI.
The profiles in Figure 9 are completely different. The un-

optimized profile is dominated entirely by DL_FFLUX, taking

99.8% of the runtime. After optimization, DL_FFLUX takes a
considerably more modest 32.2% of the runtime.
The timings in Table 1 also demonstrate large speed-ups

when running in serial. Results are reported in time taken for a

1 ns simulation with 1 fs time steps, and a 9 Å electrostatic and
van der Waals cutoff radius. Note that the original DL_FFLUX
code uses a different definition of the rank of electrostatic
interaction. Rather than L′, the original code uses L = lA + lB +
1, where lA and lB are the rank of the multipoles on atoms A
and B, respectively. In other words, in the (lA, lB) matrix of
possible interacting multipole moments, L refers to a triangle
while L′ refers to a square. This means that, for L = 2, for
example, dipole moments are enabled but only the monopole−
monopole and dipole−monopole (or dipole−monopole)

interactions are computed. Note that dipole−dipole inter-
actions are not computed because then L would be 1 + 1 + 1 =
3. However, for L′, we can say that the closest equivalent L′
value to L = 2 is L′ = 1, which computes also the dipole−
dipole interaction. As such, when comparing the old and new
DL_FFLUX it is important to recognize that the new code is
calculating many more electrostatic interactions as L (or L′)
becomes larger. Figure S5 in the SI examines the computa-
tional cost of increasing L′ in more detail.

4.2. Strong Scaling. Strong scaling is the scaling of
runtime with the number of processes (note that Section 1 in
the SI shows weak scaling, i.e., scaling of runtime with problem
size at fixed Np). All four systems were run at each of the three
levels of electrostatic interaction (L′ = 0, 1, and 2) at various
values of Np to study the strong scaling.
The strong scaling data for all four systems are shown in

Figure 10. It is evident that all systems behave in a broadly
similar way although the overall quality of the scaling tends to
be better as system size increases. Larger systems are also able
to utilize more processes (as the cell can be divided into more
domains) and so often achieve a greater overall speed-up.
From now on, data will not necessarily be shown for all
systems to avoid repetition. Any data not given in the main
paper can be found in the SI. We will now focus on the largest
system (107 811 atoms) to analyze the scaling in more depth.
Any discussion generalizes to all four systems unless stated
otherwise.
Figure 11 provides a different measure of the quality of the

scaling, plotting t1/tNp
(the time when run on a single process

compared to that on Np processes) rather than time itself. This
ratio is the factor by which the code has been sped up by going
from serial to Np processes. In the perfect case, this will simply
be equal to Np.
It is clear from Figure 11 that L′ = 0 scales worse than L′ = 1

or 2. This is generally the case for all four systems as can be
seen in Figures 10 and S6−S8, which report on the remaining
three systems. Profiling revealed the culprit is the aforemen-
tioned redundant prediction work being done in the case of L′
= 0, which is avoided when implementing MPI communica-
tions for higher-rank multipole moments. In the case of L′ = 0,
the predictions scale poorly with Np, whereas, for L′ = 2, they
scale considerably better.
The poor scaling of predictions for L′ = 0 shown in Figure

12 is exacerbated by the fact that the predictions take on
average 26% of the runtime, while for L′ = 2, the predictions
take on average 9% of the runtime. Note L′ = 1 is not
considered here as initial profiles showed performance
essentially identical to L′ = 2. There is more actual work to
be done by the prediction routine for L′ = 2 because there are
considerably more multipole moments to predict per atom.
However, the removal of the redundant work and the
massively increased cost of the electrostatics routines means
that predictions take up a relatively small fraction of the overall
work. This analysis suggests that it would be beneficial to
remove the redundant work associated with the point charge
halo in the same way as is done for higher-rank multipole
moments. This will be the subject of future development of
DL_FFLUX.
Until now, all tests have been confined to a single node.

However, the performance of MPI across multiple nodes is a
key metric. As such, the largest system (107 811 atoms) was
studied on a set of nodes, each with two 12-core Intel Xeon

Figure 9. Profiles of the un-optimized (left) and optimized (right)
code broken down into DL_FFLUX and DL_POLY contributions.
The charts are not to scale, the right-hand-side chart represents a
computation that is ∼75 000× faster than the left-hand-side chart.

Table 1. Comparison of Time Taken to Perform a 1 ns
Simulation of the 5184-Atom Water Box Using the Original
(Un-Optimized) and Optimized Codesa

un-optimized optimized speed-up

L = 1/L′ = 0 250 years 29.0 h 75 569×
L = 2/L′ = 1 1709 years 4.7 days 132 811×
L = 3/L′ = 2 6573 years 6.5 days 369 352×

aNote that the un-optimized timings are estimates based on single
time step simulations.
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Figure 10. Strong scaling, both actual and perfect, on log−log axes for all four water boxes: (top left) 5184 atoms in a (38 Å)3 box; (top right)
10 125 atoms in a (47 Å)3 box; (bottom left) 46 875 atoms in a (78 Å)3 box; and (bottom right) 107 811 atoms in a (103.5 Å)3 box.

Figure 11. Speed-up of the whole code relative to serial for the
107 811-atom water box.

Figure 12. Speed-up of the DL_FFLUX prediction routine only
relative to serial for the 107 811-atom water box.
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E5-2690 v3 “Haswell” chips with a nominal clock speed of 2.6
GHz and 128 Gb RAM per node as well as Mellanox
InfiniBand. All timings in Figure 13 (apart from serial) have
been obtained on at least two nodes, e.g., Np = 2 means one
process per node, where each process still corresponds to a
single core. The scaling in the right-hand-side graph of Figure
13 is comparable to that in Figure 11 up to Np = 40 (the
maximum in Figure 11) despite the processes being split over
multiple nodes in Figure 13. This shows that the internode
communications in DL_FFLUX are not overly costly and do
not prohibit scaling across multiple nodes, at least for small
numbers of nodes. For L′ = 2, the best speed-up increases from
a factor of 23× (Figure 11) to a factor of 44× using four nodes.
4.3. Computational Cost of DL_FFLUX. Perhaps the

most relevant question pertaining to DL_FFLUX’s perform-
ance is how much extra computational cost the methodology
incurs over more traditional MD techniques (note that we do
not compare to ab initio methods here as the test systems used
are too large). DL_FFLUX is based on DL_POLY, so a
comparison between the two codes is a natural one to draw.
There are multiple ways to explore this question. First, a
“direct” comparison can be drawn between “plain vanilla”
DL_POLY with a commonly used water potential and
DL_FFLUX. To this end, we performed simulations using
DL_POLY 4.09 and a flexible simple point charge (SPC)
water potential33 for the 107 811-atom water box at L′ = 0, 1,
and 2. For the L′ = 1 and 2 comparisons, the SPC potential
was modified to include fixed dipole and quadrupole moments
(based on average DL_FFLUX values). The SPC and
DL_FFLUX models have in common that they are flexible.
However, the flexibility in DL_FFLUX arises from N-body
intramolecular interactions53 (composed of intra- and
interatomic interactions). DL_FFLUX also has fully polar-
izable multipole moments. We mention here that kriging takes
care of predicting the outcome of the polarization process (i.e.,
a multipole moment corresponding to a given geometry)
rather than the polarization process itself (i.e., polarizability).
We note that there are more recent, improved water potentials
other than SPC that include polarization in various ways.54,55

Figure 14 shows the ratio of runtime in DL_FFLUX
compared to DL_POLY, the latter using the modified SPC
potential. The ratio is taken at all values of Np (Np = 1, 2, 4, ...)
and then averaged to produce the values in Figure 14. For
example, a value of 2 means that DL_FFLUX is on average 2×
slower than DL_POLY. Figure 14 shows that, despite a

slowdown at L′ = 0, DL_FFLUX is in fact quicker on average
than plain DL_POLY, once higher-rank multipole moments
are enabled. The speed-up with higher-rank multipole
moments is largely due to some optimization of the Ewald
routines in DL_FFLUX. Figure 14 is compelling evidence that
DL_FFLUX can (and has been) integrated into a traditional
MD package while incurring minimal extra computational
overhead. This means that DL_FFLUX is now competitive in
terms of speed while offering a methodology with a rigorous
theoretical grounding.
The performance of DL_FFLUX relative to DL_POLY can

be analyzed further by breaking the code into the DL_FFLUX
and DL_POLY components. This is done by profiling the code
and comparing the performance of the DL_FFLUX sub-
routines to the DL_POLY subroutines. This analysis allows
examination of the strong scaling of the MPI in both parts of
the code separately. This is shown for L′ = 0 and 2 for the
107 811-atom example. Figure 15 shows that in both cases,
DL_FFLUX and DL_POLY scale in a similar way, i.e., the DD
MPI implementations in both sets of routines are well
integrated with each other. The reason that DL_FFLUX
scales worse than DL_POLY in the L′ = 0 case is once again
due to the redundant work when predicting point charges.
Note that the scalability of the MPI in various versions of
DL_POLY has been tested extensively in the past.56,57

Figure 13. Strong scaling on multiple nodes for the 107 811-atom system. Log−log scaling (left) and speed-up relative to serial (right).

Figure 14. Time for a DL_FFLUX simulation divided by the time for
a DL_POLY simulation with a flexible SPC water potential using the
107 811-atom water box. Averaged over all values of Np tested.
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Profiling also gives us some insight into the percentage of
the total runtime spent in DL_FFLUX and DL_POLY
routines (as well as MPI-specific routines), which is presented
in Figure 16 as pie charts. For the sake of clarity, just the
profiles for Np = 1, 8, and 36 are shown; the rest of the pie
charts appear in Figure S9 as well as a more detailed “sample”
breakdown in Figure S10 showing the relative timings of the
top 5 most costly subroutines. Figure 16 gives a little more
context to the numbers presented in Figure 14. The fraction of
time spent in DL_FFLUX becomes much less important as L′

increases and the electrostatics starts to dominate, consistent
with the trend in Figure 14. In all cases, DL_FFLUX
represents a minority of the overall runtime.
Figure 16 also provides some insight into the deterioration

of the strong scaling seen in Figure 10 as Np increases. As
expected, the fraction of time spent in MPI routines increases
as Np increases. This is because, as Np increases for a fixed
system size, the domain size decreases, which means that the
ratio in eq 9 increases. This in turn means that each process
has to communicate information about a greater fraction of the

Figure 15. Speed-up, relative to serial, of DL_FFLUX and DL_POLY routines at L′ = 0 (left) and L′ = 2 (right).

Figure 16. Profiles of the code at L′ = 0 (top row) and L′ = 2 (bottom row). Breakdowns are shown for Np = 1, 8, and 36 going from left to right.
The charts are not to scale, as Np increases the total time taken decreases.
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atoms in its domain. There is also the issue of the number of
link cells per domain. DL_POLY has a built-in warning system
that tells the user when the number of link cells per domain is
smaller than 3, i.e., when the link cell method is not efficient.
For the 107 811-atom system, this warning is given only when
Np = 16. Note that the warning is given for 16 and but not for
27 because, in the latter case, the space can be broken into
three domains per dimension (3 × 3 × 3), whereas for Np =
16, the decomposition is 2, 2, 4, i.e., there is an asymmetry in
the dimensions leading to fewer link cells per domain in some.
For the smaller systems, this warning is given considerably
more frequently. In other words, there is a nonlinear
relationship between the cost of communications, tcomms (the
final term in eq 8), and Np. This is demonstrated more
explicitly in Figure S11.
4.4. Best Case Timings. Presented in Figure 17 are the

best case timings for each of the four systems in nanoseconds

per day (ns/day). This is an informative, practical metric as the
behavior of water is well reproduced and studied at the scale of
nanoseconds. More complex systems may require simulations
on the order of tens or even hundreds of nanoseconds.
Between a day and a week is a realistic time frame for a
simulation. It is therefore clear from Figure 17 that
DL_FFLUX is now capable of studying the behavior of
systems up to approximately 105 atoms in a reasonable time
frame.

5. CONCLUSIONS
The advance presented here is that of feasibility. The rigorous
methodology of FFLUX based on quantum chemical topology
has already been shown to be accurate for small systems.
However, the practicality of applying the method to large-scale
molecular dynamics has been hampered by computational cost.
The newly optimized and parallelized DL_FFLUX suffers from
no such issues. DL_FFLUX can now comfortably and
competitively operate on systems composed of up to 105

atoms. With flexible molecules and high-rank long-range
electrostatics based on polarizable atomic multipole moments,
DL_FFLUX is now poised to tackle problems of real-world
significance accurately and in reasonable time frames. We have
also demonstrated that DL_FFLUX is a lightweight add-on to
the standard DL_POLY package, incurring little computational
overhead. DL_FFLUX is also well integrated into the existing

DL_POLY MPI, preserving the quality of the scaling with
respect to number of processes.
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