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ABSTRACT
Recent work in note onset detection has centered on deep learning
models such as recurrent neural networks (RNN), convolutional
neural networks (CNN) and more recently temporal convolutional
networks (TCN), which achieve high evaluation accuracies for on-
sets characterized by clear, well-defined transients, as found in
percussive instruments. However, onsets with less transient pres-
ence, as found in string instrument recordings, still pose a relatively
difficult challenge for state-of-the-art algorithms. This challenge is
further exacerbated by a paucity of string instrument data contain-
ing expert annotations. In this paper, we propose two new models
for onset detection using bidirectional temporal and recurrent con-
volutional networks, which generalise to polyphonic signals and
string instruments. We perform evaluations of the proposed meth-
ods alongside state-of-the-art algorithms for onset detection on a
benchmark dataset from the MIR community, as well as on a test
set from a newly proposed dataset of string instrument recordings
with note onset annotations, comprising approximately 40 minutes
and over 8,000 annotated onsets with varied expressive playing
styles. The results demonstrate the effectiveness of both presented
models, as they outperform the state-of-the-art algorithms on string
recordings while maintaining comparative performance on other
types of music.
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1 INTRODUCTION
Onset detection is a crucial task in the field of music information
retrieval, as it provides information about the timing and rhythm of
a musical piece. Although the rapid advancements in deep learning
have led to the development of powerful algorithms that can un-
derstand and process music at a much deeper level, onset detection
still holds an important position in variety of areas in the educa-
tional [16], analytical [17] and creative industries [18]. While onset
detection algorithms for percussion and monophonic instruments
have been well established, detecting onsets in string instruments
remains challenging. In this paper, we evaluate several approaches
that combine bidirectional temporal and convolutional recurrent
networks to detect onsets in general and specialised musical scenar-
ios which include string instrument recordings. We evaluate our
methods on a new dataset of quartet, trio, duet, and solo (QTDS)
ensemble recordings with note onset annotations, as well as an
extended version of the Böck dataset [7] which includes a range of
solo instrumental recordings andmusical mixtures. In this study, we
propose deep learning models, designed to exceed the performance
of existing state-of-the-art methods concerning onset detection
accuracy on varied instrumentation as well as for string instru-
ments, with a particular emphasis on their application to the newly
proposed QTDS set with onset annotations.

1.1 Background
Event detection is a fundamental task in music information re-
trieval (MIR), which aims to identify the exact time points when
musical events, such as notes or chords, begin. Accurate onset
detection is crucial for various applications, including music tran-
scription, beat tracking, and music synchronization. Over the years,
numerous methods have been proposed for onset detection, rang-
ing from digital signal processing techniques [2, 11] to more re-
cent machine learning approaches [3, 22, 25]. Among these, deep
learning-based methods have shown great potential in improving
the performance of onset detection systems.

Eyben et al. [2010] employed an adaptive thresholding algorithm
combined with a recurrent neural network (RNN) for onset detec-
tion, which represented a significant advancement in the field of
MIR. Prior to their work, onset detectionmainly relied on signal pro-
cessing techniques and hand-crafted features, which often lacked
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the ability to adapt to varying music genres, recording conditions,
or instrumentations. Schlüter and Böck [2014] introduced the use
of convolutional neural networks (CNN) for onset detection, en-
abling their system to recognize local patterns and structures within
the input data that were difficult to capture with RNNs. Although
CNNs can struggle to fully encapsulate the long-range temporal
dependencies present within music signals, RNNs are capable of
modelling longer dependencies at the cost of encountering chal-
lenges related to vanishing gradients during training [19]. Vogl et
al. [2017] proposed the use of convolutional bidirectional recurrent
neural networks (CBRNN) implementing a general onset detection
pipeline of feature extraction, event classification and peak picking
for the task of drum transcription. The authors reported higher clas-
sification results using the CRNN models compared to the baseline
CNN and BRNN systems.

More recently, temporal convolutional networks (TCN) have
emerged as an alternative approach that combines the benefits of
both convolutional and recurrent layers, offering a more suitable
solution for modelling temporal sequences in music [1]. Fonseca et
al. [2021] showed promising results using a TCN architecture pro-
posed in Böck and Davies [2020] for onset detection of percussion
instruments. The original TCN was used in a multi-task learning
approach for the task of joint beat, downbeat and tempo detection
which demonstrated higher performance compared to other deep
learning architectures in the literature. To date, these neural net-
work (NN) architectures have not been evaluated together, making
it difficult to assess the extent of performance differences in the
task of onset detection across a variety of challenging musical data.
In this paper we implement and compare the different architec-
tures using a general purpose Böck dataset [7] as well as a newly
proposed dataset of string quartet instruments.

1.2 Motivation
This study aims to investigate the effectiveness of different RNN,
CRNN, and TCN architectures for the task of onset detection. We
seek to evaluate the performance of these architectures in compari-
son to methods proven to be well suited for musical event detection,
as well as models proposed for other music information retrieval
tasks (e.g., beat and downbeat detection). We additionally explore
the influence of incorporating string quartet recordings into the
training sets on the model performance and propose a new dataset
of string ensemble performances to advance future work in MIR.

The reasoning for comparing RNN, CRNN, and TCN methods
in the context of music onset detection is as follows. RNNs are
designed to manage sequential input, making them particularly
suitable for tasks involving time-series data, such as natural lan-
guage processing or audio signal processing, including music onset
detection. While CNNs are adept at identifying local patterns and
spatial information, CRNNs combine the strengths of both CNNs
and RNNs, enabling them to capture both spatial and temporal
information. This fusion of capabilities can be advantageous in
applications like music onset detection, where processing complex
data is required. To illustrate the differences between these models,
the comparison between modes of operation of RNNs, CNNs, and
CRNNs is illustrated in Figure 1 using an audio spectrogram input.
Temporal convolutional networks offer another suitable solution for

Figure 1: Demonstration of differences inmodes of operation
of RNNs, CNNs, and CRNNs (adapted from the original ver-
sion [25]) on an audio spectrogram excerpt. Shaded regions
denote target spectral frames within input subsequences.

modelling temporal sequences in music and are capable to model
longer-range dependencies with less memory and computational
requirements to RNNs. TCNs are comprised of dilated (i.e., with
holes) convolution layers that maintain consistent input and output
lengths, employing convolutions across the temporal dimension
to discern time-dependent relationships in the input. TCNs are
designed with skip connections, which help maintain a smooth
gradient flow during training. This feature mitigates the vanishing
gradient problem that often plagues RNNs [14], and allows TCNs
to learn complex patterns in data more effectively.

The remainder of this paper is structured as follows: Section 2
introduces the proposed neural network models, while Section 3
provides a summary of the evaluation process. Section 4 presents
the results and accompanying discussion, and finally, Section 5
presents the conclusions and directions for future work.

2 METHOD
Four different NN based systems are implemented. The systems
use the same onset detection pipeline, where input features are
fed into a model followed by a peak picking stage to determine
the onset candidates as defined in Equation (3). The systems are
inspired by architectures used for drum transcription in [25] and
beat detection in [5]. All models are implemented using TensorFlow
Python library1 unless specified otherwise.

2.1 CRNN-a
In the proposed CRNN architecture, the model consists of two
convolutional layers, followed by a bidirectional gated recurrent
unit (GRU) layer, and a final softmax layer with two outputs. The

1https://www.tensorflow.org/
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recurrent layers are implemented after the initial convolutional lay-
ers to provide the network with information about the structural
patterns present in the data. All layers are time distributed to pro-
cess every time-step of a sequence independently and use rectified
linear unit (ReLU) activations. The two convolutional layers use
32 filters each, with 2 × 2 kernels with batch normalisation and
2 × 2 max pooling with same padding. A single recurrent GRU cell
layer uses 96 filters with 2 × 2 kernels and dropout rate [24] of 0.15.
The network uses a spectral context of 10 frames either side (𝜅=21)
of the current target frame (𝑥𝑡−10 : 𝑥𝑡+10) for each time-step and is
trained on sequences of length 100 (illustratively shown in Figure 1).
The context of 21 frames and sequences of length 100 have been
shown to perform well on individual instrument recordings in [25].

2.2 BTCN-a
The proposed bidirectional TCN architecture consists of a series
of time-distributed layers, followed by a bidirectional GRU layer
and an output softmax layer. The main component of TCN is imple-
mented non-causally, meaning that dilated convolutions extend in
both directions (i.e., backwards and forwards in time of the current
frame). The first two convolutional layers share the same parame-
ters as CRNN-a. The TCN uses a single residual block with filter
size of 64 and 6 dilation rates ranging from 20 to 25 time frames
with a dropout of 0.15. The output layer uses softmax activation to
obtain the onset predictions. The same spectral context of 𝜅 frames
and sequence length of 100 is used.

2.3 TCN-b
The TCN-b system is based on the architecture proposed in [5] and
adapted for the task of onset detection. The baseline TCN-b consists
of 2D convolutions, max pooling, dropout, and TCN architecture
from [5]. The network uses the same spectral context as previous
systems with 10 frames either side of the current target frame. A
dropout of 0.15 is used with exponential linear unit (ELU) [10]
activations. The network is implemented with 11 layers and filter
size of 16 with dilations ranging from 20 to 210 time frames. Finally,
a softmax layer with 2 units is applied to produce the final output.

2.4 BTCN-b
The BTCN-a system uses the same general architecture as TCN-b
system proposed in [5] but instead uses time distributed layers with
𝜅 frames of spectral context and is trained with sequences of length
100 to be comparable with the CRNN-a and BTCN-a models.

2.5 CNN and BRNN
In addition to the above, a BRNN [4] approach and a CNN [20]
approach available in the madmom Python library [6] were used.
Both algorithms are used with default parameters and use built-in
peak picking method.

2.6 SuF and CoF
The SuperFlux (SuF) [9] algorithm calculates the difference between
the short-time magnitudes of adjacent spectral frames by incorpo-
rating a spectral trajectory-tracking stage to the common spectral
flux algorithm. This method was specifically designed for music

signals featuring soft onsets and the vibrato effect in string instru-
ments. The ComplexFlux (CoF) [8] algorithm builds upon the SuF
approach by incorporating a local group delay, which enhances
the method’s robustness to fluctuations in the loudness of stable
tones. Both approaches are used with default algorithm parameters
and default logarithmic spectrogram parameters from the mad-
mom Python library. Peak picking for SuF and CoF approaches is
described in Section 2.8.

2.7 Input Features
To process an audio file with different NN models, the file must
be systematically divided into frame-by-frame spectral features.
Initially, the input audio (16-bit 44,100 kHz mono WAV files), is
segmented into 𝑇 frames utilizing an 𝑛-sample (𝑛 = 2048) Hanning
window with a specified 𝑛

4 hopsize. Subsequently, a frequency rep-
resentation for each frame is generated using the magnitudes of
a discrete Fourier transform (DFT), resulting in an 𝑛

2 ×𝑇 spectro-
gram. A logarithmic frequency representation for each frame is
generated following a process similar to the one described in [25].
By employing twelve triangular filters per octave, the magnitudes
of a DFT are converted to a logarithmic scale ranging from 20 Hz to
20 kHz. This produces a 𝐹 x T logarithmic spectrogram (𝐹=84) used
in as input fed into the NN models in separate configurations for a
TCN and the models that implement bidirectional connections.

2.8 Peak Picking
As in most of the related work, peak picking is used to identify
discrete onset candidate locations from the framewise activation
function𝑦 with time-steps 𝑡 , which represents the output of the NN-
based onset detection models. The output peaks are selected using
the maximum value within a local window and above a threshold 𝜏 .
We employ a peak picking method by [12] and revised in [21]
to determine 𝜏 . This involves computing the mean of a window
using a user-defined constant 𝜆, a maximum value 𝑡max, a minimum
value 𝑡min, and a window width controlled by 𝛿 as follows:

𝜏𝑡 = mean(𝑦𝑡−𝛿 : 𝑦𝑡+𝛿 ) ∗ 𝜆, (1)

𝜏𝑡 =

{
𝑡max, 𝜏 > 𝑡max

𝑡min, 𝜏 < 𝑡min .
(2)

To obtain the onset classification vector 𝑂 , we evaluate each time-
step of 𝑦 to determine if it is greater than or equal to every other
value within a specified number of frames, controlled by 𝜃 , and if
it surpasses the threshold value 𝜏 :

𝑂𝑡 =

{
1, 𝑦𝑡 == max(𝑦𝑡−𝜃 : 𝑦𝑡+𝜃 ) & 𝑦𝑡 > 𝜏𝑡

0, otherwise.
(3)

2.9 Training
All models are trained using Adam optimiser [15] and an initial
learning rate of 0.0001. The learning rate is fixed and is reduced
by a factor of 0.2 whenever the F-measure (i.e., a standard metric
assessing onset detection algorithms) on the validation set shows
no improvement for 3 consecutive epochs. The data is divided by
track into 70% training, 15% validation, and 15% testing sets. The
training set is used to optimise each model and the validation set
is used to prevent overfitting and to optimise the peak-picking
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parameters for the F-measure calculation. Training is stopped if no
improvement in F-measure on the validation set is observed for 10
consecutive epochs or if a maximum of 100 epochs have elapsed. All
bidirectional models were trained with minibatch gradient descent
and batch size of 32. The TCN model is trained on full sequences
(i.e., recordings) with a batch size of 1.

3 EVALUATION
In this section, we present the evaluation methodology used to
assess the performance of various NN models in detecting onsets
across a range of real world recordings of musical mixtures as
well as string quartet instrument recordings containing challenging
playing styles. The evaluation is conducted on two datasets: the
newly constructed quartet, trio, duet, and solo (QTDS) set, and the
Böck set, a general-purpose dataset from [7]. The QTDS set features
recordings of string ensembles performing in different musical con-
ditions, while the Böck set contains a variety of solo and mixed
music excerpts. Similarly to other work in event detection [7, 25] a
cross validation strategy is implemented. If testing data is biased
towards certain examples, it may misrepresent system performance.
To prevent this, cross-validation divides the data into subsets. This
mitigates bias and enhances result reliability by averaging perfor-
mance across multiple subsets. We follow a 5-fold cross validation
strategy on all datasets and report on mean precision, recall and F-
measure scores which are taken across tested folds for each system
under evaluation.

3.1 Datasets
3.1.1 QTDS Set. To investigate the performance of different NN
models on the challenging onsets produced by string instrument
in a variety of performance styles, a new dataset of note onset
annotations is constructed from the selected quartet, trio, duet,
and solo ensemble recordings part of the Virtuoso Strings dataset.2
We refer to the chosen recordings, along with their corresponding
onset annotations curated for the purposes of this project, as the
QTDS dataset. The contents of QTDS are summarized in Table 1.
The dataset includes isolated recordings of first and second violins,
viola, and cello performing the following four QTDS excerpts: a
quartet excerpt from Ludwig van Beethoven’s Op. 59 No. 3 Finale
(bars 210–271); a trio excerpt from Ernő Dohnányi’s Op. 10, Marcia
(bars 1–20); a duet excerpt from Amadeus Mozart’s K424 mvt. 3
var. 2 (bars 32–48); and solo performances of the entire Finale of
Joseph Haydn’s string quartet Op. 74 No. 1 (285 bars). The QTDS
excerpts were performed under three different musical conditions
representing various interpretation instructions, chosen to span
a wide range of performance types. The normal condition (NR)
represents a concert-style performance. The speed condition (SP)
represents performances that include spontaneous accelerando
and decelerando initiated by a single musician (i.e., a designated
leader). The deadpan (DP) condition represents performances with
minimal expression in tempo and articulation. The 29 files in the
QTDS set have a total length of approximately 41 minutes and
have 8,254 annotated onsets. To enable future comparisons, the
manually curated annotations for all instruments are publically

2https://github.com/arme-project/virtuoso-strings

Ensemble Composer Excerpt Bars Dur. Onsets
Quartet Beethoven Op. 59 No. 3 Finale 210–271 12.32 2908
Trio Dohnányi Op. 10, Marcia 1–20 7.01 1297
Duet Mozart K424 Mvt. 3 Var. 2 32–48 3.47 644
Solo Haydn Op. 74 No. 1 1–285 18.24 3405

41.05 8254
Table 1: Quartet, trio, duet, and solo (QTDS) dataset informa-
tion showing durations (in minutes) and numbers of anno-
tated onsets for each set of ensemble recordings. Bottom row
shows total number of onsets and length of recordings.

available for download together with music score excerpts through
the accompanying website.3

3.1.2 Böck Set. This dataset proposed in [7] consists of 321 files
with a total length of 102 minutes and 25,927 onsets. It is a gen-
eral purpose dataset which includes a variety of solo and mixed
music excerpts. The types of audio recordings in the dataset are
grouped into the following categories: complex mixtures (193 files),
pitched percussive (60 files), non-pitched percussive (17 files), wind
instruments (25 files), bowed strings (23 files), and vocal (3 files).
To evaluate pretrained onset detection models from the publically
available madmom Python library we separate 63 recordings from
the Böck set for testing. For reproducibility, we select only record-
ings labelled as test files and mark this test set with a † symbol.
While these files might have been used in the training of madmom
models, the results on this subset should demonstrate a general
performance of these methods on the Böck set.

To test the improvement of the systems with new training string
instrument data marked with an ∗ symbol, the Böck dataset [7] is
extended with 12 recordings of a quartet (Q) ensemble perform-
ing together the excerpt of the Haydn Op. 74 No. 1 Finale (bars
1–49) under three different conditions (i.e., NR, SP, DP). The added
data consists of approximately 10 minutes of violin, viola and cello
recordings and 1,598 note onsets. While these recordings are sepa-
rate from the ones used in the QTDS test set, there exists an overlap
with the score in the first 49 bars of the test set performances of
the Haydn’s Finale.

3.2 Evaluation Methodology
We present a detailed analysis of the performance of the evaluated
neural network models from two perspectives. Firstly, we explore
the performance of the models on various subsets of the datasets,
considering different ensemble types, performance styles, and musi-
cal conditions. This analysis aims to provide a deeper understanding
of the models’ strengths and weaknesses in detecting onsets un-
der diverse circumstances. Furthermore, it offers valuable insights
into the generalisability of the models and their ability to adapt to
various musical contexts, ultimately guiding future research and en-
hancements in onset detection techniques. Secondly, we investigate
the model capabilities in detecting onsets for each instrument in the
string ensembles, including the first and second violins, viola, and
cello. This examination helps to better understand performance of
different models with respect to distinct timbral characteristics and

3https://github.com/arme-project/onset-detection-for-strings
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Böck set F-measure Precision Recall
BTCN-a 0.816 0.835 0.836
CRNN-a 0.816 0.855 0.815

TCN-b [5] 0.812 0.868 0.793
BTCN-b [5] 0.786 0.844 0.774

BTCN-a* 0.827 0.895 0.795
CRNN-a* 0.822 0.882 0.800

TCN-b* [5] 0.816 0.875 0.791
BTCN-b* [5] 0.823 0.887 0.797

Table 2: Onset detection results on the Böck dataset [7] for
models trained (where applicable) using the Böck dataset [7].
Models marked with an * included string quartet (Q) record-
ings in their training sets.

Böck test set† F-measure Precision Recall
SuF† [9] 0.745 0.717 0.845
CoF† [8] 0.735 0.706 0.844

BRNN† [4] 0.703 0.902 0.613
CNN† [20] 0.878 0.944 0.835

Table 3: Onset detection results on the fixed test subset (†)
from the Böck dataset [7] for models trained (where applica-
ble) using the Böck dataset.

playing techniques of various instruments, and also highlights po-
tential areas for improvement and optimization in onset detection
tailored to each specific instrument.

We employ the conventional F-measure evaluation metric, which
is derived from precision and recall. True positive, false positive and
false negative onset candidates are considered valid if they occur
within a 50𝑚𝑠 tolerance window of the ground truth annotations.
Onsets that occur within 30𝑚𝑠 of each other aremerged into a single
onset at the middle position. The reported results are generated
by sweeping the threshold parameter 𝜆 in the peak picking phase
and selecting the value that produces the highest F-measure on the
corresponding dataset.

4 RESULTS AND DISCUSSION
4.1 Subset Results
4.1.1 Böck Set. The results of the onset detection models on the
Böck dataset [7] are presented in Table 2. Overall, the results demon-
strate that the evaluated models yield comparable performance in
detecting onsets on the Böck dataset. Models that include string
quartet recordings in their training sets tend to have slightly better
performance, suggesting that incorporating diverse training data
may improve onset detection capabilities. The F-measure values
range from lowest 0.786 for the baseline BTCN-b to highest 0.827
for the proposed BTCN-a architecture. Additionally, the inclusion
of string quartet (Q) recordings in the training set resulted in a
performance improvement for all proposed models, demonstrating
the value of using additional string instrument data for training. In
comparison to the baseline methods, the proposed models achieved
competitive or better performance, highlighting the effectiveness

QTDS set F-measure Precision Recall
BTCN-a 0.882 0.858 0.909
CRNN-a 0.886 0.856 0.923

TCN-b [5] 0.870 0.835 0.911
BTCN-b [5] 0.891 0.872 0.914

SuF [9] 0.898 0.869 0.930
CoF [8] 0.892 0.865 0.922

BRNN [4] 0.778 0.926 0.679
CNN [20] 0.867 0.787 0.973
BTCN-a* 0.906 0.896 0.918
CRNN-a* 0.907 0.887 0.930

TCN-b* [5] 0.874 0.847 0.907
BTCN-b* [5] 0.897 0.878 0.919

Table 4: Results tested on the QTDS set and trained (where ap-
plicable) using themodified Böck dataset [7]. Models marked
with an * included string quartet (Q) recordings in their train-
ing sets.

of the bidirectional temporal and convolutional recurrent networks
in onset detection tasks.

Among the baseline methods evaluated on a fixed Böck test set
presented in Table 3, the CNN model [20] achieved the highest
F-measure, followed by ComplexFlux [8], and SuperFlux [9]. The
BRNN model [4] obtained the lowest F-measure, however main-
tained a high precision indicating a low number of false positive
onsets relative to the number of true positive onsets at the cost of
missing many true positives indicted by a low recall score.

4.1.2 QTDS Set. The onset detection results for the models tested
on the QTDS set, consisting solely of string instrument recordings,
are presented in Table 4. Models that include string quartet record-
ings in their training sets tend to have slightly better performance,
suggesting the importance of incorporating diverse training data.
In comparison to some baseline models, the evaluated models per-
form well in terms of F-measure, precision, and recall. These results
demonstrate the potential of the proposed models in onset detec-
tion tasks and provide insights into the importance of training data
diversity in improving model performance. In particular, the pro-
posed BTCN-a∗ and CRNN-a∗ models yield the highest F-measure
and recall scores among all evaluated models, indicating better
performance in detecting onsets in string ensembles. These results
suggest that even a small amount of string quartet training data
can significantly enhance the models’ capability to detect onsets
accurately in various musical contexts.

Including string quartet recordings (Q) in the training set re-
sulted in performance improvements for all proposed models when
tested on the QTDS set. In comparison to the baseline methods,
the proposed models achieved better performance, highlighting the
effectiveness of the bidirectional temporal and convolutional recur-
rent networks for onset detection in string instrument recordings.

4.2 Results Per Instrument
Figure 2 shows F-measures from different NN models for each in-
strument (i.e., first and second violins, viola, and cello). The results
show that the CRNNmodel achieved the highest average F-measure
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Figure 2: Mean F-measures per instrument tested on QTDS set.

score for all instruments. For the first violin, the BTCN-a∗ model
achieved the highest F-measure score, while for the second vio-
lin, the CRNN-a∗ model obtained the highest score. For viola and
cello, the CRNN-a∗ and the BTCN-a∗ models achieved the highest
F-measure scores, respectively. The results suggest that the CRNN
model is generally effective in detecting onsets in string instru-
ments, while the BTCN-a∗ and CRNN-a∗ models are effective for
the first and second violin, respectively. The improvement in F-
measure scores for models that include a small amount of string
training data, marked with an ∗ indicates that the incorporation of
string data into the training is capable of generalising to different
playing styles present in the QTDS set. Additionally, the signifi-
cantly lower onset detection performance on the cello recordings
is in line with similar findings in [23], where cello’s onsets were
found to be the most difficult to manually annotate and to detect
automatically. This could potentially be attributed to the cello’s rel-
atively thicker, low-tension strings which might lead to less distinct
note attack characteristics when fingers or the bow engage and
disengage with a string to initiate a new note. This finding should
be considered during further work on note event detection process
of string instruments as well as curation of new datasets.

5 CONCLUSIONS
In this paper, we proposed two new models for onset detection
using bidirectional temporal and convolutional recurrent neural
networks. We evaluated these models on a benchmark dataset from
the MIR community and a newly proposed dataset of string in-
strument recordings with varied expressive playing styles. The
results showed that the proposed models outperformed state-of-
the-art algorithms on string recordings while maintaining com-
parable performance on other real world music examples. These
results demonstrate the effectiveness of the models in tackling the
challenges posed by the detection of onsets in string instruments.
Additionally, the evaluations highlighted the importance of training
data in achieving high accuracy in onset detection, particularly for
string instruments where expert annotations are relatively scarce.
We found that including a small amount of string training data in
the proposed models improved their performance, emphasizing the
need for further data collection and annotation efforts in this area.
The new dataset with onset annotations represents a significant
contribution to this research field and will strengthen the resources
available to the community.
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