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LSTM-Based Distributed Conditional Generative Adversarial Network
For Data-Driven 5G-Enabled Maritime UAV Communications

Iftikhar Rasheed, Muhammad Asif, Asim Ihsan, Wali Ullah Khan, Manzoor Ahmed and Khaled Rabie

Abstract—5G enabled maritime unmanned aerial vehicle
(UAV) communication is one of the important applications of 5G
wireless network which requires minimum latency and higher
reliability to support mission-critical applications. Therefore,
lossless reliable communication with a high data rate is the key
requirement in modern wireless communication systems. These
all factors highly depend upon channel conditions. In this work,
a channel model is proposed for air-to-surface link exploiting
millimeter wave (mmWave) for 5G enabled maritime unmanned
aerial vehicle (UAV) communication. Firstly, we will present the
formulated channel estimation method which directly aims to
adopt channel state information (CSI) of mmWave from the
channel model inculcated by UAV operating within the Long
Short Term Memory (LSTM)-Distributed Conditional generative
adversarial network (DCGAN) i.e. (LSTM-DCGAN) for each
beamforming direction. Secondly, to enhance the applications
for the proposed trained channel model for the spatial domain,
we have designed an LSTM-DCGAN based UAV network, where
each one will learn mmWave CSI for all the distributions. Lastly,
we have categorized the most favorable LSTM-DCGAN training
method and emanated certain conditions for our UAV network
to increase the channel model learning rate. Simulation results
have shown that the proposed LSTM-DCGAN based network
is vigorous to the error generated through local training. A
detailed comparison has been done with the other available state-
of-the-art CGAN network architectures i.e. stand-alone CGAN
(without CSI sharing), Simple CGAN (with CSI sharing), multi-
discriminator CGAN, federated learning CGAN and DCGAN.
Simulation results have shown that the proposed LSTM-DCGAN
structure demonstrates higher accuracy during the learning
process and attained more data rate for downlink transmission
as compared to the previous state of artworks.

Index Terms—Maritime Unmanned aerial vehicle (UAV) Com-
munication, 5G, LSTM, mmWave, DCGAN.

I. INTRODUCTION

Advanced cellular technologies are intended to enhance
wireless communication in several aspects such as coverage
extension, massive connectivity, transmission latency, spectral
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efficiency, reliability, and energy efficiency [1]–[3]. For 5G
and beyond wireless systems, the millimeter wave (mmWave)
frequency spectrum is vital as it will enable various next-
generation wireless system applications. These applications
are airborne wireless networks, vehicular communication for
autonomous driving, and maritime unmanned aerial vehicles
(UAVs), which intend to provide higher data rates with
much lower network latency [4], [5], [6], [7]. However, the
main issue with mmWave based communication is higher
attenuation loss. To overcome this problem, multiple-input
multiple-output (MIMO) with highly-directional beamforming
is used to increase the cell throughput with reliability. More-
over, mmWave has a shorter coherence time than the sub-
6 GHz communication. Hence, 5G-mmWave communication
links are more time-sensitive, and they need frequent channel
measurements. The highly-directional beamforming requires
the exact information angle of arrival (AoAs) and angle of
departure (AoDs) to establish perfect beam alignment be-
tween transceivers. This channel estimation and beam training
process can increase communication overhead and impact
spectrum usage. Therefore, for better network performance,
it is very important to formulate an effective model with its
MIMO channels for the 5G-mmWave link [8], [9], [10].

Incorporating Maritime UAVs with 5G-mmWave can in-
crease data rates in both uplink and downlink transmission.
However, UAV based network over 5G-mmWave is a chal-
lenging job due to variable channel conditions during altitude
mobility [11]. In [12] UAV based base-station (BS) was
suggested, which can easily adjust its location using the of
results generated through entailed deep neural networks. One
of the major differences between terrestrial channel estimation
and air to ground channel estimation (A2G) is that terrestrial
channel modeling is relatively easy with a known condition,
whereas, in the A2G scenario, channel condition varies with
time, altitude, weather, speed, and geography. Therefore, the
channel model obtained from UAV at a given condition and
time cannot be generalized to other environments [13]. Due
to this, conventional channel estimation techniques like ray
tracing, geographically estimated statistical models are not
enough in A2G channel modeling for 5G connected UAVs.

Furthermore, mostly available A2G channel models are
generally rectified at the sub-6 GHz range, whereas, standard
A2G models for 5G-mmWave and their respective data are not
sufficient [14]. Therefore, for efficient and lossless transmis-
sion with the maximized data rate, there is a need for a closely
related A2G channel model. In this A2G based scenario, a
data-driven scheme can be employed where multiple UAVs
operating in non-overlapping regions can train their respective
model by extracting CSI during cellular service from their
regions to formulate a whole channel model (based on altitude,
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TABLE I
PREVIOUS WORK LIMITATIONS

Previous Works Drawbacks
Cheng et al. [19]

• A statistical conventional method.
• Only used for limited applications with

very poor latency.

Zhang et al. [21]
• Uses DCGAN Approach
• But it had higher convergence and latency

time.

Ye et al. [22]
• MD-CGAN distributed learning scheme.
• Very high latency and poor convergence.

Xia et al. [23]
• Independent CGAN at each UAV without

cooperation.
• Offers poor latency and network stability.

Elbir et al. [24]
• An FLCGAN method with high latency.
• Less stable link formation for 5G UAVs.

speed, geography, etc.) for the entire environment (spatial-
temporal map) each UAV will share their channel model
parameters with other UAVs for better learning and estimation
of A2G mmWave link [15].

A. Related Work

5G-mmWave based communication offers higher bandwidth
with much lower network latency. Previously the wireless
communication spectrum was aimed at the utilizing the spec-
trum between 1.9 GHz to 2.2 GHz. However, the availability
of spectrum for higher data rate and IoT/IoV applications
in the future wireless communication standard is one of
the key challenges. Ubiquitous channel models were only
estimated for the existing band, but literature targeting future
applications aims in exploiting the mmWave band. Therefore,
using a data-driven method for the mmWave band, numerous
statistical models were proposed in [16], [17], [18] and [19]
etc. Unlike the data-driven approach, conventional methods
of spatial-temporal correlation and compressed sensing were
explored for describing MIMO-based directional mmWave
communication [16], [20].

Another proposal in [17] utilized spatial frequency neural
networks (SF-CNN) for approximating MIMO-based com-
munication under mmWave frequency range. Whereas, [25]
shared dataset parameters of transmission link held via
mmWave channel using deep learning scheme. Moreover, in
all of these works their results were obtained using mmWave
under terrestrial environment, we can say that these studies
only meant for channels just above the surface.

However, the scenario is quite different among terrestrial
communication and A2G communication links. It differs
in wave propagation, Doppler effect, fading, and multipath.
Therefore, some other schemes with different methods were
proposed to estimate the mmWave channel model in airborne
transmission scenarios [13], [19] and [26]. Considering the

UAV scenario, [27] comprehensively reviewed previously pro-
posed A2G channel models and suggested the pros and cons of
each with promising future research direction. Authors in [13]
utilized neural networks for microwave and mmWave band to
characterize channel model with UAV in A2G communication
through data set training obtained by a generative neural
network.

In [19] presented a path loss model based on signal
propagation between air to air scenarios using UAV at 60
GHz. However, [26] followed the same traditional ray-tracing
method at 28 GHz to estimate a geometrically stochastic model
for the A2G scenario using UAV. The wave propagation model
and some of its parameters (received signal strength, root mean
square delay, and multipath) were deeply analyzed in [18]
using simulation at 28 GHz and 60 GHz. Secondly, in this
approach they also developed a channel model using USRP
to characterize A2G based mmWave channel for inter UAV
collaboration.

All these mentioned previous state of art works have focused
on estimating mmWave channel model for limited environment
and supports very few applications. Consequently, these avail-
able models cannot be generalized for all applications of A2G
communication using mmWave in surrounding environment.

By exploring a wide area of application for channel mod-
eling in airborne or A2G communication, jointly modeling
dispersed channels together is one of the core areas of re-
search. Unlike other schemes which require nodes to share
CSI with the base station (BS) obtained by pilot signal, [28]
proposed federated learning (FL) approach trained through a
convolutional neural network (CNN) using a dataset extracted
from CSI by sending a pilot signal. However, the FL approach
is centralized in nature and requires a controller to manage the
overall network. But airborne A2G case is fully distributed
in nature, therefore we cannot imply [28] in our modeling.
Another work in [29] considered distributed networks and
employed machine learning (ML) in time-variant channels by
exchanging information continuously.

Consequently, this continuous data sharing brings heavy
costs in communication in terms of bandwidth utilization.
Unlike previous work [28] utilized FL based learning and SF-
CNN, the proposal in [30] focused on a generative learning-
based model for the mmWave spectrum channel. Therefore, in
traditional channel models like ray tracing and other statistical
models, core channel knowledge with wave propagation infor-
mation is necessary. Hence, the model in [12] hereby proposed
an adversarial generative network (GAN) which autonomously
support estimating a channel model.

If we consider [30], it solely focuses on introducing GAN,
where deep neural network process acquired raw data from
the transmitted pilot signal and autonomously configure its
encoder, puncture rate, interleaver, and modulator, depending
upon CSI obtained from the received pilot signal. From the
above discussion, we can conclude that all these previous
proposals focused on autoconfiguration of baseband signal
processing block depending on obtained CSI and some were
only targeting terrestrial network architecture in centralized
manner, which is quite out of domain in our research of
estimating A2G communication under mmWave spectrum.
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Therefore, we can infer that there is still deficiency of
fully distributed generative learning model to overcome data
driven based channel modeling. We in this brief will explain
fully decentralized generative learning model to describe A2G
mmWave communication. Table I shows limitations of the
previous works that are needed to be addressed.

The major focus of this proposed work is providing an
infrastructure that uses 5G-mmWave based UAV network
incorporating intelligent technique i.e. LSTM-DCGAN. Its a
data driven approach coupled with machine learning method.
The key consideration is UAV-based fully distributed net-
work communicating in the air to the ground scenario using
mmWave spectrum for 5G enabled maritime UAV network.
The proposed work will also focus by estimating its data-
driven channel modeling. Particularly, we will also exploit
machine learning to train a model using LSTM-DCGAN,
where UAVs will learn cooperatively from each other’s dataset.

B. Major Contribution of the Proposed Work

The main contributions for the proposed work are:
• First of all a CSI extraction technique is presented to

acquire the real-time CSI of 5G spectrum in the A2G
scenario, where each 5G enabled UAV will train the
respective model at beamforming direction using LSTM-
DCGAN. In previous works [19], [21], [22], [23], [24],
all of these methods lacks systematic and effective ap-
proach for CSI extraction. Thus, these methods did not
produce an effective CSI for 5G UAV networks needed
for mission critical applications especially for maritime
UAV communication.

• Secondly, this work improves the spectrum learning
by effectively considering spatial-temporal domain. This
is incorporated with cooperative learning model devel-
oped using LSTM-DCGAN approach. This decentralized
learning approach facilitate each airborne device to train
itself from the distributed dataset. Moreover, to avoid
sharing the actual estimated channel model, we facilitated
each 5G enabled maritime UAV to share only mock infor-
mation obtained from the channel. Hence, this approach
is fully decentralized and does not require any server
to handle its operations. Whereas, previous approaches
were not decentralized. Only [21] presented an effective
method using DCGAN but it had higher convergence and
latency time.

• Effective learning is achieved through logically formu-
lated the intersection probability of decentralized LSTM-
DCGAN learning. Subsequently, we further derived nec-
essary boundary conditions to facilitate ideal 5G enabled
maritime UAV to UAV link, which enhances learning rate
within cooperative spectrum modeling. Previous methods
were not able to meet effective learning as number of 5G
enabled maritime UAV increases. [21] although showed
to achieve a constant average data rate with increase in
number of connected maritime UAVs but average data
rate achieved was quite low with high latency.

• For better performance evaluation of the proposed work,
we have simulated our distributed network and applied

LSTM-DCGAN based learning for airborne 5G enabled
maritime UAVs. The result shows that proposed idea
of a fully distributed network with the LSTM-DCGAN
model is more vigorous and shows less error during the
model simulation. For comparison, we have opted for
the available CGAN model deprived of sharing dataset
samples [23] and are non-distributed in design like multi-
discriminator CGAN [19], FL-based CGAN methods
[24], MD-CGAN distributed learning scheme [22], and
Zhang et al. [21].

• Simulations have shown that the proposed LSTM-
DCGAN based model for 5G enabled maritime UAVs
is a more accurate and reliable channel model with
high data rate and lower latency. Moreover, it has better
convergence and able to handle high number of maritime
UAVs in an effective manner when compared to the
previous state of art works.

II. 5G MMWAVE BASED COMMUNICATION MODEL

Within our communication network prototype, we assumed
g as a set of UAVs communicating over a downlink to
the ground station, we here denote ground station as GS.
For A2G transmission both ends are communicating with
antennas, we made another assumption that UAVs are trans-
mitting through linearly attached array antennas denoted as
L, whereas UAV’s transmitter vector is given by βq (ϑ

q) =[
1, ei

π
λ sinϑ

q

, . . . . . . , ei(L−1)
π
λ sinϑ

q ]Q
, we denote lambda

λ for the wavelength of carrier frequency and ϑqis the
angle of departure in degrees from 0 ∼ 2π. For course
with transmitter array, there must be an arranged array of
receiving antennas placed linearly represented as K. Hence,
the receiver in the vector can be mathematically written as
βp (ϑ

p) =
[
1, ei

π
λ sinϑ

p

, . . . . . . , ei(K−1)
π
λ sinϑ

p ]Q
, here we

denote AoA as ϑp. We have considered MIMO communication
and represents channel matrix as JεC with dimension LxK.
Therefore, now we mathematically denote J matrix as:

J =

W∑
w=1

Aw.βp (ϑ
p
w) + βJq (ϑqw) (1)

Here we took (.)
J as conjugate transpose, we further

represented different paths by W. in equation 1 we say that
Awwhich belongs to complex channel gain C i. Whereas, βq
and βp and angles from distinct path w. Provided that our A2G
communication through the mmWave channel needs a clear
line of sight and very sensitive to the path hurdles therefore
also have some refraction paths due to which W will be quite
smaller than LxK size. The main benefit rendered through
MIMO is the beamforming technique, where a narrow beam
of mmWave signal carrying information is transmitted from
one end to the other without any fear of receiving delayed
multipath caused by refractions and reflections [28].

Therefore, to ideally have only one main lobe at both trans-
mitters and receivers instead of sides lobes in the frequency
domain, in our A2G communication scenario we supposed
that each UAV has a unique directional link to the ground
station via beam. Hence, [18] and [31] performed experiments
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Fig. 1. System Model Based on Long Short Term Memory (LSTM)-Distributed Conditional generative adversarial network (DCGAN).

at 60GHz by assuming mmWave as beam and suggested
that beamforming over mmWave is similar to have only one
channel with W=1 as a case in a line of light (LOS), reflected
none line of sight (NLOS) or complete outage. [32] also
support utilizing a single mmWave channel by designing a
unique transceiver. Whereas, work in [33], [34] and [35]
solely assumed to exploit unique and directional beamformed
channels for mmWave communications. Now let us assume
UAV position as u in 3D plane and coordinates of GS as y.
Then at any time instant t, MIMO channel matrix in (1) for
A2G communication can be described as:

J (u, v, t, ϑq, ϑp) = A (u, v, t, ϑq, ϑp)βp (ϑ
p) + βq(ϑ

q)
(2)

A the channel gain in (1) and (2) is determined by simul-
taneously solving AoA, AoD vectors of mmWave path, and
channel spectrum (u,v,t).

A. 5G mmWave Channel Estimation

Sending a pilot signal from the transmitter is a common
technique for estimating channel conditions [36]. However, on
receiver received pilot signal describes the CSI in the form of
the dataset, which then multiplied with a received symbol to
overcome the channel effect. Similarly, in our UAV based A2G
mmWave channel, each airborne object transmits a pilot signal
with power denoted as Pw. Moreover, as we are assuming
beam spectrum for communication, therefore, it is essential to
synchronize both UAV and GS over a pre-computed codebook.
Now let us define I as a codebook length and (ei, fi) as
ith pair representing beamforming and combing vector in the
codebook. At the ground station (GS), for ith training, the
received pilot symbol can be given as in:

PSym =
√
PwfJi /Jiei + fJi N, (3)

We say that N is defined as a vector having noise information
of the A2G link. Likewise in [32] we also assumed that both
GS and UAV have substantial information on the radiation
pattern of their antenna arrays to compute beamforming (ei),
combining vector (fi) along with AoA (ϑpi (fi)) and AoD

(ϑqi (ei)). Now, for obtaining received pilot symbol, we define
⊗ as Kronecker product and Z(.) be the vectors inside matrix.

PSym =

√
Pw

(
eQi
⊗

fJi

)
Z (Ji) + fJi N

=

√
Pw

(
eQi
⊗

fJi

)
[β∗q (ei)

⊗
βp (fi)]Ai(u, v, t, ϑi)

+ fJi N (4)

Afterward, on getting the pilot symbol PSym, the receiver
will extract CSI and share this dataset with UAVs through
sub-6 uplink [37]. On the other side base station have prior
knowledge of pair vectors (ei, fi) from which transmitter
and receiver vectors can also be computed. In general, (4)
say that channel gain of the airborne object at coordinate
u communicating with GS at location v at time instant t
having AoA-AoD pair ϑican be obtained through (5), whereas
estimated error is described by Ñi.

Ãi (u, v, t, ϑi) = PSymβi = Ai (u, v, t, ϑi) + Ñi (5)

In A2G communication, by utilizing I distinct antenna pairs
in UAVs operating in all orientation can extract CSI and
channel gain Ãk in the spatial-temporal domain. Thus, we
denote spectrum information of each 5G enabled UAV denoted
by ′g′ as a set Hg = { hn, ϑn} where n is the size of dataset
estimated by gth 5G enabled UAV and equivalently we can
write channel dataset as {un, vn, tn, Ãn,ϑn} and we already
knew that AoA-AoD for each hn is denoted as ϑn in degrees
from 0 ∼ 2π. Also, we represent cumulative dataset acquired
from all channels as |Hg|. Each 5G enabled UAV develop its
own estimated model trained from learning CSI dataset Hg

acquired from mmWave communication in A2G link.
Conventional channel model estimation techniques have

some considerable limitations in the current scenario where
spectrum utilization is one of the key challenges. Therefore,
regression, ray tracing, and other geographically statistical
models are not sufficient in modern applications of mmWave
link. One major key factor is that channels are specifically
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modeled for terrestrial communication considering communi-
cation loss incurred by multipath, fading, and interference [5],
[38], [39].

However, exploiting the spectrum of 5G-mmWave in A2G
link is a new idea for extending its applications in future
wireless communication standards [40]. Also, in the literature
there are very limited studies are proposed for estimation
of A2G link implying data-driven approach [21] and [31],
specifically focusing on temporal and spatial characteristics
of 5G-mmWave spectrum [26]. Considering spatial-temporal
domain in MIMO-based channel response, the CSI dataset for
training acquired by each airborne UAV is insufficient for the
precise approximation of spectral analysis including phase,
amplitude, and directional features. In the given case, where
the height of the flying object estimates the probability of
line of sight from UAV to GS, moreover, the accuracy of
approximated 5G-mmWave channel is directly proportional
to the size of the channel samples dataset, included in the
learning stage.

Furthermore, we know that 5G link features Vary with
respect to time and geographical conditions. Therefore, to
develop a generic model of 5G spectrum in the air to ground
applications, a large amount of dataset from various perspec-
tives are required for example weather effects throughout
the year, number of cellular nodes operating in the region,
the altitude of sensing node and number of airborne sensors
collecting dataset. These factors are some of the key elements.
Hence, the 5G-mmWave channel modeling for A2G applica-
tion requires an effective mechanism, therefore in this work we
will present a deep learning-based data-driven channel model
with collaborative CSI sharing among 5G maritime UAVs,
operating in large scale spatial and temporal domain.

III. DISTRIBUTED 5G ENABLED MARITIME UAV
CHANNEL MODEL USING LSTM-DCGAN

A. LSTM-DCGAN for 5G mmWave Channel Modeling
For g number of airborne 5G enabled UAVs extracting CSI

in A2G link, there exist g learned models trained by each
UAV through gcollected datasets using LSTM networks. Some
distinct models are designed to input spatial-temporal pairs
during dataset training and generate complex channel gain
as in [8], in these models, UAVs can predict any new ran-
dom inputs if applied to the 5G-mmWave channel. However,
from the channel dataset Hg , discriminative models will not
adopt any additional information except channel gain. From
collected data (un, vn, tn)∀n ⊂ Hg , u, v coordinates of UAV
can be used to point exact location and movement(from initial
and last point), whereas, from time t we can also estimate the
speed factor of this movement.

With the distributed and decentralized structure in the
spatial-temporal domain, pairs in a set Hg can facilitate other
applications of the trained spectrum model. Hence, on getting
motivation from the spatial-temporal domain learning model,
we followed to propose a generative method for 5G-mmWave
A2G channel estimation.

For UAV communicating with GS at downlink, we jointly
calculated the pairwise sequence of AoA-AoD through a pre-
computed codebook. We further defined ϑ (independent of

CSI) as prior information of both transmitting and receiv-
ing antenna. Afterward, modeling channel for all arriving
and departing orientation, we exploited conditional generative
adversarial network model as in [41], whose mathematical
model defines a condition sampler denoted by O, whereas
generator is represented as Gen and Og for discriminator. In
general, within each training session, condition sampler collect
pair of AoA and AoD from available I uniformly distributed
directions ϕ ∼ O[1, I], which are also similar for each
airborne object.

Likewise, the LSTM based generator Gen (g)(z, ∅geng |ϕ)
assigns random input z to channel dataset H with condition
ϕ and discriminator Dg(h, ∅dg |ϕ) which uses a parameter
vector ∅dg having input channel sample h and condition
ϕ and generates an output between 0 and 1. As result, if
discriminator output is near to 1 then we infer that input
sample h= (u, v, t, A) is likely to be a real dataset whose
channel gain is observed when airborne object has position on
point u and GS location is on v at timestamp t.

However, in another case when the discriminator is zero,
we denote that the channel sample is fake. This is the reason
that generators in airborne objects target to generate channel
samples closely related to real data, on the other hand, a
discriminator aims to identify real channel samples from the
false sample.

We suppose here bg be the distribution of the sample in
the channel dataset Hg and learned distribution computed by
generator function for airborne object g is represented by
bGeng , whereas the distribution of random input is denoted
by bzg . Afterward, generator Ggen is trained by autonomous
LSTM-DCGAN model to elicit channel distribution bg for
each condition defined by ϕ. Further, to enumerate the learning
accuracy of Ggen trained by each UAV g, we used Dg

discriminator.
Therefore, for each UAV g, we develop a relation among

generator and discriminator for information sharing using the
zero-sum method with value function as it is in [41] and [21].
The main difference here is that we have LSTM-DCGAN
incorporated, whereas these previous methods uses simple
deep neural network structure.

Rg(Dg,Gen (g)) =
1

I

I∑
I=1

εh∼bzg [logDg(h | ϕI)]−

εz∼bzg [log(1−Dg(Gen (g)(z | ϕI)
(6)

In the first half portion of the above formula, there will be I
conditions for directions, and real data input with each value of
ϕI (6) enables the discriminator to generate one at the output.
Whereas, in rest of the part Gen(g) have a dominant effect on
refining the dataset produced by the generator. Overall, two
entities Dg, Gen (g) in each UAV g have their impact on the
computation discriminator part will enhance the result and on
the other hand generator will minimize the result of the value
function.

Previous work proposed in [21], [42] supports nash equilib-
rium (NE) maintained by autonomous CGAN model given
that learned distribution function and discriminators satisfy
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Fig. 2. Long Short Term Memory-Distributed Conditional generative adversarial network (LSTM-DCGAN) with G number of 5G Enabled Maritime UAVs

the condition b
Gen(g)
g = bgand Dg = 0.5 such that the

learned distribution of generator is same as dataset distribution,
given that discriminator value is at half so that model cannot
differentiate between real data and generators data. But in the
actual case where resources are limited therefore the model
is bound to train on restricted length of dataset sample array
acquired from the channel. Self-sustained CGAN can learn the
spectrum of the assigned path concerning AoA and AoD and
the model works accurately within the same operating region.
However, in a diverse environment, where the operating region
is dynamically changing i.e. UAV changes its path or GS
mobility are some factors that require each model training
recursively through transmitting pilot symbols in to and fro
manner. Due to this, initially, the channel modeling process
is not much challenging but updating a channel with time is
a resource and time consuming for the airborne network. To
overcome this challenge (that no single dataset collected by
each UAV overlaps with the dataset of others) one resource-
efficient scheme can be introducing a real-time cooperative
information sharing method in our CGAN model. But ex-
changing real-time data within UAVs can also bring a lot
of communication overhead by consuming spectrum resource
heavily [21].

Also, another idea is instructing a UAV to share its location
with a timestamp with others, but this scheme may bring
privacy issues because within mmWave spectrum there may
exist multiple network providers, and each have their own GS
and UAVs. In consideration of all these pros and cons, there
is a need to have an efficient, less resource consuming, and
privacy-preserving data sharing method of A2G link in the
mmWave channel model.

B. LSTM-DCGANs Framework

Nowadays, distributed network for the generative adversar-
ial model is one of the hot areas of study in machine learning.
Previously, machine learning shows a major contribution in the
vision-based application, subsequently in baseband signal pro-
cessing. However, specifically implementing LSTM-DCGAN

in real-life problems has a very limited application [43] but till
now no one has applied the LSTM-DCGAN model in wireless
communications especially in A2G mmWave channel estima-
tion. [21] did used Simple DCGAN for modeling channel for
UAVs but that work lacks in providing required latency and
convergence. Moreover, it was not suitable of maritime UAVs
networks.

Therefore, to fill this research gap, we here explain one
of our distributed CGAN idea, in which generative channel
models learn from each dataset collected from a group of
samples acquired by UAVs operating in a distributed manner.
Keeping in mind the data privacy issue, we proposed a method
which works by collaborating without sharing actual raw data.
This is similar approach as followed by [21] but we have
improved this approach by considering spatio-time features.
We say that set of UAVs G have collected g datasets and
final model is developed by taking union of all individual
dataset. Thus, we denoted by H = H1 ∪ H2∪, , , , , , , Hg ,
where H is local dataset of channel sampled from several
location and each distribution function bg only meant for
specific geographic area, for overall spatial space modeling
we need to consider all datasets of all areas.

Ideally an efficient generator distribution bGeng is trained by
each airborne object g to obtain generic distribution b of
network channel in a condition such that no UAV g will
share any actual dataset Hg. For this, in our scenario of
channel estimation for 5G maritime UAV, we merged the
idea of distributed brainstorming GANs proposed in [22] with
channel modeling through LSTM-DCGAN. Furthermore, in
our concept of distribution, each airborne object g cooperates
with others by sharing AoA and AoD conditions along with
generated samples Gen (g) instead of raw information.

Fig.2 is a basic illustration of our proposed idea, where
we assumed g UAVs within the network each airborne object
comprises of a generator, condition, discriminator, and col-
lected dataset. Each discriminator has three own inputs and
one shared input, among three own inputs one is from the
generator, the second is from the dataset and the third input
is a defined condition. Whereas, shared input is provided by
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the generator of the adjacent UAV. Here it is worth noting
that in our proposal instead of sharing real datasets, we are
sharing generated data. Therefore, for fooling discriminators
all generators cooperatively generate data for sharing and each
will try to differentiate between actual data and generated data.
To elaborate this concept, we denote Cg as a UAV sending gen-
erated dataset to g UAV, whereas Qgbe a variable to represent
a UAV to whom gth UAV is sending its generated dataset.
Communication between the generator and discriminator of
each UAV can be represented by the game-theoretic model as
in (7).

Rg(Dg,Gen (g),Gen (n)nεCg
) =

1

I

I∑
I=1

εh∼bbg [logDg(h | ϕI)]+

εz∼bzg [log(1−Dg(Gen (g)(z | ϕI)]
(7)

The joint distribution of dataset from g UAV and dataset
sample from all adjacent UAVs set C are denoted by: bbg =

πgbg +
∑
jεCg

πgjb
Gen
j . In joint distribution, we referred

πi =
Hg

Hg+η
∑
jεCg

Hj
and πij =

ηHg
Hg+η

∑
jεCg

Hj
respectively,

whereas, channel samples shared by UAV j to UAV g in
each time frame are denoted by-product of η with a dataset
of UAV (ηHg) with condition that η will always greater than
0. Unlike in [22] and [21] the value functions are linearly
dependent on each other, for this we model distributed UAV
network mathematically as,

R( {Dg}
Gen(g)

g=1 , {Gen(g)}
Gen(g)

g=1 ) (8)

=

G∑
g=1

Rg(Dg,Gen(g),
{
Gen(j)

}
jεCg )

From (8) it can be inferred that all discriminators coerce to
maximize the value function, on the other hand, all generators
will try to minimize the utility function. Hence, appropriate
discriminators and generators for distributed CGAN training
can be represented as minima and maxima in (9).

{D∗g}
G

g=1
, {Gen

∗
g
}G
g=1

= argminGen(1),...Gen(G)
argmaxD1,...DG

R

(9)
The architecture of 5G enabled UAVs operating in the

network will decide LSTM based discriminator and generator
values. Previously work in [22] and [44] proposed exploiting
distributed GAN but without data sharing or network optimiza-
tion for data sharing. Similarly [21] only considered simple
DCGAN approach. In this work we present an optimal network
structure for 5G enabled maritime UAVs with optimized
learning solution.

C. LSTM-DCGAN Coupling

We use a graph G = (G, E) to represent UAVs on the
communication network, where a set of UAVs is represented
by G and E to denote a set of edges. We further say that
egjεE, each edge is obtained from UAV pair communicating
over the air to air mmWave link. For clarity let us say, within
each loop iteration of CGAN learning, airborne object g will
share its generative data with the discriminator of j UAV. We
call in-degree here to a UAV receiving generated data from
gth UAV at Cg = |Cg| and out-degree is an airborne object to
whom UAV g is sending its data at Qg = |Qg|.

In parallel, we define a route between points x and y covered
by UAVs such that traversing on edge E from point x to y in
joined and non-overlapping manner. Whereas, length of the
covered path `x,yshould be equivalent to the total number
of edges over the path Ex,y , and for covered loop, having
the same starting and ending point i.e. x we use the notation
Exwith total loop length expressed as `x.

For air to air (A2A) communication study proposed in
[45] has utilized orthogonal frequency divisional multiplex-
ing (OFDM) resource chunks (RC, mathematically B and
B ≥ G nummber of UAV s) for channel dataset produced
by generator at link sub 6GHz. Therefore, for lossless com-
munication and to reject cross talk within UAV topology, we
prefer to have number resource blocks always greater than or
equal to communication channels (i.e. |E|≤ B).

Thus, we define transmission between UAV g to UAV j
consuming RC block b have communication rate C Rgj =

ωblog2(1+
Pw(g,j)P l(gj)

σ2 ), here omega (ωb) and σ2 represents
covered bandwidth and noise power, whereas, Pw(g,j) and
P l(gj) denote signal power and path loss respectively. For
lossless A2A communication with optimal SNR (SNR) be-
tween UAV pair g and j, no resource block RC will be
consumed if at UAV j received SNR is lower than the threshold
TTh (Pw(g,j)P l(gj)

σ2 < TTh). Finally, for distribution, each
airborne object g is restricted to shares its generated dataset
with adjacent flying object Qg within stipulated transmission
time slot ts.

Here, for LSTM-DCGAN model learning time can be
estimated by counting the total number of iterations required in
complete learning along with benchmarking of each iteration,
we say this as convergence time of the model and denote it as
tcon. For analysis, we assumed our network is homogenous
and have fixed datasets from each airborne object H =
H1, . . . ,HG and for synchronized learning, UAVs transmitting
dataset to g UAVs, we assumed C = C1, . . . , CG. Then,
probability of convergence for learning within Itr number of
iterations is given in lemma 1.

1) Lemma 1: Probability Prob(G)(Itr) of covering whole
distribution b by each g UAV’s LSTM-generator distribution
bGeng within Itr iterations by UAV network topology G with a
defined upper limit in training error Terror is given by (10):

Prob(G) (Itr) =


0 0 < Itr < `max
[(1−TError)η]lmax

C (1 + Cη)
lmax Itr = lmax

Prob(G)(lmax) +
∑Itr
g=lmax+1[

∏g−1
j=lmax

1− [(1−TError)η]lmax
(1+Cη)j−1 ] [(1−TError)η]

lmax

(1+Cη)g−1 lmax < Itr < lmax + lminloop

(10)
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and for Itr > `max + `minloop

Here we represented the length `max as the maximum

shortest path between x and y in graph G and denote `minloop

for shortest loop path with the same starting point. Whereas,
γ (Itr) ≥ 1 defined for the coefficient of acceleration.

Prob(G) (Itr) = Prob(G)

(
`max + `minloop − 1

)
+

Itr∑
g=`max+`minloop

[

g−1∏
j=`max+`minloop−1

(1− [(1− TError)η]`max
(1 + Cη)j−1

j∏
I=`max+`minloop−1

γ(I))] [(1− TError)η]
`max

(1 + Cη)g−1
j∏

`=`max+`minloop

γ (`)

(11)

Lemma 1 states three distinct operating conditions, two for
convergence and one for do nothing. First to maximize the
convergence process number of iterations should always be
greater or equal to the maxima of the shortest path length in
network graph G. Otherwise, if the number of iterations is
less than the maximum of the shortest path length then there
will be no convergence. Hence, to increase the probability of
convergence for dataset sharing within the UAV network, it
is mandatory to mitigate maximum length such that it be-
comes less than the number of required iterations. Probability
for LSTM-discriminator (Prob(D)(Itr)) is equal to probabil-
ity of LSTM-generator distribution. Thus we can say that
Prob(G)(Itr)=Prob(D)(Itr). Subsequently in the next stage, if
we relate the same concept in LSTM-DCGAN model, then
the model will converge with probability ProbLSTM−DCGAN
on ItrLSTM−DCGAN εN+ the number of iterations expressed
in (12).

Prob(G)

(
Itr(G) − 1

)
< ProbLSTM−DCGAN ≤ Prob(G)

(
Itr(G)

)
(12)

It is now clear from (10) that with probability the iterations
required by the generator of each airborne object to fully
adopt with complete channel distribution will be minimum
as compared to the [21]. For analysis, we assumed to include
fix dataset, therefore, for training LSTM-DCGAN’s generator
and discriminator locally, Terror is the upper limit of training
error that an object attained in a fixed timestamp tfx.

Now, for network graph G, the convergence time required
for learning distributed LSTM-DCGAN is expressed in (13).

CNVRG(G,D) = (tTTh + tfx).Itr(G)Itr(D)) (13)

Therefore, for designing an optimal channel model of A2A
link among distributed collaborative airborne objects in net-
work G with the constraint of limited resources, the goal is to
optimize the network such that convergence time of LSTM-
DCGAN learning process over each UAV is minimized. Math-

ematically this optimization can be expressed as:

min
G,D

CNVRG(G,D) (14)

s.t.
∑

terror(g,j)εTerror

Pw(g,j) ≤ Pw(max),∀gjεG,D

Pw(g,j)Plgj
PSym

σ2 ≥ Itr,∀cgjεClink

ηHgρ

CRgj
≤ tTTh ∀cgjεClink

∃Terror(gj) ⊂ Clink∀gjεG
G ≤ |Clink| ≤ D

(14) describes obtaining global minima of convergence time
from the graph of network G for LSTM generator G and
LSTM discriminator D in a condition defined when in A2A
link between UAVs from g and j are communicating with each
other with transmit power Pw(g,j) which should be less than
the maximum transmission power Pw(max). Next the threshold
is defined for optimal SNR in A2A link, which is obtained by
having a product of transmitting power between the object
from two groups with respective path loss affected by noise
power. In other conditions defined in (14), LSTM-DCGAN
convergence time is formulated by-product of the number of
samples and size of acquired data sample by operating UAV
g.

Lastly the learning from tightly couple dataset sharing
within CGAN network and interference rejection within link
respectively. In the given scenario, our objective is to find the
minimum convergence time of path between any two airborne
objects operating within the optimized graph G

′
from available

network G instead of sorting shortest path inside network G.
Apparently, for solving (14) in all, overall a the controller

need to defined conditions for network optimization depending
upon path loss between pair of 5G enabled UAVs. But involv-
ing a controller in the distributed network will change the de-
centralized structure into centralized, which is not acceptable.
Therefore, to address this challenge, in the following section
we devise a method to decimate (14) into small conditions
handled by each UAV. Afterward, with distributed learning in
(9), we will formulate Nash Equilibrium.

2) Proof of Lemma 1: In order to support our derivation
and results for the convergence rate of distributed learning
model, we assumed samples shared in each iteration by each
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generator are independent of others in the network. Here
we have followed similar approach as of [21]. Here, each
generated sample from the respective generator has a similar
amount of CSI. Therefore, in the context of CSI from the
locally available dataset, each collected dataset can be defined
as an independent and identically distributed random process
and we further used recursion to prove Lemma 1. Suppose
{g = x1, . . . . . . ..xlmax} is the set of UAVs defined over global
maxima of shortest path and we considered the portion of CSI
whose size is equivalent to the information contained inside a
single dataset sample.

A Single Time Probability Initially, we calculated the
probability of sharing the same real-time collected CSI (whose
size is equal to the size of a single dataset) from Hg to the
generator of an airborne object x`max at iteration Itr.

1) For Ire < `max : Within each loop iteration any channel
sample can be shared with the adjacent UAV. Therefore,
when iterations are less than the maxima of the shortest
path no information sharing can occur between g to
x`max UAVs via the shortest path. Hence the probability
of information sharing in this condition is zero.

2) For `max ≤ Itr < `max + `minloop: Within the first
iteration of the simulation Itr = 1, airborne object g will
transmit generated channel dataset ηH to the UAV x1.
Therefore, the probability of event transmitting portion
of considered CSI from UAV g to x1 is equivalent to
the sampling ratio given by η. On the other hand, if
the probability of training error occurring at the local
generator is Terror, then the probability of error-free
training is given by 1 − Terror. Hence, the probability
of transmitting portion of CSI from g UAV to x1is
given by Prob

in
1 = (1 − Terror)η. In the meantime,

UAV x1 receive samples shared by the generator of
other operating objects from neighbors C − 1 from
set Cx1, therefore, the contribution ratio of UAV g’s
information in the overall dataset of x1UAV is calculated
by Prob out1 =

Prob
in
1

1+Cη = (1−Terror)η
1+Cη . Now in the second

iteration Itr=2, samples ηH shared by the generator
of x1 UAV with the UAV x2. Then the probability of
moving g’s information from x1 UAV to x2 UAV is
calculated by:
Prob

in
2 = ηProb

out
1 = 1−Terror)η] 2

1+Cη . Also, the percentage
of gth UAV’s information is reduced in size on reach-
ing at UAV x2 because of data generation from other
airborne objects, hence, we denote the probability of
data at x2UAV as Prob out2 =

Prob
in
2

1+Cη = [(1−Terror)η] 2

(1+Cη) 2 .
This procedure continues recursively till complete de-
livery of sample information at UAV x`max at iteration
Itr = `max.
Therefore, the probability of reaching gth UAV’s data
at x`max UAV in `max iterations are calculated by
Prob

in
`max

= [(1−Terror)η] `
max

(1+Cη) `max−1 . From the above dis-
cussion, we can conclude that, like the FIFO concept,
former data samples held at each UAV get reduced in
size by 1

1+Cη because of the latest incoming gener-
ated data from C adjacent operational UAVs. In the
meantime, within each jump of data sharing among

UAVs on the path, data size is reduced depending upon
training error (1-Terror)η and sampling ratio. Hence, we
can say that probability of successfully receiving the
shared portion of CSI at x`max UAV in Itr is given
by Prob in`max(Itr) =

[(1−Terror)η] `
max

(1+Cη) `max−1 .
3) For Itr ≥ `max+ `:minloop , In the condition when iteration

is greater than the length of shortest path of the ring
with gth UAV, information of its own distributed data
will start arriving from the adjacent object Cg connected
in the ring loop. Therefore, data size reduction, in
this case, is comparatively higher than 1

1+Cη . Hence,
the acceleration coefficient should be greater than 1 (
γ (Itr) > 1), and 1+Cη will be added to reduction factor
when ( γ (Itr −→ +∞). Thus, we denote the probability
of data distribution as:
Prob

in
lmax (Itr) =

[(1−Itr)η] `
max

(1+Cη) Itr−1

∏Itr
g=`max+`minloop

γ (g) for Itr ≥ `minloop .
Cumulative Probability Here we will describe the cu-

mulative probability that portion of gth CSI is successfully
arrived at x`max UAV after Itr number of iterations

1) Itr < `max : Provided that Pprobin`max (Itr) = 0, then
the probability of general distribution is Prob(G) (Itr) =
0 for all Itr < `max.

2) Itr = `max : when iterations are exactly equal to length
then probability will be Prob(G) (Itr) =

Prob
in
`max (`

max) = [(1−Itr)η] `
max

(1+Cη) `max −1 .
3) `max < Itr < `max+`minloop : in this condition probability

of complete information sharing is formulated by chain
rule, such that:
Prob(G) (Itr) = Prob

in
`max (`max)+[1-Probin`max (`max)]

Prob
in
`max (`

max + 1) + . . . · · ·+
∏Itr−1
g=`max[

1− Probin`max (g)
]
Prob

in
`max (Itr).

Finally, we can write:
Prob(G) (Itr) = Prob(G) (`max) +

∑Itr
g=`max+1

[
∏g−1
j=`max (1−

[(1−Terror)η]`max
(1+Cη)j−1 )] [(1−Terror)η]`

max

(1+Cη)g−1 )]

4) Itr ≥ `max + `minloop : Inn condition when data sharing
start inside the loop, the probability is as follows:
Prob (Itr) = Prob(G)

(
`max + `minloop − 1

)
+∑Itr

g=`max+`minloop

[
∏g−1
j=`max+`minloop−1

(1− [(1−Terror)η]`
max

(1+Cη)j−1

∏j
k= `max+`minloop−1

γ(k))]

[(1−Itr)η]`
max

(1+Cη)g−1

∏g
`= `max+`minloop

γ(`)

we further assume that γ
(
`max + `minloop − 1

)
= 1.

D. LSTM-DCGAN Learning Optimization

For LSTM-DCGAN network, in this section, we will op-
timize (8), (9) and (14) jointly for more precise channel
estimation in airborne communication, by initially deriving
the most feasible network topology denoted by G

′
. Secondly,

using derived G
′
.structure, for each airborne 5G enabled

UAV g, we will logically formulate the most suitable LSTM-
DCGAN model (G′en, D

′
).

For optimizing (14) in a decentralized manner by elimi-
nating the server, we converted two inequalities of into joint
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conditions with equality and inequality as in (15). Such that
initially to achieve distribution, the number of A2A commu-
nication links should be equivalent to the number of operating
UAVs that are consuming fewer resources than the number of
links. Furthermore, considering (14), we derive the ideal 5G
enabled UAV network in Lemma 2.

G = |Clink| ≤ B = min(G
′

en, D
′
), (15)

E. Lemma 2

The restriction defined in (15) illustrates that 5G enabled
UAVs should be tightly coupled with each other inside the
network forming ring topology. Such that, Cg = Qg = 1, Cg∩
Qj = ∅ , and Qg ∩Qj = ∅, ∀g,jεG and g 6= j.

Lemma 2 Proof:
We know that our topology is a tightly coupled ring network

graph, where each corner has a minimum of one incoming
angle and an outgoing angle. Therefore, following expression
in (14) tightly coupled connection requires each node to
have in-out edges, at Cg ≥ 1 and Qg ≥ 1. Also, it is
given in equation (15) that total entailed edges are equiva-
lent to the 5G connected UAVs in-network, mathematically,∑G
g=1 Cg = G and

∑G
g=1Qg = G . Hence, we can prove

that Cg = Qg = 1, ∀g ∈ G. Therefore, with only one in-
out edge available at each UAV, it is proved that the network
is coupled in ring topology such that Cg

⋂
Cj is Empty set

and Og
⋂
Oj is also empty set where g 6= j.

The optimization constraint mentioned in (14) and (15)
requires a communication system of UAV operating in-ring
network, such that each UAV is receiving channel sample
dataset from one who is sharing it and subsequently this UAV
is sharing its own generated dataset with the adjacent one to
form a ring. Therefore, optimization objective based on the
above two theorems, we convert our centralized (14) in to
distributed and decentralized optimized expression handled by
each UAV individually to reduce convergence time with the
maximum value of shortest path only when UAV from set g
shares its channel dataset with the UAV of group Q ( which
lies in position giving minimum convergence time). Hence,
(14) can be re-written in distribution as follows:

min
qiεG−g

`maxg (G.Eg,qg ) (16)

s.t. Pwg,qg ≤ Pw(max),

Pwg,qgP lg,qgσ
2 ≥ TTh,

ηHgρ/C Rg,qg ≤ tTTh
In this the G−g represents a group of airborne objects in set

G excluding gth UAV. Whereas, after adding an edge Eg,qg in
our network of UAVs G, we denoted `maxg as global maxima
of the shortest path between airborne object g to the other.
Furthermore, we defined a set of all adjacent UAVs S with
whom g can collaborate in sharing dataset under conditions
expressed in (16).

Sg = {jεG−g|Pw(gj) ≤ Pw(max ).Pwg,qgP lg,qgσ
2 ≥ TTh,

ηHgρ/CRg,qg ≤ tTTh}
(17)

Based on the distributed equation in (16) the mandatory
conditions are:

Proposition 1 (Necessary Condition) For constraint in (15),
feasible 5G enabled UAV network topology G

′
only exist on

holding condition
⋃G
g=1Sg = G where, ∀g, Sg 6= ∅

Proof of Proposition 1
Boundary conditions required in proposition 1 are proved
using counter-arguments. First of all, we suppose that each
UAV denoted by g belongs to set G, when Sg set of feasible
UAVs is zero. Further, we say Qg = 0, which is against the
requirement of a tightly coupled network with Qg ≥ 1. Then,
if we say for each feasible adjacent UAV which is a subset of
G (

∑G
g=1 Sg ⊂ G), then there is at least one UAV in set g ,

such that no other airborne is bound to share any generated
dataset with it. Hence, for gth UAV, Cgis zero, which is
again counter to the requirement of a strongly connected
network with Cg ≥ 1. Thus, we conclude that strong coupled
connection for optimal UAV topology G∗ union condition
(
⋃G
g=1Sg = I and ∀g,Sg 6= ∅) must be true.
Strongly coupled connections are not possible among 5G

enabled UAVs operating within a network if the union of the
optimal set of 5G connected UAVs does not cover all airborne
objects. Hence, in this condition, no optimal solution exists for
(16). Following Lemma 2 and Proposition 1, we formulated
some below-mentioned conditions to attain optimal network
topology.

Proposition 2 (Sufficient Condition) Constraint given in
(15) and if union set holds

⋃G
g=1Sg = G where, ∀g, Sg 6= ∅

for every value of g, the most optimal airborne network
is given by G

′
= (G,E). Whereas, we know that E ⊆

{Eg,j |gεG, jεSg} and G
′
= G− 1, ∀gεG.

Proof of Proposition 2
Here we will describe how proposition 2 is more feasible for
equations (14) and (16) then we will define its suitability for
expression (16). Initially, we know that all edges inside a
network are formed by UAVs of set G and set of feasible
S (E ⊆ {Egj | g εG, jεSi} ). Hence, it is clear that
constrictions defined in (14) and (16) are satisfied as per the
basis of feasible set in (17). Furthermore, it is known that
the maxima of the shortest path in a feasible UAV network
should be one less than the total number of UAVs in G,
mathematically, `maxg (G∗) = G− 1, this also leads to having
ring-based network topology in which UAVs are strongly
coupled with each other as per constraint in equation (14).
Also, this constraint leads to maintain an equal number of
communication links with UAVs holding equation (14). Hence,
we proved our feasible solution here. From lemma 2, we can
only form a ring topology for airborne UAV network only
when `max(G∗) has a constant value of G-1. Hence, with the
fixed value of `max(G∗), convergence will also be fixed with
any given sequence of ring topology which yields a similar
convergence time for all elements of the set.

Constraints mentioned in (14) and (15), a communication
network link among edges E ⊆ {Egj} gεG, jεSg , where
convergence time of connected nodes in a ring topology is
minimum is defined as an optimal network G

′
. In proof of

proposition it is elaborated that optimal network G
′

is not
the only solution to the challenge in (16), however, it also
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provides the most suitable idea for decentralized computing
over distributed computing of equation (14). Here one deriva-
tion that is important to note is, proposition 2 require having
Qg = 1, on the contrary to the equation (14), states that Qg
should be greater than one or edges count should be greater
than or equal to the number of airborne objects, provided that
number of edges formed by 5G enabled UAVs communicating
within network |ε|should hold equality with

∑
gεGQg ≤B.

Now we will formulate an optimized network architecture with
condition Qg ≥ 1.
We already devised a feasible network G

′
, now to achieve

tightly coupled connection property from equation (14), we
are taking reference optimal network structure G

′
, where we

will more edges to already feasible network G
′

to reduce
convergence time CNVRG(G). Therefore, likewise in (17), we
illustrate a similar feasible group set for UAVs g which fulfill
constraints in (14) such that:

Ŝg = jεSg at
∑
jεSqg

Pw(gj) ≤ Pw(max), (18)

Pw(gj)Plgj

2
σ2≥ TTh, ηHgρ/C Rgj ≤ tTTh

We assume that Ŝq
g ⊆ Ŝg ⊆ Sg , such that subset

Sq
gcontains elements from the set Qgwhich are also elements

of Sg .For feasible network where Qg = 1, Sg = Ŝg = Ŝq
g .

Therefore, for feasible topology defined in (18), the following
corollary will express the optimal solution for (14).
Corollary 1 (Necessary Condition), optimal network architec-
ture denoted by G∗ = (G, E), which maximize convergence
rate in (14), such that feasible network becomes a subset of
optimal network and E = {Egj | ∀gεG, ∀jε Ŝq

g}.
Proof of Corollary 1

In proposition 1, we proved G
′
as the feasible network graph

fulfilling the limitation of the tightly coupled network. There-
fore, belonging of optimal network to feasible network condi-
tion (G

′ ⊆ G∗) will certify that G∗ also, follow the constraint
of a tightly coupled connection defined in (14). Therefore,
a condition defined for edges (E = {Egj |gεG, j εŜq

g}) will
also fulfill all constraints mentioned in (14), such that jεŜg

UAVs communicate with others following constraints defined
in (14) and (18), when |Ŝg| = Qg , it supports a ring equivalent
network which minimizes the maxima of the shortest path of
G∗ as per edge limitation (14).

Mathematical expression proposed in corollary 1 requires
subset relation between feasible and optimal network struc-
tures like G

′ ⊆ G∗. Furthermore, edges of optimal network
components comprise feasible network components with mem-
bers denoted by Qg . Proposed algorithm in Table II will
explain edges connected inside optimal network topology. We
denote O for algorithm complexity O(Gqg ) at each airborne
object g for the proposed optimal network. Therefore, men-
tioned complexity for the proposed topology is acceptable
because each UAV operating in a distributed network is
provided with very limited resources B. Consequently, our
proposed network algorithm is purely distributed because each
flying object shares its respective channel dataset of A2A link
to the other 5G enabled UAVs. In this scheme, generally, the

network is decentralized by excluding other extra 5G enabled
UAVs from its own feasible network.

F. Proposed Optimal learning Model using LSTM-DCGAN
FOR 5G Enabled Maritime UAVs

Following [21] and [43], lemma 1 and proposition 1, for
proposed optimal network topology G∗, distribution attained
by the optimized generator G∗g of each operating UAV, g is
denoted by (19):

bG
∗

g = πgbg +
∑
jεCg

πgj log(1− bDj b
Gen
j ) (19)

bD
∗

g = πgbg + log(
∑
jεCg

1− πgj log(1− bGenj bGenj ))

Here it is clear that for each UAV g having the angle of
arrival (AoA) and angle of departure (AoD), the generator
distribution function is equivalent to the combined effect of
channel dataset distribution bgwith the generator distribution
bGenj of objects from the set Cj . Therefore, in this situation
discriminator will receive two datasets of the same channel
with the same information i.e. one from a dataset from a local
device and the second from the combined source from Hg and
{Gen(j)}∀jεCg . As result, the discriminator will not be able to
differentiate between the real dataset and generated dataset,
which makes the model equally likely for both 1 and 0 with a
probability of 0.5. Therefore, we model discriminators output
as in (20):

D∗g =
bbg

bDg + f
G∗en
g

=
1

2
(20)

Now, we can say that convergence of UAV over local
adversarial training towards (Gen∗g,D∗g) is directly proportional
to the convergence of dataset sharing within UAV network
toward Nash Equilibrium [43], given that distribution of each
airborne object g operating over mmWave link is learned
i.e. Gen∗g ∼ b∗g = b. Secondly, each UAV will only receive
channel distribution b from a generative model trained on the
dataset from its optimal generator. Thus, we designed a data-
driven method to verify optimal DCGAN distributed model
(Gen∗g, D∗g) elaborated in Table II: Proposed Algorithm.

We already mentioned that in LSTM-DCGAN, the net-
work is overloaded with continuous collaboration Load =
Itr(Gen)

∑
gεG ηHgρQg = Itr(Gen)ηHρQB, entailing all com-

munication before aching convergence, such that the proposed
optimal network has already minimized Itr(Gen). Hence, the
learning mechanism proposed in Table II, is less complex
with minimum communication overhead in optimal network
architecture.

Furthermore, for our LSTM-DCGAN, we improved trans-
mission load by adjusting η to fulfill other constraints in
wireless communication. Similarly, algorithmic complexity big
O of adversarial training for each UAVs operating locally is
almost the same as the originally proposed in CGAN model
in [46]. Whereas, proposed LSTM-DCGAN learning model
has complexity nearly ItrG(en)

times of originally proposed
scheme.
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Fig. 3. Probability of Convergence Vs Number of Iterations (Changing
Number of Resource Blocks).

The other similar scheme was proposed in [43] about FL-
CGAN, which introduced one central computing unit to cal-
culate the average of values of generators and discriminators
of each flying object within the network and reply accordingly
with the updated value, on the contrary, our proposed model is
fully distributed and decentralized with LSTM generator and
discriminator. Similarly the [21] was a simple DCGAN ap-
proach with same complexity but it fails to handle synchronous
learning at lower latency. The proposed work is able to provide
decentralized method which effectively handles synchronous
learning at much faster rate.

Unlike our scheme, the FL-GAN model is dependent on the
centralized controller. Furthermore, with available resources
using the bulk amount of data is restricted in the FL-GAN
model because transmission overhead of FL-GAN increase
with the rise in adopted model size. On the other side, in
our LSTM-Distributed CGAN scheme each neural network is
trained by each respective UAV, hence, every model within
the network can be completely different from others. Conse-
quently, it is worth noting that results presented by [43] show
distributed GAN outpaces both schemes FL-GAN and MD-
GAN in the context of efficient communication and accuracy.

IV. PERFORMANCE EVALUATION OF THE PROPOSED
WORK

We simulate our proposed network with a number of
maritime UAVs G=5 with allocated resource blocks B = 5
to facilitate a 5G enabled maritime network. We directed that
each airborne object only collects data set from the region
which is non-overlapping with the samples collected by other
5G enabled maritime UAVs in the set G. Other parameters
used in the simulation are with transmitter array M= 256 with
receiver array have N=64, operating in I = 81directions, at
frequency 30 GHz and ωb = 2MHz with maximum power
Pwmax = 40dBm at noise power σ2 = −174dBm/Hz and
assumed training error Terror = 0.01 with LSTM-DCGAN
probability Prob LSTM−DCGAN = 0.99 with SNR threshold

Fig. 4. Probability of Convergence Vs Number of Iterations (Changing
Number of 5G Enabled UAVs).

TTh = 12dB, tDCGAN =0.01 seconds convergence time with
constants η = 0.5, ρ = 11 and depth of dataset from each 5G
enabled UAVg is Hg = 10000. Extensive comparsion between
the proposed work and previous state of the art works has been
done to evaulte the perfromance of the proposed work.

A. Convergence Anaylsis of the Proposed Work

Fig.3 shows simulation results for Convergence probablility
with respect to the number of iterations with changing number
of resource blocks. We have used convergence of NE as KPI to
assess the learning rate of our proposed model. In this case the
fixed value of 5G enabled UAVs i.e. G = 5 with the variable
number of resources varying B = 5 to 15, result shows that
convergence rate also increases with the rise in the number of
allocated resources. From the Fig. 3 it can be clearly seen that
proposed work achieved higher convergence probablility with
respect to the previous state of art method [21]. This higher
convergnece would mean that proposed work would be much
suited for mission crtical applications which uses 5G enabled
UAVs.

In Fig.4, we have kept the number of resources as constant
i.e. 15 with variable UAVs to observe the convergence of
the proposed model. The number of UAVs being used by
network are 5,10,15 respectively and the result shows that
with the increase in the number of airborne objects the
network becomes more and more complex with increased
path length among UAVs. Therefore, the overall convergence
rate is inversely proportional to the number of UAVs in-
network, because learning in early iterations contains large
and inefficient data sharing which restricts fast convergence.

B. Learning Performance of the Proposed Work

In above part we evaluated our model in terms of conver-
gence time. In this subsection we will focus on evaulating the
learning performance of LSTM-DCGAN (proposed work) in
comparison with five available models i.e. independent CGAN
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TABLE II
PROPOSED ALGORITHM

Proposed Algorithm: LSTM-DCGAN model-based learning for 5G Enabled Maritime UAV channel modeling
Step1:
• Each channel sample dataset hgj where jεG−g , collected by each airborne object g and shares only a list of 5G enabled UAVs from a feasible set

Ŝg .

• Here we define a condition
⋃G
g=1, Ŝg = G, such that |Ŝg |≥ Qg , if yes then move to the next step, otherwise, all UAVs will relocate them to

position and perform previous operation again.
• On satisfying condition in above, define the network graph G such that each edge is at

{
Egj

∣∣∣ gεG, jεŜg}
Step2:
• Here we will check condition using the loop

∣∣∣Ŝg∣∣∣ > Qg for each g UAV, Such that by removing edge Egj from a set of edges E at a condition where

j = minjεSg `
max
g (G− Egj)−`maxg (G), ensuring (

⋃
IεG−g ŜI)

⋃(
Ŝg − j

)
= G and ∃Ŝ

q

g ⊆
(
ŜI − j

)
,
∑
IεŜ q

g
Pw(gI) ≤ Pw(max);

• Till loop iteration
∣∣∣Ŝg∣∣∣ = Qg for all gεG

Step3:
• The first step in learning is to initialize each UAV’s LSTM based discriminator and generator Dg and Gen(g)
• Repeat: concurrently for all values of gεG

– Obtain sample o for arrival and departure conditions ϕ1, ϕ2, . . . ..ϕo ∼ U [1, I] , and u number of random inputs : z1, . . . ..zo ∼ bzg .
– In the second step from the generator of each airborne object, we will generate a channel sample Gen(g)

(
z1
∣∣ ϕ1

)
, . . . . . . .Gen(g)(zo|ϕo)

– Sample π, o are real channel samples from the locally collected dataset:
{
h1g
∣∣ ϕ1

}
, . . . ..,

{
sπ,og

∣∣ ϕπ,o} ∼ hg
– Here we will update the LSTM parameter vector discriminator ∅dg through the approximate conjugate gradient pursuit: ∇∅Geng

R
(
Dg
(
∅Dg
))

=

1
2o
∇∅Dg [

∑πg
I=1 log(Dg(s

I
g |ϕI +

∑o
I=1 log(1−DgGen(g)

(
zI
∣∣ ϕI))) +∑jεCi

∑πgjo

I=1 log(Dg
(
hIj

∣∣∣ ∅I))]
– Afterward, we will update LSTM parameters of generator via approximate conjugate gradient pursuit: ∇∅Geng

R
(
Gen(g)

(
∅Geng

))
=

1
o
∇∅Geng

∑o
I=1 log

(
1−Dg

(
Gen

(
zI
∣∣ ∅I)))

Repeat this process till convergence to Nash Equilibrium.

at each UAV without cooperation [23], CGAN model with
central controller collecting raw data from all nodes [19], FL-
CGAN [24], MD-CGAN distributed learning scheme [22], and
Zhang et al. [21]. We have used the Average Jensen-Shannon
(JSD) as a performance indicator for learning accuracy; such
that for higher accuracy, JSD must have a minimum value.
From the Fig.5 we can clearly show that the proposed work
achieved the minimum average JSD value as compared to
the previous state of the art works. Moreover, our proposed
method is independent of the central controller, which leads to
having a more robust network, achieve higher accuracy, and
vigorous toward failure when compared with MD-CGAN and
FL-CGAN.

C. Communication Overhead of the Proposed Work

One of the major problems for previous resource allocation
methods was that as the Number of resources blocks increases
the communication overhead also increases. This means that
the proposed method should overcome this drawback as for
5G enabled UAV communication lower latency is mandatory.
From Fig.6 it can be seen that the communication overhead of
the proposed work almost remains the same as we are increas-
ing the number of resource blocks. Moreover, communication
overhead attained by the proposed method is minimum as
compared to the existing state of artworks.

D. Data Rate of the Proposed Work

Fig.6 shows the average data rate achieved with respect to
the 5G enabled UAVs. Form the Fig.7 it can be clearly seen
that the proposed work outperforms the previous works in
attaining the higher data rate. More importantly average data

Fig. 5. Communication Overhead Vs Number of Resource Blocks.

rate remains high and constant as the number of 5G enabled
UAVs increases.

V. CONCLUSION

In this work we present an estimation of the channel model
for 5G enabled maritime UAVs network. There are three
key contributions initially, we formulated channel estimation
method which directly aims to adopt channel state information
(CSI) of mmWave from the channel model inculcated by
UAV operating within the Long Short Term Memory (LSTM)-
Distributed Conditional generative adversarial network (DC-
GAN) i.e. (LSTM-DCGAN) for each beamforming direction.
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Fig. 6. Communication Overhead Vs Number of Resource Blocks.

Fig. 7. Average Data Rate Achieved.

Secondly, to enhance applications for the proposed trained
channel model for the spatial domain, we have designed an
LSTM-CGAN based UAV network, where each one will learn
mmWave CSI for all distributions. Lastly, we categorized the
most favorable LSTM-DCGAN training method and emanated
certain conditions for our UAV network to increase the channel
model learning rate. Simulation results have shown that at
each UAV, our proposed LSTM-DCGAN based network is
vigorous to the error generated through local training. Lastly
the proposed work has been compared with the other avail-
able state-of-the-art CGAN network architectures i.e. stand-
alone CGAN (without CSI sharing), Simple CGAN (with CSI
sharing), multi-discriminator CGAN, and federated learning
CGAN. Simulation results have shown that the proposed
LSTM-DCGAN structure demonstrates higher accuracy during
the learning process and attained more data rate for downlink
transmission as compared to the previous state of artworks.
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