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Semi-Blind Joint Channel Estimation and Symbol
Detection for RIS-Empowered Multiuser
mmWave Systems

Jianhe Du, Xin Luo, Xingwang Li, Mingfu Zhu, Khaled M. Rabie, and Ferdi Kara,

Abstract—In this letter, we propose a semi-blind joint chan-
nel estimation and symbol detection scheme for reconfigurable
intelligent surface (RIS)-empowered multiuser millimeter wave
(mmWave) systems. Combined with the coding scheme at user
equipments (UEs) and RIS reflection coefficient design, we prove
that the received signals at the base station (BS) follow a
PARATUCK?2 tensor model, and then a two-stage fitting algo-
rithm is derived by exploiting the low-rank structure of mmWave
channel. Without a dedicated training stage, the proposed scheme
can jointly detect information symbols of all UEs and estimate
the channels of the UEs-RIS and RIS-BS links. In comparison to
the existing methods, the proposed system can increase spectrum
efficiency and obtain better channel estimation and symbol
detection performance. Numerical results are presented to verify
the effectiveness of the proposed scheme.

Index Terms—Joint estimation and detection, RIS, mmWave,
PARATUCK?2 tensor, low-rank.

I. INTRODUCTION

ILLIMETER wave (mmWave) communication

achieves unprecedented gigabitsper-second data rates
with abundant spectrum resources, which makes it a promising
technology to keep up with rapid the growth of transmission
speed demand in wireless communications [1]. However, the
communication distance is severely restricted owing to high
path loss in mmWave bands and severe blockage problems.
To address this, promising solutions such as reconfigurable
intelligent surfaces (RISs) have been developed.

Integrating the RIS into wireless networks brings new
challenges from a communication standpoint, e.g., channel
estimation, RIS beamforming design and deployment. In par-
ticular, accurately estimating channel state information (CSI)
deserves further investigation. A three-phase pilot-based chan-
nel estimation framework is proposed in [2] to estimate the
cascaded UE-RIS-BS links. However, in order to optimize
the RIS-empowered system, the information of both UE-
RIS and RIS-BS links is required. In [3], two schemes are
proposed to realize channel estimation, where both channel
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links can be estimated separately. However, this method is
only applicable to time-division duplexing (TDD) systems.
Recently, tensor decomposition has been considered to be an
effective method for channel estimation in RIS-empowered
systems [4], [5]. The work in [4] presents two tensor-based
channel estimation techniques composed of the alternating
least squares (ALS) algorithm and the vector approximate
message passing (VAMP) algorithm. In [5], a receiver design
is addressed by presenting two channel estimation methods
including the Khatri-Rao factorization (KRF) algorithm and
the iterative bilinear ALS (BALS) algorithm. The tensor-based
methods [4], [5] are applicable to both the TDD and frequency
division duplexing (FDD) systems.

However, the aforementioned schemes [2]-[5] incur a large
number of pilot overhead stemming from the acquisition of
CSI, which leads to a decline in spectrum efficiency. To reduce
the pilot overhead, joint channel estimation and signal recovery
is realized in [6] by bidirectional two-layer algorithms. Dif-
ferent from the matrix-based method in [6], the work in [7]
develops a tensor-based semi-blind KAKF algorithm, which is
composed of the KRF and the Kronecker factorization (KF)
methods for joint channel and signal estimation. Although the
KAKEF algorithm without any iterative procedures has a low
computational complexity, it cannot estimate all parameters
simultaneously and the error propagation problem will occur
since the estimation performance of the second stage depends
largely on that of the first stage. Thus, it is necessary to further
improve the accuracy of joint channel estimation and symbol
estimation for RIS-empowered systems, especially in higher-
frequency bands.

In this letter, we first design a PARATUCK?2 tensor model
for RIS-empowered multiuser mmWave systems. Then a two-
stage fitting algorithm is proposed to provide the base station
(BS) with full knowledge of channel matrices and information
symbols. The main contributions of this letter are summarized
below:

« By exploiting the algebraic structure of the constructed
PARATUCK?2 tensor model, the proposed scheme makes
full use of the tensor decomposition technology to acquire
full knowledge of CSI involved in the communication
and information symbols of all UEs without a dedicated
training stage.

« By utilizing the hybrid Kronecker/Khatri-Rao factoriza-
tion and the low-rank structure of the mmWave channel,
the proposed scheme provides higher spectrum efficiency
in contrast to the pilot-assisted methods [2]-[5], and
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Fig. 1. The RIS-empowered multiuser mmWave system.

has higher fitting accuracy compared to the semi-blind
methods [6], [7].

« We analyze the uniqueness issue and the identifiability
conditions of the constructed PARATUCK?2 tensor model.
The proposed scheme requires a more relaxed identi-
fiability condition than that in [7]. In addition, monte
Carlo simulation results show that the proposed scheme
improves the estimation and detection accuracy compared
to existing methods.

Notations: Lower-case letters (a,b,...) denote scalars,
boldface lower-case letters (a,b,...) denote matrices and
calligraphic letters (A, B,...) denote tensors. The transpose,
conjugate, Hermitian transpose and pseudo-inverse of A are
represented by AT, A*, AH and AT, respectively. a,,.n
stands for the (m,n)-th entry of A € CM*N. Both a.,
and A (:,n) represent the n-th column of A. vec(-) denotes
a vector out of the diagonal of its matrix argument. @ and
® represent the Kronecker product and Khatri-Rao product,
respectively. The following properties are used throughout this
letter:

vec (ABC) = (C" ® A) vec (B), 1)

vec (BD,, (A)C) = (CT @ B) AL, 2

where the sizes of the matrices A, B and C are suitable for
mathematical operations.

II. SYSTEM MODEL
A. Channel Model

As shown in Fig. 1, we consider a RIS-empowered multiuser
mmWave uplink system with K single-antenna user equip-
ments (UEs), a RIS consisting of N elements and a BS of
M antennas. It is assumed that the line-of-sight (LoS) paths
between the UEs and BS are unavailable [1]. Both the RIS and
the BS employ uniform planer array (UPA). It is assumed that
there are L g ;; and L resolvable paths from the k-th UE to
the RIS and from the RIS to the BS, respectively. For mmWave
systems, the values of Lypr  and Lrp are both small since
the signals usually suffer serious path loss in the transmission
process, and reflect less to the surrounding environment [8].
Let h,(CUR) € CN*1 be the channel between the k-th UE and
the RIS, k =1,..., K. We employ the widely utilized Saleh-
Valenzuela channel model to represent h,(CUR) € CNX1L a5 9]

Lyr,k
(UR) _ RUR,k
hk - LURk Z alURkaR lUR,k P
lyr k=1

k Ryr,k, Rugrk
where af - and Glm X (gplUR .") are the complex path gain

and the azunuth (elevation) angle at the RIS associated with

w3

LUR,k

the [y -th path, respectively. Similarly, the channel H(EB) ¢
(CM XN between the RIS and the BS can be modeled as

Lrp

B B R R
LRB Z Bnnan (0020 e ) af (02, ol ) |
“)
where .., Hi’;B(@i’;B) and 9;1’;5(@ ) are the complex

path gain, the azimuth (elevation) angle at the BS and the
azimuth (elevation) angle at the RIS associated with the [rp-
th path, respectively. Ignoring the superscripts and subscripts,
ar (0,¢) and ag (6,p) are the normalized array steering
vectors. Without loss of generality, for a typical F} x Fy UPA,
a(f,p) is obtained by

a(l, o) = [1 eI e—j(Fl—l)w}T

1
vE Lo
® {1’e—jw,... 7e—j(F2—1>w]

where F' = Fy X Fy, w = 2wdsinf cos /A, ¥ = 2wdsin o/ A,
A is the carrier wavelength and d is the antenna spacing which
is normally set to \/2.

B. PARATUCK? Signal Model

Denote s, € CT*! as the transmitted symbol vector
of the k-th UE, where T is the length of the information
symbol. Let e, € CP*! be the coding vector associated
with the k-th UE, where P is the number of the time blocks
of the overall signal transmission period. The block-fading
channel is adopted, which implies that the channel coefficients
remain unchanged over the coherence time interval. It can
be concluded that the coherence time is T = 1T P. Denote
Pp = [¢1,p,...,¢N,p]T € CN*1 as the phase shift vector
that simulates the RIS phase shifts and activation pattern, and
let D, (®) = diag (¢p,) be a diagonal matrix with the p-th
row of the RIS phase shift matrix & € CP*N forming its
diagonal, p = 1,..., P. At the BS, the received signal forms
the p-th frontal slice Y, € CM*T of a third-order tensor
y c (CM XPxT as

K
Y, =HED, (@)Y (1" D, (e4) st ) +V,

- (6)
k=1

=H"Bp,(®)H WD, (E)ST +V,,
where HUR = (U™ p{U™) ¢ C¥N*K is the channel

from all UEs to the RIS, E = [ey, ..., ex]| € CP*K is the ma-
trix containing all coding vectors, S = [s1,...,5x] € CT*K
is the matrix containing all information symbol vectors, and
V,, € CM*T s the additive Gaussian noise matrix at the BS.
With the properties (1) and (2), the vectorized form of Y, in
the absence of noise is given by

vee (Y,) = (s ® H<RB>) (D, (E) ® D, (®)) vec (H< UR))

= (vee(m™) o (50 D) ) (B 0 8,
)
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By collecting vec (Y ) for all P time blocks, we can derive
the mode-1 unfolding of the tensor ) as follows:

V], = [vec(Y1),...,vec(Yp)]

8
— (S@H"D) diag (h"7) (ET 0 @), ®)
where [V], € C™*” and h'U® = vec (H(VR)). The
channel H(UR) can be estimated by the vectorized form
of [V];, e,y = vec([V];) = G1h'"® Here we define
G, € CMPTXNK 1o simplify the formula, i.ec.,

G =(EToe") o (SeHED). ©)

In order to estimate H(EB) and S, we derive the mode-2 and
the mode-3 unfoldings of Y, ie., [V], = [Y1,... ,Yp]T =
G2(H(RB))T e CPT*M gpd Y, = [YIT’.__7Y1TD]T =

G3ST € CMPXT | where

Gy = (Ip®8)[Z], € CPT*N, (10)

Gy = (Ip ® H<RB>) 2], € CMPXK, (11)
where 2], = [ZT,...,Z5]" and [Z], = [Z,...,Zp]".
Here Z, = D, (®) H(Y® D, (E) € C¥*K is introduced to
simplify the expression and [Z]; and [Z], are the mode-1 and
mode-2 unfoldings of the tensor Z.

III. SEMI-BLIND JOINT CHANNEL ESTIMATION AND
SYMBOL DETECTION

A. Stage I: Preconditioning

By utilizing the hybrid Kronecker/Khatri-Rao factorization
property of the mode-1 unfolding shown in (8), we derive
a closed-form (CF) solution for preconditioning containing
pre-estimation and pre-detection. Assuming that the designed
Khatri-Rao product matrix 2 = (ET © ®T) e CNKxP
is full row-rank, we set Q = [V],El € CMT*EN et
(k) be the [(k — 1) N + n]-th column of the matrix Q, i.e.,
9n) = Quk-1)N+n> n=1,..., N, and then we obtain

Gy = (s @ B T, (12)

Define a rank-one matrix @, ) = unvec (q(k’n)) € CMxT
such that
=G sh o n 5,

Ot,n) (13)

where the factors h,(,}fB), 5., and hiLL_[kR) can be obtained by

computing the rank-one approximation of the matrix O.n)
via its singular value decomposition (SVD) [5]:

H
Oy = Ukon) B(kn) (Vim)) -

Considering the rank-one property of @ ,), we have
h,(,}f‘B) = Ugy(:,1) for all values of k, sp =
(V(k,n) (:, 1))H for all values of n, and higgR) =0(kn) (1,1)
for all values of k& and n. To get the pre-estimation and pre-
detection of channels and symbols, respectively, we average
over the K and N independent estimates of H(/*5) and detects

of S. Moreover, it is assumed that the elements in the first

(14)

row of H(®B) and S are known in order to eliminate scaling
ambiguity [10]. Then, we obtain

K
- (RB) 1 [U(km)].
= Ly el (15)
K ,; [Utem],
N Vv H
o L [ (k,n)]*l 7 6)
= Vel
- (UR)
g = [Ogm]y ) [Boem]y ) Vo], 07

By exploiting the preconditioning operation, we acquire the
initial values of H(UR), H(EB) and S.

B. Stage II: Iterative Fitting

Stage II begins with the initialization from stage 1. From
the vectorized form of [V];, i.e., y. we use the LS fitting to
obtain the estimated vectorized form of H(UR) as

~(UR A 2 AN\ T
A y— GthR)H = (&) ay)
2

= arg min
g h(UR)

Next, from the mode-2 unfolding of tensor )/, we exploit
the LS fitting to obtain the estimated H(®B) with the vector
~(UR
h( ) as
2 NN

= (G2) [y ]2
F
(19)

Supposing that the number of resolvable paths (NRPs)
between each channel is known, the estimation of H(EB)
can be optimized at every iteration via the singular value
projection (SVP) method by utilizing the low-rank structure
of the mmWave channel [11], i.e.,

LrB
(™) =SVP(AP) = 37 we,vih,, 0

lrp=1

T

HRB) arg min

nin v, _G2(H(RB))T

opt

where ¢ represents the maximum significant singular value,
while u and v correspond to the left and right singular vectors,
respectively. Then, from the mode-3 unfolding of tensor ), we
(U
utilize the LS fitting to update S with the vector h( ) and

the optimized matrix (I:I(RB)) , 1.e.,

opt

. _ a2 N T

§ = argmslnH[y]g ~ @S HF - ((Gg) [y]3> . Q@
The error of the i-th iteration can be calculated as

£@) =1ly =G (@R @) 13/l y 15,

and the convergence is decided when £ (i) — & (i — 1) < 4,
where ¢ is the error tolerance. The proposed two-stage algo-
rithm is summarized in Table L.

(22)

IV. IDENTIFIABILITY AND UNIQUENESS

For system identifiability, sufficient and necessary condi-
tions are satisfied when the parameters of the pseudo-inverse
operators obtained by minimizing the LS cost functions are full
row-rank or full column-rank. In the first stage, an accurate
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TABLE I
The Two-Stage Fitting Algorithm

Input: Received tensor )/, RIS phase shift matrix ®
and encoding matrix E.
Start Stage |
1.1 Forn=1,.... Nand k=1,.... K
(a) Calculate Q = [V],ET;
(b) Reshape ¢, ,,y as the matrix © )3
(c) Calculate the SVD of O, ,);
(d) Eliminate scaling ambiguity;
(e) Output the initializations of H(UE) H(RB)
and S;
1.2 End for
Start Stage I
2.1 TInitialize S (0) and HB) (0) from 1.1(e);
2.2 Seti=0;
23 i+—i+1;
2.4 Calculate the LS estimate of ' () by (18);
2.5 Calculate the LS estimate of H(®5) (4) by (19);
2.6 Apply SVP method to H(EB) (i) by (20);
2.7 Calculate the LS estimate of S () by (21);
2.8 Calculate & (i) by (22);
2.9 Repeat steps 2.3 to 2.9 until convergence;
2.10 Eliminate scaling ambiguity.
Output: The estimated matrices H(U®), H(EB) and S.

initialization is completed when the designed matrix = is
full row-rank. However, even if this assumption is not satis-
fied, we can still obtain partial information of channels and
symbols. On this foundation, the preconditioning operation
accelerates computing and makes the subsequent iterative
fitting algorithm more stable. In the second stage, from the
LS solutions (18), (19) and (21), the identifiability of the triple
(H(WR H®EB) | S) requires that G1, G and Gj are full
column-rank.

On the premise of meeting identifiability conditions, the
riple (ﬂ< UR) FI(RB) &) obtained by the PARATUCK2
decomposition is not completely equal to the original
(H(UR), H(RB), S), i.e., the PARATUCK2 decomposition
is essentially unique and there exists permutation and column
scaling ambiguities [10]. Supposing that the matrices ¢ and
E as well as the first row of S and H(®5) are known at the
BS, we have

S =SA®) (23)
H(RE) _ fI(RE) p(RB). 24)
H(UR) = ABRB) T f(UR) A(S) ™" (25)
where A®) = D (S)D;! (S) and AFB)
D; (H®®) D! (ﬂ(RB) . Thus, the proposed semi-

blind algorithm can eliminate the inherent ambiguity with
few pilot sequences. In practice, we can consider integrating
the sensing devices into the RIS to estimate the first row of
H®EB) or the first column of H(UR) [12]. Meanwhile, we

consider embedding the information known to the BS into
the first row of S.

V. RESULTS AND DISCUSSIONS

In this section, numerical results are reported to assess the
performance of the proposed algorithm on the normalized
mean square error (NMSE) and the bit error rate (BER). The
default values of the adopted system parameters are as follows:
K =2, N=36(N1=N2=6), M =16 (M, = My =4),
T = 8, P = 60, LUR = LUR,k =2 for all k = 1,...,K,
and Lrp = 2. 16QAM is considered to modulate the
information symbols. All simulation results are acquired by
averaging over 10000 Monte Carlo runs. ’aﬂ = 10‘2d_U%f3k
and |5 = 10‘2d§%2, where dypg is the distance from the
k-th UE to the RIS and is equal to 100m forall k =1,..., K,
while drp is the distance from the RIS to the BS and is equal
to 10m [13]. The elements in the RIS phase shift matrix ® are
chosen from { —1/v/P, +1/VP } by utilizing discrete phase
shifts (DFT) of the RIS. The coding matrix E is generated such
that ¢, 1, = exp (—j2mc) /v/P, where c is a random variable
chosen from the standard uniform distribution.

In the first example, we compare the performance of the
proposed algorithm with the pilot-assisted BALS algorithm
[5], the semi-blind KAKF algorithm [7], and the pilot-assisted
CF algorithm [14]. Moreover, we also plot the curve of the
proposed algorithm without NRPs. A fair comparison with
the pilot-assisted methods is assumed. For the pilot-assisted
algorithms, the same time block of information symbols and
pilots is repeated P’ times, which means that the coherence
time of the pilot-assisted algorithms is T¢, = (17 + 1) P,
where T" is the length of the symbol and 7, is the length of
the pilot. In this example, we assume P’ = 60, 77 = 6, and
T, = 2, which implies the time to transmit useful information
for different algorithms is the same. From the channel NMSE
and symbol BER curves depicted in Figs. 2 and 3, respec-
tively, we observe that the proposed algorithm outperforms
the competitive algorithms whether in channel estimation or
symbol detection. The result originates from the fact that
the proposed algorithm is optimized by preconditioning and
further improves performance with iterative fitting. On the
other hand, by means of the low-rank structure of the mmWave
channel, the algorithm with NRPs meliorates the channel
estimation and symbol detection performance. In addition,
since the designed matrix is not full row-rank, the semi-blind
KAKF algorithm cannot effectively estimate channels and
detect symbols. However, the final accuracy of the proposed
algorithm is almost unchanged when the designed matrix
is not full row-rank. In this case, the performance of the
preconditioning will be affected, thereby only affecting the
fitting speed of the algorithm.

The dominant complexity of the pilot-assisted BALS al-
gorithm, the semi-blind KAKF algorithm, the pilot-assisted
CF algorithm, and the proposed algorithm with or with-
out NRPs can be estimated by O ((KN + MN + MK) PN),
O(MNTK min {MN,TK?}), O (KMN (P + min {K, M}))
and O (PMTK?N?), respectively. Although the competitive
algorithms have lower complexity, their estimation and detec-
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sisted BALS [5]
F [7]

NMSE (H,;)

o 5 10 15

SNR (dB) SNR (dB)

Fig. 2. NMSE versus SNR compared with different algorithms.

]
SNR (d8)

Fig. 3. BER versus SNR compared with different algorithms.

tion accuracy is inferior to that of the proposed algorithm. In
addition, the number of the iterations is reduced to about 4 at
high SNR with the preconditioning for the proposed algorithm,
which implies that the complexity gap with the competitive
algorithms is reduced.

In the second example, we analyze the NMSE and BER per-
formance of the proposed algorithm and the semi-blind KAKF
algorithm for different numbers of Lyr and Lrp, where
K =4, P=160, and we set L = Lrp = Lyr = LUR,k for
all k=1,..., K. For the proposed algorithm, since the low-
rank structure of the mmWave channel matrix is utilized, the
NMSE performance of H(Y®) and H("B) deteriorates with
the increase of L as shown in Fig. 4. From Fig. 5, we observe
that the BER performance improves with the increase of L.
The reason for this result is that the spatial diversity gain
improves with the raise of L. Moreover, we see from Figs. 4
and 5 that the NMSE and BER performance of the proposed
algorithm is significantly better than that of the semi-blind
KAKEF algorithm, even when the designed matrix is full row-
rank.

VI. CONCLUSION

In this letter, we developed a semi-blind joint channel
estimation and symbol detection scheme for RIS-empowered
multiuser mmWave systems. By applying the decomposition
property of the constructed PARATUCK?2 tensor model, we
acquired full knowledge of CSI involved in the communication
and information symbols of all UEs without a dedicated train-
ing stage. Simulation results show that the proposed scheme
yields smaller channel estimation and symbol detection error
compared with the existing methods. In the future, we will
further extract channel parameters such as directions of ar-
rival/departure (DoAs/DoDs), time delays and complex path
gains for the user localization by extending the PARATUCK?2
decomposition to higher-order tensors.
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