
Please cite the Published Version

Henry, Azriel, Gautam, Sunil, Khanna, Samrat, Rabie, Khaled , Shongwe, Thokozani, Bhat-
tacharya, Pronaya, Sharma, Bhisham and Chowdhury, Subrata (2023) Composition of hybrid deep
learning model and feature optimization for intrusion detection system. Sensors, 23 (2). 890 ISSN
1424-8220

DOI: https://doi.org/10.3390/s23020890

Publisher: MDPI

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/632931/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article which origi-
nally appeared in Sensors, published by MDPI. This article is part of
the Special Issue Security and Privacy in IoT-Enabled Smart Environments
(https://www.mdpi.com/journal/sensors/special_issues/cyber_security_privacy_smart_environment)

Data Access Statement: No data are associated with this research work.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-9784-3703
https://doi.org/10.3390/s23020890
https://e-space.mmu.ac.uk/632931/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors/special_issues/cyber_security_privacy_smart_environment
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Citation: Henry, A.; Gautam, S.;

Khanna, S.; Rabie, K.; Shongwe, T.;

Bhattacharya, P.; Sharma, B.;

Chowdhury, S. Composition of

Hybrid Deep Learning Model and

Feature Optimization for Intrusion

Detection System. Sensors 2023, 23,

890. https://doi.org/10.3390/

s23020890

Academic Editors: Ali Ismail Awad,

Muhammad Imran and Mohammed

M. Alani

Received: 8 December 2022

Revised: 3 January 2023

Accepted: 5 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Composition of Hybrid Deep Learning Model and Feature
Optimization for Intrusion Detection System
Azriel Henry 1, Sunil Gautam 2, Samrat Khanna 1, Khaled Rabie 3,4,* , Thokozani Shongwe 4,
Pronaya Bhattacharya 5,* , Bhisham Sharma 6 and Subrata Chowdhury 7

1 Department of Computer Sciences and Engineering, Institute of Advanced Research,
Gandhinagar 382426, Gujarat, India

2 Department of Computer Science and Engineering, Institute of Technology, Nirma University,
Ahmedabad 382481, Gujarat, India

3 Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
4 Department of Electrical and Electronic Engineering Technology, University of Johannesburg, Auckland Park,

P.O. Box 524, Johannesburg 2006, South Africa
5 Department of Computer Science and Engineering, Amity School of Engineering and Technology,

Amity University, Kolkata, 700135, West Bengal, India
6 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
7 Department of Masters of Computer Application, Sri Venkateswara College of Engineering and Technology (A),

Chittoor 517127, Andhra Pradesh, India
* Correspondence: k.rabie@mmu.ac.uk (K.R.); pbhattacharya@kol.amity.edu (P.B.)

Abstract: Recently, with the massive growth of IoT devices, the attack surfaces have also intensified.
Thus, cybersecurity has become a critical component to protect organizational boundaries. In
networks, Intrusion Detection Systems (IDSs) are employed to raise critical flags during network
management. One aspect is malicious traffic identification, where zero-day attack detection is a critical
problem of study. Current approaches are aligned towards deep learning (DL) methods for IDSs,
but the success of the DL mechanism depends on the feature learning process, which is an open
challenge. Thus, in this paper, the authors propose a technique which combines both CNN, and
GRU, where different CNN–GRU combination sequences are presented to optimize the network
parameters. In the simulation, the authors used the CICIDS-2017 benchmark dataset and used metrics
such as precision, recall, False Positive Rate (FPR), True Positive Rate (TRP), and other aligned
metrics. The results suggest a significant improvement, where many network attacks are detected
with an accuracy of 98.73%, and an FPR rate of 0.075. We also performed a comparative analysis with
other existing techniques, and the obtained results indicate the efficacy of the proposed IDS scheme
in real cybersecurity setups.

Keywords: convolution neural network; IDS; deep learning; anomaly detection

1. Introduction

Information technology is growing very rapidly throughout the world. It has made
information exchange very smooth and easy. However, these advancements have created
many challenges for the communication system. Such a system or network faces intrusions
in the form of different attacks. An IDS is a tool that can classify or detect potential cyber
attacks in the host/network by applying detection algorithms. There are two classes of
IDS, Signature and Anomaly based IDSs (SIDS and AIDS). In SIDS, attacks are detected
considering the pre-defined pattern/signature of the attacks. In the AIDS network, traffic
patterns are monitored and compared with normal or regular patterns in the network to
detect any intrusion. Any change in the network is declared as an intrusion in the network
by the Anomaly based IDS. It has an advantage over SIDS as it can execute the detection of
new attacks in the network. Whereas SIDS can only detect attacks that match the previously

Sensors 2023, 23, 890. https://doi.org/10.3390/s23020890 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020890
https://doi.org/10.3390/s23020890
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9784-3703
https://orcid.org/0000-0002-1206-2298
https://orcid.org/0000-0002-3400-3504
https://doi.org/10.3390/s23020890
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020890?type=check_update&version=1

Sensors 2023, 23, 890 2 of 22

stored signatures. Moreover, for data sources, IDS can be divided into Network- and Host-
based IDSs. By looking at the information from the OS, server and firewall, and database
logs, or application system audit, HIDS can identify threats from within the system. NIDS
can identify external attacks before they reach the computer network. To identify potential
network dangers, NIDS tracks and examines network traffic that is gathered from various
network data sources [1,2].

There are several approaches to developing SIDS and AIDS. AIDS can nullify the limi-
tations of SIDS and researchers have shown more interest in it. First, AIDS can be created
using schemes such as Machine-learning/deep-learning (ML/DL), knowledge-based or
statistical-based methods [3]. The statistical method detects intrusion using a statistical
system of measurements such as the mean, standard deviation, mode, and median. Uni-
variate, Multivariate, and Time-series models are the models used to implement Statistical
IDS. Second, models are developed using knowledge-based techniques based on a set of
rules made using human knowledge. Methods to develop knowledge-based IDS involve
description languages, expert systems, and finite-state systems. Thirdly, machine learning
is an extensively used technique to develop an Anomaly based IDS. The ML approach
comprises two classes namely, unsupervised, and supervised learning. In addition to these
categories, there is hybrid learning called semi-supervised learning. In contrast to unsuper-
vised learning, which needs unlabelled instances for training, supervised learning needs
labelled instances. The semi-supervised technique utilizes fewer categorized instances and
more uncategorized input instances for training [4,5].

Machine learning methods to detect cyber intrusions are being widely used because of
their automatic and timely manner of action. However, cyber intrusions are continuously
changing which creates the requirement for more scalable detection systems. The opportunity
to create such scalable and adaptable detection systems is provided by DL techniques. DL
can be used with the supervised as well as unsupervised method. Unsupervised algorithms
are used to produce labels for unlabelled instances [6,7]. When using techniques such as
machine learning/deep learning (ML/DL), the dataset is crucial. Various IDS datasets are
available for developing an IDS such as KDD 99 dataset, Centre for Applied-Internet Data-
Analysis (CAIDA) dataset, DARPA Lincoln Lap Packet trace, UNSW-NB15, Coburg University
published dataset-CIDDS-001, or New Brunswick University published dataset-CICIDS 2017.
It includes a wide variety of typical attacks in addition to benign ones. Attacks such as
DoS/DDoS, Heartbleed, botnet, SSH bruteforce, infiltration, and web attacks are included in
CICIDS 2017 dataset [8,9].

1.1. Novelty of Paper

We used a deep learning algorithm called CNN with GRU framework to develop
an IDS. CNN is widely used as a deep learning technique in various fields. However,
these methods have a problem with long-term dependencies. The existing deep learning
solutions deal with this problem of long-term dependencies. When long-term interactions
are provided exponentially decreasing weights, the long-term dependency problem occurs.
Consequently, it becomes challenging for the model to track previous data. GRU can fix
this issue and enhance the deep learning model. Hence to effectively detect the attacks we
used the GRU framework with RNN.

1.2. Contribution of Paper

To effectively classify the attacks, we designed an IDS using a deep learning technique.
We used CNN to detect the attacks in IDS. To overcome the limitations of the existing
DL technique as discussed in the previous section, the technique is modified using the
GRU framework. We tried different combinations of CNN layers and GRU sequences.
However, we achieved better performance with three CNN layers and two GRU layers.
The detailed model strategy is shown in the latter section. In addition, we optimized the
CICIDS 2017 dataset for better performance. The optimization includes the removal of
redundant features and the selection of distinguished features.

Sensors 2023, 23, 890 3 of 22

1.3. Organization of Paper

The remaining text is presented in the below order: Section 2 manifests the most recent
research on this subject. The proposed method is showcased in Section 3. The main contri-
bution of the research is also covered in this section and it discusses the proposed technique
in detail. Section 4 analyses the model’s performance using a variety of parameters, i.e.,
findings and discussion. The work of this study comes to a close in Section 5.

2. Related Work

The scope to enhance the IDS is prevailing despite the numerous varieties of ap-
proaches to deal with the same. Recent years have seen an increase in the development of
IDSs based on machine learning relative to previous methodologies. Nevertheless, there
are various methods to develop an IDS which performs differently in various scenarios.

Roberto et al. [10] illustrated a model to detect network intrusions using four ML
models namely Multinomial LR, SVC-L and SVC-RBF, and RF. They evaluated their models
using the UGR’16 dataset. They considered four attacks namely e Botnet, DoS, Scan,
and Spam. They assert that the scientific community will benefit from their findings by
developing better NIDS solutions. However, this research reflects on only four attacks.

Amar et al. [11] demonstrated ML techniques such as KNN, Naïve Bayes, Logistic
regression, and SVM. They used the NSL-KDD to check the effectiveness of their models.
They claimed that for binary and multi-class classification, KNN is superior to NB, and RF
SVM with a precision factor of 93.28% to above 99.4% and an accuracy of 96.69%.

Iram et al. [12] demonstrated a detailed study using machine learning algorithms
namely SVM, KNN, LR, NB, MLP, RF, ETC, and DT. They randomly selected the features
from the NSL-KDD to reduce the dimension of the dataset. They claimed that RF, extra-tree,
and DT classifiers managed to achieve an accuracy score of above 99%. However, they did
not focus on the sight of executing optimization methods. Abdulsalam et al. [13] showcased
the use of DT, RF, and XGBoost to develop an IDS for software-defined networks (SDN).
NSL-KDD was utilized to test the effectiveness of these models. XGBoost classifier outper-
formed other classifiers when evaluated using various metrics such as F1 score, precision,
recall, etc. However, they stated that deep learning algorithms, such as Auto-Encoder,
GANs, and RNNs, such as GRU and LSTM can be used to conveniently detect the changes
in the network. Raisa et al. [14] demonstrated the analysis of the learning algorithms
namely DT, GBT, AdaBoost, MLP, LSTM, and GRU for detecting the intrusions. They used
UNSW-NB 15 and Network TON datasets to test these models. To optimize the dataset, they
used an embedded technique called the GIWRF model. The decision tree outperformed
other classifiers in this study. However, this study lacks the multiclass classification.

Achmad et al. [15] demonstrated a hybrid strategy that incorporates the feature opti-
mization method, which stands for supervised method, and the data reduction method,
which stands for unsupervised method. Attribute importance DT-based technique with
recursive feature removal is used to pick pertinent and important attributes, and the LOF
method is used to identify anomalous or outlier data. To check the effectiveness of their
model they used NSL-KDD and UNSW-NB15. They claimed that their model increases
accuracy of the system when compared with other existing models. They noted that their
model needs improvement in terms of sensitivity, specificity, and FAR.

Gustavo et al. [16] introduced the AB-TRAP framework to facilitate the full deployment
of the solution, which allows the use of new network traffic and takes operational factors
into account. Their methodology includes developing attack and legitimate datasets,
training machine learning models, putting the solution into practice on a target system, and
assessing the effectiveness of the security module. They demonstrated the performance of
the ML models such as KNN, RF, XGB, NB, DT, MLP, SVM, and LR. They claimed that the
decision tree (DT) provides the best result compared with other models. However, their
model needs to be tested on the standard datasets containing a variety of attacks.

Maonan et al. [17] proposed a method to enhance interpretation of IDSs, this approach
employs Shapley Additive Explanations (SHAPs) and integrates local and global explanations.

Sensors 2023, 23, 890 4 of 22

The local explanations provide the justifications for the decisions the model makes in response
to a particular input. The NSL-KDD dataset is utilized to test the framework’s viability. They
used KNN, RF, SVM-RBF, one-vs.-all, and multiclass models as learning models. The experi-
mental outcomes demonstrate that the interpretation outcomes produced by their framework
are consistent with the traits of the attacks, and the outcomes are quite comprehensible.

Samson et al. [18] demonstrated the use of CNN to distinguish the attacks in IDS. To
evaluate the model, they used CICIDS 2017 dataset. They managed to reach an accuracy
rate of 94.96%. Moreover, they claimed that their model can detect new DoS instances
other than the instances in the training phase. Priyanka et al. [19] showcased different IDS
techniques based on CICIDS 2017 dataset. They divided the process into two categories,
namely two class and multi-class for RF, NB, and Convolution Neural Network (CNN)
techniques. They noticed that Nave Bayes had poor accuracy for two classes and had
a lower multi-class performance. Moreover, RF has high accuracy compared with the
CNN model. However, they used a partial dataset for evaluation. Sun et al. [20] proposed
a method called CNN-LSTM. They modified the CNN model using LSTM for improving
the detection rate. The model’s effectiveness was assessed using CICIDS 2017 dataset. Their
result shows an accuracy of 98.7%. However, for a few attacks such as Heartbleed and
SSH-Patator attacks the model showed a low detection accuracy rate.

Mario et al. [21] showcased the experiment-based comparison of neural-based tech-
niques. The key focus of their work is on ANN. They used CICIDS2017/2018 and KDD99
datasets to evaluate their model. They claimed that the ANN-based techniques perform
outstandingly in almost all cases, but as a result of the backpropagation technique they
have the disadvantage of being slow. However, they lack the feature optimization step
which can reduce time complexity of the classifier.

Shi et al. [22] discussed the use of the Semi-Supervised Deep Reinforcement method.
The SSDDQN uses an auto encoder to recreate the attributes first, and a deep NN as
a second step. NSL-KDD and AWID datasets were used in their experiment for testing
and training. They claimed that for abnormal traffic their model achieved good results.
However, the SSDDQN model’s optimization impact is constrained, and it has essentially
no detection capacity for smallest number of U2R anomalous attack traffic.

Charlotte et al. [23] demonstrated the comparison of random forest with two deep
learning algorithms: RNN and CNN. They carried out the experiment using Sentinel-2
time series. Analysing the algorithms, they claimed that CNN obtains the highest accuracy.
Moreover, they also claimed that RNNs have more time complexity and less accuracy.

Joohwa et al. [24] presented an approach for deep learning classification using features
that were extracted, not as a classification approach, but as a pre-processing technique for
feature extraction. An unsupervised deep learning autoencoder model that is typically
employed is classified by the Random Forest (RF) classification method, and features are
extracted from that model using a deep sparse autoencoder. They used CICIDS 2017 dataset
to perform the experiments. They claimed that the proposed approach was compared with
existing methods for feature extraction and it was superior. However, the performance of
the approach was somewhat poor for the rare class that existed in the network.

Mohammadnoor et al. [25] showcased a multi-stage optimised ML-based NIDS frame-
work. They examined how oversampling approaches affect the size of the training in-
stances for models and establishes smallest training sample size. They compared gain and
correlation-based techniques for feature selection. They used two datasets to evaluate their
model, namely CICIDS 2017 and UNSW-NB 2015. They claimed that their model achieves
the accuracy rate of more than 90% while using only up to 50% of features.

The related works demonstrate a range of Intrusion Detection System implementation
strategies. Most of these suggested works test their models using the datasets KDDCUP
and NSL-KDD. These datasets do not, however, exhibit a lot of attribute variability. We
selected the CICIDS-2017 dataset for this analysis since it has more features and dangers
than the KDD dataset. To produce an effective strategy, this proposed effort concentrates

Sensors 2023, 23, 890 5 of 22

on reducing the input size, or features, by using a legitimate feature optimization technique.
Table 1 shows the summary of the related works discussed above.

Table 1. Summary of the related work.

Reference Existing Technique Summary

Roberto et al.,
(2020) [10] NIDS -ML Approaches

Classifier: Logistic regression (LR), SVC-L, SVC-RBF, RF
Dataset: UGR’16
Metrics: Precision, Recall, F1, AUC
Programming: Python, scikit-optimize

Amar et al.,
(2020) [11] Hybrid IDS using ML

Classifier: KNN, NB, LR, SVM
Dataset: NSL-KDD
Metrics: Accuracy, DR, FAR, Precision, Recall, F1

Iram et al.,
(2020) [12]

An ML Approach for IDS on
NSL-KDD Dataset

Classifier: SVM, KNN, LR, NB, MLP, RF, ETC, DT
Dataset: NSL-KDD
Metrics: Precision, Recall, Accuracy, F1

Abdulsalam et al.,
(2021) [13]

NIDS Based on Machine
Learning for SDNs

Classifier: DT, RF and XGBoost
Dataset: NSL-KDD
Metrics: Accuracy, DR, ROC, F-score, Precision, Recall

Raisa et al.,
(2022) [14]

IDS using GIWRF feature
selection technique

Classifier: DT, GBT, MLP, AdaBoost, LSTM, GRU
Dataset: UNSW-NB 15, Network ON_IoT
Metrics: Precision, Recall, F1, FPR
Programming: Python (Jupyter Notebook)

Achmad et al.,
(2021) [15]

Hybrid ML method for
increasing the performance of
network IDS

Classifier: Decision Tree
Dataset: NSL-KDD, UNSW-NB15
Metrics: Accuracy, sensitivity, specificity, false alarm rate
Programming: Python (Jupyter Notebook)

Gustavo et al.,
(2021) [16]

An End-to-End Framework
for ML-Based NIDS

Classifier: KNN, RF, XGB, NB, DT, MLP, SVM, and LR
Dataset: proposed dataset, MAWILab dataset
Metrics: F1, FPR, precision, recall, storage, time, CPU and RAM usage
Programming: Python (scikit-learn)

Maonan et al.,
(2020) [17]

An explainable ML
Framework for IDS

Classifier: KNN, RF, SVM-RBF, one-vs.-all, and multiclass classifier
Dataset: NSL-KDD
Metrics: Accuracy, F1, FPR, precision, recall, connections between certain
characteristics and attack types
Programming: Python (Pytorch)

Samson et al.,
(2021) [18]

Detection of Known,
Innovative Cyberattacks
Using CNN

Classifier: Convolution Neural Network CNN
Dataset: CICIDS 2017
Metrics: TNR, DR, accuracy, FPR

Priyanka et al.,
(2020) [19]

Performance Assessment of
IDS-CICIDS-2017 Dataset

Classifier: RF, NB, CNN
Dataset: CICIDS2017 (partial)
Metrics: Precision, Recall, F1, accuracy
Programming: Python (Jupyter Notebook)

Sun et al.,
(2020) [20] CNN-LSTM hybrid network

Classifier: CNN-LSTM
Dataset: CICIDS 2017
Metrics: Accuracy, TPR, FPR, F1
Programming: Python

Mario et al.,
(2020) [21]

Neural-based approaches for
Network Intrusion
Management

Classifier: ANN
Dataset: CICIDS2017/2018 and KDD99 Metrics: Accuracy, f-measure,
precision, recall, time complexity
Programming: Python

Sensors 2023, 23, 890 6 of 22

Table 1. Cont.

Reference Existing Technique Summary

Shi et al.,
(2021) [22]

Semi-Supervised Deep
Reinforcement Learning

Classifier: SSDDQN
Dataset: NSL-KDD and AWID
Metrics: Accuracy, precision, recall, DR, FPR, efficiency
Programming: Python

Charlotte et al.,
(2019) [23]

DL for the Classification of
Sentinel-2

Classifier: RF, RNN, CNN
Dataset: Sentinel-2 images
Metrics: Accuracy, runtime
Programming: Python

Joohwa et al.,
(2020) [24]

NIDS using Deep Sparse
Autoencoder

Classifier: Single RF, DSAE-RF
Dataset: CICIDS 2017
Metrics: Accuracy, precision, F1
Programming: Python

Mohammadnoor et al.,
(2020) [25]

Multi-Stage Optimized ML for
NIDS

Classifier: KNN, RF
Dataset: CICIDS 2017 and the UNSW-NB 2015
Metrics: Accuracy, precision, recall, FAR
Programming: Python

3. Proposed IDS Model

To propose an IDS model, we used a deep learning algorithm called CNN with
GRU. CNN is widely used as a deep learning technique in various fields. However, such
techniques have long-term dependencies issues which can be addressed using GRU as
discussed in the Section 1. Hence to effectively classify the attacks we used the GRU
framework with RNN. Moreover, to reduce the data dimensions we pre-processed the
dataset using two techniques discussed in Section 3.2.

3.1. Workflow

This segment manifests the flow of our proposed work. Proposed work involves
two sections, namely feature optimization technique and the CNN–GRU model. Data pre-
processing and classification are the two processes that form the entire workflow in Figure 1.
The elimination of repetition and choosing the ideal feature set are part of the first stage.
The second stage includes categorising the data and computing several parameters. The
assessment of the technique’s performance in comparison with other current algorithms is
shown in the subsequent part.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

Figure 1. Proposed model layout.

3.2. Data Pre-Processing
CICIDS 2017 dataset was used to test the effectiveness of our technique. Based on

different protocols, the abstract behaviour of the 25 users was analysed. They captured
the data for five consecutive days. This dataset includes various categories of attacks such
as brute force, DoS/DDoS, web attacks, infiltration, botnet, port scan, etc. Table 2 displays
the assault distribution in the dataset. Hence, this dataset is highly recommended to be
used to test the model.

Table 2. Dataset attacks.

Sub-Dataset Attacks

Tuesday Samples
benign
ftpPatatorAttack
sshPatatorAttack

Wed. Samples

benign
goldeneyeAttack
hulkAttack
slowhttptestAttack
slowlorisAttack
heartbleedAttack

Thur. Morning Samples

benign
bruteForceAttack
SqlInjectionAttack
XSSAttack

Thurs. Afternoon Samples benign
infiltrationAttack

Fri. Morning Samples benign
botAttack

Fri. Afternoon Samples-DDoS benign
ddosAttack

Friday Afternoon Samples-PortScan benign
portscanAttack

Figure 1. Proposed model layout.

3.2. Data Pre-Processing

CICIDS 2017 dataset was used to test the effectiveness of our technique. Based on
different protocols, the abstract behaviour of the 25 users was analysed. They captured the

Sensors 2023, 23, 890 7 of 22

data for five consecutive days. This dataset includes various categories of attacks such as
brute force, DoS/DDoS, web attacks, infiltration, botnet, port scan, etc. Table 2 displays the
assault distribution in the dataset. Hence, this dataset is highly recommended to be used to
test the model.

Table 2. Dataset attacks.

Sub-Dataset Attacks

Tuesday Samples
benign
ftpPatatorAttack
sshPatatorAttack

Wed. Samples

benign
goldeneyeAttack
hulkAttack
slowhttptestAttack
slowlorisAttack
heartbleedAttack

Thur. Morning Samples

benign
bruteForceAttack
SqlInjectionAttack
XSSAttack

Thurs. Afternoon Samples benign
infiltrationAttack

Fri. Morning Samples benign
botAttack

Fri. Afternoon Samples-DDoS benign
ddosAttack

Friday Afternoon Samples-PortScan benign
portscanAttack

We removed the redundant instances from dataset to decrease the dimensions of
dataset for classification. The dataset contained 2,300,825 instances before the removal of
the redundant samples. The samples were reduced for each sub-dataset. The pattern of the
same is shown in Table 3.

Table 3. Distribution of data in the dataset.

Sub-Dataset
Number of Instances

With Redundancy Without Redundancy

Tuesday_BruteForce 445,909 425,240
Wednesday_DoS/DDoS 692,703 613,287
Thurs_Morning_WebAttacks 170,366 164,300
Thurs. Afternoon_Infiltration 288,602 254,625
Fri. Morning_Bot 191,033 184,145
Fri. Afternoon-DDoS 225,745 223,666
Fri. Afternoon-PortScan 286,467 214,114

Moreover, by choosing the best feature subset, we employed a feature optimization
strategy to lower the input dimension. The discriminative features are found in the feature
set using a filter method called Pearson’s Correlation Coefficient. It determines how
comparable the dataset’s features or qualities are and provides a correlation coefficient
value in the [−1, 1] range. It indicates a fully positive correlation when it equals 1, and
a fully negative correlation when it equals −1. This suggests that a substantial connection

Sensors 2023, 23, 890 8 of 22

exists between features and a high value for the coefficient, and vice versa. The Pearson
Correlation Coefficient equation is as below [26,27].

ρX,Y =
(X, Y)
σXσY

(1)

Which can be derived as

=
E((X − µX)(Y − µY))

σXσY

=
E(XY)− E(X)E(Y)√

E(X2)− E2(X)
√

B(Y2)− E2(Y)

where ‘(X, Y)’ is a covariance measure for ‘X’ and ‘Y’, ‘σX’ and ‘σY’ are the standard
deviations for ‘X’ and ‘Y’ respectively, ‘E(X)’ is the expected value of ‘E’.

The dataset’s feature subsets calculated using the Pearson Correlation Coefficient
equation are displayed in Table 4. Each subset consists of about 40 features out of the
original dataset’s total of 77 features. To choose these attributes, a smaller set of samples
without duplicate or redundant instances is also used. Pre-processing the original dataset
makes it simpler and more effective when used with the suggested model.

Table 4. Selected attributes.

Sub-Dataset Total Features Selected Features

BruteForce 77 43
DoS/DDoS 77 41
WebAttacks 77 39
Infiltration 77 40
Bot 77 37
DDoS 77 39
PortScan 77 37

3.3. Gated Recurrent Unit (GRU)

GRU is a new structure made to address the vanishing/exploding gradient problem.
The upgraded LSTM framework is called GRU. For regulating the information flow, GRUs
also has a gate structure similar to that of an LSTM. However, unlike LSTM, GRU lacks
an output gate, allowing the content to be fully exposed. The reset and update gates are
the only two gates in the GRU. The input and forget gates of the LSTM framework are
combined in the second gate. Compared with LSTM, GRUs have a simpler structure and
fewer parameters, which improves performance. The GRU framework has the following
structure in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

WebAttacks 77 39
Infiltration 77 40
Bot 77 37
DDoS 77 39
PortScan 77 37

3.3. Gated Recurrent Unit (GRU)
GRU is a new structure made to address the vanishing/exploding gradient problem.

The upgraded LSTM framework is called GRU. For regulating the information flow,
GRUs also has a gate structure similar to that of an LSTM. However, unlike LSTM, GRU
lacks an output gate, allowing the content to be fully exposed. The reset and update gates
are the only two gates in the GRU. The input and forget gates of the LSTM framework are
combined in the second gate. Compared with LSTM, GRUs have a simpler structure and
fewer parameters, which improves performance. The GRU framework has the following
structure in Figure 2.

Figure 2. Architecture of GRU.

The equations below provide the GRU formulation. 𝑟 = 𝑠𝑖𝑔𝑚(𝑊 𝑥 + 𝑊 ℎ + 𝑏) (2) 𝑧 = 𝑠𝑖𝑔𝑚(𝑊 𝑥 + 𝑊 ℎ + 𝑏) (3) ℎ = 𝑡𝑎𝑛ℎ(𝑊 𝑥 + 𝑊 (𝑟 ⊙ ℎ) + 𝑏) (4) ℎ = 𝑧 ⊙ ℎ + (1 − 𝑧) ⊙ ℎ) (5)
where ‘𝑥 ’, ‘ℎ ’, ‘𝑟 ’, and ‘𝑧 ’ are the input and output vectors, reset and update gates re-
spectively. Similar to LSTM, ‘b’ stands for biases and ‘W’ for weight, while sigmoid and
tangent have the functions ‘sigm’ and ‘tanh’, respectively, for activation. Both LSTM and
GRU can manage the longer dependencies. However, in terms of performance, there are
some variations. In this study, we employed both frameworks to evaluate how well they
classified network traffic [28,29].

3.4. Convolution Neural Network (CNN)
The basic architecture of CNN includes three main components, namely, convolu-

tional, pooling, and output layer. The pooling layer is elective. The classic CNN structure
having three convolution layers is widely used in image classification. It contains one in-
put layer, several hidden layers (hidden layers include convolutional, pooling, and nor-
malization) and a layer entirely connected to the last layer called the output layer. The

Figure 2. Architecture of GRU.

Sensors 2023, 23, 890 9 of 22

The equations below provide the GRU formulation.

rt = sigm(Wxrxt + Whrht−1 + br) (2)

zt = sigm(Wxzxt + Whzht−1 + bz) (3)

h̃t = tanh(Wxhxt + Whh(rt � ht−1) + bh) (4)

ht = zt � ht−1 + (1 − zt)� h̃t) (5)

where ‘xt’, ‘ht’, ‘rt’, and ‘zt’ are the input and output vectors, reset and update gates
respectively. Similar to LSTM, ‘b’ stands for biases and ‘W’ for weight, while sigmoid and
tangent have the functions ‘sigm’ and ‘tanh’, respectively, for activation. Both LSTM and
GRU can manage the longer dependencies. However, in terms of performance, there are
some variations. In this study, we employed both frameworks to evaluate how well they
classified network traffic [28,29].

3.4. Convolution Neural Network (CNN)

The basic architecture of CNN includes three main components, namely, convolutional,
pooling, and output layer. The pooling layer is elective. The classic CNN structure having
three convolution layers is widely used in image classification. It contains one input layer,
several hidden layers (hidden layers include convolutional, pooling, and normalization)
and a layer entirely connected to the last layer called the output layer. The neurons in
one layer communicate with those in layers next to it. To reduce the proportions of the
input, pooling and sub-sampling processes are executed. CNN classifier receives the
input images as a group of small sub-sections which are called receptive fields. The
response to the following layer is calculated with the help of mathematical convolution
operations of the first or the input layer [30]. We modified the CNN architecture using
the framework called GRU which is discussed in the previous section. Table 5 shows the
complete architecture and strategy used in the proposed approach. The basic structure of
CNN is shown in Figure 3.

Table 5. Model strategy.

Parameter 1 2 3 4 5 6

Type C C C G G H

No. of neurons 32 32 32 64 64 No. of classes

Filter Size (1) (1) (1) (1) (1) (1)

Activation Fun. ReLU ReLU ReLU ReLU ReLU Smax

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24

neurons in one layer communicate with those in layers next to it. To reduce the propor-
tions of the input, pooling and sub-sampling processes are executed. CNN classifier re-
ceives the input images as a group of small sub-sections which are called receptive fields.
The response to the following layer is calculated with the help of mathematical convolu-
tion operations of the first or the input layer [30]. We modified the CNN architecture using
the framework called GRU which is discussed in the previous section. Table 5 shows the
complete architecture and strategy used in the proposed approach. The basic structure of
CNN is shown in Figure 3.

Figure 3. The architecture of CNN.

As shown in Table 5, the CNN–GRU model involves three convolution layers (C)
followed by two GRU layers (G) and one hidden layer (H). We used 32 neurons for the C
layers and 64 neurons for the G layers. The neurons for the last layer (i.e., the output layer)
are equivalent to the labels in the dataset. G and C layers use the ReLU function for the
activation. The rectified linear activation function, or ReLU, output zero if the input is
negative and the input directly if it is positive. The soft-max (𝑆_𝑚𝑎𝑥) activation function,
which provides the output in terms of prediction probabilities, is used in the final layer.
With the use of Softmax, a vector of numbers can be converted into a vector of probabili-
ties, where each value’s probability is inversely proportional to its relative scale. The de-
tailed steps are shown in the Algorithm 1.

Table 5. Model strategy.

Parameter 1 2 3 4 5 6
Type C C C G G H
No. of neurons 32 32 32 64 64 No. of classes
Filter Size (1) (1) (1) (1) (1) (1)
Activation Fun. ReLU ReLU ReLU ReLU ReLU

Figure 3. The architecture of CNN.

Sensors 2023, 23, 890 10 of 22

As shown in Table 5, the CNN–GRU model involves three convolution layers (C)
followed by two GRU layers (G) and one hidden layer (H). We used 32 neurons for the
C layers and 64 neurons for the G layers. The neurons for the last layer (i.e., the output
layer) are equivalent to the labels in the dataset. G and C layers use the ReLU function for
the activation. The rectified linear activation function, or ReLU, output zero if the input is
negative and the input directly if it is positive. The soft-max (S_max) activation function,
which provides the output in terms of prediction probabilities, is used in the final layer.
With the use of Softmax, a vector of numbers can be converted into a vector of probabilities,
where each value’s probability is inversely proportional to its relative scale. The detailed
steps are shown in the Algorithm 1.

Algorithm 1. Proposed Model

Feature Optimization and CNN–GRU
Input:

Data instances
Output:

Confusion Matrix
(Accuracy, precision, recall, FPR, TPR)

Dataset Optimization
Remove the redundant instances

Feature Selection
Using Pearson’s Correlation equation, compute the correlation of the attribute set Set C f .

if corr_value > 0.8
add attribute to C f

else
increment in an attribute set C

return C f
Classification

Create training and testing sets from the dataset.
Training set: 67%
Testing set: 33%
add model

three Convolution layers (activation = ‘relu’)
two GRU layers (activation = ‘relu’)

model compilation
loss function: ‘categorical_crossentropy’
optimizer=‘adagrad’

training CNN–GRU technique with training instances
employing techniques to test instances

return Confusion Matrix Cm∗m

4. Findings and Discussion

This section includes the assessment of the proposed technique along with a discussion
of the parameters used to test its performance. In the dataset, the confusion matrix is
computed for each sub-dataset. The observations of the same are discussed in the later
section called performance analysis.

4.1. Evaluation Metrics

For each sub-dataset, we considered a number of performance metrics to test the
technique. The confusion matrix is the method’s final output. A confusion matrix is
an effective tool for analysing how exactly the model locates occurrences of various labels.
A confusion matrix is sometimes referred to as a model’s performance summary. The
confusion matrix diagram is presented in Figure 4. Precision and recall are the most often
used metrics for gauging the effectiveness of DL models. Precision is the ratio of the
technique’s correct or wrong estimates, whereas recall refers to the percentage of the total

Sensors 2023, 23, 890 11 of 22

number of true matches and the total number of positive matches [31]. These metrics are
showcased in the form of equations as follows [32,33].

Precision =
TP

(TP + FP)
(6)

Recall =
TP

(TP + FN)
(7)

TPR =
TP

(TP + FN)
(8)

FPR =
FP

(FP + FN)
(9)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(10)

Sensors 2023, 23, x FOR PEER REVIEW 12 of 24

used metrics for gauging the effectiveness of DL models. Precision is the ratio of the tech-
nique’s correct or wrong estimates, whereas recall refers to the percentage of the total
number of true matches and the total number of positive matches [31]. These metrics are
showcased in the form of equations as follows [32,33].

Figure 4. Confusion matrix.

(2)

(3)

(4)

(5)

(6)

True Positive, False Positive, False Negative, and True Negative, respectively, are
represented by the abbreviations TP, FP, FN, and TN.

Moreover, True Positive Rate (TPR) and False Positive Rate (FPR) are also used to
analyse the model performance. The TPR measures how many actual correct instances
there are in the correct matches. The FPR counts the percentage of mismatched events
among non-target occurrences. The ideal model, for instance, generates a TPR of 100%
and an FPR of 0%. The TPR and FPR formulae are provided in Equations (8) and (9) cor-
respondingly. Effectiveness of the method is then evaluated using accuracy. It is deter-
mined by applying Equation (10) to calculate the fraction of cases that the model properly
classified [34,35].

4.2. Performance Analysis
Python programming was used to conduct the experiments on the Google Colab

Cloud Environment. The dataset’s confusion matrix serves as the test’s output. Figures 5–
11 display the confusion matrix for each subset of the entire dataset. Table 6 through 12
display several parameters that were produced from the confusion matrix that was ex-
plained in Section 4.1. The whole dataset is distributed into 67% of the training data and
33% of the testing data.

The dataset contains over two million samples and 77 attributes. The model per-
formed better when redundant samples and correlated features were removed from the
dataset. The confusion matrix is used to determine the testing measures. The rows corre-
spond to the true samples of the labels, while the columns of the matrix show the expected
samples of the classes. Values are found diagonally in the matrix, i.e., the True Positive

Figure 4. Confusion matrix.

True Positive, False Positive, False Negative, and True Negative, respectively, are
represented by the abbreviations TP, FP, FN, and TN.

Moreover, True Positive Rate (TPR) and False Positive Rate (FPR) are also used to
analyse the model performance. The TPR measures how many actual correct instances there
are in the correct matches. The FPR counts the percentage of mismatched events among
non-target occurrences. The ideal model, for instance, generates a TPR of 100% and an FPR
of 0%. The TPR and FPR formulae are provided in Equations (8) and (9) correspondingly.
Effectiveness of the method is then evaluated using accuracy. It is determined by applying
Equation (10) to calculate the fraction of cases that the model properly classified [34,35].

4.2. Performance Analysis

Python programming was used to conduct the experiments on the Google Colab
Cloud Environment. The dataset’s confusion matrix serves as the test’s output. Figures 5–11
display the confusion matrix for each subset of the entire dataset. Table 6 through 12 display
several parameters that were produced from the confusion matrix that was explained in
Section 4.1. The whole dataset is distributed into 67% of the training data and 33% of the
testing data.

The dataset contains over two million samples and 77 attributes. The model performed
better when redundant samples and correlated features were removed from the dataset.
The confusion matrix is used to determine the testing measures. The rows correspond to
the true samples of the labels, while the columns of the matrix show the expected samples
of the classes. Values are found diagonally in the matrix, i.e., the True Positive (TP) metric,
of the brute force dataset (137,150, 1947, and 968). As more samples are examined, the
model’s high classification rate becomes clearer. True negative samples, however, are
samples that are incorrectly classified. Similar to this, other metrics are computed using the
corresponding formulas described in Section 4.1 from the confusion matrix.

Sensors 2023, 23, 890 12 of 22

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

(TP) metric, of the brute force dataset (137,150, 1947, and 968). As more samples are exam-
ined, the model’s high classification rate becomes clearer. True negative samples, how-
ever, are samples that are incorrectly classified. Similar to this, other metrics are computed
using the corresponding formulas described in Section 4.1 from the confusion matrix.

Tuesday sub-dataset’s statistical parameter is displayed in Figure 5 and Table 6. It
demonstrates the predicted attack types, FTP-Patator and SSH-Patator. For each class, it
was noted that our technique acquired a high True Positive Rate and precision value. Fig-
ure 6 and Table 7 display the analysis of DoS/DDoS attack, which is the biggest sub-da-
taset among other sub-datasets. In comparison with other sub-datasets, it also experiences
the most attacks. Slowhttptest, GoldenEye, slowloris, Heartbleed and Hulk are the pre-
dicted attacks. The attack Hulk is seen to have the highest True Positive Rate, but the
model fails to classify any Heartbleed attack samples properly. The statistical information
from the Thursday morning sub-dataset is displayed in Figure 7 and Table 8. It displays
prediction of XSS, SQL Injection, and brute force attacks. Compared with SQL injection
and XSS assaults, the brute force attack was predicted more precisely. Statistical proper-
ties of the Thursday and Friday sub-datasets are displayed in Figures 8–11 and Tables 9–
12. These reports demonstrate the prediction of attacks including infiltration, bot, DDoS,
and port scans. Our approach appears to perform well when predicting Bot, DDoS, and
PortScan. It struggles while trying to foresee the Infiltration, though.

Table 6. Statistical analysis of brute force.

Parameters BENIGN FTPPatator SSHPatator
Precision 0.9984 0.9788 0.9847
Recall 1.00 0.98 0.86
TN 2919 138,292 139,184
FP 208 42 15
TP 137,150 1947 968
FN 53 49 163
FPR 0.0665 0.0003 0.0001
TPR 0.9996 0.9754 0.8558

Figure 5. Brute force. Figure 5. Brute force.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

Figure 6. DoS/DDoS.

Figure 7. Web attacks.

Figure 6. DoS/DDoS.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

Figure 6. DoS/DDoS.

Figure 7. Web attacks.

Figure 7. Web attacks.

Sensors 2023, 23, 890 13 of 22

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

Figure 6. DoS/DDoS.

Figure 7. Web attacks.

Figure 8. Infiltration.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

Figure 8. Infiltration.

Table 7. Statistical analysis of DoS/DDoS.

Parameters BENIGN Goldeneye Hulk Slowhttptest Slowloris Heartbleed
Precision 0.9640 0.8102 0.9477 0.8488 0.8396 0
Recall 0.97 0.78 0.93 0.74 0.82 0
TN 59,203 198,336 142,083 200,466 200,366 202,377
FP 5020 623 2950 223 274 4
TP 134,433 2661 53,510 1252 1435 0
FN 3729 765 3842 444 310 4
FPR 0.078 0.003 0.020 0.001 0.001 0
TPR 0.9730 0.7767 0.9330 0.7382 0.8223 0

Figure 9. Bot.

Figure 10. DDoS.

Figure 9. Bot.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

Figure 8. Infiltration.

Table 7. Statistical analysis of DoS/DDoS.

Parameters BENIGN Goldeneye Hulk Slowhttptest Slowloris Heartbleed
Precision 0.9640 0.8102 0.9477 0.8488 0.8396 0
Recall 0.97 0.78 0.93 0.74 0.82 0
TN 59,203 198,336 142,083 200,466 200,366 202,377
FP 5020 623 2950 223 274 4
TP 134,433 2661 53,510 1252 1435 0
FN 3729 765 3842 444 310 4
FPR 0.078 0.003 0.020 0.001 0.001 0
TPR 0.9730 0.7767 0.9330 0.7382 0.8223 0

Figure 9. Bot.

Figure 10. DDoS.

Figure 10. DDoS.

Sensors 2023, 23, 890 14 of 22

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

Table 8. Statistical analysis of Web attacks.

Parameters BENIGN Brute Force Sql Inj XSS
Precision 0.9987 0.6778 0.3333 0
Recall 1.00 0.89 0.03 0.00
TN 622 53,539 54,005 54,212
FP 65 202 12 0
TP 53,509 425 6 0
FN 23 53 196 7
FPR 0.0946 0.0037 0.0002 0
TPR 0.9995 0.8891 0.0297 0

Table 9. Statistical analysis of infiltration.

Parameters BENIGN Infiltration
Precision 0.9999 0.0312
Recall 1.00 0.14
TN 1 83,989
FP 6 31
TP 83,989 1
FN 31 6
FPR 0.8571 0.0003
TPR 0.9996 0.1428

Table 10. Statistical analysis of Bot.

Parameters BENIGN Bot
Precision 0.9954 0.9417
Recall 1.00 0.60
TN 404 60,067
FP 272 25
TP 60,067 404
FN 25 272
FPR 0.4023 0.0004
TPR 0.9995 0.5976

Figure 11. PortScan.

Table 6. Statistical analysis of brute force.

Parameters BENIGN FTPPatator SSHPatator

Precision 0.9984 0.9788 0.9847
Recall 1.00 0.98 0.86
TN 2919 138,292 139,184
FP 208 42 15
TP 137,150 1947 968
FN 53 49 163
FPR 0.0665 0.0003 0.0001
TPR 0.9996 0.9754 0.8558

Tuesday sub-dataset’s statistical parameter is displayed in Figure 5 and Table 6. It
demonstrates the predicted attack types, FTP-Patator and SSH-Patator. For each class, it was
noted that our technique acquired a high True Positive Rate and precision value. Figure 6
and Table 7 display the analysis of DoS/DDoS attack, which is the biggest sub-dataset
among other sub-datasets. In comparison with other sub-datasets, it also experiences the
most attacks. Slowhttptest, GoldenEye, slowloris, Heartbleed and Hulk are the predicted
attacks. The attack Hulk is seen to have the highest True Positive Rate, but the model fails
to classify any Heartbleed attack samples properly. The statistical information from the
Thursday morning sub-dataset is displayed in Figure 7 and Table 8. It displays prediction
of XSS, SQL Injection, and brute force attacks. Compared with SQL injection and XSS
assaults, the brute force attack was predicted more precisely. Statistical properties of the
Thursday and Friday sub-datasets are displayed in Figures 8–11 and Tables 9–12. These
reports demonstrate the prediction of attacks including infiltration, bot, DDoS, and port
scans. Our approach appears to perform well when predicting Bot, DDoS, and PortScan. It
struggles while trying to foresee the Infiltration, though.

Sensors 2023, 23, 890 15 of 22

Table 7. Statistical analysis of DoS/DDoS.

Parameters BENIGN Goldeneye Hulk Slowhttptest Slowloris Heartbleed

Precision 0.9640 0.8102 0.9477 0.8488 0.8396 0
Recall 0.97 0.78 0.93 0.74 0.82 0
TN 59,203 198,336 142,083 200,466 200,366 202,377
FP 5020 623 2950 223 274 4
TP 134,433 2661 53,510 1252 1435 0
FN 3729 765 3842 444 310 4
FPR 0.078 0.003 0.020 0.001 0.001 0
TPR 0.9730 0.7767 0.9330 0.7382 0.8223 0

Table 8. Statistical analysis of Web attacks.

Parameters BENIGN Brute Force Sql Inj XSS

Precision 0.9987 0.6778 0.3333 0
Recall 1.00 0.89 0.03 0.00
TN 622 53,539 54,005 54,212
FP 65 202 12 0
TP 53,509 425 6 0
FN 23 53 196 7
FPR 0.0946 0.0037 0.0002 0
TPR 0.9995 0.8891 0.0297 0

Table 9. Statistical analysis of infiltration.

Parameters BENIGN Infiltration

Precision 0.9999 0.0312
Recall 1.00 0.14
TN 1 83,989
FP 6 31
TP 83,989 1
FN 31 6
FPR 0.8571 0.0003
TPR 0.9996 0.1428

Table 10. Statistical analysis of Bot.

Parameters BENIGN Bot

Precision 0.9954 0.9417
Recall 1.00 0.60
TN 404 60,067
FP 272 25
TP 60,067 404
FN 25 272
FPR 0.4023 0.0004
TPR 0.9995 0.5976

Table 11. Statistical analysis of DDoS.

Parameters BENIGN DDoS

Precision 0.9902 0.9699
Recall 0.96 0.99
TN 42,041 30,170
FP 297 1302
TP 30,170 42,041
FN 1302 297
FPR 0.0070 0.0413
TPR 0.9586 0.9929

Sensors 2023, 23, 890 16 of 22

Table 12. Statistical analysis of PortScan.

Parameters BENIGN PortScan

Precision 0.9945 0.9849
Recall 0.99 0.99
TN 29,592 40,391
FP 222 453
TP 40,391 29,592
FN 453 222
FPR 0.0074 0.0110
TPR 0.9889 0.9925

The calculation of accuracies for each sub-dataset in the whole dataset is shown in
Table 13. Multiple epoch settings were used to calculate each sub-accuracy dataset while
taking the loss of training/validation data into account. For all subsets, it was noted that
the model effectively attained greater than 95% accuracy. The Tuesday sub-dataset has
the highest accuracy compared with the other subsets. Moreover, we also compared the
proposed model with other Convolution Neural Network models. It was reported that the
suggested model CNN–GRU achieves a classification accuracy score of 98.73% while using
just about half (i.e., 58%) of the total features compared with other models. The proposed
model can achieve this accuracy for the full CICIDS 2017 dataset. It also detects attacks
such as SQL injection and SSH Patator which other models fail to detect. However, it fails
to detect Heartbleed and XSS attacks.

Table 13. Accuracy of sub-datasets.

Sub-Dataset Accuracy

BruteForce 99.81%
DoS/DDoS 95.50%
WebAttacks 99.48%
Infiltration 99.95%

Bot 99.51%
DDoS 97.83%

PortScan 99.04%

Table 14 shows the assessment of the proposed technique with other existing CNN
models. The accuracy graph is also shown in Figure 12. The CNN–GRU model manages
to score a better accuracy rate than models developed by Samson H. et al., 2020 [15] and
Sun P. et al., 2020 [17]. The other two CNN models (Priyanka V. et al., 2021 [20] and Maseer
Z. et al., 2021 [33]) have slightly higher accuracy scores than our proposed technique.
However, these two models were evaluated on the partial dataset. Moreover, we analysed
the classification time for each sub-datasets against their sizes and accuracies respectively.
We evaluated the techniques using different epochs ranging from 20 to 100 for different
sub-datasets. As shown in Figure 13, the classification time for the model is high when the
size of the sub-dataset is more. The DoS/DDoS sub-dataset has the highest size among
all the sub-datasets. Hence the time taken by the model to classify DoS/DDoS attacks is
more compared with other sub-datasets. However, this trend is not the same for all the
sub-datasets. Even though their sizes are smaller than those of other sub-datasets, the
DDoS and WebAttacks sub-dataset classification times are longer. Figure 14 shows the
analysis of the classification time with respect to the accuracy score. The accuracy of the
DoS/DDoS sub-dataset is less compared with other sub-datasets. However, due to its size
the classification time for the same is higher.

Sensors 2023, 23, 890 17 of 22

Table 14. Performance of models.

Model No. of Attributes Accuracy

Proposed CNN–GRU Less than 44 98.73%

CNN [18] 77 94.96%

CNN [19] 77 99.7%

CNN-LSTM [20] 77 98.67%

CNN [36] 77 99.47%

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

Z. et al. 2021 [33]) have slightly higher accuracy scores than our proposed technique. How-
ever, these two models were evaluated on the partial dataset. Moreover, we analysed the
classification time for each sub-datasets against their sizes and accuracies respectively. We
evaluated the techniques using different epochs ranging from 20 to 100 for different sub-
datasets. As shown in Figure 13, the classification time for the model is high when the size
of the sub-dataset is more. The DoS/DDoS sub-dataset has the highest size among all the
sub-datasets. Hence the time taken by the model to classify DoS/DDoS attacks is more
compared with other sub-datasets. However, this trend is not the same for all the sub-
datasets. Even though their sizes are smaller than those of other sub-datasets, the DDoS
and WebAttacks sub-dataset classification times are longer. Figure 14 shows the analysis
of the classification time with respect to the accuracy score. The accuracy of the DoS/DDoS
sub-dataset is less compared with other sub-datasets. However, due to its size the classi-
fication time for the same is higher.

Table 14. Performance of models.

Model No. of Attributes Accuracy
Proposed CNN–GRU Less than 44 98.73%

CNN [18] 77 94.96%
CNN [19] 77 99.7%

CNN-LSTM [20] 77 98.67%
CNN [36] 77 99.47%

Figure 12. Accuracy graph [18–20,36].

98.73%

94.96%

99.70%

98.67%
99.47%

92%

93%

94%

95%

96%

97%

98%

99%

100%

101%

Proposed
CNN–GRU

CNN (Ho. S.,
2021)

CNN (Priyanka
V., 2022)

CNN-LSTM
(Sun P., 2020)

CNN (Maseer
Z., 2021)

A
cc

ur
ac

y

Model

Figure 12. Accuracy graph [18–20,36].

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 13. Dataset size vs. classification time.

Figure 14. Accuracy vs. classification time.

To achieve optimum accuracy and minimal loss for each sub-dataset in this study,
we used a varied number of epochs. The distribution of epochs for the sub-datasets is
shown in Table 15. The loss is a result of the model’s inaccurate label predictions. We
calculated the loss in our proposed technique using the Sparse Categorical Cross-Entropy
technique. The epoch vs accuracy and loss graphs are shown in Figures 15–21.

Table 15. Epochs.

Sub-Dataset Epochs
BruteForce 100
DoS/DDoS 100
WebAttacks 100
Infiltration 15
Bot 20
DDoS 50
PortScan 20

0

500

1000

1500

2000

2500

3000

3500

4000

0

100000

200000

300000

400000

500000

600000

700000

C
la

ss
ifi

ca
tio

n
Ti

m
e (

se
c)

Su
b-

da
ta

se
t S

iz
e

Size Classification time

0

500

1000

1500

2000

2500

3000

3500

4000

90.00%
91.00%
92.00%
93.00%
94.00%
95.00%
96.00%
97.00%
98.00%
99.00%

100.00%

Cl
as

sif
ica

tio
n

Ti
m

e
(s

ec
)

Ac
cu

ra
cy

Accuracy Classification time

Figure 13. Dataset size vs. classification time.

Sensors 2023, 23, 890 18 of 22

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 13. Dataset size vs. classification time.

Figure 14. Accuracy vs. classification time.

To achieve optimum accuracy and minimal loss for each sub-dataset in this study,
we used a varied number of epochs. The distribution of epochs for the sub-datasets is
shown in Table 15. The loss is a result of the model’s inaccurate label predictions. We
calculated the loss in our proposed technique using the Sparse Categorical Cross-Entropy
technique. The epoch vs accuracy and loss graphs are shown in Figures 15–21.

Table 15. Epochs.

Sub-Dataset Epochs
BruteForce 100
DoS/DDoS 100
WebAttacks 100
Infiltration 15
Bot 20
DDoS 50
PortScan 20

0

500

1000

1500

2000

2500

3000

3500

4000

0

100000

200000

300000

400000

500000

600000

700000

C
la

ss
ifi

ca
tio

n
Ti

m
e (

se
c)

Su
b-

da
ta

se
t S

iz
e

Size Classification time

0

500

1000

1500

2000

2500

3000

3500

4000

90.00%
91.00%
92.00%
93.00%
94.00%
95.00%
96.00%
97.00%
98.00%
99.00%

100.00%

Cl
as

sif
ica

tio
n

Ti
m

e
(s

ec
)

Ac
cu

ra
cy

Accuracy Classification time

Figure 14. Accuracy vs. classification time.

To achieve optimum accuracy and minimal loss for each sub-dataset in this study, we
used a varied number of epochs. The distribution of epochs for the sub-datasets is shown
in Table 15. The loss is a result of the model’s inaccurate label predictions. We calculated
the loss in our proposed technique using the Sparse Categorical Cross-Entropy technique.
The epoch vs accuracy and loss graphs are shown in Figures 15–21.

Table 15. Epochs.

Sub-Dataset Epochs

BruteForce 100
DoS/DDoS 100
WebAttacks 100
Infiltration 15
Bot 20
DDoS 50
PortScan 20

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

(a) (b)

Figure 15. (a,b): Tuesday: Accuracy curve and Loss curve.

(a) (b)

Figure 16. (a,b): Wednesday: Accuracy curve and Loss curve.

(a) (b)

Figure 17. (a,b): Thursday morning: Accuracy curve and Loss curve.

Figure 15. (a,b): Tuesday: Accuracy curve and Loss curve.

Sensors 2023, 23, 890 19 of 22

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

(a) (b)

Figure 15. (a,b): Tuesday: Accuracy curve and Loss curve.

(a) (b)

Figure 16. (a,b): Wednesday: Accuracy curve and Loss curve.

(a) (b)

Figure 17. (a,b): Thursday morning: Accuracy curve and Loss curve.

Figure 16. (a,b): Wednesday: Accuracy curve and Loss curve.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

(a) (b)

Figure 15. (a,b): Tuesday: Accuracy curve and Loss curve.

(a) (b)

Figure 16. (a,b): Wednesday: Accuracy curve and Loss curve.

(a) (b)

Figure 17. (a,b): Thursday morning: Accuracy curve and Loss curve. Figure 17. (a,b): Thursday morning: Accuracy curve and Loss curve.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

(a) (b)

Figure 18. (a,b): Thursday afternoon: Accuracy curve and Loss curve.

(a) (b)

Figure 19. (a,b): Friday morning: Accuracy curve and Loss curve.

(a) (b)

Figure 20. (a,b): Friday afternoon-DDoS: Accuracy curve and Loss curve.

(a) (b)

Figure 18. (a,b): Thursday afternoon: Accuracy curve and Loss curve.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

(a) (b)

Figure 18. (a,b): Thursday afternoon: Accuracy curve and Loss curve.

(a) (b)

Figure 19. (a,b): Friday morning: Accuracy curve and Loss curve.

(a) (b)

Figure 20. (a,b): Friday afternoon-DDoS: Accuracy curve and Loss curve.

(a) (b)

Figure 19. (a,b): Friday morning: Accuracy curve and Loss curve.

Sensors 2023, 23, 890 20 of 22

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

(a) (b)

Figure 18. (a,b): Thursday afternoon: Accuracy curve and Loss curve.

(a) (b)

Figure 19. (a,b): Friday morning: Accuracy curve and Loss curve.

(a) (b)

Figure 20. (a,b): Friday afternoon-DDoS: Accuracy curve and Loss curve.

(a) (b)

Figure 20. (a,b): Friday afternoon-DDoS: Accuracy curve and Loss curve.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

(a) (b)

Figure 18. (a,b): Thursday afternoon: Accuracy curve and Loss curve.

(a) (b)

Figure 19. (a,b): Friday morning: Accuracy curve and Loss curve.

(a) (b)

Figure 20. (a,b): Friday afternoon-DDoS: Accuracy curve and Loss curve.

(a) (b)

Figure 21. (a,b): Friday afternoon PortScan: Accuracy curve and Loss curve.

5. Conclusions

In this research, we designed a DL technique to develop an IDS. We used CNN with the
GRU framework. We used three CNN layers and two GRU sequences. Both sequences use
an activation function called ReLU to define the output of the provided inputs. Following
that, the concatenate merge mode is used to combine the outputs of both sequences. The
dataset considered in this work offers a diversity of attacks and a high number of instances,
which was used to verify the suggested model. The dataset contains network data recorded
from eight different sessions. In this study, we considered seven sessions and overlooked
one session which contains just normal traffic data. We optimized the original dataset by
selecting features based on Pearson’s Correlation coefficient. We also removed redundant
or duplicate instances from the dataset. The evaluation of the model was performed using
measurement parameters of the confusion matrix. The suggested model achieved a low
FP rate and a classification accuracy rate of 98.73%. The technique used nearly half of
the total attributes (less than 58% of the total for each sub-dataset) compared with all
other classifiers.

6. Future Scope

The proposed method performed well, but by optimizing the technique even further,
performance can be improved. A few attacks were unsuccessfully categorised using the
proposed approach. One of the reasons is the imbalanced data of attacks. Therefore, for
all the attacks in the dataset, we strive for highly optimal training data in future study.
Most classical physical-layer security techniques require CSI, but it is hard to obtain due
to time-varying wireless declining [37,38]. As one of the most serious cyber attacks, APT
caused global concern. APT is a persistent, multi-stage attack that aims to compromise
a system and gain information from it, causing damage and financial loss [39]. The Digital
Twin, biometric system, and CPS usher in a new era for commerce, particularly in the
health sector, by tracking individuals’ health data in order to provide needful, fast, and

Sensors 2023, 23, 890 21 of 22

efficient services to users [40,41]. IDSs are configured so that they learn from historical
network traffic data and detect both normal and abnormal event connections from the
monitored system. However, due to the massive amount of historical data, this system may
suffer from issues such as accuracy, false alarms, and execution time [42].

Author Contributions: Conceptualization: A.H., S.G., S.K. and P.B.; writing—original draft prepa-
ration: A.H., S.G. and S.K.; methodology: S.G., S.K., K.R. and T.S.; writing—review and editing:
K.R., T.S., B.S. and S.C.; Software: A.H., S.G. and S.K.; Visualization: K.R., T.S., P.B., B.S. and S.C.;
Investigation: T.S., P.B., B.S. and S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data are associated with this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prasad, M.; Tripathi, S.; Dahal, K. An efficient feature selection based Bayesian and Rough set approach for intrusion detection.

Appl. Soft Comput. J. 2020, 87, 105980. [CrossRef]
2. Dutt, I.; Borah, S.; Maitra, I.K. Immune System Based Intrusion Detection System (IS-IDS): A Proposed Model. IEEE Access 2020,

8, 34929–34941. [CrossRef]
3. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 20. [CrossRef]
4. Sultana, N.; Chilamkurti, N.; Peng, W.; Alhadad, R. Survey on SDN based network intrusion detection system using machine

learning approaches. Peer-to-Peer Netw. Appl. 2018, 12, 493–501. [CrossRef]
5. Jyothsna, V.; Prasad, V.V.R.; Prasad, K.M. A Review of Anomaly based Intrusion Detection Systems. Int. J. Comput. Appl. 2011, 28,

26–35. [CrossRef]
6. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep Learning Approach for

Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. [CrossRef]
7. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep learning-based network anomaly detection. Clust.

Comput. 2017, 22, 949–961. [CrossRef]
8. Fernandez, G.C.; Xu, S. A Case Study on using Deep Learning for Network Intrusion Detection. In Proceedings of the MILCOM

2019—2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019.
9. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.

Secur. 2019, 86, 147–167. [CrossRef]
10. Magán-Carrión, R.; Urda, D.; Díaz-Cano, I.; Dorronsoro, B. Towards a reliable comparison and evaluation of network intrusion

detection systems based on machine learning approaches. Appl. Sci. 2020, 10, 1775. [CrossRef]
11. Meryem, A.; Ouahidi, B.E.L. Hybrid intrusion detection system using machine learning. Netw. Secur. 2020, 2020, 8–19. [CrossRef]
12. Abrar, I.; Ayub, Z.; Masoodi, F.; Bamhdi, A.M. A machine learning approach for intrusion detection system on NSL-KDD dataset.

In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12
September 2020.

13. Alzahrani, A.O.; Alenazi, M.J. Designing a network intrusion detection system based on machine learning for software defined
networks. Future Internet 2021, 13, 111. [CrossRef]

14. Disha, R.A.; Waheed, S. Performance analysis of machine learning models for intrusion detection system using Gini impurity-
based weighted random forest (GIWRF) feature selection technique. Cybersecurity 2022, 5, 1. [CrossRef]

15. Megantara, A.A.; Ahmad, T. A hybrid machine learning method for increasing the performance of Network Intrusion Detection
Systems. J. Big Data 2021, 8, 142. [CrossRef]

16. De Carvalho Bertoli, G.; Pereira Junior, L.A.; Saotome, O.; Dos Santos, A.L.; Verri, F.A.; Marcondes, C.A.; Barbieri, S.; Rodrigues,
M.S.; Parente De Oliveira, J.M. An end-to-end framework for machine learning-based network Intrusion Detection System. IEEE
Access 2021, 9, 106790–106805. [CrossRef]

17. Wang, M.; Zheng, K.; Yang, Y.; Wang, X. An explainable machine learning framework for Intrusion Detection Systems. IEEE
Access 2020, 8, 73127–73141. [CrossRef]

18. Ho, S.; Jufout SAl Dajani, K.; Mozumdar, M. A Novel Intrusion Detection Model for Detecting Known and Innovative Cyberattacks
Using Convolutional Neural Network. IEEE Open J Comput Soc. 2021, 2, 14–25. [CrossRef]

http://doi.org/10.1016/j.asoc.2019.105980
http://doi.org/10.1109/ACCESS.2020.2973608
http://doi.org/10.1186/s42400-019-0038-7
http://doi.org/10.1007/s12083-017-0630-0
http://doi.org/10.5120/3399-4730
http://doi.org/10.1109/ACCESS.2019.2895334
http://doi.org/10.1007/s10586-017-1117-8
http://doi.org/10.1016/j.cose.2019.06.005
http://doi.org/10.3390/app10051775
http://doi.org/10.1016/S1353-4858(20)30056-8
http://doi.org/10.3390/fi13050111
http://doi.org/10.1186/s42400-021-00103-8
http://doi.org/10.1186/s40537-021-00531-w
http://doi.org/10.1109/ACCESS.2021.3101188
http://doi.org/10.1109/ACCESS.2020.2988359
http://doi.org/10.1109/OJCS.2021.3050917

Sensors 2023, 23, 890 22 of 22

19. Priyanka, V.; Gireesh Kumar, T. Performance Assessment of IDS Based on CICIDS-2017 Dataset. In Information and Communication
Technology for Competitive Strategies (ICTCS 2020); Lecture Notes in Networks and Systems; Joshi, A., Mahmud, M., Ragel, R.G.,
Thakur, N.V., Eds.; Springer: Singapore, 2022; Volume 191.

20. Sun, P.; Liu, P.; Li, Q.; Liu, C.; Lu, X.; Hao, R.; Chen, J. DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion
detection system. Secur. Commun Netw. 2020, 2020, 8890306. [CrossRef]

21. Mauro, M.D.; Galatro, G.; Liotta, A. Experimental Review of Neural-based approaches for network intrusion management. IEEE
Trans. Netw. Serv. Manag. 2020, 17, 2480–2495. [CrossRef]

22. Dong, S.; Xia, Y.; Peng, T. Network abnormal traffic detection model based on semi-supervised Deep Reinforcement Learning.
IEEE Trans. Netw. Serv. Manag. 2021, 18, 4197–4212. [CrossRef]

23. Pelletier, C.; Webb, G.I.; Petitjean, F. Deep learning for the classification of sentinel-2 Image time series. In Proceedings of the
IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019.

24. Lee, J.; Pak, J.G.; Lee, M. Network intrusion detection system using feature extraction based on deep sparse autoencoder. In
Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju,
Korea, 21–23 October 2020.

25. Injadat, M.N.; Moubayed, A.; Nassif, A.B.; Shami, A. Multi-stage optimized machine learning framework for network intrusion
detection. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1803–1816. [CrossRef]

26. Zhu, H.; You, X.; Liu, S. Multiple Ant Colony Optimization Based on Pearson Correlation Coefficient. IEEE Access 2019, 7,
61628–61638. [CrossRef]

27. Feng, W.; Zhu, Q.; Zhuang, J.; Yu, S. An expert recommendation algorithm based on Pearson correlation coefficient and FP-growth.
Clust. Comput. 2018, 22, 7401–7412. [CrossRef]

28. Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance Evaluation of Deep Neural Networks Applied to Speech Recognition:
RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [CrossRef]

29. Xu, C.; Shen, J.; Du, X.; Zhang, F. An Intrusion Detection System Using a Deep Neural Network With Gated Recurrent Units.
IEEE Access 2018, 6, 48697–48707. [CrossRef]

30. Handwritten, I.; Recognition, D. Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN). Sensors
2020, 20, 3344.

31. Acheson, E.; Volpi, M.; Purves, R.S. Machine learning for cross-gazetteer matching of natural features. Int. J. Geogr. Inf. Sci. 2019,
34, 708–734. [CrossRef]

32. Zhang, Q.; Kong, Q.; Zhang, C.; You, S.; Wei, H.; Sun, R.; Li, L. A new road extraction method using Sentinel-1 SAR images based
on the deep fully convolutional neural network. Eur. J. Remote Sens. 2019, 52, 572–582. [CrossRef]

33. Sheba, K.; Raj, S.G. An approach for automatic lesion detection in mammograms. Cogent Eng. 2018, 5, 1444320. [CrossRef]
34. Wahlberg, F.; Dahllöf, M.; Mårtensson, L.; Brun, A. Spotting Words in Medieval Manuscripts. Stud. Neophilol. 2014, 86 (Suppl. S1),

171–186. [CrossRef]
35. Syed, N.F.; Baig, Z.; Ibrahim, A.; Valli, C. Denial of service attack detection through machine learning for the IoT. J. Inf. Telecommun.

2020, 4, 482–503. [CrossRef]
36. Maseer, Z.K.; Yusof, R.; Bahaman, N.; Mostafa, S.A.; Foozy, C.F.M. Benchmarking of Machine Learning for Anomaly Based

Intrusion Detection Systems in the CICIDS2017 Dataset. IEEE Access 2021, 9, 22351–22370. [CrossRef]
37. Deng, D.; Li, X.; Zhao, M.; Rabie, K.M.; Kharel, R. Deep Learning-Based Secure MIMO Communications with Imperfect CSI for

Heterogeneous Networks. Sensors 2020, 20, 1730. [CrossRef] [PubMed]
38. Gupta, K.; Gupta, D.; Kukreja, V.; Kaushik, V. Fog Computing and Its Security Challenges. In Machine Learning for Edge Computing;

CRC Press: Boca Raton, FL, USA, 2022; pp. 1–24.
39. Ghafir, I.; Hammoudeh, M.; Prenosil, V.; Han, L.; Hegarty, R.; Rabie, K.; Aparicio-Navarro, F.J. Detection of advanced persistent

threat using machine-learning correlation analysis. Future Gener. Comput. Syst. 2018, 89, 349–359. [CrossRef]
40. Garg, H.; Sharma, B.; Shekhar, S.; Agarwal, R. Spoofing detection system for e-health digital twin using EfficientNet Convolution

Neural Network. Multimed. Tools Appl. 2022, 81, 26873–26888. [CrossRef]
41. Datta, P.; Bhardwaj, S.; Panda, S.N.; Tanwar, S.; Badotra, S. Survey of security and privacy issues on biometric system. In Handbook

of Computer Networks and Cyber Security; Springer: Cham, Switzerland, 2020; pp. 763–776.
42. Garg, S.; Singh, R.; Obaidat, M.S.; Bhalla, V.K.; Sharma, B. Statistical vertical reduction-based data abridging technique for big

network traffic dataset. Int. J. Commun. Syst. 2020, 33, e4249. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1155/2020/8890306
http://doi.org/10.1109/TNSM.2020.3024225
http://doi.org/10.1109/TNSM.2021.3120804
http://doi.org/10.1109/TNSM.2020.3014929
http://doi.org/10.1109/ACCESS.2019.2915673
http://doi.org/10.1007/s10586-017-1576-y
http://doi.org/10.2478/jaiscr-2019-0006
http://doi.org/10.1109/ACCESS.2018.2867564
http://doi.org/10.1080/13658816.2019.1599123
http://doi.org/10.1080/22797254.2019.1694447
http://doi.org/10.1080/23311916.2018.1444320
http://doi.org/10.1080/00393274.2013.871975
http://doi.org/10.1080/24751839.2020.1767484
http://doi.org/10.1109/ACCESS.2021.3056614
http://doi.org/10.3390/s20061730
http://www.ncbi.nlm.nih.gov/pubmed/32244857
http://doi.org/10.1016/j.future.2018.06.055
http://doi.org/10.1007/s11042-021-11578-5
http://doi.org/10.1002/dac.4249

	Introduction
	Novelty of Paper
	Contribution of Paper
	Organization of Paper

	Related Work
	Proposed IDS Model
	Workflow
	Data Pre-Processing
	Gated Recurrent Unit (GRU)
	Convolution Neural Network (CNN)

	Findings and Discussion
	Evaluation Metrics
	Performance Analysis

	Conclusions
	Future Scope
	References

