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Damage Identification of Wind Turbine Blades – A
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Abstract: The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and
maintenance. This brief review explores the detection and analysis of damage in wind turbine blades. The study
highlights various techniques, including acoustic emission analysis, strain signal monitoring, and vibration
analysis, as effective approaches for damage detection. Vibration analysis, in particular, shows promise for fault
identification by analyzing changes in dynamic characteristics. Damage indices based onmodal properties, such as
natural frequencies, mode shapes, and curvature, are discussed.
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I. INTRODUCTION
The wind is a prominent renewable energy source, and there
has been a significant increase in wind turbine efficiency
through the use of larger rotors and economies of scale [1–
3]. Among the components of a wind turbine, the blade
plays a crucial role in transferring mechanical energy into
electrical energy, which becomes even more important as
blade size increases [4–6]. However, offshore wind turbine
blades have distinct characteristics compared to onshore
ones. They are typically larger in size, operate in more
challenging weather conditions, face higher safety risks and
maintenance costs, and require enhanced protection against
failure and breakdown.

If all suitable land areas were utilized, approximately a
million Gigawatts of economically viable energy could be
generated from wind sources [7]. Contrary to a common
misconception [8], the power output of wind energy does
not increase with the cube of the wind speed due to the fixed
area of the wind turbine actuator disk. Real wind turbines’
efficiency in converting the kinetic energy in the wind into
power is estimated to be around 60%. Wind turbines
typically begin generating power at wind speeds of
3–5 m/s and shut down at high speeds of 20–25 m/s.
Various factors, including available wind resources, site
potential, technical potential, and economic potential, can
be used to assess the viability of wind energy compared to
other energy resources [9].

The share of renewable energy in the power sector is
projected to reach 85% by 2050, as depicted in Fig. 1 [10].
Wind capacity has experienced faster growth than any other
technology, as illustrated in Figs. 2 and 3. According to
statistics from the World Wind Energy Association, global
installations of wind turbines reached a total of 93 GW in
2020, a significant increase of approximately 50% com-
pared to 2019 [11]. The combined electrical power capacity
of all wind farms worldwide now accounts for 7% of the
global capacity [10]. However, the wind energy industry
has not yet reached full commercial maturity, and there is a

need to reduce maintenance costs and the overall cost of
energy production, particularly in the offshore wind sector.

Despite advancements in wind power generation, chal-
lenges persist in optimizing its efficiency, reliability, and
cost-effectiveness, especially in offshore installations. To
ensure the structural integrity of wind turbine blades and
maximize energy production, continuous monitoring, and
analysis, including modal-based damage identification, are
crucial. Structural damage in blades can compromise sys-
tem integrity and load-bearing capacity. Monitoring the
blades’ modal characteristics and comparing them to a
standard or healthy condition provide valuable insights
into their physical properties and aids in damage identifi-
cation [12,13]. Analyzing the modal features allows for
extracting relevant data to assess the severity and extent of
the damage, enabling effective maintenance and repair
strategies.

The damage detection based on vibration approach is
particularly considered as a promising technique where
damage identification and classification can be accom-
plished through changing in the dynamic characteristics
of wind turbine blade. This paper gives a brief review of
damage detection approaches for wind turbine blades ac-
cording to the recent technologies. These are included
acoustic emission, strain deformation measurement, and
vibration. The vibration technique approach is comprehen-
sively studied as an accurate method based on monitoring
the change in the dynamic characteristics of blade.

II. DAMAGE SCENARIOS AND
STRUCTURAL HEALTH MONITORING

OF WIND TURBINE BLADES
Wind turbine blades are complex structures made of com-
posite materials with different aerofoil cross sections [1,14].
During their continuous operation, various factors can
cause damage to these blades. The primary cause is variable
loading, driven by the external aerodynamic force of the
wind. Wind speeds ranging from 3–5 m/s to 20–25 m/s can
lead to severe blade damage [12,13]. Heavy rainfall, espe-
cially with strong winds, can cause significant harm [15].
Extreme weather conditions, such as thunderstorms,Corresponding author: Weizhuo Wang (e-mail: w.wang@mmu.ac.uk).
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lightning strikes, and ice accumulation, pose additional
risks, including delamination and tip detachment [16].
Ice accumulation can result in rotor imbalance, mainly
due to pitch misalignment and unbalanced mass distribution
[16]. Icing also leads to irregular vibrations that, if they
exceed a certain threshold level, can cause fatigue and
breakdown. Wind turbines located in high-altitude areas
face even greater challenges, as they experience higher
wind speeds and cold air density. The extremely cold
weather can induce additional blade fatigue, such as brittle
material fracture and nonuniformities on the surfaces [17].

Other damage scenarios include splitting along fibers,
leading to a loss of material adhesion, and reduced blade
stiffness. Coat cracks can increase skin roughness and cause
buckling-induced skin damage [18]. Invisible defects re-
sulting from manufacturing flaws and poor design can also
contribute to blade damage. These invisible defects can
grow and cause different types of damage due to the harsh
operating environment and repeated high loads. Trailing
edge cracking is a common form of damage [19–21].

Damage to wind turbine blades increases the level of
vibrations and imposes an additional dynamic load, which
can result in failure or breakdown. Hidden defects that go
undetected during inspections at the manufacturing facility
can grow under stress and manifest as damage. Therefore,
regular and frequent inspection and monitoring are crucial
to prevent such issues.

Structural health monitoring plays a vital role in
ensuring the integrity and dynamic behavior of wind
turbines [22]. Several previous studies on condition moni-
toring of wind turbine blades have utilized existing meth-
ods applicable to other rotating structures [23]. Machine
condition monitoring can be categorized into different
techniques, including vibration analysis, strain measure-
ment, acoustic emission monitoring [24], and vision-based.
Advances in sensor technology and data-driven analysis
have paved the way for efficient wind turbine operation.
One of the innovative approaches is the use of sensor
networks for structural health monitoring. By adopting
these techniques, useful information about wind turbines
can be obtained, enabling the early detection of damage,
optimization of efficiency, and reduction of maintenance
costs [20,25–27].

One approach is to measure strain signals using strain
sensors mounted on the blade surface or inside the blade
body. However, it is essential to consider the change in
operating conditions, such as temperature variation, light-
ning strikes, and strong wind waves, as these can degrade
the performance and susceptibility of strain gauges [25,26]
Changes in strain signals can indicate blade icing, mass
imbalance, or other abnormalities in the structural health
state. Strain sensors can be mounted on the blade surface or
embedded within the blade layer. However, traditional
strain gauges are susceptible to degradation and are sensi-
tive to factors such as lightning strikes and temperature
variations [28,29]. New techniques based on fiber optic
sensors are being developed [30,31].

Another method is analyzing the blade’s acoustic
emission signals, including parameters such as acoustic

Fig. 1. The rising importance of electricity derived from renewable energy [10].

Fig. 2. Wind to account for two-thirds of global power production
by 2030 https://www.enlit.world/renewable-energy/wind/wind-
to-account-for-two-thirds-of-global-power-production-by-2030/
(accessed 7th July 2023).
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energy, rise time, duration, and kurtosis [20,27]. Acoustic
emission sensors are crucial in detecting damage by mea-
suring sound waves emitted by the damaged blades [32].
Monitoring techniques based on airborne sound signals can
also provide valuable insights into the presence and severity
of damage [30,33,34]. Acoustic emission monitoring is
based on detecting strain energy release within the blade
material. Strain energy is the mechanical energy stored in a
stressed system under various loadings. The strain energy
index has been widely employed in the literature to detect
and investigate early damage occurrence [30,31]. When
wind turbine blades undergo different static loadings, the
external work done by the loads as they increase is equal to
the strain accumulated by the blade until damage occurs.
Acoustic emission signals can be analyzed to extract infor-
mation about the damage [25,35,36].

The vision-based approach can be used for initial in-
spections. Advanced techniques are required for precise
damage detection. Visual inspections, employing tools
like binoculars and drones, can help identify visible defects
such as cracks, missing paint, or separation between skin
layers. For example, Xu et al. [37] proposed a novel blade
inspection method using deep learning and unmanned aerial
vehicles to overcome the inefficiencies of onsite visual
surface inspection, treating the problem as an image recog-
nition task, and evaluating the models based on the F1-score.
Moreno et al. [38] presented a vision-based deep learning
approach that automatically analyzes each part of the blade’s
face, enabling the detection of specific faults such as ray
impacts, wear, and fractures. Wu et al. [39] proposed an
economical optical technique using digital image correlation
(3D-DIC) for monitoring wind turbine blade health, focusing
on fault detection through relative deformation analysis.

Acoustic emission and ultrasonic methods utilize
sound waves to detect damage, but they are not without
challenges and limitations. One significant challenge is the
susceptibility to external noise and interference from other
signals, which can distort sound waves and provide mis-
leading information about the state of damage.

Variations in material properties further complicate the
use of acoustic emission. Changes in density, elasticity, and
geometry can alter sound waves, making them more chal-
lenging to detect accurately. Additionally, the complex
aerofoil sections of wind turbine blades can cause scattering
or refraction of acoustic emissions, adding to the complex-
ity of the method.

Stain gauges, while useful, are also subject to errors
and interferences. Factors such as humidity, creep, and
fatigue can reduce their accuracy. Furthermore, strain
gauges can only measure local strain, requiring calibration
and correction under different loading conditions and when
working with different composite material properties.

Damage to the structure alters the dynamic character-
istics, such as natural frequencies andmode shapes [40–42].
These dynamic characteristics and changes in natural fre-
quencies can also serve as sensitive indicators of damage
severity and location [43].

Monitoring the modal features of wind turbine blades
and comparing them with a standard or healthy condition is
an effective strategy for extracting information about the
physical properties of the blade [44]. By utilizing this
approach, damage identification becomes more feasible,
overcomingmany of the challenges associated with damage
detection.

Vibration analysis involves capturing vibration signals
from the wind turbine blades using various types of sensors.
These sensors include displacement sensors for low-
frequency range, velocity sensors for middle range, accel-
erometers for high-frequency range, spectral emitted energy
sensors for very high frequency, and ground-based radar as
a remote sensor for in-field rotor blades [24]. Changes in the
vibration signal’s amplitude can be used to detect the
severity and location of damage [45]. Signal processing
techniques are employed to accurately identify and assess
the damage, its location, and its severity [18,44,45]. Vibra-
tion analysis techniques may be classified into two main
methods, namely model-based and feature-based. More
discussions will be given in the next section.

Fig. 3. Total annual installed capacity of wind farms worldwide. The diagram is adopted from [11].
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Structural health monitoring of wind turbines for sys-
tem integrity and dynamic behavior requires accurate data-
driven analysis. One promising technique is the use of
digital twin technology [46], which involves creating a
numerical model that simulates the performance of an
actual wind turbine. This technology, aligned with the
principles of Industry 4.0 and smart manufacturing, enables
predictive maintenance and optimization of wind turbine
operations [7,47–51].

III. BACKGROUND INFORMATION
Horizontal axis wind turbines are commonly utilized in
large-scale wind farms for industrial applications, where
their electricity generation depends on size and wind speed.
These turbines demonstrate a remarkable ability to convert
40 to 50% of the wind power they receive into reliable
electricity. However, the challenges arise from their impres-
sive dimensions, with blades extending up to 100 meters
long and a typical hub height of 140 meters [4,52]. Operat-
ing under high wind speeds exacerbates the complexities
associated with inspection and maintenance, which often
incur significant costs; see Fig. 4. To address these chal-
lenges, integrating structural health monitoring systems
with wind turbines has emerged as a viable solution for
facilitating continuous monitoring processes [5].

IV. VIBRATION-BASED MONITORING
Vibration analysis plays a crucial role in the condition
monitoring of offshore wind turbine blades. Due to the
unpredictable external forces and challenging operating
conditions, the measurement and analysis of blade vibra-
tions are of immense importance for understanding the
dynamic characteristics of wind turbine blades [42,53].

Model-based methods utilize mathematical models and
governing equations of motion to extract the blade’s mass,
stiffness, and damping matrices. These parameters are
obtained using finite element techniques, allowing the
derivation of the system’s equation of motion. By analyzing
the dynamic characteristics of the blade, such as natural
frequencies, mode shapes, and strain energy, model-based
methods can detect and identify damage within the blade
[54]. These methods are often referred to as failure detection
methods because they correlate observed abnormal features
with the model predictions to identify the presence and
extent of damage.

On the other hand, feature-based methods focus on
extracting relevant features from the measured vibration
signals and comparing them to a reference healthy condi-
tion. These features include natural frequencies, modal
damping, characteristic displacement patterns (mode
shapes), and strain energy. Variations in these features
indicate the presence of damage or changes in mass,
stiffness, and damping due to external factors. Feature-
based methods employ statistical analysis and vibration
indices to identify and evaluate the likelihood of blade
failure at an early stage before reaching unacceptable levels
[54–57].

Model-based damage identification techniques utilize
the modal parameters to investigate the health condition of
wind turbine blades. These methods involve analyzing
changes in natural frequencies, mode shapes, curvature
of mode shapes, and strain energy caused by damage or
defects. Various approaches have been proposed, such as
investigating discontinuities in curvature mode shapes,
analyzing frequency changes related to bending stiffness,
and studying the relationship between strain energy, cur-
vature integrals, and power modes [58–62]. By monitoring
these modal parameters, model-based methods can provide
valuable insights into the condition and reliability of wind
turbine blades.

Advancements in structural health monitoring aim to
enhance the reliability and operation of wind turbines.
Techniques such as smart rotor blades that estimate aero-
dynamic loads and deformation caused by wind, static and
dynamic loading monitoring, and outlier analysis for dam-
age detection have been employed [63]. The concept of the
digital twin, which represents a digital simulation of the real
wind turbine system, is also gaining traction. The digital
twin integrates real-time data from the physical system into
a virtual model, enabling online predictions, decisions, and
comparisons between the real and virtual systems to prevent
damage problems before failure and downtime [58,64–66].

As Industry 4.0 and smart manufacturing continue to
revolutionize industrial practices, the integration of big
data, digital twins, and real-time data analysis will play a
significant role in enhancing wind turbine condition moni-
toring. These advancements enable more efficient and
accurate analysis of real-time data and facilitate proactive
maintenance strategies for offshore wind turbine
blades [64].

A. MODEL-BASED DAMAGE
IDENTIFICATION AND THE EMERGENCE OF
DIGITAL TWINS

Identification of damage in dynamic systems can be viewed
as an inversion problem, where the data collected by sensors
serve as input for the digital twin. The digital twin then
processes this input to determine damage localization and
severity. The integration of digital twin technology with the
physical system enhances system reliability.

Structural vibrations pose significant challenges and
design constraints for wind turbine blades. Ensuring the
structural integrity of these blades requires a deep under-
standing of their dynamic characteristics. Many damage
identification methods rely on the analysis of modal
parameters.

Damage indices techniques can be employed to com-
pare the structural parameters of healthy and damaged wind
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Fig. 4. Critical components in terms of failure and downtime [4].
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turbine blades. Digital twins can replicate the actual struc-
ture and provide modal parameters like natural frequencies,
mode shapes, and curvature mode shapes. These parameters
serve as key indicators for assessing the health and reliabil-
ity of wind turbine blades.

Changes in mass (e.g., due to ice accumulation),
stiffness, damping, internal defects, or unexpected excita-
tion forces can lead to variations in modal parameter values.
Vibration indices derived from these modal parameters are
used to detect potential blade failures at an early stage,
preventing them from reaching critical levels.

Figure 5 illustrates a schematic representation of the
digital twin framework. Sensor data collected from the
physical wind turbine are used to calibrate the digital
twin, which usually comprises multiphysics, multiscales,
and multi-uncertianty computational model with data con-
nections and information processing mechanisms [67,68].
The primary objective of the digital twin is tomonitor, detect,
and make informed decisions regarding the blade’s health.

For example, Chetan et al. [69] outlined the creation of a
multi-fidelity digital twin structural model for an as-built wind
turbine blade. Their aim was to establish a method for
generating a precise and comprehensive model of the actual
blade. This model would then be used to validate the perfor-
mance of a two-bladed, downwind rotor during operation.

Wang et al. [70] presents current research progress on
reliability analysis and digital twin applications for offshore
wind turbine support structure. They also discussed a digital
twin framework that combines virtual-real modeling and real-
time data updating to address existing reliability analysis
limitations, and it emphasises the growing potential of digital
twin framework technology, machine learning, internet of
things (IoT), big data, andfinite element calculations to support
offshore wind turbine (OWT) reliability analysis in the future.

Jorgensen et al. [71] discussed a strategy for imple-
menting the digital twin paradigm in the context of offshore
wind turbine support structures. They explored the use of
surrogate models to replicate computationally intensive
simulations. Their paper also addressed how to handle
sources of uncertainty that can impact predictions made
by the Digital Twin and outlined the essential considera-
tions and requirements when developing Digital Twins for
offshore wind turbine support structures.

B. DAMAGE IDENTIFICATION BASED ON
THE SENSITIVITY ANALYSIS OF MODAL
PARAMETERS

Each blade element along the blade span behaves as a
separate entity. The generalized eigenvalue problem for
each element can be written as:

½K − λiM�zij = 0 (1)

where K and M are the local stiffness and mass matrices,
respectively, λi is the structure eigenvalue at mode i, zij is the
eigenvector of the generalized eigenvalue problem at mode
i, and j represents the number degree of freedom.

Assuming that the damage determines the reduction of
the stiffness matrix, this will lead to a change in the modal
frequencies and corresponding mode shapes.

Thus,

½ðK + ΔKÞ − ðλi + ΔλÞM�ðzi + ΔziÞ = 0 (2)

and

Δλi = zðiÞTΔKzðiÞ (3)

ΔzðiÞ =
XN

j=1

zðjÞTΔKzðiÞ

λi − λj
(4)

which shows that the variation in the displacement of
the mode shapes is related to the structural frequencies of
the healthy structure. The stiffness matrix, natural frequen-
cies, and mode shapes of the damaged blade can be
expressed as:

Kd
i = Ki + βiKi and − 1 < βi < 0 (5)

ωd
i = ωi + Δωi (6)

zdi = zi + Δzi (7)

V. DAMAGE INDICES
Damage indices play a crucial role in the analysis of wind
turbine blade conditions. Several methods are introduced
based on the analysis of modal parameters, allowing for a
comparison between intact and damaged blades and the
evaluation of their health and reliability.

One of the commonly used approaches is the compari-
son of natural frequencies. The degree of correlation and
discrepancies between different modes can be observed by
tabulating or plotting the natural frequencies of intact and
damaged blades. In undamaged blades, the natural frequen-
cies should lie on or close to a straight line with a 45-degree
gradient. Deviations from this line indicate errors in the
prediction model, material properties, or the presence of
damage. However, this method alone cannot identify the
location or features of the damage.

Another important aspect is the comparison and corre-
lation between mode shapes. The baseline modal parame-
ters of a healthy blade are established first. Any changes in
these parameters can provide insights into the causes of
such variations. The modal scale factor (MSF) is one of the
indices used to quantify the correlation between pairs of
mode shapes. It measures the similarity in scaling between
two mode vectors, allowing for the detection of error
vectors superimposed on the modal vectors. The MSF
index is calculated based on the modal coefficients of the
mode shapes being compared [10].

Mathematically MSF may be expressed as:

MSFðA,BÞ =
P

N
j=1 ðΨAÞjðΨBÞjP
N
j=1 ðΨAÞjðΨAÞj

(8)

where ΨA, ΨB are the mode shape vectors being compared,
N is the number of degrees of freedom for both A andB, and

measured data

Two-way flow of informa�on

Digital twin

computa�onal model

Physical twin

Diagnosis Prognosis

Improve design 

Fig. 5. Digital twin framework.
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j is the mode number and depends on which mode is taken
as reference:

MSFðB, AÞ =
P

N
j=1 ðΨBÞjðΨAÞjP
N
j=1 ðΨBÞjðΨBÞj

(9)

If fΨAg ≡ fΨBg, the two modes are perfectly corre-
lated, and

MSFðA, BÞ = MSFðB, AÞ = 1

In the second case, the two modes differ by a simple
scalar multiplier fΨAÞ = γfΨAÞ and

MSFðB, AÞ = γ while MSFðA, BÞ = 1
γ

The modal assurance criterion (MAC) is another sta-
tistical indicator used to determine the correlation between
mode shapes. It quantifies the consistency between healthy
and damaged mode shapes, with values ranging from 0
(poor correlation) to 1 (full correlation) [42]:

MACðA, BÞ = jfΨAgTnfΨBgTmj2
ðfΨAgTnfΨAgnÞðfΨBgTmfΨBgmÞ

(10)

MACðA, BÞ= jPN
i=1ðΨAÞjðΨBÞjj2

ðPN
i=1 ðΨAÞjðΨAÞjÞð

P
N
i=1 ðΨBÞjðΨBÞjÞ

(11)

Additional indices include the auto modal assurance
criterion (AutoMAC) and coordinate modal assurance
criterion (COMAC). AutoMAC compares the mode shape
displacement results with each other, resolving issues
related to aliasing and insufficient data points. The diago-
nal values of the AutoMAC matrix are identically unity,
indicating a perfect correlation with itself. COMAC
focuses on preserving the characteristics of individual
elements and provides information about the location of
the damage. It calculates the COMAC parameter for each
individual node, considering the mode shapes’ values at
that position. The COMAC parameter for an individual
node, i, is

OMACðXiÞ =
P

N
j=1 jðΨXiÞjðΨAiÞjj2

ðPN
j=1 ðΨXiÞjðΨXiÞjÞð

P
N
i=1 ðΨAiÞjðΨAiÞjÞ

(12)

here, ðΨXÞj and ðΨAÞj represent the values of the jth mode
shape vector at position i for the mode pairs being
compared.

The frequency-scaled MAC (FMAC) provides a com-
prehensive interpretation of the correlation between mode
shapes. It plots a comparison diagram of natural frequency
values and MAC values, allowing for a clear judgment of
the correlation level [45].

Furthermore, changes in the mode shape curvature
can be utilized to detect the occurrence and changes in the
curvature mode shapes are typically localized in the
damaged region, allowing for the detection and localiza-
tion of damage by analyzing the differences between
damaged and undamaged blades. The curvature mode
shape is directly influenced by the flexural stiffness of
the blade element. When damage occurs at any position
along the blade span, it causes a reduction in the blade’s
stiffness within the damaged region. Consequently, the
magnitude of the curvature increases at that specific

section. The extent of the change in curvature magnitude
correlates with the degree of stiffness reduction in the
blade. By assessing the decrease in blade stiffness, it
becomes possible to estimate the percentage of damage.
In a study exploring the presence of discontinuities in the
curvature mode shapes of damaged beams, a damage
index was proposed [58,66]. This index was developed
based on evaluating the Laplacian operator at the element
nodes, which helps to identify irregularities or lack of
smoothness in the mode shapes.

For example, the Laplacian operator at the element
nodes may be written as:

LðiÞðxjÞ = φðiÞ�ðxj+1Þ − 2φðiÞ�ðxjÞ + φðiÞ�ðxj−1Þ (13)

here, φðiÞ� denotes the damaged mode shape and i is the
mode number.

It was noted in [66] that in case of small damage, the
Laplacian operator failed to highlight the damage location.
It proposed a damage indicator, δðiÞj , as a way for amplifying
the sensitivity:

δðiÞj = PðiÞðxjÞ − LðiÞðxjÞ j = 3, : : :N − 1 (14)

where PðiÞðxjÞ is a third-order polynomial defined using
the values of LðiÞ over the points xj−2, xj−1, xj+1, and xj+2.

The method described in [29,55] adopted modal cur-
vature as the basis for the detection of damage to the beam
structure. The flexural rigidity of the beam cross section is
EI, and if the beam is subjected to a bending momentMðxÞ,
the curvature mode shape at distance x is

KðxÞ = MðxÞ
EI

(15)

A reduction models the change in the structure stiffness
due to damage in the modulus of elasticity of the beam
section, where the degree of damage determines the extent
of the reduction in the modulus of elasticity. The reduction
of stiffness is associated with increasing curvature. The
curvature at mode i can be calculated using central differ-
ences [45]:

KðxÞ = φðj+1Þi − 2φji + φðj−1Þi
l2

(16)

where i is the mode shape number, j the node number, φji is
the mode shape displacement of node j at mode i, and l is the
length of the element.

By extracting the mode shapes from the finite element
model for both the intact structure and its damaged coun-
terpart, it becomes possible to calculate the curvature at a
specific location, denoted as “x.” Equation (16) allows for
the identification of damage and its location by determining
the difference in curvature between the pre-damage and
post-damage mode shapes.

The success of maintenance processes and rehabilita-
tion procedures is closely tied to the accuracy of assessing
the severity and location of damage. The curvature method
presents itself as an effective tool for this purpose. How-
ever, it is important to note that this technique relies on a
finite element model that must precisely match the real
structure.

These damage indices provide valuable information for
identifying and assessing the condition of wind turbine
blades. By analyzing modal parameters, such as natural
frequencies, mode shapes, and curvatures, the presence,
location, and extent of damage can be detected, allowing for

Damage Identification of Wind Turbine Blades 203

JDMD Vol. 2, No. 3, 2023



timely maintenance and improved reliability of wind tur-
bine systems.

VI. CONCLUSION
Wind energy has emerged as a prominent renewable energy
source, and wind turbine blades play a crucial role in
converting mechanical energy into electrical energy. As
the size of wind turbine blades increases, their reliability
becomes increasingly important. This review has
highlighted various approaches for detecting damage in
wind turbine blades, including acoustic emission analysis,
strain signal monitoring, and vibration analysis. Damage
detection based on vibration analysis shows promise as it
allows for the identification and classification of faults by
analyzing changes in the dynamic characteristics of the
blades.

Several damage indices have been reviewed, focusing
on modal properties such as natural frequencies, mode
shapes, MAC, COMAC, and mode shape curvature. Ensur-
ing the structural integrity of blades requires a comprehen-
sive understanding of their dynamic characteristics. By
analyzing modal parameters, various damage identification
methods can be employed. Establishing a numerical simu-
lation model that represents a healthy, intact blade is
essential, serving as a baseline for effective comparison
with a damaged blade. This comprehensive model facil-
itates damage detection and enables prediction and risk
reduction.

Continuous monitoring and analysis of wind turbine
blades are essential for ensuring reliability, minimizing
downtime, and optimizing maintenance efforts. Damage
indices and modal analysis techniques enable early detec-
tion, identification, and quantification of damage, leading
to effective blade health management and enhanced per-
formance of wind energy systems. The emerging concept
of digital twin holds promise for optimizing wind turbine
operation and maintenance through data fusion, compu-
tational modeling, and decision-making modeling. Fur-
ther research is needed to fully realize these approaches’
potential in practical applications. The approach
described may be developed in different ways with the
following recommendations suggested as possible
directions:

• Developing an accurate and computationally efficient
structural dynamics model is crucial for creating wind
turbine digital twins. These models enable real-time
predictions and decisions using live data from the
physical structure. By comparing real and virtual
data, potential damage can be identified and prevented,
minimizing downtime. The integration of physical and
virtual systems into digital twins streamlines these
tasks. However, there is a need for further development
in analyzing real-time data using nontraditional
methods.

• Calculating costs and addressing challenges in offshore
wind farm manufacturing is complicated due to the
absence of a globally agreed infrastructure. Practical
concerns, such as training programs tailored to offshore
projects, remain in the planning stages. Research into
these aspects can provide valuable insights and aid in
the development of more effective methods for asses-
sing wind turbine performance.
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