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A B S T R A C T   

This paper aims to contribute to the analysis of climate change risk through the development of a new spatially- 
explicit typology of climate risk for European cities and regions. In doing so, it offers a direct response to the 
Intergovernmental Panel on Climate Change (IPCC) call to advance awareness of climate change risks at sub- 
national levels through the integration of hazard, exposure and vulnerability domains into a composite risk 
classification that covers the whole of Europe. K-means clustering was applied to 49 variables at NUTS3 level 
where the final classification resulted in an upper-tier of eight ‘classes’, which were subsequently partitioned to 
derive a lower-tier of 31 ‘sub-classes’. A three-stage analysis of the eight-fold class configuration was then un
dertaken focusing on the distribution of climate risk classes, raising significant issues to inform climate change 
adaptation planning policy, practice and research. The analysis revealed an uneven distribution of climate 
change risk across the 33 countries covered by the typology, reinforcing the IPCC message that adapting and 
building resilience to climate change risk is not a ‘one-size-fits-all’ exercise. In the second stage, the analysis 
focused on determining whether there was a difference in the climate change risk facing different settlement 
types in Europe. The analysis revealed the extent of variation in the climate change risk characteristics of 
Europe’s urban and rural areas, revealing the potential for peri-urban areas to fall between climate change risk 
agendas or priorities when compared to urban–rural contexts. The final component of our analysis considered the 
extent to which climate change risk classes exhibit patterns of spatial clustering. Here we found that climate 
change risk exhibits evidence of spatial clustering but the extent of the clustering varies between different classes 
as the relationship between contiguous NUTS3 regions changes. This finding has notable implications for 
transboundary adaptation planning where discontinuities in political buy-in, competition, resourcing and 
awareness of risk could serve to undermine the coherence and adequacy of policy responses at a time when 
greater cooperation and alignment is needed.   

1. Introduction 

This paper reports on the development of a new and novel analysis of 
climate risk for European cities and regions, drawing on research un
dertaken as part of the European funded Horizon 2020 RESIN project.1 

Europe’s climate is changing. Projections point towards shifts in tem
perature and precipitation over the coming decades alongside an 
increasing incidence of extreme events such as floods and heat waves 
(Intergovernmental Panel on Climate Change (IPCC), 2022). In 
response, the European Commission’s strategy on adaptation to climate 

change calls for a strengthening of adaptation planning and associated 
risk assessments (European Commission, 2021). These changes are 
emerging against a backdrop of widespread recognition that the 
magnitude of the societal shifts associated with a transition to a low 
carbon economy to (potentially) offset the severest climate change im
pacts need to coincide with “…challengingly deep and rapid mitigation” 
(Millar et al., 2017: 741). 

Risk sits as the foundation of climate change adaptation activity. In 
its 5th Assessment Report (AR5) published in 2014, the IPCC transi
tioned from a vulnerability to a risk-based conception of climate change 
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1 The typology and data are accessible through the European Environment Agency ‘data products’ portal and an open-source online portal [https://european-crt. 
org/index.html]. 
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adaptation and mitigation (Burkett et al., 2014) to align the climate 
change community with those practicing in disaster risk management 
(Connelly et al., 2018). Between AR5 and AR6 (IPCC, 2022), the concept 
of risk has evolved to ensure more consistent application across the 
IPCC’s three working groups (Reisinger et al., 2020: 4). The domains of 
hazard, exposure and vulnerability remain consistent between AR5 and 
AR6 as the core elements that determine the nature and extent of climate 
risk. However, the evolved definition makes it clearer that risk refers to 
the impacts of climate change as well as human responses to climate 
change, with further guidance given on characterising uncertainty and 
the precise application of terminologies in risk assessments (Reisinger 
et al. 2020). 

As such, AR6 has further consolidated the IPCC focus on climate 
change risk. As the vision statement preceding the 6th Assessment 
Report (AR6) demonstrates, the risk-based perspective has assumed 
prominence in the IPCC approach to assessments of climate change and 
its focus on promoting effective long-term adaptation solutions (Chair of 
the IPCC, 2017). In the vision statement for AR6, it is recognised that 
urban areas and regions will play key roles in realising the goals of the 
Paris Agreement but that there is a 

“…need to advance the understanding of climate change risks at sub- 
national levels, as well as the opportunities and impediments to 
adaptation action” (Chair of the IPCC, 2017: 26-7). 

The novel contribution of this research is in its direct response to the 
IPCC call to advance awareness of climate change risks at sub-national 
levels (also see Carter et al., 2015). This is achieved through the 
development of a new spatially-explicit typology of climate change risk 
with a focus on European cities and regions, with climate risk typologies 
identified as having the potential to support adaptation to climate 
change (Carter et al., 2015). As such, the typology was developed to 
reflect climate change risk in European cities and regions and their 
underlying physical infrastructures through the integration of hazard, 
exposure and vulnerability domains into a composite typology for 
Europe.2 Through its design, the typology is positioned to offer a relative 
as opposed to absolute measure of climate change risk. This decision 
reflected two main concerns. The first was to ensure that the typology 
was developed using standardised metrics so that meaningful compari
son between European cities and regions could be undertaken to aid 
knowledge and practice sharing. The second was awareness that insur
ance and credit agencies may interpret risk differentially, either capi
talising risk into their models or cascading financial burdens onto 
governments and individuals (Mills, 2005). Minimising, for ethical 
reasons, the categorisation of certain cities and regions as more or less 
risky than others was therefore an important consideration in devel
oping the typology (see Klein, 2009). 

Overall, this approach distinguishes the climate risk typology from 
other European-scale, spatially oriented classifications, and decision- 
support tools, which focus on climate change adaptation and resil
ience but tend to consider risk in absolute terms, assess distinct domains 
or pathways of the IPCC’s risk framework, or privileged exemplar cities. 
These include the European Environment Agency’s Urban Vulnerability 
Map Book (EEA, 2016), ESPON’s Climate project (ESPON Climate, 2011; 
ESPON Climate, 2022), the European funded RAMSES project involving 
a climate risk impact analysis for a selection of European cities (Tapia 
et al., 2015), and the IPCC’s own climate scenario interactive data atlas 
of climate hazards linked to projected future scenarios (Iturbide et al. 
2021). 

Having reported on the development of the typology, the paper offers 

an analysis of the spatial and structural dimensions of climate change 
risk as expressed through the new typology, responding directly to the 
IPCC’s call for further research in understanding the structural and 
spatial dimensions of climate change risk at sub-national level (Chair of 
the IPCC, 2017). In the next section, we offer a conceptualisation of 
climate change risk that underpins the European Climate Risk Typology 
(ECRT), before exploring in more detail the methodologies employed to 
develop and analyse the typology. The final section discusses the 
research findings and suggests avenues to further develop the typology 
and explore its potential applications. 

1.1. Conceptualising climate change risk 

The starting point for the conceptualisation underpinning the ECRT 
is the IPCC’s risk-based framework. The IPCC contend that climate 
change risk results from the interaction of climate hazards with exposure 
and vulnerability to these hazards, where vulnerability is separated into 
sensitivity and adaptive capacity (IPCC 2014) (see Fig. 1 for definitions). 

Climate change risk is inherently uncertain and spills across scales, 
administrative boundaries, and sectors (Adger et al., 2018; Landauer 
et al., 2019). At the same time, data on climate change risk is often 
patchy; where user-friendly, open-source data platforms designed to 
assist practitioners in translating climate risk information into action, 
remain somewhat limited (Connelly et al., 2018; Ye et al., 2021). This 
has led to the IPCC to suggest that to support climate risk assessments, 
scientific effort should be directed towards “…improving spatial reso
lution within regions and reducing uncertainties when filling knowledge 
and data gaps” (Chair of the IPCC, 2017: 7). 

Our contribution lies in the development of a European-wide and 
spatially-explicit climate risk typology as a novel approach to repre
senting the climate change risk characteristics of European cities and 
regions and (some of) their physical infrastructures. In doing so, we 
adopt a conceptualisation of cities and regions as complex systems 
where they are conceived as a configuration of “….interacting sub
systems or elements” exhibiting multiple interconnections and in
terdependencies that cut across sectors, and spatial and temporal scales 
(Batty 2009: 1042). From this starting point, cities and regions represent 
a ‘system of systems’ where social-ecological systems are impacted and 
shaped by multiple drivers of change, conveniently categorised by Lov
eridge (2002) into six broad themes: social, technological, environ
mental, economic, political, and values (STEEPV). These drivers of 
change and their manifold intersections are understood to influence how 
cities and regions contribute to climate change, how they are affected by 
it, and ultimately how they respond to related threats and opportunities 
(Grimm et al., 2008). 

Climate change hazards interact with other drivers of change that 
influence city and regional systems, and tracing these multiple in
terconnections and cascading non-linear implications is therefore chal
lenging (Adger et al., 2018). Related hazards and longer-term shifts in 
the climate, including floods, droughts and heat waves, generate phys
ical (e.g., damage to infrastructure) and socio-economic (e.g., loss of 
business revenue) impacts on urban and regional systems. Although 
extreme events are of particular concern due to the magnitude of im
pacts they can generate (IPCC, 2012), incremental changes to the 
climate or a sequence of less severe events can nevertheless pose major 
challenges to city and regional systems going forward. Therefore, the 
nature of climate change risks depend on how vulnerable exposed ‘re
ceptors’ (e.g., people, infrastructure) are to a hazard event or gradual 
changes in the climate. The sensitivity or susceptibility of receptors to 
hazards needs considering in relation to their capacity to cope with the 
impacts that might arise (Connelly et al., 2015). Unsurprisingly then, 
vulnerability intersects with socio-economic structures and the political 
and institutional characteristics of a place, which includes the willing
ness to address climate change, or the strategic capacity to develop 
adaptation responses (including financial, technical and human 
resource capacities) (IPCC, 2014; Castán Broto, 2017, Young and Essex, 

2 The RAMSES project (FP7 2012–17) developed risk assessment tools using 
existing data, identifying climate risks for 571 European cities as contained in 
the Urban Audit. However, the RAMSES approach did not cover the whole of 
Europe and was more limited in its selection of indicators than the approach 
outlined here (Connelly et al., 2018). 
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2020). 
Recognising then that risks are generated when climate hazards (and 

other drivers of change) interact with features of urban and regional 
systems, it follows that the severity of climate risks is influenced by the 
receptor being exposed to a hazard and the extent to which the receptor 
is vulnerable to harm or damage from a hazard event if it occurs 
(Dickson et al., 2012, IPCC, 2014). Climate risk frameworks, such as the 
one championed by the IPCC, typically recognise that a given system can 
be vulnerable – as vulnerability is an inherent property of the system – 
yet it is not until the system is exposed to a hazard that the risk is 
manifested (Gallopín, 2006; IPCC, 2014). Likewise, a system might be 
exposed to a hazard, but if sensitivity to that hazard is low and/or 
adaptive capacity is high, the level of risk may be mitigated. 

The ECRT presented here is an attempt to develop a composite clas
sification of climate change risk that recognises the trade-offs and in
teractions of climate hazards, exposure, and components of 
vulnerability. It does so at a regional scale across Europe in a way that 
seeks to contribute to ‘hot spot’ mapping of climate change risk through 
a data-driven framework (see de Sherbinin, 2014; de Sherbinin et al., 
2019). The ECRT was developed with the ambition of helping end-users 
better describe and analyse the elements of the city and regional system 
that influence climate risk and to support the evidencing, assessment 
and communication of climate change risk facing Europe’s cities and 
regions (see also Solecki et al., 2015; de Sherbinin et al., 2019; ESPON 
Climate, 2022). In structuring the analysis of the ECRT in this paper, 
four research questions are considered:  

1. What are the characteristics of climate change risk in Europe’s cities 
and regions?  

2. How is climate change risk distributed across Europe? 
3. What are the differences in climate change risk facing different set

tlement types in Europe?  
4. To what extent do different types of climate change risk cluster 

spatially across Europe? 

The next section reports on the methodology used to develop the 
ECRT. 

2. Methodology 

The methodology consists of three stages and was developed using 
conventions that ensure consistency with established approaches for 
developing area-based classifications. 

2.1. Stage 1: Data collection and indicator development 

The first step in developing the ECRT involved reviewing existing 
academic, policy and grey literature on climate risk and its constituent 
elements (hazard, exposure, sensitivity, and adaptive capacity). Web of 
Science and Scopus were used to identify peer reviewed papers that 
discussed risk and vulnerability assessments across a range of climate 
related hazards. The gathered literature assisted in the understanding of 
conceptual issues relating to the operationalisation of vulnerability, and 
related terms, in addition to identifying suitable indicators (see Ap
pendix A for the approach). 

Having identified dominant themes within the literature, the next 
step involved reviewing and auditing data from a variety of European (e. 
g., EUROSTAT; Joint Research Council) and international (e.g., NASA; 
Open Street Map) data repositories. The review was undertaken to 
identify the availability and quality of potential indicators across the 
four climate risk domains that underpin the ECRT, and to determine 
their spatial and temporal coverage. Alongside the systematic review, 
early stages of the typology development work involved three rounds of 
workshop-based consultation with RESIN project partners that focused 
on: 1) defining the role of the ECRT; 2) methodological development; 
and 3) future output and applications (see Appendix B). 

Based on the review and consultation work, it was decided to 
develop the ECRT at NUTS3 level of which there are 1379 NUTS3 re
gions (at the time of the research). NUTS3 is a population-based clas
sification system, where each NUTS3 unit contains between 150,000 – 

Fig. 1. IPCC AR5 climate change risk approach.  
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800,000 people. As a result, the density of NUTS3 regions across Europe 
varies substantially. For example, there are 402 NUTS3 units in Ger
many compared to 21 in Sweden and just one in Cyprus. 

The decision to focus the ECRT at the NUTS3 scale was taken for 
several reasons. Firstly, there is a wide availability and coverage of 
European data at the NUTS3 scale needed in developing climate risk 
indicators. Second, NUTS3 regions cover continental Europe unlike 
other potential units such as the Urban Atlas, offering the potential for 
the development of a climate change risk typology with comprehensive 
coverage of Europe. Third, NUTS3 regions have been subject to a further 
classification that segments each unit based on whether they exhibit 
land-use and population characteristics that are consistent with the re
gion being predominantly urban, intermediate, or predominantly rural in 
nature. This meant that cities as well as peri-urban hinterlands and rural 
areas could be considered separately in more detailed analysis of climate 
change risk using an official EU classification of NUTS3 regions (e.g. 
Mortoja and Yigitcanlar, 2020). 

Candidate risk indicators, covering the domains of hazard, exposure, 
sensitivity, and adaptive capacity, were identified through assessment of 
existing indicators or by determining options for generating new in
dicators. Two assessment criteria underpinned the choice of candidate 
indicators: conceptual relevance and technical robustness (Wong and 
Watkins, 2009): 

Conceptual relevance:  

• Indicator is consistent with the conceptual risk themes, underpinning 
the domains of hazard, exposure, sensitivity, and adaptive capacity, 
as identified through the literature review. 

Technical robustness:  

• Availability: available at the chosen spatial unit (i.e., NUTS3) or it 
must be available at a scale that allows aggregation to the chosen 
unit.  

• Consistency: clarity in definition and ability to compare across 
spatial units, potentially over time.  

• Transparency: clearly stated specifics as to why the indicator was 
originally collected and how.  

• Continuity: agreed and stated methodologies and routine data 
collection to enable continuity in the methods and measures used.  

• Relevance: intelligence has to be reliable and relevant to the issue 
concerned.  

• Time series: has an appropriate timeframe for measuring the issue of 
concern. 

Some of the hazard indicators were derived from open-source re
positories and/or derived using GIS analysis (e.g., flood risk). Other 
hazard variables, notably the climate projection indicators, were 
developed by Fondazione Centro EuroMediterraneo sui Cambiamenti 
Climatici (Fondazione CMCC) as part of the RESIN project. These 
climate change indicators were derived through climate simulations 
consisting of eighteen GCM-RCM combinations over the European 
domain (EURO-CORDEX) with resolution 0.11 degree (~12 km) (see 
Appendix C for the RCM specifications). 

As an initial starting point, the simulations considered were obtained 
according to the IPCC scenarios RCP4.5 (intermediate emissions) and 
RCP8.5 (high emissions) set against a contemporary control period of 
1981–2010.  

• RCP 4.5 – this is a stabilization scenario where technological change, 
and the implementation of greenhouse gas emissions reduction 
strategies lead to a future where the most severe impacts of climate 
change become less likely. 

• RCP 8.5 – this climate change scenario reflects major shifts in tem
perature and precipitation patterns, and is driven by increasing 

emissions, high population growth and limited technological 
innovation. 

The climate anomalies were evaluated over the future period 
2036–2065 with respect to the control period 1981–2010. To generate 
the climate variables, the following steps were undertaken (Fondazione 
CMCC, 2019):  

1. Evaluation of the annual mean values of the indicators for the control 
period 1981–20103 and the future period 2036–2065 for all EURO- 
CORDEX simulations by using daily climate variables (maximum 
temperature, minimum temperature, mean temperature, 
precipitation)  

2. Calculation of the anomalies of each climate indicator, as difference 
between the temporal mean value of the indicator in the future 
period 2036–2065 and in the control period 1981–2010 covering the 
European continent, excluding Turkey.  

3. Determination, for each climate indicator, of the anomaly multi- 
model ensemble using the native model horizontal resolution. The 
multi-model ensemble is calculated as the mean value of results of all 
models.  

4. For each climate indicator, calculation of the spatial mean value of 
the anomaly multi-model ensemble over all European NUTS3 regions 
was carried out using an area-weighted average of all overlapping 
model grid points falling in each NUTS3 region. 

The initial starting point for the EURO-CORDEX hazard indicators 
was to include the baseline (control period) in the ECRT to reflect the 
near contemporary hazard context alongside RCP 4.5 and RCP 8.5 to 
reflect hazard futures. However, analysis of the baseline and derived 
scenarios revealed excessive correlations (0.79 to 0.99, p <.000) be
tween the equivalent indicators (e.g., mean temperature) of the baseline 
and the modelled scenarios under RCP 4.5 and RCP 8.5 assumptions at 
NUTS3 level. As such, it was decided to only retain the RCP 8.5 in
dicators as the worst-case scenario in developing the ECRT on the basis 
that the retained RCP 8.5 indicators were statistically correlated to the 
near contemporary baseline and underlying trends modelled in RCP 4.5 
(see Stage 2 for details on the process of handling indicator redundancy). 

The exposure, sensitivity, and adaptive capacity indicators were 
either available from open-source repositories (e.g., EUROSTAT) or 
were generated, typically through combining separate variables into a 
single composite indicator or using geoprocessing operations in GIS. 
Details of the conceptual principles and methods underlying the devel
opment and assessment of the final adopted indicators can be found in 
the supplementary information (Appendix D). 

It is important to acknowledge the trade-offs underlying the devel
opment of the ECRT. Data coverage and quality is inconsistent across 
European countries, creating notable challenges in monitoring climate 
change risk (Connelly et al., 2018). The indicator audit revealed a lack of 
consistency in spatial indicator coverage across NUTS3 regions that 
required the use of techniques such as interpolation as part of a strategy 
of estimating missing data. Likewise, the temporal coverage of in
dicators varied, with some indicators being collected regularly and 
others irregularly or as snapshots. Furthermore, other indicators were 
only available as projections. This challenge has been recognised by 
others who have highlighted limitations in having to conceptually 
retrofit indicators to the IPCC risk framework (Connelly et al., 2018), the 

3 At the time the hazard indicators were commissioned (i.e., 2016) and the 
typology was developed in 2017/18, the 1981–2010 control period represented 
a near contemporaneous baseline for present-day hazards, from which the 
simulations were derived. Not all hazard indicators included a control period 
from which RCP 4.5 and 8.5 scenarios were produced and so for some hazard 
indicators proxy indicators drawing on historic or contemporary periods were 
adopted instead. 
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analytical constraints imposed by sub-standard data (Chair of the IPCC, 
2017), and the interpretive risks associated with constrained data 
availability at resolutions that could be inappropriate for certain 
evidence-based analyses and planning functions (ESPON Climate, 
2022). This has led to calls for a commitment to continuous monitoring 
and data collection to ensure the reliability and robustness of indicators 
going forward (ESPON Climate, 2022). While acknowledging these 
limitations and constraints, the approach reported here follows a robust 
and technically-informed contribution to climate hot-spot analysis and 
represents a demonstration of what is possible given the availability and 
coverage of current data. Many of the indicators in Table 1 were 
developed or compiled specifcally for the purpose of creating the ECRT 
and represent a valuable resource in their own right. Against this 
backdrop, we hope the research serves to support the ESPON Climate 
(2022: 58) call for greater attention to be paid to “continuous moni
toring and data acquisition at appropriate scale” to help improve the 
reliability and robustness of assessments of climate related risks going 
forward. 

2.2. Stage 2: Data preparation 

Overall, 79 potential indicators covering hazard, exposure, sensi
tivity, and adaptive capacity were initially identified through the audit 
process. Following consultation with partners and stakeholders and 
initial exploratory data analysis, 67 indicators were retained for further 
analysis and/or development. Working conceptualisations, definitions 
and metadata descriptors were developed for each of the 67 retained 
indicators outlining the conceptual underpinnings of the indicator and 
its technical specifications. 

The first task in processing the data was to identify, correct or 
remove error-laden values (e.g., due to the incorrect recording of values 
during the processing of the original data). It was also necessary to 
identify and record extreme outliers in the indicators early in the process 
of developing the typology. Many statistical procedures assume a 
normal distribution in the sample of data being subject to analysis. To 
overcome problems of non-normal distributions, each indicator was 
assessed using Skewness (a measure of the symmetry of a frequency 
distribution) and Kurtosis (a measure of the peakedness of the data). The 
Shapiro-Wilks Test for normality was also applied as a way of statisti
cally testing for non-normal distributions. Transformation and stand
ardisation procedures (see below) were used to address non-normal 
distributions, identified based on the Shapiro-Wilks Test, and/or where 
skewness or kurtosis values exceeded +1 or − 1. 

The initial analysis revealed that all the variables suffered from 
skewness and/or kurtosis and so would benefit from transformation/ 
standardisation. Combinations of four transformation functions (Log; 
Box-Cox; Inverse Hyperbolic Sine; Fractional rank and inverse distri
bution) and three standardisation approaches (Z-score, range, and inter- 
decile range standardisation) were tested, resulting in 12 new datasets, 
that were subjected to further examination of outliers, skewness, and 
kurtosis values (see Gale et al., 2016). Following iterative testing and 
pilot cluster runs (see step 3), a combination of fractional ranking and 
inverse distribution transformation and range standardisation was 
adopted, following their use elsewhere in typology development (Hincks 
et al., 2018). 

To address missing data, areal interpolation was adopted where 
necessary. Areal interpolation is a geostatistical interpolation technique 
that extends kriging theory to normally distributed data averaged over 
polygons (see Logan et al., 2014). The technique enables predictions and 
standard errors to be made for all points within and between the input 
polygons (i.e., NUTS3 units). The aggregation of polygonal data is a two- 
step process. First, a smooth prediction surface for individual points is 
created from the source polygons, interpreted as a density surface. This 
prediction surface can then be re-aggregated to target polygons (i.e., 
NUTS3 units). This two-step process can be used to predict and subse
quently impute values for polygons where data is missing. The 

Table 1 
Climate change risk variables.  

Indicator Name IPCC AR5 Risk Domain Radial Chart 
Ref. 

Mean Temperature (RCP 8.5) Hazard V1 
Summer Days (RCP 8.5) Hazard V2 
Ice Days (RCP 8.5) Hazard V3 
Heat Waves (RCP 8.5) Hazard V4 
Consecutive Dry Days (RCP 8.5) Hazard V5 
Consecutive Wet Days (RCP 8.5) Hazard V6 
Heavy Precipitation Days (RCP 8.5) Hazard V7 
Very Heavy Precipitation Days (RCP 

8.5) 
Hazard V8 

Coastal Hazards Hazard V9 
Drought Hazard Hazard V10 
Wildfires Hazard V11 
Fluvial Hazard Hazard V12 
Landslide Hazard Hazard V13 
Population in settlements exposed to 

fluvial flooding 
Exposure V14 

Road infrastructure exposed to fluvial 
flooding 

Exposure V15 

Rail network exposed to fluvial 
flooding 

Exposure V16 

Transport nodes exposed to fluvial 
flooding 

Exposure V17 

Population in settlements exposed to 
coastal hazards 

Exposure V18 

Road infrastructure exposed to coastal 
hazards 

Exposure V19 

Rail network exposed to coastal 
hazards 

Exposure V20 

Transport nodes exposed to coastal 
hazards 

Exposure V21 

Population in settlements exposed to 
landslide 

Exposure V22 

Road infrastructure exposed to 
landslide 

Exposure V23 

Rail network exposed to landslide Exposure V24 
Transport nodes exposed to landslide Exposure V25 
Length of major road networks (km2 

per NUTS3 region) 
Vulnerability – Adaptive 
Capacity 

V26 

Length of railway network (km2 per 
NUTS3 region) 

Vulnerability – Adaptive 
Capacity 

V27 

Density of major road intersections Vulnerability – Adaptive 
Capacity 

V28 

Density of transport nodes Vulnerability – Adaptive 
Capacity 

V29 

Airports per head of the population Vulnerability – Adaptive 
Capacity 

V30 

Ports per head of the population Vulnerability – Adaptive 
Capacity 

V31 

Hospital sites per head of the 
population 

Vulnerability – Adaptive 
Capacity 

V32 

Number of powerplants per head of 
the population 

Vulnerability – Adaptive 
Capacity 

V33 

Fixed broadband coverage Vulnerability – Adaptive 
Capacity 

V34 

Next Generation Access (NGA) – 
broadband 

Vulnerability – Adaptive 
Capacity 

V35 

Urban area classified as green space Vulnerability – Adaptive 
Capacity 

V36 

Urban land cover Vulnerability – Adaptive 
Capacity 

V37 

Change in urban green space Vulnerability – Adaptive 
Capacity 

V38 

Change in urban land cover Vulnerability – Adaptive 
Capacity 

V39 

Priority allocation funding Vulnerability – Adaptive 
Capacity 

V40 

Employment-population balance Vulnerability – Adaptive 
Capacity 

V41 

Patent applications to the EPO Vulnerability – Adaptive 
Capacity 

V42 

GVA per head of population Vulnerability – Adaptive 
Capacity 

V43 

(continued on next page) 
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advantage of this process is that the interpolation prediction takes ac
count of values of surrounding polygons through the creation of the 
density surface (Krivoruchko et al., 2011). 

Prior to any interpolation being undertaken, candidate variables 
were assessed for spatial autocorrelation. Global Morans I was calcu
lated for each of the six variables were missing data was identified 
(Table 1: V42, V43, V46, V47, V48 and V49). Global Morans I statistics 
were calculated using edge and corner contiguity for each variable with 
a sensitivity analysis carried out using an inverse distance measure4 

based on the default threshold determined within ArcGIS. The 
contiguity-based Morans I statistic for V42 (GMI = 0.35, p <.000), V43 
(GMI = 0.71, p <.000), V46 (GMI = 0.72, p <.000), V47 (GMI = 0.052, 
p <.000), V48 (GMI = 0.61, p <.000) and V49 (GMI = 0.72, p <.000) 
revealed that all six variables exhibited tendencies towards spatial 
clustering. This was also confirmed by the inverse distance measure for 
all six candidate variables, which supported the decision to adopt an 
interpolation-based approach as the means for inputting missing data. 

The interpolation of variables is dependent on the accurate specifi
cation of predictive models. In ArcGIS, spatial interpolation takes place 
through the ‘variography workflow’ where the objective is to iteratively 
amend the parameters of the geostatistical model so that empirical co
variances are estimated to fall within a series of confidence intervals that 
are set at points along a covariance curve. Under our approach, when the 
model is accurately specified, 90% of the covariances will coincide with 
the confidence intervals. Areal interpolation was carried out on the six 
candidate indicators. Various interpolation models were piloted with 
the k-bessel model being adopted following extensive testing (see Logan 
et al., 2014). The k-bessel model is one of the most functional in the 
ArcGIS Toolkit at fitting covariances, but this functionality is traded-off 
with significantly higher computational demands when compared to 
other lower-functional models available in the ESRI geostatistical 
toolkit.5 

Finally, the transformed, standardised and where necessary the 
interpolated indicators were subjected to Pearson’s Correlation. This 
test was performed on indicators within the same domain to identify 
indicators that were excessively correlated (+/-0.8 or greater) (Mooi 
and Sarstedt, 2011). This adds a necessary step in reducing data 
redundancy in the final typology. Redundancy in this context relates to 
the way in which the process or characteristics of one indicator is 
explained by the composition and structure of another indicator (e.g., 
see discussion of the control period, RCP 4.5 and 8.5 in Stage 1 above). 
Therefore, removing redundant indicators will not disadvantage the 
ECRT because the characteristics, processes or composition captured by 
the redundant indicator will be reflected in one of the retained 
indicators. 

Where indicators were excessively correlated, redundant indicators 
were removed from further analysis and the retained variables recon
ceptualised to reflect the revised scope of the indicator. Of the 81 in
dicators that were originally transformed and standardised, 49 
candidate indicators were retained for inclusion in the final stage cluster 
analysis (for details see supplementary information – Appendix B). 

2.3. Stage 3: Clustering and final typology development 

Having cleaned and processed the data and identified a final suite of 
indicators, the next step was to identify groupings of NUTS3 regions 
based on their climate risk characteristics. K-means was adopted as the 
method of clustering for developing the ECRT. K-means is an unsuper
vised machine-learning technique that seeks to ‘minimise within group 
variations’ and to ‘maximise between group variations’. The aim of the 
clustering exercise was to identify homogenous groups of NUTS3 regions 
that share similar climate risk characteristics. K-means clustering par
titions objects into k centroids that are fixed a priori (MacQueen, 1967) 
where objects (i.e. NUTS3 units) are iteratively reassigned to clusters in 
an attempt to derive a series of centroids that minimise variation: 

V =
∑k

x=1

∑n

y=1

(
zx − μy

)2  

where n is the number of clusters and μy is the mean centroid of all the 
points zx in cluster y (Longley and Adnan, 2016: 381). 

No attempt was made to weight or give priority to certain variables 
over others prior to clustering. This decision was taken following 
consultation with project partners and stakeholders, which revealed 
highly polarised and often contradictory priorities among consultees 
depending on their knowledge, experiences, and their awareness of local 
circumstances. Here project partners and stakeholders argued for the 
equal weighting of indicators as the preferred option to maintain sta
tistical robustness and limit the potential for the ECRT becoming a ‘black 
box’. 

In consultation with project partners and stakeholders, the decision 
was also taken to develop a typology that would consist of two ‘tiers’ – 
an upper-tier of ‘classes’ and a lower-tier of ‘sub-classes’. Classes were 
conceived as a way of providing breadth of coverage while the sub- 
classes were defined to provide further depth to each of the individual 
classes (see Gale et al., 2016; Hincks et al., 2018 for similar structures). 
In this paper, we only report the development and analysis of the class 
structure. 

Using IBM SPSS v.22 and bespoke syntax, the 49 candidate indicators 
selected for inclusion in the clustering exercise were tested through a 
series of pilot runs. One of the limitations of k-means clustering is that 
case order can affect the outcome of the cluster solution. In an effort to 
minimise these effects, cluster solutions were rerun using randomly 
ordered cases (NUTS3 units). This exercise was undertaken 5000 times 
for the class layer and 1000 times each for the ‘sub-class’ layers. The 
cluster method was set to ‘iterate and classify’ with stability being 
reached once the iteration of centroids between clusters had ceased. The 
initial focus of the analysis was on deriving a classification deriving n 
clusters that would constitute the upper-tier of classes that was con
strained by an upper-limit of a maximum of 10 clusters. This upper-tier 
layer was then further partitioned into my clusters, which formed the 
lower-tier ‘sub-class’ layer (Gale et al., 2016). This sub-class layer was 
constrained to an upper-limit of a maximum of five clusters. 

Another limitation of k-means clustering is that there are no set 
criteria for defining an optimum cluster solution. However, to inform 
decisions as to which solution is optimal, cluster distances were evalu
ated using diagnostic statistics. Post-hoc tests were calculated to deter
mine whether the distances between cluster centroids for each solution 
were statistically significant and warranting their retention as separate 
clusters (see below). The different configurations of the indicator load
ings in each class and sub-class definition were visualised as radial 
graphs that were then used to help profile the climate change risk 

Table 1 (continued ) 

Indicator Name IPCC AR5 Risk Domain Radial Chart 
Ref. 

Population in urban areas Vulnerability – 
Sensitivity 

V44 

At Risk of Poverty Vulnerability – 
Sensitivity 

V45 

Projected population change 0–14 
(2017–2050) 

Vulnerability – 
Sensitivity 

V46 

Projected population change 70+
(2017–2050) 

Vulnerability – 
Sensitivity 

V47 

Migratory population change Vulnerability – 
Sensitivity 

V48 

Projected change in population 
density 

Vulnerability – 
Sensitivity 

V49  

4 Inverse distance was also used as a sensitivity measure to compensate for 
any incidence of NUTS3 regions not exhibiting edge and/or corner contiguity (i. 
e. where they were isolated from other NUTS3 regions).  

5 What is areal interpolation (ESRI) guidance? 
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captured by different classes and sub-classes (see below). 

2.4. A new climate risk typology for European cities and regions 

The first research question posed at the outset of the paper focused 
on identifying the characteristics of climate change risk in Europe’s 
cities and regions. As set out above, the ECRT consists of two ‘tiers’ – 
classes and sub-classes. The class solution was optimised at an eight-fold 
structure (Fig. 2). 

Each class represents a distinct group of cities and regions that share 
similar climate risk characteristics based on the indicators (hazard, 
exposure sensitivity and adaptive capacity) developed to underpin the 
ECRT. The second-tier, sub-class, structure (not considered here) consists 
of 31 groups developed through the segmentation of the eight classes to 
provide a further layer of disaggregation of understanding of climate 
change risk across European cities and regions. 

The optimum solutions were identified based on those runs that 
minimised the ‘within cluster sum of squares’ (WCSS) statistic calculated 
as part of the cluster diagnostics. The WCSS measures how close objects 
within each cluster solution are to the centroid, indicating cluster ho
mogeneity (Gale et al., 2016: 10). It is not possible to summarise the 
diagnostic results for all cluster runs undertaken, given that solutions 
were generated for 3–10 clusters 5000 times for the class layer. How
ever, details of the top five best performing class solutions are sum
marised in Table 2. 

Once the optimum number of clusters had been determined, a radial 
graph for each cluster was created (Fig. 3). Here standardised z-scores 
were plotted in relation to the grand mean score for all NUTS3 units in 
the analysis. This same approach was also applied in the development of 
the lower-tier sub-class solution (not shown). 

The next step involved the profiling of each cluster based on their 
underlying characteristics. In developing the ECRT, indicators were 
assessed based on conceptual relevance and technical robustness. At 
times, this necessitated a trade-off in that some indicators that were 
conceptually robust may have only been collected for a single snapshot 
year and of these indicators, some were collected for different based 
years (i.e., 2017 and 2016). Minimising variation in the snapshot years is 
preferable but data availability and coverage means this is often diffi
cult, especially when working at a continental or global scale (de 
Sherbinin, 2014). Other retained indicators were future orientated, 
based on projections of trends from a baseline year into the future while 
other indicators measured change over time, typically for a period over 
the recent past. Notwithstanding the limitations associated with data 
gaps, lags, and uncertainties in measuring climate change risk – a dy
namic, multidimensional, and complex phenomenon – the k-means 
clustering technique can accommodate such variation in the indicator 
structures, especially where indicators are normalised and/or stand
ardised in a consistent way. 

However, the risk in adopting a combination of snapshot, change and 
projection indicators lies in the interpretation of the cluster outputs 
where the misreading of indicators can lead to erroneous attributions or 
qualities (ESPON Climate, 2022). To develop coherent cluster de
scriptions that were sensitive to differences in indicators and their 
measurement frameworks (i.e., snapshot, change or projection), the 
project team used the conceptual and metadata descriptions of the 
retained indicators developed in Stage 2 and aligned these to the radial 
graphs that were generated from the optimum clustering solution. Pro
files of individual clusters were developed, and descriptions created for 
each of the groups in the climate risk classes and sub-classes designed to 
signpost the dominant characteristics underpinning each climate risk 
cluster (Fig. 3). This was undertaken iteratively with project partners 
and stakeholders as part of a collaborative exercise in profiling the 
clusters (Kingston et al., 2000). 

The pen portraits of the eight classes, detailing the dominant vari
ables in each cluster, are summarised below: 

Class 1: The majority of the cities and regions in this class are 

concentrated in Eastern Europe and Central France. They face a wide 
range of climate change hazards relative to other NUTS3 areas, 
including fluvial flooding, rising temperatures and heat waves and 
wildfires. These areas show relatively high exposure of people, settle
ments and critical infrastructure to fluvial flooding from rivers, but less 
so to landslide hazards. They have relatively low provision of critical 
infrastructure and broadband/bandwidth capacity compared to other 
parts of Europe. This is related to their peri-urban and rural locations, 
which also reflects in their relatively low population densities and 
proportions of built-up area. In a European context, they have lower 
levels of GVA and employment opportunities, and as a result are in 
receipt of high levels of European funding via priority allocation 
schemes. This economic situation can also help to explain the pro
jections for low levels of migration and numbers of young people in the 
population in the future. Due to the range of hazards faced, the notable 
exposure to fluvial flooding and relatively high levels of vulnerability, 
climate change risk is an important issue. 

Class 2: This class encompasses a relatively small number of cities 
and regions sited in low lying and estuarine locations, particularly in the 
Netherlands and Denmark. Other regions sharing these characteristics, 
for example in North Eastern Italy and Northern Germany, also fall 
within this class. The key hazards they face are fluvial flooding and 
coastal hazards, that is well above the European average. Exposure of 
people, settlements and critical infrastructure to these hazards is also 
comparatively high. There are in relative terms lower proportions of the 
population at risk of poverty, and migration levels are projected to in
crease. GVA, employment prospects and patent application indicators 
are above the average for Europe’s cities and regions. These locations 
also have relatively high critical infrastructure provision and access to 
broadband and high bandwidths. This suggests that capacity to adapt to 
hazards is relatively high and sensitivity relatively low. However, the 
potential severity of the hazards faced by these areas, and the high level 
of exposure to fluvial flooding and coastal hazards, marks climate 
change as a major risk factor into the future. 

Class 3: This class is principally Mediterranean in distribution. Its 
cities and regions cover the majority of Portugal and Spain, France’s 
Mediterranean coast, Italy, Croatia and Greece. These areas are hot and 
dry, and are projected to become increasingly so over the coming de
cades with climate change. Landslides and coastal hazards are a feature, 
with people, settlements and infrastructure currently exposed to both 
hazards, particularly landslides. High soil moisture stress and projected 
water consumption pressure increase the threat of water shortages and 
drought. Critical infrastructure provision and broadband/bandwidth 
capacity is relatively low from a European perspective. Urban popula
tion density is above the average for Europe, although the coverage of 
built-up areas and green spaces in urban areas is relatively low. Socio- 
economic indicators highlight that these areas face challenges, with 
higher than average levels of poverty risk, and lower than average GVA, 
employment prospects and patent applications. These factors potentially 
combine to increase vulnerability to climate change hazards and in
crease overall levels of climate risk. 

Class 4: This class covers the majority of the coastal zones of the UK, 
northern France and Denmark. Parts of the Belgium, Netherlands and 
northern Germany are also included. Coastal hazards are a particular 
feature of these cities and regions. Given the relatively high urban 
population densities and numbers of transport nodes in these areas, this 
translates into high levels of exposure of people, settlements and infra
structure to coastal hazards in comparison to other parts of Europe. 
Conversely, exposure to fluvial flooding and landslide hazards is rela
tively low from a European perspective. Socio-economic indicators do 
not suggest that these are amongst Europe’s most affluent and dynamic 
locations, although they also highlight that they are not amongst the 
poorest. The number of young people is projected to increase as is 
migration, and there is relatively good access to broadband and high 
internet bandwidths. These factors can help to moderate levels of 
vulnerability to coastal hazards, although the high degree of exposure to 
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Fig. 2. Distribution of climate risk classes.  
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this hazard places climate change as a key risk to economic develop
ment, health, and wellbeing. 

Class 5: These cities and regions are located in Northern Europe. 
Aside from Denmark, much of Scandinavia falls within this class. Parts of 
Western Scotland, the Baltic States and Iceland (aside from Reykjavik) 
are also encompassed. These are cool and wet areas, although temper
atures are nevertheless rising at a higher than average rate for Europe, 
with the number of ice days projected to fall significantly. They are also 
projected to experience a large increase in heavy and very heavy pre
cipitation days compared to other European locations, which may in
crease the chance of surface water flooding in some areas. Coastal 
hazards are a threat, which results in high exposure of people, settle
ments and critical infrastructure to this hazard. These are often large 
areas with relatively low urban population densities and many smaller 
rural settlements. Urban areas have high levels of green space, and are 
not densely built up. Broadband and bandwidth capacity are relatively 
low, as is the density of transport networks with low numbers of road 
intersections and transport nodes. Due to low population densities, the 
number of critical infrastructure assets per 1000 people (e.g. airports, 
hospitals etc.) is high from a European perspective. Socio-economically, 
these affluent and dynamic places with projected increases in migration 
594 and numbers of young people over the coming decades. This could 
increase capacity to adapt to the changing climate. 

Class 6: In this class, cities and regions are predominantly located in 
Central and Western Europe. Fluvial flooding from rivers is the key 
climate hazard facing these areas. There is also the potential for greater 
surface water flooding arising from projected increase in heavy rainfall 
events over the coming decades. Exposure of people, settlements and 
critical infrastructure to fluvial flooding is currently relatively high in a 
European context while exposure to landslides is relatively low. These 
are comparatively affluent and innovative areas compared to the Eu
ropean average and are projected to experience increase in migration 
and numbers of young people. They also have well developed road 
networks and high broadband access and bandwidth capacity. For rea
sons such as these, they have relatively low sensitivity to climate change 
hazards and high adaptive capacity, and their vulnerability to climate 
change is therefore relatively low. However, given that exposure to 
fluvial flooding is high, climate change and extreme weather is a risk. 

Class 7: This class covers the Alps, upland areas of Germany, parts of 
the Carpathian Mountains, and France’s Massif Central and Eastern 
mountain ranges. Aside from several areas in Italy, all cities and regions 
are inland. The topography and high rainfall levels contribute to land
slides standing out as a key hazard. Climate change is projected to in
crease the frequency and intensity of heavy and very heavy rainfall days, 
which could result in an even greater landslide hazard. It is therefore 
understandable that the exposure of people, settlements and critical 
infrastructure to landslides is high from a European perspective. Here, 
high transport infrastructure densities (road intersections, transport 
nodes) stand out as a particular issue, although population densities are 
relatively low. Exposure to fluvial flooding is also relatively high. Pro
jections for climate change induced intensification of extreme rainfall 

may drive exposure levels higher still. These areas are relatively affluent 
and innovative compared to others in Europe, and are projected to 
experience increasing migration in the future. Climate change poses a 
range of risks to these regions over the coming decades, although their 
relatively high levels of adaptive capacity may help to moderate risk. 

Class 8: England, Belgium and Germany dominate this class, 
although there are outliers in France, Poland and Austria. These are 
predominantly inland cities and regions. Projections highlight that they 
will experience an increasing number of consecutive wet days and days 
with heavy and very heavy rainfall. Aside from this, their hazard profile 
is relatively benign. As a result, exposure to hazards including fluvial 
flooding, landslides and coastal hazards is low in relation to other parts 
of Europe. These are generally urbanised areas with above average 
population densities, urban built environment coverage and numbers of 
road intersections and transport nodes (reflecting dense transport net
works). GVA, employment prospects and patent applications indicators 
are at a level above the European average, suggesting higher levels of 
adaptive capacity to climate change hazards. This can help to moderate 
risks associated with increasing rainfall (and potential fluvial and sur
face water flood risk) that these areas may face in the future. 

2.5. Analysing climate risk for European cities and regions 

Having outlined above the broad structure of the new climate risk 
typology, this section offers an analysis of the patterns and trends in 
climate risk revealed through the ECRT. 

2.5.1. Distribution of climate risk classes 
Here we draw on a selection of trends in the eight-fold class 

configuration to provide an analysis of the distribution of climate 
change risk across Europe. Focusing initially on the distribution of 
climate risk for each of the classes by NUTS3 regions (Table 3), it is 
notable that four classes – 1 3, 7 and 8 – have distributions of NUTS3 
regions that exceed the median distribution of 14.7 %. Class 7 was the 
top-ranked cluster on this measure accounting for over 18 % of NUTS3 
regions encompassing areas including the Alps, France’s Massif Central 
and Germany’s uplands. Next, classes 1 and 3 account for 18 and 16 % of 
NUTS3 regions respectively. Class 1 is concentrated principally in 
Eastern Europe and interior regions of central France where class 3 is 
widely distributed through the Mediterranean. Class 8 accounts for 15 % 
of NUTS 3 regions and is distributed through central and northern 
Europe – notably Germany, Belgium, and the UK. 

In contrast, classes 2 and 5 account for the smallest proportions of 
NUTS3 regions by a notable extent at 3.5 % and 4.9 % respectively. Class 
2 is concentrated around the Netherlands, Germany’s North Sea and 
Baltic coasts and Italy’s northern Adriatic coastline while class 5 is 
largely concentrated through Scandinavia. Finally, class 4 accounts for 
nearly 10 % of NUTS3 regions and is a feature of northwestern coastal 
regions where class 6, at just over 14 % of NUTS3 regions, is distributed 
throughout central and western Europe. 

Fig. 4 summarises the proportion of NUTS3 regions per country that 
fall into each of the climate change risk classes. Class 1 occurs to a 
greater or lesser extent in over half (52 %) of all countries (n = 17/33) 
covered by the ECRT while classes 3, 6 and 7 occur in 39–49 % of 
countries. Classes 5 and 8 are found in approximately one-third (31 and 
36 % respectively) of all countries while classes 2 and 4 occur in 
approximately one-quarter (24 and 27 % respectively). 

Fig. 5 summarises the climate change risk occurring within each 
country split between the different classes. It is notable that most 
countries are characterised by a single risk class or where the distribu
tion is dominated by a single class. Yet within this principal pattern, 
there is also evidence of extensive variation in climate change risk 
within and between countries across Europe. 

Analysis of these patterns reveals areas of homogeneity in the climate 
risk profile of countries where in 61 % of the countries covered by the 
ECRT, all NUTS3 regions fall into one typology type or one type that is 

Table 2 
Summary of diagnostic statistics for top five ranked class solutions.  

Solution Levene Statistic WCSS Optimised Cluster 
Solution 

1 4.969, df1 7, df2 1371,. 
p <.000 

53.3, df 1371, (p 
<.000) 

8 clusters 

2 4.118, df1 7, df2 1371,. 
p <.000 

53.7, df 1371, (p 
<.000) 

8 clusters 

3 4.192, df1 7, df2 1371,. 
p <.000 

53.7, df 1371, (p 
<.000) 

6 clusters 

4 4.087, df1 7, df2 1371,. 
p <.000 

53.7, df 1371, (p 
<.000) 

8 clusters 

5 4.023, df1 7, df2 1371,. 
p <.000 

53.7, df 1371, (p 
<.000) 

6 clusters  
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Fig. 3. Class radial graphs NB – Red line is the class mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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dominant, accounting for over 75 % of NUTS3 regions. At the same time, 
six countries have evidently heterogeneous risk profiles where four or 
more types are present and no single type accounts for more than 80 % 
of total NUTS3 regions in the country. Where homogeneity is most acute 
is in countries where the number of NUTS3 regions is relatively limited 
(e.g. Cyprus, Iceland) whilst heterogeneous profiles are most pro
nounced in counties with more granulised NUTS3 geographies (e.g. 
Germany). 

By its design then, the clustering procedure will have conditioned the 
underlying structure of the climate change risk classification through the 
methodological decisions taken, including the adoption of NUTS3 re
gions and the choice of candidate variables to include. Nevertheless, the 
ECRT underlines the extent to which climate change hazards and the 
drivers influencing exposure and vulnerability vary between cities and 
regions, reinforcing the IPCC message that adapting and building resil
ience to climate change risk is not a ‘one-size-fits-all’ exercise (Chair of 
the IPCC, 2017). 

2.5.2. The urban–rural question 
At this point, our analysis turns to the next research question, which 

focuses on determining whether there are differences between ‘urban
ised’ NUTS3 regions and those that are either urban hinterlands or rural 
regions. In part, this focus was a rejoinder to the observation that “re
sponses of human societies [to climate change risk] vary with the types 

of settlements, leading to the need to differentiate between urban and 
rural areas, their specific climatic conditions, associated livelihoods and 
levels of poverty” (Chair of the IPCC, 2017: 24). 

In considering this issue, the following approach was undertaken. 
First, Eurostat’s urban–rural typology6 – which segments NUTS3 regions 
into predominantly urban, intermediate, and predominantly rural regions 
based on land-use and population density measured at 1 km2 resolution 
– was adopted as a proxy of urban, rural and intermediate regions. 
Second, chi-square (Х2) was undertaken to test whether there was a 
significant association between climate change risk based on classes (n 
= 8) and settlement type (n = 3) (Table 4). 

The Х2 reveals that there was a significant association between set
tlement type and climate risk (Х2 = 307.558, p <.001) with Cramer’s V 
indicative of a moderate strength of association (φ=0.472, p <.001). 
The challenge in interpreting this relationship, however, is that the 
associated Х2 statistic is derived based on 24 separate analyses (8x3 
contingency table) for which there is no indication in the Х2 measure as 
to which combinations of settlement types and climate change risk 
classes are statistically significant. To shed light on this, an adjusted 
residual (z-score) was calculated for each analysis and while these can 

Table 3 
Summary of distribution of climate risk for each of the classes by NUTS3 regions.  

Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Median 

% NUTS3  18.0  3.5  16.2  9.6  4.9  14.4  18.4  15.0  14.7  

Fig. 4. NUTS3 regions per country that fall into each of the climate change risk classes (%).  

6 https://ec.europa.eu/eurostat/statistics-explained/index.php? 
title=Territorial_typologies_manual_-_urban-rural_typology. 
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be compared to a critical value of 95 % (z= ±1.96), simply considering 
the adjusted residuals would run the risk of a Type I error.7 Instead, the 
adjusted residuals were used to calculate a right-tailed probability of the 
chi-squared distribution with a Bonferroni correction used where α =

0.05 was adjusted so α = 0.05/24 = 0.00208. 
What is revealed through the Bonferroni corrected probability sta

tistic is that the relationship between intermediate areas and climate risk 
classes were not significant for any of the interactions except for classes 
4 and 7. However, the relationship between predominantly urban 
NUTS3 regions and climate risk classes were statistically significant for 
all interactions. Likewise, the relationship between predominantly rural 
and climate risk classes were statistically significant for all interactions 
except for class 3. 

Several insights are revealed here. The first is the extent of variation 
in climate change risk facing urban areas of Europe that brings into 
sharp focus the challenges created by the current unevenness in the way 
urban adaptation is experienced, resourced, and governed across Europe 
(Aguiar et al., 2018; Landauer et al., 2019; Olazabal and Ruiz De 
Gopegui, 2021). The finding also supports the IPCC focus on accounting 
for urban–rural differences in developing adaptation and mitigation 
strategies, where climate risk profiles intersect with settlement types in 
variably complex ways (Chair of the IPCC, 2017). 

Finally, based on the ECRT, there is a risk that intermediate areas – 
lying between distinctly urban and rural contexts, at least in EU statis
tical terms – fall between climate change risk agendas or priorities. Such 
‘peri-urban’ areas are typically characterised by fluid and complex 
socio-spatial structures and “fragmented and overlapping institutional 
landscapes” that typically mean “…that coherent spatial strategy is 

generally lacking” in such areas (Rauws and de Roo, 2011: 270). 
Notwithstanding the fact that the ECRT is likely to have privileged the 
‘extremes’ of the settlement hierarchy due to the indicators included, 
intermediate areas would benefit from further detailed analysis using 
the sub-class structure to reveal a more granular profile of climate 
change risk facing peri-urban areas than is possible at the class level. 

2.5.3. The spatial clustering of climate change risk 
The final component of our analysis considers the extent to which 

climate change risk classes exhibit patterns of spatial clustering, where 
evidence of transboundary climate risks can inform decisions about the 
development of cross-border adaptation responses (Chair of the IPCC, 
2017: 30). In doing so, we employed a geospatial technique to measure 
the degree to which NUTS3 regions cluster in space as a product of their 
underlying risk class. Here spatial clustering was measured using local 
join count statistics, a special case of ‘local indicators of spatial associa
tion’ (LISA) calculated using the GeoDa software (Anselin, 2020). LISA 
are a suite of statistics used to decompose global spatial autocorrelation 
to measure the degree to which, in this case, a NUTS3 region is similar in 
terms of its climate change risk profile to NUTS3 regions surrounding it 
(see Anselin et al., 2005). As the climate change risk classes are cate
gorical inputs, so univariate local join count statistics were calculated for 
each climate change risk class by splitting the classes into discrete var
iables and then re-coding these as binary indicators (1 = presence of 
climate risk class; 0 = absence of climate risk class). The local join count 
statistic is expressed can be expressed as: 

BBi = xi

∑

j
wijxj.

where wij are a spatial weights matrix that identifies whether i and j are 
adjoining locations (Anselin and Li, 2019: 191). 

Fig. 5. Climate change risk occurring in each country by class (%).  

7 Type I errors occur in rejecting a null hypothesis when it is true. 
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Here a ‘count’ is taken where xj and xi = 1. As a result, the univariate 
local join count statistic is appropriate if the goal is to determine whether 
locations (e.g., NUTS3 units) with an observation (e.g., xj= 1) are sur
rounded by more locations with an observation (e.g. xi= 1) than would 
occur under randomness (Anselin and Li, 2019: 193). 

In our case, for each re-coded climate risk class, this involves iden
tifying NUTS3 regions where climate risk classes (coded as 1) are sur
rounded by more NUTS3 regions where a climate risk class is also 
present (i.e., coded as 1) than would occur under randomness. To 
determine co-occurrence, it is first necessary to define a spatial weights 
matrix to measure the spatial dependence of each NUTS3 region 
compared to neighbouring regions. GeoDa offers two main approaches 
for calculating weight matrices: distance and contiguity methods. Dis
tance weights are calculated between target features to create distance- 
band weights. These reflect the connectivity of, in our case, NUTS3 re
gions based on critical distance thresholds that are understood to 
determine the influence of processes of interest (e.g., climate risk). 
Contiguity or adjacency-based weights reflect a relationship where 
spatial units share a common boundary and proximity structure (see 
below). 

In specifying spatial weights however, there is no perfect solution. 
After extensive testing, using distance weights for polygons (NUTS3 
regions) of significantly varying sizes and determining appropriate 
critical distance thresholds to measure the spatial dependence of climate 

change risk on NUTS3 regions presented notable conceptual as well as 
analytical challenges. Instead, it was decided to adopt contiguity 
weights to measure spatial dependence of climate change risk across 
NUTS3 regions (Fig. 6). While this decision also presents certain limi
tations – notably in areas where NUTS3 regions have few neighbours (e. 
g. Iceland or Cyprus) – contiguity offered a way, in this case, of sys
tematically testing how the clustering of climate risk changes as conti
guity changes. Rook and Queen-based contiguity measures were tested 
(Fig. 6 A and B) and queen-order contiguity was adopted with orders of 
proximity measured at first-, second-, and third-order extents.8 

Univariate local join count statistics were calculated for each climate 
change risk class where the significance of spatial clustering was 
measured at 90 %, 95 % and 99 % confidence intervals. The proportion 
of NUTS3 regions, defined as significantly spatially clustered, was 
calculated for each climate change risk class individually (Fig. 7). 

What is clear is that for all classes, climate change risk exhibits evi
dence of spatial clustering, but the extent of the clustering varies be
tween different classes as contiguity changes. Classes 1, 3, 5 and 7 
exhibit the most consistent patterns of clustering as a proportion of all 
NUTS3 regions in each class respectively. Classes 6 and 8 exhibit the 
lowest degree of clustering, which is pronounced at first-, second and 
third-order contiguity when compared to other classes. 

Fig. 8 summarises how the proportion of spatially clustered NUTS3 
regions changes as contiguity changes. Here the proportion of spatially 
clustered NUTS3 regions increased between the first and second-order 
contiguity for classes 2, 3, 4, 6 and 8 but declined for classes 1, 5 and 
7, indicating a higher propensity for dispersion in these risk classes 
between first and second-order contiguity. This propensity for disper
sion was also evident when taken account of change in clustered NUTS3 
regions between first and third-order contiguity for classes 1 and 5. 
Between second and third-order contiguity, the proportion of additional 
NUTS3 regions included in the clustering around the first-order conti
guity increased for all classes except classes 5 and 8 – which remained 
stable – but the additionality was less pronounced than between first and 
second order contiguity. 

The analysis demonstrates the value in revealing sub-national 
structures of climate change risk where accounting for underlying at
tributes (i.e., characteristics of hazard, exposure and vulnerability) and 
spatial context (i.e., clustering) exposes a complex landscape of risk 
across Europe that was previously unavailable. Within each risk class 
there are notable concentrations of clustering some of which are 
geographically extensive. These are illustrated through the areas of red 
in Fig. 9, which represent areas where the target NUTS3 unit is imme
diately adjacent to other NUTS3 units of the same risk class (Q1). 
Nevertheless, in all risk classes – albeit to varying degrees – the spatial 
clustering of risk is interrupted. This is represented in Fig. 9 by areas of 
underlying grey where the NUTS3 units do not belong to the risk class 
under consideration or where contiguity breaks down beyond first, 
second and third-order effects, the latter represented by areas of blue 
(Q2) and black (Q3) respectively.9 The result is that certain risk classes 
exhibit greater spatial fragmentation (e.g., class 7) than others owing to 
their underlying structural characteristics while other risk classes 
exhibit greater spatial concentration (e.g. class 3). 

This analysis of spatial clustering reinforces the need for trans
boundary adaptation responses to reflect both continuities and discon
tinuities in risk profiles that transcend administrative (e.g., local 
government or national) boundaries in complex, uneven and at times 
fragmented ways (also see Adger et al., 2018; Birkmann et al., 2021; 

Table 4 
Chi-Square - relationship between climate change risk class and settlement type.  

Class Predominantly 
Urban 

Intermediate Predominantly 
Rural 

1 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

12 
68.7 
− 8.9 
0.00000* 

98 
100.7 
− 0.4 
0.69874 

138 
78.6 
9.0 
0.00000* 

2 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

23 
13.3 
3.2 
0.00144* 

21 
19.5 
0.5 
0.65198 

4 
15.2 
− 3.5 
0.00040* 

3 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

43 
62.1 
− 3.1 
0.00188* 

103 
91.0 
1.8 
0.07358 

78 
71.0 
1.1 
0.27099 

4 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

62 
36.6 
5.2 
0.00000* 

42 
53.6 
− 2.2 
0.03056* 

28 
41.8 
− 2.7 
0.00651* 

5 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

9 
18.8 
− 2.7 
0.00626* 

28 
27.6 
0.1 
0.92217 

31 
21.5 
2.5 
0.01152* 

6 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

111 
54.8 
9.6 
0.00000* 

72 
80.4 
− 1.3 
0.18869 

15 
62.7 
− 7.9 
0.00000* 

7 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

31 
70.4 
− 6.1 
0.00000* 

118 
103.1 
2.1 
0.03564* 

105 
80.5 
3.7 
0.00025* 

8 Count 
Expected 
Count 
Adj. Residual 
Probabilitya 

91 
57.3 
5.7 
0.00000* 

78 
84.1 
− 0.9 
0.35213 

38 
65.6 
− 4.5 
0.00001* 

Х2 = 307.558, df14,.p <.000 (0 cells have expected count less than 5) 
φ=0.472, p <.001 (moderate association) 
Probability Value (* p < 0.05 using Bonferroni correction where α = 0.00208)  

8 The order of proximity was measured to six-degrees, but it was found that a 
maximum third-order proximity performed best before change in distribution of 
NUTS3 regions effectively stabilised.  

9 Where contiguity breaks down, the target NUTS3 unit is so isolated that 
there are more than three other NUTS3 units between it and a NUTS3 unit of 
the same risk class. 
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ESPON Climate, 2022) (Fig. 9). 

3. Discussion and conclusion 

This paper reports on a new and novel typology of climate risk 
developed for European cities and regions at NUTS3 level as part of a 
European funded Horizon 2020 RESIN project. The ECRT captures 
climate risk facing European cities and regions and their underlying 
physical infrastructures. The novel contribution of the ECRT lies in its 
integration of hazard, exposure and vulnerability domains into a com
posite, spatially-explicit classification that covers the whole of Europe. It 
does so at a regional scale across Europe in a way that seeks to contribute 

to ‘hot spot’ mapping of climate change risk through a data-driven 
framework (see de Sherbinin, 2014; de Sherbinin et al., 2019). In 
doing so, the ECRT responds to the IPCC’s risk-based framework and its 
contention that scientific effort should be directed to a greater extent 
towards “…improving spatial resolution within regions and reducing 
uncertainties when filling knowledge and data gaps” (Chair of the IPCC, 
2017: 7). 

Against this backdrop, four research questions were posed at the 
outset of the paper. The first and second question focused on identifying 
the structure and characteristics of climate change risk facing Europe’s 
cities and regions (see Dickson et al., 2012). While the design of the 
clustering procedure will have conditioned the underlying structure of 

Fig. 6. Contiguity-based proximity of different orders NB: A = Rook-contiguity (4-point direction); B = Queen-contiguity (8-point direction).  
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the climate change risk classification, our approach identified an upper- 
tier solution of eight classes that were subsequently partitioned to derive 
a lower-tier classification of 31 sub-classes. The analysis in this paper 
focused, for brevity, on the class layer, revealing an uneven distribution 
of climate change risk classes across the 33 countries covered by the 
ECRT and reinforcing the IPCC message that adapting and building 
resilience to climate change risk is not a ‘one-size-fits-all’ exercise (Chair 
of the IPCC, 2017). 

The third question asked whether there was a difference in the 
climate change risk across different settlement types in Europe (see 
Aguiar et al., 2018). At this point, the ECRT class layer was aligned to 
Eurostat’s urban–rural typology, which segments NUTS3 regions into 
predominantly urban, intermediate, and predominantly rural regions 
based on population density and land-use measured at 1 km2 resolution. 
The analysis revealed that the relationship between intermediate areas 
and climate risk classes were not significant for any of the interactions 
except for classes 4 and 7. However, the relationship between predom
inantly urban NUTS3 regions and climate risk classes were statistically 
significant for all interactions. Likewise, the relationship between pre
dominantly rural and climate risk classes were statistically significant 
for all interactions except for class 3. 

The implication of this analysis is important in highlighting the 
extent of variation in climate risk facing urban areas of Europe that 
brings into sharp focus the challenges created by the current unevenness 
in the way urban adaptation is experienced, resourced, and governed 
across Europe (Aguiar et al., 2018). The findings also support the IPCC 
focus on accounting for urban–rural differences in developing adapta
tion and mitigation strategies, where climate risk profiles intersect with 
settlement types in variably complex ways (Chair of the IPCC, 2017). 

The ECRT was highlighted that intermediate, peri-urban areas would 
benefit from further detailed analysis using the sub-class structure to 

reveal a more granular profile of climate change risk than is possible at 
the class level. Peri-urban areas represent dynamic ‘transitional zones’ 
between the city and the hinterland “…where new spatial functions and 
land-use types arise through interaction between urban and rural ele
ments” (Rauws and de Roo, 2011: 269). The findings here are apposite 
for Europe and beyond where in different places intensifying urbanisa
tion is putting increasing pressure on peri-urban areas and threatening 
the multifunctional resources that are crucial in heat and hydrological 
regulation (e.g., vegetation and soils) (Gupta et al., 2017). At the same 
time, de-urbanisation and shrinkage in other contexts offers opportu
nities to expand green infrastructure and eco-system services in ways 
that are potentially transformative for climate change adaptation 
(Carter 2018, Meerow and Newell, 2017). Notwithstanding the fact that 
the ECRT is likely to have privileged urban–rural differentiation owing 
to the indicators that underpinned its development, the analysis high
lights a risk in peri-urban areas falling between strategic climate change 
priorities by virtue of their ‘transitional nature’ (Gupta et al., 2017). 

The fourth question explored the extent to which different types of 
climate change risk cluster spatially across Europe (see Metzger and 
Schröter, 2006). This involved the use of univariate local join count 
statistics (Anselin and Li, 2019) to measure the degree to which a NUTS3 
region is similar in terms of its climate change risk class to NUTS3 re
gions surrounding it. Focusing variably on three orders of contiguity, 
local join count statistics were calculated for each climate change risk 
class where the significance of spatial clustering was measured at 90 %, 
95 % and 99 % confidence intervals. The analysis demonstrated that for 
all classes, climate change risk exhibits evidence of spatial clustering but 
that the extent of clustering varies between different classes as conti
guity changes. This finding has notable implications for transboundary 
responses to climate change risk where discontinuities in political buy- 
in, coopetition, resourcing and awareness of risk could serve to 

Fig. 7. Number of climate risk classes present within European countries NB – Proportions are calculated as a total of NUTS3 regions in each climate risk class.  
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undermine the coherence and adequacy of interventions at a time when 
greater cooperation and alignment is needed (Chair of the IPCC, 2017; 
Adger et al., 2018; Landauer et al., 2019; Birkmann et al., 2021). 

Set against the insights on climate risk offered by the ECRT, there are 
limitations to recognise and avenues to consider for further analytical 
development in the future. First, the use of NUTS3 units was a 
compromise in ensuring European-wide consistency of the unit of 
analysis but the wide variation in the density and size of NUTS3 regions 
needs to be acknowledged. That Germany is comprised of 402 NUT3 
units and Cyprus is a single region creates challenges in granulising the 
analysis and interpreting the trends reflected in the typology. Here we 
contend that the ECRT and its associated indicators are most valuable in 
supporting a strategic adaptation planning, acting to determine factors 
influencing climate risks at regional and national scales that need to be 
investigated in more detail as part of a wider analytical, evidencing or 
case-making agenda (see Füssel, 2007; anonymised for review). 

Second, it is important to acknowledge the trade-offs underlying the 
development of the ECRT. Data coverage and quality is inconsistent 
across European countries, creating notable challenges in monitoring 
climate change risk (Connelly et al., 2015). This included having to 
adopt strategies for estimating missing data (e.g., interpolation), rec
ognising the limitations in adopting datasets that were temporally 
inconsistent, and combining snapshot and projection indicators. It was 
also not possible to gather or develop indicators that covered all aspects 
of climate risk due to issues of data quality, access, and universal 
availability. Therefore, issues that are potentially important in deter
mining climate risk, such as exposure of people and infrastructure to 
heat stress, are not covered in the ECRT indicator set. Likewise, in
dicators covering themes including governance approaches, social 
infrastructure and cultural assets and attitudes to climate change risk are 

largely absent. Similarly, we recognise that built environment assets will 
respond variably when exposed to climate hazards depending on key 
characteristics such as age and material use (Carter et al., 2015). 

Our approach to data handling and processing ensured the approach 
taken was robust and consistent with data handling conventions adopted 
elsewhere (e.g. ESPON Climate, 2022) but nevertheless, it is important 
to recognise that these factors will have important implications for un
derstanding climate change risk and related responses (Young and Essex, 
2020) that mean that interpretations of the risk categories and profiles 
and their applications to climate change risk analysis needs to do un
dertaken sensitively in full recognition of the coverage of the indicators 
used (see de Sherbinin, 2014; ESPON Climate, 2022). 

Third, typology development is both a science and an art (Gale et al., 
2016). While decisions in developing the ECRT were taken to maximise 
the robustness of the outcome, the typology is essentially a product of 
the methodological choices made during its development (see Krivor
uchko et al., 2011; Logan et al., 2014). This includes recognising limi
tations associated with using proxy measures for variables that are not 
directly measured or are difficult to capture, the use of data with 
inconsistent timeframes, missing data estimation, and variation in 
spatial resolution of indicators used in the ECRT (de Sherbinin, 2014). 
Herein lies a risk where users simply assume that a statistically derived 
typology is somehow ‘objective’ when in fact there is always subjectivity 
involved in typology development (Gale et al., 2016). 

In future, there are possibilities to extend the analysis of the classi
fication undertaken in this paper by incorporating the sub-class differ
entiation that would provide further granularity to the spatial 
interpretations of climate change risk documented here. This includes 
extending the climate risk and settlement type analysis that was un
dertaken alongside considering whether different sub-classes also 

Fig. 8. Number of climate risk classes at NUTS3 Level.  
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Fig. 9. Distribution of clustering for risk classes (Queen-order contiguity 1–3).  
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exhibit tendencies towards clustering in the way that was revealed in 
relation to the class structure. Further work is also needed to explore 
how the ECRT could be used practically in planning for climate change 
risk: as a decision-support tool; in helping communicating and raising 
awareness of the nature of climate change risk facing different places; 
and in evidencing climate risk through ‘hot spot’ mapping (de Sherbinin, 
2014; Carter et al., 2015; de Sherbinin et al., 2019). This would offer 
opportunities to explore the ‘political’ dimensions of data use and 
analysis in shaping decision-making around climate change risk. 

In summary, the paper reports on the development and application 
of new typology of climate change risk for European cities and regions. 
In doing so, it offers a direct response to the IPCC and ESPON Climate 
calls to advance awareness of climate change risks at sub-national levels 
as part of international efforts to evidence, adapt and respond to climate 
change risk. The insights revealed by the analysis of the ECRT output 
have the potential to inform the development of adaptation policy and 
practice in Europe, particularly at strategic scales, and can support 
progress towards a climate resilient Europe as envisioned by the Euro
pean Commission in their EU strategy on adaptation to climate change 
(European Commission 2021). 
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on Climate Change [H.-O. Pörtner, et al (eds)]. Cambridge University Press, 
Cambridge, UK and New York, NY, USA, pp. 3-33. 

Iturbide, M., Fernández, J., Gutiérrez, J.M., Bedia, J., Cimadevilla, E., Díez-Sierra, J., 
Manzanas, R., Casanueva, A., Baño-Medina, J., Milovac, J., Herrera, S., Cofiño, A.S., 
San Martín, D., García-Díez, M., Hauser, M., Huard, D., Yelekci, Ö., 2021. Repository 
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