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A B S T R A C T

Social media users are playing an increasingly important role in disseminating information, but their ability
to diffuse information may vary significantly. Therefore, evaluating the influential ability of users has become
crucial to promote or curb the dissemination of specific information. Existing centrality measures have
produced varying results in identifying the most influential users, but it remains a challenge to identify the most
influential users in a multifaceted and consistent way in social networks, especially when only a limited number
of users can be nominated. To fill this gap, this work developed an evidential reasoning-based influential users
evaluation (ERIUE) model that considers multiple sources of structural information in networks. Our proposed
model collates information about users’ influential ability from multiple forms of centrality measures and maps
their scores to different grades in an informative belief distribution. To determine the weight of each centrality,
three types of information are considered: conflict of belief distributions, similarity of probability sets, and
overlap of evaluations. The information is aggregated using the recursive evidential reasoning approach based
on a formulated criterion hierarchy, thereby determining the influential ability of users. The applicability of our
proposed model is demonstrated by comparing it with existing measures in three real-world social networks.
Our proposed model is also applicable to relevant problems beyond identifying influential users, including
preventing epidemic spread, cascade failure, and misinformation dissemination in social networks.

1. Introduction

Social media has transformed the way people communicate and
share information, enabling them to connect with friends and even
strangers regardless of time and space. With a large number of internet
users participating in social media, massive amounts of information
are generated and disseminated. To understand the role of individ-
uals and information dissemination in social media, social networks,
in which users and their connections are represented by nodes and
edges respectively, have been used to describe the interaction between
users [1,2]. Some important micro and macro properties have been
explored to increase the understanding of the networks, for example,
predicting potential connections between users to help them meet
new people [3,4], constructing recommender systems to recommend
suitable products and links to users [5,6], studying the way to reach
consensus in complex interactions to guide large-scale group decision-
making [7,8], exploring properties of the community to analyse user
portraits [9,10], and assessing the risk of transportation or financial
networks to mitigate losses [11,12]. In these studies, evaluating the
influential ability of users in social networks has gradually become
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important [13–15] due to their impact on the dissemination of infor-
mation. In social networks, users’ influential abilities differ due to their
varying connectivity. For instance, users with more friends are known
to be influential, represented by degree centrality in the network, while
users on the bridging edge (betweenness centrality [16]) are influential
due to their mediating effect on different types of users. Highly influ-
ential users can disseminate information more widely and rapidly [17].
Therefore, identifying such users in advance can help platform opera-
tors promote or curb the spread of specific information, for example,
misinformation about vaccines during COVID-19 pandemic [18].

There has been immense interest in the identification of influential
users (also known as influence maximization [19,20]) on social media.
To address this issue, various centrality measures have been proposed.
Classic centrality measures include betweenness centrality, closeness
centrality, eigenvector centrality, and H-index methods, which pri-
marily consider factors such as the number of neighbour nodes and
the shortest path between nodes [13,21]. However, these existing
centralities suffer from certain limitations, including inadequate con-
sideration of information, limited applicability in specific scenarios, or
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high time complexity. For instance, degree centrality only takes into
account the local structural information surrounding each node, which
is insufficient to capture the overall information propagation ability
within the network. Eigenvector centrality and closeness centrality,
on the other hand, are only suitable for symmetric networks and
connected networks, respectively. Meanwhile, betweenness centrality
requires considering all paths between every pair of nodes, resulting in
high computational complexity, especially in large-scale networks. In
recent years, researchers from various fields have explored this issue
and proposed alternative approaches. For example, Google introduced
the PageRank algorithm, which utilizes random walks to rank search
engine results [22]. The Hyperlink-induced topic search (HITs) algo-
rithm was also developed to assess the authority and hub status of
websites in the World Wide Web [23]. Physicists have applied classical
physical theories to tackle this problem as well. For example, the 𝑘-
shell decomposition analysis revealed that the most influential users
tend to be located at the core of social networks, rather than the
periphery [15]. Dimensionality has also been considered to explore the
impact of fractal property on node influential ability [24,25]. However,
most centrality measures focus on only one aspect of the network’s
topology, leading to a biased evaluation of nodes’ influential ability
due to the limited information considered. Therefore, it is crucial to
incorporate multiple sources of structural characteristics to accurately
identify influential users in social networks.

Multiple criteria decision-making (MCDM) models are valuable
tools for integrating various sources of structural information in net-
work analysis. This complex process involves considering multiple
criteria and relies on the cognitive insights and knowledge of dif-
ferent stakeholders, such as individuals, institutions, or countries, to
identify and select alternatives. Initially, decision-making approaches
were based on economic models [26]. However, with technological
advancements, several MCDM models have been proposed to guide
decision-making processes, including fuzzy set theory, Analytic Hi-
erarchy Process (AHP), and Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS). Recently, novel MCDM models
have emerged to address different application scenarios. For example,
there are models that account for uncertain pairwise comparisons be-
tween alternatives [27], facilitate the selection of preferred alternatives
in choice problems [28], and enable data-driven decision-making by
considering interrelationships between criteria [29]. These models have
been applied to address issues in different fields, for example, they have
been used to assess the contribution of policies to the set of objectives
of the European Union marine litter strategy [30], assist patients in
making medical choices on online medical platforms [31], understand
consumer preferences to promote the adoption of alternative fuel
vehicles [32], and evaluate the implementation of circular economy
practices in hotels to suggest improvements for achieving higher cir-
cularity levels [33]. One notable MCDM approach is Dempster–Shafer
evidence theory [34], which provides a framework for reasoning with
uncertainty using belief functions rather than probability distributions.
In this framework, probabilities are assigned to subsets representing
all possible combinations of propositions in the powerset of the frame
of discernment. The evidential reasoning (ER) algorithm [35] was
proposed to rank alternatives by considering both quantitative and
qualitative attributes with uncertainty. To handle highly or completely
conflicting pieces of evidence, the ER algorithm introduced the weight
and reliability [36], which enhance Dempster’s rule and facilitate its
application. Based on a new likelihood analysis, the evidence can be
also obtained from imperfect data [37], enabling likelihood inference
within the ER framework. This likelihood inference process can degen-
erate into Bayesian inference under some given conditions. Linguistic
belief structures have also been integrated into the ER framework [38],
where the weight of experts is determined by their hesitancy. These
advanced ER-based models have been applied to railway track main-
tenance management [37] and lung cancer diagnosis [38]. Given
the complex nature of network structures, belief functions have been

modelled using network graphs [39]. This approach addresses typical
challenges such as conflicting evidence and evidence clustering. The
ER framework, with its ability to consider uncertainty and aggregate
information from different agents, has been applied to explore vacci-
nation decision-making under social influence in social networks [40].
Evidence theory has also been utilized to identify key players in social
networks [41]. As a result, a close relationship has been established
between evidence-based methods and social network analysis.

In this paper, we present the Evidential Reasoning-based Influen-
tial Users Evaluation (ERIUE) model, a comprehensive approach for
identifying influential nodes in social networks by considering multi-
ple sources of structural information. The model utilizes a two-level
criterion hierarchy and collects structural information around nodes
from three types of criterion: neighbourhood-based centrality, path-
based centrality, and iterative refinement centrality. Each type includes
three classic centralities as sub-criteria, and the scores obtained by
each centrality are normalized and mapped to a belief distribution that
indicates a node’s influential ability. The weight of each criterion is
determined using three aspects of information, including the conflict in
belief distributions describing influential ability, the similarity of scores
expressed as probability sets, and the degree of overlap of scores. The
overall belief distribution can be aggregated by the recursive ER ap-
proach within the formulated two-level criterion hierarchy, providing
a measure of the influential ability of nodes. This approach allows for
the combination of structural properties at different scales with varying
weights, enabling a comprehensive evaluation of node importance. The
applicability of our proposed model is demonstrated in three real-
world social networks by comparing it with existing measures. The
correlation between the results obtained by each centrality and the
benchmark method (Susceptible–Infected–Recovered model) is mea-
sured by Kendall’s Tau correlation coefficient and the Jaccard similarity
coefficient, thereby demonstrating the effectiveness of our proposed
model. Our experiments show that the ERIUE model considers sufficient
structural information, resulting in a ranking list that exhibits a higher
correlation with the benchmark method under different parameter
settings in the three networks. The main contributions of this work are
summarized as follows,

1. A novel evaluation model is developed to identify influential
nodes in social networks by leveraging multiple criteria decision-
making, and several existing centrality measures that consider
different types of structural information are aggregated with
weight parameters.

2. The performance of each criterion is comprehensively evaluated
from three perspectives, taking into account the conflict in belief
distributions describing influential ability, the similarity of score
lists, and the degree of overlap of scores. This comprehen-
sive evaluation ensures a rational and reliable decision-making
process.

3. Three real-world social networks are applied to demonstrate
the performance and applicability of our proposed model. The
experiment results indicate that our proposed method can out-
perform classical centrality measures in most parameter settings
and yield a ranking list that closely matches the list obtained by
the benchmark method.

The remainder of this paper is organized as follows. Some existing
influential ability identification models in social networks are intro-
duced in Section 2. Section 3 develops the proposed influential ability
identification model in four parts. The numerical simulations in three
real-world networks are given in Section 4. Finally, the conclusions are
discussed in Section 5.

2. Influential ability identification methods in social networks

In the social network, the ability of individuals to diffuse informa-
tion or spread a disease is influenced by the topological structure of the
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network, particularly the local structure around the node. Therefore,
various influential ability identification models are introduced in this
section, including classical centrality measures as well as methods from
different disciplines. In addition, we introduce different information
diffusion models that can be used as benchmark methods and explain
why they cannot often be used in large-scale networks as a method for
identifying vital nodes.

2.1. Classical centrality measures

The influential ability of users is strongly influenced by their po-
sitions within the social network and their connection with friends
their connections with other individuals, including their friends and
their friends’ connections with others. Therefore, the structural char-
acteristics of the social network play a crucial role in determining
the influential ability of users. To capture these structural properties,
centrality measures have proven to be effective tools, and as a result,
several centrality measures have been utilized to identify and rank the
influential ability of users in social networks [13].

The first type of centrality measures mainly considers the informa-
tion from the neighbourhood. For a given social network ( , ), the
set of nodes and edges are represented by  = {1, 2,… , 𝑖,… , | |} and
 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈  }, respectively, where the number of nodes and
edges are | | and ||, respectively. The network topological structure
is indicated by the adjacency matrix 𝐀, whose element 𝑎𝑖𝑗 is defined
as,

𝑎𝑖𝑗 =
{

1, (𝑖, 𝑗) ∈ 
0, (𝑖, 𝑗) ∉  . (1)

Usually, the network is an undirected network (𝑎𝑖𝑗 = 𝑎𝑗𝑖), but it
becomes directed if 𝑎𝑖𝑗 ≠ 𝑎𝑗𝑖 (asymmetric 𝐀). In an undirected network,
the neighbourhood set of node 𝑖 is represented by 𝑖 = {𝑗 ∶ (𝑖, 𝑗) ∈
}. The simplest centrality that considers the information from the
neighbourhood is the degree centrality (DC),

𝑘𝑖 = |𝑖| =
∑

𝑗∈𝑖

𝑎𝑖𝑗 , (2)

which describes the number of nodes in the neighbourhood set. The
more neighbours node 𝑖 has, the more influential it is. It is also applied
to find an influential cohesive cluster of nodes rather than a single
node [42]. Gradually, researchers found that only considering the
number of neighbours is not sufficient to reflect the local structure
and evaluate the influence of nodes. Hence, two types of information
are further considered. The first type is to consider higher-order neigh-
bours’ information, and the LocalRank [43] was developed to consider
the information up to fourth-order neighbours,

𝐶𝐿𝑅(𝑖) =
∑

𝑗∈𝑖

∑

𝑘∈𝑗

𝑅(𝑘), (3)

where 𝑅(𝑘) is the number of the first- and second-order nearest neigh-
bours of node 𝑘. Another type is to consider the location of nodes
because it has been found that a node located in the core part of the
network is more influential than that located in the periphery [15].
Hence, the coreness [15] was developed to evaluate the spreading
influence of nodes by the k-shell decomposition. Isolated nodes are
removed before the decomposition, leading their coreness to be 𝑐𝑖 = 0.
In the k-shell (KS) decomposition, nodes whose residual degrees 𝑘𝑖 ≤ 1
are continuously removed until all remaining nodes’ residual degrees
𝑘𝑖 > 1. The removed nodes are in the 1-shell and their coreness is
𝑐𝑖 = 1. This process continues until all nodes are removed from the
network, and all nodes are assigned with different 𝑐𝑖 according to
their shell layer. Due to its high computational complexity and the
requirement of global topological structure, the coreness is difficult to
be obtained in large-scale dynamic networks. The H-index (HI) [44] has
been developed, which considers the number and degree of neighbours.
It is expressed as the largest value of ℎ𝑖 such that node 𝑖 has at least

ℎ𝑖 neighbours with a degree of at least ℎ𝑖, which is the same as the
H-index describing the scientific research output of scholars [45].

Another type of centrality considers the information from the paths,
where the shortest distance between nodes is the basis. The shortest
path 𝑑𝑖𝑗 between nodes (in the shortest distance matrix 𝐃) can be
obtained by Floyd or Dijkstra’s algorithms to describe the pairwise
relationship,

𝑑𝑖𝑗 = 𝑎𝑖𝑙1 + 𝑎𝑙1𝑙2 +⋯ + 𝑎𝑙𝑛−1𝑙𝑛 + 𝑎𝑙𝑛𝑗 , (4)

where 𝑙1, 𝑙2,… , 𝑙𝑛 are IDs of nodes on the shortest path between nodes
𝑖 and 𝑗. The simplest centrality based on the shortest distance is the
eccentricity centrality [46]. It represents the maximum value of the
distance of the shortest path from the central node to the others,

𝐶𝐸𝐶𝐶 (𝑖) = max
𝑗≠𝑖

𝑑𝑖𝑗 . (5)

By summarizing the shortest distance from the central node to the rest
of nodes, the closeness centrality (CC) [47] was developed,

𝐶𝐶 (𝑖) =
| | − 1
∑

𝑗≠𝑖 𝑑𝑖𝑗
. (6)

This centrality reflects the efficiency of information exchange between
the central node and the others, which has been used to describe the
average efficiency of nodes [48]. The power of a node in controlling the
information flow in networks can be also indicated by the betweenness
centrality (BC) [16],

𝐶𝐵(𝑖) =
∑

𝑖≠𝑗,𝑖≠𝑘,𝑗≠𝑘

𝑔𝑖𝑗𝑘
𝑔𝑗𝑘

, (7)

where 𝑔𝑗𝑘 is the number of the shortest paths between node 𝑗 and 𝑘,
and 𝑔𝑖𝑗𝑘 is the number of shortest paths between node 𝑗 and 𝑘 that pass
through node 𝑖. Several variants of BC have been developed to consider
the difference between paths, such as communicability BC [49] and
random-walk BC [50]. By considering the shortest distance and degree
of nodes, a gravity-based centrality (GC) [51] was developed inspired
by the gravity law,

𝐶𝐺(𝑖) =
∑

𝑖≠𝑗

𝑘𝑖𝑘𝑗
𝑑𝑖𝑗

, (8)

which also needs the global structural information of the network.
There are still numerous centrality measures to evaluate the influential
ability of nodes based on the information from paths, such as the infor-
mation index, Katz index, and subgraph centrality. Interested readers
can refer to [13] for details.

Due to the mutual enhancement effect [52] where the influential
ability of a node depends on the number and influence of neighbours,
another centrality measure (iterative refinement centrality) determines
the influential ability by iteratively calculating the influential ability of
each node and its neighbours in the entire network. The eigenvector
centrality (EC) [53] that considers both the quantity and quality of
neighbours is obtained by,

𝐶𝐸 (𝑖) = 𝑐
∑

𝑗∈
𝑎𝑖𝑗𝐶𝐸 (𝑗), (9)

where 𝑐 is a proportionality constant related to the largest eigenvalue of
𝐀, and the initial value of 𝐶𝐸 for all nodes equals to 1. There are several
variants to further distinguish the nodes under common conditions,
such as nonbacktracking centrality [54] and alpha centrality [55]. The
most famous variant is the PageRank (PR) algorithm [22] which was
developed by Google to rank websites in the search engine. The PR
value is iteratively obtained by,

𝑃𝑅(𝑡)(𝑖) = 𝑠
∑

𝑗∈
𝑎𝑗𝑖

𝑃𝑅(𝑡−1)(𝑗)
𝑘𝑜𝑢𝑡𝑗

+ (1 − 𝑠) 1
𝑛
. (10)

where 𝑘𝑜𝑢𝑡𝑗 is the out-degree of node 𝑗, and 𝑠 is the random jumping
factor used to avoid the system from not converging (due to the
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existence of the dangling node). Another iterative refinement centrality
is called HITs algorithm [23]. In this centrality, node 𝑖 has the role of
authority 𝑎𝑖(𝑡) and hub ℎ𝑖(𝑡) where authoritative nodes are reliable and
hub nodes usually connect to many related authorities. The values can
be obtained by,

𝑎′𝑖(𝑡) =
∑

𝑗∈
𝑎𝑗𝑖ℎ𝑗 (𝑡 − 1),

ℎ′𝑖(𝑡) =
∑

𝑗∈
𝑎𝑖𝑗𝑎

′
𝑗 (𝑡),

(11)

after normalization. Most of the centrality measures mentioned take
into account a (limited) structural information and thus are not effec-
tive in identifying influential nodes.

2.2. Recent influential ability identification models

Since the network is a complicated structure, researchers in different
fields developed several models to identify key nodes in networks.
They found that the optimal (minimal) set of structural nodes, much
smaller than the network size, can efficiently spread information or
prevent the diffusion of epidemics throughout the whole network. As
a result, heuristic strategies and evolution optimization methods have
been applied to find the optimal set of nodes, incorporating different
objective functions, mutation schemes, and optimization algorithms,
such as the moth-flame optimization method [56] and the percolation-
based framework [57]. However, these approaches often lack a global
function of influence and are tailored to specific problems, which limits
their performance and applicability in general scenarios [58,59].

With the advent of artificial intelligence models, several machine
learning models have also been applied to find the key players in large-
scale networks. A typical model is the deep reinforcement learning
framework FINDER [58], which has shown promising performance in
various application scenarios despite being trained on small networks
generated by toy models. This opens up new avenues for leveraging ar-
tificial intelligence to gain insights into the principles of network struc-
ture. However, the mechanisms underlying deep learning frameworks
are complex and require further exploration, as their interpretability is
a challenge.

From the perspective of physics, a general dismantling framework
has been proposed to dismantle the network into more isolated com-
ponents by removing a minimal number of nodes [60]. This process
is akin to identifying and removing a set of important nodes one by
one. This framework combines the spectral analysis of the Laplace
matrix and fine-tuning mechanism to find an optimal set of nodes
that is topology-independent. Optimal percolation theory has also been
applied to identify this optimal set by minimizing the energy of the
system [59]. They discovered that the set of optimal influencers, which
includes weakly connected nodes often overlooked by previous meth-
ods, is much smaller than traditionally identified. Fractal dimension,
used to reveal the fractal property of networks, has been applied to
identify the key nodes based on their local fractal property at the micro-
scale [25]. Its variations have been reviewed [24], shedding light on its
applications in influential node identification.

However, these methods typically consider limited topological in-
formation, prompting the application of multiple criteria decision-
making (MCDM) models to incorporate multiple sources of information
in the network. For example, the AHP has been applied to com-
bine information from DC, BC, and CC [61], thereby determining
the global score of each node and influential ability. Similarly, evi-
dence theory centrality has been developed to combine information
from DC, BC, and CC based on the Dempster–Shafer theory [41],
where the weight of each information source is determined by Shan-
non entropy. Nonetheless, MCDM-based models still face challenges in
determining the weights of information sources and constructing multi-
level criterion hierarchies to more accurately consider multi-source
information.

2.3. Information diffusion models

The influential ability of users is closely related to their ability
to propagate information effectively. Hence, the information diffusion
model has been widely applied as the benchmark method to evaluate
the influential ability of users [21,57,62]. A large number of dynamical
models have been proposed to describe the information diffusion pro-
cess in static networks [63]. The classical one is the threshold model,
which was initially developed to characterize collective behaviour and
binary decision phenomena and then applied to explore information
cascade [64]. Each agent in the network has a threshold and can be one
of two states: active or inactive. Initially, only a small number of agents,
called seeds, are activated. During the diffusion process, an inactive
agent can become active if the fraction of its active neighbours is equal
to or larger than its threshold. However, the transition can only occur
from the inactive state to the active state, not vice versa. The threshold
values [65] and the size of initiators [66] have been extensively studied
to understand their impact on the dynamics of information diffusion.

Another one is the independent cascade model that is inspired by
interacting particle systems [67,68]. Similar to the threshold model,
agents in this model can be in either an active or inactive state. The
model assumes that (1) the probability of a node being activated by
its active neighbours is independent of the influence of other active
nodes, and (2) any active node has only one chance to activate any of its
inactive neighbours, regardless of success. The diffusion process follows
a similar pattern to the threshold model, but with probabilities assigned
to each connection. Generalized cascade models have been proposed to
provide more realistic descriptions of the diffusion process [69].

In addition to these models, epidemic models are also commonly
used to simulate information propagation in social networks because
the information propagation is similar to the epidemic spreading [70].
The original model includes susceptible and infected states, similar
to the previous models. Improved versions, such as the Susceptible–
Infected–Recovered (SIR) model and Susceptible–Infected–Susceptible
model [71], have been developed to capture the contagion process in
different scenarios.

However, these dynamical models require a large number of in-
dependent repetitions to identify the influential ability of nodes due
to the stochastic nature of infection/activation during the informa-
tion propagation process [63]. Therefore, the dynamical models are
not suitable for wide-ranging scenarios, especially for large-scale net-
works. Nevertheless, they are commonly used as benchmark methods
in various disciplines to evaluate the performance of influential ability
identification models, particularly the epidemic model. For example,
the Susceptible–Infected model, a simple version of the SIR model,
was applied to evaluate the performance of the local fuzzy informa-
tion centrality [62], the random walk-based gravity model [21], and
the evidence theory centrality [41]. The SIR model, under different
infection rates, has also been employed as the benchmark method to
evaluate the performance of several methods in the review paper [13]
and advanced models, like the percolation-based evolution optimiza-
tion framework [57] and gravity-based centrality in hypergraphs [72].
Therefore, the SIR model serves as a benchmark method in this work
to compare the performance of different methods based on the studies
mentioned.

3. Methodology

In the social network, the influential ability of individuals varies
according to the topological structure of the network. Different cen-
trality measures have been developed to consider different structural
information, resulting in different evaluations and rankings of the
influential ability of nodes. However, how can the most influential
ones be identified reasonably, if only a limited number of nodes can
be nominated? To address this issue, an evidential reasoning-based
influential user evaluation (ERIUE) model is developed in this work
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to consider multiple sources of structural information. By considering
the information from neighbours and paths, coupled with the weights
obtained by the feature of each centrality, our developed ERIUE model
could identify and rank the influential users in a multifaceted and
consistent way.

The influential ability of nodes can be determined by the steps
below.

(1) Criterion hierarchy formulation: A two-level criterion hierarchy
is constructed to consider the multiple sources of structural in-
formation from the neighbourhood-based centrality, path-based
centrality, and iterative refinement centrality.

(2) Score and belief distribution evaluation: The score 𝛼𝑖(𝑎𝑙) of each
node is obtained by different centrality measures considering
different structural information, and mapped into a belief dis-
tribution 𝑆(𝛼𝑖(𝑎𝑙)) to describe its influential ability after normal-
ization.

(3) Weight determination: The weight of each centrality changes ac-
cording to their own evaluation of the node’s influential ability,
and it can be obtained by the conflict of belief distribution, the
similarity of probability set, and the overlap of evaluations.

(4) Influential ability identification: With the determined criterion
hierarchy, the influential ability of nodes can then be obtained
by our developed model based on the belief distribution of nodes
and weight of centrality measures.

The rest of this section is divided into four parts to introduce the ERIUE
model in detail.

3.1. Part 1: Criterion hierarchy formulation

In order to consider a variety of structural information to deter-
mine the influential nodes in the network ( , ), it is necessary to
determine the source of information and the criterion hierarchy to
facilitate the fusion of multi-source information. In this work, a two-
level criterion hierarchy is constructed in Fig. 1. In the first level,
there are three types of centrality measures (criteria), and they are
neighbourhood-based centrality 𝐶1, path-based centrality 𝐶2, and it-
erative refinement centrality 𝐶3. Each type of measure contains three
typical methods (sub-criteria) in the second level. Specifically, they are
(1) degree 𝐶1,1, H-index 𝐶1,2, and k-shell 𝐶1,3, (2) betweenness 𝐶2,1,
closeness 𝐶2,2, and gravity centrality 𝐶2,3, and (3) eigenvector 𝐶3,1,
PageRank 𝐶3,2, and HITs 𝐶3,3, which have been introduced in Sec-
tion 2. The influence ability is mainly evaluated through the network
structure in this work, without considering the individual’s economic
or social attributes, which can be further applied to different net-
works. The criterion and sub-criterion are both represented as 𝐶𝑖 to
simplify the process to consider multiple sources of information below,
but the criterion hierarchy will not be changed. In this model, 𝐴 =
{𝑎1, 𝑎2,… , 𝑎𝑙 ,… , 𝑎𝑆} donates the alternative vector, which is the set of
nodes  , 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑖,… , 𝑒𝐿} is the basic attribute vector that
contains all centrality measures, and 𝐻 = {𝐻1,𝐻2,… ,𝐻𝑛,… ,𝐻𝑁} is
the set of evaluation grades.

3.2. Part 2: Score and belief distribution evaluation

For each centrality 𝑖 ∈ [1, 9] (as there are nine methods), the score of
node 𝑙 ∈  can be represented by 𝛼𝑖(𝑎𝑙), and the way of obtaining it has
been introduced in Section 2.1. However, these values fall in different
ranges due to differences in method design. Therefore, it needs to be
normalized before further processing. The normalized value �̂�𝑖(𝑎𝑙) can
be obtained by,

�̂�𝑖(𝑎𝑙) =
𝛼𝑖(𝑎𝑙) − min𝑎𝑙 𝛼𝑖(𝑎𝑙)

max𝑎𝑙 𝛼𝑖(𝑎𝑙) − min𝑎𝑙 𝛼𝑖(𝑎𝑙)
, (12)

to avoid the effect of the different ranges of scores. In this case, the
influential ability of node 𝑙 evaluated by centrality 𝑖 is quantitatively

Fig. 1. The two-level criterion hierarchy for identifying influential nodes.

Fig. 2. Triangular fuzzy membership function that maps the normalized score to the
degree of belief in the belief distribution.

Table 1
Relationship between evaluation grade 𝐻𝑛 and corresponding normalized score �̂�.

Evaluation grade Linguistic term Normalized score �̂�

𝐻1 Very uninfluential [0, 0.25]
𝐻2 Uninfluential [0, 0.5]
𝐻3 Fair [0.25, 0.75]
𝐻4 Influential [0.5, 1]
𝐻5 Very influential [0.75, 1]

described by the normalized score �̂�𝑖(𝑎𝑙). For the same score, it is
sometimes rated as influential and sometimes as very influential, thus,
the score could be converted into the degree of belief of belonging to a
certain linguistic item describing its influential ability. In this work, the
degree of belief 𝛽𝑛,𝑖(𝑎𝑙) is obtained by the triangular fuzzy membership
function, where the map function is shown in Fig. 2. The relationship
between evaluation grade and the corresponding normalized score is
shown in Table 1. With the degree of belief, the belief distribution is
shown as,

𝑆
(

𝑒𝑖
(

𝑎𝑙
))

= {
(

𝐻𝑛, 𝛽𝑛,𝑖
(

𝑎𝑙
))

, 𝑛 = 1, 2,… , 𝑁 ;
(

𝐻𝐻 , 𝛽𝐻,𝑖
(

𝑎𝑙
))

},
(13)

where 𝑁 = 5 in this work, 𝐻𝑛 is the 𝑛th evaluation grade and
𝛽𝑛,𝑖(𝑎𝑙) indicates the degree of belief that node 𝑙 is evaluated as 𝐻𝑛
by centrality 𝑖. 𝐻𝑛+1 is usually assumed to be preferred to 𝐻𝑛 [73].
Notably, 0 ≤ 𝛽𝑛,𝑖(𝑎𝑙) ≤ 1 and ∑𝑁

𝑛=1 𝛽𝑛,𝑖(𝑎𝑙) ≤ 1. The assessment 𝑆
(

𝑒𝑖
(

𝑎𝑙
))

is uncompleted when ∑𝑁
𝑛=1 𝛽𝑛,𝑖(𝑎𝑙) < 1, and completed when it equals

to 1. This work assumes that the initial judgement is completed, that is,
∑𝑁

𝑛=1 𝛽𝑛,𝑖(𝑎𝑙) = 1, leading to the remaining mass unassigned to any grade
𝛽𝐻,𝑖(𝑎𝑙) ≡ 0 for any centrality 𝑖. The subjectiveness of each centrality
can be described by the framework of belief distributions, enabling all
information to be reasonably considered.
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3.3. Part 3: Weight determination

A single information source may have biased influential ability
evaluation results, thus, multiple sources of information need to be
considered in this work to fill this important gap. For the multi-criteria
decision-making process, the most important step is to assign the
weight of each information source (centrality measure here) to evaluate
its rationality because each centrality may give different scores and
rankings to nodes. Usually, the more reliable the information source is,
the higher its weight value. Three types of information related to the
score and belief distribution obtained by each centrality are applied to
determine its weight.

Since the structure of nodes in the network is usually different,
regardless of the local or the global structure, a centrality should give
fewer nodes the same score, thereby distinguishing their influential
ability. Therefore, the overlap of scores should be considered to de-
termine the weight of the centrality. The score of node 𝑙 evaluated by
centrality 𝑖 is represented by �̂�𝑖(𝑎𝑙), and the scores of all nodes can be
represented by a probability set 𝑃𝑖, which is obtained by

𝑃𝑖 = {𝑝𝑖(𝑎1),… , 𝑝𝑖(𝑎𝑙),… , 𝑝𝑖(𝑎𝑆 )}

= {�̂�𝑖(𝑎1)∕
∑

𝑙
�̂�𝑖(𝑎𝑙),… , �̂�𝑖(𝑎𝑆 )∕

∑

𝑙
�̂�𝑖(𝑎1)}.

(14)

The overlap of scores in centrality 𝑖 can be then determined based on
the Shannon entropy,

𝐸𝑖 = −
𝑆
∑

𝑙=1
𝑝𝑖
(

𝑎𝑙
)

log2 𝑝𝑖
(

𝑎𝑙
)

, (15)

and the overlap-based weight 𝑤𝑖
𝑒 of centrality 𝑖 can be obtained by,

𝑤𝑖
𝑒 =

𝐸𝑖
∑

𝑖 𝐸𝑖
, (16)

which satisfies 0 ≤ 𝑤𝑖
𝑒 ≤ 1 and ∑

𝑖 𝑤
𝑖
𝑒 = 1.

In addition to considering the score obtained by the centrality itself,
it is also necessary to consider the scores obtained by all centralities to
determine whether the evaluation result of this centrality is reasonable.
This is very common in group decision-making. For example, when
an expert gives a different (or diametrically opposite) opinion from
all other experts, its weight in the decision-making process will be
relatively lower than others. Similarly, if a node evaluated as low (or
high) influential by other centralities is identified as a high (or low)
influential one by this centrality, its weight will be lower than other
centralities. The Jensen–Shannon divergence (relative entropy) is a
commonly used method for evaluating the difference between a pair
of probability sets in information theory, thus, the difference between
the results obtained by centrality 𝑖 and 𝑗 can be obtained by,

𝛾𝑖𝑗 =
1
2

(

∑

𝑙
𝑝𝑖
(

𝑎𝑙
)

log2
𝑝𝑖
(

𝑎𝑙
)

𝑝𝑐
(

𝑎𝑙
) +

∑

𝑙
𝑝𝑗

(

𝑎𝑙
)

log2
𝑝𝑗

(

𝑎𝑙
)

𝑝𝑐
(

𝑎𝑙
)

)

, (17)

where 𝑝𝑐 (𝑎𝑙) is the element in the probability set 𝑃𝑐 =
(

𝑃𝑖 + 𝑃𝑗
)

∕2.
The length of all probability sets is the same, that is, the number of
nodes | | in the network. The divergence 𝛾𝑖𝑗 ∈ [0, 1] between a pair
of centralities is divergence. The value of 𝛾𝑖𝑗 is larger when the results
obtained by the two centralities differ more. However, a centrality is
given less weight when it obtains a result that is less similar to all other
centralities. Hence, the similarity-based weight 𝑤𝑖

𝑠 is obtained by,

𝑤𝑖
𝑠 =

∑

𝑗≠𝑖 1 − 𝛾𝑖𝑗
∑

𝑖
∑

𝑗≠𝑖 1 − 𝛾𝑖𝑗
. (18)

Similarly, 0 ≤ 𝑤𝑖
𝑠 ≤ 1 and ∑

𝑖 𝑤
𝑖
𝑠 = 1.

The score of nodes can indicate the difference between centrality
measures, and the belief distribution expressing the influential ability
of nodes can express the conflict between two centralities from the
alternative level. Based on the subjective judgments, a centrality will be
assigned a higher weight when it has less conflict with other measures

(attributes) in describing the influence (in the evaluation grade level)
of each node (in the alternative level). The conflict [74] between
centrality 𝑖 and 𝑗 on node 𝑙 can be measured by,

𝐷
(

𝑒𝑖𝑗
(

𝑎𝑙
))

= 1
𝑢
(

𝐻𝑁
)

− 𝑢
(

𝐻1
)×

𝑁−1
∑

𝑛=1

𝑁
∑

𝑠=𝑛+1
𝛽𝑛,|𝑖−𝑗|

(

𝑎𝑙
)

𝛽𝑠,|𝑖−𝑗|
(

𝑎𝑙
)

𝑢
(

𝐻
|𝑠−𝑛|

)

,
(19)

where 𝑢
(

𝐻𝑛
)

indicates the utility of 𝐻𝑛 that follows 𝑢
(

𝐻𝑛+1
)

>
𝑢
(

𝐻𝑛
)

, and 1∕
(

𝑢
(

𝐻𝑁
)

− 𝑢
(

𝐻1
))

is the normalization factor such that
the maximum value of 𝐷

(

𝑒𝑖𝑗
(

𝑎𝑙
))

is 1. In addition, 𝛽𝑛,|𝑖−𝑗|
(

𝑎𝑙
)

=
|

|

|

𝛽𝑛,𝑖
(

𝑎𝑙
)

− 𝛽𝑛,𝑗
(

𝑎𝑙
)

|

|

|

indicates the belief degree of dissimilarity and
𝑢
(

𝐻
|𝑠−𝑛|

)

= 𝑢
(

𝐻𝑠
)

− 𝑢
(

𝐻𝑛
)

describes the difference in the utility of
the different evaluation grades. The conflict between the centrality 𝑖
and the other centralities on all nodes can be obtained,

𝜑𝑖 =
∑

𝑗≠𝑖
∑

𝑙 𝐷
(

𝑒𝑖𝑗
(

𝑎𝑙
))

(𝐿 − 1) × 𝑆
, (20)

where 𝐿 and 𝑆 are the lengths of the attribute vector and alternative
vector, respectively. The conflict-based weight 𝑤𝑖

𝑐 of centrality 𝑖 can be
obtained by,

𝑤𝑖
𝑐 =

1 − 𝜑𝑖

𝐿 −
∑

𝑖 𝜑𝑖
, (21)

because the weight is larger when the conflict is smaller. It also follows
0 ≤ 𝑤𝑖

𝑐 ≤ 1 and ∑

𝑖 𝑤
𝑖
𝑐 = 1.

By combining the information from the three perspectives, the
overall weight of each centrality will be obtained by,

𝑤𝑖 =
𝑤𝑖

𝑒 +𝑤𝑖
𝑠 +𝑤𝑖

𝑐
3

, (22)

which is the average value of the overlap-based, similarity-based, and
conflict-based weights.

3.4. Part 4: Influential ability identification

Based on the obtained belief distributions (Eq. (13)) and weights
(Eq. (22)), the ER approach is applied to aggregate the multiple sources
of information with weights and obtain the overall belief distribution
describing the influential ability of nodes. The basic probability mass
𝑚𝑛,𝑖 describing the belief assigned to 𝐻𝑛 by the centrality 𝑖 can be
obtained by,

𝑚𝑛,𝑖 = 𝑤𝑖 × 𝛽𝑛,𝑖,

𝑚𝐻,𝑖 = 1 −𝑤𝑖 ×
∑

𝑛
𝛽𝑛,𝑖,

(23)

where 𝑚𝐻,𝑖 indicates the remaining mass that cannot be assigned to any
evaluation grade 𝐻𝑛 by the centrality 𝑖, which can be decomposed into
two parts:

• �̄�𝐻,𝑖 = 1 −𝑤𝑖 is bounded by the relative importance of centrality
𝑖, indicating the degree to which other centralities can contribute
to the assessment;

• �̃�𝐻,𝑖 = 𝑤𝑖 (1 −
∑

𝑛 𝛽𝑛,𝑖
)

is caused by the incompleteness of infor-
mation from centrality 𝑖.

According to the criterion hierarchy in Fig. 1, the basic probability
mass on sub-criteria 𝐶𝑖,𝑗 is aggregated to the criterion 𝐶𝑖 at the first
level based on the recursive ER algorithm [73], and then aggregated to
the top-level decision criterion 𝐶 again with the same process (includ-
ing weight determination and aggregation). Let the probability mass
𝑚𝑛,𝐼(𝑖) be the degree to which the first 𝐼(𝑖) attributes support evaluation
grade 𝐻𝑛 and 𝑚𝐻,𝐼(𝑖) be the remaining mass that is unassigned to
any evaluation grade by the first 𝐼(𝑖) attributes. The initial setting is
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𝑚𝑛,𝐼(1) = 𝑚𝑛,1 and 𝑚𝐻,𝐼(1) = 𝑚𝐻,1. The combined probability mass can
be obtained by,

𝑚𝑛,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)
(

𝑚𝑛,𝐼(𝑖)𝑚𝑛,𝑖+1 + 𝑚𝑛,𝐼(𝑖)𝑚𝐻,𝑖+1 + 𝑚𝐻,𝐼(𝑖)𝑚𝑛,𝑖+1
)

,

�̃�𝐻,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)
(

�̃�𝐻,𝐼(𝑖)�̃�𝐻,𝑖+1 + �̄�𝐻,𝐼(𝑖)�̃�𝐻,𝑖+1 + �̃�𝐻,𝐼(𝑖)�̄�𝐻,𝑖+1
)

,

�̄�𝐻,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)
(

�̄�𝐻,𝐼(𝑖)�̄�𝐻,𝑖+1
)

,

𝐾𝐼(𝑖+1) =

(

1 −
∑

𝑡

∑

𝑗≠𝑡
𝑚𝑡,𝐼(𝑖)𝑚𝑗,𝑖+1

)−1

,

(24)

for 𝑖 = 1, 2,… , 𝐿. After all information is aggregated, the combined
degree of belief is obtained by,

𝛽𝑛 =
𝑚𝑛,𝐼(𝐿)

1 − �̄�𝐻,𝐼(𝐿)
,

𝛽𝐻 =
�̃�𝐻,𝐼(𝐿)

1 − �̄�𝐻,𝐼(𝐿)
,

(25)

where 𝛽𝑛 is the combined degree of belief that a node is evaluated
as 𝐻𝑛, and 𝛽𝐻 is the combined degree of belief that is not assigned
to any grade, indicating the degree of incompleteness in the overall
assessment. The overall assessment of the influential ability of node 𝑙
is represented by the belief distribution,

𝑆
(

𝐶
(

𝑎𝑙
))

= {
(

𝐻𝑛, 𝛽𝑛
(

𝑎𝑙
))

, 𝑛 = 1, 2,… , 𝑁 ;
(

𝐻𝐻 , 𝛽𝐻
(

𝑎𝑙
))

},
(26)

The influential ability of node 𝑙 is then quantified by,

𝜁𝑙 =
𝑁
∑

𝑛=1
𝜔𝑛𝛽𝑛(𝑎𝑙), (27)

where 𝜔𝑛 ∈ 𝜔𝑁×1 is the weight parameter describing the contribution
of each evaluation grade to the influential ability, which is defined as
the utility of each grade in the ER approach. The pseudo-code of our
developed ERIUE model based on the formulated criterion hierarchy
is shown in Algorithm 1. After considering the evidence from each
centrality measure, the time complexity of the ER-based centrality
model is primarily determined by two factors: the number of criteria
in the decision-making process (𝐿) and the number of nodes in the
network (𝑆). The decision-making process involves aggregating the
evidence from each centrality measure and determining the weight of
each measure based on the specified criteria. Additionally, the model
needs to iterate over all nodes in the network to combine the evidence
to determine its influential ability. Therefore, the time complexity of
the ERIUE model can be approximated as 𝑂(𝐿×𝑆). This complexity pro-
vides a measure of the algorithm’s efficiency and scalability, enabling
its application to larger networks with a reasonable computational cost.

4. Evaluations

4.1. Datasets

In order to evaluate the performance and applicability of our pro-
posed model, three commonly used real-world social networks are
used as examples. The first one is the jazz network [75] which de-
scribes the collaboration between jazz musicians. The second one is
the coauthor network [76] which describes the scientific collaboration
between network scientists. In this network, there is an edge between
two scientists when they published papers together. The last one is
the blog network [77] that describes the hyperlinks between political
blogs in the USA. The topological properties of the three networks are
shown in Table 2. |

|

 |

|

and || indicate the number of nodes and edges,
respectively, ⟨𝑘⟩ and ⟨𝑑⟩ represent the average degree and average
distance, respectively, 𝐶 and 𝑟 are the clustering coefficient and the
assortative coefficient.

Algorithm 1: Evidential reasoning-based influential users eval-
uation model.

Input: Network structure ( , ); Mapping rule 𝑓 (𝑥).
Output: Influential ability 𝜁𝑙 of node 𝑙.

1 Formulate the criterion hierarchy in Fig. 1.
/* Aggregate information from sub-criteria 𝐶𝑖,𝑗 to the

criterion 𝐶𝑖. */
2 for Criterion 𝐶𝑖 do
3 for Sub-criterion 𝐶𝑖,𝑗 do

/* Evaluate the score. */
4 for Node 𝑙 do
5 Obtain the score 𝛼𝑖,𝑗 (𝑎𝑙) for node 𝑙 by the selected

centrality (sub-criterion 𝐶𝑖,𝑗) from the network
structure.

6 Normalize the scores �̂�𝑖,𝑗 (𝑎𝑙) by Eq. (12).
/* Evaluate the belief distribution. */

7 for Node 𝑙 do
8 for Grade level 𝑛 do
9 Map the score to the belief degree by

𝛽𝑛,𝑖,𝑗 = 𝑓
(

�̂�𝑖,𝑗 (𝑎𝑙)
)

shown in Fig. 2.
10 Get the degree distribution 𝑆(𝑒𝑖,𝑗 (𝑎𝑙)) =

{(

𝐻𝑛, 𝛽𝑛,𝑖,𝑗 (𝑎𝑙)
)

, 𝑛 = 1, 2, ..., 𝑁,
(

𝐻𝐻 , 𝛽𝐻,𝑖,𝑗 (𝑎𝑙)
)}

in Eq. (13).

/* Determine the weight for each centrality. */
11 for Sub-criterion 𝐶𝑖,𝑗 do
12 Obtain the overlap-based weight of each centrality 𝑤𝑖,𝑗

𝑒
by the Shannon entropy shown in Eq. (16).

13 for Other sub-criteria 𝐶𝑖,𝑘 do
14 Measure the differences in the probability sets 𝛾𝑗𝑘

and obtain the similarity-based weight 𝑤𝑖,𝑗
𝑠

by Eq. (18).
15 Evaluate the conflict between centralities

𝐷
(

𝑒𝑗𝑘
(

𝑎𝑙
))

and obtain the conflict-based weight
𝑤𝑖,𝑗

𝑐 by Eq. (21).
16 Obtain the weight for each centrality 𝑤𝑖,𝑗 by Eq. (22).

/* Get the aggregated information. */
17 for Node 𝑙 do
18 Aggregate information from sub-criteria 𝐶𝑖,𝑗 to criterion

𝐶𝑖 by the recursive ER approach.
19 Obtain the aggregated belief distribution 𝑆

(

𝐶𝑖
(

𝑎𝑙
))

for
node 𝑙 shown in Eq. (26).

/* Aggregate information from criteria 𝐶𝑖 to the
top-level decision criterion 𝐶 and identify the
influential ability of each node. */

20 for Criterion 𝐶𝑖 do
21 Repeat Lines 11 – 16 to determine the weight 𝑤𝑖 of each

criterion from the three perspectives.
22 for Node 𝑙 do
23 Aggregate information from 𝐶𝑖 to 𝐶 by the recursive ER

approach.
24 Obtain the overall belief distribution

𝑆
(

𝐶
(

𝑎𝑙
))

= {
(

𝐻𝑛, 𝛽𝑛
(

𝑎𝑙
))

, 𝑛 = 1, 2,… , 𝑁 ;
(

𝐻𝐻 , 𝛽𝐻
(

𝑎𝑙
))

}
for node 𝑙.

25 Identify the influential ability of users 𝜁𝑙 by Eq. (27).

4.2. Top-10 nodes

To illustrate the applicability, the IDs of top-10 nodes in the three
real-world networks identified by our proposed model and comparison
measures are shown in Table 3. In this work, the weight parameters
are 𝜔 = {0.1, 0.25, 0.5, 0.75, 1}, which is used as an example to show the
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Table 2
Topological properties of networks [51].

Network |

|

 |

|

|| ⟨𝑘⟩ ⟨𝑑⟩ 𝐶 𝑟

Jazz 198 2472 27.6970 2.2350 0.6334 0.0202
Coauthor 379 914 4.8232 6.0419 0.7981 −0.0817
Blog 1222 16714 27.3552 2.7375 0.3600 −0.2213

performance of the ERIUE algorithm. For the jazz network, node 136 is
identified as the most influential one because six of the nine centrality
measures support this point. There are only three measures to list node
60 as the most influential node, so it is ranked second by the proposed
model. As for nodes 132 and 168, six measures hold the opinion that
node 132 is more influential and three measures even rank it as the
second place, so they rank third and fourth in our proposed model.
Furthermore, the top four nodes obtained by our proposed model are
exactly the same as that listed by another four centrality measures. As
for the rest of the nodes, they are all obtained from the perspective of
multi criteria decision-making, that is, one node will be ranked higher
by our proposed model only when it is evaluated as having higher
influential ability by more measures. For the coauthor network, nodes 4
and 5 are identified as the two most influential nodes by our proposed
method as most centrality measures support this. As for node 26, it
is even slightly worse than node 16, as it is not listed in the top 10
nodes by four measures (even it is listed as the most influential node
by three measures), while node 16 is not listed in the top-10 nodes by
only two measures. The situation is similar in the blog network. Node
12 is listed as the most influential by four measures and the second
most influential by another four measures, thus, it is identified as the
most influential by the ER centrality. Node 28 is another node rated
well by most measures. More details about the top-10 nodes can be
found in Table 3. By considering various criteria, our proposed ERIUE
algorithm aims to identify influential nodes based on their collective
recognition across different algorithms. It leverages the strengths of
different centrality measures and combines them in a way that captures
the overall influential ability of nodes more accurately. In contrast,
methods that solely rely on a single type of structural information
or centrality measure may overlook certain aspects of node influence.
Overall, the ERIUE algorithm’s consideration of multi-source structural
information contributes to its perceived reasonability and effectiveness
in identifying influential nodes in social networks.

4.3. Susceptible–infected–recovered model

The list of top-10 nodes obtained by different centrality measures
simply illustrates the applicability of our proposed algorithm. The
performance of each centrality is then evaluated by comparing them
with the benchmark method. As discussed in Section 2.3, information
diffusion models are commonly used as benchmark methods for assess-
ing the influential ability of nodes in social networks, with the SIR
model being particularly prominent. Following the recommendations
put forth by previous studies [13,21,57], the classical SIR model is used
as the benchmark method in this work to provide further insights into
the performance of each centrality measure.

To evaluate the influential ability of node 𝑖, only node 𝑖 is selected as
the initially infected node, while all other nodes are considered suscep-
tible. At each time 𝑡, infected nodes have the potential to either infect
susceptible neighbour nodes with probability 𝛽 or recover from the
infection without engaging in subsequent propagation with recovery
probability 𝜆. This process is captured by the following set of ordinary
differential equations,

⎧

⎪

⎨

⎪

⎩

𝑑𝑠(𝑡)
𝑑𝑡 = −𝛽𝑠(𝑡)𝑖(𝑡)

𝑑𝑖(𝑡)
𝑑𝑡 = 𝛽𝑠(𝑡)𝑖(𝑡) − 𝜆𝑖(𝑡)

𝑑𝑟(𝑡)
𝑑𝑡 = 𝜆𝑖(𝑡)

, (28)

where 𝑠(𝑡)+𝑖(𝑡)+𝑟(𝑡) ≡ | | holds for all time 𝑡. This simulation proceeds
until reaching a predetermined time point 𝑡′. The influential ability of
node 𝑖 is quantified by the ratio of the number of recovered nodes
𝑁𝑟 to the total number of nodes in the network | |. Mathematically,
we express this as 𝐹𝑖 = 𝑁𝑟∕| |. Given that the infection process
is inherently stochastic and dependent on the probabilities 𝛽 and 𝜆,
the benchmark influential ability of node 𝑖 is the average 𝐹𝑖 of 500
independent repeated numerical experiments. The benchmark ranking
list 𝜎 is then determined by the corresponding values of 𝐹𝑖 for each
node. In this work, the probabilities are set according to classical
experiments: 𝛽 reaches the epidemic threshold 𝛽𝑐 ≈ ⟨𝑘⟩

⟨𝑘2⟩−⟨𝑘⟩
[78],

𝜆 = 1, and 𝑡′ = 40. In order to evaluate the correlation between the list
obtained by centrality measures and that obtained by the benchmark
method, Kendall’s Tau correlation coefficient is applied in this work,

𝜏 =
2(𝑛+ − 𝑛−)

| |(| | − 1)
, (29)

where 𝑛+ and 𝑛− represent the number of concordant and discordant
pairs, respectively. A centrality measure will get a higher value of 𝜏
if it can obtain a ranking list that is closer to the list obtained by the
benchmark method. The coefficient 𝜏 in the three networks is shown
in Table 4, where the highest correlation coefficients are highlighted
in bold.

In the analysis of the three networks, it can be found that our pro-
posed ERIUE model consistently exhibits the highest correlation with
the benchmark method. This implies that irrespective of the network
type, the ERIUE model consistently yields a ranking list that closely
resembles the benchmark, owing to its comprehensive consideration
of network topology information. On the other hand, the performance
of the comparative centralities is unstable in different networks. For
example, 𝜏 obtained by HITs closely aligns with our developed method
in the jazz and blog networks, but ranks significantly lower in the coau-
thor network. This demonstrates that our proposed model has robust
performance across diverse application scenarios. With its ability to
incorporate multi-source network topology information, the ERIUE al-
gorithm consistently achieves evaluation results that closely align with
the benchmark, highlighting the superiority of our proposed algorithm.

To account for the variability of the infection probability 𝛽 in real-
world scenarios, the performance of each method is further explored
within the range of 𝛽 ∈ [0.5𝛽𝑐 , 1.5𝛽𝑐 ]. It should be noted that the
benchmark ranking list may differ under different 𝛽 values. The Kendell
correlation coefficient 𝜏 is still applied to measure the correlation
between the list obtained by the centralities and the benchmark with
varying 𝛽. A higher 𝜏 value indicates that the ranking list generated
by a method closely aligns with the benchmark ranking list under a
specific 𝛽, signifying the effectiveness of the method in this context.

The results are shown in Fig. 3. In the jazz network, 𝜏 obtained
by the ER centrality is consistently the highest across different values
of 𝛽∕𝛽𝑐 [Fig. 3 (a)]. Some measures exhibit slightly higher or close 𝜏
values to our developed model at specific 𝛽 values, such as DC and GC
at 𝛽 = 0.5𝛽𝑐 and EC and HITs at 𝛽 = 1.2𝛽𝑐 . However, for the majority of
cases, our proposed model consistently outperforms the comparative
centrality measures in terms of 𝜏 values. This indicates that our pro-
posed method consistently achieves results that closely resemble the
benchmark ranking list under varying infection probabilities. The case
is similar in the coauthor and blog networks. In the coauthor network,
only 𝜏 obtained by GC at 𝛽 = 0.5𝛽𝑐 is slightly higher than that obtained
by our proposed model [Fig. 3 (b)]. In the blog network, some measures
can achieve 𝜏 close to our developed model at 𝛽 = 0.5𝛽𝑐 [Fig. 3 (c)].
However, overall, our proposed method consistently exhibits higher
correlation coefficients across varying 𝛽 values.

Through the adequate consideration and rational fusion of infor-
mation, the ERIUE algorithm consistently yields results that closely
align with the benchmark method across various networks and pa-
rameter settings, demonstrating the applicability of our approach to
diverse scenarios. This sets our method apart from other approaches
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Table 3
The list of top-10 nodes identified by different centrality measures.

Network Rank DC HI KS BC CC GC EC PR HITs Proposed (ER)

1 136 136 60 136 136 136 60 136 60 136
2 60 60 132 153 60 60 132 60 132 60
3 132 132 168 60 168 132 136 168 136 132
4 168 168 99 149 70 168 168 132 168 168
5 70 99 108 168 83 70 108 149 108 108
6 99 108 131 167 132 108 99 70 99 99
7 108 131 122 189 122 99 131 83 131 70
8 83 194 100 115 194 83 70 167 70 131
9 158 70 101 96 174 158 83 96 83 83

Jazz

10 7 83 98 83 158 194 194 158 194 122

1 4 4 4 26 26 4 4 26 4 4
2 5 5 5 51 95 5 5 4 5 5
3 26 16 16 169 51 26 16 5 16 16
4 16 15 15 95 231 16 15 95 15 26
5 67 51 45 67 100 95 45 67 45 15
6 70 45 46 5 52 67 46 16 46 95
7 95 46 47 231 5 51 47 51 47 45
8 15 47 176 100 44 15 176 32 176 51
9 51 176 177 44 234 231 177 70 177 46

Coauthor

10 113 177 70 66 297 70 250 8 250 47

1 12 28 67 304 28 12 12 304 12 12
2 28 67 12 12 12 28 14 12 14 28
3 304 12 14 94 16 14 16 94 16 16
4 14 14 16 28 14 16 67 28 67 14
5 16 16 18 16 36 304 52 16 52 304
6 94 18 52 145 67 67 18 14 18 67
7 6 52 176 14 94 94 28 6 28 52
8 67 176 47 300 35 6 47 35 47 94
9 35 47 4 35 145 35 73 145 73 6

Blog

10 145 4 161 67 304 36 9 67 9 18

Table 4
Kendall’s Tau correlation coefficient between the lists obtained by centrality measures and that obtained by the benchmark method.

DC HI CC BC KC GC EC PR HITs ER

Jazz 0.8202 0.8626 0.8058 0.4632 0.7074 0.8389 0.8732 0.7238 0.8732 0.9026
Coauthor 0.6110 0.6115 0.5654 0.3898 0.3389 0.6841 0.4057 0.4326 0.3557 0.7113
Blog 0.8489 0.8678 0.8629 0.6774 0.7765 0.8540 0.8503 0.7971 0.8502 0.8843

Fig. 3. Kendall’s Tau correlation coefficient 𝜏 under different values of 𝛽.

that only consider a single type of structural information. This ob-
servation underscores the significance of incorporating comprehensive
structural information for analysing the influential ability of users in
social networks.

In addition to the Kendall correlation coefficient, which measures
the correlation between full ranking lists, it is also important to con-
sider the similarity between the top-ranked nodes, as these are often of
greater interest due to their high influential ability. To assess this, the
Jaccard similarity coefficient [79] is applied to measure the similarity
between the top-𝑇 nodes in the ranking lists obtained by the benchmark
method and the centrality measures,

𝐽 (𝑇 ) =
|𝜎(𝑇 ) ∩ 𝑅(𝑇 )|
|𝜎(𝑇 ) ∪ 𝑅(𝑇 )|

, (30)

where 𝜎(𝑇 ) and 𝑅(𝑇 ) are the top-𝑇 nodes in the benchmark ranking
list and the ranking list obtained by different centralities, respectively.
Here, 𝑇 grows from 5 to 100 with an intervals of 5. The values of 𝐽 (𝑇 )
in the three networks with different values of 𝑇 are shown in Fig. 4.
Similar to 𝜏, a higher value of 𝐽 (𝑇 ) indicates a more effective method.

In the jazz network, the ER centrality consistently achieves the high-
est 𝐽 (𝑇 ) values in most cases, although there are instances where other
measures yield higher values [Fig. 4 (a)]. In the coauthor network,
several centrality measures, such as HI, CC, EC, and HITs, outperform
the ER centrality when 𝑇 ≤ 15 [Fig. 4 (b)]. Similarly, in the blog
network, HI achieves higher values of 𝐽 (𝑇 ) than the ER centrality
for 𝑇 ≤ 15 [Fig. 4 (c)]. However, as 𝑇 increases beyond 15, the ER
centrality consistently outperforms other measures, indicating its strong
ability to identify influential users. Furthermore, it is worth noting that
different centrality measures have significantly different performances
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Fig. 4. Jaccard similarity coefficient 𝐽 (𝑇 ) under different values of 𝑇 .

in different networks, underscoring the limitations of these comparison
methods. Conversely, the ERIUE algorithm consistently approaches the
benchmark results across various scenarios, demonstrating its stability
and real-world applicability.

In this work, the Kendell correlation coefficient and Jaccard simi-
larity coefficient are utilized to evaluate the performance of different
centrality measures in assessing the influential ability of nodes. These
metrics provide insights into the overall correlation of ranking lists and
the similarity of top-ranked nodes, respectively, shedding light on the
effectiveness of each centrality measure. By analysing the results across
different values of 𝛽 and 𝑇 in the three networks, we have observed
that our proposed ERIUE algorithm consistently achieves the closest
results to the benchmark, outperforming the comparative centrality
measures. The stability and superiority of the ERIUE algorithm are
crucial for its broader application, which cannot be matched by the
comparative centrality measures that consider only a single type of
structural information. This demonstrates the practical relevance and
applicability of our algorithm in real-world scenarios.

4.4. Impact of weight

In this study, the impact of weight determination on the identifi-
cation of influential nodes is investigated by conducting an ablation
study. Three cases are considered, each involving a combination of two
types of factors to determine the weight of each criterion.

• Case 1: Only consider 𝑤𝑖
𝑐 and 𝑤𝑖

𝑠.
• Case 2: Only consider 𝑤𝑖

𝑐 and 𝑤𝑖
𝑒.

• Case 3: Only consider 𝑤𝑖
𝑠 and 𝑤𝑖

𝑒.

In all cases, the weight of each criterion is the average of the two
considerations. To examine the impact of weight determination, two
networks are selected as examples, and the ranking lists are obtained
in the three cases, along with the original case that considers all
three factors simultaneously. The performance of each case is evaluated
using the Kendell correlation coefficient 𝜏 and the Jaccard similarity
coefficient 𝐽 (𝑇 ) (Fig. 5).

The results show that the difference in 𝜏 for the both networks
is small, except for cases when 𝛽 ≤ 𝛽𝑐 [Fig. 5 (a) and (c)]. This
suggests that the overall ranking of influential nodes remains largely
unaffected by how the weights are determined, except under low
infection probabilities. When considering the similarity of top-ranked
nodes, the impact of weight determination becomes more pronounced.
In the jazz network, the values of 𝐽 (𝑇 ) are the same for 𝑇 < 50 but
become different for 𝑇 ≥ 50 [Fig. 5 (b)]. This indicates that nodes with
lower influential ability may be ranked differently depending on the
weight determination. Similarly, in the blog network, Case 3 achieves
a significantly higher 𝐽 (5) value compared to the other cases, implying
that this weight determination approach successfully identifies the

same top five highly influential users as the benchmark method. For
other values of 𝑇 , the results are similar, with identical 𝐽 (𝑇 ) values for
𝑇 ≤ 20 and different values for 𝑇 > 20 [Fig. 5 (d)].

In conclusion, the ablation study demonstrates that the determina-
tion of weights has a limited impact on the overall ranking of influential
nodes, but may result in variations for nodes with lower influential
ability. Nevertheless, this does not compromise the algorithm’s ability
to identify high-impact users, which is the primary focus of this study.
It is important to note that the determination of weights is flexible
and can be adjusted according to specific needs in different scenarios,
extending the scalability of the algorithm beyond the three factors
defined in this study. The flexibility in weight determination allows for
customization based on specific scenarios, highlighting the algorithm’s
versatility and adaptability.

5. Conclusion

In this paper, an original and novel ERIUE model for identifying
influential users is proposed by considering multiple sources of struc-
tural information with weights. Unlike existing centrality measures
that focus on a single type of structural information, the proposed
model considers different types of information through the recursive ER
approach. In this model, a two-level criterion hierarchy is formulated
to consider different information through several existing centrality
measures. Each typical centrality evaluates the influential ability based
on its feature, and the scores are mapped to a belief distribution after
normalization. A comprehensive weight assignment way is then devel-
oped in this work to evaluate the results obtained by each centrality.
Specifically, a centrality will be assigned higher weight if (1) fewer
nodes are given the same score by this centrality; (2) its scores (ex-
pressed as the probability set) are more similar to the scores obtained
by other measures; and (3) its belief distribution has less conflict with
that of other measures. The three factors are averaged to determine the
weight of each centrality. The basic probability mass is obtained by the
belief distribution and corresponding weight, which are further used
to aggregate information in the recursive ER approach. After a two-
stage aggregation of information based on the criterion hierarchy, the
influential ability of nodes is evaluated based on the overall assessment.
This model provides a more comprehensive evaluation of influential
ability by considering different types of structural information from the
perspective of multiple criteria decision-making.

Three real-world social networks are used to evaluate our proposed
ERIUE model. The top 10 node lists obtained by various centrality
measures are used to illustrate the principle of this model, which is
to adopt the ranking relationship supported by more centralities. The
SIR model is then applied as the benchmark to evaluate the perfor-
mance of each centrality. In the numerical simulation, the correlation
is measured by Kendall’s Tau correlation coefficient, and the similarity
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Fig. 5. The impact of weight in two examples networks, quantified by 𝜏 and 𝐽 (𝑇 ).

between a portion of top-ranked nodes is measured by the Jaccard
similarity coefficient. The experimental results on the three social net-
works demonstrate the applicability and superiority of our developed
model. In the future, this work can serve as a framework to incorporate
additional types of information to identify influential nodes in various
types of networks, such as hubs in transportation networks and key
electrical elements in power grid networks.
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Appendix

List of Abbreviations
MCDM Multiple criteria decision-making
AHP Analytic Hierarchy Process
TOPSIS Technique for Order of Preference by Similarity to

Ideal Solution
ER Evidential reasoning
ERIUE Evidential reasoning-based influential users evaluation
SIR Susceptible–Infected–Recovered
DC Degree centrality
KS 𝑘-shell
HI H-index
CC Closeness centrality
BC Betweenness centrality
GC Gravity-based centrality
EC Eigenvector centrality
PR PageRank
HITs Hyperlink-Induced Topic Search
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