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Pepper leaf disease identification based on convolutional neural networks

(CNNs) is one of the interesting research areas. However, most existing CNN-

based pepper leaf disease detection models are suboptimal in terms of accuracy

and computing performance. In particular, it is challenging to apply CNNs on

embedded portable devices due to a large amount of computation and memory

consumption for leaf disease recognition in large fields. Therefore, this paper

introduces an enhanced lightweight model based on GoogLeNet architecture.

The initial step involves compressing the Inception structure to reduce model

parameters, leading to a remarkable enhancement in recognition speed.

Furthermore, the network incorporates the spatial pyramid pooling structure

to seamlessly integrate local and global features. Subsequently, the proposed

improved model has been trained on the real dataset of 9183 images, containing

6 types of pepper diseases. The cross-validation results show that the model

accuracy is 97.87%, which is 6% higher than that of GoogLeNet based on

Inception-V1 and Inception-V3. The memory requirement of the model is only

10.3 MB, which is reduced by 52.31%-86.69%, comparing to GoogLeNet. We

have also compared the model with the existing CNN-based models including

AlexNet, ResNet-50 and MobileNet-V2. The result shows that the average

inference time of the proposed model decreases by 61.49%, 41.78% and

23.81%, respectively. The results show that the proposed enhanced model can

significantly improve performance in terms of accuracy and computing

efficiency, which has potential to improve productivity in the pepper

farming industry.
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1 Introduction

Pepper is almost an indispensable crop in life and is closely

related to human obesity rate cardiovascular disease (Spence, 2019).

With the rapid growth of the global population, the demand for

peppers has been growing. Diseases such as pepper powdery

mildew, pepper anthracnose, and pepper white spot disease are

the main factors affecting the yield and quality of pepper (Gu et al.,

2021). Pepper leaf diseases are usually the most direct manifestation

of early crop growth problems. Accurate and rapid recognition of

pepper leaf diseases is essential for promptly identifying growth

issues and enabling accurate prevention and control measures. The

conventional approach based on visual inspection and human

experience for recognizing pepper leaves is subjective and time-

consuming and costly. Therefore, there is a pressing need to develop

a precise, fast, and convenient approach for detecting pepper

leaf diseases.

In order to solve the problem mentioned above, classical

machine learning methods like K nearest neighbor (KNN) (Xie

et al., 2017), support vector machine (SVM) (D.Pujari et al., 2016),

random forest (RF) (Gold et al., 2020), Naive Bayes (NB) (Mondal

et al., 2017), artificial neural networks (ANN) (Wang et al., 2018)

have been widely used in the field of crop leaf disease recognition.

Despite existing works are encouraging, there are still limitations

such as suboptimal performance (inaccuracy, computing efficiency)

and lack of generalization capability. Moreover, the process

becomes more complicated when dealing with huge leaf diseases

dataset and many type of diseases, making the formal deployment

and application of the models more difficult.

With the development of artificial intelligence theory, deep

learning has been proposed to solve complex vision tasks. In the

field of agriculture, different deep learning algorithms like

Convolutional Neural Networks (CNNs), Gated Recurrent Units

(GRU), and Long Short-Term Memory (LSTM) have been

investigated for the recognition of the symptoms of major

diseases that affect crops. In particular CNN, as one of the most

promising techniques, has been successfully used in crop leaf

disease recognition (Saleem et al., 2019). A variety of

convolutional neural network models are closely integrated with

recognizing crop leaf diseases (Ak et al., 2019; Klompenburg et al.,

2020; Abade et al., 2021). After the deep learning model is built, it

often needs to be transplanted into an external system. Therefore,

while considering the recognition accuracy, the complexity of

training should be as much as possible to make the model more

lightweight (Mccool et al., 2017). However, achieving a high

recognition rate often requires increasing the depth of the

network, leading to the challenge of training complexity.

Additionally, various activation functions, optimizers, and

regularization methods have diverse effects on model training.

Therefore, how to balance the network depth and training

complexity and how to choose the appropriate activation function

and optimizer for the network model has always been a difficult

problem. It is worth noting that GoogLeNet has been widely used in

different domains including crop diseases (Li et al., 2020; Yang et al.,

2023). Unfortunately, it has some disadvanatges, for instance,

GoogLeNet has complex network architecture and large model

size. Therefore, to address these challenges, built on GoogLeNet

architecture, this work has proposed a new deep convolution neural

network model, i.e., an enhanced lightweight GoogLeNet

(GoogLeNet-EL) model for accurate and efficient detection of

multiple pepper diseases. The main contributions of this work

include the following aspects:

(1) From the model perspective, an enhanced lightweight CNN

model is proposed to accurately recognize pepper leaf

diseases. Different from the existing GoogLeNet, we have

introduced a spatial pyramid pooling (SPP) structure to

enhance the model's learning ability of image features at

different scales. In addition, we have also introduced a

compressing method to optimize the network depth and

width of the Inception module, leading to increased

computing efficiency. The integration of compression and

SPP greatly improves the model performance in terms of

both accuracy and computing.

(2) From the data perspective, in order to meet the training

data requirements for deep learning, we have collected a

total of 9183 images to evaluate the performance of the

proposed model, containing 6 types of pepper leaf diseases

including pepper scab, pepper powdery mildew, pepper

anthracnose, pepper white spot disease, pepper blight, and

pepper botrytis cinerea.

(3) From the practical application of the model perspective, the

proposed model has significant advantages in recognition

accuracy and computing performance of pepper leaf

diseases on a limited computing platform, which is

beneficial to the further deployment in pepper plant in

large fields. The improved performance can improve

efficiency and reduce cost input.

The remainder of the paper is organized as follows. Section 2

introduces the existing related work. Section 3 describes the dataset

acquisition, preprocessing, and collation regarding pepper leaf

diseases, and then introduces the methodology required to

accomplish this task of pepper leaf disease recognition along with

related concepts and the proposed approach. Section 4 conducts the

experimentations designed to investigate the factors that affect the

performance of the proposed approach and the comparison test

with other methods. Finally, the conclusion is presented in

Section 5.

2 Related work

2.1 CNNs on crop diseases detection

As for the recognition of pepper leaf diseases, accuracy is the

central performance of the convolution neural network model.

Many previous works on disease recognition of other crops have

proven that these CNN-based methods could achieve high

recognition precision (Abade et al., 2021). Table 1 displays crop
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diseases recognition based on CNNs by some recent literature since

2018, and the crucial fields such as the CNN model used, the best

accuracy, and the study object are included it.

From Table 1, it can be easily observed that that these CNN-

based methods have shown favorable recognition results in the field

of different crops diseases detection. Thus, it is significant to

investigate pepper leaf disease recognition based on their feature

extraction method by training all kinds of convolution kernels.

In recent years, some researchers have focused on pepper leaf

disease recognition by employing deep learning algorithms. Wu

et al. (2020) investigated an integrated neural network based on

CNN for automatic detection and severity assessment of pepper

bacterial spot disease, yielding the best overall accuracy of 95.34%.

Then, some deep learning models were presented to diagnose

image-based hot pepper disease and pests using deep features

based on transfer learning (Yin et al., 2020; Gu et al., 2021).

Mathew and Mahesh (2022) used YOLOv5 to detect the bacterial

spot disease in bell pepper plant from the symptoms which can be

seen on the leaves taken from the farm. In addition, Mahesh and

Mathew (2023) focused on the bacterial spot disease detected on the

image of the bell pepper plant by using YOLOv3 and showed a

mean average precision of 90%. Mustafa et al. (2023) proposed a

five-layered CNN model for automatic detection of pepper bell

plant disease utilizing leaf images, predicting the plant leaf as

healthy or bacterial with 99.99% accuracy. Although the

promising progress has been achieved, it is still challenging in

large pepper planting fields. On the one hand, much research has

been carried out in the lab and the dataset has been collected from

benchmark dataset. There is only limited data set of pepper leaf

diseases for real-time detection. On the other hand, compared with

different crop diseases, pepper diseases recognition is much more

difficult due to large intra-class similarity and small inter-class

variance in pathological symptoms (Wu et al., 2020).

2.2 Model lightweight

In addition, CNN-based models tend to require relatively high

computational resources. This poses a challenge for their practical

implementation in agricultural production settings with limited

resources. Therefore, it becomes essential to consider other

performance indicators, such as memory requirements, training

time, and recognition time, to ensure feasibility and efficiency in

such contexts. There have been growing concerns about lightweight

CNN models for crop diseases detection. Thakur et al. (2023)

proposed a VGG-ICNN model with seven convolution layers by

reducing the CNN model size to identify crop disease and it

outperformed most of CNN models. Haque et al. (2022)

presented a lightweight CNN architecture with two modified

Inception modules to identify the severity stages of maydis leaf

blight disease of maize. To reduce the parameters and computations

of the existing pest detection methods, Cheng et al. (2022)

addressed a lightweight crop pest detection method by

simplifying YOLOv3. Bhujel et al. (2022) presented a lightweight

attention-based CNN model to detect tomato leaf disease and it

reduced network parameters and complexity compared to the

standard ResNet50 model. By compressing the AlexNet structure,

Xie et al. (2021) proposed the CarrotNet to reduce the model

training time to half of the original, which can meet the defect

identification of crops. Kamal et al. (2019) introduced the separable

convolution to the model, which made the training parameters of

the model 29 times less than that of VGG and 6 times less than that

TABLE 1 Crop diseases recognition based on CNNs.

Literature CNN models Best accuracy Study object

Zhang et al. (2018) AlexNet - GoogLeNet model 97.28% tomato leaf disease

Hu et al. (2019) CNN model 92.5% tea leaf diseases

Li et al. (2019) VGG model 98.33% crop diseases

Singh et al. (2019) multi-layer CNN model 98% mango leaf diseases

Chen et al. (2020) VGGNet model 91.83% rice disease

Ji et al. (2020) BR-CNNs model 85.28% crop leaf diseases

Waheed et al. (2020) DenseNet model 98.06% corn leaf disease

Chen et al. (2021) MobileNet-V2 model 99.13% crop diseases

Gao et al. (2021) ResNet model 98.54% cucumber disease

Li et al. (2022) CNN model 94.22% apple disease

Liu et al. (2022) CNN model 97.54% buckwheat diseases

Wang (2022) AlexNet model 96.26% fragrant pear diseases

Yang et al. (2023) GoogLeNet model 99.58% rice leaf diseases

Yang and Liu (2023) CNN model 96.24% rice disease

Yu et al. (2023) RNN model 99.54% soybean leaf diseases
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of MobileNet. Aiming at the problem of too many AlexNet

parameters, Zhang et al. (2019) combined the dilated convolution

and global pooling to identify 6 common cucumber diseases and

achieved good results. In summary, the aforementioned lightweight

models have shown promising performance. As the complexity of

network structures has hindered their practical implementation in

agricultural production, such as pepper planting in large fields,

there is a pressing need to explore suitable lightweight structures

based on CNN models.

2.3 Crop disease dataset

At present, the identification dataset of crop diseases mainly

depends on public datasets such as Plant Village dataset, Plant

disease recognition dataset, New Plant Diseases Dataset, and CVPR

2020-FGVG7. There is only limited pepper leaf disease data in these

datasets. To better and more effectively identify pepper leaf disease,

different classes of diseases should be added to public dataset. In

addition, it is different from the pepper leaf disease detection dataset

in real-time. The image information of pepper leaf for actual scenes

is often complex and redundant, which could result in the problem

that CNN deployed under general calculated performance is used

for the low accuracy and slow recognition speed of pepper leaf

diseases. The principal means is to improve the existing network

structure. Although the accuracy has reached a reasonable level, few

studies can weigh the accuracy of model recognition and model

parameters (Kim et al., 2016). Therefore, to identify pepper leaf

diseases, using pepper leaf disease dataset from real-world scenes

and develop a network model structure with high recognition

accuracy that facilitates easy model training and deployment is

important, which can serve as a valuable reference for pepper

production and planting enterprises and contributes to the

sustainable development of the agricultural industry.

3 Materials and methods

3.1 The overview of the proposed method

As shown in Figure 1, a general overview of the improved CNN

model based on GoogLeNet for pepper leaf disease recognition is

described as follows. The first step is to use the current situation of

pepper planting on the farm to build a dataset on six common

diseases of pepper leaves. The next step is the introduction of

methods to improve the model by investigating the GoogLeNet

model, activation function, batch normalization layer, spatial

pyramid pooling layer, and optimizer. The content is explained in

detail in this section. Finally, our dataset is used for the improved

model for training and experiment. The experiment is divided into

two parts. The first test is a necessity test, which mainly examines

the necessity of our proposed improvement aspects. The second test

is the comparison with other models. The experimental test and

result analysis are introduced in subsequent sections.

Methods

Experiments

1. Dataset sources

Xijiang Agro-

ecological Park

2. Dataset preprocessing

Random rotation

Random cropping

Colour enhancement

Noise addition

Training set

Validation set

Testing set

6 pepper 

leaf 

diseases

1. Model compress

3. LeakyReLu replaces ReLu

4. DropOut is removed in BN

5. Adam replaces SGDM

The improved method: GoogLeNet-EL

A new 15-layer convolutional 

neural network

1. Ablation test of improved model structure

GoogLeNet-EL

Inception-V1 Inception-V3

Use ReLu Use DropOut

Remove SPP Use SGDM

2. Comparison with other models

GoogLeNet-EL

AlexNet

ResNet-50

MobileNet-V2

Method:Transfer learning

Model training Performance testing

Evaluation indexes:

Accuracy

Loss

Precision

Recall

F1 score

Memory consumption

Average testing time

2. SPP is introduced

Dataset

FIGURE 1

The overview process of the improved model.
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3.2 Dataset description

The dataset has an important influence on the accuracy of the

approaches that implement the recognition of pepper leaf diseases.

In this section, the investigated dataset was composed of RGB

images. It was employed to train and test the models studied from

two aspects: dataset source and dataset preprocessing. In the

experiments, we used a total of 9183 images which contained

5669 original pepper leaf disease images and 3514 preprocessed

pepper leaf disease images with various image augmentation.

3.2.1 Dataset source
The data on pepper leaf diseases used in this paper is collected

from Xijiang Agro-ecological Park, Yangzhou City, Jiangsu

Province. Since the diseases are affected by seasonality, our

dataset collection focuses on four different quarters in 2020, using

a handheld camera to examine the diseased pepper leaves. We

captured 5669 original pepper leaf disease images with annotation

from agronomists. There are 6 classes of diseases, including pepper

scab, pepper powdery mildew, pepper anthracnose, pepper white

spot disease, pepper blight, and pepper botrytis cinerea. Some

example images of pepper leaf diseases are shown in Figure 2.

3.2.2 Dataset preprocessing
Data augmentation is an essential means of balancing the

number of samples and expanding the amount of data in deep

learning technology. Overfitting can be effectively avoided through

data augmentation, and the model's generalization ability can be

improved. Common data enhancement methods include random

rotation, random cropping, color enhancement, and noise addition.

Through the above data enhancement operation, 3514

augmentation images of pepper leaf disease are obtained. The

detailed list of the dataset is shown in Table 2. An example of

pepper image enhancement can be seen in Figure 3.

3.3 The proposed GoogLeNet-EL model
for recognition of pepper diseases

3.3.1 GoogLeNet
GoogLeNet is a new structure of deep learning proposed by

Christian Szegedy in 2014 (Szegedy et al., 2015), which combines

the multi-scale idea and dimension reduction layers. GoogLeNet is a

classical convolutional neural network, as shown in Figure 4. The

original network of GoogLeNet consists mainly of three

convolutional layers, nine Inception modules, and other

components. The Inception module is the core component of

GoogLeNet, including Inception-V1, Inception-V2, Inception-V3,

and Inception-V4. Where, Inception-V1 is the basic module that

other versions of the module use to improve network performance.

Inception-V2 introduces Batch Normalization (BN) algorithm to

reduce internal covariate shift. Compared with Inception-V2,

Inception-V3 mainly introduces the idea of factorization in

A B

D E F

C

FIGURE 2

Related images of pepper leaf disease. (A) Pepper scab, (B) Pepper powdery mildew, (C) Pepper anthracnose, (D) Pepper white spot disease, (E) Pepper
blight, (F) Pepper botrytis cinerea.
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addition to BN algorithm. It can greatly reduce the amount of

computation and further increase the depth of the network. When

the network is deeper and wider, Inception-V4 is proposed to make

it have a more unified inception structure. In recent years,

GoogLeNet has been proven to perform well in many fields like

scene recognition, medicine, and human pose estimation. In this

study, from the perspective of basic model architecture construction

and rapid feature recognition, we selected Inception-V1 and

Inception-V3 used in this study.

Inception-V1 is a 22-layer network model, which is used to

control arithmetic power under the existing datasets. The original

structure of Inception-V1 includes a 1×1 convolution, a 3×3

convolution, a 5×5 convolution, and a 3×3 max pooling.

Convolutions stacked in various ways increase the depth and

width of the network. It extracts image features from multiple

scales. However, the number of parameters is still large. To solve the

problem of a large number of calculations, the complete structure of

Inception-V1 is presented by adding three 1×1 convolutions. The

structure can effectively reduce the number of feature channels and

calculations. Thus, in our experiments, it is considered as the base

model architecture and modified to generate a new network.

Inception-V3 is created by further optimizing the accuracy and

calculation of Inception-V1. In terms of computational power, since

the computational cost of a 5×5 convolution is 2.78 times of a 3×3

convolution, two 3×3 convolutions kernels are used instead of a 5×5

convolutions kernel. On this basis, the convolution kernel of n×n is

A B

D E F

C

FIGURE 3

Image enhancement. (A) Original image, (B) 90-degree rotation, (C) Random crop, (D) Color enhancement, (E) Salt and pepper noise, (F) Gaussian noise.

TABLE 2 The detailed list of the dataset.

No. Category

Training set and validation set (piece)

Original images
(5669 images) Preprocessed images (3514 images)

1 Pepper scab 1023 1546

2 Pepper powdery mildew 898 1537

3 Pepper anthracnose 733 1539

4 Pepper white spot disease 992 1540

5 pepper blight 1021 1488

6 Pepper botrytis cinerea 1002 1533
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decomposed into two convolution kernels, 1×n and n×1. When

equivalent results are obtained, the calculation speed is greatly

improved. The depth and width of the network are also increased,

which is conducive to improving accuracy. Therefore, the idea

regarding the factorization into small convolutions of Inception-

V3 is used for the proposed deep convolutional neural network.

3.3.2 Proposed GoogLeNet-EL
As mentioned earlier, GoogLeNet has shown competitive

performance in dealing with image recognition and classification

problems. Specifically, the use of the Inception module in

GoogLeNet can reduce the number of parameters. Due to the

large volume of the model and the great computational

complexity, a valid lightweight network architecture is necessary.

In the section, building on and extending on GoogLeNet with

Inception-V3 as main neural unit, we have proposed the enhanced

lightweight GoogLeNet-EL model. A compressing method is

proposed to optimize the network depth and width of the

Inception module, leading to increased computing efficiency. In

addition, we have introduced a spatial pyramid pooling (SPP) to

efficiently extract features at varies scales in the pooling layer.

Furthermore, we have also optimized other components of

GoogLeNet structure. Hence, an improved GoogLeNet structure

diagram is proposed in Figure 5 and the specific parameters are

shown in Table 3. We compressed its model structure and only

retained 4 Inception modules.

3.3.2.1 Improved Inception module

As shown in Figure 6A, a classical Inception module, i.e.,

Inception V1 was employed as the base module, which is

comprised of 4 parallel layers. It can effectively reduce the

number of feature channels and calculations. Despite competitive

advantages, Inception V1 can be optimized to reduce the number of

parameters. Based on the idea of factorization of Inception V3

(Szegedy et al., 2016), the convolution kernel of 5×5 is decomposed

into two 3×3 convolution kernels. In addition, depth-wise separable

convolution proposed by Chen et al. (2022) can reduce the

computational complexity and compress the model size. It

decomposes a depth-wise convolution and a 1×1 point-wise

convolution, where the former can perform the filtering operation

for each channel of the input feature map, and the later can carry

out the combining operation. Owning to the lightweight advantage

of depth-wise separable convolution, it can reduce the model size

and improve the calculation speed without affecting the efficiency of

feature extraction. Therefore, motivated by the above promising

performance, we improved the architecture of the base module

without a significant increase in parallel layers. In the second layer

of Inception-V1, the 3×3 convolution was decomposed into two

...

Input

GoogLeNet-EL Experimental 
evaluation

Output
Proposed model

=conv+BN+LeakyReLu

=MaxPooling

=Spatial pyramid pooling

=Fully connected

=New Inception

FIGURE 5

GoogLeNet-EL structure.

=MaxPooling

=Dropout

=conv+ReLu =LocalRespNorm

=AveragePooling=Inception =Softmax

Input

FIGURE 4

GoogLeNet structure.
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convolution kernels, 1×3 and 3×1; In the third layer of Inception-

V1, the 5×5 convolution was replaced with two 3×3 convolution

kernels, then one 3×3 convolution along with the original 1×1

convolution were substituted with 3×3 depth-wise and 1×1 point-

wise convolutions, respectively; at last, the other 3×3 convolution is

transformed with 1×3 and 3×1 convolutions. An improved

Inception module is created in terms of Inception-V1, as shown

in Figure 6B.

3.3.2.2 The spatial pyramid pooling layer

The input of CNN is fixed, but due to its nature, shooting angle,

and other reasons, the size of our target image does not match the

size of the fixed input. Taking the Pepper botrytis cinerea image (see

Figure 7) as an example, the size of the target image we cut out is

smaller than the actual size required by the network. The common

method to deal with the problem is to crop and stretch the original

image. However, the operation method could lead to the imbalance

of the original scale of the target image size, resulting in image

distortion. It can affect the accuracy of network training.

Fortunately, spatial pyramid pooling (SPP) can effectively solve

the problem (He et al., 2015).

In order to better extract the feature of pepper leaf diseases, the

SPP layer is added after the Inception4 module in our proposed

model. There is no need to normalize the input of the GoogLeNet-

EL model, saving much work. In this way, the original image

features can be better preserved. The structure of SPP is shown in

Figure 8. After Inception4, the average pooling of 4×4, 2×2, and 1×1

is used to divide the feature set into 16, 4, and 1 blocks. Finally, a 21-

dimensional feature vector with a fixed size is obtained by fusing

with features. Specifically, a feature multi-scale fusion technology is

employed to effectively fuse features from different levels of the

network. According to the network structure of GoogLeNet with

Inception-V3, it has the ability to extract lower-level features (like

edges and colors) and higher-level features (like deformity and

necrosis). The feature information is first performed in terms of

convolution operations with kernels of different on the input layer,

which generates feature maps of different scales. Then, by using up-

sampling and down-sampling operations, the scale of the feature

maps is adjusted to be consistent. The final feature map can be

obtained by effectively fusing these features and it has the richer and

more comprehensive pepper leaf disease feature information.

Therefore, any input can be converted into a feature vector with a

fixed size, removing the limitation of input size for images of

different scales.

3.3.2.3 Other components optimizing the network
structure of the proposed model

(1) Activation function selection. The non-linear output of the

activation function enables CNN to distinguish the types of features

effectively. ReLu, as a representative of the activation function, is

widely used in convolutional neural networks due to its simple and
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FIGURE 6

The structures of the Inception module and optimized Inception module. (A) a classical Inception module. (B) an improved Inveption module.

TABLE 3 Parameters of the improved GoogLeNet-EL model.

Layer name (Convolutional kernel size, number of
convolutional kernels/step size)

Output
size

Input layer 224×224×3

Convolutional layer(7×7, 64/2) 112×112×64

MaxPooling(3×3, /2) 56×56×64

Convolutional layer(1×1, 64/1) 56×56×64

Convolutional layer(3×3, 192/1) 56×56×192

MaxPooling(3×3, /2) 28×28×192

Inception1 28×28×480

MaxPooling(3×3, /2) 14×14×480

Inception2 14×14×512

Inception3 14×14×832

MaxPooling(3×3, /2) 7×7×832

Inception4 7×7×1024

SPP layer 7×7×1024

Fully connected layer 1×1×1024

Output layer 6
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efficient processing method. Its mathematical expression is as

follows

ReLu = max(x,0) (1)

It is noted that ReLu itself is flawed, as shown in Figure 8.

Although the processing mode that the output is set to zero whether

the input variable x< 0 improves the calculation speed to a certain

extent, it could lead to the failure to learn from some network

features. When the backpropagation is carried out, the weights and

bias function may not be updated, thus affecting the recognition

accuracy of the model. In addition, the output of the ReLu is

negative. It means that the saw-tooth problem caused by parameters

and new directions occurs, which affects the training process.

In order to deal with the above problem, we introduce one of its

variants, LeakyReLu (see Figure 9). Different from ReLu, a small

negative gradient is employed in LeakyReLu. In this way,

LeakyReLu solves the problem of gradient disappearance and

keeps learning network features. Moreover, the small negative

gradient gives the activation function the option of negative

numbers. This degree of differentiation is very important for the

training of the model. Some studies show that LeakyReLu could

replace ReLu as an activation function, and its performance is better

Cropping

Original image Stretching

FIGURE 7

Cropping of pepper leaf disease image.

FIGURE 8

The network structure with SPP.
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than ReLu (Hichri et al., 2019; Wei et al., 2019). Therefore, we take

LeakyReLu as the activation function of the network, and its

mathematical expression is as follows

LeakyReLu=max(x,∂x) (2)

(2) DropOut and Batch Normalization. DropOut can solve the

overfitting problem of GoogLeNet. It works by randomly discarding

neurons with a certain probability. The probability value is usually

set to 0.4 or 0.5, which is usually added to the last layers of the

network. In forward propagation, every neuron disappears with a

certain probability, which avoids the over-fitting of the model to a

certain extent, thus improving the training speed. However, this

method of discarding neurons with the standard probability is

inconsistent with the response mechanism of the neural network,

which has a negative impact on model training.

Batch normalization (BN) can accelerate deep network training

by reducing internal covariate shift (Ioffe and Szegedy, 2015). When

the data based on BN is used for the in-depth calculation in the

network, the data distribution of each input is very stable, thus

accelerating the convergence speed of the model. Hence the BN

method is adopted in the improved model, which is introduced

between each convolution and the activation function. In addition,

since the mean and variance of each batch output are different, it

brings random noise to the convolutional neural network, which

has a regularization effect to a certain extent. BN has better

performance than DropOut, which can be discarded (Garbin

et al., 2020).

(3) Optimizer selection. The optimizer in CNN is mainly used

to calculate the gradient in each round of training. It updates the

parameters to minimize the loss. Therefore, it is essential to choose

the right optimizer for the GoogLeNet-EL model. Commonly used

optimizing approaches can be classified into three types in the

optimizer: gradient descent algorithm, momentum algorithm, and

adaptive learning rate optimization algorithm. In particular,

stochastic gradient descent with momentum (SGDM) and Adam

are two popular algorithms.

On the one hand, SGDM tends to generate better results in

terms of fine-tuning parameters. However, the convergence speed is

time-consuming when the gradient of SGDM is flat. Usually,

SGDM can optimize the model to the extreme before the model

goes live or the results are released. On the other hand, Adam has

advantages for sparse data, and the convergence speed is fast. Adam

combines the advantages of the momentum algorithm and the

gradient L2 norm-based algorithm. It makes adaptive adjustments

from the two angles of gradient mean and gradient square, such that

the update of the gradient is not affected by gradient changes. In the

experimental process of the model design, Adam can be used for

rapid experimental optimization to verify the effect of the new

model quickly. Many works using Adam as the optimizer of CNN

have been proven to have good results (Bera and Shrivastava, 2020;

Chang et al., 2020). Therefore, to improve the training speed of the

GoogLeNet-EL, we choose Adam as the optimizer.

4 Experimental evaluation

4.1 Experimental platform and related
hyperparameter settings

The experiments were carried out on a Windows desktop with a

memory of 16GB, Intel(R) Core (TM) i7-9750H CPU @GHz, and

NVIDIA GeForce GTX 1650. To avoid the impact of other

parameters on the model performance test, we first trained

GoogLeNet-EL at learning rates of 0.01, 0.001, and 0.0001. After

100 epochs, the final accuracies are 63.68%, 97.87%, and 94.72%,

respectively. Thus, the learning rate of 0.001 is used uniformly in the

follow-up test. Other related hyperparameters are set as follows:

after 100 iterations, the accuracy and loss of model training are

compared, and BatchSize is set to 220. The regularization coefficient

L2 is set to 0.0001. Every 5 iterations are validated on the validation

set, and a single GPU is used for training.

4.2 Performance metrics

The confusion matrix is used to evaluate the recognition

performance of the model. The evaluation indexes include

accuracy, recall, and F1 score. To further test the transplantation

ability of the model in the real scene, average testing time is

introduced to investigate the portability and applicability of

A B

FIGURE 9

Activation function. (A) ReLu (B) LeakyRelu.
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different models. The relevant expressions are as follows

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2� Precision� Recall
Precision + Recall

(5)

Average testing time

=
Testing time for all samples on the testing set
The total number of samples on the testing set

� 100% (6)

Where TP is the number of positive samples predicted as

positive samples, FP is the number of negative samples predicted

as positive samples, and FN is the number of positive samples

predicted as negative samples.

4.3 Experimental goals

To evaluate the performance of the proposed model, we have

conducted a series of experiments as follows:

Experiment 1: ablation study on Inception module. We carried

out ablation experiments on different inception modules.

Performance tests of models with Inception-V1, Inception-V3,

and our improved Inception were compared, including the

accuracy, loss, training time, and memory requirements.

Experiment 2: ablation study on different components

optimizing network structure of the proposed model. We focused

on how different components optimize network structure of the

proposed GoogLeNet-EL model. Based on the structure of the

proposed GoogLeNet-EL, we have performed separately ablation

studies on spatial pyramid pooling, activation function selection,

DropOut, batch normalization, and optimizer selection to validate

the effectiveness of our improved model. Here, besides the

improved Inception module, the GoogLeNet-EL structure is

mainly composed of LeakyReLu function, batch normalization,

spatial pyramid pooling, and Adam optimizer.

Experiment 3: comparison between the proposed method with

the current advanced methods. To further verify the effectiveness of

the proposed approach, a comparative experiment was carried out

with the other state-of-the-arts, namely AlexNet, ResNet-50, and

MobileNet-V2. Based on the transfer learning (Kaya et al., 2019; Yin

et al., 2020; Zhuang et al., 2021), we have considered AlexNet,

ResNet-50, and MobileNet-V2 for the comparative analysis. These

models were trained and injected with the weights pre-trained in

the training set. In particular, in the existing network structures of

Alexnet, Resnet-50 and MobileNet-V2, the original parameter

weights of the models were retained and applied to the

identification of pepper diseases. We have unified the dataset

224×224 to match the input dimensions of the corresponding

network. To guarantee a fair compassion, the parameter settings

of all the networks were kept the same. The performance indicators

like average testing accuracy, average testing time, and memory

requirements were used to measure the performance of the models.

Experiment 4: the recognition effect of the proposed model in

the actual scene. We collected different pepper leaf diseases as the

test set for the model test. The images of six different leaf diseases

are 171, 170, 171, 171, 165, and 170, respectively. The 1018 pepper

leaf disease images in the test set were tested by GoogLeNet-EL,

AlexNet, ResNet-50, and MobileNet-V2, respectively.

4.4 Results analysis and discussion

Experiment 1: Table 4 shows the experimental results of the

performance indicators on the training set and validation set for the

necessity test, including the accuracy, loss, training time and

memory requirements. Figure 10 is a comparison graph of the

training results of GoogLeNet-EL, Inception-V1, and Inception-V3.

As shown in Table 4 and Figure 10, properly simplifying the

original GoogLeNet architecture can reduce the memory

requirements of model training. For instance, Table 4 shows that

the memory requirement of GoogLeNet-EL is only 10.3MB, which

has obvious advantages over Inception-V1 and V2 in the

experiment. Due to model simplification, the calculation

complexity of GoogLeNet-EL is reduced. The training time is

only 644 seconds, which is significantly shorter than Inception-

V1 and V2. As shown in Figure 10, in terms of the convergence of

the accuracy curve and loss curve, within 100 iterations, the

accuracy curve of GoogLeNet-EL does not fluctuate as much as

that of Inception V1 and V3. Moreover, the loss curve of

GoogLeNet-EL is closer to 0.

From the ablation experiment, we can observe that our

improved Inception module has performed better than Inception

V1 and Inception V3 regarding model size and recognition

accuracy in Experiment 1. On one hand, on the basis of Inception

V1, the idea of factorization of Inception V3 has been introduced to

the proposed Inception module, the computational complexity has

been reduced; on the other hand, the lightweight advantage of

TABLE 4 Experimental results of different models test.

Test ID CNN Model Accuracy (%) Loss (%) Memory requirements (MB) Training time (s)

1 GoogLeNet model (Inception-V1) 91.87 0.21 21.6 1571

2 GoogLeNet model (Inception-V3) 91.23 0.34 77.4 1646

3 Improved model (GoogLeNet-EL) 97.87 0.07 10.3 644
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depth-wise separable convolution has been applied to the model,

which can reduce the model size and improve the calculation speed

without affecting the efficiency of feature extraction.

Experiment 2: Table 5 shows the ablation experimental results

of different components optimizing network structure of the

proposed model. Figure 11 is a comparison graph of the necessity

test curve of the GoogLeNet-EL related improvement aspects. From

the ablation experiments on four components of the model

structure, we can observe the following results.

a) In the ablation experiment of ReLu vs LeakyRelu, we have

investigated the impact of the activation function on model

training in the GoogLeNet-EL by using ReLu and

LeakyRelu, respectively. Using LeakyRelu as the activation

function in terms of image convergence, Figure 11 shows

that the training accuracy curve of GoogLeNet-EL

converges around 10 iterations and stabilizes at around

95%. In comparison, the training accuracy curve of ReLu as

the activation function slowly converges around 15

FIGURE 10

A comparison graph of the training results of the GoogLeNet-EL, Inception-V1, and Inception-V3.

TABLE 5 Experimental results of different components on model performance.

Test ID Different components description Accuracy
(%)

Loss
(%) Memory requirement (MB) Training time (s)

1 Activation function
Use ReLu 96.86 0.11 10.6 1077

Use LeakyReLu 97.87 0.07 10.3 644

2 Batch normalization
Use DropOut 79.91 0.63 10.5 1018

Remove DropOut 97.87 0.07 10.3 644

3 Pooling layer
Remove SPP 96.78 0.12 10.6 915

Use SPP 97.87 0.07 10.3 644

4 Optimizer
Use SGDM 87.28 0.47 10.6 725

Use Adam 97.87 0.07 10.3 644
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iterations and stabilizes at around 90%. According to

Table 5, through using LeakyRelu instead of ReLu, the

accuracy and memory requirement of the model are

improved by 1.01% and 0.3MB respectively. This

indicates that it is effective to employ LeakyReLu as the

activation function in the proposed model.

b) In the ablation experiment of DropOut, we have investigated

the impact of DropOut on our proposed model. The

DropOut value is set to 0.4. After using DropOut in the

batch normalization layer of GoogLeNet-EL, it is seen that

the accuracy curve fluctuates greatly, and there is a

convergence trend within 100 iterations in Figure 11.

Moreover, as shown in Table 5, the accuracy of the

network training is significantly decreased, and the

training time is also increased. After removing DropOut

in the batch normalization layer of GoogLeNet-EL, we can

observe that the accuracy and memory requirement of the

model are improved by 17.96% and 0.2MB respectively. It

indicates that the component DropOut could be removed.

c) In the ablation experiment of SPP, we have investigated the

impact of SPP on our proposed model. As shown in

Figure 11, after removing SPP, the training accuracy of

96.78% is lower than that of GoogLeNet-EL. The reason is

that the loss of features of the target image is caused by the

partially stretched image. It is proved that the introduction

of SPP can bring a certain improvement to the progress of

network training. In addition, SPP re-aggregates features of

different dimensions into a uniform size, increasing

training speed to a certain extent. It can be seen from the

comparison of training time in Table 5.

d) In the ablation experiment of SGDM vs Adam, we have

investigated the impact of SGDM and Adam on our

proposed model, respectively. On the one hand, we

selected SGDM as the optimizer in the GoogLeNet-EL. It

can be seen from Table 5 that the final loss value of SGDM

after 100 iterations is 0.47, which is still at a relatively high

level and is greatly influenced by the learning rate and other

parameters. The training curve is shown in Figure 11. The

accuracy curve is stable at 50 iterations by using SGDM. As

the increase of iteration times, there is still an upward trend,

but this upward trend is accompanied by an increase in

training time and a great deal of fine-tuning work. On the

other hand, we selected Adam as the optimizer in the

GoogLeNet-EL. It can be seen that the Adam algorithm

could speed up the model training and improve the

convergence of model training. Therefore, it is suitable to

choose Adam as the optimizer for the recognition of crop

leaf diseases in our proposed model.

In the ablation experiment, the GoogLeNet-EL structure, which

is mainly composed of LeakyReLu function, batch normalization,

spatial pyramid pooling, and Adam optimizer, has performed better

FIGURE 11

A comparison graph of the necessity test of GoogLeNet-EL related improvement aspects.
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to recognize pepper leaf disease. It can be explained from the

following perspectives: (1) In terms of activation function,

compared to ReLu, the convergence rate of LeakyRelu as an

activation function is faster, and the accuracy, memory

requirements and training time are improved, which proves that

the use of LeakyReLu as an activation function is necessary.(2) In

terms of BN layer, due to the random loss of some neurons by using

DropOut, the training time is greatly improved compared with

InceptionV1 and V3 and the model convergence speed is

accelerated, unfortunately, the training accuracy is greatly

decreased. Hence, DropOut was removed in our model.(3) As for

SPP, after the removal of SPP from the improved model, due to the

stretching and scaling of some images, the features of the target

insect pest image were lost, and the training accuracy is 96.78%,

which is lower than the proposed model. However, after the

adoption of SPP, there is no need to carry out size unification

operation on the original image, saving some unnecessary image

preprocessing time. Thus, it can improve the accuracy of the

proposed model. (4) As for optimizer, Adam optimizer has

obvious advantages in terms of training accuracy and loss, and

the convergence effect is obviously better than that of SGDM

optimizer. Thus, Adam was used instead of SGDM in our model.

Experiment 3: Figure 12 shows the training accuracy and loss

curve compared with other models. Table 6 shows the detailed data

of the experimental result.

It can be seen from Figure 12 that the accuracy and loss curve of

GoogLeNet-EL have significantly better convergence after 100

iterations, compared with AlexNet and ResNet-50. We can also

observe that the validation accuracy of MobileNet-V2 and

GoogLeNet-EL is the same. According to Table 6, we can observe

that the proposed method has reached the accuracy of 97.87% and

the memory requirement of 10.3MB. It is much better than what

AlexNet, ResNet-50, and MobileNet-V2 could reach. In particular,

the accuracy of GoogLeNet-EL is superior to that of MobileNet-V2.

The memory requirement of GoogLeNet-EL is slightly inferior to

the memory requirements of MobileNet-V2, but there is no

significant difference between them. To summarize, it can be seen

that the GoogLeNet-EL model has shown a competitive

performance and obtained a superior result relative to the other

state-of-the-arts. It indicates that the GoogLeNet-EL model has

shown an excellent capability to recognize pepper leaf disease.

Experiment 4: Figure 13 shows the confusion matrix of different

models on the test set obtained from the final test. There are great

similarities among six different types of pepper leaf diseases, so there is

a phenomenon of misjudgment. According to the performance

evaluation results of different models shown in Table 7, the accuracy,

recall, and F1 value of GoogLeNet-EL reach about 99%, which has

obvious advantages over other networks. The average testing time is

19.33ms, which is 6.04ms faster than the lightweight network

MobileNet-v2; it is conducive to the further deployment of the model.

FIGURE 12

Comparison of test results with other models.
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In addition, due to the limited data set, a cross-validation was

adopted to verify the accuracy of pepper disease recognition model.

In the cross-validation experiment, the pepper disease data set was

randomly divided into five equal portions, where any four equal

parts were used for the training set and the remaining one equal

portion was used for test set. Also, the stable performance of the

model was investigated under 100 iterations, and the training and

testing results of the model were recorded. Under five experimental

tests, the training accuracy of the model is 97.36%±1.93% and the

testing accuracy of the model is 97.18%±1.93%. It demonstrates that

the mode l has per fec t accuracy and can avo id the

overfitting problem.

Despite the outstanding performance demonstrated in the task

of pepper leaf disease detection, there are certain limitations for

further research and improvement. It was noticed that the proposed

model primarily focuses on the disease areas in pepper leaf images,

given its primary task of disease detection. Practical applications of

the model are crucial for farmers. To make the model practically

applicable for farmers, it becomes crucial to ensure its compatibility

with diverse hardware platforms and software environments.

A B

DC

FIGURE 13

Confusion matrix for different models on test set. (a) Pepper scab, (b) Pepper powdery mildew, (c) Pepper anthracnose, (d) Pepper white spot
disease, (e) Pepper blight, (f) Pepper botrytis cinerea. (A) GoogLeNet-EL, (B) AlexNet, (C) ResNet-50, (D) MobileNet-V2.

TABLE 6 Comparison of experimental data results with other models.

Models/methods Accuracy(%) Loss (%) Memory requirement (MB) Average testing time (ms)

AlexNet 29.92 2.35 61 50.20

ResNet-50 81.99 0.58 25.6 33.20

MobileNet-V2 96.68 0.08 8.23 25.37

Proposed method 97.87 0.07 10.3 19.33
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Future work will explore adapting the model for use on a mobile

APP. Additionally, based on the detection results, farmers expressed

a desire to receive decision-making strategies to guide pesticide

spraying. Hence, after identifying pepper leaf diseases, there is a

plan to conduct a quantitative analysis of severity to establish a

pesticide spraying model.

Moreover, the current model is mainly used for pepper disease

diagnosis. We will include more diseases and crops in our

future works

5 Conclusion

This paper has designed a convolution neural network model

(GoogLeNet-EL) with high accuracy and easy transplantation for

pepper leaf disease identification. Through compressing the

network depth and width of the Inception module, the memory

requirement of the proposed model is greatly reduced by 52.31%

and 86.69% by comparing with the GoogLeNet based on Inception-

V1 and Inception-V3, respectively. Experiments show that the

selected LeakyReLu activation function, batch normalization

algorithm, and SGDM optimizer have the best effect on the

GoogLeNet-EL model and the best model fitting effect. To

improve the accuracy of the model, the introduction of spatial

pyramid pooling can effectively enhance the feature learning ability

of the model so that the recognition accuracy of the model is

97.87%, which is more than 6% higher than that of GoogLeNet. In

the real scene, we compared the proposed model with the existing

mainstream models such as AlexNet, ResNet-50, and MobileNet-

V2. The results show that the average testing time of the proposed

model decreases by 61.49%, 41.78%, and 23.81%, respectively. In

addition, the accuracy, recall, and F1 value of the model are about

99%, significantly higher than those network models. It

demonstrates that the enhanced lightweight model has significant

TABLE 7 Test evaluation performance of different models on the test set.

CNN model Disease class Precision (%) Recall (%) F1 score

GoogLeNet-EL

Pepper scab 99.4 99.4 99.4

Pepper powdery mildew 100 97.7 98.8

Pepper anthracnose 98.8 100 99.4

Pepper white spot disease 100 99.4 99.7

Pepper blight 100 100 100

Pepper botrytis cinerea 98.2 100 99.1

AlexNet

Pepper scab 44.4 52.4 48.1

Pepper powdery mildew 52.3 45.2 48.6

Pepper anthracnose 48.0 48.8 48.4

Pepper white spot disease 45.0 39.9 42.3

Pepper blight 40.6 46.5 43.4

Pepper botrytis cinerea 54.1 53.8 53.9

ResNet-50

Pepper scab 70.2 78.4 74.1

Pepper powdery mildew 78.8 77.9 78.3

Pepper anthracnose 80.7 80.7 80.7

Pepper white spot disease 83.0 72.4 77.3

Pepper blight 80.6 84.2 82.4

Pepper botrytis cinerea 82.9 83.4 83.1

MobileNet-V2

Pepper scab 96.5 95.9 96.2

Pepper powdery mildew 92.4 96.9 94.6

Pepper anthracnose 88.9 90.4 89.6

Pepper white spot disease 87.1 92.0 84.8

Pepper blight 94.5 86.1 90.1

Pepper botrytis cinerea 97.6 96.0 96.8
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advantages in recognition accuracy and computing performance of

pepper leaf diseases on a limited computing platform, which is

beneficial to the further deployment in pepper plant in large fields.
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