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A B S T R A C T   

There has been a substantial amount of research involving computer methods and technology for the detection 
and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art 
deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a 
comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper sum
marizes the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning 
teams: Faster R–CNN, three variants of Faster R–CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; 
and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of 
model architecture, parameter settings for training and additional stages including pre-processing, data 
augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods 
required a data augmentation stage to increase the number of images available for training and a post-processing 
stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of 
Faster R–CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we 
demonstrate that the ensemble method based on different deep learning methods can enhance the F1-Score but 
not the mAP.   

1. Introduction 

According to the International Diabetes Federation [39], in 2019 
there were approximately 463 million adults with diabetes worldwide. 
This number is expected to grow to 700 million by 2045. A person with 
diabetes has a 34% lifetime risk of developing a diabetic foot ulcer 
(DFU). In other words, 1 in every 3 people with diabetes will develop a 
DFU in their lifetime [1]. Infection of a DFU frequently leads to limb 

amputation, causing significant morbidity, psychological distress and 
reduced quality of life and life expectancy. This research is the first step 
of a future diabetic foot care project. Periodic monitoring of foot ulcers is 
important to assess the progress of ulcer healing, which is currently 
performed manually by clinicians. Many foot clinics take photographs of 
ulcers during initial evaluation and subsequent reviews for comparison 
of various stages of ulcer progression to boost the visual memory of 
clinicians. The current research aims to develop artificial 
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intelligence-based deep learning algorithms for detection of ulcers 
without direct clinical intervention. This is especially important in the 
current COVID-19 climate, where social distancing is of paramount 
importance. Technologies developed to enhance ulcer diagnostics and 
care plans have the potential to revolutionise diabetic foot care. 

Detection tasks can be challenging when taking into account the 
numerous environmental elements in real-world settings. Examples of 
some observations include:  

● Newly acquired and subtle early stages of ulceration can be easily 
missed by care personnel during visual assessment due to time 
constraints 

● Low-quality images with poor focus, motion blur, occlusion, inade
quate lighting, and backlight are common in wound documentation 
due to time constraints associated with treatment and documenta
tion, even when performed by trained personnel  

● Malformed toenails, deep rhagades, folded amputation scars, and 
fresh epithelialization are examples for false positive detections that 
require manual correction, which can be time consuming when 
documenting DFU  

● Very small, very large and curved ulcers are problematic for certain 
detectors, but are common in typical wound care documentation 

It is essential to develop a technological solution capable of trans
forming current screening practices that has the potential to signifi
cantly reduce clinical time burdens. 

With the emerging growth of deep learning, automated analysis of 
DFU has become possible. However, deep learning requires large-scale 
datasets to achieve results comparable with those of human experts. 
Currently, medical imaging researchers are working in isolation and the 
majority of their research is not reproducible. To bridge the gap and to 
motivate data sharing amongst researchers and clinicians, Yap et al. [50, 
51] proposed the diabetic foot ulcer challenges. This paper presents an 
overview of the state-of-the-art computer methods in DFU detection, 
provides an overview of the publicly available datasets, presents a 
comprehensive evaluation of the popular object detection frameworks 
on DFU detection, proposes an ensemble method and Cascade Attention 
DetNet for DFU detection, and conducts a comprehensive evaluation of 
the deep learning algorithms trained on the DFUC2020 dataset. 

2. Related work 

The growing number of reported cases of diabetes has resulted in a 
corresponding growth in research interest in DFU. Early attempts in 
training deep learning models in this domain have shown promising 
results. Previous research [14,16,17] trained models capable of classi
fication, localization and segmentation. These models reported high 
levels of mean average precision (mAP), sensitivity and specificity in 
experimental settings. The existing method on localization was trained 
using Faster R–CNN with Inception v2 and two-tier transfer learning 
from the Microsoft Common Objects in Context (MS COCO) dataset. 
However, despite the high scoring performance measures, these models 
were trained and evaluated on small datasets (<2000 images), therefore 
the results cannot be regarded as conclusive evidence of their efficacy in 
real-world settings. 

Brown et al. [4] created the MyFootCare mobile app which was 
designed to encourage patient self-monitoring using diaries, goals and 

notifications. The app stores a log of patient foot images and is capable 
of semi-automated segmentation. This novel solution to maintaining 
foot records utilises a method of automatic photograph capture where 
the phone is placed on the floor and the patient is guided using voice 
feedback. However, this particular function of the system was not tested 
during the actual experiment, so it is not known how well it performed 
in real-world settings. 

Wang et al. [45,46] devised a method of consistent DFU image 
capture using a box with a glass surface containing mirrors which reflect 
the image back to a camera or mobile device. Cascaded two-stage sup
port vector classification was used to ascertain the DFU region, followed 
by a two-stage super-pixel classification technique used for segmenta
tion and feature extraction. Despite being highly novel, this method 
exhibited a number of limitations, such as risk of infection due to 
physical contact between wound and capture box. The design of the 
capture box also limited monitoring to DFU that are present on the 
plantar surface of the foot. The sample size was also statistically insig
nificant, with only 35 images from real patients and 30 images of wound 
moulds. 

3. Datasets 

The DFU datasets provided by The Manchester Metropolitan Uni
versity and Lancashire Teaching Hospitals NHS Trust [10,14,15] are 
digital DFU image datasets with expert annotations. The aim of the 
publication of this data is to encourage more researchers to work in this 
domain and to conduct reproducible experiments. There are three types 
of datasets made publicly available for researchers. The first dataset 
consists of foot skin patches for wound classification [14]; the second 
dataset contains regions of interest for infection and ischaemia classifi
cation [15]; and the third is the most recently published dataset for DFU 
detection [10]. The third dataset is the largest dataset to date, and 
increased usage of this data is the driving force for the organisers of the 
DFU challenges. The researchers involved in organising the yearly DFU 
challenges [50,51], in conjunction with the MICCAI conferences, aim to 
attract wider participation to improve the diagnosis/monitoring of foot 
ulcers and to raise awareness of diabetes and DFU. There are numerous 
aspects to take into account in the development of accurate detection 
algorithms. As is the case with other medical imaging research fields, 
increasing the number of images is only one of them. The Diabetic Foot 
Ulcers Grand Challenge (DFUC2020) dataset consists of 2,000 training 
images, 200 validation images and 2,000 testing images [10,16]. The 
data consists of 2,496 ulcers in the training set and 2,097 ulcers in the 
testing set. In an attempt to promote model robustness, some of the 
images in the testing set do not exhibit DFUs. The details of the dataset 
are described in Ref. [10]. To improve the performance of the deep 
learning methods and to reduce computational costs, all images were 
resized to 640 × 480 pixels. 

Since the release of the DFUC2020 training dataset on the 27th April 
2020, we received requests from 39 international institutions from 20 
countries, as shown in Fig. 1. There are a total of 31 submissions to the 
challenge from 11 teams. In this paper, we report the top scores from 
each team and discuss their methods according to the object detection 
approaches they implemented. 
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4. DFU detection methods 

This section presents a comprehensive description of the DFU 
detection methods used, grouped according to the popular deep learning 
object detection algorithms they apply, which include Faster R–CNN, 
YOLOv3, YOLOv5, and EfficientDet. We also include descriptions of an 
ensemble method and a new Cascade Attention DetNet (CA-DetNet). 

4.1. Faster R–CNN 

Faster R–CNN [38] is one of the two-stage object detection models, 
which generates a sparse set of candidate object locations using a Region 
Pooling Network (RPN) based on shared feature maps, which then 
classifies each candidate proposal as the foreground or background 
class. After extracting shared feature maps with a CNN, the first stage 
RPN takes shared feature maps as an input and generates a set of 
bounding box candidate object locations, each with an “objectness” 
score. The size of each anchor is configured using hyperparameters. 
Then, the proposals are used in the region of interest pooling layer (RoI 
pooling) to generate subfeature maps. The subfeature maps are con
verted to 4,096 dimensional vectors and fed forward into fully con
nected layers. These layers are then used as a regression network to 
predict bounding box offsets, with a classification network used to 
predict the class label of each bounding box proposal. 

The RoI pooling layer quantizes a floating-number RoI to the discrete 
granularity of the feature map. This quantization introduces mis
alignments between the RoI and the extracted features. Therefore, the 
model evaluated in this paper employs a RoIAlign layer, which is 
introduced in Mask R–CNN [18], instead of the RoI pooling layer. This 
removes the harsh quantization of the RoI pooling layer, properly 
aligning the extracted features with the input. 

Additionally, the Feature Pyramid Network (FPN) [27] is employed 
as the backbone of the network. FPN uses a top-down architecture with 
lateral connections to build an in-network feature pyramid from a 

single-scale input. Faster R–CNN with an FPN backbone extracts RoI 
features from different levels of the feature pyramid according to their 
scale, with the remainder of the approach being similar to ResNet. Using 
a ResNet-FPN backbone for feature extraction with Mask R–CNN gives 
excellent gains in both accuracy and speed. Specifically, we employ 
ResNeXt101 [47] with the FPN feature extraction backbone to extract 
the features. 

4.1.1. Data augmentation 
In this challenge, the images in the dataset were captured from 

different viewpoint angles, cameras with different focal lengths and 
varying levels of blur. Also, the training dataset contains only 2, 000 
images, which could be considered small for training deep learning 
models. Therefore, we employ various data augmentation techniques for 
robust prediction. Specifically, we employ the following augmentations: 

● HSV and RGB: As the lighting conditions vary between dataset im
ages, we apply random RGB and HSV shift to the images. Especially, 
we randomly add/subtract from 0 to 10 RGB values and 0 to 20 HSV 
values in the images.  

● Blurring: As the dataset contains images captured from different 
focal lengths, some images are blurred and contain camera noise. 
Therefore, we apply Gaussian and median blur filters with the filter 
size set to 3. The filters are applied with the probability of 0.1.  

● Affine transformation: As the images are captured from different 
camera angles, we apply random affine transformations. Specifically, 
we apply random shift, scaling (0.1) and rotation (90◦).  

● Brightness: As the images are captured in various environments, we 
employ brightness and contrast data augmentation. More specif
ically, we randomly change the brightness and contrast in a scale 
from 0.1 to 0.3, with probability set to 0.2. 

4.1.2. Model training and implementation 
For training, we fine-tune a model pretrained on MS-COCO [28]. We 

employ Stochastic Gradient Descent Optimizer with a momentum of 0.9 
and weight decay set to 0.0001. During training, we employ a warm up 
learning rate scheduling strategy, using lower learning rates in the early 
stages of training to overcome optimization difficulties. More specif
ically, we linearly increase the learning rate to 0.01 in the first 500 it
erations, then multiply by 0.1 at epochs 6, 12 and 30. We implemented 
the methods based on the detection repository.1 

4.1.3. Variants of faster R–CNN 
Several papers have proposed variants of Faster R–CNN. In this 

paper, we implement Faster R–CNN, three variants of Faster R–CNN and 
ensemble the results. The three variants of Faster R–CNN are as follows:  

● Cascade R–CNN [8]: this variant implements a different architecture 
for the ROI head (the module that predicts the bounding boxes and 
the category label). Cascade R–CNN builds up a cascade head based 
on Faster R–CNN [38] to refine detection progressively. Since the 
proposal boxes are refined by multiple box regression heads, Cascade 
R–CNN is suitable for more precise localization of objects.  

● Deformable Convolution [57]: in this variant, the basic architecture 
of the network is the same as Faster R–CNN. However, we replace the 
convolution layer with a deformable convolution layer [56] at the 
second, third and fourth ResNeXt blocks of the feature extractor. The 
deformable convolution adds 2D offsets to the regular grid sampling 
locations in the standard convolution, enabling free-form deforma
tion of the sampling grid. The offsets are learned from the feature 
maps, via additional convolutional layers. Thus, the deformation is 
conditioned on the input features in a local, dense and adaptive 
manner. 

Fig. 1. Summary of DFUC2020 participants across the world, 39 institutions in 
20 countries have licensed the dataset for participation in the challenge. 

1 https://github.com/open-mmlab/mmdetection. 
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● Prime Sample Attention [9] (PISA): PISA is motivated by two con
siderations: samples should not be treated as independent and 
equally important, and the classification and localization are corre
lated. Thus, a ranking strategy is employed that places the positive 
samples with highest IoUs around each object, and the negative 
samples with highest scores in each cluster at the top of the ranked 
list. This directs the focus of the training process via a simple 
re-weighting scheme. It also employs a classification-aware regres
sion loss to jointly optimize the classification and regression 
branches. 

4.1.4. Post-processing 
At test time, we employ a test-time augmentation scheme: we 

augment the test image by applying two resolutions (640 × 480 and 800 
× 600), and we also flip the image. As a result, we augment a single 
image to four images and merge the predictions obtained for the four 
images. We employ soft NMS (non maximum suppression) [3] with a 
confidence threshold of 0.5 as the post-processing of predicted bounding 
boxes. 

4.1.5. Ensemble method 
Combining predictions from different models can improve general

ization and usually yields more accurate results compared to a single 
model. During the post-processing stage for Faster R-CNNs, we employ 
soft NMS [3] to select the predicted bounding boxes for each method. 
Such methods work well on a single model, but they only select the 
boxes and cannot produce averaged localization of predictions com
bined from various models effectively. Therefore, after predicting the 
bounding boxes for each method, we ensemble these predicted bounding 
boxes using Weighted Boxes Fusion [40]. Unlike NMS-based methods 
that simply exclude part of the predicted bounding boxes, the Weighted 
Boxes Fusion algorithm uses the confidence scores of all proposed 
bounding boxes to form the average boxes. The reader is referred to 
Ref. [40] for further details of the algorithm. We ensemble four models 
(pure Faster R–CNN, Cascade R–CNN, Faster R–CNN with Deformable 
Convolution and Faster R–CNN with Prime Sample Attention model). 
We set equal weights when fusing the predicted bounding boxes of each 
model. 

4.2. YOLO 

You-Only-Look-Once (YOLO) [35] is a unified, real-time object 
detection algorithm that reformulates the object detection task to a 
single regression problem. YOLO employs a single neural network ar
chitecture to predict bounding boxes and class probabilities directly 
from full images. Hence, when compared to Faster R–CNN [38], YOLO 
provides faster detection. 

Over time, improvements of YOLO were implemented and released 
as distinct and independent software packages by the originators 
[35–37]. As a result of increased publicity and popularity, a model zoo 
containing further YOLO adaptations emerged. Subsequently, further 
maintainers continued to improve the DarkNet2-based versions, and [2] 
created ports for other machine learning libraries such as PyTorch3 [32]. 

In this paper, two approaches are selected for DFU detection using 
the DFUC2020 dataset: YOLOv3 and YOLOv5. We discuss the networks 
and present descriptions of our implementation in the following 
subsections. 

4.2.1. YOLOv3 
YOLOv3 [37] was developed as an improved version of YOLOv2 

[36]. It employs multi-scale schema, predicting bounding boxes at 

different scales. This allows YOLOv3 to be more effective for detecting 
smaller targets when compared to YOLOv2. 

YOLOv3 uses dimension clusters as anchor boxes in order to predict 
bounding boxes around the desired objects in given images. Logistic 
regression is used to predict the objectness score for a given bounding 
box. Specifically, as illustrated in Fig. 2, the algorithm predicts the four 
coordinates of the bounding box (tx, ty, th, tw) as in Equation (1), Equa
tion (2), Equation (3), and Equation (4) [37]. 

bx = σ(tx) + cx (1)  

by = σ(ty) + cy (2)  

bh = pwetw (3)  

bw = pheth (4) 

Fig. 2. Illustration of bounding boxes, dimension priors and location predic
tion. The red dot represents the bounding box center with the coordinates (bx, 
by). Adapted from Ref. [37]. 

Table 1 
The architecture of DarkNet-53 used in YOLOv3. Adapted from Ref. [37].  

Type  Filters Size 

Convolutional  32 3 × 3 
Convolutional  64 3 × 3/2 
Convolutional  32 1×1 
Convolutional 1 × 64 3 ×3 
Residual    
Convolutional  128 3 ×3/2 
Convolutional  64 1 ×1 
Convolutional 2 × 128 3 × 3 
Residual    
Convolutional  256 3 × 3/2 
Convolutional  128 1 × 1 
Convolutional 8 × 256 3 × 3 
Residual    
Convolutional  512 3 × 3/2 
Convolutional  256 1 × 1 
Convolutional 8x 512 3 × 3 
Residual    
Convolutional  1024 3 × 3/2 
Convolutional  512 1 × 1 
Convolutional 4 × 1024 3 × 3 
Residual    
Avgpool Connected Softmax  Global 1000   

2 DarkNet GitHub repository: https://github.com/pjreddie/darknet (accessed 
2020-08-29).  

3 PyTorch website: https://pytorch.org/(accessed 2020-08-29). 
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where (cx, yy) are offsets from the top left corner of the image, and (pw, 
ph) are bounding box prior height and weight. The k-means clustering 
algorithm is used to determine bounding box priors, while the sum of 
squared errors is used for training the network. Let t̂* be the ground truth 
for some coordinate prediction, and t* be the network prediction during 
training. Then, the gradient is t̂* − t*. 

4.3. Model pipeline 

The backbone of YOLOv3 is a hybrid model called Darknet-53 (as 
shown in Table 1), which is used for feature extraction. As the name 
indicates, DarkNet-53 is made of 53 convolutional layers that also take 
advantage of shortcut connections. 

As the detection algorithm is required to detect only one type of 
object, the complexity of the problem is reduced from multi-class 
detection to single object detection. Hence, for the purpose of detect
ing diabetic foot ulcers, we have employed a simplified version of 
YOLOv3. 

4.3.1. Training 
We employ transfer learning by using the pre-trained DarkNet 

weights which are provided by Ref. [37]. Then, we train our detector in 
2 steps, using the following settings: Adam optimizer with learning rate 
1e-3, number of epochs = 100, batch size = 32 and using 20% of the data 
for validation. 

First, we start by freezing the top DarkNet-53 layers and train the 
algorithm with the above settings. Then, we retrain the entire network to 
improve performance. Similar to the original YOLOv3, our trained 
network extracts features from 3 different pre-defined scales, which is a 
similar concept to feature pyramid networks [27]. We then use the 
trained network for detecting diabetic foot ulcers in blind test images. 

4.3.2. Post-processing 
As observed from Fig. 3, in rare cases, the resulting algorithm may 

produce double detections or false positives. To reduce such examples, 
we include a post-processing stage. 

Our post-processing steps consist of two stages. First, we identify 
double detections by flagging the detected bounding boxes with more 
than 80% overlap. Among the overlapping detected boxes we only keep 
the box with the highest confidence result. Finally, we further post- 
process the results by removing any detection with a confidence score 
<0.3, with the aim of reducing the rate of false positive detections. 

4.3.3. YOLOv5 
YOLOv5 was first published on GitHub4 in May 2020 in v1.0 [21]. 

The maintainer is already well known for a YOLOv3 [37] port for 
PyTorch5 [22]. The maintainer named the network YOLOv5 to avoid 
naming conflicts due to the prior release of YOLOv4 [2]. However, 
YOLOv5 is not to be confused with a descendent of the original Dar
kNet-based6 YOLO-series. A scientific paper reporting on the improve
ments in YOLOv5 has not yet been published, but is currently pending.7 

YOLOv5 is currently under active development, with the latest version 
being v5.0 [23] at the time of writing. 

New features and improvements in YOLOv5 are mainly focused on 
the incorporation of the state-of-the-art for deep learning networks, such 
as activation functions and data augmentation. These were partly 
adopted from YOLOv48 such as the CSPNet backbone [43] with other 
elements originating from prior YOLOv4 contributions by the YOLOv5 
maintainer. One of the most notable data augmentation aspects is the 
mosaic loader in which four images are altered and combined to form a 
new image. This allows detection of objects outside of their normal 
context and at smaller sizes, which reduces the need for large mini-batch 
sizes. YOLOv5 reports high inference speed and small model sizes, 
allowing a convenient translation to mobile use cases via model export. 

The approach on DFU detection via YOLOv5 described in the 
following is based on the early version v1.09 [21] commit a1c840610 

from 14th July 2020 that still exhibited several issues. 

4.3.4. Pre-processing 
Initially, image data of the training dataset was analyzed via Anti

Dupl11 in version 2.3.10 to identify duplicate images, yielding a set of 
39 pair findings. A spatial analysis of duplicate pair annotation data was 
performed, utilizing the R language12 [34] in version 4.0.1 and the 
Simple Features for R (sf) package13 [33] in version 0.9-2. Originally, 
none of the duplicate pair images showed bounding box intersections by 
themselves. After joining duplicate pair annotations, several in
tersections were detected with a maximum of two involved bounding 
boxes. These represented different annotations of the same wound in 
two duplicate images, now joint in one image. To resolve these, each 
pair of intersecting bounding boxes BBox1 and BBox2 was merged into a 
single bounding box B̂Box by using their outer boundaries, as shown in 
Equ. 5. 

B̂Box

⎧
⎪⎪⎨

⎪⎪⎩

x̂min = min(xmin1, xmin2)

ŷmin = min(ymin1, ymin2)

x̂max = max(xmax1, xmax2)

ŷmax = max(ymax1, ymax2)

(5) 

The applied duplicate cleansing and annotation merging strategy 
resulted in n = 1, 961 images with k = 2, 453 annotations in the cleansed 

Fig. 3. Illustration of two types of false positives. The top row shows false- 
positive examples from double detections; the bottom row shows single false- 
positive detections caused by a non-DFU condition and a background object. 

4 YOLOv5 GitHub repository: https://github.com/ultralytics/yolov5/releases 
/tag/v1.0 (accessed 2021-04-28).  

5 Ultralytics’ YOLOv3 GitHub repository: https://github.com/ultralytics/ 
yolov3 (accessed 2020-08-29).  

6 YOLOv4 GitHub repository: https://github.com/AlexeyAB/darknet 
(accessed 2020-08-29).  

7 YOLOv5 question on scientific paper: https://github.com/ultralytics 
/yolov5/issues/2847 (accessed 2021-04-28).  

8 YOLOv5 question on adopted YOLOv4 features: https://github.com/ 
ultralytics/yolov5/issues/370 (accessed 2021-04-28).  

9 YOLOv5 v1.0: https://github.com/ultralytics/yolov5/releases/tag/v1.0 
(accessed 2020-09-12).  
10 YOLOv5 GitHub commit a1c8406: https://github.com/ultralytics/yolo 

v5/commit/a1c8406 (accessed 2020-08-29).  
11 AntiDupl GitHub repository: https://github.com/ermig1979/AntiDupl 

(accessed 2020-08-29).  
12 R language website: https://www.r-project.org/(accessed 2020-08-29).  
13 Simple Features for R (sf) GitHub repository: https://github.com/r-spatial/s 

f (accessed 2020-08-29). 
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training dataset. Boundaries of merged bounding boxes were checked 
for consistency. Finally, annotation data was converted to the 
resolution-independent format used by YOLO implementations. 

Reviewing image data of all dataset parts (training, validation and 
test), showed pronounced compression artifacts and color noise due to a 
high compression rate and downscaling to a low resolution. As both 
compression artifacts and color noise had derogatory effects on the 
detection performance, images were enhanced using a fast imple
mentation of the non-local means algorithm [6] for color images, uti
lizing the Python language14 in version 3.6.9 with the OpenCV on 

Wheels (opencv-python)15 package in version 4.2.0.34. The algo
rithm parameters were set to h = 1 (luminance component filter 
strength) and hColor = 1 (color component filter strength) with 
templateWindowSize = 7 (template patch size in pixels) and 
searchWindowSize = 21 (search window size in pixels). 

Resulting images show less definitive compression artifact borders 
and notably reduced color noise. Some textures are also more pro
nounced. Examples of results at a macroscopic and a detail level are 
shown in Fig. 4. 

4.3.5. Data Augmentation 
YOLOv5 in v1.0 implements three sets of data augmentation tech

niques. The first set comprises alterations of colorspace components 
(hue, saturation, value), the second set comprises geometric distortions 
(random scaling, rotation, translation and shearing), and the third set is 
represented by the mosaic loading of images. 

A normalized fraction of 0.014 images received hue augmentation, 
0.68 received saturation augmentation and 0.36 received value 
augmentation. Scaling was applied in a normalized range of ±0.5. 
Rotation, translation and shearing were disabled. Settings for colorspace 
component alterations and geometric distortions are definitions for 
distributions, generated during runtime by a random sampler for the 
augmentation function.16 Using this approach, no image is presented 
more than once during training. 

Mosaic data augmentation is comparable to CutMix, but takes four 
images instead of two and does not overlap them. Image parts are placed 
as quadrants in a new image with random ratios, thereby allowing the 
model to detect objects in different contexts and at different sizes. This 
reduces the need for large mini-batch sizes. However, the mosaic loader 
had to be disabled in the presented approach due to a bug, leading to 
invalid bounding boxes in resulting predictions. 

4.3.6. Model 
YOLOv5 includes four different models ranging from the smallest 

YOLOv5s with 7.5 million parameters (plain 7 MB, COCO pre-trained 
14 MB) and 140 layers to the largest YOLOv5x with 89 million param
eters and 284 layers (plain 85 MB, COCO pre-trained 170 MB). In the 
approach considered in this paper, the pre-trained YOLOv5x model is 

Fig. 4. Effects of the non-local means (NLM) algorithm are shown for two 
example images (a) and (e) from the training dataset in (b) and (f). At a 
macroscopic level the changes are not obvious. At a detail level borders of 
compression artifacts on homogeneous areas and color noise of (c) are visibly 
reduced in (d). Vague textures of (g) are also more pronounced in (h). 

Fig. 5. The architecture of YOLOv5 v1.0, adapted from community-driven 
discussions on the model representation (https://github.com/ultralytics/ 
yolov5/issues/280 (accessed 2021-04-28)), verified by the maintainer. 

14 Python language website: https://www.python.org/(accessed 2020-08-29). 

15 OpenCV on Wheels GitHub repository: https://github.com/skvark/open 
cv-python (accessed 2020-08-29).  
16 YOLOv5 question on data augmentation: https://github.com/ultralytics 

/yolov5/issues/2164 (accessed 2021-04-28). 
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used. The general YOLOv5 v1.0 architecture is displayed in Fig. 5. 
Different model sizes s, m, l and x vary in set depth and width factors for 
the model and its layer channels, which are 1.33 and 1.25 for the 
YOLOv5x model. 

The YOLOv5x model uses a detector that consists of a Cross Stage 
Partial Network (CSPNet) [43] backbone trained on MS COCO [28], and 
a model head using a Path Aggregation Network (PANet) [29] for 
instance segmentation. The backbone further incorporates a Spatial 
Pyramid Pooling (SPP) network [19], which allows for dynamic input 
image size and is robust against object deformations. 

4.3.7. Training 
The hardware setup used for the experiment comprised a single 

NVIDIA® V10017 tensor core graphics processing unit (GPU) with 16 GB 
memory as part of an NVIDIA® DGX-118 supercomputer for deep 
learning. YOLOv5 was set up using a provided Docker container,19 

executed via Nvidia-Docker20 in version 19.03.5. 
Training was organized in two stages: Initial training and self- 

training. The initial training stage uses the original available training 
data to train a model. The self-training approach, also called pseudo- 
labelling, extends available training data by inferring detections on 
images for which originally no annotation data is available [25]. This is 
realized using the model resulting from the initial training stage; yielded 
detections are then used as pseudo-annotation data. Resuming the initial 
training in the self-training stage with the extended training data gen
eralizes detection capabilities of the model. 

A five-fold cross-validation was performed for each training stage to 
approximate training optima. Both stages used the default set of 
hyperparameters (including parameters related to the data augmenta
tion procedures): optimizer = SGD, lr0 = 0.01, momentum = 0.937, 
weight_decay = 0.0005, giou = 0.05, cls = 0.58, cls_pw = 1.0, 
obj = 1.0, obj_pw = 1.0, iou_t = 0.2, anchor_t = 4.0, fl_gamma =
0.0, hsv_h = 0.014, hsv_s = 0.68, hsv_v = 0.36, degrees = 0.0, 
translate = 0.0, scale = 0.5, and shear = 0.0. A default seed value 
of 0 was used for model initialization. Both training stages were per
formed in the single-class training mode, with mosaic data augmenta
tion deactivated due to issues regarding bounding box positioning in the 
current YOLOv5 implementation. 

During the initial training stage, a base model was trained on the pre- 
processed training dataset for 60 epochs with a batch size of 30. This 
base model was initialized with weights from the MS COCO pre-trained 
YOLOv5x model. For the self-training approach, the base model was 
then used to create the extended training dataset for self-training. 
Pseudo-annotation data was inferred for the validation and test data
sets, using the best-performing epoch automatically saved at epoch 58. 
The resulting extended training dataset contained 4,161 images, of 
which 3,963 included 4,638 wound annotations. 

During the self-training stage, the base model training was resumed 
at its latest epoch, but trained further on the extended training dataset 
with a batch size of 20. Three final training states were created: (1) after 
an additional 30 epochs, (2) after an additional 40 epochs, and (3) after 
an additional 60 epochs of self-training (referred to as E60_SELF90, 
E60_SELF100, and E60_SELF120). 

4.3.8. Post-processing 
The minimum confidence threshold for detection was set to 0.70, so 

that only highly certain predictions were exported. This applies for 
pseudo-annotation data of the extended training dataset created for self- 
training as well as for the final predictions. 

Predictions for our experiments were inferred via the final training 
states E60_SELF90, E60_SELF100, and E60_SELF120, using the best 
epochs 88, 96 and 118 respectively. An additional experiment was 
conducted based on the training state E60_SELF100 involving the 
built-in test-time augmentation and non-maxima suppression (NMS) 
features of YOLOv5 for inference. 

Test-time augmentation (TTA) is a data augmentation method which 
involves several augmented instances of an image that are presented to 
the model. For each instance, predictions are made which provide an 
ensemble of instance predictions. This can enable a model to detect 
objects it may not be able to detect in a “clean” image. However, TTA 
may also cause multiple distinct detections for the same object that can 
harm evaluation scores. To tackle these, NMS was applied to collapse 
multiple intersecting detections into a single bounding box. The inter
section over union (IoU) threshold was set to IoU ≥ 0.30, as images with 
multiple wounds a distinct spatial demarcation was usually given. Thus, 
the risk of interfering detections of different wounds was low. 

4.4. EfficientDet 

The EfficientDet architecture [42] is an object detection network 
created by the Google Brain team, and utilises the EfficientNet ConvNet 
[41] classification network as its backbone. EfficientDet uses feature 
fusion techniques in the form of a bidirectional feature pyramid network 
(BiFPN) which combines representations of input images at different 
resolutions. BiFPN adds weights to input features which enables the 
network to learn the importance of each feature. The outputs from the 
BiFPN are then used to predict the class of the detected object and to 
generate bounding boxes using bounding box regression. The main 
feature of EfficientDet is its ability to utilise compound scaling, which 
allows all parts of the network to scale in accordance to the target 
hardware being used for training and inference [42]. An overview of the 
EfficientDet architecture is shown in Fig. 6. 

4.4.1. Pre-processing 
The dataset was captured with different types of camera devices 

under various lighting conditions. To counter variations in noise and 
lighting found in the dataset images, the Shades of Gray (SoG) color 
constancy algorithm was used [31]. Examples of pre-processed DFU 
images using SoG are shown in Fig. 7. 

4.5. Data augmentation 

Data Augmentation techniques have been proven to be an important 
tool in improving the performance of deep learning algorithms for 
various computer vision tasks [13,49]. For the application of Effi
cientDet, we augmented the training data by applying identical trans
formations to the images and associated bounding boxes for DFU 
detection. Random rotation and shear transformations were used to 
augment the DFUC2020 dataset. Shearing involves the displacement of 
the image at its corners, resulting in a skewed or deformed output. Ex
amples of these types of data augmentation are shown in Fig. 8. 

4.5.1. Model 
EfficientDet algorithms achieved state-of-the-art accuracy on the 

popular MS-COCO [28] object detection dataset. EfficientDet 
pre-trained weights are classed from D0 to D7, with D0 having the 
fewest number of parameters and D7 having the highest number of 
parameters. Tests on the MS-COCO dataset indicate that training using 
weights with more parameters results in better network accuracy. 
However, this comes at the cost of significantly increased training time. 
Given that the DFUC2020 dataset images were resized to 640 × 480, we 
selected the EfficientDet-D1 pre-trained weights for DFU detection [12]. 

17 NVIDIA® V100: https://www.nvidia.com/en-us/data-center/v100/ 
(accessed 2020-08-30).  
18 NVIDIA® DGX-1: https://www.nvidia.com/en-us/data-center/dgx-1/ 

(accessed 2020-08-30).  
19 YOLOv5 Docker Hub container: https://hub.docker.com/r/ultralytics/yolo 

v5 (accessed 2020-08-30).  
20 Nvidia-Docker GitHub repository: https://github.com/NVIDIA/nvidia-d 

ocker (accessed 2020-08-30). 
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4.5.2. Training 
We trained the EfficientDet-D1 method on an NVIDIA Quadro RTX 

8000 GPU (48 GB) with a batch-size of 16, SGS optimizer with a learning 
rate of 0.00005, momentum of 0.9 and number of epochs set to 50. We 
used the validation accuracy with early stopping to select the final 
model for inference. 

4.5.3. Post-processing 
We further refined the EfficientDet architecture with a score 

threshold of 0.5 and removed overlapping bounding boxes to minimize 
the number of false positives. The scores were compared between the 
overlapping bounding boxes, with the bounding box with the highest 
score used as the final output. 

4.6. Cascade Attention DetNet 

4.6.1. Data augmentation 
Given that the DFUC2020 dataset has only 2,000 images for training, 

we use several data augmentation methods to complement the dataset in 
order to avoid over-fitting when training models. A more generalized 
model can be obtained through data augmentation in order to make it 
adapt to the complex clinical environment. We use common data 
augmentation methods including horizontal and vertical image flipping, 
random noise and a central scaling method (which scales with ground 
truth as the center). Additionally, we increase the number of training 
images by using the visually coherent image mixup method [52]. The 
original purpose of this method is to overcome the problem of distur
bance rejection. Since Zhang et al. [53] introduced this method into 
object detection, many researchers have used it in data augmentation to 
enhance network robustness. The principle of this algorithm involves 
the random selection of two sample images which are then used to 
generate a new sample image according to Equation (6) and Equation 
(7). 

x̂ = λxi + (1 − λ)xj (6)  

ŷ = λyi + (1 − λ)yj (7)  

where (xi, yi), (xj, yj) are the points of two sample images and λ ∈ [0,1], 
which is randomly generated by the Beta(alpha, alpha) distribution. The 
new sample (x̂, ŷ) is used for training. As shown in Fig. 9, two images of 
DFU are mixed in a certain ratio. We use Beta(1.5,1.5) for the images’ 
synthesis. 

DFU detection can be challenging in complex environments, such as 
clinical settings, due to the large number of objects that might be pre
sent. To improve the accuracy of detection, we use the mobile fuzzy 
method for data augmentation, as shown in Fig. 10. 

Fig. 6. The architecture of EfficientDet. Adapted from Ref. [42].  

Fig. 7. Shades of gray algorithm for pre-processing of the DFUC2020 dataset: 
The left column shows the original images; the right column shows results of 
pre-processed images. 
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4.6.2. Model 
The Cascade R–CNN [7] is the first cascaded object detection model. 

Due to the superior performance of the cascade structure, it is widely 
used in the field of object detection [54]. We use the cascade structure in 
conjunction with DetNet [26], which is designed to address the prob
lems incurred by down-sampling repeatedly, as such a process reduces 
the accuracy of positioning. DetNet makes full use of dilated convolu
tions to enhance the receptive field instead of down-sampling repeat
edly. The overall framework of our method, Cascade Attention DetNet 
(CA-DetNet) is shown in Fig. 11. 

The detection of DFU is different from common object detection 
tasks. For common object detection tasks, objects can appear anywhere 
in the image. For the detection of DFU, the wounds can only appear on 

the foot, which is a good fit for applying an attention mechanism, which 
we added into the DetNet by adopting the mask branch of the Residual 
Attention Network [44]. 

The Attention DetNet (A-DetNet) is composed of 6 stages. The first 
stage consists of a 7 × 7 convolution layer (with a stride of 2) and a max- 
pooling layer. The second, third and fourth stages contain an A-Resbody, 
with the fifth and sixth stages containing an A-Detbody. The A-Resbody 
and A-Detbody are similar to those in the original DetNet. The difference 
between A-DetNet and the original DetNet is the addition of an attention 
branch into the Resbody and Detbody. The attention branch is similar to 
the mask branch of the Residual Attention Network, while we take other 
parts from the original Resbody or Detbody as the trunk. The attention 
branch of the Resbody is comprised of two zoom structures, which 
consist of a max-pooling layer and an up-sampling layer, followed by 
two 1 × 1 convolution layers activated by sigmoid functions. 

Given that the five times down-sampling results in a feature map that 
is too small to recover the original size by upsampling, we only add one 
zoom structure into the attention branch of the A-Detbody. The feature 
map from the trunk is multiplied by the mask from the attention branch. 
To avoid consuming the value of the feature and breaking the identity 
mapping, we refer to the Residual Attention Network and add one to the 
mask. 

4.6.3. Training 
For the cascade structure, we set the total number of cascade stages 

to 3, with the intersect over union (IoU) threshold set to 0.5, 0.6 and 0.7 
for each of the three stages. During training we use DetNet pre-trained 
model, which has been trained on the ImageNet dataset, to accelerate 
model convergence. We train on a single GPU (NVIDIA Tesla P100) for 
60 epochs, with a batch size of 4 and a learning rate of 0.001. The 
learning rate decreases 10 times at the 10th epoch, and then decreases 
another 10 times at the 20th epoch. We optimize the model with the 
Adam optimizer. 

4.6.4. Post-processing 
Noise from the external environment can lead to many low confi

dence bounding boxes. These bounding boxes will reduce the perfor
mance of the detector, so we adopt a special threshold suppression 
method to suppress bounding boxes with low thresholds except when 
the detector detects only one bounding box. We set the threshold to 0.5. 

Fig. 8. Bounding box data augmentation on the DFUC2020 dataset.  

Fig. 9. The effect of the visually coherent image mixup method.  

Fig. 10. The effect of the mobile fuzzy method. (a) shows the original image, 
and (b) shows the image after blurring with the mobile fuzzy method. 
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5. Results and analysis 

We report and analyse the results obtained using the methods 
described above. The evaluation metrics are the number of true positives 

(TP), the number of false positives (FP), recall, precision, F1-Score and 
mAP, as described in the diabetic foot ulcer challenge 2020 [10]. For the 
common object detection task, mAP is used as the main evaluation 
metric. However, in this DFU task, miss-detection (a false negative) has 
potentially severe implications as it may affect the quality of life of 
patients. An incorrect detection (a false positive) could increase the 
financial burden on health services. Therefore, we regard F1-Score as 
equally important as mAP for performance evaluation. 

5.1. Faster R–CNN 

Table 2 summarizes the quantitative results of pure Faster R–CNN, its 
variants, and the final ensemble model. From the table, the performance 
of pure Faster R–CNN is on par with Cascade R–CNN. In contrast, 
employing the Deformable convolution or PISA module significantly 
improves the performance. After we ensemble the model, we reduce FP 
substantially, with a reduction in TP also observed. Although the 
ensemble method improves the precision of DFU detection, it does not 
improve the overall score. Therefore, the best result is achieved by 
Deformable Faster R–CNN, with a mAP of 0.6940 and F1-Score of 
0.7434. 

The qualitative results of Faster R–CNN with Deformable Convolu
tion is summarized in Fig. 12. It can be seen that our model successfully 
detected the wounds in the images, even in cases with small wound sizes 
(top-left, bottom-left and bottom-right images) or the images are blurred 
(top-right image). However, we observed the miss-detection as in the 
bottom-right image. In this image, the background texture of the blood 
was incorrectly detected as a DFU. To improve prediction accuracy, the 
training data should be captured in various environments so that the 
network is better able to discern between DFU and background objects. 

5.2. YOLOv3 

Table 3 shows the final results of the proposed YOLOv3 method on 
the testing dataset. The results are reported for two different batch sizes, 
with and without post-processing. 

As the results indicate, using a batch size of 50 leads to a better 
overall performance compared to using a batch size of 32. It also dem
onstrates that removing the overlaps leads to an improvement in both 
F1-score and Precision, while resulting in slight decreases to both mAP 
and Recall. As the gain overpowers the loss, we conclude that removing 
overlaps results in better overall performance. 

While removing the detections with less than 0.3 confidence results 

Fig. 11. The architecture of CA-DetNet. “Image” is an input image. “A-DetNet” is a backbone network. “Pool” represents region-wise feature extraction. “H” is a 
network head. “B” is a bounding box and “C” represents classification. “B0” is the proposal in all architectures. The structure of the A-DetNet is based on the DetNet. 
The attention mechanism is applied in Resbody and Detbody. Different bottleneck blocks in the Detbody or Resbody are similar to those in the DetNet. 

Table 2 
Faster R–CNN. The first row shows the results of pure Faster R–CNN, the second 
row shows the results of Cascade R–CNN, the third row shows the results of 
Faster R–CNN with Deformable Convolution v2, the fourth row shows the results 
of Faster R–CNN with Prime Sample Attention, and the last row shows the results 
of the ensemble method.  

Method TP FP Recall Precision F1-Score mAP 

Faster 1512 683 0.7210 0.6888 0.7046 0.6338 
Cascade 1483 649 0.7072 0.6956 0.7014 0.6309 
Deform 1612 628 0.7687 0.7196 0.7434 0.6940 
PISA 1495 444 0.7129 0.7710 0.7408 0.6518 
Ensemble 1447 394 0.6900 0.7860 0.7349 0.6353  

Fig. 12. The qualitative results of Faster R–CNN with Deformable Convolution, 
which shows the best performance among Faster R–CNN based methods. It is 
noted that the network is able to detect small ulcers as shown in (a),(b) and (c). 
An example of a FP generated by the network is shown in (d). 
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in slightly better precision, it reduces recall, F1-score and mAP. There
fore, unless precision is the priority, removing the low confidence de
tections would not lead to an improvement. Examples of final detections 
for YOLOv3 are presented in Fig. 13. 

Additionally, we added 60 copyright-free images of healthy feet21 to 
the training set to observe the effect on detection performance. As shown 
in Table 3, this results in an improvement of F1-Score, but reduces mAP. 

5.3. YOLOv5 

Table 4 summarizes the results of YOLOv5. Fewer additional self- 
training epochs in method E60_SELF90 achieved better results than 
E60_SELF100 and E60_SELF120. However, the application of TTA with 
NMS on E60_SELF100 achieved the best results in E60_SELF100_
TTA_NMS. Examples of detections with E60_SELF100_TTA_NMS on the 
test set are shown in Fig. 14, Fig. 15 shows additional examples of false 
negative and false positive cases. 

5.4. EfficientDet 

Table 5 shows the results of the EfficientDet model on the DFUC2020 
testing set both with and without post-processing. The results indicate 
that the number of both TP and FP cases are reduced with the post- 
processing method. However, with the post-processing method, the 

percentage of TP cases (from 1,626 to 1,593) is 2.02% compared to FP 
cases (from 720 to 594), which is 17.50%. Hence, the post-processing 
method results in an important improvement in both Precision 
(67.86%–72.84%) and F1-score (72.38%–74.37%), with a slight 
decrease in both mAP (57.82%–56.94%) and Recall (77.44%–75.97%). 
The EfficientDet with post-processing method achieved the highest F1- 
Score and Precision (least number of FP cases) in DFUC2020. Exam
ples of final outputs by the refined EfficientDet architecture are shown in 
Fig. 16. 

5.5. Cascade Attention DetNet 

Table 6 summarizes the results of the Cascade Attention DetNet on 
the DFUC2020 testing dataset. The results are reported for two different 
data augmentation methods, two different backbones and with or 
without a pre-trained model. 

From the results, we observe that CA-DetNet with two data 
augmentation methods and the pre-trained model achieves the best 
result. It achieves the highest score of 63.94% on mAP and 70.01% on 
F1-Score. The C-DetNet achieves the highest score of 74.11% on Recall, 
while the CA-DetNet with the mobile fuzzy method achieves the highest 
score of 66.67% on Precision. 

From the analysis, we observe that the mobile fuzzy data augmen
tation method brings about a striking effect and improves 1.46% on mAP 
and 1.03% on F1-Score. However, we note that using the single mixup 
method in data augmentation did not enhance the performance. The 
results suggest that the mobile fuzzy method allows the model to adapt 
to the noise from the external environment, while the mixup method is 
detrimental. The attention mechanism contributes to the improved 
performance of detection and increases mAP by 0.02% and F1-Score by 
0.03%. Moreover, training with a pre-trained model can accelerate the 
convergence of the model and improve its ability to detect DFU. 

Our approach was effective for the vast majority of the detected 
cases, as shown in Fig. 17. However, due to the visual complexity of 
clinical environments, there are also some failure cases in our approach. 
From our observations, such failures are generally due to the false 
identification of toenails, interference from the external environment 
and low image quality. For the false identification of toenails, we believe 
that the appearance of leuconychia is similar to wounds and some cases 
of DFU are located on or around the toenail. Background objects may 
also sometimes interfere with detection results. We use the attention 
mechanism to deal with this problem to some extent. For image quality, 
we observe that there are several images which are blurry. We use data 
augmentation methods like the mobile fuzzy method to partially address 
this problem. We speculate that a two-stage architecture with an initial 
stage to detect and segment the relevant foot area could be used to 
address this issue. However, additional labeled data may be required to 
achieve this goal. 

5.6. Comparison of the challenge results 

The results from the popular deep learning object detection methods 

Table 3 
YOLOv3: Results of different settings, post-processing and adding extra copyright free foot images. B50 and B32: compares the performance of the method with batch 
size 50 and 32. Overlap-Removed: indicates the performance of the method with overlap removal post processing. conf0.3: shows the impact of ignoring predictions 
with <0.3 confidence. Extra: demonstrates the effect on performance of adding extra images of healthy feet.  

Method Settings Metrics  

Base Coefficient Overlap-Removed TP FP Recall Precision F1-Score mAP 

B50 50 0 × 1572 676 0.7496 0.6993 0.7236 0.6560 
B50_Overlap 50 0 ✓ 1553 618 0.7406 0.7153 0.7277 0.6500 
B32 32 0 × 1452 605 0.6929 0.7060 0.6994 0.6053 
B32_Overlap 32 0 ✓ 1433 551 0.6834 0.7223 0.7023 0.5998 
B32_Overlap_conf 32 0.3 ✓ 1386 490 0.6609 0.7388 0.6977 0.5835 
B50_Exact 50 0 × 1563 616 0.7454 0.7173 0.7311 0.6548 
B50_Overlap_Extra 50 0 ✓ 1543 565 0.7358 0.7320 0.7339 0.6484  

Fig. 13. Examples of final detection outputs of trained YOLOv3, after 
post-processing. 

21 Freepik website: https://www.freepik.com/(accessed 2020-08-29). 
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and the proposed CA-DetNet are comparable. Table 7 shows the overall 
results when evaluated on the DFUC2020 testing set, where we present 
the best mAP from each object detection method. Considering the 
ranking based on mAP, the best result is achieved by the variant of Faster 
R–CNN using Deformable Convolution, with 0.6940. This method 

achieves the highest TP and the best Recall. It is noted that YOLOv5 
achieved the lowest number of FP, but it has lower mAP and F1-Score. 

In Table 8, the ranking according to F1-Score shows the highest F1- 
Score of 0.7437 obtained by EfficientDet, however, this network reports 
the lowest mAP at 0.5694. On the other hand, the Faster R–CNN 
approach achieves a comparable F1-Score of 0.7434 with the highest 

Fig. 14. Examples for adequate predictions with YOLOv5 for different DFU 
sizes and compositions: (a) to (c) different wound sizes, (d) partially visible 
wound, (e) non-detected blood stain on dressing, (f) non-detected scar and 
hyperkeratosis, (g) heterogeneous wound composition, (h) detected wound out 
of focus. 

Fig. 15. Examples of false negative, false positive, inadequate and questionable 
YOLOv5 predictions: (a) and (b) non-detected wounds, (c) and (d) painted 
finger nail and malformed toe nail, (e) and (f) too large and too small, (g) and 
(h) unclear detections (one, two, many?). 

Table 4 
YOLOv5: Results of different submitted runs. The settings state epochs for base and self-training as well as the use of test-time augmentation (TTA) and non-maximum 
suppression (NMS). Best results are highlighted bold.  

Method Settings Metrics  

Base Self-training TTA + NMS TP FP Recall Precision F1-Score mAP 

E60_SELF90 60 30 × 1504 474 0.7172 0.7604 0.7382 0.6270 
E60_SELF100 60 40 × 1496 485 0.7134 0.7552 0.7337 0.6165 
E60_SELF100_TTA_NMS 60 40 ✓ 1507 498 0.7187 0.7516 0.7348 0.6294 
E60_SELF120 60 60 × 1502 478 0.7163 0.7586 0.7368 0.6201  
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mAP of 0.6940. 
Fig. 18 visually compares the detection results on DFUs with less 

visible appearances. In Fig. 18(a), the ulcer was detected by all the 
methods. However, in Fig. 18(b), only Faster R–CNN and EfficientDet 
detected the ulcer. Fig. 18(c) is another challenging case and was 
detected by CA-DetNet and Faster R–CNN. In Fig. 18(d), we demonstrate 
a case where only Faster R–CNN successfully localised the ulcer. 

5.7. Further analysis with ensemble method 

We conduct further analysis of the performance of the proposed 
methods. In Section 5.1, we demonstrate that the ensemble method 
using Weighted Boxes Fusion did not improve the results of four Faster 
R–CNN approaches. This observation suggests that additional experi
ments based on different deep learning approaches should be investi
gated. We ran experiments based on combinations of two approaches 
(Faster R–CNN + (CA-DetNet/EfficientDet/YOLOv3/YOLOv5)), three 
approaches and a combination of all approaches, as summarized in 
Table 9. From our observation, the ensemble methods reduce the 
number of TPs and FPs, i.e., the more approaches used, the lower the 
number of TPs and FPs. This approach did not improve mAP, but in the 
majority of the ensembles there are notable improvements in precision, 

which led to an improvement in F1-Score. The best F1-Score for the 
ensemble method is 0.7617, achieved by ensembling Faster R–CNN with 
Deformable Convolution and EfficientDet. 

5.8. Comparison with existing methods 

DFU detection is still in its infancy, and research in this field is 
limited. As reported by Cassidy et al. [10], the organisers of DFUC2020 
have provided the baseline results for the challenge, which include the 
approach used in Goyal et al. [16] on Faster R–CNN, but without the 
post-processing stages. When comparing our overall best results (Pro
posed in Table 10) with the benchmark algorithms, the new method 
(based on Faster R-CNN with the configuration from Table 7) out
performed them in every category of the performance metrics. 

Apart from fine-tuning each deep learning method to maximise 

Fig. 16. The results of EfficientDet. (a) and (c) are the results of EfficientDet 
without post-processing; (b) and (d) are the results obtained with 
post-processing. 

Table 6 
Results for each of the Cascade Attention DetNets.  

Backbone Settings Metrics  

pre-trained mobile fuzzy mixup TP FP Recall Precision F1-Score mAP 

C-DetNet ✓ ✓ ✓ 1554 789 0.7411 0.6633 0.7000 0.6391 
CA-DetNet × × × 1493 1089 0.7120 0.5782 0.6382 0.5963 
CA-DetNet ✓ × × 1523 820 0.7263 0.6500 0.6860 0.6204 
CA-DetNet ✓ × ✓ 1431 961 0.6824 0.5982 0.6376 0.5749 
CA-DetNet ✓ ✓ × 1528 764 0.7287 0.6667 0.6963 0.6350 
CA-DetNet ✓ ✓ ✓ 1554 788 0.7411 0.6635 0.7002 0.6394  

Fig. 17. The results of CA-DetNet: Illustration of successful DFU detections. 
Note the variety of DFU sizes detected by the network, ranging from small 
(bottom-right), medium (top-middle and bottom-middle), large (top-left, top- 
right) and very large (bottom-left). 

Table 7 
A summary based on the mAP ranking from each object detection method when 
evaluated on the DFUC2020 testing set.  

Methods TP FP Recall Precision F1-Score mAP 

Faster R–CNN 1612 628 0.7687 0.7196 0.7434 0.6940 
YOLOv3 1572 676 0.7496 0.6993 0.7236 0.6560 
CA-DetNet 1554 788 0.7411 0.6635 0.7002 0.6394 
YOLOv5 1507 498 0.7187 0.7516 0.7348 0.6294 
EfficientDet 1593 594 0.7597 0.7284 0.7437 0.5694  

Table 8 
A summary based on F1-Score ranking from each object detection method when 
evaluated on the DFUC2020 testing set.  

Methods TP FP Recall Precision F1-Score mAP 

EfficientDet 1593 594 0.7597 0.7284 0.7437 0.5694 
Faster R–CNN 1612 628 0.7687 0.7196 0.7434 0.6940 
YOLOv5 1504 474 0.7172 0.7604 0.7382 0.6270 
YOLOv3 1543 565 0.7358 0.7320 0.7339 0.6484 
CA-DetNet 1554 788 0.7411 0.6635 0.7002 0.6394  

Table 5 
EfficientDet. ‘Before’ is the result of EfficientDet without post-processing and 
‘After’ is the result with post-processing.  

Methods TP FP Recall Precision F1-Score mAP 

Before 1626 770 0.7754 0.6786 0.7238 0.5782 
After 1593 594 0.7597 0.7284 0.7437 0.5694  
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performance, the methods are highly dependent on the pre-processing 
stage, selection of data augmentation, post-processing methods and 
ensemble method. We address the limitations and future challenges of 
our work in the following section. 

6. Discussion 

In this section, we discuss the performance of each object detection 
method and future work to improve DFU detection. Whilst most of the 
results show an F1-Score > 70%, there are many challenges ahead to 
enable the use of deep learning algorithms in real-world settings. 

Faster R–CNN based approaches detected DFU in the DFUC2020 
testing set with high mAP and F1-Scores. In addition, the variants of 
Faster R–CNN largely improve the performance of the original Faster 
R–CNN. After ensembling the results of four models, we reduced the 
number of false positives, however, the overall performance was less 
than the individual variants of Faster R–CNN. The reason may be that 
even though we are fusing the prediction of four models into one pre
diction, similar results are predicted among these four models because 
all models are based on Faster R–CNN. Therefore, in future work, a one- 
stage object detection method such as CenterNet [55] could potentially 

be included in the ensemble method to produce more accurate results. 
The YOLOv3 algorithm is able to reliably detect DFU and ranked 

third place in both mAP and F1-Score ranking. We have observed that 
post-processing (by removing overlaps), along with the removal of low 
confidence detections, leads to an improvement in precision but at the 
expense of the number of true positives and recall. Additionally, our 
analysis indicates that adding additional images of healthy feet, along 
with post-processing, can result in a higher F1-score. We aim to further 
investigate the results of pre-processing, as well as studying a more 
effective post-processing method. 

The YOLOv5 approach demonstrated reliable detection performance 
with an overall high precision over the different model configurations. 
Application of the NLM algorithm for image enhancement and gener
alization via self-training helped to further increase precision. Im
provements via duplicate cleansing and bounding box merging were 
marginal due to the limited number of cases, but could prove beneficial 
on larger datasets. Use of TTA with NMS further increased true-positive 
detections at the cost of increased false-positive cases, yet increased the 
mAP and F1-Score. For the presented approach, several optimizations 
may be possible. The least self-trained model performed best, indicating 
that models with less self-training epochs may perform better. Model 
Ensembling22 might provide further performance improvements when 
fusing different specialized models. In addition, investigation of 
Hyperparameter Evolution23 allows general hyperparameter optimiza
tion, given the required resources. 

As the presented results were obtained with the initial release v1.0 
[21] of YOLOv5, the resulting performance is limited compared to that 
achievable with matured up-to-date versions of the network [5]. Since 
its release, YOLOv5 has been improving rapidly and its full potential 
could not be taken advantage of during the DFUC2020. E.g., in v1.0 the 
novel Mosaic data augmentation method was not functioning correctly 
on custom data. At the time of writing, the matured version v5.024 [23] 
is available, featuring numerous bug fixes, improvements and novelties. 
E.g., the activation function changed from Leaky ReLU [30] in v1.0 
(used here) to Sigmoid Linear Unit (SiLU) [20] (since v4.0) [24], further 
increasing detection performance. Due to its reasonable performance 
and mobile-focus, YOLOv5 may prove to be useful when performing 
DFU detection tasks directly on mobile devices. 

The refined EfficientDet algorithm is able to detect DFU with a high 
recall rate. The pre-processing stage using the Shades of Gray algorithm 
improved the color consistency of the images in the dataset. We exten
sively used data augmentation techniques to learn the subtle features of 
DFUs of various sizes and severity. The post-processing stage we 
implemented refined the inference capability of the original EfficientDet 
method by removing overlapping bounding boxes. Due to low mAP, 
further work will focus on investigating the larger EfficientDet network 

Table 9 
A comparison of ensemble methods with different combinations of object 
detection frameworks, where FRCNN is Faster R–CNN, DetNet is CA-DetNet, 
EffDet is EfficientDet and ‘ALL methods’ represents an ensemble method 
based on Faster R–CNN, CA-DetNet, EfficientDet, YOLOv3 and YOLOv5.  

Methods TP FP Recall Precision F1- 
Score 

mAP 

FRCNN + DetNet 1510 426 0.7201 0.7800 0.7488 0.6619 
FRCNN + EffDet 1502 345 0.7163 0.8132 0.7617 0.6425 
FRCNN + YOLOv3 1423 310 0.6786 0.8211 0.7431 0.6205 
FRCNN + YOLOv5 1453 350 0.6929 0.8059 0.7451 0.6421 
FRCNN +

YOLOv5+EffDet 
1396 252 0.6657 0.8471 0.7455 0.6109 

FRCNN +
YOLOv5+DetNet 

1384 295 0.6600 0.8243 0.7331 0.6132 

FRCNN + DetNet +
EffDet 

1435 270 0.6843 0.8416 0.7549 0.6229 

ALL methods 1277 198 0.6090 0.8658 0.7150 0.5642  

Table 10 
Performance of the benchmark algorithms on the testing set reported by Cassidy 
et al. [10] without fine-tuning and/or post-processing stages. FRCNN represents 
Faster R–CNN and Proposed represents the overall best result of DFUC2020.  

Benchmark Algorithms Recall Precision F1-Score mAP 

FRCNN R–FCN 0.7511 0.6186 0.6784 0.6596 
FRCNN ResNet101 0.7396 0.5995 0.6623 0.6518 
FRCNN Inception-v2-ResNet101 0.7554 0.6046 0.6716 0.6462 
YOLOv5 0.7244 0.6081 0.6612 0.6304 
EfficientDet 0.6939 0.6919 0.6929 0.6216 
Proposed 0.7687 0.7196 0.7434 0.6940  

Fig. 18. Visual comparison of object detection methods when compared to the 
ground truth (in red): (a) An easy case where all methods detected the ulcer; (b) 
A more challenging case detected by Faster R–CNN (green) and EfficientDet 
(yellow); (c) A challenging case detected by Faster R–CNN (green) and CA- 
DetNet (blue); and (d) A challenging case only detected by Faster 
R–CNN (green). 

22 YOLOv5 GitHub repository tutorial on Model Ensembling: https://github. 
com/ultralytics/yolov5/issues/318 (accessed 2020-09-28).  
23 YOLOv5 GitHub repository tutorial on Hyperparameter Evolution: 

https://github.com/ultralytics/yolov5/issues/607 (accessed 2020-09-28).  
24 YOLOv5 v5.0: https://github.com/ultralytics/yolov5/tree/v5.0 (accessed 

2021-04-26). 
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architectures, particularly EfficientDet-D7. 
The performance of Cascade Attention DetNet on the DFUC2020 

testing set is competitive but not entirely satisfactory. We evaluated our 
model on 10% of the DFUC2020 training set and it achieved an mAP of 
0.9. We analyzed the possible reasons and speculate that the model may 
be over-fitting, to which ensemble learning may provide a possible so
lution. We further aim to use appropriate data augmentation methods to 
improve the robustness of the model. 

The ensemble methods based on the fusion of different backbones 
reduced the number of predicted bounding boxes substantially. Faster 
R–CNN with Deformable Convolution predicted 2,240 bounding boxes. 
However, after ensembling with EfficientDet, only 1,847 bounding 
boxes were predicted. The number of predicted bounding boxes dropped 
to 1,475 when we ensembled the results from all five networks. 
Consequently, the ensemble methods reduced the number of TPs and 
FPs. It is crucial for future research to focus on true positives, i.e., 
correctly locate the DFUs. One of the aspects required to overcome this 
issue is to understand the threshold setting of IoU. Our experiments used 
IoU ≥0.5, which is the guideline set by object detection for natural 
objects. However, some medical imaging studies [11,48] used an IoU (or 
Jaccard Similarity Index) threshold of 0.4. When we evaluated the 
performance of the best ensemble method, the number of TPs increased 
to 1,594, with IoU ≥0.3 the number of TPs increased to 1,668. With 
Faster R–CNN with Deformable Convolution, the number of TPs 
increased to 1,743 and 1,883 for IoU thresholds of 0.4 and 0.3, 
respectively. 

Currently, most clinicians involved in DFU care solely use a visual 
assessment for detection of ulcers, taking photographs at the diagnosis 
stage and periodically re-evaluating wound states on subsequent patient 
clinic appointments. This method is time-consuming and thus econom
ically costly. Further, manual comparison of a patient’s wound photo
graph history over different stages only enables a rough assessment of 
the healing progress. Other changes in wound condition may also go 
unrecognized, such as the subtle features that occur prior to the emer
gence of a DFU. In addition, the effects of intra and inter-observer 
variability for manual wound monitoring do not support an objective 
measurement with consistent results. 

An accurate method capable of detecting DFU at all stages of 
development is the first step towards a fully-automated assessment tool, 
enabling objective, cost and time-efficient DFU documentation and 
analysis. However, due to the high variability of features present in DFU 
cases, the problem of detection is non-trivial, as highlighted by our re
ported results. Color, texture of tissue types, location, size, shape and 
depth of DFU present a highly variable set of features. Pathological 
phenomena like infections, ischaemia, hyperkeratosis, and stasis 
dermatitis, can further alter the appearance of a DFU and its surrounding 
area. Additional complexity is added by altered anatomy due to defor
mation or partial amputation. This study has presented a diverse set of 
deep learning-based solutions to address the problems associated with 
accurate DFU detection. 

7. Conclusion 

We conduct a comprehensive evaluation of the performance of deep 
learning object detection networks for DFU detection. Deformable 
convolutions appear to work well in DFU detections and contribute to 
the improvement to the best performing method. While the overall re
sults show the potential of localising DFUs using CNNs, the number of 
false positive results is significant, and the networks are not always able 
to effectively discriminate ulcers from other skin conditions. The 
introduction of a second classifier based on a negative dataset may 
provide a possible solution to this issue when training future networks. 
However, in reality, it may prove impossible to gather all possible 
negative examples for supervised learning algorithms. This approach 
could also impact network size and complexity, which could negatively 
impact inference speed. Segmenting the foot from its surroundings 

might provide another possible solution to this problem, so that trained 
models do not have to account for objects in real-world environments. 
Other future research challenges include:  

● Increasing the size of the existing dataset with clinical annotations 
which would include metadata indicating the development stage of 
each DFU. However, there are still barriers in data sharing and 
clinical annotation is expensive and time consuming. It will be 
important to encourage the co-creation of such datasets via machine 
learning and clinical experts to foster a better understanding of the 
annotated data. While increasing the number of images may benefit 
the training process, other aspects such as ulcer location should be 
considered.  

● Creating self-supervised and unsupervised deep learning algorithms 
for DFU detection. These methods have been developed and imple
mented for natural object detection tasks but remain under-explored 
in medical imaging.  

● Accurate delineation of an ulcer and its surrounding skin can help to 
measure the healing progress of the ulcer. Goyal et al. [17] devel
oped an automated segmentation algorithm for DFU, however, they 
experimented using a small dataset. Future work will potentially 
enable a larger scale of experimentation.  

● The use of DFU classification systems that can be used by clinicians to 
analyse ulcer condition. Automated analysis and recognition of DFU 
can help to improve the diagnosis of DFUs. With this goal in mind, 
the next DFU challenge (DFUC2021 [50]) will focus on multi-class 
DFU pathology recognition.  

● Detection and quantification of tissue types within DFU wounds as a 
means of monitoring healing status over time.  

● Ensuring that future DFU detection models are trained using datasets 
that consist of cases taken from a variety of ethnicities. DFUs are an 
especially pertinent problem in developing countries, where cheap 
remote detection systems may be most useful. 

With the growth in the number of people diagnosed with diabetes, 
remote detection and monitoring of DFU can help to reduce the burden 
on health services. Research in the optimization of CNNs for remote 
monitoring is another active research area that has the potential to 
change the healthcare landscape globally. 

The DFUC2020 dataset contains many examples of images which 
include a variety of artifacts, including malformed toenails, rhagades 
and hyperkeratosis. Without an accurate DFU detection algorithm, ac
curate segmentation and wound size estimation is not possible. A reli
able detection method that performs well on typical wound care images, 
created under uncontrolled (non-laboratory) conditions, remains the 
first and cardinal problem. 

This work brought together researchers from around the world with 
the aim of advancing research efforts in diabetic foot ulcer detection. 
The latest state-of-the-art methods were implemented in a series of ex
periments that will provide future researchers with vital data that can be 
built upon to address the many obstacles present in this problem 
domain. The results of this work help to define the larger scope of the 
challenges inherent in automated DFU detection, and provide important 
indicators for possible avenues for future work. 
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