
Please cite the Published Version

Yap, MH , Hachiuma, R, Alavi, A, Brüngel, R, Cassidy, B , Goyal, M, Zhu, H, Rückert, J,
Olshansky, M, Huang, X, Saito, H, Hassanpour, S, Friedrich, CM, Ascher, DB, Song, A, Kajita, H,
Gillespie, D , Reeves, ND , Pappachan, JM, O’Shea, C and Frank, E (2021) Deep learning in
diabetic foot ulcers detection: A comprehensive evaluation. Computers in Biology and Medicine,
135. 104596 ISSN 0010-4825

DOI: https://doi.org/10.1016/j.compbiomed.2021.104596

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/632829/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an open access article published in Computers in Biology and
Medicine, by Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-7681-4287
https://orcid.org/0000-0003-3741-8120
https://orcid.org/0000-0002-3783-9454
https://orcid.org/0000-0001-9213-4580
https://doi.org/10.1016/j.compbiomed.2021.104596
https://e-space.mmu.ac.uk/632829/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Computers in Biology and Medicine 135 (2021) 104596

Available online 23 June 2021
0010-4825/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Deep learning in diabetic foot ulcers detection: A comprehensive evaluation

Moi Hoon Yap a,*, Ryo Hachiuma b, Azadeh Alavi c, Raphael Brüngel d,g, Bill Cassidy a,
Manu Goyal e, Hongtao Zhu f, Johannes Rückert d, Moshe Olshansky c, Xiao Huang f,
Hideo Saito b, Saeed Hassanpour e, Christoph M. Friedrich d,g, David B. Ascher c, Anping Song f,
Hiroki Kajita h, David Gillespie a, Neil D. Reeves a, Joseph M. Pappachan i, Claire O’Shea j,
Eibe Frank k

a Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
b Keio University, Yokohama, Kanagawa, Japan
c Baker Heart and Diabetes Institute, 20 Commercial Road, Melbourne, VIC, 3000, Australia
d Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), Emil-Figge-Str. 42, 44227 Dortmund, Germany
e Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
f Shanghai University, Shanghai, 200444, China
g Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
h Keio University School of Medicine, Shinanomachi, Tokyo, Japan
i Lancashire Teaching Hospitals, Chorley, UK
j Waikato Diabetes Health Board, Hamilton, New Zealand
k Department of Computer Science, University of Waikato, Hamilton, New Zealand

A R T I C L E I N F O

Keywords:
Diabetic foot ulcers
Object detection
Machine learning
Deep learning
DFUC2020

A B S T R A C T

There has been a substantial amount of research involving computer methods and technology for the detection
and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art
deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a
comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper sum
marizes the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning
teams: Faster R–CNN, three variants of Faster R–CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet;
and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of
model architecture, parameter settings for training and additional stages including pre-processing, data
augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods
required a data augmentation stage to increase the number of images available for training and a post-processing
stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of
Faster R–CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we
demonstrate that the ensemble method based on different deep learning methods can enhance the F1-Score but
not the mAP.

1. Introduction

According to the International Diabetes Federation [39], in 2019
there were approximately 463 million adults with diabetes worldwide.
This number is expected to grow to 700 million by 2045. A person with
diabetes has a 34% lifetime risk of developing a diabetic foot ulcer
(DFU). In other words, 1 in every 3 people with diabetes will develop a
DFU in their lifetime [1]. Infection of a DFU frequently leads to limb

amputation, causing significant morbidity, psychological distress and
reduced quality of life and life expectancy. This research is the first step
of a future diabetic foot care project. Periodic monitoring of foot ulcers is
important to assess the progress of ulcer healing, which is currently
performed manually by clinicians. Many foot clinics take photographs of
ulcers during initial evaluation and subsequent reviews for comparison
of various stages of ulcer progression to boost the visual memory of
clinicians. The current research aims to develop artificial

* Corresponding author.
E-mail addresses: m.yap@mmu.ac.uk, moihoon@gmail.com (M.H. Yap).

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

https://doi.org/10.1016/j.compbiomed.2021.104596
Received 17 March 2021; Received in revised form 17 June 2021; Accepted 17 June 2021

mailto:m.yap@mmu.ac.uk
mailto:moihoon@gmail.com
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104596
https://doi.org/10.1016/j.compbiomed.2021.104596
https://doi.org/10.1016/j.compbiomed.2021.104596
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104596&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers in Biology and Medicine 135 (2021) 104596

2

intelligence-based deep learning algorithms for detection of ulcers
without direct clinical intervention. This is especially important in the
current COVID-19 climate, where social distancing is of paramount
importance. Technologies developed to enhance ulcer diagnostics and
care plans have the potential to revolutionise diabetic foot care.

Detection tasks can be challenging when taking into account the
numerous environmental elements in real-world settings. Examples of
some observations include:

● Newly acquired and subtle early stages of ulceration can be easily
missed by care personnel during visual assessment due to time
constraints

● Low-quality images with poor focus, motion blur, occlusion, inade
quate lighting, and backlight are common in wound documentation
due to time constraints associated with treatment and documenta
tion, even when performed by trained personnel

● Malformed toenails, deep rhagades, folded amputation scars, and
fresh epithelialization are examples for false positive detections that
require manual correction, which can be time consuming when
documenting DFU

● Very small, very large and curved ulcers are problematic for certain
detectors, but are common in typical wound care documentation

It is essential to develop a technological solution capable of trans
forming current screening practices that has the potential to signifi
cantly reduce clinical time burdens.

With the emerging growth of deep learning, automated analysis of
DFU has become possible. However, deep learning requires large-scale
datasets to achieve results comparable with those of human experts.
Currently, medical imaging researchers are working in isolation and the
majority of their research is not reproducible. To bridge the gap and to
motivate data sharing amongst researchers and clinicians, Yap et al. [50,
51] proposed the diabetic foot ulcer challenges. This paper presents an
overview of the state-of-the-art computer methods in DFU detection,
provides an overview of the publicly available datasets, presents a
comprehensive evaluation of the popular object detection frameworks
on DFU detection, proposes an ensemble method and Cascade Attention
DetNet for DFU detection, and conducts a comprehensive evaluation of
the deep learning algorithms trained on the DFUC2020 dataset.

2. Related work

The growing number of reported cases of diabetes has resulted in a
corresponding growth in research interest in DFU. Early attempts in
training deep learning models in this domain have shown promising
results. Previous research [14,16,17] trained models capable of classi
fication, localization and segmentation. These models reported high
levels of mean average precision (mAP), sensitivity and specificity in
experimental settings. The existing method on localization was trained
using Faster R–CNN with Inception v2 and two-tier transfer learning
from the Microsoft Common Objects in Context (MS COCO) dataset.
However, despite the high scoring performance measures, these models
were trained and evaluated on small datasets (<2000 images), therefore
the results cannot be regarded as conclusive evidence of their efficacy in
real-world settings.

Brown et al. [4] created the MyFootCare mobile app which was
designed to encourage patient self-monitoring using diaries, goals and

notifications. The app stores a log of patient foot images and is capable
of semi-automated segmentation. This novel solution to maintaining
foot records utilises a method of automatic photograph capture where
the phone is placed on the floor and the patient is guided using voice
feedback. However, this particular function of the system was not tested
during the actual experiment, so it is not known how well it performed
in real-world settings.

Wang et al. [45,46] devised a method of consistent DFU image
capture using a box with a glass surface containing mirrors which reflect
the image back to a camera or mobile device. Cascaded two-stage sup
port vector classification was used to ascertain the DFU region, followed
by a two-stage super-pixel classification technique used for segmenta
tion and feature extraction. Despite being highly novel, this method
exhibited a number of limitations, such as risk of infection due to
physical contact between wound and capture box. The design of the
capture box also limited monitoring to DFU that are present on the
plantar surface of the foot. The sample size was also statistically insig
nificant, with only 35 images from real patients and 30 images of wound
moulds.

3. Datasets

The DFU datasets provided by The Manchester Metropolitan Uni
versity and Lancashire Teaching Hospitals NHS Trust [10,14,15] are
digital DFU image datasets with expert annotations. The aim of the
publication of this data is to encourage more researchers to work in this
domain and to conduct reproducible experiments. There are three types
of datasets made publicly available for researchers. The first dataset
consists of foot skin patches for wound classification [14]; the second
dataset contains regions of interest for infection and ischaemia classifi
cation [15]; and the third is the most recently published dataset for DFU
detection [10]. The third dataset is the largest dataset to date, and
increased usage of this data is the driving force for the organisers of the
DFU challenges. The researchers involved in organising the yearly DFU
challenges [50,51], in conjunction with the MICCAI conferences, aim to
attract wider participation to improve the diagnosis/monitoring of foot
ulcers and to raise awareness of diabetes and DFU. There are numerous
aspects to take into account in the development of accurate detection
algorithms. As is the case with other medical imaging research fields,
increasing the number of images is only one of them. The Diabetic Foot
Ulcers Grand Challenge (DFUC2020) dataset consists of 2,000 training
images, 200 validation images and 2,000 testing images [10,16]. The
data consists of 2,496 ulcers in the training set and 2,097 ulcers in the
testing set. In an attempt to promote model robustness, some of the
images in the testing set do not exhibit DFUs. The details of the dataset
are described in Ref. [10]. To improve the performance of the deep
learning methods and to reduce computational costs, all images were
resized to 640 × 480 pixels.

Since the release of the DFUC2020 training dataset on the 27th April
2020, we received requests from 39 international institutions from 20
countries, as shown in Fig. 1. There are a total of 31 submissions to the
challenge from 11 teams. In this paper, we report the top scores from
each team and discuss their methods according to the object detection
approaches they implemented.

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

3

4. DFU detection methods

This section presents a comprehensive description of the DFU
detection methods used, grouped according to the popular deep learning
object detection algorithms they apply, which include Faster R–CNN,
YOLOv3, YOLOv5, and EfficientDet. We also include descriptions of an
ensemble method and a new Cascade Attention DetNet (CA-DetNet).

4.1. Faster R–CNN

Faster R–CNN [38] is one of the two-stage object detection models,
which generates a sparse set of candidate object locations using a Region
Pooling Network (RPN) based on shared feature maps, which then
classifies each candidate proposal as the foreground or background
class. After extracting shared feature maps with a CNN, the first stage
RPN takes shared feature maps as an input and generates a set of
bounding box candidate object locations, each with an “objectness”
score. The size of each anchor is configured using hyperparameters.
Then, the proposals are used in the region of interest pooling layer (RoI
pooling) to generate subfeature maps. The subfeature maps are con
verted to 4,096 dimensional vectors and fed forward into fully con
nected layers. These layers are then used as a regression network to
predict bounding box offsets, with a classification network used to
predict the class label of each bounding box proposal.

The RoI pooling layer quantizes a floating-number RoI to the discrete
granularity of the feature map. This quantization introduces mis
alignments between the RoI and the extracted features. Therefore, the
model evaluated in this paper employs a RoIAlign layer, which is
introduced in Mask R–CNN [18], instead of the RoI pooling layer. This
removes the harsh quantization of the RoI pooling layer, properly
aligning the extracted features with the input.

Additionally, the Feature Pyramid Network (FPN) [27] is employed
as the backbone of the network. FPN uses a top-down architecture with
lateral connections to build an in-network feature pyramid from a

single-scale input. Faster R–CNN with an FPN backbone extracts RoI
features from different levels of the feature pyramid according to their
scale, with the remainder of the approach being similar to ResNet. Using
a ResNet-FPN backbone for feature extraction with Mask R–CNN gives
excellent gains in both accuracy and speed. Specifically, we employ
ResNeXt101 [47] with the FPN feature extraction backbone to extract
the features.

4.1.1. Data augmentation
In this challenge, the images in the dataset were captured from

different viewpoint angles, cameras with different focal lengths and
varying levels of blur. Also, the training dataset contains only 2, 000
images, which could be considered small for training deep learning
models. Therefore, we employ various data augmentation techniques for
robust prediction. Specifically, we employ the following augmentations:

● HSV and RGB: As the lighting conditions vary between dataset im
ages, we apply random RGB and HSV shift to the images. Especially,
we randomly add/subtract from 0 to 10 RGB values and 0 to 20 HSV
values in the images.

● Blurring: As the dataset contains images captured from different
focal lengths, some images are blurred and contain camera noise.
Therefore, we apply Gaussian and median blur filters with the filter
size set to 3. The filters are applied with the probability of 0.1.

● Affine transformation: As the images are captured from different
camera angles, we apply random affine transformations. Specifically,
we apply random shift, scaling (0.1) and rotation (90◦).

● Brightness: As the images are captured in various environments, we
employ brightness and contrast data augmentation. More specif
ically, we randomly change the brightness and contrast in a scale
from 0.1 to 0.3, with probability set to 0.2.

4.1.2. Model training and implementation
For training, we fine-tune a model pretrained on MS-COCO [28]. We

employ Stochastic Gradient Descent Optimizer with a momentum of 0.9
and weight decay set to 0.0001. During training, we employ a warm up
learning rate scheduling strategy, using lower learning rates in the early
stages of training to overcome optimization difficulties. More specif
ically, we linearly increase the learning rate to 0.01 in the first 500 it
erations, then multiply by 0.1 at epochs 6, 12 and 30. We implemented
the methods based on the detection repository.1

4.1.3. Variants of faster R–CNN
Several papers have proposed variants of Faster R–CNN. In this

paper, we implement Faster R–CNN, three variants of Faster R–CNN and
ensemble the results. The three variants of Faster R–CNN are as follows:

● Cascade R–CNN [8]: this variant implements a different architecture
for the ROI head (the module that predicts the bounding boxes and
the category label). Cascade R–CNN builds up a cascade head based
on Faster R–CNN [38] to refine detection progressively. Since the
proposal boxes are refined by multiple box regression heads, Cascade
R–CNN is suitable for more precise localization of objects.

● Deformable Convolution [57]: in this variant, the basic architecture
of the network is the same as Faster R–CNN. However, we replace the
convolution layer with a deformable convolution layer [56] at the
second, third and fourth ResNeXt blocks of the feature extractor. The
deformable convolution adds 2D offsets to the regular grid sampling
locations in the standard convolution, enabling free-form deforma
tion of the sampling grid. The offsets are learned from the feature
maps, via additional convolutional layers. Thus, the deformation is
conditioned on the input features in a local, dense and adaptive
manner.

Fig. 1. Summary of DFUC2020 participants across the world, 39 institutions in
20 countries have licensed the dataset for participation in the challenge.

1 https://github.com/open-mmlab/mmdetection.

M.H. Yap et al.

https://github.com/open-mmlab/mmdetection

Computers in Biology and Medicine 135 (2021) 104596

4

● Prime Sample Attention [9] (PISA): PISA is motivated by two con
siderations: samples should not be treated as independent and
equally important, and the classification and localization are corre
lated. Thus, a ranking strategy is employed that places the positive
samples with highest IoUs around each object, and the negative
samples with highest scores in each cluster at the top of the ranked
list. This directs the focus of the training process via a simple
re-weighting scheme. It also employs a classification-aware regres
sion loss to jointly optimize the classification and regression
branches.

4.1.4. Post-processing
At test time, we employ a test-time augmentation scheme: we

augment the test image by applying two resolutions (640 × 480 and 800
× 600), and we also flip the image. As a result, we augment a single
image to four images and merge the predictions obtained for the four
images. We employ soft NMS (non maximum suppression) [3] with a
confidence threshold of 0.5 as the post-processing of predicted bounding
boxes.

4.1.5. Ensemble method
Combining predictions from different models can improve general

ization and usually yields more accurate results compared to a single
model. During the post-processing stage for Faster R-CNNs, we employ
soft NMS [3] to select the predicted bounding boxes for each method.
Such methods work well on a single model, but they only select the
boxes and cannot produce averaged localization of predictions com
bined from various models effectively. Therefore, after predicting the
bounding boxes for each method, we ensemble these predicted bounding
boxes using Weighted Boxes Fusion [40]. Unlike NMS-based methods
that simply exclude part of the predicted bounding boxes, the Weighted
Boxes Fusion algorithm uses the confidence scores of all proposed
bounding boxes to form the average boxes. The reader is referred to
Ref. [40] for further details of the algorithm. We ensemble four models
(pure Faster R–CNN, Cascade R–CNN, Faster R–CNN with Deformable
Convolution and Faster R–CNN with Prime Sample Attention model).
We set equal weights when fusing the predicted bounding boxes of each
model.

4.2. YOLO

You-Only-Look-Once (YOLO) [35] is a unified, real-time object
detection algorithm that reformulates the object detection task to a
single regression problem. YOLO employs a single neural network ar
chitecture to predict bounding boxes and class probabilities directly
from full images. Hence, when compared to Faster R–CNN [38], YOLO
provides faster detection.

Over time, improvements of YOLO were implemented and released
as distinct and independent software packages by the originators
[35–37]. As a result of increased publicity and popularity, a model zoo
containing further YOLO adaptations emerged. Subsequently, further
maintainers continued to improve the DarkNet2-based versions, and [2]
created ports for other machine learning libraries such as PyTorch3 [32].

In this paper, two approaches are selected for DFU detection using
the DFUC2020 dataset: YOLOv3 and YOLOv5. We discuss the networks
and present descriptions of our implementation in the following
subsections.

4.2.1. YOLOv3
YOLOv3 [37] was developed as an improved version of YOLOv2

[36]. It employs multi-scale schema, predicting bounding boxes at

different scales. This allows YOLOv3 to be more effective for detecting
smaller targets when compared to YOLOv2.

YOLOv3 uses dimension clusters as anchor boxes in order to predict
bounding boxes around the desired objects in given images. Logistic
regression is used to predict the objectness score for a given bounding
box. Specifically, as illustrated in Fig. 2, the algorithm predicts the four
coordinates of the bounding box (tx, ty, th, tw) as in Equation (1), Equa
tion (2), Equation (3), and Equation (4) [37].

bx = σ(tx) + cx (1)

by = σ(ty) + cy (2)

bh = pwetw (3)

bw = pheth (4)

Fig. 2. Illustration of bounding boxes, dimension priors and location predic
tion. The red dot represents the bounding box center with the coordinates (bx,
by). Adapted from Ref. [37].

Table 1
The architecture of DarkNet-53 used in YOLOv3. Adapted from Ref. [37].

Type Filters Size

Convolutional 32 3 × 3
Convolutional 64 3 × 3/2
Convolutional 32 1×1
Convolutional 1 × 64 3 ×3
Residual
Convolutional 128 3 ×3/2
Convolutional 64 1 ×1
Convolutional 2 × 128 3 × 3
Residual
Convolutional 256 3 × 3/2
Convolutional 128 1 × 1
Convolutional 8 × 256 3 × 3
Residual
Convolutional 512 3 × 3/2
Convolutional 256 1 × 1
Convolutional 8x 512 3 × 3
Residual
Convolutional 1024 3 × 3/2
Convolutional 512 1 × 1
Convolutional 4 × 1024 3 × 3
Residual
Avgpool Connected Softmax Global 1000

2 DarkNet GitHub repository: https://github.com/pjreddie/darknet (accessed
2020-08-29).

3 PyTorch website: https://pytorch.org/(accessed 2020-08-29).

M.H. Yap et al.

https://github.com/pjreddie/darknet
https://pytorch.org/

Computers in Biology and Medicine 135 (2021) 104596

5

where (cx, yy) are offsets from the top left corner of the image, and (pw,
ph) are bounding box prior height and weight. The k-means clustering
algorithm is used to determine bounding box priors, while the sum of
squared errors is used for training the network. Let t̂* be the ground truth
for some coordinate prediction, and t* be the network prediction during
training. Then, the gradient is t̂* − t*.

4.3. Model pipeline

The backbone of YOLOv3 is a hybrid model called Darknet-53 (as
shown in Table 1), which is used for feature extraction. As the name
indicates, DarkNet-53 is made of 53 convolutional layers that also take
advantage of shortcut connections.

As the detection algorithm is required to detect only one type of
object, the complexity of the problem is reduced from multi-class
detection to single object detection. Hence, for the purpose of detect
ing diabetic foot ulcers, we have employed a simplified version of
YOLOv3.

4.3.1. Training
We employ transfer learning by using the pre-trained DarkNet

weights which are provided by Ref. [37]. Then, we train our detector in
2 steps, using the following settings: Adam optimizer with learning rate
1e-3, number of epochs = 100, batch size = 32 and using 20% of the data
for validation.

First, we start by freezing the top DarkNet-53 layers and train the
algorithm with the above settings. Then, we retrain the entire network to
improve performance. Similar to the original YOLOv3, our trained
network extracts features from 3 different pre-defined scales, which is a
similar concept to feature pyramid networks [27]. We then use the
trained network for detecting diabetic foot ulcers in blind test images.

4.3.2. Post-processing
As observed from Fig. 3, in rare cases, the resulting algorithm may

produce double detections or false positives. To reduce such examples,
we include a post-processing stage.

Our post-processing steps consist of two stages. First, we identify
double detections by flagging the detected bounding boxes with more
than 80% overlap. Among the overlapping detected boxes we only keep
the box with the highest confidence result. Finally, we further post-
process the results by removing any detection with a confidence score
<0.3, with the aim of reducing the rate of false positive detections.

4.3.3. YOLOv5
YOLOv5 was first published on GitHub4 in May 2020 in v1.0 [21].

The maintainer is already well known for a YOLOv3 [37] port for
PyTorch5 [22]. The maintainer named the network YOLOv5 to avoid
naming conflicts due to the prior release of YOLOv4 [2]. However,
YOLOv5 is not to be confused with a descendent of the original Dar
kNet-based6 YOLO-series. A scientific paper reporting on the improve
ments in YOLOv5 has not yet been published, but is currently pending.7

YOLOv5 is currently under active development, with the latest version
being v5.0 [23] at the time of writing.

New features and improvements in YOLOv5 are mainly focused on
the incorporation of the state-of-the-art for deep learning networks, such
as activation functions and data augmentation. These were partly
adopted from YOLOv48 such as the CSPNet backbone [43] with other
elements originating from prior YOLOv4 contributions by the YOLOv5
maintainer. One of the most notable data augmentation aspects is the
mosaic loader in which four images are altered and combined to form a
new image. This allows detection of objects outside of their normal
context and at smaller sizes, which reduces the need for large mini-batch
sizes. YOLOv5 reports high inference speed and small model sizes,
allowing a convenient translation to mobile use cases via model export.

The approach on DFU detection via YOLOv5 described in the
following is based on the early version v1.09 [21] commit a1c840610

from 14th July 2020 that still exhibited several issues.

4.3.4. Pre-processing
Initially, image data of the training dataset was analyzed via Anti

Dupl11 in version 2.3.10 to identify duplicate images, yielding a set of
39 pair findings. A spatial analysis of duplicate pair annotation data was
performed, utilizing the R language12 [34] in version 4.0.1 and the
Simple Features for R (sf) package13 [33] in version 0.9-2. Originally,
none of the duplicate pair images showed bounding box intersections by
themselves. After joining duplicate pair annotations, several in
tersections were detected with a maximum of two involved bounding
boxes. These represented different annotations of the same wound in
two duplicate images, now joint in one image. To resolve these, each
pair of intersecting bounding boxes BBox1 and BBox2 was merged into a
single bounding box B̂Box by using their outer boundaries, as shown in
Equ. 5.

B̂Box

⎧
⎪⎪⎨

⎪⎪⎩

x̂min = min(xmin1, xmin2)

ŷmin = min(ymin1, ymin2)

x̂max = max(xmax1, xmax2)

ŷmax = max(ymax1, ymax2)

(5)

The applied duplicate cleansing and annotation merging strategy
resulted in n = 1, 961 images with k = 2, 453 annotations in the cleansed

Fig. 3. Illustration of two types of false positives. The top row shows false-
positive examples from double detections; the bottom row shows single false-
positive detections caused by a non-DFU condition and a background object.

4 YOLOv5 GitHub repository: https://github.com/ultralytics/yolov5/releases
/tag/v1.0 (accessed 2021-04-28).

5 Ultralytics’ YOLOv3 GitHub repository: https://github.com/ultralytics/
yolov3 (accessed 2020-08-29).

6 YOLOv4 GitHub repository: https://github.com/AlexeyAB/darknet
(accessed 2020-08-29).

7 YOLOv5 question on scientific paper: https://github.com/ultralytics
/yolov5/issues/2847 (accessed 2021-04-28).

8 YOLOv5 question on adopted YOLOv4 features: https://github.com/
ultralytics/yolov5/issues/370 (accessed 2021-04-28).

9 YOLOv5 v1.0: https://github.com/ultralytics/yolov5/releases/tag/v1.0
(accessed 2020-09-12).
10 YOLOv5 GitHub commit a1c8406: https://github.com/ultralytics/yolo

v5/commit/a1c8406 (accessed 2020-08-29).
11 AntiDupl GitHub repository: https://github.com/ermig1979/AntiDupl

(accessed 2020-08-29).
12 R language website: https://www.r-project.org/(accessed 2020-08-29).
13 Simple Features for R (sf) GitHub repository: https://github.com/r-spatial/s

f (accessed 2020-08-29).

M.H. Yap et al.

https://github.com/ultralytics/yolov5/releases/tag/v1.0
https://github.com/ultralytics/yolov5/releases/tag/v1.0
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/AlexeyAB/darknet
https://github.com/ultralytics/yolov5/issues/2847
https://github.com/ultralytics/yolov5/issues/2847
https://github.com/ultralytics/yolov5/issues/370
https://github.com/ultralytics/yolov5/issues/370
https://github.com/ultralytics/yolov5/releases/tag/v1.0
https://github.com/ultralytics/yolov5/commit/a1c8406
https://github.com/ultralytics/yolov5/commit/a1c8406
https://github.com/ermig1979/AntiDupl
https://www.r-project.org/
https://github.com/r-spatial/sf
https://github.com/r-spatial/sf

Computers in Biology and Medicine 135 (2021) 104596

6

training dataset. Boundaries of merged bounding boxes were checked
for consistency. Finally, annotation data was converted to the
resolution-independent format used by YOLO implementations.

Reviewing image data of all dataset parts (training, validation and
test), showed pronounced compression artifacts and color noise due to a
high compression rate and downscaling to a low resolution. As both
compression artifacts and color noise had derogatory effects on the
detection performance, images were enhanced using a fast imple
mentation of the non-local means algorithm [6] for color images, uti
lizing the Python language14 in version 3.6.9 with the OpenCV on

Wheels (opencv-python)15 package in version 4.2.0.34. The algo
rithm parameters were set to h = 1 (luminance component filter
strength) and hColor = 1 (color component filter strength) with
templateWindowSize = 7 (template patch size in pixels) and
searchWindowSize = 21 (search window size in pixels).

Resulting images show less definitive compression artifact borders
and notably reduced color noise. Some textures are also more pro
nounced. Examples of results at a macroscopic and a detail level are
shown in Fig. 4.

4.3.5. Data Augmentation
YOLOv5 in v1.0 implements three sets of data augmentation tech

niques. The first set comprises alterations of colorspace components
(hue, saturation, value), the second set comprises geometric distortions
(random scaling, rotation, translation and shearing), and the third set is
represented by the mosaic loading of images.

A normalized fraction of 0.014 images received hue augmentation,
0.68 received saturation augmentation and 0.36 received value
augmentation. Scaling was applied in a normalized range of ±0.5.
Rotation, translation and shearing were disabled. Settings for colorspace
component alterations and geometric distortions are definitions for
distributions, generated during runtime by a random sampler for the
augmentation function.16 Using this approach, no image is presented
more than once during training.

Mosaic data augmentation is comparable to CutMix, but takes four
images instead of two and does not overlap them. Image parts are placed
as quadrants in a new image with random ratios, thereby allowing the
model to detect objects in different contexts and at different sizes. This
reduces the need for large mini-batch sizes. However, the mosaic loader
had to be disabled in the presented approach due to a bug, leading to
invalid bounding boxes in resulting predictions.

4.3.6. Model
YOLOv5 includes four different models ranging from the smallest

YOLOv5s with 7.5 million parameters (plain 7 MB, COCO pre-trained
14 MB) and 140 layers to the largest YOLOv5x with 89 million param
eters and 284 layers (plain 85 MB, COCO pre-trained 170 MB). In the
approach considered in this paper, the pre-trained YOLOv5x model is

Fig. 4. Effects of the non-local means (NLM) algorithm are shown for two
example images (a) and (e) from the training dataset in (b) and (f). At a
macroscopic level the changes are not obvious. At a detail level borders of
compression artifacts on homogeneous areas and color noise of (c) are visibly
reduced in (d). Vague textures of (g) are also more pronounced in (h).

Fig. 5. The architecture of YOLOv5 v1.0, adapted from community-driven
discussions on the model representation (https://github.com/ultralytics/
yolov5/issues/280 (accessed 2021-04-28)), verified by the maintainer.

14 Python language website: https://www.python.org/(accessed 2020-08-29).

15 OpenCV on Wheels GitHub repository: https://github.com/skvark/open
cv-python (accessed 2020-08-29).
16 YOLOv5 question on data augmentation: https://github.com/ultralytics

/yolov5/issues/2164 (accessed 2021-04-28).

M.H. Yap et al.

https://github.com/ultralytics/yolov5/issues/280
https://github.com/ultralytics/yolov5/issues/280
https://www.python.org/
https://github.com/skvark/opencv-python
https://github.com/skvark/opencv-python
https://github.com/ultralytics/yolov5/issues/2164
https://github.com/ultralytics/yolov5/issues/2164

Computers in Biology and Medicine 135 (2021) 104596

7

used. The general YOLOv5 v1.0 architecture is displayed in Fig. 5.
Different model sizes s, m, l and x vary in set depth and width factors for
the model and its layer channels, which are 1.33 and 1.25 for the
YOLOv5x model.

The YOLOv5x model uses a detector that consists of a Cross Stage
Partial Network (CSPNet) [43] backbone trained on MS COCO [28], and
a model head using a Path Aggregation Network (PANet) [29] for
instance segmentation. The backbone further incorporates a Spatial
Pyramid Pooling (SPP) network [19], which allows for dynamic input
image size and is robust against object deformations.

4.3.7. Training
The hardware setup used for the experiment comprised a single

NVIDIA® V10017 tensor core graphics processing unit (GPU) with 16 GB
memory as part of an NVIDIA® DGX-118 supercomputer for deep
learning. YOLOv5 was set up using a provided Docker container,19

executed via Nvidia-Docker20 in version 19.03.5.
Training was organized in two stages: Initial training and self-

training. The initial training stage uses the original available training
data to train a model. The self-training approach, also called pseudo-
labelling, extends available training data by inferring detections on
images for which originally no annotation data is available [25]. This is
realized using the model resulting from the initial training stage; yielded
detections are then used as pseudo-annotation data. Resuming the initial
training in the self-training stage with the extended training data gen
eralizes detection capabilities of the model.

A five-fold cross-validation was performed for each training stage to
approximate training optima. Both stages used the default set of
hyperparameters (including parameters related to the data augmenta
tion procedures): optimizer = SGD, lr0 = 0.01, momentum = 0.937,
weight_decay = 0.0005, giou = 0.05, cls = 0.58, cls_pw = 1.0,
obj = 1.0, obj_pw = 1.0, iou_t = 0.2, anchor_t = 4.0, fl_gamma =
0.0, hsv_h = 0.014, hsv_s = 0.68, hsv_v = 0.36, degrees = 0.0,
translate = 0.0, scale = 0.5, and shear = 0.0. A default seed value
of 0 was used for model initialization. Both training stages were per
formed in the single-class training mode, with mosaic data augmenta
tion deactivated due to issues regarding bounding box positioning in the
current YOLOv5 implementation.

During the initial training stage, a base model was trained on the pre-
processed training dataset for 60 epochs with a batch size of 30. This
base model was initialized with weights from the MS COCO pre-trained
YOLOv5x model. For the self-training approach, the base model was
then used to create the extended training dataset for self-training.
Pseudo-annotation data was inferred for the validation and test data
sets, using the best-performing epoch automatically saved at epoch 58.
The resulting extended training dataset contained 4,161 images, of
which 3,963 included 4,638 wound annotations.

During the self-training stage, the base model training was resumed
at its latest epoch, but trained further on the extended training dataset
with a batch size of 20. Three final training states were created: (1) after
an additional 30 epochs, (2) after an additional 40 epochs, and (3) after
an additional 60 epochs of self-training (referred to as E60_SELF90,
E60_SELF100, and E60_SELF120).

4.3.8. Post-processing
The minimum confidence threshold for detection was set to 0.70, so

that only highly certain predictions were exported. This applies for
pseudo-annotation data of the extended training dataset created for self-
training as well as for the final predictions.

Predictions for our experiments were inferred via the final training
states E60_SELF90, E60_SELF100, and E60_SELF120, using the best
epochs 88, 96 and 118 respectively. An additional experiment was
conducted based on the training state E60_SELF100 involving the
built-in test-time augmentation and non-maxima suppression (NMS)
features of YOLOv5 for inference.

Test-time augmentation (TTA) is a data augmentation method which
involves several augmented instances of an image that are presented to
the model. For each instance, predictions are made which provide an
ensemble of instance predictions. This can enable a model to detect
objects it may not be able to detect in a “clean” image. However, TTA
may also cause multiple distinct detections for the same object that can
harm evaluation scores. To tackle these, NMS was applied to collapse
multiple intersecting detections into a single bounding box. The inter
section over union (IoU) threshold was set to IoU ≥ 0.30, as images with
multiple wounds a distinct spatial demarcation was usually given. Thus,
the risk of interfering detections of different wounds was low.

4.4. EfficientDet

The EfficientDet architecture [42] is an object detection network
created by the Google Brain team, and utilises the EfficientNet ConvNet
[41] classification network as its backbone. EfficientDet uses feature
fusion techniques in the form of a bidirectional feature pyramid network
(BiFPN) which combines representations of input images at different
resolutions. BiFPN adds weights to input features which enables the
network to learn the importance of each feature. The outputs from the
BiFPN are then used to predict the class of the detected object and to
generate bounding boxes using bounding box regression. The main
feature of EfficientDet is its ability to utilise compound scaling, which
allows all parts of the network to scale in accordance to the target
hardware being used for training and inference [42]. An overview of the
EfficientDet architecture is shown in Fig. 6.

4.4.1. Pre-processing
The dataset was captured with different types of camera devices

under various lighting conditions. To counter variations in noise and
lighting found in the dataset images, the Shades of Gray (SoG) color
constancy algorithm was used [31]. Examples of pre-processed DFU
images using SoG are shown in Fig. 7.

4.5. Data augmentation

Data Augmentation techniques have been proven to be an important
tool in improving the performance of deep learning algorithms for
various computer vision tasks [13,49]. For the application of Effi
cientDet, we augmented the training data by applying identical trans
formations to the images and associated bounding boxes for DFU
detection. Random rotation and shear transformations were used to
augment the DFUC2020 dataset. Shearing involves the displacement of
the image at its corners, resulting in a skewed or deformed output. Ex
amples of these types of data augmentation are shown in Fig. 8.

4.5.1. Model
EfficientDet algorithms achieved state-of-the-art accuracy on the

popular MS-COCO [28] object detection dataset. EfficientDet
pre-trained weights are classed from D0 to D7, with D0 having the
fewest number of parameters and D7 having the highest number of
parameters. Tests on the MS-COCO dataset indicate that training using
weights with more parameters results in better network accuracy.
However, this comes at the cost of significantly increased training time.
Given that the DFUC2020 dataset images were resized to 640 × 480, we
selected the EfficientDet-D1 pre-trained weights for DFU detection [12].

17 NVIDIA® V100: https://www.nvidia.com/en-us/data-center/v100/
(accessed 2020-08-30).
18 NVIDIA® DGX-1: https://www.nvidia.com/en-us/data-center/dgx-1/

(accessed 2020-08-30).
19 YOLOv5 Docker Hub container: https://hub.docker.com/r/ultralytics/yolo

v5 (accessed 2020-08-30).
20 Nvidia-Docker GitHub repository: https://github.com/NVIDIA/nvidia-d

ocker (accessed 2020-08-30).

M.H. Yap et al.

https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://hub.docker.com/r/ultralytics/yolov5
https://hub.docker.com/r/ultralytics/yolov5
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker

Computers in Biology and Medicine 135 (2021) 104596

8

4.5.2. Training
We trained the EfficientDet-D1 method on an NVIDIA Quadro RTX

8000 GPU (48 GB) with a batch-size of 16, SGS optimizer with a learning
rate of 0.00005, momentum of 0.9 and number of epochs set to 50. We
used the validation accuracy with early stopping to select the final
model for inference.

4.5.3. Post-processing
We further refined the EfficientDet architecture with a score

threshold of 0.5 and removed overlapping bounding boxes to minimize
the number of false positives. The scores were compared between the
overlapping bounding boxes, with the bounding box with the highest
score used as the final output.

4.6. Cascade Attention DetNet

4.6.1. Data augmentation
Given that the DFUC2020 dataset has only 2,000 images for training,

we use several data augmentation methods to complement the dataset in
order to avoid over-fitting when training models. A more generalized
model can be obtained through data augmentation in order to make it
adapt to the complex clinical environment. We use common data
augmentation methods including horizontal and vertical image flipping,
random noise and a central scaling method (which scales with ground
truth as the center). Additionally, we increase the number of training
images by using the visually coherent image mixup method [52]. The
original purpose of this method is to overcome the problem of distur
bance rejection. Since Zhang et al. [53] introduced this method into
object detection, many researchers have used it in data augmentation to
enhance network robustness. The principle of this algorithm involves
the random selection of two sample images which are then used to
generate a new sample image according to Equation (6) and Equation
(7).

x̂ = λxi + (1 − λ)xj (6)

ŷ = λyi + (1 − λ)yj (7)

where (xi, yi), (xj, yj) are the points of two sample images and λ ∈ [0,1],
which is randomly generated by the Beta(alpha, alpha) distribution. The
new sample (x̂, ŷ) is used for training. As shown in Fig. 9, two images of
DFU are mixed in a certain ratio. We use Beta(1.5,1.5) for the images’
synthesis.

DFU detection can be challenging in complex environments, such as
clinical settings, due to the large number of objects that might be pre
sent. To improve the accuracy of detection, we use the mobile fuzzy
method for data augmentation, as shown in Fig. 10.

Fig. 6. The architecture of EfficientDet. Adapted from Ref. [42].

Fig. 7. Shades of gray algorithm for pre-processing of the DFUC2020 dataset:
The left column shows the original images; the right column shows results of
pre-processed images.

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

9

4.6.2. Model
The Cascade R–CNN [7] is the first cascaded object detection model.

Due to the superior performance of the cascade structure, it is widely
used in the field of object detection [54]. We use the cascade structure in
conjunction with DetNet [26], which is designed to address the prob
lems incurred by down-sampling repeatedly, as such a process reduces
the accuracy of positioning. DetNet makes full use of dilated convolu
tions to enhance the receptive field instead of down-sampling repeat
edly. The overall framework of our method, Cascade Attention DetNet
(CA-DetNet) is shown in Fig. 11.

The detection of DFU is different from common object detection
tasks. For common object detection tasks, objects can appear anywhere
in the image. For the detection of DFU, the wounds can only appear on

the foot, which is a good fit for applying an attention mechanism, which
we added into the DetNet by adopting the mask branch of the Residual
Attention Network [44].

The Attention DetNet (A-DetNet) is composed of 6 stages. The first
stage consists of a 7 × 7 convolution layer (with a stride of 2) and a max-
pooling layer. The second, third and fourth stages contain an A-Resbody,
with the fifth and sixth stages containing an A-Detbody. The A-Resbody
and A-Detbody are similar to those in the original DetNet. The difference
between A-DetNet and the original DetNet is the addition of an attention
branch into the Resbody and Detbody. The attention branch is similar to
the mask branch of the Residual Attention Network, while we take other
parts from the original Resbody or Detbody as the trunk. The attention
branch of the Resbody is comprised of two zoom structures, which
consist of a max-pooling layer and an up-sampling layer, followed by
two 1 × 1 convolution layers activated by sigmoid functions.

Given that the five times down-sampling results in a feature map that
is too small to recover the original size by upsampling, we only add one
zoom structure into the attention branch of the A-Detbody. The feature
map from the trunk is multiplied by the mask from the attention branch.
To avoid consuming the value of the feature and breaking the identity
mapping, we refer to the Residual Attention Network and add one to the
mask.

4.6.3. Training
For the cascade structure, we set the total number of cascade stages

to 3, with the intersect over union (IoU) threshold set to 0.5, 0.6 and 0.7
for each of the three stages. During training we use DetNet pre-trained
model, which has been trained on the ImageNet dataset, to accelerate
model convergence. We train on a single GPU (NVIDIA Tesla P100) for
60 epochs, with a batch size of 4 and a learning rate of 0.001. The
learning rate decreases 10 times at the 10th epoch, and then decreases
another 10 times at the 20th epoch. We optimize the model with the
Adam optimizer.

4.6.4. Post-processing
Noise from the external environment can lead to many low confi

dence bounding boxes. These bounding boxes will reduce the perfor
mance of the detector, so we adopt a special threshold suppression
method to suppress bounding boxes with low thresholds except when
the detector detects only one bounding box. We set the threshold to 0.5.

Fig. 8. Bounding box data augmentation on the DFUC2020 dataset.

Fig. 9. The effect of the visually coherent image mixup method.

Fig. 10. The effect of the mobile fuzzy method. (a) shows the original image,
and (b) shows the image after blurring with the mobile fuzzy method.

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

10

5. Results and analysis

We report and analyse the results obtained using the methods
described above. The evaluation metrics are the number of true positives

(TP), the number of false positives (FP), recall, precision, F1-Score and
mAP, as described in the diabetic foot ulcer challenge 2020 [10]. For the
common object detection task, mAP is used as the main evaluation
metric. However, in this DFU task, miss-detection (a false negative) has
potentially severe implications as it may affect the quality of life of
patients. An incorrect detection (a false positive) could increase the
financial burden on health services. Therefore, we regard F1-Score as
equally important as mAP for performance evaluation.

5.1. Faster R–CNN

Table 2 summarizes the quantitative results of pure Faster R–CNN, its
variants, and the final ensemble model. From the table, the performance
of pure Faster R–CNN is on par with Cascade R–CNN. In contrast,
employing the Deformable convolution or PISA module significantly
improves the performance. After we ensemble the model, we reduce FP
substantially, with a reduction in TP also observed. Although the
ensemble method improves the precision of DFU detection, it does not
improve the overall score. Therefore, the best result is achieved by
Deformable Faster R–CNN, with a mAP of 0.6940 and F1-Score of
0.7434.

The qualitative results of Faster R–CNN with Deformable Convolu
tion is summarized in Fig. 12. It can be seen that our model successfully
detected the wounds in the images, even in cases with small wound sizes
(top-left, bottom-left and bottom-right images) or the images are blurred
(top-right image). However, we observed the miss-detection as in the
bottom-right image. In this image, the background texture of the blood
was incorrectly detected as a DFU. To improve prediction accuracy, the
training data should be captured in various environments so that the
network is better able to discern between DFU and background objects.

5.2. YOLOv3

Table 3 shows the final results of the proposed YOLOv3 method on
the testing dataset. The results are reported for two different batch sizes,
with and without post-processing.

As the results indicate, using a batch size of 50 leads to a better
overall performance compared to using a batch size of 32. It also dem
onstrates that removing the overlaps leads to an improvement in both
F1-score and Precision, while resulting in slight decreases to both mAP
and Recall. As the gain overpowers the loss, we conclude that removing
overlaps results in better overall performance.

While removing the detections with less than 0.3 confidence results

Fig. 11. The architecture of CA-DetNet. “Image” is an input image. “A-DetNet” is a backbone network. “Pool” represents region-wise feature extraction. “H” is a
network head. “B” is a bounding box and “C” represents classification. “B0” is the proposal in all architectures. The structure of the A-DetNet is based on the DetNet.
The attention mechanism is applied in Resbody and Detbody. Different bottleneck blocks in the Detbody or Resbody are similar to those in the DetNet.

Table 2
Faster R–CNN. The first row shows the results of pure Faster R–CNN, the second
row shows the results of Cascade R–CNN, the third row shows the results of
Faster R–CNN with Deformable Convolution v2, the fourth row shows the results
of Faster R–CNN with Prime Sample Attention, and the last row shows the results
of the ensemble method.

Method TP FP Recall Precision F1-Score mAP

Faster 1512 683 0.7210 0.6888 0.7046 0.6338
Cascade 1483 649 0.7072 0.6956 0.7014 0.6309
Deform 1612 628 0.7687 0.7196 0.7434 0.6940
PISA 1495 444 0.7129 0.7710 0.7408 0.6518
Ensemble 1447 394 0.6900 0.7860 0.7349 0.6353

Fig. 12. The qualitative results of Faster R–CNN with Deformable Convolution,
which shows the best performance among Faster R–CNN based methods. It is
noted that the network is able to detect small ulcers as shown in (a),(b) and (c).
An example of a FP generated by the network is shown in (d).

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

11

in slightly better precision, it reduces recall, F1-score and mAP. There
fore, unless precision is the priority, removing the low confidence de
tections would not lead to an improvement. Examples of final detections
for YOLOv3 are presented in Fig. 13.

Additionally, we added 60 copyright-free images of healthy feet21 to
the training set to observe the effect on detection performance. As shown
in Table 3, this results in an improvement of F1-Score, but reduces mAP.

5.3. YOLOv5

Table 4 summarizes the results of YOLOv5. Fewer additional self-
training epochs in method E60_SELF90 achieved better results than
E60_SELF100 and E60_SELF120. However, the application of TTA with
NMS on E60_SELF100 achieved the best results in E60_SELF100_
TTA_NMS. Examples of detections with E60_SELF100_TTA_NMS on the
test set are shown in Fig. 14, Fig. 15 shows additional examples of false
negative and false positive cases.

5.4. EfficientDet

Table 5 shows the results of the EfficientDet model on the DFUC2020
testing set both with and without post-processing. The results indicate
that the number of both TP and FP cases are reduced with the post-
processing method. However, with the post-processing method, the

percentage of TP cases (from 1,626 to 1,593) is 2.02% compared to FP
cases (from 720 to 594), which is 17.50%. Hence, the post-processing
method results in an important improvement in both Precision
(67.86%–72.84%) and F1-score (72.38%–74.37%), with a slight
decrease in both mAP (57.82%–56.94%) and Recall (77.44%–75.97%).
The EfficientDet with post-processing method achieved the highest F1-
Score and Precision (least number of FP cases) in DFUC2020. Exam
ples of final outputs by the refined EfficientDet architecture are shown in
Fig. 16.

5.5. Cascade Attention DetNet

Table 6 summarizes the results of the Cascade Attention DetNet on
the DFUC2020 testing dataset. The results are reported for two different
data augmentation methods, two different backbones and with or
without a pre-trained model.

From the results, we observe that CA-DetNet with two data
augmentation methods and the pre-trained model achieves the best
result. It achieves the highest score of 63.94% on mAP and 70.01% on
F1-Score. The C-DetNet achieves the highest score of 74.11% on Recall,
while the CA-DetNet with the mobile fuzzy method achieves the highest
score of 66.67% on Precision.

From the analysis, we observe that the mobile fuzzy data augmen
tation method brings about a striking effect and improves 1.46% on mAP
and 1.03% on F1-Score. However, we note that using the single mixup
method in data augmentation did not enhance the performance. The
results suggest that the mobile fuzzy method allows the model to adapt
to the noise from the external environment, while the mixup method is
detrimental. The attention mechanism contributes to the improved
performance of detection and increases mAP by 0.02% and F1-Score by
0.03%. Moreover, training with a pre-trained model can accelerate the
convergence of the model and improve its ability to detect DFU.

Our approach was effective for the vast majority of the detected
cases, as shown in Fig. 17. However, due to the visual complexity of
clinical environments, there are also some failure cases in our approach.
From our observations, such failures are generally due to the false
identification of toenails, interference from the external environment
and low image quality. For the false identification of toenails, we believe
that the appearance of leuconychia is similar to wounds and some cases
of DFU are located on or around the toenail. Background objects may
also sometimes interfere with detection results. We use the attention
mechanism to deal with this problem to some extent. For image quality,
we observe that there are several images which are blurry. We use data
augmentation methods like the mobile fuzzy method to partially address
this problem. We speculate that a two-stage architecture with an initial
stage to detect and segment the relevant foot area could be used to
address this issue. However, additional labeled data may be required to
achieve this goal.

5.6. Comparison of the challenge results

The results from the popular deep learning object detection methods

Table 3
YOLOv3: Results of different settings, post-processing and adding extra copyright free foot images. B50 and B32: compares the performance of the method with batch
size 50 and 32. Overlap-Removed: indicates the performance of the method with overlap removal post processing. conf0.3: shows the impact of ignoring predictions
with <0.3 confidence. Extra: demonstrates the effect on performance of adding extra images of healthy feet.

Method Settings Metrics

Base Coefficient Overlap-Removed TP FP Recall Precision F1-Score mAP

B50 50 0 × 1572 676 0.7496 0.6993 0.7236 0.6560
B50_Overlap 50 0 ✓ 1553 618 0.7406 0.7153 0.7277 0.6500
B32 32 0 × 1452 605 0.6929 0.7060 0.6994 0.6053
B32_Overlap 32 0 ✓ 1433 551 0.6834 0.7223 0.7023 0.5998
B32_Overlap_conf 32 0.3 ✓ 1386 490 0.6609 0.7388 0.6977 0.5835
B50_Exact 50 0 × 1563 616 0.7454 0.7173 0.7311 0.6548
B50_Overlap_Extra 50 0 ✓ 1543 565 0.7358 0.7320 0.7339 0.6484

Fig. 13. Examples of final detection outputs of trained YOLOv3, after
post-processing.

21 Freepik website: https://www.freepik.com/(accessed 2020-08-29).

M.H. Yap et al.

https://www.freepik.com/

Computers in Biology and Medicine 135 (2021) 104596

12

and the proposed CA-DetNet are comparable. Table 7 shows the overall
results when evaluated on the DFUC2020 testing set, where we present
the best mAP from each object detection method. Considering the
ranking based on mAP, the best result is achieved by the variant of Faster
R–CNN using Deformable Convolution, with 0.6940. This method

achieves the highest TP and the best Recall. It is noted that YOLOv5
achieved the lowest number of FP, but it has lower mAP and F1-Score.

In Table 8, the ranking according to F1-Score shows the highest F1-
Score of 0.7437 obtained by EfficientDet, however, this network reports
the lowest mAP at 0.5694. On the other hand, the Faster R–CNN
approach achieves a comparable F1-Score of 0.7434 with the highest

Fig. 14. Examples for adequate predictions with YOLOv5 for different DFU
sizes and compositions: (a) to (c) different wound sizes, (d) partially visible
wound, (e) non-detected blood stain on dressing, (f) non-detected scar and
hyperkeratosis, (g) heterogeneous wound composition, (h) detected wound out
of focus.

Fig. 15. Examples of false negative, false positive, inadequate and questionable
YOLOv5 predictions: (a) and (b) non-detected wounds, (c) and (d) painted
finger nail and malformed toe nail, (e) and (f) too large and too small, (g) and
(h) unclear detections (one, two, many?).

Table 4
YOLOv5: Results of different submitted runs. The settings state epochs for base and self-training as well as the use of test-time augmentation (TTA) and non-maximum
suppression (NMS). Best results are highlighted bold.

Method Settings Metrics

Base Self-training TTA + NMS TP FP Recall Precision F1-Score mAP

E60_SELF90 60 30 × 1504 474 0.7172 0.7604 0.7382 0.6270
E60_SELF100 60 40 × 1496 485 0.7134 0.7552 0.7337 0.6165
E60_SELF100_TTA_NMS 60 40 ✓ 1507 498 0.7187 0.7516 0.7348 0.6294
E60_SELF120 60 60 × 1502 478 0.7163 0.7586 0.7368 0.6201

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

13

mAP of 0.6940.
Fig. 18 visually compares the detection results on DFUs with less

visible appearances. In Fig. 18(a), the ulcer was detected by all the
methods. However, in Fig. 18(b), only Faster R–CNN and EfficientDet
detected the ulcer. Fig. 18(c) is another challenging case and was
detected by CA-DetNet and Faster R–CNN. In Fig. 18(d), we demonstrate
a case where only Faster R–CNN successfully localised the ulcer.

5.7. Further analysis with ensemble method

We conduct further analysis of the performance of the proposed
methods. In Section 5.1, we demonstrate that the ensemble method
using Weighted Boxes Fusion did not improve the results of four Faster
R–CNN approaches. This observation suggests that additional experi
ments based on different deep learning approaches should be investi
gated. We ran experiments based on combinations of two approaches
(Faster R–CNN + (CA-DetNet/EfficientDet/YOLOv3/YOLOv5)), three
approaches and a combination of all approaches, as summarized in
Table 9. From our observation, the ensemble methods reduce the
number of TPs and FPs, i.e., the more approaches used, the lower the
number of TPs and FPs. This approach did not improve mAP, but in the
majority of the ensembles there are notable improvements in precision,

which led to an improvement in F1-Score. The best F1-Score for the
ensemble method is 0.7617, achieved by ensembling Faster R–CNN with
Deformable Convolution and EfficientDet.

5.8. Comparison with existing methods

DFU detection is still in its infancy, and research in this field is
limited. As reported by Cassidy et al. [10], the organisers of DFUC2020
have provided the baseline results for the challenge, which include the
approach used in Goyal et al. [16] on Faster R–CNN, but without the
post-processing stages. When comparing our overall best results (Pro
posed in Table 10) with the benchmark algorithms, the new method
(based on Faster R-CNN with the configuration from Table 7) out
performed them in every category of the performance metrics.

Apart from fine-tuning each deep learning method to maximise

Fig. 16. The results of EfficientDet. (a) and (c) are the results of EfficientDet
without post-processing; (b) and (d) are the results obtained with
post-processing.

Table 6
Results for each of the Cascade Attention DetNets.

Backbone Settings Metrics

pre-trained mobile fuzzy mixup TP FP Recall Precision F1-Score mAP

C-DetNet ✓ ✓ ✓ 1554 789 0.7411 0.6633 0.7000 0.6391
CA-DetNet × × × 1493 1089 0.7120 0.5782 0.6382 0.5963
CA-DetNet ✓ × × 1523 820 0.7263 0.6500 0.6860 0.6204
CA-DetNet ✓ × ✓ 1431 961 0.6824 0.5982 0.6376 0.5749
CA-DetNet ✓ ✓ × 1528 764 0.7287 0.6667 0.6963 0.6350
CA-DetNet ✓ ✓ ✓ 1554 788 0.7411 0.6635 0.7002 0.6394

Fig. 17. The results of CA-DetNet: Illustration of successful DFU detections.
Note the variety of DFU sizes detected by the network, ranging from small
(bottom-right), medium (top-middle and bottom-middle), large (top-left, top-
right) and very large (bottom-left).

Table 7
A summary based on the mAP ranking from each object detection method when
evaluated on the DFUC2020 testing set.

Methods TP FP Recall Precision F1-Score mAP

Faster R–CNN 1612 628 0.7687 0.7196 0.7434 0.6940
YOLOv3 1572 676 0.7496 0.6993 0.7236 0.6560
CA-DetNet 1554 788 0.7411 0.6635 0.7002 0.6394
YOLOv5 1507 498 0.7187 0.7516 0.7348 0.6294
EfficientDet 1593 594 0.7597 0.7284 0.7437 0.5694

Table 8
A summary based on F1-Score ranking from each object detection method when
evaluated on the DFUC2020 testing set.

Methods TP FP Recall Precision F1-Score mAP

EfficientDet 1593 594 0.7597 0.7284 0.7437 0.5694
Faster R–CNN 1612 628 0.7687 0.7196 0.7434 0.6940
YOLOv5 1504 474 0.7172 0.7604 0.7382 0.6270
YOLOv3 1543 565 0.7358 0.7320 0.7339 0.6484
CA-DetNet 1554 788 0.7411 0.6635 0.7002 0.6394

Table 5
EfficientDet. ‘Before’ is the result of EfficientDet without post-processing and
‘After’ is the result with post-processing.

Methods TP FP Recall Precision F1-Score mAP

Before 1626 770 0.7754 0.6786 0.7238 0.5782
After 1593 594 0.7597 0.7284 0.7437 0.5694

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

14

performance, the methods are highly dependent on the pre-processing
stage, selection of data augmentation, post-processing methods and
ensemble method. We address the limitations and future challenges of
our work in the following section.

6. Discussion

In this section, we discuss the performance of each object detection
method and future work to improve DFU detection. Whilst most of the
results show an F1-Score > 70%, there are many challenges ahead to
enable the use of deep learning algorithms in real-world settings.

Faster R–CNN based approaches detected DFU in the DFUC2020
testing set with high mAP and F1-Scores. In addition, the variants of
Faster R–CNN largely improve the performance of the original Faster
R–CNN. After ensembling the results of four models, we reduced the
number of false positives, however, the overall performance was less
than the individual variants of Faster R–CNN. The reason may be that
even though we are fusing the prediction of four models into one pre
diction, similar results are predicted among these four models because
all models are based on Faster R–CNN. Therefore, in future work, a one-
stage object detection method such as CenterNet [55] could potentially

be included in the ensemble method to produce more accurate results.
The YOLOv3 algorithm is able to reliably detect DFU and ranked

third place in both mAP and F1-Score ranking. We have observed that
post-processing (by removing overlaps), along with the removal of low
confidence detections, leads to an improvement in precision but at the
expense of the number of true positives and recall. Additionally, our
analysis indicates that adding additional images of healthy feet, along
with post-processing, can result in a higher F1-score. We aim to further
investigate the results of pre-processing, as well as studying a more
effective post-processing method.

The YOLOv5 approach demonstrated reliable detection performance
with an overall high precision over the different model configurations.
Application of the NLM algorithm for image enhancement and gener
alization via self-training helped to further increase precision. Im
provements via duplicate cleansing and bounding box merging were
marginal due to the limited number of cases, but could prove beneficial
on larger datasets. Use of TTA with NMS further increased true-positive
detections at the cost of increased false-positive cases, yet increased the
mAP and F1-Score. For the presented approach, several optimizations
may be possible. The least self-trained model performed best, indicating
that models with less self-training epochs may perform better. Model
Ensembling22 might provide further performance improvements when
fusing different specialized models. In addition, investigation of
Hyperparameter Evolution23 allows general hyperparameter optimiza
tion, given the required resources.

As the presented results were obtained with the initial release v1.0
[21] of YOLOv5, the resulting performance is limited compared to that
achievable with matured up-to-date versions of the network [5]. Since
its release, YOLOv5 has been improving rapidly and its full potential
could not be taken advantage of during the DFUC2020. E.g., in v1.0 the
novel Mosaic data augmentation method was not functioning correctly
on custom data. At the time of writing, the matured version v5.024 [23]
is available, featuring numerous bug fixes, improvements and novelties.
E.g., the activation function changed from Leaky ReLU [30] in v1.0
(used here) to Sigmoid Linear Unit (SiLU) [20] (since v4.0) [24], further
increasing detection performance. Due to its reasonable performance
and mobile-focus, YOLOv5 may prove to be useful when performing
DFU detection tasks directly on mobile devices.

The refined EfficientDet algorithm is able to detect DFU with a high
recall rate. The pre-processing stage using the Shades of Gray algorithm
improved the color consistency of the images in the dataset. We exten
sively used data augmentation techniques to learn the subtle features of
DFUs of various sizes and severity. The post-processing stage we
implemented refined the inference capability of the original EfficientDet
method by removing overlapping bounding boxes. Due to low mAP,
further work will focus on investigating the larger EfficientDet network

Table 9
A comparison of ensemble methods with different combinations of object
detection frameworks, where FRCNN is Faster R–CNN, DetNet is CA-DetNet,
EffDet is EfficientDet and ‘ALL methods’ represents an ensemble method
based on Faster R–CNN, CA-DetNet, EfficientDet, YOLOv3 and YOLOv5.

Methods TP FP Recall Precision F1-
Score

mAP

FRCNN + DetNet 1510 426 0.7201 0.7800 0.7488 0.6619
FRCNN + EffDet 1502 345 0.7163 0.8132 0.7617 0.6425
FRCNN + YOLOv3 1423 310 0.6786 0.8211 0.7431 0.6205
FRCNN + YOLOv5 1453 350 0.6929 0.8059 0.7451 0.6421
FRCNN +

YOLOv5+EffDet
1396 252 0.6657 0.8471 0.7455 0.6109

FRCNN +
YOLOv5+DetNet

1384 295 0.6600 0.8243 0.7331 0.6132

FRCNN + DetNet +
EffDet

1435 270 0.6843 0.8416 0.7549 0.6229

ALL methods 1277 198 0.6090 0.8658 0.7150 0.5642

Table 10
Performance of the benchmark algorithms on the testing set reported by Cassidy
et al. [10] without fine-tuning and/or post-processing stages. FRCNN represents
Faster R–CNN and Proposed represents the overall best result of DFUC2020.

Benchmark Algorithms Recall Precision F1-Score mAP

FRCNN R–FCN 0.7511 0.6186 0.6784 0.6596
FRCNN ResNet101 0.7396 0.5995 0.6623 0.6518
FRCNN Inception-v2-ResNet101 0.7554 0.6046 0.6716 0.6462
YOLOv5 0.7244 0.6081 0.6612 0.6304
EfficientDet 0.6939 0.6919 0.6929 0.6216
Proposed 0.7687 0.7196 0.7434 0.6940

Fig. 18. Visual comparison of object detection methods when compared to the
ground truth (in red): (a) An easy case where all methods detected the ulcer; (b)
A more challenging case detected by Faster R–CNN (green) and EfficientDet
(yellow); (c) A challenging case detected by Faster R–CNN (green) and CA-
DetNet (blue); and (d) A challenging case only detected by Faster
R–CNN (green).

22 YOLOv5 GitHub repository tutorial on Model Ensembling: https://github.
com/ultralytics/yolov5/issues/318 (accessed 2020-09-28).
23 YOLOv5 GitHub repository tutorial on Hyperparameter Evolution:

https://github.com/ultralytics/yolov5/issues/607 (accessed 2020-09-28).
24 YOLOv5 v5.0: https://github.com/ultralytics/yolov5/tree/v5.0 (accessed

2021-04-26).

M.H. Yap et al.

https://github.com/ultralytics/yolov5/issues/318
https://github.com/ultralytics/yolov5/issues/318
https://github.com/ultralytics/yolov5/issues/607
https://github.com/ultralytics/yolov5/tree/v5.0

Computers in Biology and Medicine 135 (2021) 104596

15

architectures, particularly EfficientDet-D7.
The performance of Cascade Attention DetNet on the DFUC2020

testing set is competitive but not entirely satisfactory. We evaluated our
model on 10% of the DFUC2020 training set and it achieved an mAP of
0.9. We analyzed the possible reasons and speculate that the model may
be over-fitting, to which ensemble learning may provide a possible so
lution. We further aim to use appropriate data augmentation methods to
improve the robustness of the model.

The ensemble methods based on the fusion of different backbones
reduced the number of predicted bounding boxes substantially. Faster
R–CNN with Deformable Convolution predicted 2,240 bounding boxes.
However, after ensembling with EfficientDet, only 1,847 bounding
boxes were predicted. The number of predicted bounding boxes dropped
to 1,475 when we ensembled the results from all five networks.
Consequently, the ensemble methods reduced the number of TPs and
FPs. It is crucial for future research to focus on true positives, i.e.,
correctly locate the DFUs. One of the aspects required to overcome this
issue is to understand the threshold setting of IoU. Our experiments used
IoU ≥0.5, which is the guideline set by object detection for natural
objects. However, some medical imaging studies [11,48] used an IoU (or
Jaccard Similarity Index) threshold of 0.4. When we evaluated the
performance of the best ensemble method, the number of TPs increased
to 1,594, with IoU ≥0.3 the number of TPs increased to 1,668. With
Faster R–CNN with Deformable Convolution, the number of TPs
increased to 1,743 and 1,883 for IoU thresholds of 0.4 and 0.3,
respectively.

Currently, most clinicians involved in DFU care solely use a visual
assessment for detection of ulcers, taking photographs at the diagnosis
stage and periodically re-evaluating wound states on subsequent patient
clinic appointments. This method is time-consuming and thus econom
ically costly. Further, manual comparison of a patient’s wound photo
graph history over different stages only enables a rough assessment of
the healing progress. Other changes in wound condition may also go
unrecognized, such as the subtle features that occur prior to the emer
gence of a DFU. In addition, the effects of intra and inter-observer
variability for manual wound monitoring do not support an objective
measurement with consistent results.

An accurate method capable of detecting DFU at all stages of
development is the first step towards a fully-automated assessment tool,
enabling objective, cost and time-efficient DFU documentation and
analysis. However, due to the high variability of features present in DFU
cases, the problem of detection is non-trivial, as highlighted by our re
ported results. Color, texture of tissue types, location, size, shape and
depth of DFU present a highly variable set of features. Pathological
phenomena like infections, ischaemia, hyperkeratosis, and stasis
dermatitis, can further alter the appearance of a DFU and its surrounding
area. Additional complexity is added by altered anatomy due to defor
mation or partial amputation. This study has presented a diverse set of
deep learning-based solutions to address the problems associated with
accurate DFU detection.

7. Conclusion

We conduct a comprehensive evaluation of the performance of deep
learning object detection networks for DFU detection. Deformable
convolutions appear to work well in DFU detections and contribute to
the improvement to the best performing method. While the overall re
sults show the potential of localising DFUs using CNNs, the number of
false positive results is significant, and the networks are not always able
to effectively discriminate ulcers from other skin conditions. The
introduction of a second classifier based on a negative dataset may
provide a possible solution to this issue when training future networks.
However, in reality, it may prove impossible to gather all possible
negative examples for supervised learning algorithms. This approach
could also impact network size and complexity, which could negatively
impact inference speed. Segmenting the foot from its surroundings

might provide another possible solution to this problem, so that trained
models do not have to account for objects in real-world environments.
Other future research challenges include:

● Increasing the size of the existing dataset with clinical annotations
which would include metadata indicating the development stage of
each DFU. However, there are still barriers in data sharing and
clinical annotation is expensive and time consuming. It will be
important to encourage the co-creation of such datasets via machine
learning and clinical experts to foster a better understanding of the
annotated data. While increasing the number of images may benefit
the training process, other aspects such as ulcer location should be
considered.

● Creating self-supervised and unsupervised deep learning algorithms
for DFU detection. These methods have been developed and imple
mented for natural object detection tasks but remain under-explored
in medical imaging.

● Accurate delineation of an ulcer and its surrounding skin can help to
measure the healing progress of the ulcer. Goyal et al. [17] devel
oped an automated segmentation algorithm for DFU, however, they
experimented using a small dataset. Future work will potentially
enable a larger scale of experimentation.

● The use of DFU classification systems that can be used by clinicians to
analyse ulcer condition. Automated analysis and recognition of DFU
can help to improve the diagnosis of DFUs. With this goal in mind,
the next DFU challenge (DFUC2021 [50]) will focus on multi-class
DFU pathology recognition.

● Detection and quantification of tissue types within DFU wounds as a
means of monitoring healing status over time.

● Ensuring that future DFU detection models are trained using datasets
that consist of cases taken from a variety of ethnicities. DFUs are an
especially pertinent problem in developing countries, where cheap
remote detection systems may be most useful.

With the growth in the number of people diagnosed with diabetes,
remote detection and monitoring of DFU can help to reduce the burden
on health services. Research in the optimization of CNNs for remote
monitoring is another active research area that has the potential to
change the healthcare landscape globally.

The DFUC2020 dataset contains many examples of images which
include a variety of artifacts, including malformed toenails, rhagades
and hyperkeratosis. Without an accurate DFU detection algorithm, ac
curate segmentation and wound size estimation is not possible. A reli
able detection method that performs well on typical wound care images,
created under uncontrolled (non-laboratory) conditions, remains the
first and cardinal problem.

This work brought together researchers from around the world with
the aim of advancing research efforts in diabetic foot ulcer detection.
The latest state-of-the-art methods were implemented in a series of ex
periments that will provide future researchers with vital data that can be
built upon to address the many obstacles present in this problem
domain. The results of this work help to define the larger scope of the
challenges inherent in automated DFU detection, and provide important
indicators for possible avenues for future work.

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation for
the use of GPUs during the challenge and for sponsoring our event. A.A.,
D.B.A. and M.O. were supported by the National Health and Medical
Research Council [GNT1174405] and the Victorian Government’s OIS
Program. The work of R.B. was partially funded by a PhD grant from the
University of Applied Sciences and Arts Dortmund, 44227 Dortmund,
Germany.

M.H. Yap et al.

Computers in Biology and Medicine 135 (2021) 104596

16

References

[1] D.G. Armstrong, A.J. Boulton, S.A. Bus, Diabetic foot ulcers and their recurrence,
N. Engl. J. Med. 376 (2017) 2367–2375, https://doi.org/10.1056/nejmra1615439.

[2] A. Bochkovskiy, C.Y. Wang, H.Y.M. Liao, YOLOv4: Optimal Speed and Accuracy of
Object Detection, 2020 arXiv:2004.10934.

[3] N. Bodla, B. Singh, R. Chellappa, L.S. Davis, Soft-NMS — improving object
detection with one line of code, in: 2017 IEEE International Conference on
Computer Vision (ICCV), IEEE, 2017, pp. 5561–5569, https://doi.org/10.1109/
iccv.2017.593.

[4] R. Brown, B. Ploderer, L.S. Da Seng, P. Lazzarini, J. van Netten, MyFootCare: a
mobile self-tracking tool to promote self-care amongst people with diabetic foot
ulcers, in: Proceedings of the 29th Australian Conference on Computer-Human
Interaction (OzCHI’17), Association for Computing Machinery, 2017, pp. 462–466,
https://doi.org/10.1145/3152771.3156158.

[5] R. Brüngel, C.M. Friedrich, DETR and YOLOv5: exploring performance and self-
training for diabetic foot ulcer detection, in: 2021 IEEE 34th International
Symposium on Computer-Based Medical Systems (CBMS), IEEE, 2021,
pp. 148–153, https://doi.org/10.1109/CBMS52027.2021.00063.

[6] A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising, in: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), IEEE, 2005, pp. 60–65, https://doi.org/10.1109/cvpr.2005.38.

[7] Z. Cai, N. Vasconcelos, Cascade R-CNN: delving into high quality object detection,
in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
2018, pp. 6154–6162, https://doi.org/10.1109/cvpr.2018.00644.

[8] Z. Cai, N. Vasconcelos, Cascade R-CNN: high quality object detection and instance
segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021) 1483–1498,
https://doi.org/10.1109/tpami.2019.2956516.

[9] Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime sample attention in object detection, in:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, 2020, pp. 11580–11588, https://doi.org/10.1109/cvpr42600.2020.01160.

[10] B. Cassidy, N.D. Reeves, P. Joseph, D. Gillespie, C. O’Shea, S. Rajbhandari, A.
G. Maiya, E. Frank, A. Boulton, D. Armstrong, B. Najafi, J. Wu, M.H. Yap, The
DFUC 2020 Dataset: Analysis towards Diabetic Foot Ulcer Detection, vol. 17, 2021,
pp. 5–11, https://doi.org/10.17925/EE.2021.1.1.5.

[11] K. Drukker, M.L. Giger, K. Horsch, M.A. Kupinski, C.J. Vyborny, E.B. Mendelson,
Computerized lesion detection on breast ultrasound, Med. Phys. 29 (2002)
1438–1446, https://doi.org/10.1118/1.1485995.

[12] M. Goyal, S. Hassanpour, A Refined Deep Learning Architecture for Diabetic Foot
Ulcers Detection, 2020 arXiv:2007.07922.

[13] M. Goyal, S. Hassanpour, M.H. Yap, Region of Interest Detection in Dermoscopic
Images for Natural Data-Augmentation, 2019 arXiv:1807.10711.

[14] M. Goyal, N.D. Reeves, A.K. Davison, S. Rajbhandari, J. Spragg, M.H. Yap, DFUNet:
convolutional neural networks for diabetic foot ulcer classification, IEEE
Transactions on Emerging Topics in Computational Intelligence 4 (2020) 728–739,
https://doi.org/10.1109/TETCI.2018.2866254.

[15] M. Goyal, N.D. Reeves, S. Rajbhandari, N. Ahmad, C. Wang, M.H. Yap, Recognition
of ischaemia and infection in diabetic foot ulcers: dataset and techniques, Comput.
Biol. Med. 117 (2020) 103616, https://doi.org/10.1016/j.
compbiomed.2020.103616.

[16] M. Goyal, N.D. Reeves, S. Rajbhandari, M.H. Yap, Robust methods for real-time
diabetic foot ulcer detection and localization on mobile devices, IEEE Journal of
Biomedical and Health Informatics 23 (2019) 1730–1741, https://doi.org/
10.1109/JBHI.2018.2868656.

[17] M. Goyal, M.H. Yap, N.D. Reeves, S. Rajbhandari, J. Spragg, Fully convolutional
networks for diabetic foot ulcer segmentation, in: 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2017, pp. 618–623,
https://doi.org/10.1109/SMC.2017.8122675.

[18] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: 2017 IEEE International
Conference on Computer Vision (ICCV), IEEE, 2017, pp. 2980–2988, https://doi.
org/10.1109/ICCV.2017.322.

[19] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional
networks for visual recognition, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015)
1904–1916, https://doi.org/10.1109/tpami.2015.2389824.

[20] D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), 2020 arXiv:
1606.08415 arXiv:1606.08415.

[21] G. Jocher, L. Changyu, A. Hogan, L. Yu, changyu98, P. Rai, T. Sullivan, Ultralytics/
yolov5, Initial release (2020), https://doi.org/10.5281/zenodo.3908560.

[22] G. Jocher, Y. Kwon, guigarfr, J. Veitch-Michaelis, perry0418, Ttayu, Marc,
G. Bianconi, F. Baltacı, D. Suess, T. Chen, P. Yang, idow09, WannaSeaU, W. Xinyu,
T.M. Shead, T. Havlik, P. Skalski, NirZarrabi, LukeAI, LinCoce, J. Hu, IlyaOvodov,
GoogleWiki, F. Reveriano, Falak, D. Kendall, ultralytics/yolov3: 43.1mAP@0.5:
0.95 on COCO2014, 2020, https://doi.org/10.5281/zenodo.3785397.

[23] G. Jocher, A. Stoken, J. Borovec, NanoCode012, A. Chaurasia, TaoXie, L. Changyu,
V.A. Laughing, tkianai, yxNONG, A. Hogan, lorenzomammana, AlexWang1900,
J. Hajek, L. Diaconu, Marc, Y. Kwon, oleg, wanghaoyang0106, Y. Defretin,
A. Lohia, ml5ah, B. Milanko, B. Fineran, D. Khromov, D. Yiwei, Durgesh Doug,
F. Ingham, ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 Models, AWS, Supervise.Ly
and YouTube Integrations, 2021, https://doi.org/10.5281/zenodo.4679653.

[24] G. Jocher, A. Stoken, J. Borovec, NanoCode012, ChristopherSTAN, L. Changyu,
Laughing, tkianai, yxNONG, A. Hogan, lorenzomammana, AlexWang1900,
A. Chaurasia, L. Diaconu, Marc, wanghaoyang0106, ml5ah, Durgesh Doug,
F. Ingham, Guilhen Frederik, A. Colmagro, H. Ye, Jacobsolawetz, J. Poznanski,
J. Fang, J. Kim, K. Doan, L. Yu, ultralytics/yolov5: v4.0 - nn.SiLU() Activations,
Weights & Biases Logging, PyTorch Hub Integration, 2021, https://doi.org/
10.5281/zenodo.4418161.

[25] S. Koitka, C.M. Friedrich, Optimized convolutional neural network ensembles for
medical subfigure classification, in: Experimental IR Meets Multilinguality,
Multimodality, and Interaction 8th International Conference of the CLEF
Association, CLEF 2017, Lecture Notes in Computer Science (LNCS), Springer
International Publishing, 2017, pp. 57–68, https://doi.org/10.1007/978-3-319-
65813-1_5.

[26] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, J. Sun, DetNet: design backbone for object
detection, in: European Conference on Computer Vision (ECCV) 2018, Springer
International Publishing, 2018, pp. 339–354, https://doi.org/10.1007/978-3-030-
01240-3_21.

[27] T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid
networks for object detection, in: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, 2017, pp. 936–944, https://doi.org/10.1109/
CVPR.2017.106.

[28] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.
L. Zitnick, Microsoft COCO: common objects in context, in: European Conference
on Computer Vision (ECCV) 2014, Springer International Publishing, 2014,
pp. 740–755, https://doi.org/10.1007/978-3-319-10602-1_48.

[29] S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance
segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, 2018, pp. 8759–8768, https://doi.org/10.1109/
cvpr.2018.00913.

[30] A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network
acoustic models, in: Proceedings of the 30th International Conference on Machine
Learning (ICML) 2013,, ICML, 2013.

[31] J.H. Ng, M. Goyal, B. Hewitt, M.H. Yap, The effect of color constancy algorithms on
semantic segmentation of skin lesions, in: Medical Imaging 2019: Biomedical
Applications in Molecular, Structural, and Functional Imaging, International
Society for Optics and Photonics, SPIE, 2019, pp. 138–145, https://doi.org/
10.1117/12.2512702.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: an
imperative style, high-performance deep learning library, in: Advances in Neural
Information Processing Systems, vol. 32, Curran Associates, Inc., 2019,
pp. 8024–8035 (NeurIPS 2019).

[33] E. Pebesma, Simple features for R: standardized support for spatial vector data, The
R Journal 10 (2018) 439–446, https://doi.org/10.32614/RJ-2018-009.

[34] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2020. URL: https://www.
R-project.org/. Retrieved on 2021-04-28.

[35] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-
time object detection, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2016, pp. 779–788, https://doi.org/10.1109/
cvpr.2016.91.

[36] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017,
pp. 7263–7271, https://doi.org/10.1109/cvpr.2017.690.

[37] J. Redmon, A. Farhadi, YOLOv3: an Incremental Improvement, 2018 arXiv:
1804.02767.

[38] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection
with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017)
1137–1149, https://doi.org/10.1109/tpami.2016.2577031.

[39] P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri,
L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, R. Williams, Global
and regional diabetes prevalence estimates for 2019 and projections for 2030 and
2045: results from the international diabetes federation diabetes atlas, 9th edition.
Diabetes Research and Clinical Practice 157 (2019) 107843, https://doi.org/
10.1016/j.diabres.2019.107843.

[40] R. Solovyev, W. Wang, T. Gabruseva, Weighted boxes fusion: ensembling boxes
from different object detection models, Image Vis Comput. 107 (2021) 104117,
https://doi.org/10.1016/j.imavis.2021.104117.

[41] M. Tan, Q. Le, EfficientNet: rethinking model scaling for convolutional neural
networks, in: Proceedings of the 36th International Conference on Machine
Learning, 2019, pp. 6105–6114. URL, http://proceedings.mlr.press/v97/tan19a.
html. Retrieved on 2021-04-28.

[42] M. Tan, R. Pang, Q.V. Le, EfficientDet: scalable and efficient object detection, in:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, 2020, pp. 10778–10787, https://doi.org/10.1109/CVPR42600.2020.01079.

[43] C.Y. Wang, H.Y. Mark Liao, Y.H. Wu, P.Y. Chen, J.W. Hsieh, I.H. Yeh, CSPNet: a
new backbone that can enhance learning capability of CNN, in: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
IEEE, 2020, pp. 1571–1580, https://doi.org/10.1109/CVPRW50498.2020.00203.

[44] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang, Residual
attention network for image classification, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017, pp. 6450–6458, https://doi.
org/10.1109/CVPR.2017.683.

[45] L. Wang, P.C. Pedersen, E. Agu, D.M. Strong, B. Tulu, Area determination of
diabetic foot ulcer images using a cascaded two-stage SVM-based classification,
IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 64 (2017) 2098–2109,
https://doi.org/10.1109/TBME.2016.2632522.

[46] L. Wang, P.C. Pedersen, D.M. Strong, B. Tulu, E. Agu, R. Ignotz, Smartphone-based
wound assessment system for patients with diabetes, IEEE (Inst. Electr. Electron.
Eng.) Trans. Biomed. Eng. 62 (2015) 477–488, https://doi.org/10.1109/
TBME.2014.2358632.

M.H. Yap et al.

https://doi.org/10.1056/nejmra1615439
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref2
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref2
https://doi.org/10.1109/iccv.2017.593
https://doi.org/10.1109/iccv.2017.593
https://doi.org/10.1145/3152771.3156158
https://doi.org/10.1109/CBMS52027.2021.00063
https://doi.org/10.1109/cvpr.2005.38
https://doi.org/10.1109/cvpr.2018.00644
https://doi.org/10.1109/tpami.2019.2956516
https://doi.org/10.1109/cvpr42600.2020.01160
https://doi.org/10.17925/EE.2021.1.1.5
https://doi.org/10.1118/1.1485995
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref12
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref12
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref13
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref13
https://doi.org/10.1109/TETCI.2018.2866254
https://doi.org/10.1016/j.compbiomed.2020.103616
https://doi.org/10.1016/j.compbiomed.2020.103616
https://doi.org/10.1109/JBHI.2018.2868656
https://doi.org/10.1109/JBHI.2018.2868656
https://doi.org/10.1109/SMC.2017.8122675
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/tpami.2015.2389824
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref20
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref20
https://doi.org/10.5281/zenodo.3908560
https://doi.org/10.5281/zenodo.3785397
https://doi.org/10.5281/zenodo.4679653
https://doi.org/10.5281/zenodo.4418161
https://doi.org/10.5281/zenodo.4418161
https://doi.org/10.1007/978-3-319-65813-1_5
https://doi.org/10.1007/978-3-319-65813-1_5
https://doi.org/10.1007/978-3-030-01240-3_21
https://doi.org/10.1007/978-3-030-01240-3_21
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/cvpr.2018.00913
https://doi.org/10.1109/cvpr.2018.00913
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref30
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref30
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref30
https://doi.org/10.1117/12.2512702
https://doi.org/10.1117/12.2512702
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref32
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref32
https://doi.org/10.32614/RJ-2018-009
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2017.690
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref37
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref37
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1016/j.diabres.2019.107843
https://doi.org/10.1016/j.diabres.2019.107843
https://doi.org/10.1016/j.imavis.2021.104117
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/TBME.2016.2632522
https://doi.org/10.1109/TBME.2014.2358632
https://doi.org/10.1109/TBME.2014.2358632

Computers in Biology and Medicine 135 (2021) 104596

17

[47] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for
deep neural networks, in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2017, pp. 5987–5995, https://doi.org/10.1109/
CVPR.2017.634.

[48] M.H. Yap, E.A. Edirisinghe, H.E. Bez, A novel algorithm for initial lesion detection
in ultrasound breast images, J. Appl. Clin. Med. Phys. 9 (2008) 181–199, https://
doi.org/10.1120/jacmp.v9i4.2741.

[49] M.H. Yap, M. Goyal, F. Osman, R. Martí, E. Denton, A. Juette, R. Zwiggelaar, Breast
ultrasound region of interest detection and lesion localisation, Artif. Intell. Med.
107 (2020) 101880, https://doi.org/10.1016/j.artmed.2020.101880.

[50] M.H. Yap, N. Reeves, A. Boulton, S. Rajbhandari, D. Armstrong, A.G. Maiya,
B. Najafi, E. Frank, J. Wu, Diabetic Foot Ulcers Grand Challenge 2021, 2020,
https://doi.org/10.5281/zenodo.3715020.

[51] M.H. Yap, N.D. Reeves, A. Boulton, S. Rajbhandari, D. Armstrong, A.G. Maiya,
B. Najafi, E. Frank, J. Wu, Diabetic Foot Ulcers Grand Challenge 2020, 2020,
https://doi.org/10.5281/zenodo.3715016.

[52] H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, Mixup: beyond empirical risk
minimization, in: 6th International Conference on Learning Representations (ICLR)
2018, ICLR., 2018. URL: https://openreview.net/forum?id=r1Ddp1-Rb. Retrieved
on 2021-04-28.

[53] Z. Zhang, T. He, H. Zhang, Z. Zhang, J. Xie, M. Li, Bag of Freebies for Training
Object Detection Neural Networks, 2019 arXiv:1902.04103.

[54] W. Zhao, H. Huang, D. Li, F. Chen, W. Cheng, Pointer defect detection based on
transfer learning and improved cascade-RCNN, Sensors 20 (2020) 4939, https://
doi.org/10.3390/s20174939.

[55] X. Zhou, D. Wang, P. Krähenbühl, Objects as Points, 2019 arXiv:1904.07850.
[56] J. Zhu, L. Fang, P. Ghamisi, Deformable convolutional neural networks for

hyperspectral image classification, Geosci. Rem. Sens. Lett. IEEE 15 (2018)
1254–1258, https://doi.org/10.1109/LGRS.2018.2830403.

[57] X. Zhu, H. Hu, S. Lin, J. Dai, Deformable ConvNets V2: more deformable, better
results, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2019, pp. 9300–9308, https://doi.org/10.1109/
CVPR.2019.00953.

M.H. Yap et al.

https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1120/jacmp.v9i4.2741
https://doi.org/10.1120/jacmp.v9i4.2741
https://doi.org/10.1016/j.artmed.2020.101880
https://doi.org/10.5281/zenodo.3715020
https://doi.org/10.5281/zenodo.3715016
https://openreview.net/forum?id=r1Ddp1-Rb
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref53
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref53
https://doi.org/10.3390/s20174939
https://doi.org/10.3390/s20174939
http://refhub.elsevier.com/S0010-4825(21)00390-5/sref55
https://doi.org/10.1109/LGRS.2018.2830403
https://doi.org/10.1109/CVPR.2019.00953
https://doi.org/10.1109/CVPR.2019.00953

	Deep learning in diabetic foot ulcers detection: A comprehensive evaluation
	1 Introduction
	2 Related work
	3 Datasets
	4 DFU detection methods
	4.1 Faster R–CNN
	4.1.1 Data augmentation
	4.1.2 Model training and implementation
	4.1.3 Variants of faster R–CNN
	4.1.4 Post-processing
	4.1.5 Ensemble method

	4.2 YOLO
	4.2.1 YOLOv3

	4.3 Model pipeline
	4.3.1 Training
	4.3.2 Post-processing
	4.3.3 YOLOv5
	4.3.4 Pre-processing
	4.3.5 Data Augmentation
	4.3.6 Model
	4.3.7 Training
	4.3.8 Post-processing

	4.4 EfficientDet
	4.4.1 Pre-processing

	4.5 Data augmentation
	4.5.1 Model
	4.5.2 Training
	4.5.3 Post-processing

	4.6 Cascade Attention DetNet
	4.6.1 Data augmentation
	4.6.2 Model
	4.6.3 Training
	4.6.4 Post-processing

	5 Results and analysis
	5.1 Faster R–CNN
	5.2 YOLOv3
	5.3 YOLOv5
	5.4 EfficientDet
	5.5 Cascade Attention DetNet
	5.6 Comparison of the challenge results
	5.7 Further analysis with ensemble method
	5.8 Comparison with existing methods

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

