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Abstract: Electric vehicles (EVs) have had a meteoric rise in acceptance in recent decades due to 
mounting worries about greenhouse gas emissions, global warming, and the depletion of fossil re-
source supplies because of their superior efficiency and performance. EVs have now gained wide-
spread acceptance in the automobile industry as the most viable alternative for decreasing CO2 pro-
duction. The battery is an integral ingredient of electric vehicles, and the battery management sys-
tem (BMS) acts as a bridge between them. The goal of this work is to give a brief review of certain 
key BMS technologies, including state estimation, aging characterization methodologies, and the 
aging process. The consequences of battery aging limit its capacity and arise whether the battery is 
used or not, which is a significant downside in real-world operation. That is why this paper presents 
a wide range of recent research on Li-ion battery aging processes, including estimations from mul-
tiple areas. Afterward, various battery state indicators are thoroughly explained. This work will 
assist in defining new relevant domains and constructing commercial models and play a critical role 
in future research in this expanding area by providing a clear picture of the present status of esti-
mating techniques of the major state indicators of Li-ion batteries. 

Keywords: battery management system (BMS); state estimation; aging characterization  
methodology; battery aging; Li-ion battery; state of function (SOF); state of power (SOP);  
state of health (SOH); state of charge (SOC) 
 

1. Introduction 
In the contemporary context of global decarbonization efforts, the robust advance-

ment and integration of renewable energy sources emerge as an inexorable trajectory. 
Nonetheless, the inherent intermittency of many renewables introduces temporal and 
spatial disparities between energy generation and end-user consumption. To effectively 
bridge these gaps, the imperative arises to cultivate tailored energy storage systems opti-
mized for the demands of the modern power grid [1]. During the 1980s, the development 
of lithium-ion batteries (LIBs), as documented in references [2–4], marked a significant 
milestone in electrochemical energy storage systems. LIBs distinguished themselves from 
other commercially available battery types by offering substantial advantages, including 
extended cycle life, elevated working voltage, and impressive specific energy [5]. Battery 
management systems (BMSs) are required to meet more stringent requirements in order 

Citation: Roy, P.K.; Shahjalal, M.; 

Shams, T.; Stoyanov, S.; Ahsan, M.; 

Haider, J. A Critical Review on  

Battery Aging and State Estimation 

Technologies of Lithium-Ion  

Batteries: Prospects and Issues.  

Electronics 2023, 12, 4105. https:// 

doi.org/10.3390/electronics12194105 

Academic Editor: Yi-Hua Liu 

Received: 14 August 2023 

Revised: 24 September 2023 

Accepted: 27 September 2023 

Published: 30 September 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Electronics 2023, 12, 4105 2 of 30 
 

 

to improve LIB utilization. These requirements include all-climate, electric scopes, full 
lifetimes, and high-precision battery state estimates such as safety status, fault, state of 
health (SOH), and state of charge (SOC). For the development of new high-energy vehi-
cles, as well as energy conservation and emission reduction strategies, comprehensive in-
vestigations are a must. As a result, it is critical to take advantage of a more mature and 
comprehensive BMS [6–9]. The BMS should minimize the total cost of a vehicle by not 
only ensuring the battery pack’s safe functioning [10,11] but also fully using the pack’s 
available energy and extending durability [12]. However, the current charging strategies 
for Li-ion batteries in EVs have severely limited their widespread adoption [13,14]. To 
solve this problem, research into providing an optimum charging method for Li-ion bat-
teries has arisen as a new paradigm for a smarter BMS [15,16]. The SOH of each cell in the 
system is strongly related to the creation of the optimal charging technique for a Li-ion 
battery pack in an EV [17–19], which poses substantial challenges [12,20,21]. 

It is necessary to investigate the battery aging process and deterioration model at the 
cell level, particularly how battery essential factors affect battery life and other important 
characteristic metrics like power and energy density. The aging process and deterioration 
model are also crucial at the battery system level. In terms of battery management for 
estimating battery health based on history, optimizing current working conditions, and 
estimating future performance, Vetter et al. [22] provide an in-depth analysis of the aging 
mechanisms of LIBs with lithium metal oxide cathodes (lithium nickel cobalt mixed ox-
ides [Li(Ni,Co)O2] and lithium manganese oxides [LiMn2O4]) and carbonaceous anodes. 
Han et al. [23] offer a thorough examination of the fundamental problems surrounding 
battery degradation during its entire life cycle. Li et al. [24] provide a thorough examina-
tion of one common aging mechanism: lithium deposition. Santhanagopalan et al. [25] 
provide an overview of models for forecasting LIB cycling performance. Wang et al. [26] 
discuss the modeling of solid electrolyte interface (SEI) films in detail. Different ap-
proaches are outlined in [27], ranging from an electrochemical perspective to research that 
is specifically focused on data processing, to comprehend the effects of aging mechanisms 
on a battery’s life. In reference [28], a rapid identification methodology is introduced for 
assessing micro-health parameters that characterize the performance of LiFePO4 negative 
electrode materials and electrolytes. This approach is rooted in the reduced P2D model 
and employs Páde approximation techniques. To facilitate micro-health parameter deter-
mination, the diffusion processes within the P2D model’s liquid phase and solid phase are 
individually simplified using the Páde approximation method. Farmann et al. [29] and 
Berecibar et al. [30] provide crucial assessments of the battery SOH estimate techniques, 
with an emphasis on the management method. In battery behavior analysis, battery state 
tracking, real-time controller design, and thermal management, a good battery model is 
essential. Furthermore, certain internal battery states, such as the state of charge (SOC), 
state of health (SOH), and internal temperature, cannot be directly evaluated despite the 
fact that these states play critical roles in maintaining battery operation and must be con-
trolled using appropriate estimating techniques. Various methods are reported in the lit-
erature in this respect. A review of the strengths and weaknesses of SOC estimating meth-
ods for LiBs in electric and hybrid electric vehicles (HEVs) was published in reference [31], 
with 65 percent of references dating from 2011 or earlier. In reference [32], an innovative 
approach is presented for jointly estimating the state of charge (SOC) and temperature of 
a lithium iron phosphate battery. This method utilizes ultrasonic reflection waves, em-
ploying a piezoelectric transducer affixed to the battery’s surface for ultrasonic-to-electric 
transduction. Ultrasonic signals are generated at the transducer, traverse through the bat-
tery, and return to the transducer after reaching the battery’s underside. The intervals for 
extracting feature indicators of the battery’s state are determined through sliding-window 
matching correlation analysis. Experimental results demonstrate that the root mean 
square error (RMSE) for estimating the lithium-ion battery’s SOC is 7.42%, while the tem-
perature estimation yields an RMSE of 0.40 °C. Reference [33] provides a review of man-
agement systems and electric vehicle applications, with an emphasis on the estimation 
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method of the state of charge rather than the estimation methods of the state of health and 
state of function. More than half of the citations in this literature date from 2012 or earlier. 
Many key methods are not explained in reference [12], such as the genetic-algorithm-
based method, adaptive unscented Kalman filter (AUKF), sigma-point Kalman filter 
(SPKF), and so on. Furthermore, the state-of-function technique discussed in this literature 
is solely based on the SOC and SOH. 

In contrast to references [34–36], which predominantly focus on specific aspects such 
as the state of health (SOH) or battery performance measurement, this paper offers a com-
prehensive review that encompasses a wider array of topics. It delves into battery aging 
mechanisms, their origins, techniques for battery state estimation, and various related 
subjects. Our paper offers a unique perspective by concurrently reviewing state estimation 
parameters such as the state of charge, state of health, state of function, state of tempera-
ture, and state of power, alongside an in-depth exploration of battery aging mechanisms. 
This comprehensive approach distinguishes our work from other review papers and pro-
vides valuable insights to assist battery management system designers in their endeavors. 
The rest of this paper is structured as follows. Section two details the aging process of 
LIBs. Section three depicts the state estimation procedure. In section four, the future re-
search path is stated. The last section contains the conclusion. 

2. Aging Mechanism 
2.1. General Aspects 

How effectively the battery aging mechanisms and their consequences are studied 
and analytically expressed determines the performance of health estimates and the accu-
racy of predictions [37]. A metal oxide cathode, a carbonaceous anode, a lithium salt elec-
trolyte, and a separator are the principal components of a LIB. The main cause of battery 
aging is the physiochemical transformation that takes place within the electrolyte, elec-
trode, and the interfaces between them. The origins of aging mechanisms are heavily in-
fluenced by the composition of the electrodes. Aging causes cell component degradation. 
This may lead to structural modifications, alterations in the electrolyte’s chemical makeup, 
or a loss of active material as a result of materials dissolving in the electrolyte [22]. Figure 
1 [38] depicts the various kinds of aging mechanisms that occur in LIBs. 

There are three different modes of the main degradation mechanisms in Li-ion bat-
teries: the loss of anode/cathode active material (LAM) in the electrodes, loss of lithium 
inventory (LLI), and growth in cell internal resistance. LLI groups the side reactions that 
limit how much cyclable lithium is available to transfer between electrodes, for instance, 
the surface of the negative electrode developing a solid electrolyte interface (SEI), lithium 
plating, or electrolyte decomposing reactions [27]. Such reactions degrade Li ions in an 
irreversible manner, rendering them unavailable for further discharge/charge. The LAM 
refers to a group of mechanisms that reduce the amount of material accessible for electro-
chemical activities in both anode and cathode electrodes. The LAM usually occurs for sev-
eral different reasons. One of the reasons is the structural degradation of electrodes caused 
by active material volume changes during cycling. These cause particles to crack and 
lower the density of lithium storage sites by causing mechanical stress. Chemical break-
down and dissolving processes of transition metals into the electrolyte, as well as SEI al-
teration, are other viable reasons [27,39]. At the junction of the two electrodes, there is an 
electrolyte loss (LE), because of parasitic phases such as SEI formation, and various mech-
anisms such as lithium plating, high temperature, and high voltages, with moisture intru-
sion leading to the production of hydrofluoric acid (HF), can cause the cell’s resistance to 
increase [38]. 
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Figure 1. The most significant Li-ion battery degrading mechanism is summarized graphically 
(adapted from [38]). 

2.1.1. Mechanisms of Anode Material Aging 
Carbonaceous anodes, which are primarily graphite-based materials, are presently 

used in the majority of commercial LIBs. The primary mechanism for graphite electrodes 
to age over time is the development of a passivation protective layer interface, also known 
as the SEI, on the surfaces of the anode electrode during the discharging/charging opera-
tion [40] at voltages below the electrolyte’s electrochemical stability window. This causes 
irreversible redox reactions to break down the electrolyte, resulting in electrolyte losses. 
The SEI layer develops on its own during the first cycle, leading to ca. 10% loss in capacity, 
but it then functions to block additional electrolyte reactivity at the negative electrode 
(NE). The SEI obstructs the reactions that occur between the electrolyte and the electrode 
in general. However, as the cell ages, the thickness of the SEI layer grows (mostly on the 
graphite NE) because of a volume change of the graphite anode material of around 10% 
for lithium ions intercalation and deintercalation during battery charging/discharging. An 
SEI is created by the reaction of the electrolyte and side reaction products, such as plated 
lithium ions and transition metal (TM) ions dissolved from the positive electrode (PE), 
with solvent molecules passing through the already-existing SEI, and newly exposed elec-
trode surfaces as a result of cracking and deposition of these products could contribute to 
the thickening of the SEI layer [38]. This causes the battery’s usable capacity to decrease 
with time, as well as the internal resistance of the battery to rise [23,37,41]. One of the key 
causes of LIB aging is the development and continuing thickening of the SEI layer on the 
surface of the graphite anode [42]. The SEI grows at a rate roughly proportional to the 
square root of time, and as the SEI gets thicker, the rate at which solvent molecules diffuse 
into the SEI decreases [38]. 

The formation of the SEI in a Li-ion battery involves several steps. When compared 
to the Li+/Li reduction potential, the first stage happens at voltages greater than 0.25 V 
[43]. In the first step, electrolyte decomposition begins through a series of reduction reac-
tions, as well as the formation of insoluble compounds (Li2O, LiF, and Li2CO3) [43]. The 
second stage begins between 0.25 and 0.04 V where the graphite electrode has intercalated 
Li ions [43]. Storage and operation at high temperatures can cause the SEI layer to dissolve, 
resulting in the formation of salts that are less permeable to Li+ ions [27]. At low temper-
atures, lithium plating, higher impedance, and more cyclable lithium losses might arise 
from lower lithium diffusion inside the SEI and graphite [27]. Exfoliation and gas evolu-
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tion are caused by the interaction of solvents that disperse through the SEI and the graph-
ite electrode, which can damage the SEI [39]. Increased impedance and capacity loss can 
also be caused by cracks in the SEI [41]. This kind of depreciation can be reduced by keep-
ing batteries at lower voltages [27]. The high-voltage-induced SEI layer on the cathode is 
responsible for the formation of an SEI, electrolyte degradation, electrolyte oxidation, and 
active mass wear, which is difficult to detect [44]. 

When metallic Li develops on the NE’s surface rather than intercalating into it, a phe-
nomenon known as “Li plating” takes place, which is another cause of battery degrada-
tion. This can be caused by quick charge, when the side reaction rate is raised compared 
to the main intercalation reaction (kinetic plating) for high electrolyte potential [45], or by 
the NE surface becoming fully lithiated, in which case the Li has nowhere else to go (ther-
modynamic plating) [38,46]. There are several causes of lithium plating, such as high cell 
voltage, high (charge) current, high SOC, low temperatures, and a lack of NE mass or 
electrochemically active surface area. Furthermore, plating for local faults is caused by 
manufacturing defects [47] or application errors [48]. The plated metallic Li immediately 
reacts with the electrolyte to develop the SEI shown in Figure 2 [38], resulting in the iso-
lation of the remaining Li and the development of “dead lithium” [38,49–51]. As a result, 
pore blockage causes conductivity reduction [49]. Puncturing the separator for dendrite 
formation owing to an internal short circuit may result from metallic lithium plating 
[38,52]. 

 
Figure 2. Correlation between the solid electrolyte interface (SEI) and lithium plating (adapted from 
[38]). 

Particle fracture occurs in both electrodes as a result of the significant volume change 
in the electrode materials and the resulting stress during electrochemical operation [53]. 
Particle breakage is particularly problematic for active materials like silicon that have high 
theoretical specific capacitance. In addition to permitting side reactions to occur, electrode 
particle cracks reveal extra electron-conductive surfaces to liquid electrolytes, trapping Li 
that would otherwise be cyclable [54] inside of the enlarged SEI layer. Particle fracturing 
and the related protracted SEI expansion are more possible in NEs with a high Si concen-
tration because they are subjected to more dramatic volume fluctuations during cycling 
[55]. The cracking of particles has a multitude of repercussions. Active particles lose elec-
trical contact with the current collector, conductive additives, and current collector. As a 
result, electronic/ionic conductivity declines, and capacity fades [38,54,56]. The rate of SEI 
development has also risen, contributing to capacity fading. Electrode pulverization is the 
process by which some of the active material separates from the remainder of the particle 
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when microscopic cracks in the electrode join together [38]. As a result, there is a loss of 
active material, which causes capacity fading [38]. 

2.1.2. Mechanisms of Anode Material Aging 
The main challenges related to battery aging for metal oxide cathodes are electrode 

material dissolution, electrode structural deterioration, and phase shift. As a result, cath-
ode dissolution can exacerbate electrolyte deterioration, resulting in the passive layer at 
the cathode/electrolyte interface expanding continuously. Depending on the electrode 
material, the degree of dissolution varies [57]. In general, Mn-based cathode dissolution 
is expected to be the most intense [58,59], whereas Ni-based cathode dissolution is con-
sidered to be the least intense [60]. For Mn-based cathodes, Jahn–Teller distortion and 
manganese dissolving are the two main aging processes that cause structural deformation 
[23,61,62]. Manganese is often found in two oxidation states: Mn4+ and Mn3+. During the 
discharged state, trivalent manganese ions are disproportionately converted to tetravalent 
and divalent manganese ions in this process [22,63] which is shown in Equation (1). 2𝑀𝑛(𝐼𝐼𝐼) → 𝑀𝑛(𝐼𝑉) + 𝑀𝑛(𝐼𝐼)(𝑠𝑜𝑙𝑣) (1)

When discharging at a high current, Li ions diffuse much more quickly in the elec-
trolyte than in LMO particles, resulting in Li ions building up on the surface of the LMO 
particles. LMO spinel may also saturate with additional lithium, which results in Jahn–
Teller distortion and a phase transition from cubic to tetragonal. Since the cathode mate-
rial’s structure is disrupted and the volume of the LMO cathode material fluctuates sig-
nificantly (by around 16%), the active material is lost [23,64,65]. Reference [58] identified 
two aging processes for Mn-based cathodes: low potential Mn disproportionation and 
medium and high potential Mn dissolution affected by H+ with the co-product of LiF, a 
passive film, known as the cathode electrolyte interface (CEI) film and generally thinner 
than the SEI film, can form as the electrolyte oxidizes and LiPF6 decomposes during the 
initial and successive charging. With more battery cycles, the cathode/electrolyte inter-
face’s CEI layer thickens, increasing interface resistance and deepening cathode polariza-
tion. Therefore, it can affect the battery’s rate capacity and reversible capacity [66]. Lith-
ium vacancies and cation mixing contribute to the structural deterioration of the cathode 
material. The cation mixing frequently happens at the transition metal cathode because 
various transition metal ions (Ni2+, Mn3+, Fe2+) and Li ions have similar radii. It can limit 
battery capacity by preventing certain Li ions from intercalating, as well as widen the in-
terlayer gap of the transition metal layer, preventing Li ion diffusion and raising battery 
polarization. Lithium vacancies would arise in LiCoO2 cathodes due to the smaller radius 
of Co2+, making structures unstable. Particle breaking on the PE, similar to the behavior 
witnessed at the NE, might expose new surfaces to electrolytes, thus increasing the de-
grading processes. Dissolved TM ions can move to the NE through the electrolyte [67–69], 
producing deposits that can promote the creation of thicker, layered SEI structures, 
thereby raising NE impedance [12,38,66]. 

2.2. Origins of Aging 
The two forms of battery aging are cycle aging and calendar aging [70]. Calendar 

aging is the term for the harm that happens as a result of battery storage over time [71]. 
As a result, depending on the storage conditions, battery activities may be sped up or 
slowed down. The impact of the battery operation interval known as a cycle is connected 
to cycle aging (discharge or charge). 

The storage temperature [72] is the most important factor when it comes to self-dis-
charge and calendar aging. High temperatures accelerate secondary processes like corro-
sion, and lithium loss is higher than at low temperatures, which causes capacity fading 
[72,73]. Low temperatures prevent these processes from happening as quickly, but they 
also generate problems because of material loss and chemical alterations [11]. The amount 
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of the SOC during storage [27,74] is another important element in calendar aging. Accord-
ing to Bashash et al. [75], there is an exponential relationship between an increased SOC 
and a higher rate of calendar aging. As a result, if the battery is stored at high SOCs, it will 
degrade faster. The power law connection between time t and the loss of calendar aging 
capacity is weighted by the effects of storage SOC and temperature t, which may be caused 
by a stress factor kcal [76]. 𝑄௟௢௦௦௖௔௟ (𝑡) = 𝑄(𝑡) − 𝑄(0) = 𝑘௖௔௟(𝑇, 𝑆𝑂𝐶)𝑡௭೎ೌ೗ (2)

where 𝑄௟௢௦௦௖௔௟  (t) is a measure of the capacity loss that occurs during calendar aging. The 
cell capacity at time t and at its beginning of life (BOL), respectively, is represented by Q 
(t) and Q (0). The constant exponent Zcal has no dimensions. Temperature T and SOC have 
an impact on the value of kcal. 

When the battery is in charge/discharge, cycle aging occurs as a direct result of the 
average SOC, temperature, cycling voltage range, charge/discharge current rate, and cycle 
number/time, when cycling. The battery consumption mode determines the parameters 
that contribute to cycle aging. The ∆SOC, which indicates SOC fluctuation during a cycle, 
is a common factor in the literature. Bloom et al. tested identical lithium-ion cells for var-
ied ∆SOC cycling at similar temperatures and beginning SOCs. The results reveal power 
loss increasing with ∆SOC. Such effects are primarily caused by positive electrode deteri-
oration and the growth of the SEI, both of which are induced by high charge or discharge. 
The charging/discharging voltage during the life of a LIB has an influence on its aging and 
the operation of the usage mode. As a result, a high charging voltage indicates a faster 
aging process [77]. Cycle-based capacity loss can be expressed as a power law relationship 
with throughput in a commonly used cycle aging model [41]. 𝑄௟௢௦௦௖௬௖ (𝐿) = 𝑄(𝐿) − 𝑄(0) = 𝑘௖௬௖(𝑇, 𝐼, 𝐷𝑂𝐷) ∙ 𝐿௭೎೤೎ (3)

where 𝑄௟௢௦௦௖௬௖   is a measure of the capacity loss that occurs during cyclic aging and 
represents the total capacity variation over time/cycles. The cycle number or Ah-
throughput are both acceptable values for L [43]. I represents the cycling current, while 
kcyc reflects the impact of aging variables on the deterioration process. DOD stands for the 
depth of discharge while cycling. Once more, the exponent zcyc is a constant that was 
obtained via fitting experimental data.[43]. At high SOC values, electrolyte decomposition 
at the electrode contact surface induces an increase in lithium consumption and the 
formation of insulating layers on the electrode particle surface, resulting in capacity loss 
and a rise in impedance [78]. Furthermore, at low SOC values, corrosion of the current 
collector, which has been recognized as the primary harmful impact, occurs [40]. High 
charging and discharging rates will reduce the capacity of the cell and increase internal 
resistance [78]. The high current generates a localized temperature capable of modifying 
and disrupting the electrode surface layers [22,79,80]. The effects of storage temperature 
on calendar aging are described in [22,27]. At high temperatures, side reactions increase, 
resulting in capacity loss [27]. The rate of fading increases as the temperature rises. While 
the Li-ion diffusion rate in the electrolyte decreases with low-temperature storage, the rate 
of plating of metallic lithium on the anode increases. That is why capability is depleted. 
[27]. Table 1 shows external factors influencing battery aging during cycling, as well as 
their related degradation modes [39]. 

Table 1. External factors affecting battery aging and degradation modes. 

Degradation 
Mechanism 

Aging Stress Factors Degradation Mode 
Effect 

Time 
High Tem-

perature 
Low Tem-
perature 

High SOC/ 
Voltage 

Low SOC/ 
Voltage 

High Current 
Rate 

High 
Pressure 

LLI LAM 
Increase in 
Impedance 

SEI growth √ √ ― √ ― √ √ √ ― √ Capacity fade 
SEI decomposi-

tion 
― √ ― √ ― √ ― √ ― ― Capacity fade 

Electrolyte de-
composition 

― √ ― √ ― ― ― √ √ √ Capacity fade 
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Graphite exfolia-
tion 

― ― ― √ ― √ ― ― √ ― 
Capacity fade 

Power fade 
Lithium plat-

ing/Dendrite for-
mation 

― ― √ √ ― √ ― √ √ ― Capacity fade 

Loss of electric 
contract 

― ― ― ― √ √ ― ― √ ― 
Capacity fade, 

Power fade 
Electrode parti-

cle cracking 
― ― ― ― ― √ √ ― √ ― 

Capacity fade, 
Power fade 

Transition metal 
dissolution 

― ― ― ― √ ― ― ― √ ― 
Capacity fade, 

Power fade 
Corrosion of 

current collec-
tors 

― ― ― ― √ ― ― ― √ √ 
Capacity fade, 

Power fade 

3. Battery State Estimation 
One of a BMS’s most significant features that aid with the interpretation of battery 

activity is the assessment of the battery’s status. A number of metrics or conceptions are 
developed to measure the battery’s state of functioning to assess the aging described be-
low. 

3.1. SOC Estimation 
The SOC is a measure of how much capacity remains available compared to the bat-

tery’s full capacity, and it can be calculated using the following formula [81]. 𝑆𝑂𝐶(𝑡) = 𝐶௣𝐶௠ × 100% (4)

where Cp denotes the remaining capacity that may be used to power electronics equip-
ment. The maximum accessible capacity that the cell can hold, as defined by the battery’s 
electrochemical properties, is represented as Cm. The SOC is one of the most critical states 
that must be controlled to maximize performance and prolong battery life. SOC evaluation 
is complexly impeded by substantial battery characteristic changes during its lifespan ow-
ing to deterioration and distinguished non-linear behavior. As a result, researchers were 
motivated to suggest numerous approaches that specifically increased difficulties in 
building a connection between efficiency and procedure robustness. The following are 
some prominent approaches with features that may be used to identify appropriate evo-
lution techniques and assist researchers in selecting the optimal method for their needs. 

3.1.1. Conventional Method 
The most common conventional SOC estimation technique is using the battery’s 

OCV. As the SOC is connected with lithiation in a LIB’s active material, the OCV may be 
used to determine the SOC after ample rest for the battery to achieve equilibrium [82]. 
This approach is simple to use and highly accurate. Under controlled situations (ambient 
temperature, specified discharge rate), the discharge test was performed, and it was found 
to be the most accurate way to evaluate the battery SOC [12]. This is a time-consuming 
process and is only applicable in laboratories. The coulomb counting (CC) technique, 
which relies on battery current integration throughout time when the battery is charged 
or discharged, is another method for calculating the SOC. It is a highly effective and easy 
method, but it is not preferable as a sole estimation method for very complex conditions 
as current measurement errors will accumulate over time, leading to inaccurate SOC esti-
mation. Systems utilize battery current and voltage to measure the internal resistance. 
During a short duration (<10 ms) [33], the variation of the current transition determines 
the voltage. The current and voltage difference ratio causes direct current (DC) resistance 
reflecting the DC power of a battery. In terms of achieving an understanding, electrochem-
ical impedance spectroscopy (EIS) has been employed extensively inside the batteries for 
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diagnostics and SOC estimation. EIS uses inductances and capacitances to measure the 
battery impedance along with a broad frequency range [83]. A battery model is required 
to obtain the OCV online for estimating the SOC while the vehicle is in use. In the litera-
ture, equivalent circuit models (ECMs) [84] and electrochemical models (EChMs) [85–87] 
are frequently utilized onboard battery models. For simulating battery output, ECMs are 
commonly used. The Thevenin model (Figure 3a) is one of many ECMs that have been 
implemented. Due to its RC network form, the Thevenin model has non-linear properties, 
thereby considering the polarization of the battery’s internal electrochemical reaction. Po-
larization resistance Rp, equivalent capacitance Cp, ohmic resistance R0, and OCV are the 
elements that make up this model. The equations of this model are given below [88]. 𝑈௅ = 𝑈ை஼௏ − 𝐼𝑅଴ − 𝑈௉ (5)

𝑈௉ = − 1𝐶௉𝑅௉ 𝑈௉ + 1𝐶௉ 𝐼    (6)

Another model is “The partnership for a new generation of vehicles (PNGV) model” 
(Figure 3b) that is acquired based on the Thevenin model by adding an equivalent capac-
itance Cb to characterize the stored charge capacity and explain how the OCV of the battery 
varies over time [89]. The model is also called a first-order ECM. The Cb value represents 
the battery power level. The model follows the equations [88] below. 𝑆𝑈௅ = 𝑈ை஼௏ − 𝐼𝑅଴ − 𝑈௉ − 𝑈஼್ (7)

  𝑈௉ሶ = − 1𝐶௉𝑅௉ 𝑈௉ + 1𝐶௉ 𝐼 (8)

𝑈ሶ஼್ = 1𝐶௕ 𝐼   (9)

To simulate concentration and electrochemical polarization, the dual-polarization 
(DP) model (Figure 3c) or second-order ECM is obtained by including a second RC net-
work into the Thevenin model for improving the estimation of dynamic battery response 
accuracy. The model can be expressed as below [88]. 𝑈௅ = 𝑈ை஼௏ − 𝐼𝑅଴ − 𝑈௉ଵ − 𝑈௉ଶ (10)

   𝑈௉ଵሶ = − 1𝐶௉ଵ𝑅௉ଵ 𝑈௉ଵ + 1𝐶௉ଵ 𝐼    (11)

   𝑈௉ଶሶ = − 1𝐶௉ଶ𝑅௉ଶ 𝑈௉ଵ + 1𝐶௉ଶ 𝐼 (12)

The fourth model type, shown in Figure 3d, is a source-dependent ECM introduced 
in [90]. This model is very reliable and could improve the battery’s ability to identify non-
linear dynamic activity. A self-discharge model of the battery’s OCV–SOC activity is con-
sidered by resister Rd, and battery capacity is modeled by Cc. The voltage–current charac-
teristics are still modeled as a second-order ECM to link the SOC to OCV, but a “voltage-
dependent voltage source” is used in lieu of the source of voltage. The work presented in 
[86,89,90] introduced the complex mathematical voltage–current equations and the ECM, 
and the input is Ib, the state variables are VP1 and VP2, and the output is UL. 
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Figure 3. Schematic diagram of equivalent circuit models (ECMs) of battery: (a) the Thevenin model, 
(b) PNGV model, (c) DP model, and (d) source-dependent ECM. 

An EChM, developed based on chemical and electrodynamic thermodynamics, mass 
transfer, and various battery factors [12], is applied to evaluate the efficiency of the battery. 
Domenico et al. [86] suggested an estimated EChM by considering multiple parameters, 
for example, microscopic current density, substrate concentration, and electrolyte concen-
tration. A model with four sub-models was proposed by Zou et al. [91] to capture the 
electrical, thermal, electrochemical, and aging dynamics using a set of partial differential 
equations. Since the SOC is one of the model’s outcomes, this may be computed by com-
puting the equation of the system directly. For various Li-ion chemistries, Bartlett et al. 
[92] introduced a reduced-order EChM estimating cyclable lithium loss and the SOC using 
dual non-linear observers. 

Reference [93] focuses on the analysis of cyclic stresses linked to varying Li-ion con-
centration gradients. Utilizing a perfectly elastic-plastic model, the stress field induced by 
diffusion is adjusted within a hollow core structure. Additionally, critical values, depend-
ent on factors like the outer and inner radii ratio, core radius, and shell thickness, are de-
termined based on the perspective of strain energy release rate. Furthermore, a correlation 
is established between the critical outer and inner radii ratio and the state of charge, spe-
cifically when a hollow core reaches full lithiation. Lastly, a three-dimensional phase dia-
gram is developed to illustrate the interplay between shell thickness, the core’s outer ra-
dius, and the ratio of outer and inner radii. In accordance with the electrochemical-ther-
mal coupled model described in Reference [94], a coupled three-dimensional battery ther-
mal management system (BTMS) has been developed. This innovative system seamlessly 
integrates composite boards and heat pipes to optimize its thermal performance. The pri-
mary objective of this research is to evaluate the thermal characteristics of various BTMS 
configurations employing different combinations of boards and pipes. The outcomes of 
this study unequivocally demonstrate that the BTMS configuration incorporating both 
heat pipes and a composite board exhibits superior effectiveness in enhancing heat per-
formance, compared to a BTMS configuration utilizing only a single composite board. In 
this study, as a means of elucidating the intricate interplay among electrochemical pro-
cesses, thermal dynamics, and diffusion-induced mechanical stresses, the authors in Ref-
erence [95] introduce a coupled electrochemical–thermal–mechanical model tailored for 
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spiral-wound lithium-ion batteries. This model harmoniously integrates principles gov-
erning mass conservation, charge conservation, energy conservation, and mechanical con-
servation, along with considerations of electrochemical kinetics. A meticulous exploration 
is undertaken, involving a range of temperature and lithium concentration parameters, to 
scrutinize their collective impact on reaction rates and the transport of Li+ ions within the 
battery. The results obtained from this model are meticulously validated through finite 
element simulations, revealing its robust suitability in accurately capturing both the elec-
trochemical performance characteristics and thermal behaviors of the battery, even under 
conditions of constant discharge current. This reference [96] investigates the influence of 
irradiation temperature, dose, and diffusion-induced stress on the mechanical responses 
of cylindrical lithium-ion batteries (LIBs). A novel electrochemical-irradiated plasticity 
model is introduced to describe the behavior of electrodes within these LIBs, taking into 
account the effects of diffusion-induced stress. To ascertain the model’s accuracy, a rigor-
ous validation is conducted by comparing its numerical predictions with experimental 
data. 

3.1.2. Adaptive Filter Algorithm 
In the Kalman filter (KF) approach, the state-space form is used to solve a number of 

mathematical equations [83]. By comparing the computed input and output data using 
the KF approach, it is possible to establish the minimum mean square deviation of the true 
state [33]. Robust and fixed-lag smoothing is of paramount significance within the context 
of the Kalman filter, offering the dual benefits of computational burden reduction and 
mitigation of numerical instabilities. In reference [97], an innovative robust fixed-lag 
smoother is introduced, specifically tailored to situations where the actual model diverges 
from the nominal one. This approach is characterized by a minimax game, involving two 
key players: one is tasked with selecting the most challenging model from a predefined 
ambiguity set, while the other devises the optimal estimator based on this challenging 
model. Furthermore, the paper presents an efficient implementation of the robust fixed-
lag smoother, strategically designed to minimize computational overhead and eliminate 
concerns related to numerical instabilities. But the KF cannot handle the non-linear char-
acteristics of several battery kinds. For non-linear applications, this is why an extended 
Kalman filter (EKF) approach is commonly applied. To linearize the battery model, the 
EKF applies first-order Taylor series expansion and partial derivatives. Despite the batter-
ies’ highly non-linear thermal and electrochemical models, the EKF is utilized to approx-
imate their properties, followed by the SOC [98,99]. In [100], an enhanced Thevenin bat-
tery model is used in conjunction with an adaptive extended Kalman filter (AEKF) to pro-
vide an accurate and robust SOC. This approach decreased SOC error from 3.16 to 1.06% 
and showed that the AEKF is superior to the EKF. The Taylor series expansion’s first or 
second order terms are used in the EKF linearization approach for approximating a non-
linear model [89]. The unscented Kalman filter (UKF) extracts the non-linear system sta-
tistical distribution features utilizing a sequence of sigma points to solve this problem in-
stead of employing local linearization [101]. In addition to eliminating the requirement to 
build a Jacobian matrix, the UKF based on unscented transform estimates noise statistics 
more precisely than the EKF [102]. For UKF-based SOC calculation, through coulomb 
counting, He et al. [103] found voltage and the SOC. The UKF is applied to change the 
model factors automatically to reduce the error of the SOC induced as a result of changes 
in the environment and battery self-discharge. For SOC online calculation on the basis of 
an adaptive unscented Kalman filter (AUKF), Sun et al. [104] suggested a model of zero-
state hysteresis that adaptively corrects measurement state and the noise covariances in 
the system. Moreover, it is easy to apply this strategy and needs less energy because of 
the easy zero-state hysteresis model system. In [105], an extreme learning machine (ELM) 
was applied to evaluate the AUKF-dependent SOC for a LIB, which needs less computing 
load to change the model factors based on experimental results. The sigma-point Kalman 
filter (SPKF), which uses a limited set of functions in terms of mean and covariance, is 



Electronics 2023, 12, 4105 12 of 30 
 

 

used to estimate states in the non-linear scheme and yields more accurate results than the 
EKF. The method selects sets of sigma points that are precisely close to the mean value 
and covariance of the model being built. SOC estimation based on the SPKF is proposed 
in [106], where SOC estimation is performed by taking the connection between the SOC 
and OCV into account. In [107], three model-based methods, including the SPKF, EKF, 
and Luenberger observers, are used to compare SOC estimates for LiFePO4 batteries. The 
findings of this experiment show that considering the impact on battery tracking precision 
and reliability, the SPKF increases the accuracy of the SOC estimate and provides con-
sistency in numerical computations compared to measuring Jacobian matrices. However, 
it is a complex method and therefore requires heavy calculations [33]. The H∞ filter is 
another method that takes into account time-varying battery factors and requires no 
knowledge of process noise requirements or noise measurement features [33]. To achieve 
the OCV–SOC relationship, Xiong et al. [108] introduced a time-saving approach by ap-
plying the H∞ filter via some established current and voltage measurements. Yu et al. 
[109] used the H∞ method to map the factors online in accordance with the operational 
conditions and used the UKF to calculate the SOC. An adaptive model-based SOC esti-
mate is proposed in [110] that uses a recurrent neural network (RNN). With the support 
of the forgetting element, the RLS algorithm was applied to approximate the model pa-
rameters. This model compared the error, which was under 5%, between expected and 
actual capacity. 

3.1.3. Learning Algorithm 
Using objective criteria, the problem-solving method of fuzzy logic (FL) determines 

the precise values of the input data that are noisy, ambiguous, and uncertain. A fuzzy-
rule-based system is utilized in [111] to figure out a KF’s non-linear gain for SOC calcula-
tion. A merged fuzzy neural network (FNN) is presented in [112] for predicting the SOC 
of a LIB using a reduced-form genetic algorithm (RGA). To estimate the SOC, adaptive 
neuro-fuzzy inference systems (ANFISs) are more effective [113,114]. ANFISs can be im-
plemented for cell characteristics modeling [115], for online correction of other SOC meas-
urement processes to develop high accuracy [116], or for directly estimating the SOC [117]. 
An offline power system application model is presented in [115] for SOC measuring in 
LIBs. Here, the ANFIS battery model is learned offline on the basis of the manufacturer 
data on LIBs and improved to grow the cell’s SOC and OCV within the learning range at 
any temperature. A regression technique is used to turn a lower-dimensional non-linear 
model into a linear higher-dimensional model using the kernel-function-based support 
vector machine (SVM) [33]. The SVR algorithm was applied in [118], for estimating a high-
capacity LIB’s SOC where independent factors, for example, current, voltage, and temper-
ature, were necessary for determining the factors of the model during the discharg-
ing/charging condition. Having a 0.97 expected coefficient of determination, this model 
offered a good degree of SOC accuracy. Least-squares support vector machine (LS-SVM)-
based SOC approximation was introduced in [119] that involved the relationship of tem-
perature, current, and voltage for SOC estimation which indicates high accuracy, quick-
ness, and noise-tolerant ability in predicting the SOC. The self-learning and adaptability 
of a neural network (NN) allow it to explain a complicated non-linear model. This method 
applies learned data for estimating the SOC from unknown battery internal structure and 
the initial SOC. For the creation of an NN network, three layers are used: a hidden layer 
or layers, an output layer, and an input layer, as depicted in Figure 4 [120–122]. The inputs 
of the NN network structure are discharge current, terminal voltage, and temperature, 
while the output is the SOC. Considering the impact of OCV hysteresis, Chen et al. [121] 
proposed an EKF-based model. After that, the NN and EKF were integrated for the SOC 
estimate. The combined model suggested offers the highest value in predicting precision, 
whose margin of error is less than 1%. 
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Figure 4. The entire structure of NN for SOC estimation. 

3.1.4. Non-Linear Observers 
The non-linear observer (NLO) is applied with non-linear observation equations in a 

linear system. Xia et al. [123] recommended applying an RC equivalent circuit of the first 
order for the NLO-based SOC estimation of a LIB. Applying the ninth-order polynomial 
and the state space equations, the SOC was estimated from OCV. Validation of this model 
was conducted by discharge testing. The findings revealed that, in terms of precision, con-
vergence speed, and computational cost, the recommended approach is superior to the 
EKF and sliding mode observer (SMO). To account for the battery’s non-linear dynamic 
features, Kim et al. [81] developed an SMO-based SOC estimation technique applying a 
simple RC circuit. The time of convergence might be controlled by using the suggested 
method even at high charge/discharge levels. Huanchun et al. [124] recommended an ap-
proach for SOC estimation depending on second-order SMO. 

3.1.5. Others 
A statistical learning methodology was proposed called multivariate adaptive regres-

sion splines (MARS), in which optimum factors were determined by using the particle 
swarm optimization (PSO)-based SOC measuring technique [125]. The method has a 
drawback which is that at the beginning and end of the SOC cycle, the precision disperses. 
To compare a linear time-invariant (LTI) device’s output to a random output, infrared (IR) 
is applied. Ranjbar et al. [126] used the method for online SOC calculation. The expected 
value calculated by IR is ideally matched to the actual SOC value. SOC prediction based 
on linear interpolation can be performed using the charging/discharging characteristics of 
the battery [33]. A scalable approach was created based on a derivation of gradient boost-
ing called XGBoost “eXtreme gradient boosting” as in 2015 which is applied for measuring 
the SOC under complex working situations based on discharge test results, and the calcu-
lation has a 98.81% coefficient of determination. Liye et al. [127] recommended a bi-linear 
interpolation algorithm to apply a 3D look-up table to an approximate SOC. Initially, the 
steady-state charging and discharging current’s linear interpolation was investigated. 
Then, by applying the current and voltage value, the bi-linear interpolation technique was 
created using a 3D SOC look-up table. This method ensures stability in execution. Table 2 
[128,129] provides an overview of the evaluation results from several techniques. 
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Table 2. The outcomes of various methods for estimating SOC. 

Approach Computational Complexity Evaluation Index Estimation Precision Refs. 

Coulomb counting 
Hybrid pulse power characteristic test and 

model-based dynamic multi-parameter method 
Estimation error 4% [130] 

Open-circuit voltage 
Non-linear estimation algorithm, logarithmic 

function, exponential function, 
linear function, and electrochemical processes 

Estimation error 0.5% [131] 

Impedance measurement Function expressions and model Absolute error Less than 15% [132] 

Kalman filtering 
Pulse charging process, stochastic state-space 

model, and Riccati differential equations  
Error 1.76% [133] 

Extended Kalman filtering Hardware-loop test and matrix operation, model 
Mean square state 

error 
3% [134] 

Adaptive extended Kalman fil-
ter 

Matrix operation, model 
Root mean square 

error 
Less than 2% [135] 

Unscented Kalman filter 
Linear averaging method, capacitance correction 

factor, resistance, correction factor, and model  
Maximum error 4.12% [101] 

Sigma-point Kalman filter Non-linear function 
Root mean square 

(RMS) error 
0.49% [136] 

Equivalent circuit model 
Current time constant expression and logarithmic 

function  
Estimation error <2.5% [137] 

Electrochemical model Moving-window filter and transfer function  
Root mean square 

(RMS) 
error 

12% [138] 

Artificial neural network 
(ANN) 

A variant—long short-term memory (AST-LSTM) 
and matrix operation  

Average root mean 
square error 

2.16% (SOH), 2.02% 
(RUL) 

[139] 

Long short-term memory (LSTM), recurrent neu-
ral network (RNN), and matrix operation 

Mean absolute er-
ror 

N/A [140] 

Fuzzy logic 
Supervised and unsupervised learning tech-

niques, Mamdani, and the first-order Sugeno ap-
proach 

Maximum error 5% [141] 

Recursive least squares (RLS) 
Differential of the voltage, SOC difference, capac-

itance, and ohmic resistance 
Estimation error Less than 2.7% [142] 

Relevance vector machine 
(RVM) 

Matrix operation and RVM 
Root mean square 

(RMS) 
error 

<0.4% [143] 

Support vector machine (SVM) Matrix operation, SVM 
Mean absolute er-

ror 
0.0223 Ah [144] 

Genetic algorithm 
Online identification algorithm and coulomb 

counting method  
Estimation error Less than 1% [145] 

H∞ Filter Matrix operation, model Estimation error 2.49% [146] 

Hybrid 
model 

Model-based + 
Data-driven 

Particle filter (PF), Brownian motion (BM), and 
matrix operation 

Root mean square 
(RMS) 
error 

Less than 4% (SOH) [147] 

Direct measure-
ment + Model-
based method 

Forgetting factor recursive least squares (FFRLS) 
and double polarization model  

Error 3% [148] 

3.2. SOH Estimation 
A battery cell’s current health relative to its ideal conditions is measured by its state 

of health (SOH) [149]. There is no one term that best describes the battery SOH. Battery 
SOH may be explained generally as follows [150]: 𝑆𝑂𝐻(𝑡) = 𝑆𝑂𝐻(𝑡଴) + න 𝛿௙௨௡௖௧

௧ୀ௧బ (𝐼, 𝑇, 𝑆𝑂𝐶, 𝑜𝑡ℎ𝑒𝑟𝑠)𝑑𝜏 (13)
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where the original SOH battery is SOH(t0), and δfunc is an aging rate feature that signifi-
cantly depends on several factors, including the current, temperature, SOC, and a number 
of additional stressors, including over-potential and mechanical vibrations [150]. The SOH 
can be derived from capacity and internal resistance, as well as additional battery charac-
teristics including power density, self-discharge intensity, and AC impendence [12]. A 
battery cell’s SOH decrease is often caused by the aging and deterioration of the battery, 
specifically, longevity issues. That means that the battery capacity would decrease with 
the usage or storage of the battery cells, and there would be more internal resistance [12]. 
The battery cells’ SOH gets worse as a result. This is why a precise assessment of the SOH 
is required, which may be performed using a multitude of methods. 

Model-based approaches are one of the most widely utilized online methods for SOH 
prediction. One of them is empirical models (EMs), which are produced by fitting experi-
mental data gathered under established experimental settings and utilized to connect de-
terioration variables to battery SOH. Battery cycle testing, where capacity fading is shown 
as a function of time or of the number of cycles, is used to suit the specific empirical equiv-
alence [151–153]. Table 3 summarizes the fitting models that have been built based on the 
cycle testing and have shown to be efficient in SOH estimation [152]. When the batteries 
are exposed to similar operating circumstances to the modeling scenario, they often have 
high computational performance and may obtain satisfactory estimation precision [154]. 
However, modern EMs still have a lot of limitations when it comes to estimating battery 
SOH [154]. Comprehensive aging tests must be undertaken in order to produce an empir-
ical SOH model. These procedures are frequently time-consuming and tedious. Further-
more, the developed model’s resistance to unknown operating circumstances is inade-
quate, and it lacks sufficient generality to other battery chemistries or even different quan-
tities of the same chemistry [152]. 

Table 3. An overview of empirical models for estimating SOH. 

Empirical 
Models Estimation Factors Estimation Precision Model Formula Refs. 

Linear models 
Capacity R-square: 0.9778 f (k, I) = β1 (k) + β2 (k) · I + ε(k) [155] 

Capacity 
root mean square (RMS) error: 

0.67% 
𝑐௞ = 𝛾 − 𝛽𝑘 [156] 

Exponential 
models 

Capacity R-square: 0.9844 𝐼𝑛𝑓ଵ(𝑛, 𝑡) = (𝜂ଵ + 𝜂ଶ𝑛) exp(𝜂ଷ𝑇) + 𝜀ଵ(𝑛) [155] 

Hybrid model 
OCV and capacity Relative error: less than 0.45% 𝑂𝐶𝑉(𝑆𝑂𝐶, 𝑇) = exp ቈ𝐸𝑅 ቆ 1𝑇௥௘௙ − 1𝑇ቇ቉ . ෍ 𝑎௞.௥௘௙𝑆𝑂𝐶௞௠

௞ୀ଴  [157] 

Capacity 
Root mean square (RMS) error: 

0.67 
𝑐௞ = 1 − 𝛼[1 − exp(−𝜆𝑘)] − 𝛽𝑘 [156] 

Electrochemical models (EChMs) and electrical equivalent circuit models (ECMs), 
both of which are primarily physical-based models, are two more model-based methods. 
The ECM is the simplest model that applies particular elements including a voltage, ca-
pacitor, and resistor source for describing the extremely dynamic behavior of LIBs [152]. 
ECM-based techniques consider the battery’s electrical properties, making it simple to im-
plement and extract the deterioration feature [152]. Some adaptively filtering algorithms, 
such as the PF [158], EKF [159], and AEKF [160], are used to identify electrical variables 
including capacity and resistance for the battery SOH prediction based on established 
ECMs, such as the RC model [161] and fractional-order model (FOM) [162]. Another im-
portant method is the EChM. Depending on the chemical processes occurring inside the 
battery, the EChM [163] predicts the behavior of the battery. The EChM-based technique 
may more accurately estimate the SOH by reflecting the complex electrochemical process, 
such as the creation of the SEI. 
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To get sensitive SOH-related properties, based on the differentiation of curves, dif-
ferential analysis (DA) in the context of batteries incorporates electrical, thermal, or me-
chanical data obtained during galvanostatic charge or discharge. The IC/DV (incremental 
capacity/differential voltage) method of cell characterization is non-destructive. By divid-
ing the modification of battery capacity by the modification of terminal voltage (dQ/dV), 
incremental capacity (IC) is calculated over a sufficiently short time span, whereas by di-
viding the battery voltage by the capacity (dV/dQ), DV is calculated, which may be ap-
plied for differentiating the aging procedures taking place in batteries. With fading battery 
capacity, the peak amplitudes drop [164], and the reported peak locations alter [165] in 
the IC/DV curve [152]. For a precise SOH computation, the partial dQ/dV information was 
additionally analyzed using gray relational analyses and the entropy weight technique, 
depending on the unambiguous peak properties in the voltage zones [166]. Additionally, 
a useful technique for calculating the SOH online is IC/DV analysis [165] which can be 
readily implemented in a BMS by monitoring only two parameters (voltage and dis-
charge/charge capacity) and also is applicable for all types of Li-ion cells, regardless of 
battery chemistry, size, or design. This approach is only useful for determining the SOH 
of a battery at modest charge/discharge rates. The over-potential induced by the cell’s im-
pedance, which depends more on temperature than on age [154,167,168], offsets the peaks 
at high current rates. To provide a more precise measurement of the SOH, IC/DV is usu-
ally stimulated at a low current rate. In several practical applications, however, ensuring 
a low discharging current rate may not be feasible [169]. Furthermore, because of the evi-
dent impedance shift at high current rates, the peak is prone to being offset [168]. These 
restrictions have a significant impact on online SOH estimate accuracy. As a result, it is 
critical to use proper filtering and smoothing procedures to decrease measurement noise 
[167]. The first and most important step in SOH analysis is smoothing, and a multitude of 
filtering techniques may be used to achieve it, including the moving average [170], Gauss-
ian filter [165], and Savitzky Golay filter [171,172]. In any practical application of IC/DV 
curves, temperature can induce considerable inaccuracies [154]. 

Furthermore, differential thermal voltammetry (DTV) may be used in SOH estimate 
complemental analysis. It uses temperature information and the idea of IC analysis to de-
duce the thermodynamic properties of the electrode material [152,172]. This approach 
takes into account temperature changes with dT/dV and adds further entropic character-
istics to IC/DV methods [41] to obtain a more precise evaluation at high current rates [173]. 
The entropy characteristics that represent the fluctuation of peak amplitude and locations 
are utilized to signify the growth of LIB deterioration and impedance in the dT/dV curve 
[172]. Even though the DTV analysis is simple, swings in the ambient temperature can 
add a lot of noise, and the measurement temperature setting has a lot of influence, making 
it difficult to extract relevant data and analyze them further [41]. Furthermore, several 
mechanical characteristics are linked to cell SOH, including strain (ε) and stress [174], and 
load sensors positioned on the battery surface may be used to detect the SOH because the 
stress caused by electrode expansions is linearly connected to the SOH. A few research 
studies on the first derivative of strain to voltage (dε/dV) [175] and capacity (dε/dQ) [171] 
have served as the foundation for the SOH calculation, as well as the second derivative of 
strain to capacity (dε2/dQ2) [176]. The negative electrode’s phase changes are identified 
using the dε/dQ curves. At some voltages, phase transitions are responsible for the rise in 
strain seen in the dε/dV graphs as a function of voltage. Phase transitions in electrode 
materials were discovered using the dε2/dQ2 curves, which allowed for higher current 
rates than the DV analysis [41]. The phase transitions in both negative and positive elec-
trode materials may be seen in these curves, which are equivalent to IC/DV analysis. Based 
on the expansion identification, the differential mechanical parameter (DMP) analysis can 
be utilized to estimate the SOH at low or high current rates. In reality, a battery pack’s 
space is constrained by the number of batteries it can hold [152]. 

Instead of applying complex battery concepts, data-driven techniques calculate the 
SOH based on the physical relationship between battery health and other feature variables 
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using optimization algorithms, machine learning, empirical fitting, and sample entropy. 
The SOH estimate using data-driven approaches cannot accurately capture the battery’s 
physical characteristics of a battery. As a result, data-driven procedures are frequently 
integrated with the above-mentioned experimental methods. Specialized battery tests are 
first performed in the corporate setting to identify all SOH-influencing elements, and then 
using data-driven approaches, a battery SOH model is developed by connecting these im-
pacting elements with the battery SOH. On the other hand, the quality and quantity of test 
data have a substantial impact on these approaches’ performance, and the resulting model 
is often subject to high computational intensity [41,154]. In terms of significant benefits 
and downsides, SOH estimation approaches are mentioned in Table 4 [152,154]. 

Table 4. Methodologies for SOH estimate in terms of important advantages and disadvantages. 

Method Benefits Drawback 

Model-based method 

Physics-based 
model 

High accuracy, clear mean-
ings 

Heavy computational load, difficult model 
parameterization 

Empirically based 
model 

Simple structure, easy imple-
mentation  

Poor robustness, relatively low accuracy 

Differential analysis method Simple structure, easy imple-
mentation 

Unguaranteed precise online SOH estimation 
under different working conditions 

Data-driven method 
No requirement for the 

knowledge of underlying 
mechanisms 

Sensitive to quality and quantity of data. 
Potential over-fitting problems 

3.3. Others 
How the battery output complies with the actual standards is explained using the 

state of function (SOF) [12] when the battery is used. Some of the factors include temper-
ature, the battery’s terminal voltage, the state of power (SOP), the SOH, the SOC, and, 
more influential, the SOF of the battery. The SOF of a single cell may easily be obtained if 
the SOH and SOC of the cell are known. The SOF could be represented as the logical var-
iable yes/no [177]. If the value of both the SOC and SOH is low, then the SOF value would 
be 0. The SOF would be 1, for both the high value of the SOH and SOC. If the SOC and 
SOH values are different, then either 1 or 0 [178] can be the SOF. If the SOF is equal to 1, 
the battery could fulfill the specifications, and if the SOF is equal to 0, then it cannot fulfill 
the specifications. But practically, because of the battery uniformity issues, the battery 
module’s SOF is more significant and challenging to calculate. It would be more desirable, 
however, to describe the SOF as the following equation [12,179]. 𝑃(𝑡) = 𝑃௠௔௫. 𝑆𝑂𝐶(𝑡). 𝑆𝑂𝐻(𝑡)   (14)

SOF= ௉(௧)ି௉೏೐೘ೌ೙೏ೞ௉೘ೌೣି௉೏೐೘ೌ೙೏ೞ   (15)

where 𝑃  implies the instantaneous power the battery might provide, the 𝑃ௗ௘௠௔௡ௗ௦  im-
plies the power specifications, and the 𝑃௠௔௫  implies the overall possible battery power 
supply. The SOC and SOH’s rates of change are different as the temperature increases, 
and it can be concluded that the SOC, SOH, and battery operating temperature are all 
directly connected to the SOF [180]. 

It is difficult to accurately assess the battery’s internal temperature without causing 
any damage because battery packs are complicated electrochemical systems [31]. Further-
more, battery recyclability, reliability, power, and energy performance are all influenced 
by operating temperatures [181]. As a result, an accurate state of temperature (SOT) esti-
mate becomes essential and critical. The specific meaning of the SOT is still to be deter-
mined [182]. The battery temperature distribution may be estimated online using a variety 
of observers, along with simple thermal models or empirical impedance models, and 
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based on observable temperature (such as the ambient temperature and surface tempera-
ture) [154]. Li et al. [183] studied the thermal properties of overcharging at 30 and 60 de-
grees Celsius using an impedance-based electro-thermal model. To detect overcharging, 
an electrothermal model was proposed, which decreased estimation errors considerably 
at 0.9 °C. A monotonic relationship between battery internal temperature and impedance 
was established by Zhang et al. [184], based on a simple thermoelectric model to predict 
the internal temperature. Battery internal temperature and impedance phase change were 
linked at 10 Hz, according to Zhu et al. [185]. However, because of the intricate intercon-
nections of nearby cells and heat conductions, a battery module or pack’s SOT calculation 
is still lacking [154]. Furthermore, additional research and inquiries into how to construct 
a better thermal model that achieves the necessary balance between effectiveness and com-
puting effectiveness are required [154]. 

The amount of power a battery is capable of providing to or drawing from a device 
across a time horizon is known as the state of power (SOP) [186]. It is a measure of the 
battery’s instantaneous power output capability and is affected by various factors such as 
the battery’s internal resistance, temperature, and aging. This may be regarded as a func-
tion of threshold voltage and current, with different functional restrictions to be explicitly 
examined and followed [154]. The reference values of the SOP are often derived under 
simulation circumstances using a high-fidelity battery model that takes into account nu-
merous limitations [187]. The SOP may be determined using characteristic map (CM)-
based approaches and model-based methods. Model-based approaches, for example, the 
least-squares-based method [187], particle filter [188], the Kalman filter [189], and others, 
have been effectively used to provide appropriate SOP estimates [154]. Model-based 
methods are simple and extensive. However, the use of this estimation method is still 
scarce in the literature. The past and present information on batteries, on the other hand, 
is hard to consider using CM-based methods, which are straightforward to apply. The 
precision of the SOP estimate would be substantially compromised since battery power is 
very dependent on operational conditions [154]. 

3.4. Summary of Comparison of Other Review Papers 
Unlike many other scholarly reviews that primarily focus on specific aspects such as 

the state of charge (SOC), state of health (SOH), or battery performance measurement, this 
paper offers a comprehensive examination that spans a wide range of topics. This holistic 
approach aims to equip readers with a deep and relevant understanding. Specifically, the 
paper delves into the mechanisms of battery aging, their origins, techniques for estimating 
battery state, and various interconnected subjects. It is important to acknowledge that 
there is no universally applicable method or approach that guarantees effectiveness in all 
scenarios. Designers must meticulously evaluate the unique requirements and constraints 
of each application to select the most suitable approach. The insights presented in this 
paper constitute a valuable resource for both researchers and practitioners engaged in 
battery management and electric vehicles. Looking ahead, it is imperative to explore aging 
processes and degradation models at the individual cell level, particularly in terms of how 
different factors influence battery lifespan, power output, and energy density. Under-
standing these aging processes and degradation models is also of great significance at the 
battery system level, as it aids in assessing battery health, optimizing current operational 
conditions, and forecasting future performance. In this context, Table 5 provides a visual 
representation of the relevant data. 
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Table 5. A comparative analysis of review papers on battery aging and state estimation. 

Reference Review of Battery  
Aging 

Review of State Estimation 
State of Charge (SOC) State of Health (SOH) Others 

[4] X X Review on SOH forecast X 

[186] X Brief SOC discussion X 
Review on state of power (SOP) pre-

diction 

[182] X Review on SOC prediction Review on SOH prediction 
Review on state of function (SOF), 
state of temperature (SOT) predic-

tion 
[152] X Review on SOC estimation Review on SOH prediction X 

[150] 
Review of battery degra-

dation 
X X X 

[128] X X Review on SOH estimation X 
[89] X Review on SOC estimation X X 

[30] 
Brief discussion 

on battery degradation 
X Review on SOH estimation X 

[26] 
Review on battery aging 

degradation 
X X X 

[23] 
Review on battery aging 

degradation 
X X X 

[190] X Review on SOC estimation Review on SOH prediction Review on SOP prediction 
[191] X Review on SOC prediction Review on SOH prediction X 
[192] X Review on SOC estimation Review on SOH prediction Review on SOP prediction 

This paper 
Review on battery aging 

degradation 
Review on SOC estimation Review on SOH prediction 

Review on state of function (SOF), 
state of temperature (SOT) predic-

tion, SOP 

4. Future Trends 
4.1. Challenges 

Battery state estimation is the process of estimating the state of a battery, based on 
available sensor measurements and other relevant information. The accurate estimation 
of battery states is crucial in various applications, such as electric vehicles, renewable en-
ergy systems, and portable electronics, as it ensures the safe and efficient operation of the 
battery system. However, there are several challenges associated with the state estimation 
of batteries as mentioned below: 

Non-linear behavior of the battery: LIBs exhibit non-linear behavior due to the complex 
electrochemical processes involved in the charge and discharge cycles. Accurate SOC es-
timation requires models that capture this non-linearity, but such models can be difficult 
to develop and computationally expensive to implement in real-time systems. 

Thermal effects: Temperature variations within the battery pack can affect the accuracy 
of SOC estimation. High temperatures accelerate the battery’s aging process, while low 
temperatures reduce the battery’s capacity, making it challenging to accurately estimate 
the SOC. 

Battery degradation: LIBs degrade over time, reducing their capacity and altering their 
behavior. This degradation makes it difficult to accurately estimate the SOC, as the bat-
tery’s characteristics change over time. 

Model uncertainty: The accuracy of SOC estimation relies heavily on the quality of the 
battery model used. Model uncertainty, arising from errors in the battery model or inac-
curate model parameters, can significantly affect the accuracy of SOC estimation. 

Measurement noise: Noise in the battery’s current and voltage measurements can ad-
versely affect the accuracy of SOC estimation. Accurate measurement of these parameters 
is essential for precise SOC estimation. 
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Battery aging: The aging of a LIB affects its internal resistance and its capacity, leading 
to changes in the battery’s behavior. These changes can make it challenging to accurately 
estimate the SOC of an aged battery. 

Voltage hysteresis: LIBs exhibit hysteresis in their voltage response during charging 
and discharging cycles, which can result in inaccuracies in SOC estimation. Accurate mod-
eling and compensation for voltage hysteresis are crucial for precise SOC estimation. 

Limited data availability: In some cases, limited data may be available for developing 
battery models, which can make accurate SOC estimation challenging. This problem can 
be overcome by using data-driven approaches, such as machine learning, to develop ac-
curate models of battery behavior. 

Overall, accurate SOC estimation for LIBs remains a challenging problem due to the 
complexity of the battery behavior and the many factors that can affect it. Nonetheless, 
recent research has made significant progress in addressing these challenges and devel-
oping new techniques for accurate SOC estimation which are mentioned below: 

Deep-learning-based SOC estimation: Deep learning algorithms, such as neural net-
works, have shown promising results in accurately estimating the SOC of LIBs. These al-
gorithms can learn complex relationships between input data, such as battery voltage and 
current, and the SOC, without the need for complex battery models. 

Extended Kalman filter with adaptive gain: The extended Kalman filter (EKF) is a popu-
lar method for SOC estimation, but its performance can be sensitive to model uncertainties 
and measurement noise. Recent research has proposed an adaptive gain EKF, which ad-
justs the EKF’s gain based on the quality of the input data, to improve the accuracy of SOC 
estimation. 

Hybrid models for aging-aware SOC estimation: Battery aging affects the accuracy of SOC 
estimation, and recent research has proposed hybrid models that combine physics-based 
models with data-driven models to account for aging effects. These models can accurately 
estimate the SOC of aged batteries, improving battery management and prolonging bat-
tery life. 

Data-driven SOC estimation using big data analytics: Recent research has proposed data-
driven approaches for SOC estimation, which leverage big data analytics to develop accu-
rate models of battery behavior. These approaches can improve the accuracy of SOC esti-
mation, even when limited data are available for developing battery models. 

However, in the context of estimating the battery condition, thermal runaway is, 
nonetheless, a crucial factor, particularly for LIBs. When a battery experiences thermal 
runaway, its temperature rises uncontrollably, frequently resulting in catastrophic failure, 
fire, or explosion. Particularly in applications where batteries may be subjected to harsh 
circumstances or abuse, accurate estimation and prediction of thermal runaway are essen-
tial for maintaining the safety of battery systems. Here are some of the challenges associ-
ated with battery state estimation in the presence of the thermal runaway problem: 

Early Detection: The early detection of thermal runaway is one of the main challenges. 
It is essential to foresee when a battery may reach a thermal runaway scenario in order to 
take preventative action. The requisite thermal models and data may not be included in 
conventional state estimate methods in order to effectively predict impending thermal 
runaway. 

Thermal Model Complexity: The necessity for extremely intricate thermal models is 
brought on by thermal runaway. These models must take into consideration a number of 
things, including the complex processes involved in heat generation and dissipation, ther-
mal feedback mechanisms, and the effects of outside variables like ambient temperature. 
Such models can be difficult and computationally intensive to develop and apply. 

Data Availability: It is necessary to have access to reliable temperature data from the 
battery pack in order to estimate the battery’s state accurately, especially when it comes 
to thermal runaway. It is crucial to check that temperature sensors are set and calibrated 
properly. It may not always be possible to collect precise temperature data, which makes 
estimates more difficult. 



Electronics 2023, 12, 4105 21 of 30 
 

 

Real-Time Processing: The computing requirements of precisely calculating the battery 
condition in the context of thermal runaway can be a substantial problem for applications 
where real-time monitoring and control are essential. Accuracy and the need for real-time 
processing must be delicately balanced. 

Non-linearity and Uncertainty: The non-linearity and unpredictability that are already 
present in battery performance are made worse by thermal runaway. Accurate estimation 
becomes increasingly more difficult as a battery approaches thermal runaway because of 
behavior that may differ significantly from nominal settings. 

Safety Implications: Dealing with thermal runaway is risky since it can result in explo-
sions and flames, both of which pose serious safety risks. Serious repercussions may result 
from any errors or lags in state estimates. The utmost level of accuracy and dependability 
in estimate methods must therefore be guaranteed. 

Integration with Safety Systems: Safety features are usually included in battery man-
agement systems (BMSs) to handle the potential of thermal runaway. A thorough safety 
strategy must coordinate the state estimation process with various safety systems, such as 
thermal cutoff switches and cooling controllers. 

Aging Effects: The state estimate is further complicated by the fact that thermal runa-
way can be affected by battery aging. The estimating procedure must take into account 
modifications in a battery’s thermal behavior brought on by aging. 

Fault Tolerance: Given the critical nature of thermal runaway, fault tolerance should 
be considered while designing state estimation algorithms. In the event of algorithmic 
failures, redundancy and fail-safe techniques may be required to ensure continuing oper-
ation. 

Validation and Testing: Due to the possible safety issues involved, it can be difficult to 
verify the precision and dependability of state estimate methods under thermal runaway 
situations. It is crucial to create precision testing processes and validation protocols. 

Overall, recent research has proposed a range of innovative approaches to improve 
the accuracy of SOC estimation for LIBs. 

4.2. Future Research Direction 
The field of state estimation for LIBs is rapidly evolving, and there are several future 

trends that are expected to have a significant impact on the field. Here are some of the 
trends that are likely to shape the future of SOC estimation for LIBs: 

Integration of multiple sensing modalities: The integration of multiple sensing modali-
ties, such as temperature, pressure, and humidity, with traditional voltage and current 
measurements, can provide more comprehensive information about the battery state, im-
proving the accuracy of SOC estimation. 

Machine-learning-based approaches: Machine learning algorithms, such as deep neural 
networks, have shown promising results in accurately estimating the SOC of LIBs. Future 
research is expected to further explore and optimize these approaches to achieve even 
higher accuracy and reliability. 

Model-based deep reinforcement learning: Model-based deep reinforcement learning 
(DRL) combines the advantages of physics-based battery models with the power of deep 
learning algorithms. Future research is expected to explore the potential of DRL for SOC 
estimation, which can provide more accurate and robust estimates of the battery state. 

Hybrid modeling approaches: Hybrid modeling approaches, which combine physics-
based models with data-driven models, can account for the complex and dynamic behav-
ior of LIBs. Future research is expected to explore and optimize these approaches for more 
accurate and reliable SOC estimation. 

Advanced data analytics: The use of advanced data analytics techniques, such as big 
data analytics and cloud computing, can improve the accuracy and scalability of SOC es-
timation for LIBs. Future research is expected to leverage these techniques to develop 
more accurate and efficient SOC estimation algorithms. 
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Overall, the future of SOC estimation for LIBs is expected to be characterized by the 
integration of multiple sensing modalities, the use of advanced machine learning algo-
rithms, and the development of hybrid modeling approaches that can account for the com-
plex and dynamic behavior of LIBs. 

5. Conclusions 
In conclusion, the battery management system (BMS) plays a pivotal role in ensuring 

the safe operation and optimal performance of electric vehicle battery packs. While nu-
merous studies and technologies have been developed to enhance battery pack monitor-
ing and control, they encompass a wide spectrum of approaches, ranging from basic mon-
itoring techniques to advanced control systems. Nevertheless, a central challenge in de-
veloping an effective BMS lies in identifying and mitigating the diverse aging and degra-
dation processes that can impact battery performance and longevity. This endeavor de-
mands a deep understanding of the intricate mechanisms at play, as well as the ability to 
accurately measure critical metrics. A multitude of SOC measurement methods have been 
proposed, each with its distinct advantages and drawbacks. Conventional methods like 
open-circuit voltage (OCV), coulomb counting, and internal resistance testing are rela-
tively straightforward but may lack the precision offered by more advanced techniques 
such as adaptive filter algorithms or non-linear observers. However, these advanced 
methods can be computationally intensive and may necessitate significant offline learning 
phases, rendering them less suitable for real-time applications in electric vehicles. Hence, 
the judicious selection of an appropriate method, contingent upon factors like accuracy, 
computational requirements, and real-time feasibility, is of paramount importance. In this 
context, this paper has furnished a comprehensive review of the myriad methods and 
technologies available for battery monitoring and management, elucidating their respec-
tive strengths and limitations. Furthermore, it has underscored other vital characteristics 
of battery packs that should inform the development of effective diagnostic parameters 
for estimating battery behavior. It is crucial to acknowledge that no single method or ap-
proach can offer universal effectiveness across all scenarios. Designers must meticulously 
consider the specific requirements and constraints of each application to select the most 
suitable method. The insights presented in this paper serve as a valuable resource for re-
searchers and practitioners working in the realm of battery management and electric ve-
hicles. Moving forward, investigating battery aging processes and deterioration models at 
the cell level, particularly in terms of how essential factors impact battery life, power, and 
energy density, is imperative. The understanding of aging processes and deterioration 
models also holds significant importance at the battery system level, aiding in estimating 
battery health, optimizing current operational conditions, and forecasting future perfor-
mance. 

The field of state estimation for lithium-ion batteries (LIBs) is undergoing rapid evo-
lution, with several compelling trends poised to shape its future. These include the inte-
gration of multiple sensing modalities, the ongoing exploration and optimization of ma-
chine-learning-based approaches, the potential offered by model-based deep reinforce-
ment learning (DRL) for state estimation, the refinement of hybrid modeling approaches 
capable of addressing the dynamic complexities of LIBs, and the leverage of advanced 
data analytics techniques like big data analytics and cloud computing. Collectively, these 
trends are anticipated to define the future landscape of SOC estimation for LIBs, enhanc-
ing accuracy and efficiency in understanding and managing the complex and dynamic 
behavior of these energy storage systems. 
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