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Abstract: Lung-related diseases continue to be a leading cause of global mortality. Timely and pre-

cise diagnosis is crucial to save lives, but the availability of testing equipment remains a challenge, 

often coupled with issues of reliability. Recent research has highlighted the potential of Chest X-Ray 

(CXR) images in identifying various lung diseases, including COVID-19, fibrosis, pneumonia, and 

more. In this comprehensive study, four publicly accessible datasets have been combined to create 

a robust dataset comprising 6650 CXR images, categorized into seven distinct disease groups. To 

effectively distinguish between normal and six different lung-related diseases (namely, bacterial 

pneumonia, COVID-19, fibrosis, lung opacity, tuberculosis, and viral pneumonia), a Deep Learning 

(DL) architecture called a Multi-Scale Convolutional Neural Network (MS-CNN) is introduced. The 

model is adapted to classify multiple numbers of lung disease classes, which is considered to be a 

persistent challenge in the field. While prior studies have demonstrated high accuracy in binary and 

limited-class scenarios, the proposed framework maintains this accuracy across a diverse range of 

lung conditions. The innovative model harnesses the power of combining predictions from multiple 

feature maps at different resolution scales, significantly enhancing disease classification accuracy. 

The approach aims to shorten testing duration compared to the state-of-the-art models, offering a 

potential solution toward expediting medical interventions for patients with lung-related diseases 

and integrating explainable AI (XAI) for enhancing prediction capability. The results demonstrated 

an impressive accuracy of 96.05%, with average values for precision, recall, F1-score, and AUC at 

0.97, 0.95, 0.95, and 0.94, respectively, for the seven-class classification. The model exhibited excep-

tional performance across multi-class classifications, achieving accuracy rates of 100%, 99.65%, 

99.21%, 98.67%, and 97.47% for two, three, four, five, and six-class scenarios, respectively. The novel 

approach not only surpasses many pre-existing state-of-the-art (SOTA) methodologies but also sets 

a new standard for the diagnosis of lung-affected diseases using multi-class CXR data. Furthermore, 

the integration of XAI techniques such as SHAP and Grad-CAM enhanced the transparency and 

interpretability of the model’s predictions. The findings hold immense promise for accelerating and 

improving the accuracy and confidence of diagnostic decisions in the field of lung disease identifi-

cation. 

Keywords: COVID-19; chest X-ray (CXR) image; deep learning; multi-scale CNN; feature map; 

SHAP 
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The field of medical image analysis has witnessed remarkable advancements in re-

cent years, particularly in the context of diagnosing lung-related diseases. Among these, 

the severe acute respiratory syndrome caused by the coronavirus type 2 (SARS-CoV-2), 

commonly known as COVID-19, has posed unprecedented challenges to healthcare sys-

tems worldwide. Since its emergence in Wuhan, Hubei, China, in December 2019, COVID-

19 has evolved into a global pandemic, with staggering statistics as of 30 July 2023—more 

than 768 million reported cases spanning 234 countries and over 6.9 million lives lost [1]. 

COVID-19 manifests with a spectrum of symptoms, including fever, cough, fatigue, short-

ness of breath, and a loss of taste and smell. Given the rapid spread of the virus, swift and 

accurate diagnosis is paramount in controlling its worldwide impact. 

Concerning COVID-19 image classification, chest X-rays (CXRs) have emerged as a 

valuable tool, notably as the initial image-based strategy employed in countries like Spain 

[1]. When a patient is suspected of having COVID-19, a nasopharyngeal exudate sample 

is typically collected for reverse transcription-polymerase chain reaction (RT-PCR) analy-

sis. Simultaneously, a chest X-ray is obtained to assess the patient’s condition. The CXR 

plays a pivotal role in accelerating clinical evaluations, especially when PCR test results 

may only be available after several hours. In cases where both the clinical condition and 

CXR appear normal, patients may be discharged while waiting for the results of additional 

tests. However, if the CXR reveals abnormalities, the patient is often referred to a hospital 

for further evaluation. 

In response to the global demand for lung-related disease testing, healthcare profes-

sionals have explored alternative diagnostic methods, particularly those relying on med-

ical imaging techniques such as chest X-rays and computed tomography (CT) scans. These 

imaging modalities aid in confirming the presence of lung infection and tracking disease 

progression. Notably, when viral or bacterial infection affects the lungs, it manifests as 

distinctive radiological patterns, often referred to as ground-glass opacities (GGOs), visi-

ble in CXR images and chest CT scans. 

Recent developments in deep learning (DL) have opened new avenues for predicting 

various lung-related diseases, including COVID-19 [2,3]. Researchers have leveraged DL-

powered models to detect and classify these diseases [4,5]. Parallel to these developments, 

contemporary publications in system reliability research have provided rich insights, 

methodologies, and perspectives that can be thoughtfully integrated into the design and 

execution of deep learning models [6,7]. These insights contribute to embracing such mod-

els’ robustness, efficiency, and reliability, when applied to the intricate domain of medical 

image analysis. However, existing multi-class classification models have exhibited limita-

tions, characterized by reduced accuracy and complexity. The inherent complexity of 

these models has hindered their effectiveness in making precise diagnostic decisions. Ex-

isting methodologies struggle in accurate disease classification as the number of the dis-

ease class increases, impacting precision and recall rates. 

To address these challenges and critical gaps in the existing research, an innovative 

DL architecture called a multi-scale CNN (MS-CNN) is presented. This model is specifi-

cally designed for the classification of multiple lung-related diseases, including COVID-

19, bacterial pneumonia, viral pneumonia, fibrosis, lung opacity, tuberculosis, and normal 

cases. One of the key strengths of the proposed approach lies in its ability to maintain high 

accuracy, reliability, and efficiency even as the number of disease classes increase, over-

coming a prevalent drawback in the existing literature. Another unique strength is that 

predictions from adjacent layers are carefully combined with the model’s backbone, pre-

venting the oversight of vital predictions in this innovative approach. Furthermore, it is 

worth noting that the proposed approach aims to significantly reduce testing time com-

pared to the state-of-the-art (SOTA) models. This streamlined efficiency has the potential 

to achieve precise diagnostic results and expedite diagnostic processes particularly in real-

world clinical scenarios, ensuring timely and effective medical interventions for patients 

with various lung-related diseases. 
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Moreover, XAI techniques such as SHAP and Grad-CAM have been integrated to 

visualize and identify the regions of CXR images that contribute most to the model’s pre-

dictions. This further enhances the model’s interpretability and provides valuable insights 

into its decision-making process. SHAP values provide insights into pixel contributions 

for each instance in the dataset, shedding light on the significance of different image re-

gions in the model’s decision. Grad-CAM generates heatmaps highlighting areas of inter-

est within the images that the model relies on for classification. This additional layer of 

transparency enhances the reliability and trustworthiness of the deep learning model’s 

outputs, making it a valuable tool in the clinical setting. 

The major contributions of this study can be summarized as follows: 

1. To create a comprehensive dataset encompassing seven distinct classes (COVID-19, 

normal, viral pneumonia, bacterial pneumonia, fibrosis, lung opacity, and tubercu-

losis), four publicly available datasets were combined. 

2. An MS-CNN model is proposed to detect six lung-related disorders and healthy pa-

tients from the CXR images where predictions from different layers are combined, 

avoiding any instances of overlooking or omitting important predictions. 

3. Predictions from several layers are concatenated to create a variety of feature maps 

that operate at various resolutions in order to improve the accuracy and effectiveness 

of multi-class predictions. 

4. The performance of the proposed MS-CNN model is compared with popular TL 

models (VGG16 and VGG19) and other SOTA models proposed in the literature. 

5. The XAI techniques were integrated to enhance the interpretability and trustworthi-

ness of the model by providing visual insights into how the model makes predictions 

and highlighting the regions of importance in the chest X-ray images for different 

disease classifications. 

The remaining parts of this paper are structured as follows. Section 2 reviews existing 

research works connected to this study. Section 3 explains the dataset collection and cre-

ation, preprocessing, suggested system architecture, hyperparameter settings and exper-

imental settings, and performance metrics. Section 4 explains experimental results for da-

taset 1 to dataset 10 and explainable AI on multiscale-CNN interpretability using SHAP 

and Grad-CAM techniques. Section 5 presents discussions on comparative analysis with 

other published research and pre-trained models. Finally, the conclusions along with fu-

ture research directions are drawn in Section 6. 

2. Literature Review 

Since the beginning of the COVID-19 catastrophe, investigators have developed sev-

eral deep learning-based methods for accurately detecting COVID-19-positive patients 

using a variety of radiological imaging techniques, including CXR and CT scans. The in-

vestigation on COVID-19 diagnosis that predominantly relied on AI-based techniques, 

notably machine learning, and deep learning, are highlighted in this section. 

To identify COVID-19 utilizing chest X-ray image classification, a deep CNN archi-

tecture was suggested by Reshi et al. [8]. The dataset used in the architecture was prepro-

cessed using several methods throughout multiple stages, which involved balancing the 

dataset, having medical professionals analyze the photos, and enhancing the data. The 

trial outcomes demonstrated an astounding total accuracy of 99.5%, underscoring the sug-

gested CNN model’s outstanding performance in this application domain. The study by 

Muhammad et al. [9] presented a CNN model that had fewer model parameters but pro-

duced good accuracy. The model is made up of five primary convolution connection lay-

ers or blocks. With this model, a multi-layer fusion strategy is designed to increase the 

effectiveness of COVID-19 screening. Observations were made utilizing databases of lung 

ultrasound (LUS) images and videos that were freely available. The precision, accuracy, 

and retrieval rate of the suggested fusion method’s data gathering were impressively high 
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at 92.5%, 91.8%, and 93.2%, respectively. In COVID-19 screening, these efficiency metrics 

outperform those of current cutting-edge CNN models. S 

A controlled study by Mahajan et al. [10] investigated COVID-19 detection utilizing 

radiology-based images, specifically chest X-rays, and analyzed several detection models 

including VGG16, VGG19, Residual Network, and Dark-Net. For predictions, these mod-

els were compared using the Single Shot MultiBox Detector (SSD), augmented by task-

specific preprocessing approaches such as CLAHE. Notably, the study indicates the effi-

cacy of the DenseNet201 + SSD512 model, with precision and recall rates of 93.01 and 

94.98, respectively. 

A hybrid COVID–CheXNet model based on deep learning was developed by Al-

Waisy et al. [11] to detect the COVID-19 virus in chest X-ray images. The method success-

fully identified COVID-19 patients with a detection accuracy rate of 99.99% demonstrat-

ing high confidence in distinguishing between healthy individuals and those infected 

with COVID-19 based on the X-ray images. 

Srivastava et al. [12] introduced an innovative custom CNN-based CoviXNet model. 

This model comprises 15 carefully designed layers, emphasizing the efficiency of the ar-

chitecture. Their research showcased CoviXNet’s exceptional performance in binary clas-

sification tasks related to COVID-19 detection. Notably, the model attained an accuracy 

rate of 99.47%, highlighting its potential as a powerful tool for diagnosing COVID-19 in 

medical imaging. 

Nahiduzzaman et al. [13] developed a method for detecting COVID-19 cases among 

various lung diseases. A three-class classification approach specifically designed to iden-

tify COVID-19 cases from pneumonia and normal cases. To achieve this, the authors em-

ployed a CNN-ELM model and achieved 97.42% accuracy. CNN-ELM utilized a dataset 

of 12,701 samples with 512 features for model training. Additionally, 3176 data points 

were used to assess the model’s performance. 

Yaman et al. [14] introduced the ACL model, combining attention, LSTM, and CNN 

for classifying healthy, COVID-19, and pneumonia cases in chest X-ray (CX-R) images. 

Marker-controlled watershed segmentation emphasized crucial features. The model 

achieved 96% accuracy with an 80:20 training:testing ratio. 

A 2D-CNN model was designed to classify instances of bacterial pneumonia, 

COVID-19, and normal instances by Abida et al. [15]. The proposed model demonstrated 

high performance, achieving an impressive accuracy of 97.49%. The model was also mod-

ified for five classes (bacterial pneumonia, COVID-19, fibrosis, normal, and tuberculosis) 

and six classes (bacterial pneumonia, COVID-19, fibrosis, normal, tuberculosis, and viral 

pneumonia) and secured an accuracy of 97.81% and 96.75%, respectively. This study’s 

findings showcase the potential of the 2D-CNN approach for the accurate and efficient 

classification of different lung conditions, contributing to the field of medical imaging and 

disease diagnosis. 

Elakkiya et al. [16] presented a novel approach for categorizing various diseases, in-

cluding COVID-19, pneumonia, tuberculosis, and other specific conditions. They intro-

duced the sharpened cosine similarity network (SCS-Net), which stands out from tradi-

tional neural networks by utilizing sharpened cosine similarity instead of dot products. 

In their experiments involving multi-class classification combining classes such as 

COVID-19, normal, pneumonia, and tuberculosis, the proposed SCS-Net demonstrated 

an accuracy rate of 94.05%. 

Hussain et al. [17] introduced a novel CNN model named CoroDet. The primary ob-

jective of this model was to facilitate the automatic detection of COVID-19 through the 

utilization of raw chest X-ray and CT scan images. In their research, the authors compre-

hensively evaluated CoroDet’s performance, employing a four-class classification ap-

proach involving categories such as bacterial pneumonia, COVID-19, normal, and viral 

pneumonia, achieving an accuracy rate of 91.20%. 

Al-Timemy et al. [18] presented a pipeline for classifying five classes using a combi-

nation of ResNet-50 for DF (deep features) computation and an ensemble of subspace 
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discriminant classifiers. Through their research, this pipeline emerged as the top per-

former in accurately classifying the five classes with an accuracy of 91.6% and a 95% con-

fidence interval of 2.6%. 

Some of the recent developments in CXR and CT scan dataset-based research that 

utilized deep learning approaches similar to the proposed work are analyzed in this sec-

tion. Ghoshal and Tucker [19] developed a Bayesian convolutional neural network 

(BCNN) to assess uncertainties and interpretability of coronavirus identification using 

COVID-19 CXR images. The results demonstrate that the pre-trained VGG-16 model sig-

nificantly increased detection accuracy from 85.2% to 92.9%. By developing saliency maps 

to understand the suggested model’s outcomes better, they also established the ap-

proach’s interpretability. Narin et al. [20] provided a transfer learning-based method for 

classifying CXR pictures into COVID-19 and normal categories, using three pre-trained 

models, with ResNet50 achieving the highest accuracy. Oh et al. [21] developed a patch-

based approach for training and fine-tuning the ResNet18 CNN model. Jain et al. [22] used 

X-ray images and transfer learning-based algorithms for COVID-19 screening and found 

that the Xception model achieved the highest accuracy of 97.97%. Hoon et al. [23] devel-

oped a decision tree classifier based on deep learning for COVID-19 screening, achieving 

a 95% accuracy rate for categorizing coronavirus patients. Pereira et al. [24] proposed a 

deep learning-based system that used a radiography image data augmentation approach 

for COVID-19 identification, achieving an F1-score of 0.89. Sakib et al. [25] used a generic 

augmentation method and GAN to create artificial COVID-19 pictures, achieving a test 

data accuracy of 93.94%. 

Makris et al. [26] conducted a study in which they offered numerous CNN models 

with transfer learning techniques to categorize three distinct categories. According to their 

observations, VGG16 had the maximum accuracy, with a score of 95.88%. Then, in a study 

by Khalid El Asnaouia et al. [27], numerous pre-trained CNN models were proposed to 

categorize three separate classes. According to their results, Inception ResnetV2 had the 

best accuracy of 92.18%. Furthermore, Saiz et al. [28] suggested a CNN VGG16 approach 

utilizing CLAHE. As per the study’s findings, utilizing CLAHE on the database led to an 

accuracy level of 94% rather than an accuracy rate of 83% without such an approach. 

COVIDXNet, a deep learning framework proposed by the authors of [29], can facilitate 

radiologists in automatically diagnosing COVID-19. The suggested framework included 

seven distinct architectures, including a modified VGG19 and Google MobileNet’s second 

version. Rahimzadeh et al. [30] provided a method for classifying X-ray images into three 

groups based on two publicly accessible datasets. They also showed how Xception and 

ResNet50V2 might be used to enhance classification accuracy. 

While many studies have reported impressive accuracy in binary and limited-class 

classification scenarios, their performance consistently degrades as the number of classes 

increases. This phenomenon arises due to the increasing complexity of distinguishing be-

tween multiple conditions with features having minute differences. This limitation ham-

pers the applicability of these models in real-world clinical applications where patients 

may exhibit diverse lung conditions. Therefore, a tailor-made and robust deep learning 

framework is required to perform multi-class classification of lung diseases with high ac-

curacy and confidence for real-life scenarios. 

3. Methodology 

Figure 1 shows the general workflow of the proposed research work. A larger dataset 

with seven classes was produced by combining CXR images from publicly available 

sources. The dataset was split into three separate datasets for three different operations—

80% of the original for training, 10% for validation, and 10% for testing. After that, the 

training data were appropriately preprocessed through resizing, rescaling, and augmen-

tation. Preprocessing was performed after data splitting to ensure that information from 

the validation and test sets did not influence the preprocessing decisions made on the 

training set. This helps to maintain the integrity of the evaluation process, as the validation 
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and test sets should represent real-world data that the model will encounter in general. 

Each class comprises 950 images, 760 for training, 95 for validation, and 95 for testing. To 

achieve the optimum outcome, various hyperparameters were utilized. Additionally, bi-

nary, three-class, four-class, five-class, six-class, and seven-class datasets were trained 

with the MS-CNN model. Finally, the model’s effectiveness was demonstrated by a com-

parative analysis using a variety of performance metrics. 

 

Figure 1. A schematic of the overall Multi-scale CNN system architecture. 

3.1. Chest X-ray Databases 

Most of the datasets used in this investigation were acquired from four distinct rep-

utable sources. Figure 2 shows examples of Chest X-ray images of Bacterial Pneumonia, 

COVID-19, fibrosis, lung opacity, tuberculosis, viral pneumonia, and normal subjects uti-

lized in the proposed work. The following public datasets of CXR images were used in 

this study: (1) COVID-19 Radiography Database 1 (accessed on 16th February 2023) [31], 

(2) Curated Dataset for COVID-19 2 (accessed on 16th February 2023) [32], (3) NIAID TB 

dataset 3 (accessed on 12th May 2023) [33], and (4) NIH Chest X-ray Dataset 4 (accessed on 

9th August 2023) [34]. The datasets are utilized in this study in the following manner- 

1. COVID-19 Radiography Database [31]: this dataset (available online: 

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database 

(accessed on 16th February 2023)) provided Chest X-ray images for COVID-19-posi-

tive cases, viral pneumonia cases, lung opacity cases, and normal cases. 

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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2. Curated Dataset for COVID-19 [32]: this dataset (available online: 

https://www.kaggle.com/datasets/francismon/curated-covid19-chest-xray-dataset 

(accessed on 16th February 2023)) contributed images of bacterial pneumonia. 

3. NIAID TB dataset [33]: this dataset (available online: https://tbportals.niaid.nih.gov/ 

(accessed on 12 May 2023)) supplied images of tuberculosis. 

4. NIH Chest X-ray Dataset [34]: this dataset (available online: https://datasets.active-

loop.ai/docs/mL/datasets/nih-chest-x-ray-dataset (accessed on 9 August 2023)) pro-

vided images of fibrosis. 

 

Figure 2. Sample Images of the dataset: (a) Bacterial Pneumonia, (b) COVID-19, (c) Fibrosis, (d) 

Lung Opacity, (e) Normal, (f) Tuberculosis, and (g) Viral Pneumonia. 

3.1.1. Dataset 1 

This database contains 1900 CXRs, with the images evenly divided between COVID-

19 patients and healthy participants. The COVID-19 Radiography Database [31] obtains 

all CXRs from affected and healthy individuals. This dataset is intended to be split into 

two categories. 

3.1.2. Dataset 2 

This database contains 2850 images, 950 of which are COVID-19 images, 950 of which 

are Normal images, and 950 of which are Fibrosis images. The COVID-19 Radiography 

Database was used to obtain COVID-19 and healthy person images [31]. The 950 CXR 

pictures in this dataset come from the NIH Chest X-ray Dataset [34]. A three-class catego-

rization is devised for this balanced dataset. 

3.1.3. Dataset 3 

This dataset contains 2850 images, 950 of which are COVID-19, 950 of which are nor-

mal, and 950 of which are tuberculosis images. The COVID-19 Radiography Database was 

used to obtain COVID-19 and healthy person images [31]. The 950 CXR tuberculosis im-

ages in the mix come from the NIAID TB dataset [33]. A three-class categorization is 

planned for this balanced dataset. 

  

https://www.kaggle.com/datasets/francismon/curated-covid19-chest-xray-dataset
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3.1.4. Dataset 4 

This dataset contains 2850 images, 950 of which are COVID-19, 950 are normal, and 

950 are bacterial pneumonia images. The COVID-19 Radiography Database was used to 

obtain COVID-19 and healthy person images [31]. The 950 CXR bacterial pneumonia im-

ages in the mix come from the COVID-19 Curated Dataset [32]. A three-class categoriza-

tion is designed for this balanced dataset. 

3.1.5. Dataset 5 

This dataset contains 950 COVID-19, 950 healthy individuals, 950 TB, and 950 Fibro-

sis images. All COVID-19 and Normal images are gathered from the COVID-19 Radiog-

raphy Database [31]. The NIAID TB dataset [33] and the NIH Chest X-ray Dataset [34], 

respectively, served as the sources of the remaining 950 images of tuberculosis and 950 

images of fibrosis. A 4-class classification is considered for this balanced dataset. 

3.1.6. Dataset 6 

This dataset has 950 COVID-19, 950 healthy individuals, 950 Bacterial Pneumonia, 

and 950 Fibrosis images. All COVID-19 and Normal images are gathered from the 

COVID-19 Radiography Database [31]. COVID-19 Curated Dataset [32] and the NIH 

Chest X-ray Dataset [34], respectively, served as the sources of the remaining 950 photos 

of bacterial pneumonia and 950 images of fibrosis. A 4-class classification is considered 

for this balanced dataset. 

3.1.7. Dataset 7 

In this collection, 950 COVID-19 images, 950 images of healthy individuals, 950 im-

ages of bacterial pneumonia, and 950 tuberculosis images are found. All COVID-19 and 

normal images are gathered from the COVID-19 Radiography Database [31]. The COVID-

19 Curated Dataset [32] and the NIAID TB dataset [33], respectively, served as the source 

of the remaining 950 images of bacterial pneumonia and 950 images of tuberculosis. A 4-

class classification is considered for this balanced dataset. 

3.1.8. Dataset 8 

This CXR assembly of 4750 images is spanned evenly across 950 images of COVID-

19, 950 images of healthy individuals, 950 images of TB, 950 images of Bacterial Pneumo-

nia, and 950 images of Fibrosis. The COVID-19 Radiography Database results in the im-

ages of COVID-19 and healthy persons. In addition, the COVID-19 Curated Dataset [32] 

is used to gather 950 images of bacterial pneumonia. While the 950 images of fibrosis are 

derived from the NIH Chest X-ray Dataset [34], the remaining 950 images of tuberculosis 

are gathered from the NIAID TB dataset [33]. The five-class categorization is considered 

in this regard. 

3.1.9. Dataset 9 

This CXR assembly of 5700 images is spanned evenly across 950 images of COVID-

19, 950 images of healthy individuals, 950 images of TB, 950 images of bacterial pneumo-

nia, 950 images of viral pneumonia, and 950 fibrosis images. The COVID-19 Radiography 

Database results in images of COVID-19, viral pneumonia, and healthy persons. In addi-

tion, the COVID-19 Curated Dataset [32] is used to gather 950 images of bacterial pneu-

monia. While the 950 images of fibrosis are derived from the NIH Chest X-ray Dataset 

[34], the remaining 950 images of TB are gathered from the NIAID TB dataset [33]. The 

six-class categorization is considered in this regard. 

3.1.10. Dataset 10 

This CXR assembly of 6650 images is spanned evenly across 950 images of COVID-

19, 950 images of healthy individuals, 950 images of TB, 950 images of Bacterial 
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Pneumonia, 950 images of Viral Pneumonia, 950 images of Lung Opacity, and 950 images 

of Fibrosis. The COVID-19 Radiography Database results in images of COVID-19, Viral 

Pneumonia, Lung Opacity, and healthy persons. In addition, the COVID-19 Curated Da-

taset [32] is used to gather 950 images of Bacterial Pneumonia. While the 950 images of 

Fibrosis are derived from the NIH Chest X-ray Dataset [34], the remaining 950 images of 

Tuberculosis are gathered from the NIAID TB dataset [33]. The seven-class categorization 

is considered in this regard. 

3.1.11. Dataset Splitting 

As mentioned before, 80% of the introduced datasets are used for training, 10% for 

testing, and 10% for validation. Each class uses 760 images for training purposes for da-

taset 1 to dataset 10. In each class, 95 images are utilized for testing, and 95 images are 

used for validation. Table 1 represents details of the datasets. 

Table 1. Designing of Chest X-ray Datasets. 

Datasets 
Number of 

Classes 
Class Names 

Samples for 

Training 

(80%) 

Samples for 

Testing (10%) 

Samples for 

Validation 

(10%) 

Total Sam-

ples (100%) 

Dataset 1 2 
COVID 760 95 95 

1900 
Normal 760 95 95 

Dataset 2 3 

Fibrosis 760 95 95 

2850 COVID 760 95 95 

Normal 760 95 95 

Dataset 3 3 

COVID 760 95 95 

2850 Normal 760 95 95 

Tuberculosis 760 95 95 

Dataset 4 3 

Bacterial Pneumonia 760 95 95 

2850 COVID 760 95 95 

Normal 760 95 95 

Dataset 5 4 

COVID 760 95 95 

3800 
Fibrosis 760 95 95 

Normal 760 95 95 

Tuberculosis 760 95 95 

Dataset 6 4 

Bacterial Pneumonia 760 95 95 

3800 
COVID 760 95 95 

Fibrosis 760 95 95 

Normal 760 95 95 

Dataset 7 4 

Bacterial Pneumonia 760 95 95 

3800 
COVID 760 95 95 

Normal 760 95 95 

Tuberculosis 760 95 95 

Dataset 8 5 

Bacterial Pneumonia 760 95 95 

4750 

COVID 760 95 95 

Fibrosis 760 95 95 

Normal 760 95 95 

Tuberculosis 760 95 95 

Dataset 9 6 

Bacterial Pneumonia 760 95 95 

5700 

COVID 760 95 95 

Fibrosis 760 95 95 

Normal 760 95 95 

Tuberculosis 760 95 95 
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Viral Pneumonia 760 95 95 

Dataset 10 7 

Bacterial Pneumonia 760 95 95 

6650 

COVID 760 95 95 

Fibrosis 760 95 95 

Lung Opacity 760 95 95 

Normal 760 95 95 

Tuberculosis 760 95 95 

Viral Pneumonia 760 95 95 

3.2. Pre-Processing and Augmentation 

The images are scaled to match the input dimension for the CNN, with larger images 

suppressing the traits of interest most likely. To begin, all images are downsized to 300 × 

300 pixels. Then, all pixels [0, 1] are rescaled using the min–max normalization approach. 

Additionally, image augmentation techniques were used to address the limited number 

of images in the datasets and increase training efficiency while preventing model overfit-

ting. 

3.2.1. Sample-Wise Centering 

This technique was applied to ensure that the mean pixel value of individual images 

was set to zero. It involves adjusting the brightness levels of the image while preserving 

the relative differences between pixels. 

3.2.2. Sample-by-Sample Standard Deviation Normalization 

This technique involves rescaling the pixel values based on their associated standard 

deviation. This normalization process helps to standardize the variability of pixel values 

across different images. 

3.2.3. Horizontal Flipping 

This technique involves creating a mirrored version of the original image by flipping 

it horizontally. In the context of lung images, this augmentation is relevant as lung struc-

ture and patterns can be symmetric. 

3.2.4. Image Generator 

The image generator uses the sample-wise center for augmentation to make the sin-

gle image’s mean pixel value zero. Following that, sample-by-sample standard deviation 

normalization is used to partition images based on their associated standard deviation 

value. Finally, the horizontal flip is used to flip photographs horizontally. 

These augmentation techniques were specifically chosen to enhance the diversity of 

the dataset while ensuring that the transformations were meaningful for lung images. 

3.3. Proposed Multi-Scale CNN Architecture 

The proposed architecture in Figure 3 has two components: a backbone and a CNN 

head. The backbone is a pre-trained image classification network acting as a feature ex-

tractor. Here, the top layers of the pre-trained network are extracted, and the bottom lay-

ers are removed to provide only the low-level extracted feature maps. Using VGG-16 as 

the backbone, convolutional layers as the head for feature extraction in multiple scales 

and filter size optimizations, the model’s ability to extract discriminative features from 

CXR images is enhanced [35]. It leverages pre-trained weights, benefits from transfer 

learning, captures features at multiple scales, and adapts to the specific characteristics of 

CXR images. Transfer learning allows the model to transfer the knowledge gained from a 

source task (ImageNet classification) to a target task (CXR classification) [35]. This is es-

pecially valuable when the target task has limited labeled data, as it enables the model to 
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generalize better and achieve higher accuracy by leveraging the learned representations 

from a related task. These advantages contribute to improved accuracy and robustness in 

CXR classification tasks. 

 

Figure 3. Block diagram of Multi-scale CNN architecture. 

VGG-16 is a deep neural network architecture pre-trained on the large-scale 

ImageNet dataset [35]. The VGG-16 backbone consists of convolutional and max pooling 

layers, gradually reducing the spatial dimensions while increasing the number of chan-

nels. Using its pre-trained weights, the model can leverage the knowledge learned from 

millions of images to initialize its feature extraction process. This helps in capturing ge-

neric visual features useful for a wide range of image classification tasks, including CXR 

classification. 

CNN head comprises multiple convolutional layers stacked together and added to 

the top of the backbone model. By incorporating these convolutional layers into the head 

of the model, the architecture is customized to extract features at multiple scales. The 

VGG16 layers closer to the input learn low-level features like edges and textures, while 

deeper layers in the CNN head learn more complex and abstract features. This is crucial 

for CXR classification, as abnormalities within the image can appear in unusual sizes. 

Multi-scale feature mapping enables the model to become more robust and capable of 

identifying abnormalities of varying sizes, improving its overall accuracy in CXR classifi-

cation. 
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The input image size is set to 300 × 300 pixels, and the VGG-16 network acts as the 

backbone of the model consisting of five blocks. Blocks 1 to 5, the part of the VGG-16 

backbone helps extract hierarchical features from the input image. In each block, the filter 

size is doubled on the top Conv2D layer, while the feature map size is halved in the Max-

Pooling2D layer. The first two blocks, named Block 1 and Block 2, include two Conv2D 

layers (convX_1 and convX_2) and one MaxPooling2D layer (maxpoolX). Layer output 

sizes of the Conv2D layers in Block 1 and Block 2 are 300 × 300 × 64 and 150 × 150 × 128, 

respectively. The corresponding MaxPooling2D layers produce output sizes of 150 × 150 

× 64 and 75 × 75 × 128. The MaxPooling2D layers downsample the feature maps, reducing 

their spatial dimensions. The following three blocks, named Block 3, Block 4, and Block 5, 

consist of three Conv2D layers and one MaxPooling2D layer (convX_1, convX_2, convX_3, 

and maxpoolX). The Conv2D layers progressively keep decreasing in spatial dimensions, 

resulting in feature maps with sizes of 75 × 75 × 256 (Block 3), 37 × 37 × 512 (Block 4), and 

18 × 18 × 512 (Block 5). The MaxPooling2D layers further perform downsampling of the 

feature maps. The MaxPooling2D layers produce output sizes of 37 × 37 × 256, 18 × 18 × 

512, and 18 × 18 × 512, respectively. The first effective layer responsible for Chest X-ray 

(CXR) classification, conv4_3, has a spatial dimension of 38 × 38, representing a consider-

able reduction compared to the input image size. Higher-resolution feature maps play a 

crucial role in detecting small edges and patterns in the image. 

Afterward, a CNN head consisting of Block numbers from 6 to 11 introduces addi-

tional convolutional layers to the model, increasing its complexity. This allows the model 

to learn more intricate and abstract features of the CXR input image. Gradually, as the 

Conv2D structure keeps decreasing in spatial dimensions, the resolution of the feature 

maps also decreases. The feature map from Block 4 (conv4_3) is connected to a Concate-

nate layer, and the feature map from Block 5 (maxpool5) is connected to the Conv6 block 

with an output size of 18 × 18 × 1024. Conv6 is then connected to the Conv7 block. Follow-

ing Conv7, four additional convolutional blocks (Conv8 to Conv11) are added each con-

taining two Conv2D layers. Each block in the architecture builds upon the features ex-

tracted by the previous blocks. The Conv8 block has conv8_1 and conv8_2 layers with 

output sizes of 18 × 18 × 256 and 9 × 9 × 512, respectively. The second layer of Conv8 

(conv8_2) is connected to the first layer of Conv9 (conv9_1). Similarly, Conv9 has conv9_1 

and conv9_2 layers with output sizes of 9 × 9 × 128 and 5 × 5 × 256, respectively. This 

pattern reiterates with conv9_2 further connecting to conv10_1 (5 × 5 × 128), conv10_2 (3 

× 3 × 256), and finally conv11_1 (3 × 3 × 128). 

Lastly, a Concatenation block is used to merge the feature maps from all of the con-

volutional layers, namely, conv4_3, conv6, conv7, conv8_2, conv9_2, conv10_2, and 

conv11_2 to combine the feature maps into a single concatenated feature map. All the 

smaller feature maps contain different levels of information extracted from the input im-

age at different scales and resolutions. The resulting tensor from the concatenation oper-

ation has a more significant depth, combining the channels from individual feature maps. 

The output size of the Concatenate layer is 8096 × 16. 

After the concatenation operation, the resulting tensor is passed through a flattened 

layer that converts the multi-dimensional tensor into a one-dimensional vector. Then, the 

flattened layer transforms the concatenated layer, which has a shape of 8096 × 16, into a 

flat vector of length 8096 × 6 = 129,536. Following the flattened layer, the flattened vector 

is passed through a dense layer with SoftMax activation, providing the classification prob-

abilities for the input image across different classes. The choice of filter sizes, number of 

layers, and block configurations followed the SSD300 (Single-shot Multibox Detector) fea-

ture extraction standard and the abstraction practices of VGG16. Furthermore, introduc-

ing additional convolutional blocks (Conv Blocks 6 to 11) was purposeful, aiming to allow 

the model to learn more intricate and abstract features from the input. The basic working 

principle of the MS-CNN model is presented in Algorithm 1. 
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Algorithm 1: Proposed Multi-scale CNN Algorithm 

1. Input: 6650 CXR images (80% training, 10% validation, 10% testing). 

2. Output Labels: Normal, Bacterial Pneumonia, COVID, Fibrosis, Lung Opacity, Tu-

berculosis, Viral Pneumonia. 

3. Begin 

4. Preprocessing: 

i. Resize images: 𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝑋, 300 ×  300 ×  3) 

ii. Batch normalization: 𝑋𝑛𝑜𝑟𝑚 =  
𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑

255
 

iii. Split:: Use the normalized dataset, 𝑋𝑛𝑜𝑟𝑚= {𝑋1, 𝑋2 , 𝑋3, … , , 𝑋𝑛}, to split into ￼ 

datasets. 

5. Augmentation: 

i. Center and standard normalize: 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑐𝑒𝑛𝑡𝑒𝑟(𝑋𝑛𝑜𝑟𝑚)) 

ii. Apply horizontal flip (HF) for training. 

6. Model Construction: 

i. Base: Initialize model M with VGG16 base network (input size 𝑀𝑖𝑛𝑝𝑢𝑡 =

300 × 300 × 3). 
ii. Add Conv2D layers: 𝐿𝑖 = 𝐶𝑜𝑛𝑣2𝐷(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =

𝐹 (128, 256, 512, 1024), 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 = (3,3), 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒 = (1,1), 𝑠𝑡𝑟𝑖𝑑𝑒𝑠 =
(1,1), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑒𝐿𝑈) for 𝑖 = 1,2,3,4. 

iii. Concatenate (Conv2D layers): 𝐿𝑐𝑜𝑛𝑐𝑎𝑡  = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐿1, 𝐿2, 𝐿3, 𝐿4 … 𝐿𝑖,). 

iv. Flatten: 𝐿𝑓𝑙𝑎𝑡 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐿𝑐𝑜𝑛𝑐𝑎𝑡). 

v. Dense: 𝐿𝑑𝑒𝑛𝑠𝑒 = 𝐷𝑒𝑛𝑠𝑒(𝐿𝑓𝑙𝑎𝑡 , 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥). 

vi. Compile: 𝑀𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 =

0.0001, 𝑙𝑜𝑠𝑠 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦). 
7: Training Phase: 

Train: 𝑀𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = 𝑡𝑟𝑎𝑖𝑛(𝑀𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 , 𝑒𝑝𝑜𝑐ℎ𝑠 = 25, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 16, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 𝑋𝑣𝑎𝑙), 

monitoring validation loss. 

8: Testing Phase: Generate labels: 𝑦𝑡𝑒𝑠𝑡 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑀𝑡𝑟𝑎𝑖𝑛𝑒𝑑 , 𝑋𝑡𝑒𝑠𝑡). 

9: Performance Evaluation: 

i. Confusion Matrix: TP, FP samples: 𝐶𝑀 = 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑡𝑒𝑠𝑡). 

ii. Metrics: Accuracy, Precision, Recall, F1-score: 𝐴, 𝑃, 𝑅, 𝐹1 =

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑡𝑒𝑠𝑡). 

iii. ROC: Area Under ROC (AUC) on 𝑋𝑡𝑒𝑠𝑡: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑈𝐶(𝑋𝑡𝑒𝑠𝑡 , 𝑀𝑡𝑟𝑎𝑖𝑛𝑒𝑑). 

9: End 

3.4. Experimental Setup and Hyperparameter Settings 

The proposed model was trained using the TensorFlow API operating on a 64-bit 

Windows 11 Pro system. Keras and Scikit-Learn libraries facilitated seamless handling of 

diverse data with Multi-scale CNN model design, training, and evaluation tasks on the 

local machine setup mentioned in Table 2. Hyperparameters were meticulously deter-

mined through extensive experimentation on the platform. Multiple training runs, vary-

ing learning rates, patience, optimizers, epochs, and batch sizes were executed. Model 

performance was rigorously assessed on validation data to pinpoint the optimal combi-

nation of hyperparameters for desired model performance. 

The training commenced with a conservative learning rate of 0.0001, with continuous 

progress monitoring. The rate of loss reduction guided adjustments to the learning rate, 

with a pivotal role played by a patience value of 10 in implementing effective early stop-

ping, a technique crucial for preventing overfitting. Throughout training, the Adam opti-

mizer dynamically adapted the learning rate for each parameter. 
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Experimentation revealed that training for fewer than 15 epochs resulted in under-

fitting, while over 50 epochs led to overfitting. Thus, a balanced choice of 25 epochs struck 

the right pattern-capturing balance while avoiding overfitting. Different batch sizes were 

explored, with smaller sizes showing promise for better generalization, albeit at a slower 

training pace. Conversely, batch sizes exceeding 32 led to validation data exhibiting un-

stable minima. A batch size of 16 was deemed optimal, ensuring a balanced compromise 

between training speed, memory usage, and convergence. This meticulous hyperparam-

eter tuning process yielded a high-performing neural model for the classification task, 

detailed in Tables 2 and 3 for reference. 

Table 2. Experimental setup. 

Name Parameters 

Programming Language Python 

Environment Microsoft VS Code (1.74.3) 

Backend Keras with TensorFlow 

Processor Intel(R) Core (TM) i7-10700K 

Installed RAM 32 GB 

GPU NVIDIA GeForce, RTX 2080 Ti 11 GB 

Operating system Windows 11 Pro 

Input Chest X-Ray Images 

Input Size 300 × 300 

Table 3. Hyperparameters utilized in model training. 

Hyperparameters Values/Types 

Epoch 25 

Batch Size 16 

Learning Rate 0.0001 

Patience 10 

Optimizer Adam 

Loss Function Categorical Cross Entropy 

3.5. Performance Metrics 

A confusion matrix is a table that summarizes obtained predictions from a model 

with the actual ground truth labels of the dataset. A classification report is a comprehen-

sive summary of various metrics, including precision, recall, F1-Score, and support (the 

number of occurrences of each class). The percentage of accurate predictions to the net 

predictions is known as accuracy (Ac). 

𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Precision (Pr) is a metric used to evaluate the quality of the results produced by a 

model. 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Recall (Rc), also known as sensitivity or true positive rate, is a measure used to quan-

titatively evaluate a model’s performance. 

𝑅𝑐 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (3) 

F1 score is often considered more informative than accuracy as a performance metric 

when class imbalance is present. 
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𝐹1 = 2 ×
𝑃𝑟 × 𝑅𝑐

𝑃𝑟 + 𝑅𝑐
 (4) 

where TP, TN, FP, and FN, denote true positives, true negatives, false positives, and false 

negatives, respectively. 

4. Results 

4.1. Classification of Dataset 1 

The classification outputs using dataset 1 are presented in Table 4. The results served 

as the foundation for the proposed model including a comparison with some transfer 

learning models for all the applied performance assessment criteria. The proposed MS-

CNN training and validation accuracy curves, ROC curves, and confusion matrix are 

shown in Figure 4. This graph illustrates that the model acquired a testing accuracy of 

100% and a loss of 0.0131. The confusion matrix also demonstrated that the proposed 

model performed correctly on 100% (87 images) of the COVID-19 images and 100% (103 

images) of the normal images. The model does not misclassify any normal images as 

COVID-19 or COVID-19 images as normal. The model also achieved an AUC value of 1.00 

for identifying COVID-19 samples compared to the healthy sample. A high recall value of 

1.00 indicates that the model successfully decreased false-negative rates to zero, ensuring 

no significant cases of COVID-19 infection cases were missed. However, the high preci-

sion value of 1.00 shows that the model has no false positive rates; hence, COVID-19-in-

fected cases were not frequently misclassified. The performance comparison between the 

proposed model and other TL models is presented in Figure 5. 

 

 



Technologies 2023, 11, 134 16 of 42 
 

 

Figure 4. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves 

of the proposed Multi-Scale CNN model with two individual classes (COVID and Nor-

mal). 

Table 4. Classification performance results for Dataset 1. 

Classification 

Models 
Classes Precision Recall F1-Score AUC Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale CNN 
COVID 1.00 1.00 1.00 1.00 

100 1.00 1.00 1.00 1.00 
Normal 1.00 1.00 1.00 1.00 

VGG16 
COVID 1.00 0.99 0.99 1.00 

100 0.99 0.99 0.99 0.99 
Normal 0.99 1.00 1.00 0.99 

VGG19 
COVID 0.95 1.00 0.97 0.98 

100 0.97 0.98 0.97 0.99 
Normal 1.00 0.95 0.98 1.00 

 

Figure 5. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with two individual classes (COVID and Normal) for Dataset 1. 

4.2. Classification of Dataset 2 

The proposed MS-CNN model training and validation accuracy curves, ROC curves, 

and confusion matrix are shown in Figure 6. The outputs of dataset 2 are presented in 

Table 5 and Figure 7. The testing accuracy and loss of the proposed model were 99.65% 

and 0.0236, respectively. The CM indicated that the proposed model misclassified one 

COVID-19 image as fibrosis, two fibrosis as COVID-19, and five normal as fibrosis. The 

AUC values for COVID-19, Fibrosis, and Normal were 1.00, 0.99, and 0.99, respectively. 
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Figure 6. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves 

of the proposed Multi-Scale CNN model with three individual classes (COVID, Normal, 

and Fibrosis). 

Table 5. Classification performance results for Dataset 2. 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC 

Accuracy 

(%) 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale CNN 

COVID 0.98 0.99 0.99 1.00 

99.65 0.97 0.97 0.97 0.99 Fibrosis 0.94 0.98 0.96 0.99 

Normal 1.00 0.94 0.97 0.99 

VGG16 

COVID 1.00 0.96 0.98 1.00 

99.30 0.97 0.97 0.97 0.99 Fibrosis 0.92 1.00 0.96 0.98 

Normal 1.00 0.95 0.98 0.99 

VGG19 

COVID 0.95 0.67 0.78 0.98 

96.84 0.86 0.84 0.83 0.96 Fibrosis 0.99 0.86 0.92 0.94 

Normal 0.66 1.00 0.79 0.95 
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Figure 7. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with three individual classes (COVID, Normal, and Fibrosis) for 

Dataset 2. 

4.3. Classification of Dataset 3 

The proposed MS-CNN model training and validation accuracy curves, ROC curves, 

and confusion matrix are shown in Figure 8. The outputs of the dataset 3 are presented in 

Table 6 and Figure 9. The testing accuracy and loss of the proposed model were 99.30% 

and 0.0250, respectively. The CM indicated that the proposed model misclassified two 

COVID-19 images as tuberculosis, one COVID-19 as Normal, and one Tuberculosis as 

COVID-19. The AUC values for COVID-19, tuberculosis, and Normal each were 1.00. 
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Figure 8. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with three individual classes (COVID, Normal, and Tuberculo-

sis). 

Table 6. Classification performance results for Dataset 3. 

Classification 

Models 
Classes Precision Recall F1-Score AUC Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

 COVID 0.99 0.97 0.98 1.00 

99.30 0.99 0.99 0.99 1.00 Multi-Scale 

CNN 

Normal 0.98 0.99 0.98 1.00 

Tuberculosis 0.99 1.00 0.99 1.00 

VGG16 

COVID 0.97 0.94 0.96 0.98 

97.54 0.97 0.97 0.97 0.99 Normal 0.97 1.00 0.98 0.99 

Tuberculosis 0.96 0.96 0.96 0.99 

VGG19 

COVID 0.96 0.92 0.94 0.95 

95.44 0.95 0.95 0.95 0.97 Normal 0.97 0.96 0.96 0.99 

Tuberculosis 0.91 0.98 0.94 0.97 

 

Figure 9. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with three individual classes (COVID, Normal, and Tuberculosis) 

for Dataset 3. 

4.4. Classification of Dataset 4 

The proposed MS-CNN model training and validation accuracy curves, ROC curves, 

and confusion matrix are shown in Figure 10. The outputs of the dataset 4 are presented 

in Table 7 and Figure 11. The testing accuracy and loss of the proposed model were 98.60% 

and 0.1079, respectively. The CM indicated that the proposed model misclassified one 

COVID-19 image as Normal, and eight Normal as Bacterial Pneumonia. The AUC values 

for COVID-19, Bacterial Pneumonia, and Normal each were 1.00. 
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Figure 10. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with three individual classes (COVID, Bacterial Pneumonia, and 

Normal). 

Table 7. Classification performance results for Dataset 4. 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

Bacterial 

Pneumo-

nia 

0.91 1.00 0.95 1.00 

98.60 0.97 0.97 0.97 1.00 

COVID 1.00 0.99 1.00 1.00 

Normal 0.99 0.91 0.95 1.00 

VGG16 

Bacterial 

Pneumo-

nia 

1.00 0.92 0.96 0.99 

97.89 0.96 0.96 0.96 0.99 

COVID 0.96 0.99 0.98 1.00 

Normal 0.93 0.97 0.95 0.99 

VGG19 

Bacterial 

Pneumo-

nia 

0.82 0.89 0.85 0.98 

97.19 0.91 0.90 0.90 0.97 

COVID 0.95 0.95 0.95 0.96 

Normal 0.94 0.85 0.89 0.98 
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Figure 11. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with three individual classes (COVID, Bacterial Pneumonia, and 

Normal) for Dataset 4. 

4.5. Classification of Dataset 5 

The proposed MS-CNN model training and validation accuracy curves, ROC curves, 

and confusion matrix are shown in Figure 12. 

 

Figure 12. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with four individual classes (COVID, Fibrosis, Normal, and Tu-

berculosis). 
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The outputs of the dataset 5 are presented in Table 8 and Figure 13. The testing accu-

racy and loss of the proposed model were 99.74% and 0.0240, respectively. The CM indi-

cated that the proposed model misclassified two COVID-19 images as Tuberculosis, three 

Fibrosis as COVID-19, five Fibrosis as Normal, and two Tuberculosis as COVID-19. The 

AUC values for COVID-19, Fibrosis, Normal, and Normal were 0.99, 0.99, 1.00, and 0.99, 

respectively. 

Table 8. Classification performance results for Dataset 5. 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

COVID 0.95 0.98 0.96 0.99 

99.74 0.97 0.97 0.97 0.99 

Fibrosis 1.00 0.93 0.96 0.99 

Normal 0.95 1.00 0.97 1.00 

Tubercu-

losis 
0.98 0.98 0.98 0.99 

VGG16 

COVID 1.00 0.92 0.96 0.98 

98.95 0.97 0.96 0.96 0.99 

Fibrosis 0.97 0.96 0.96 0.99 

Normal 0.99 0.98 0.99 0.99 

Tubercu-

losis 
0.91 1.00 0.95 0.99 

VGG19 

COVID 1.00 0.61 0.76 0.96 

98.68 0.89 0.85 0.85 0.95 

Fibrosis 0.66 0.96 0.78 0.93 

Normal 0.99 0.83 0.90 0.94 

Tubercu-

losis 
0.89 0.99 0.94 0.98 

 

Figure 13. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with four individual classes (COVID, Fibrosis, Normal, and Tu-

berculosis) for Dataset 5. 

4.6. Classification of Dataset 6 

The proposed Multi-Scale CNN model training and validation accuracy curves, ROC 

curves, and confusion matrix are shown in Figure 14. The outputs of the dataset 6 are 

presented in Table 9 and Figure 15. 
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Figure 14. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with four individual classes (Bacterial Pneumonia, COVID, Fi-

brosis, and Normal). 

The testing accuracy and loss of the proposed model were 99.21% and 0.0498, respec-

tively. The CM indicated that the proposed model misclassified one Bacterial Pneumonia 

image as COVID-19, one Bacterial Pneumonia as Fibrosis, one COVID-19 as Fibrosis, three 

Fibrosis as COVID-19, and one Normal as Fibrosis. The AUC values for Bacterial Pneu-

monia, COVID-19, Fibrosis, and Normal each were 1.00. 

Table 9. Classification performance results for Dataset 6 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

Bacterial 

Pneumo-

nia 

1.00 0.98 0.99 1.00 

99.21 0.98 0.98 0.98 1.00 
COVID 0.96 0.99 0.97 1.00 

Fibrosis 0.97 0.97 0.97 1.00 

Normal 1.00 0.99 0.99 1.00 

VGG16 

Bacterial 

Pneumo-

nia 

0.98 0.96 0.97 0.99 

98.42 0.96 0.96 0.96 1.00 

COVID 1.00 0.88 0.94 1.00 

Fibrosis 0.93 1.00 0.96 1.00 
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Normal 0.96 0.99 0.97 1.00 

VGG19 

Bacterial 

Pneumo-

nia 

0.96 0.96 0.96 1.00 

98.42 0.97 0.97 0.97 1.00 
COVID 1.00 0.97 0.98 1.00 

Fibrosis 0.99 0.97 0.98 1.00 

Normal 0.94 0.99 0.96 0.99 

 

Figure 15. Average Precision (%), Average Recall (%), Average F1-Score (%),  Average AUC (%), 

and Accuracy of the different models with four individual classes (Bacterial Pneumonia, COVID, 

Fibrosis, and Normal) for Dataset 6. 

4.7. Classification of Dataset 7 

The proposed Multi-Scale CNN model training and validation accuracy curves, ROC 

curves, and confusion matrix are shown in Figure 16. The outputs of the dataset 7 are 

presented in Table 10 and Figure 17. 
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Figure 16. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with four individual classes (Bacterial Pneumonia, COVID, Nor-

mal, and Tuberculosis). 

The testing accuracy and loss of the proposed model were 98.95% and 0.0589, respec-

tively. The CM indicated that the proposed model misclassified 3 Bacterial Pneumonia 

images as Tuberculosis, 11 COVID-19 as Tuberculosis, 2 Normal as Bacterial Pneumonia, 

2 Normal as COVID-19, 1 Normal as Tuberculosis, and 1 Tuberculosis as COVID-19. The 

AUC values for Bacterial Pneumonia, COVID-19, Normal, and Tuberculosis were 0.99, 

0.95, 1.00, and 0.99, respectively. 

Table 10. Classification performance results for Dataset 7. 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

Bacterial 

Pneumo-

nia 

0.98 0.96 0.97 0.99 

98.95 0.95 0.95 0.95 0.98 COVID 0.96 0.88 0.92 0.95 

Normal 1.00 0.96 0.98 1.00 

Tubercu-

losis 
0.85 0.99 0.92 0.99 

VGG16 

Bacterial 

Pneumo-

nia 

0.98 0.95 0.96 1.00 96.84 0.95 0.94 0.94 0.99 
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COVID 0.96 0.85 0.90 0.97 

Normal 0.98 1.00 0.99 1.00 

Tubercu-

losis 
0.86 0.97 0.91 0.98 

VGG19 

Bacterial 

Pneumo-

nia 

0.98 0.68 0.81 0.86 

98.42 0.88 0.81 0.82 0.90 COVID 0.95 0.62 0.75 0.85 

Normal 0.99 0.95 0.97 0.98 

Tubercu-

losis 
0.59 1.00 0.74 0.90 

 

Figure 17. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with four individual classes (Bacterial Pneumonia, COVID, Nor-

mal, and Tuberculosis) for Dataset 7. 

4.8. Classification of Dataset 8 

The proposed Multi-Scale CNN model training and validation accuracy curves, ROC 

curves, and confusion matrix are shown in Figure 18. The outputs of dataset 8 are pre-

sented in Table 11 and Figure 19. The testing accuracy and loss of the proposed model 

were 98.67% and 0.0715, respectively. The CM indicated that the proposed model misclas-

sified one Bacterial Pneumonia image as COVID-19, two Bacterial Pneumonia as Fibrosis, 

one COVID-19 as Fibrosis, three Fibrosis as COVID-19, one Fibrosis as Normal, two Nor-

mal as Bacterial Pneumonia, one Tuberculosis as COVID-19, and three Tuberculosis as 

Fibrosis. The AUC values for Bacterial Pneumonia, COVID-19, Fibrosis, Normal, and Tu-

berculosis were 1.00, 1.00, 0.99, 1.00, and 0.97, respectively. 
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Figure 18. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with five individual classes (Bacterial Pneumonia, COVID, Fi-

brosis, Normal, and Tuberculosis). 

Table 11. Classification performance results for Dataset 8. 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC 

Accuracy 

(%) 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

Bacterial 

Pneumo-

nia 

0.97 0.96 0.97 1.00 

98.67 0.96 0.96 0.96 0.99 
COVID 0.93 0.98 0.95 1.00 

Fibrosis 0.93 0.95 0.94 0.99 

Normal 0.99 0.98 0.98 1.00 

Tubercu-

losis 
1.00 0.93 0.97 0.97 

VGG16 

Bacterial 

Pneumo-

nia 

0.98 0.96 0.97 0.99 

98.32 0.96 0.96 0.96 0.99 
COVI 0.99 0.96 0.98 1.00 

Fibrosis 0.90 1.00 0.95 0.99 

Normal 1.00 0.90 0.95 0.98 

Tubercu-

losis 
0.95 0.99 0.97 0.99 
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VGG19 

Bacterial 

Pneumo-

nia 

0.90 0.98 0.94 0.99 

97.68 0.95 0.95 0.95 0.99 
COVI 0.98 0.96 0.97 0.99 

Fibrosis 0.94 0.97 0.95 0.99 

Normal 1.00 0.83 0.91 0.99 

Tubercu-

losis 
0.93 0.99 0.96 0.99 

 

Figure 19. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with five individual classes (Bacterial Pneumonia, COVID, Fibro-

sis, Normal, and Tuberculosis) for Dataset 8. 

4.9. Classification of Dataset 9 

The proposed Multi-Scale CNN model training and validation accuracy curves, ROC 

curves, and confusion matrix are shown in Figure 20. The outputs of dataset 9 are pre-

sented in Table 12 and Figure 21. The testing accuracy and loss of the proposed model 

were 97.47% and 0.0885, respectively. The CM indicated that the proposed model misclas-

sified two Bacterial Pneumonia images as Fibrosis, three COVID-19 as Fibrosis, three Nor-

mal as Bacterial Pneumonia, three Normal as Fibrosis, two Tuberculosis as Fibrosis, seven 

Viral Pneumonia as Bacterial Pneumonia, one Viral Pneumonia as Fibrosis, and one Viral 

Pneumonia as Tuberculosis. The AUC values for Bacterial Pneumonia, COVID-19, Fibro-

sis, Normal, Tuberculosis, and Viral Pneumonia were 0.99, 1.00, 1.00, 1.00, 1.00, and 0.99, 

respectively. 
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Figure 20. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, and (d) ROC curves of the 

proposed Multi-Scale CNN model with six individual classes (Bacterial Pneumonia, COVID, Fibro-

sis, Normal, Tuberculosis, and Viral Pneumonia). 

Table 12. Classification performance results for Dataset 9. 

Classification 

Models 
Classes Precision Recall F1-Score AUC 

Accuracy 

(%) 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

Bacterial Pneu-

monia 
0.90 0.98 0.94 0.99 

97.47 0.96 0.95 0.95 0.99 

COVID 1.00 0.96 0.98 1.00 

Fibrosis 0.90 1.00 0.95 1.00 

Normal 1.00 0.91 0.95 1.00 

Tuberculosis 0.99 0.98 0.98 1.00 

Viral Pneumonia 1.00 0.84 0.91 0.99 

VGG16 

Bacterial Pneu-

monia 
0.88 0.70 0.78 0.93 

 
    

COVID 0.95 0.93 0.94 0.98     

Fibrosis 0.97 0.97 0.97 1.00 95.79 0.90 0.90 0.89 0.97 

Normal 0.99 0.92 0.95 0.99      

Tuberculosis 0.85 0.98 0.91 0.98      

Viral Pneumonia 0.75 0.88 0.81 0.96      

VGG19 
Bacterial Pneu-

monia 
0.71 0.72 0.72 0.91 95.61 0.78 0.72 0.72 0.91 
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COVID 0.98 0.58 0.73 0.87 

Fibrosis 0.80 0.80 0.80 0.91 

Normal 1.00 0.54 0.70 0.95 

Tuberculosis 0.51 1.00 0.67 0.92 

Viral Pneumonia 0.71 0.70 0.71 0.88 

 

Figure 21.  Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), 

and Accuracy of the different models with six individual classes (Bacterial Pneumonia, COVID, Fi-

brosis, Normal, Tuberculosis, and Viral Pneumonia) for Dataset 9. 

4.10. Classification of Dataset 10 

The proposed MS-CNN model training and validation accuracy curves, ROC curves, 

and confusion matrix are shown in Figure 22. The outputs of dataset 10 are presented in 

Table 13 and Figure 23. This testing accuracy and loss of the proposed model were 96.05% 

and 0.1386, respectively. The CM indicated that the proposed model misclassified three 

Bacterial Pneumonia image as Viral Pneumonia, two COVID-19 as Tuberculosis, one Fi-

brosis as Normal, one Fibrosis as Tuberculosis, one Lung Opacity as Bacterial Pneumonia, 

three Lung Opacity as COVID-19, one Lung Opacity as Tuberculosis, one Tuberculosis as 

Viral Pneumonia, one Viral Pneumonia as Bacterial Pneumonia, and one Viral Pneumonia 

as COVID-19. The AUC values for Bacterial Pneumonia, COVID-19, Fibrosis, Lung Opac-

ity, Normal, Tuberculosis, and Viral Pneumonia were 0.99, 0.94, 0.83, 0.81,0.99, 0.97, and 

0.95, respectively. The obtained area values of the PR curve for Bacterial Pneumonia, 

COVID-19, Fibrosis, Lung Opacity, Normal, Tuberculosis, and Viral Pneumonia were 

0.915, 0.987, 0.989, 0.980, 0.996, 0.997, and 0.915, respectively. 
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Figure 22. (a) Accuracy curves, (b) Loss curves, (c) Confusion Matrix, (d) ROC curves, and (e) Pre-

cision Recall curves of the proposed Multi-Scale CNN model with seven individual classes (Bacterial 

Pneumonia, COVID, Fibrosis, Lung Opacity, Normal, Tuberculosis, and Viral Pneumonia). 

Table 13. Classification performance results for Dataset 10. 

Classification 

Models 
Classes Precision Recall 

F1-

Score 
AUC 

Accuracy 

(%) 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

Average 

AUC 

Multi-Scale 

CNN 

Bacterial 

Pneumo-

nia 

0.96 0.94 0.95 0.99 

96.05 0.97 0.95 0.95 0.94 

COVID 0.92 0.96 0.94 0.94 

Fibrosis 1.00 0.92 0.96 0.83 
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Lung 

Opacity 
1.00 0.85 0.92 0.81 

Normal 0.99 1.00 0.99 0.99 

Tubercu-

losis 
0.94 0.98 0.96 0.97 

Viral 

Pneumo-

nia 

0.95 0.97 0.96 0.95 

VGG16 

Bacterial 

Pneumo-

nia 

0.92 0.68 0.78 0.93 

95.19 0.84 0.78 0.78 0.93 

COVID 0.92 0.43 0.59 0.81 

Fibrosis 0.74 0.94 0.82 0.96 

Lung 

Opacity 
0.97 0.59 0.74 0.93 

Normal 0.91 0.99 0.95 0.99 

Tubercu-

losis 
0.63 1.00 0.78 0.95 

Viral 

Pneumo-

nia 

0.76 0.84 0.80 0.95 

VGG19 

Bacterial 

Pneumo-

nia 

0.83 0.48 0.60 0.93 

94.29 0.83 0.80 0.80 0.96 

COVID 0.96 0.60 0.74 0.96 

Fibrosis 0.91 0.91 0.91 0.99 

Lung 

Opacity 
0.82 0.95 0.88 0.96 

Normal 0.89 0.85 0.87 0.98 

Tubercu-

losis 
0.77 0.99 0.86 0.97 

Viral 

Pneumo-

nia 

0.61 0.80 0.69 0.93 
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Figure 23. Average Precision (%), Average Recall (%), Average F1-Score (%), Average AUC (%), and 

Accuracy of the different models with seven individual classes (Bacterial Pneumonia, COVID, Fi-

brosis, Lung Opacity, Normal, Tuberculosis, and Viral Pneumonia) for Dataset 10. 

4.11. Explainable AI on MS-CNN Interpretability 

For the model interpretability through different explainable AI techniques, image 

plots were created to visualize SHAP values generated by the explainer object [36], and 

Grad-CAM was used to generate a heatmap of CXR images.  

The weight of the final convolution layer is typically used to create a heatmap from 

the original image [37]. The heatmap was then applied to the original input image to create 

the output image. The damaged area on the CXR is depicted in the overlay image to iden-

tify the disease category. By enabling quick viewing of the damaged region on the image, 

it will help medical professionals to identify problems. 

To begin with, a SHAP explainer was established for the model to calculate SHAP 

values for a given set of instances. SHAP—partition explainer function was employed to 

create a specialized SHAP partition explainer explicitly designed for deep learning mod-

els. The SHAP values represent how much each pixel contributes to the model’s output 

for every instance in the dataset. In binary classification, two sets of SHAP values corre-

spond to the two classes. These SHAP values are organized in matrices where rows rep-

resent instances, and columns represent features. Positive values indicate features that 

push the prediction toward the positive class, while the negative values indicate features 

that push toward the negative class. Figure 24 shows an initial image plot generated using 

the SHAP values. The plot displays the actual image, with certain parts highlighted in 

shades of red and blue. Red areas signify positive contributions to the prediction of that 

class, while blue areas indicate negative contributions. Red regions enhance the probabil-

ity of predicting a class, while blue regions diminish it. 

 

Figure 24. SHAP Partition Explainer with image plot on a lung opacity sample; top two categories 

that the model thinks the sample belongs to are (a) Lung opacity and (b) COVID. 

Figure 24 shows a lung opacity sample prediction extracted through the MS-CNN 

classifier using SHAP Partition Explainer with an image plot on a lung opacity sample. 

The model thinks the sample belongs to the top two categories: Lung Opacity and COVID. 

On the x-axis of Figure 24a, the higher SHAP value to the right corresponds to a higher 

prediction value (“Lung Opacity” class), and the lower SHAP value to the left corresponds 

to a lower prediction value (not the “Lung Opacity” class). The larger the pixel value in 

the lung region (the redder color), the higher the SHAP value. This means that when the 

pixel value of the lung outermost top, left, and suitable regions in Figure 24a are more 

extensive, the SHAP value corresponds to a higher prediction value. Hence, the model is 

more likely to consider the data as a “Lung Opacity” class. On the other hand, the smaller 

the pixel value in lung center regions (the bluer color), the smaller the SHAP value. Hence, 

when the pixel value of Figure 24a is smaller inside the lung cavities, the model is less 

likely to consider the data as a “Lung Opacity” class. Looking at Figure 24b, the “COVID” 
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class is the second-highest probability, where the whole left-half region of the sample cor-

responds to the higher prediction value of the “COVID” class, and the right-half region 

corresponds to the lower prediction value of the “COVID” class. 

Figures 25 and 26 also show the first seven categories the model thinks the image 

belongs to. Figure 25 explains the same lung opacity sample for the seven class predictions 

used in Figure 24. The model confuses the image with not only “COVID”, as explained 

above, with the second-highest probability, but also with the “Fibrosis” and “Tuberculo-

sis” classes. It can be seen in Figure 25d that the prominence of red areas (positive SHAP 

values) in the plot signifies a tendency toward the prediction “Lung Opacity” class, indi-

cating the correct prediction. 

 

Figure 25. SHAP partition Explainer with Image Plot on a Lung Opacity sample; Predictions on all 

seven categories where the model thinks the sample is (a) Bacterial Pneumonia, (b) COVID, (c) Fi-

brosis, (d) Lung Opacity, (e) Normal, (f) Tuberculosis, and (g) Viral Pneumonia. 

 

Figure 26. SHAP Partition Explainer with Image Plot on a Fibrosis sample; Predictions on all seven 

categories where the model thinks the sample is (a) Bacterial Pneumonia, (b) COVID, (c) Fibrosis, 

(d) Lung Opacity, (e) Normal, (f) Tuberculosis, and (g) Viral Pneumonia. 

The sample in Figure 26 shows an essential concept about explanations for black-box 

models; they explain what the model is predicting but do not attempt to explain if the 

predictions are correct. The similarity in magnitude of red areas (positive SHAP values) 

in Figure 26d with the presence of blue areas (negative SHAP values) in Figure 26f creates 

confusion in predicting either the “Fibrosis” class or the “Tuberculosis” class. The ex-

plainer generates positive SHAP values for “Fibrosis” and negative SHAP values for the 

“Tuberculosis” class, where the magnitudes are similar for both SHAP values, indicating 

a higher probability of misclassification in model prediction for the sample. 

Figure 27 shows Grad-CAM representation on example images of lung disorders 

where the MS-CNN model primarily detects the afflicted area as (a) Fibrosis and (b) Tu-

berculosis. Grad-CAM shows that a region’s more significant importance to the model is 

shown by its red hue, while its lesser priority is indicated by its blue color. However, cau-

tion should be taken while interpreting the heat maps. The same sample used for the 

SHAP explanation in Figure 26, when used in Grad-CAM, shows heatmap regions ex-

tracted from the deeper layer of the model generating heatmap for the “Fibrosis” class 

and “Tuberculosis” class. This indicates a higher probability of misclassification by the 

model. 
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Figure 27. Original CXR, Heatmap, and Super-imposed Grad-CAM image of Multi-scale CNN 

Model with two individual classes for one sample: (a) Fibrosis (on top) and (b) Tuberculosis (on 

bottom). 

5. Discussion 

5.1. Comparative Analysis of Multi-Scale CNN with Different Datasets 

Figure 28 compares the performance of the MS-CNN model in correctly identifying 

lung-related disorders for various datasets. The illustration clearly shows that the testing 

accuracy was lowest (96.05%) in the case of dataset 10 (seven classes), but when the num-

ber of classes was reduced, the testing accuracy improved. For example, the dataset 1 (Bi-

nary class) has an accuracy of 100.00%. However, a little discrepancy is discovered be-

tween dataset 3 (three classes), dataset 4 (three classes), and dataset 5 (four classes). 

 

Figure 28. Comparison of performance metrics for all the ten datasets from Class-2 to Class-7 ob-

tained by Multi-Scale CNN for identifying lung-affected diseases. 

Increasing class means including additional images of the same type of lung disease 

in the training and testing datasets, which reduces accuracy. Higher AUC values prove 
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the model’s capacity to correctly classify lung-related disorders even from a more signifi-

cant number of lung disorders. 

5.2. Comparative Analysis of Multi-Scale CNN with other Research in the Literature 

A comparison between the proposed MS-CNN classification technique and other re-

search performed by deep learning algorithms based on the CXR images with two-class, 

three-class, four-class, five-class, six-class, and seven-class is presented in Table 14. 

The COVID–CheXNet system proposed by Al-Waisy et al. [11] and the Al-Srivastava 

et al. [12]-proposed CoviXNet successfully diagnosed COVID-19 patients for binary clas-

sifications with an accuracy rate of 99.99% and 99.47%, respectively. In those cases, the 

MS-CNN model performed with 100% accuracy. 

Nahiduzzaman et al. [13] employed a lightweight CNN-ELM method with only three 

layers in which they applied a three-class classification approach that achieved 97.42% 

accuracy. Yaman et al. [14] introduced the ACL model, combining attention, LSTM, and 

CNN for classifying healthy, COVID-19, and pneumonia cases in chest X-ray (CXR) im-

ages. The model achieved 96% accuracy on an 80:20 train/test ratio. Changing the ratio 

creates an impact on the accuracy. However, in this model, every layer’s outputs were 

merged to extract additional features to predict the exact output with a higher accuracy 

of 98.60%. 

Abida et al. [15] designed a 2D-CNN model to classify Bacterial Pneumonia, COVID-

19, Fibrosis, Lung Opacity, Normal, Tuberculosis, and Viral Pneumonia. For two-, three-, 

four-, five-, six-, and seven-class schemes, this model achieved 98.00%, 97.49%, 97.81%, 

96.96%, 96.75%, and 93.15%, respectively. In their research, they utilized a lightweight 2D-

CNN model with three Conv2D layers, which extracts features for classification, but more 

is needed to obtain higher accuracy in multi-class classifications. In two-, three-, and four-

class schemes, they acquired good results compared to other related works, but at higher-

class numbers, the accuracy is reduced. For example, in the seven-class scheme, the clas-

sification accuracy is 93.15%. However, the proposed model achieved an accuracy of 

96.05%, which is nearly 3% greater than Abida et al. The proposed model used all the 

layer’s output predictions to merge from the multiple feature maps at different resolution 

scales to improve class predictions. 

Elakkiya et al. [16] presented a novel approach SCS-Net for categorizing COVID-19, 

pneumonia, tuberculosis, and normal with an accuracy of 94.05%. Hussain et al. [17] in-

troduced CoroDet employing a four-class classification, achieving an accuracy of 91.20%. 

Al-Timemy et al. [18] presented a classification of five classes using a combination of Res-

Net-50 for DF (Deep Features) computation and an ensemble of subspace discriminant 

classifiers with an accuracy of 91.6%. In these cases, the proposed model achieved better 

scores of 98.95%, 98.33%, and 97.00%. 

Table 14. Comparative analysis with different diagnostic approaches of previous works. 

Research 
Number of 

Classes 
Dataset Classes Applied Architecture 

Accu-

racy% 

Al-Waisy et al. 

[11] 
2 COVID, Normal 

COVID–CheXNet 99.99 

Proposed MS-CNN 100.00 

Srivastava et al. 

[12] 
2 COVID, Normal 

CoviXNet 99.47 

Proposed MS-CNN 100.00 

Abida et al. 

[15] 
2 COVID, Normal 

2D-CNN 98.00 

Proposed MS-CNN 100.00 

Nahiduzzaman 

et al. [13] 
3 COVID, Normal, Pneumonia 

CNN-ELM 97.42 

Proposed MS-CNN 98.60 

Yaman et al. 

[14] 
3 COVID, Normal, Pneumonia 

CNN (ACL Model) 96.00 

Proposed MS-CNN 98.60 
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Abida et al. 

[15] 
3 Bacterial Pneumonia, COVID, Normal 

2D-CNN 97.49 

Proposed MS-CNN 98.60 

Elakkiya et al. 

[16] 
4 COVID, Normal, Pneumonia, Tuberculosis 

SCS-Net 94.05 

Proposed MS-CNN 98.95 

Abida et al. 

[15] 
4 

Bacterial Pneumonia, COVID, Normal, 

Tuberculosis 

2D-CNN 97.81 

Proposed MS-CNN 98.95 

Hussain et al. 

[17] 
4 

Bacterial Pneumonia, COVID, Normal, Viral 

Pneumonia 

CoroDet 91.20 

Proposed MS-CNN 98.33 

Abida et al. 

[15] 
5 

Bacterial Pneumonia, COVID, Fibrosis, Nor-

mal, Tuberculosis 

2D-CNN 96.96 

Proposed MS-CNN 98.67 

Al-Timemy et 

al. [18] 
5 

Bacterial Pneumonia, COVID, Normal, Tu-

berculosis, Viral Pneumonia 

ResNet-50 with ensemble of 

subspace discriminant classifier 
91.60 

Proposed MS-CNN 97.00 

Abida et al. 

[15] 
6 

Bacterial Pneumonia, COVID, Fibrosis, Nor-

mal, Tuberculosis, Viral Pneumonia 

2D-CNN 96.75 

Proposed MS-CNN 97.47 

Abida et al. 

[15] 
7 

Bacterial Pneumonia, COVID, Fibrosis, Lung 

Opacity, Normal, Tuberculosis, Viral Pneu-

monia 

2D-CNN 93.15 

Proposed MS-CNN 96.05 

Note: Bold text indicates the best values. 

5.3. Comparison with Datasets of Other Literature 

The MS-CNN model was further validated by training and testing the model on other 

datasets (balanced and imbalanced both). Model comparison is shown in Table 15. Al-

Waisey et. al. [11] proposed a COVID–CheXNet framework with two deep learning meth-

ods (e.g., ResNet34 and HRNet). The authors created their own COVID-19-vs-normal da-

taset. The dataset contains 400 images of confirmed COVID-19 cases gathered from 4 dif-

ferent sources and 400 chest X-ray images of normal condition. The whole dataset is split 

into training, validation, and test sets with 70% for training and validation and 30% for 

test set evaluation. The proposed MS-CNN model was evaluated for binary-class perfor-

mance on the dataset. In the literature, ResNet34 and HRNet diagnosed the COVID-19 

patients with a DAR (detection accuracy rate) of 89.98% and 90%, respectively. The pro-

posed model outperformed both ResNet34 and HRNet models with a testing accuracy of 

99.38%. MS-CNN obtained an average testing accuracy, precision, recall, and f1-score of 

99.38%, 99.38%, 99.38%, and 99.98%, respectively. 

A class-wise comparison has been shown against 2D-CNN architecture with transfer 

learning on the dataset developed by Abida et. al. [15]. The dataset contains 18,564 CXR 

images. The MS-CNN was tested for 5–7 class performances on the dataset of [15]. On 5, 

6, and 7 classes, the proposed model outperformed 2D-CNN with an average testing ac-

curacy of 98.80%, 98.10%, and 95.18%, respectively. Model training times were also com-

parably lower than the 2D-CNN with the highest seven-class training time being 50 min 

(almost 12 min faster than 2D-CNN). 

Table 15. Comparison with Datasets of Other Literature. 

Literature 

No. 
Model Classes 

Training 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC 

(%) 

Training 

Time (min) 

Test Set 

Evaluation 

Time (s) 

[11] 

ResNet34 2 98.9 89.88 90.83 89.14 89.98 0.154 0.216 81.00 

HRNet 2 98.9 90.00 91.31 88.98 90.13 0.121 0.136 88.00 

MS-CNN 2 100.0 99.38 99.38 99.38 99.98 0.0061 0.0779 100.00 

[15] 2D-CNN 5 98.90 96.96 96.8 97.2 97.0 99.77 42.62 16.39 
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6 99.04 96.75 93.43 94.43 93.86 99.39 62.74 15.20 

7 98.44 93.15 93.43 94.43 93.86 99.39 62.74  22.37 

MS-CNN 

5 98.80 98.80 97.99 97.99 97.99 99.92 38.16 5.1 

6 98.75 98.10 96.55 98.75 96.49 99.91 39.81 5.3 

7 98.63 95.18 96.23 96.23 96.23 99.83 50.58 7.5 

Note: Bold text indicates the best values. 

5.4. Comparison with State-of-the-Art Models on Dataset 10 

The efficiency of the proposed MS-CNN was compared with the current state-of-the-

art classification architectures on dataset 10. The training dataset contains 5320 CXR im-

ages (80%), whereas the validation (10%) and testing (10%) datasets contain the rest of the 

1330 images, 665 each. The proposed MS-CNN was tested for seven class performances 

against SOTA architectures like DenseNet, InceptionResNetV2, NasNet, ResNet, etc., us-

ing transfer learning with the top layer removed. Models such as NASNet Mobile, Res-

Net101V2, and ResNet152 performed best with fine-tuned weights trained with dataset 

10 on the bottom layers and pre-trained ImageNet weights on the top layers. On the other 

hand, ResNet50 and ResNet101 performed best with fully-trained top and bottom layer 

weights. The rest of the pre-trained models did not need any further modifications with 

weight training to generate low-bias and low-variance predictions. The models were 

trained on Adam Optimizer for 25 epochs or less with early stop callback for patience 10. 

The proposed model outperformed most models with an average testing accuracy, preci-

sion, and recall of 96.05%, 97.00%, and 95.00%, respectively. The comparison of perfor-

mance metrics is shown in Table 16 and computational time is presented in Figure 29. The 

MS-CNN model only took only 3.12 s for evaluating the whole test dataset. 

Table 16. Comparison with SOTA Pretrained Models on Dataset 10 (7 classes). 

Models 
Training Ac-

curacy (%) 

Testing Ac-

curacy (%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC 

(%) 

Model Train-

ing Time 

(min) 

Test Set Eval-

uation Time 

(s) 

VGG16 98.50 95.19 84.00 78.00 78.00 93.00 19.74 9.72 

VGG19 97.65 94.29 83.00 80.00 80.00 96.00 22.41 10.87 

DenseNet121 98.38 94.81 95.29 94.36 94.82 99.64 18.45 8.94 

DenseNet201 97.82 95.86 96.06 95.41 95.73 99.79 20.17 10.86 

InceptionV3 93.46 83.46 85.79 81.73 83.71 98.12 15.41 6.06 

Inception 

ResNetV2 
95.81 85.34 86.94 84.06 85.47 98.53 18.01 8.64 

Xception 96.56 86.99 89.14 85.79 87.43 98.80 19.88 9.25 

NASNet ** 96.71 84.14 84.89 82.78 83.82 97.77 14.99 7.53 

ResNet50 * 77.84 75.86 78.38 73.61 75.92 97.75 15.03 6.17 

ResNet50V2 86.99 73.68 82.07 69.17 75.07 95.79 14.92 5.87 

ResNet101 * 83.50 82.48 84.34 80.98 82.62 98.38 26.69 6.65 

ResNet101V2 ** 79.62 65.79 72.12 63.01 67.26 95.80 9.61 6.18 

ResNet152 ** 73.87 75.94 78.03 74.51 76.22 96.43 50.07 11.44 

ResNet152V2 91.24 79.55 84.24 73.53 78.52 97.42 17.46 7.88 

MS-CNN 98.70 96.05 97.00 95.00 95.00 94.00 12.11 3.12 

* All weights trained on Dataset 10. ** Bottom layer weights fine-tuned on Dataset 10. Bold text 

indicates the best values. 
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Figure 29. Comparison of computational time for all state-of-the-art (SOTA) models of Dataset 10. 

5.5. Strength and Limitations 

Motivated by the limitations of higher-class classification problems, the authors of 

this study integrated multiple databases to build a dataset of 6650 CXR images classified 

into a maximum of seven class classifications. In this investigation, the MS-CNN model, 

a pioneering deep learning framework tailored to excel in multi-class classification sce-

narios, was applied. Building on the strengths of existing models, this framework was 

designed to overcome this challenge by employing advanced architectural and optimiza-

tion techniques. In the proposed model, multiple Conv2D blocks were applied and con-

catenated to use all the layer’s output predictions to merge from the multiple feature maps 

at different resolution scales to improve class predictions. The resulting model achieved 

high accuracy across diverse lung conditions, even as the class count expanded, making 

it a robust tool for accurate disease classification. 

The term “Multi-Scale CNN” denotes the model’s ability to integrate information 

from different resolution scales using multiple feature maps. This allows it to capture fine 

and coarse-level features within images, enhancing its effectiveness in identifying lung-

related diseases with varied manifestations. 

In all the formed datasets from dataset 1 to dataset 10, the model was run and it was 

observed that in every case the scores are superior. All the details regarding this are pre-

sented in Section 5.1. In comparison with other recent research, it was observed that the 

proposed model performed better than others in terms of testing accuracy shown in Sec-

tion 5.2. Compared with others in their respective datasets either balanced or imbalanced, 

the current model performed better as presented in Section 5.3. In the case of the maxi-

mum number of classes (seven classes) in dataset 10, the proposed model outperformed 

various pre-trained models in discriminating lung disorders as well as healthy individuals 
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in terms of the performance matrixes used along with the computational times shown in 

Section 5.4. 

The lack of data on other types of lung disorders limits this study. Significant im-

provements can be made with greater data availability and algorithm training using radi-

ological data from patients and nonpatients throughout the world. It should be noted that 

this MS-CNN model was not constructed based on a lightweight structure, but VGG-16 

was employed as the backbone of the model, and some Conv2D layers were additionally 

used to concatenate the output, which employs more parameters than some pre-trained 

models. Therefore, running the model might require more hardware resources. However, 

this minor issue did not limit its superiority in terms of higher accuracy and shorter testing 

time. 

6. Conclusions 

In this study, a highly accurate Multi-Scale CNN architecture was designed to predict 

724 distinct classes of images, encompassing COVID-19 and five other lung-affected dis-

orders. Notably, the MS-CNN model exhibits remarkable efficiency in COVID-19 detec-

tion, resulting in significantly higher testing accuracy compared to the previous method-

ologies. Even as the number of classes increases, the MS-CNN consistently outperformed 

all previously reported models in the literature, showcasing a novel approach that ad-

dresses a persistent limitation in the existing research. Additionally, the current approach 

substantially shortens the testing duration in comparison with the state-of-the-art models, 

offering the potential for expedited medical interventions for patients with lung-related 

diseases. In the case of dataset 10, which comprises seven classes, the MS-CNN model 

achieves an impressive accuracy rate of 96.05%, complemented by precision, recall, F1-

score, and AUC values averaging at 97%, 95%, 95%, and 94%, respectively. Likewise, in 

dataset 9, encompassing six classes, the MS-CNN demonstrates an accuracy rate of 

97.47%, coupled with precision, recall, F1-score, and AUC values averaging at 96%, 95%, 

95%, and 99%, respectively. Better classification scores are achieved by merging predic-

tions from several feature maps at various resolution scales using the additional Conv2D 

layers with the backbone VGG16. SHAP and Grad-CAM as XAI techniques were inte-

grated into the model, enhancing its interpretability, which ultimately brings further con-

fidence for practical applications. As part of future development, a comprehensive plan 

has been devised to expand the number of disease classes in future studies. 
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