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Abstract—This paper investigates the error performance of
visible Light Positioning (VLP) systems for 3D indoor drone
localization using machine learning algorithms. Received Signal
Strength is used to track the position of the drone and different
smoky channel conditions to emulate an industrial environment.
VLP systems utilize visible light communication (VLC) and
indoor positioning, providing a low-cost and interference-free
solution for precise drone localization. Machine learning (ML)
based artificial neural network (ANN) is used to trained on
diverse datasets and correlations between received signal strength
(RSS) measurements and position errors. The results demonstrate
that ML enables accurate real-time drone position estimation,
compensating for atmospheric attenuation. The trained models
achieve significantly improved localization accuracy and captur-
ing non-linear relationships between input features and drone
location. Furthermore, machine learning algorithms extract rel-
evant features, reducing the impact of noise and atmospheric
attenuations. ML process enhances the VLP system’s robustness,
resulting in remarkable localization accuracy improvements com-
pared to the attenuated path with average error values from 21.9
cm to 5.9 cm. The trained ML models achieve RMSE values of
0.044772 and 0.067523, respectively, with high R-squared values
of 0.999. Furthermore the error histogram analysis confirms
accurate drone location estimation, even in the presence of
atmospheric attenuations.

Index Terms—Indoor Localization, Industrial Environment,
Visible Light Positioning, Atmospheric Attenuation, Machine
Learning.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones,
have emerged as versatile devices for use in indoor industrial
applications, providing automated autonomous operations in
industrial applications and cost-effective solutions for man-
aging supplies [1]. Their potential applications include au-
tomobile industry, food industry, power plants, warehouses,
and smart farming, where they perform duties such as facade
inspections and animal feed distribution. Additionally, drones
are used to investigate nuclear sites and detect damages or
leaks within structures [2].

VLP systems are utilized in conjunction with machine
learning techniques to facilitate accurate localization of drones
in indoor environments. VLP makes use of VLC and in-
door positioning systems, employing LED-based infrastructure
typically found in buildings and industrial sites [3], [4],

allowing 3D positioning in difficult environments, such as
underground mining, within a large number of particles and
complex channel effects [5]. This method provides a low-cost
and interference-free solution for the precise localization and
tracking of drones using a LED arrangement on a Lattice
architecture [6]. VLP provides superior accuracy and operates
without electromagnetic interference, making it an optimal
choice for indoor drone positioning, according to research [7].

However, due to atmospheric conditions, reliable and pre-
cise drone localization in indoor environments is difficult
to achieve. Traditional VLP systems presume clear air as
the gearbox medium, but in industrial settings, smoke, fog,
and other particles may be present in varying concentrations.
These atmospheric conditions such as dust, smog, smoke and
water particles such as fog could attenuate the received signal
strength (RSS) at the drone’s receivers [7], [8]. Significant
progress has been made over the past decade in the develop-
ment and performance enhancement of VLP systems [9]. Ex-
isting systems concentrate primarily on two-dimensional (2D)
positioning in clear air, leaving a critical gap in addressing the
influence of atmospheric attenuations on received power and
VLP accuracy for UAV flight paths [7].

In bridging this disparity, machine learning plays a crucial
role in improving VLP systems. These systems can overcome
the challenges posed by atmospheric conditions and enhance
their performance by utilizing machine learning techniques.
The training of machine learning algorithms on large datasets
that include various atmospheric conditions enables the models
to discover patterns and correlations between RSS measure-
ments and drone coordinates in specific environments [10],
[11].

These trained machine learning models enable estimation
of the drone’s position in real time, compensating for signal
degradation due to smoke, smog, or other atmospheric atten-
uation. By analyzing the received power and pertinent sensor
data, the models accurately predict the location of the drone,
allowing for reliable indoor positioning even in challenging
atmospheric conditions. Moreover, ML techniques allow for
the continuous optimization’s of VLP systems by refining
algorithms through iterative learning and adaptation, thereby
enhancing accuracy and robustness in dynamic environments



Fig. 1. The overview of the room’s cross-section and the schematic diagram
for the trilateration problem and its parameters.

[12].
This paper investigate the role of machine learning in

improving VLP for indoor drone localization in light of
these advancements. Specifically, it addresses the impact of
atmospheric attenuations on received power and VLP accuracy
for UAV flight paths, thereby filling a critical void in the
existing research. This research seeks to develop a more
dependable and accurate VLP system capable of overcoming
the obstacles posed by industrial atmospheric conditions by
leveraging machine learning algorithms and large datasets.

II. SYSTEM MODEL

Figure 1 shows the schematic of the considered system. It
consists of a typical industrial environment (25m × 15m ×
5m) with 15 uniformly distributed light fixtures on the ceiling
with 1 LED per light fixture with 5m spacing per transmitter.
Each light fixture has a half semi-angle of 60° and a power of
80 Watts, strong output luminaires being typical in industrial
environments [13]. The main simulation parameters are shown
in Table 1.

The N light fixtures are placed at a fixed height hLED
with coordinates (xi, yi, hLED)i = 1 · · ·N . The receiver, with
a photodetector (PD) area Apd is located at the unknown
location (x, y, z). For typical LEDs with Lambertian radiation
pattern m, the received power Pri from ith transmitter is given
by [14].

Pri =

{
Pti

(m+1)Apd

2πd2
i

cosm(ϕ)cos(φ)HAtt , φ ≤ θpd

0 , φ > θpd
(1)

where Pti is the transmitter power, di is the distance
between the transmitter and the receiver, ϕ is the angle of
irradiance, φ is the angle of incidence, and θpd is the field

of view of the receiver, as shown in Figure 1. The effect of
indoor attenuation is described with the help of the attenuation
coefficient HAtt in respect to the propagation length L and is
described as the following:

HAtt = e−βλL (2)

The effect of smoke and fog attenuation has been considered
in (1) and (2) using the laboratory-based smoke and fog
model and the proposed q values, which are the particle size
distribution coefficient for both models are shown in [15] and
is given by:

β(dB/km) =
17

V (km)

(
λ

λ0

)−q(λ)

(3)

q(λ) =

{
0.1428λ− 0.0947 Fog
0.8467λ− 0.5212 Smoke

(4)

The distance between the transmitter and the receiver di can
be calculated from the received signal power, Pri. Moreover,
given cos(ϕ) = cos(φ) = hLED−z

di
= ∆h

di
for horizontally

oriented transmitters and receiver, the estimated distance d̂i
can be calculated as [15]:

d̂i =
m+3

√
(m+ 1)ApdPt∆hm+1

2πPri
(5)

where ∆h = hLED − z is the vertical height difference
between the transmitter and the receiver, therefore, h is var-
ied. Note that, the estimated distance di cannot be directly
calculated from without knowing the accurate ∆h. Due to
this, we generate a set of estimated distances d̂i for different
possible heights h should be z ranging from 0m (hmin) to
hLED with height resolution Rh of 1mm. This leads to the
accurate estimation of d̂i. The received signal is affected by
shot and thermal noises with the total variance σ2

shot+σ2
therma.

The signal-to-noise (SNR) ratio can be calculated using:

SNRi(dB) = 10log
(RrPri)

2

σ2
noise

(6)

where, Rr is the receiver’s PD responsivity.

A. Positioning Algorithm
Then, the positioning algorithm is performed for each of the

sets of generated distances d̂i(i = 1 · · ·N) at different heights
using (5). Figure 1 shows the three transmitters p1, p2, and p3
positions and with p4 being the unknown drone location. The
algorithm only requires three transmitter positions, meaning
that the corresponding signals from the three nearest (i.e.
strongest) LEDs are taken into account, as they offer the
highest SNR.

The Cayley-Menger bideterminant of two sequences of n
points [p1, p2, · · · , pn] and [q1, q2, ·, qn] is defined as [16]:

D(p1, · · · , pn; q1, · · · , qn) = 2
(−1

2

)n
∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 D(p1, q1) D(p1, q2) · · · D(p1, qn)
1 D(p2, q1) D(p2, q2) · · · D(p1, qn)

1
...

...
. . .

...
1 D(pn, q1) D(pn, q2) · · · D(pn, qn)

∣∣∣∣∣∣∣∣∣∣∣
(7)



TABLE I
SIMULATION PARAMETERS

Parameter Value
Width × Length × Height 25 m × 15 m × 5 m
Transmitter’s Electrical Power - Ptt 80 W
Transmitter’s semi-angle ϕ 60°
Receiver’s Height 0.1 – 3.6 m
Photodetector Area - Apd 1 cmˆ2
Receiver’s FOV (half-angle) - θpd(1/2) 80°
Receiver’s Responsivity - Rr 0.54 A/W
Bandwidth 10 MHz
Visibility for fog and smoke 0.3 km - 1 km
Optical Filter 450 nm
Trained data size 478 MB
Number of hidden layers 100 layers
Number of epochs 1000

where D(pi; qj) is the squared distance between points pi
and pj . When two sequences of points are the same, then
D(p1, · · · , pn; q1, · · · , qn) is denoted by D(p1, · · · , pn) and
CMD is given by:

D(p1, p2, p3, p4) =
1
8

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 D(p1, p2) D(p1, p3) D(p1, p4)
1 D(p2, p1) 0 D(p2, p3) D(p2, p4)
1 D(p3, p1) D(p3, p2) 0 D(p3, p4)
1 D(p4, p1) D(p4, p2) D(p4, p3) 0

∣∣∣∣∣∣∣∣∣∣
, (8)

where p4 is the location of the drone, meaning that
D(p4, p1), D(p4, p2), D(p4, p3) are distances d̂1, d̂2, d̂3 that
are computed from the received power measurements. It is
possible to calculate the position of the receiver p4 with respect
to three known transmitter coordinates (p1, p2, p3) using:

p4 = p1 + k1v1 + k2v2 ± k3(v1v2) (9)

where v1 = p2 + p1, v2 = p3 − p1,

k1 = −D(p1, p2, p3; p1, p3, p4)

D(p1, p2, p3)
,

k2 =
D(p1, p2, p3; p1, p3, p4)

D(p1, p2, p3)
,

k3 =
sqrt(D(p1, p2, p3, p4))

D(p1, p2, p3)

This results in a single estimate p4 = (x̂, ŷ, ẑ) for each of
the heights.

Once all possible locations have been generated, the es-
timated location is found at the minimum of C(h), with
C(h) being the average squared error between the estimated
distances d̂1 calculated using (5), and the distances of the
estimated location (x̂, ŷ, ẑ) from (9). The cost function finds
the minima at the receiver’s actual height, given by [17]

C(h) =
1

N

N∑
i=1

[
d̂i −

√
(x̂− xi)2 + (ŷ − yi)2 + (ẑ − zi)2

]2
(10)

where zi = hLED.
Using the presented algorithm, the (x, y, z) coordinates of

the receiver can be estimated. After calculating the position,

the estimated position is compared with the actual position to
find the positioning error, given by:

Derror =
√

(x̂− x)2 + (ŷ − y)2 + (ẑ − z)2 (11)

B. Machine Learning Model

To enhance the localization accuracy on the 3D position
estimation of the drone, ML algorithms, specifically neural
networks (ANN) are employed. These models capture complex
relationships between the input features obtained from the po-
sitioning algorithm, taking as reference the desired trajectory
point of the drone, one axis at a time, allowing for improved
the positioning applying three different models [18].

ANN is chosen as the ML algorithm for visible light
positioning in the industrial environment because of its ability
to handle complex and non-linear relationships between in-
put features and the desired output. Compared to other ML
techniques, ANN excel in capturing intricate patterns and
representations from the dataset. To improve the accuracy of
the training, a dataset of trajectories of drone is generated by
applying the positioning algorithm as shown in Fig.2. This
allows to train the ML model within enough information. The
simulation environment incorporates smoke and fog attenu-
ations to replicate real-world conditions where visibility is
impaired.

Fig. 2. Simulated drone trajectory on a 7x7 meters sized room with a 15
visible light emitters arrangement measuring the positioning error of original
the algorithm.

By subjecting the drone to these simulated environmental
factors, the model can learn to predict the drone’s location
more accurately, even in challenging scenarios [18].

The training data includes several parameters, firstly the real
3D position in X , Y , and Z coordinates. The presence of
smoke and fog introduce error on the algorithm estimation,
which is measured on each point, resulting in attenuated or
distorted trajectories. The position values of X , Y and Z
axis derived from the simulated data represent these attenuated
locations.

Using this dataset, the ANN is trained to map the attenuated
locations to the true locations of the drone. The network learns
to identify patterns and features within the data that can help
it make accurate predictions. Through an iterative learning
process, the ANN adjusts its internal parameters to minimize



the error between the predicted and true locations, enhancing
the drone’s localization accuracy. In order to reduce the error,
the network architecture must be evaluated, specifying the
density of its layers and the depth of the model, to later in
the training carry out an analysis of the error in relation to the
epochs, finding the optimal point [19].

Overall, ANN provide a powerful framework for addressing
the challenges of drone localization in an industrial environ-
ment with smoke and fog attenuations. Their non-linear nature,
feature extraction capabilities, and adaptability contribute to
reducing the error percentage and improving the accuracy of
the drone’s location estimation.

III. RESULTS AND DISSCUSSION

In this section, simulation results are presented in terms of
trained model performance, trained model path compared with
the real path and the attenuated path.

Figure 3 shows the best validation performance of the
trained model when compared to the mean squared error
(MSE) and the number of epochs. Specifically, the model
achieves an impressively low MSE value of 0.0001825 at
the 1000 epoch, demonstrating its capability to effectively
minimize the difference between predicted and actual val-
ues. Furthermore, the root mean squared error (RMSE) of
the model is reported to be 0.0431, indicating the average
magnitude of the residuals.

Moreover, a notable aspect of the trained model is the con-
sistent and smooth decrease observed in the trained, validated,
and tested data. This behavior is indicative of the model’s
robustness and reliability, as it effectively handles the training,
validation, and testing datasets without exhibiting any signs
of instability or degradation. The coherence in the decreasing
trends across these datasets further emphasizes the model’s
ability to generalize well and accurately predict the drone’s
localization, ultimately enhancing its overall performance.

Figure 4 describe the error histogram on the same three
steps of the process, showing that the distribution follows the
same trend, finding most values close to mean value of zero.
The models trained to predict the values of the x and y axes
obtained similar error values. The prediction of the positioning
error along the x-axis ”R x total” presented an RMSE of
0.044772, an R2 of 0.99999, a MSE of 0.0020045, and a
MAE of 0.030362 were obtained. In the case of position error
estimation using ML along y-axis “R y total” an RMSE of
0.067523, an R2 of 0.99989, a MSE of 0.0045593, and a MAE
of 0.053228 are obtained. However, it is crucial to acknowl-
edge that under conditions of attenuation, the estimated path
of the drone does not precisely correspond with the real flight
path, as evidenced in the inset of Figure 4. This discrepancy
arises due to the reduction in RSS and SNR caused by the
presence of smoke and fog attenuation, spanning a range of 0.3
km to 1 km. These attenuating factors introduce distortions in
the received signals, impacting the model’s ability to precisely
estimate the drone’s path.

Figure 5 shows the real flight trajectory, derived from a
comprehensive dataset of 5 million positioning samples rang-

ing in height from 0.1 to 5 meters in the industrial warehouse,
see Table 1 for detailed parameters. The results shows that
the estimated flight path generated by the trained model using
ANN closely aligns with the actual flight trajectory, exhibiting
a high degree of accuracy.

Furthermore, Figure 5 inset presents the zoomed-in views
of the trained, real, and attenuated paths. Notably, the trained
path demonstrates a significantly closer alignment with the
real path, boasting an average error rate of 5.9183. In contrast,
the attenuated path appears considerably scattered away from
the real path, displaying a notably higher average error rate
of 21.9920. These observations underscore the remarkable
improvement in localization accuracy achieved by the trained
model while also highlighting the adverse impact of atten-
uation on localization accuracy in comparison. The results
reaffirm that the trained model significantly enhances the
drone’s localization accuracy, effectively navigating within
the industrial environment even amidst challenges posed by
attenuation.

Fig. 3. Best validation performance of the trained model.

Figure 6 shows the trained path and the actual path of the
drone. The difference between these two paths is an average of
0.1 cm upon closer inspection. This substantial reduction in the
positioning error, when compared to the results obtained from
the attenuated path, exemplifies the considerable improvement
attained via the trained model. The reduced difference between
the trained path and the actual path demonstrates the model’s
improved precision in estimating the drone’s location in an
industrial environment.

IV. CONCLUSION

This paper presents the implementation and investigation
of ANN based ML algorithm to estimate the accuracy of
3D VLP in an industrial environment in the presence of
harsh industry channel. The combination of VLP and machine
learning techniques enables accurate real-time estimation of
the drone’s position, compensating for signal degradation
caused by smoke, smog, or other atmospheric attenuation.



Fig. 4. Error Histogram over the training, validation and test stages.

Fig. 5. Selected real flight path and comparison with trained model and
attenuated path.

Fig. 6. Selected real flight path and comparison with trained model.

The trained machine learning models achieved remarkable
localization accuracy improvements, with an average error rate
of 5.9183 for the trained path compared to 21.9920 for the
attenuated path.

Moreover, the Error histogram analysis demonstrated that

the trained models consistently estimated the drone’s loca-
tion accurately, even in the presence of atmospheric atten-
uations. Additionally, the machine learning models trained
for ”R x total” and ”R y total” achieved high accuracy, with
RMSE values of 0.044772 and 0.067523, respectively, and R-
Squared values of 0.99999 and 0.99989, indicating the models’
ability to capture intricate relationships between input features
and the drone’s location.

The results demonstrates the effectiveness of ML algorithms
in automatically extracting relevant features from the data,
reducing the impact of noise and atmospheric attenuations.
The iterative learning process further enhanced the robustness
of the VLP system, ensuring reliable and precise drone local-
ization in dynamic industrial environments.
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