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Abstract 

It is well documented that there is a loss of muscle mass and muscle strength with 

ageing, often termed sarcopenia. There remains inconsistency in identifying a 

definition of sarcopenia that can 1) provide a meaningful discrimination between 

non-sarcopenic and sarcopenic groups for muscle phenotypes, and 2) identify a 

sarcopenic population of sufficient numbers for subsequent genetic analysis. Of the 

factors that determine the prevalence of sarcopenia and the severity of 

impairments in muscle phenotypes, genetics remains unreported other than for a 

few single nucleotide polymorphisms (SNPs, e.g. VDR, ACTN3 and IL-6). The aims of 

the present thesis were, in the first instance, to identify a meaningful definition of 

sarcopenia in a Caucasian elderly female population (n =307, 60-91 years), and 

thereafter to investigate the possible association of multiple SNPs (n=24) with 

sarcopenia and muscle phenotypes, and subsequently to assess the polygenic 

profile of muscle phenotypes in elderly women. A novel definition of sarcopenia was 

identified based on a Z-score approach using handgrip strength and skeletal muscle 

mass index. Thereafter, a novel association of HIF1A rs11549465 CC and ACE rs4341 

CC as risk genotypes for sarcopenia was identified. Subsequently, skeletal muscle 

phenotypes differentiated by sarcopenia were assessed for further association with 

SNPs. In doing so, 12 out of 24 polymorphisms were identified as having an 

association with one or more of the investigated skeletal muscle phenotypes (e.g 

PTK2, HIF1A & ACVR1B). Adopting the polygenic data driven approach (GPSdd), up 

to 8.2% and 5.0% of the variance of skeletal muscle size and strength were 

accounted for, this increased to 14.5% and 17.2% when age was included in the 

model. In conclusion, there appears to be a genetic influence on sarcopenia and 

skeletal muscle phenotypes; with novel skeletal muscle associations reported. The 

findings of this thesis have applications in a variety of areas, particularly within 

ageing populations, for whom completion of activities of daily living may be 

improved because of better understanding their individual-specific muscle 

mechanics, and genetic risk for physical impairment. 
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  Introduction 

1.1.1 Muscle Mass and strength performance over the adult life span 

 Physical independence of the elderly is determined by skeletal muscle phenotypes, 

specifically muscle mass and muscle strength (Hughes et al., 2001; Reid and Fielding, 

2012; dos Santos et al., 2017; Wang et al., 2017b). There are changes in muscle mass 

and muscle strength during the adult lifespan. Regardless of sex, the period of peak 

musculoskeletal function is observed between 20-30 years and some slowing of 

rates of contraction between 40-50 years but changes in absolute muscle strength 

are minor until about the sixth decade of life, and are primarily determined by the 

loss of muscle mass with ageing (Vandervoort and McComas, 1986; Doherty et al., 

1993; Porter et al., 1995). This loss of muscle mass becomes obvious and declines 

of around 40% in cross sectional area (CSA) of the vastus lateralis (VL) are reported 

from 20-80 years (Lexell et al., 1988). 

Lower extremity muscle size and muscle strength are particularly important for daily 

activities (Kojima et al., 2014; Martien et al., 2015), and a reduction in vastus 

lateralis muscle size, with ageing is attributed to a decrease in both muscle fibre 

numbers and muscle size (Lexell et al., 1983; Lexell et al., 1988; Piasecki et al., 2016). 

Similarly, the upper limb muscle mass and muscle strength, are also reported to 

decline with ageing (Kallman et al., 1990; Metter et al., 1997; Lynch et al., 1999; Abe 

et al., 2016). This decline in muscle mass and muscle strength with increased age 

has adverse effects on elderly daily activities; resulting in reduced mobility, fall 

related injuries and impaired quality of life (Campbell et al., 1989; Reid and Fielding, 

2012; Zengin et al., 2017; Yang et al., 2018). Since this reduction in quality of Life 

(QoL) and its management imposes a significant economic burden for healthcare, it 

is crucial to understand how ageing and its interaction with environmental and 

genetic factors affect skeletal muscle phenotypes and functional capacity in an 

elderly population. 

Inter-individual variability exists between muscle mass and muscle strength; for 

muscle size population variance of 9-18% is reported (Maughan et al., 1983b; 
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Stebbings et al., 2014) and approximately 17% for specific force (Stebbings et al., 

2014). The population variance of muscle phenotypes such as muscle mass and 

strength are due to the interaction of genetics, behaviour and molecular factors 

(Carmelli and Reed, 2000; Tiainen et al., 2009). The heritability of muscle mass and 

muscle strength have been reported, as high as 66% for muscle mass and 82% for 

muscle strength in large population studies (Arden and Spector, 1997; Thomis et al., 

1998; Abney et al., 2001; Huygens et al., 2004). As peak strength in early adulthood 

is the starting point from which muscle declines with age, it is important to 

understand the changes with ageing and the potential genetic contributions to this 

process. 

1.1.2 Loss of muscle mass with ageing 

The generally quoted range for muscle atrophy with ageing varies between 0.5-2% 

per year (Frontera et al., 2000; Goodpaster et al., 2006; Mitchell et al., 2012). The 

difference in the rate of muscle mass loss is due to differences in the inclusive 

population in the studies (older adults Vs younger adults or entire age-span), study 

design (cross sectional or longitudinal) and the difference in measurement 

techniques used to estimate muscle mass (computed tomography (CT scan), 

magnetic resonance imaging (MRI), Bioelectrical Impedance Analysis (BIA), etc). 

Nonetheless, it is normally accepted that muscle mass peaks between 20-30 years 

of age (Evans and Lexell, 1995; Deschenes, 2004; Sayer et al., 2008). Sex differences 

in skeletal muscle mass persist throughout the life span. Interestingly however, the 

loss of muscle mass and size with ageing is often reported as being more evident in 

males (Janssen et al., 2000b); although the higher rate of muscle loss in males is not 

reported ubiquitously (Bassey and Harries, 1993; Doherty, 2001). Specific to body 

part, the lower limb is more prone to muscle loss than the upper limb (Janssen et 

al., 2000b). The change in psoas muscle mass is more noticeable in lower limb while 

least in soleus muscle with the ageing in elderly female (Ikezoe et al., 2011), a likely 

consequence of fibre type and patterns of recruitment. The muscle cross-sectional 

area is reduced by 12-35% between younger and older subjects in the lower limb 

muscle (Young et al., 1985; Overend et al., 1992; Morse et al., 2005). These patterns 

of muscle atrophy with old age are presented in Table 1.1. 



 

  

Table 1.1 Muscle mass loss change with ageing between young and old population 

 

Study Techniques Estimate Sex Young 

(years) 

Aged 

(years) 

N (Y,O) % Difference % Change/ year 

Lexell et al.,1983  Cadaveric dissection VL CSA M 30±6 72±2 6,6 -17.6 -0.42 

Young et al., 1985 US Mid-thigh CSA  M 20-30 70-80 12,12 -25 -0.5 

Lexell et al. ,1988 Cadaveric dissection VL CSA M 19±3 73±2 9,9 -26 -0.48 
    

19±3 82±1 9,8 -43 -0.63 

Janssen et al., 2000 MRI SMM M 18-29 >70 66,11 -18 -0.36 
 

  

Kyle et al., 2001 DEXA ASMM M 18-34 >80 68,26 -19.9 -3.3 
   

F 18-34 >80 40,30 -14.1 -2.3 

Morse et al.,2005 MRI GM Muscle Volume  25.3±4.4 73.8±3.5 12,19 -28  

Silva et al., 2009 DEXA SMM M 18-80  40±14.4 468 n/a -0.46 
   

F 18-80  44.5±15.9 1280 n/a -0.46 

Wroblewski et al., 

2011 

Air displacement plethysmography 

and MRI 

SMM M 44.8±3.2 

44.8±3.2 

65.4±2.2 

76.3±3.3 

5,5 

5,5 

-6.7 

-12 

-0.32 

-0.38 
   

F 47.0±2.8 65.0±3.0 5,5 -9.8 -0.54 
    

47.0±2.8 74.8±3.7 5,5 -16 -0.57 

M, Male; F, Female; n, number of participant; Y, Young; O, old; SMM, Skeletal Muscle Mass; CSA, Cross Sectional Area; ASMM, Appendicular Skeletal Muscle Mass; GM, Gastrocnemius; n/a, not applicable; 

MRI, Magnetic Resonance Imaging; KE, Knee extensor strength; EF, Elbow flexors; DEXA, Dual-energy X-ray absorptiometry; US, Ultrasound Scan 

 



 

1.1.3  Loss of muscle strength with ageing 

Skeletal muscle strength is a function of muscle mass; studies have evidenced the 

moderate to high correlation between muscle mass and muscle strength (r = 0.38-

0.79) (Maughan et al., 1983a; Reed et al., 1991; Hayashida et al., 2014), depending 

on the method of strength and mass incorporated in each study. Muscle strength 

reduces by about 15% per decade after 50 years (Proctor et al., 1998; Doherty, 

2001), and has been reported as high as around 3% per year in the older populations 

studied (von Haehling et al., 2010). Consistent with these rates of decline, handgrip 

strength declined by 20% and 15% in a 5-year follow-up study in males and females 

aged over 75 years, respectively (Dey et al., 2009). Although not a direct 

contributing muscle to ambulation, a lower handgrip strength has been described 

as a good predictor of mortality (Ling et al., 2010; Volaklis et al., 2015). With ageing, 

there is a decline in muscle mass and muscle size, which contributes highly to the 

decline in muscle strength (Brooks and Faulkner, 1994; Kamel, 2003; Morse et al., 

2005; Trombetti et al., 2016). It largely established that the age-related weakness is 

primarily by the loss of skeletal muscle mass. However, the declines in muscle 

strength are almost 2 to 5 times greater than the declines in muscle mass, with 

ageing (Mitchell et al., 2012), and this disproportionate loss of strength over size 

has been demonstrated in cross sectional and longitudinal studies (Frontera et al., 

2000; Hughes et al., 2001).  

Table 1.2 Muscle strength loss reported with ageing 

Study Population Movement muscle 
strength loss 

(Goodpaster et 
al., 2006) 

1880 M/F (70-79 
years) 

KE 2.6-4.1%/year 

(Frontera et 
al., 2000) 

12 M (65.4±4.2 
years) 

KE/EF 1.3-2.5%/year  

(Doherty, 
2001) 

  20-40% 
between 20th 
and 80th life 
year 

(Marcell et al., 
2014) 

59 M,35F (58.6 
years) 

KE/KF 3.6-5%/year 
 

(Proctor et al., 
1998) 

20-80 years  35-40% 
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(Keller and 
Engelhardt, 
2013) 

<40 years (n=14) 
>40 years (n=12) 

KE                                       16.6-40.9% loss 
between 40-60 
years 

 Abbreviations: KE, Knee extension; EF, Elbow Flexion; M, Male; F, Female 

 Sarcopenia 

The decline in muscle mass and muscle strength with ageing described above and 

in Table 1.1 & Table 1.2, is defined as “sarcopenia”. The term sarcopenia was first 

coined by Rosenberg et al., (1997) as a poverty of flesh, more recently however, low 

muscle strength/function has been included in the definition (Cruz-Jentoft et al., 

2010). The rationale for the inclusion of strength into the definition is due to the 

disproportionate loss in muscle mass and muscle strength (Goodpaster et al., 2006). 

Although muscle weakness and skeletal muscle atrophy are obvious symptoms of 

this geriatric syndrome, there is ongoing debate on the operational definition, 

screening and diagnosis, and optimal management and treatment of the condition 

(Cruz-Jentoft et al., 2010; Fielding et al., 2011; Cederholm et al., 2013). Although the 

definitions all relate to a muscle atrophy with ageing, there is not a consensus on 

the definition of sarcopenia, and the exact definition is still under debate and is 

therefore not yet included in the International Classification of Diseases (Cruz-

Jentoft et al., 2010; Fielding et al., 2011). The lack of consensus among the 

definitions can be attributed to the variability in the muscle mass measuring 

techniques, cut-offs to define sarcopenic thresholds, and the reference population 

and ethnicity of the studied population (Cruz-Jentoft et al., 2010). To date, there 

have been six major international efforts for getting the agreement (Table 1.3) while 

there remains less agreement in the definition. 



 

Table 1.3  Sarcopenia definitions with different international efforts and consensus 

Study group Definition Criteria/Cut-off points 

ESPEN group (Muscaritoli et al., 

2010) 

An age associated decline in muscle mass and strength Criteria 1: Presence of low muscle mass 

>2SD below mean of the reference adult population 

Criteria 2: Low physical performance (gait speed) 

<0.8 m/s in 4m walk 

Diagnosis defined with the presence of Criteria 1 + Criteria 2 

European Working Group on 

Sarcopenia in Older People (Cruz-

Jentoft et al., 2010) 

A continuous decline of skeletal muscle mass and strength with a 

risk of adverse outcomes such as mortality 

Criteria 1: Presence of low muscle mass  

DXA measured ALMI 

>2SD below of the younger reference population (Baumgartner et al., 1998) 

Men <7.26 kg/m2  

Women <5.5 kg/m2 

Lowest quintile appendicular skeletal mass (ASM) of the distribution in a normative population 

(aged ≥ 65 years) (Newman et al., 2003): 

Men <2.29 

Women <1.73 

BIA 

>2SD below mean (SMI) of the reference younger adults (Chien et al., 2008): 

Men <8.87 kg/m2 

Women <6.42 kg/m2 

Criteria 2: Presence of low handgrip strength (Lauretani et al., 2003) 

Men <30 kg 

Women <20 kg 

Criteria 3: Presence of low physical function 

Short Performance Battery (SPB)8(Guralnik et al., 2000) 

Gait speed <0.8 m/s (Lauretani et al.) 

Diagnosis based on presence of criteria 1 + 2 or 3 

International Working Group on 

Sarcopenia (Fielding et al., 2011) 

 

Loss of skeletal muscle function along with strength with increasing 

age 

Patient unable to walk is screened for presence of low muscle mass by DXA to confirm low muscle 

mass 

Criteria 1: Presence of low physical function 

Gait Speed <1.0m/s, then DXA 

Criteria 2: Low muscle mass 

Low muscle mass: Appendicular fat free mass (AFFM) to height squared. 

Men <7.23 kg/m2  
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Women <5.67 kg/m2 

Diagnosis based on the presence of both criteria 

Society of Sarcopenia, Cachexia 

and Wasting Disorders (Morley et 

al., 2011) 

 

 

Limited mobility-loss accompanied by loss in muscle mass Criteria 1: Presence of low physical function 

Slow gait speed 

1 m/s or <400m during 6 minutes’ walk 

Criteria 2: Presence of low muscle mass  

>2SD below younger people between 20-30 years 

Diagnosis based on the presence of both criteria. 

Asian Working Group for 

Sarcopenia (Chen et al., 2014) 

Low muscle mass and low muscle strength or low gait speed. 

 

 

Criteria 1: Presence of low muscle mass: appendicular skeletal muscle mass/height2 >2SD below 

mean of the younger reference adults 

DXA 

Men <7.0 kg/m2 

Women <5.4 kg/m2 

BIA 

Men <7.0 kg/m2 

Women <5.7 kg/m2 

Criteria 2: Presence of low grip strength: lowest quintile  of the study population (Lauretani et al., 

2003) 

Men <26 kg 

Women <18 kg 

Criteria 3: Low physical performance assessed with gait speed 

Gait speed 0.8 m/s 

Diagnosis based on presence of criteria 1 plus criteria 2 or 3 

Foundation for the National 

Institutes of Health (FNIH) 

Sarcopenia Project (Studenski et 

al., 2014), (Dam et al., 2014) 

Two probable FNIH definitions: 

muscle weakness and low lean mass (low handgrip strength + low 

ALMBMI) or, 

clinically relevant low walking speed with muscle weakness and low 

lean mass (slow gait speed + low grip strength + low ALMBMI). 

Criteria 1: Appendicular lean body mass (ALM) 

Recommended: ALMBMI 

Men <0.789 

Women <0.512 

Criteria 2: low handgrip strength 

Men <26 kg 

Women <16 kg 

Criteria 3: Low gait speed 

Gait speed0.8 m/s 

DXA- dual energy X-ray absorptiometry; BIA- bioelectric impedance analysis; BMI- body mass index; ALM-appendicular lean body mass adjusted



 

1.2.1 Defining sarcopenic thresholds using muscle size and muscle strength 

measures 

As can be seen in Table 1.1 low muscle mass is the primary defining characteristic 

of sarcopenia. What is obvious is that there are numerous thresholds and cut-off 

levels adopted to describe the elderly as sarcopenic or not; each of which adopts a 

range of techniques to assess muscle size. Body imaging techniques such as CT, MRI 

and DXA scanning, are very accurate imaging systems, and are considered as the 

gold standard for estimating the amount of muscle mass (Cruz-Jentoft et al., 2010). 

These imaging techniques offer high levels of validity and reliability, they are 

however, expensive, non-portable and can produce small doses of radiation, or are 

offer lower adherence for the most impaired elderly. Bioelectrical impedance (BIA) 

is preferred in several sarcopenia studies as an alternative to these imaging 

techniques (Legrand et al., 2013; Volpato et al., 2013; Bianchi et al., 2017). BIA is 

inexpensive, easy to use, readily reproducible and accessible to the most impaired; 

in addition, it has been found to be highly correlate with MRI predictions (Janssen 

et al., 2000a; Chien et al., 2008). For defining the cut-offs for low muscle mass, most 

of the studies have compared with that of a matched young healthy population for 

sex and ethnicity, however there is not complete references datasets available for 

both sexes in all ethnic groups, with one group recommending a minimum of 100 

participants per group (Morley et al., 2011). 

There are several strength measures suggested for the assessment of sarcopenia; 

for instance, knee extension, knee flexion, handgrip strength and peak expiratory 

flow. However, handgrip strength is commonly used in clinical and research studies 

(Cruz-Jentoft et al., 2010). Isometric handgrip strength has been linked with the 

measures of overall strength and muscle mass of the body; specifically with lower 

extremity muscle torque and power; and calf cross-sectional area (Lauretani et al., 

2003; Edwards et al., 2013; Alonso et al., 2018) and is an early predictor of mortality 

(Newman et al., 2006). 

Like muscle mass, there is no consensus in defining the cut-off for low muscle 

strength in sarcopenia. Some studies use the cut-off from a young reference 



 

 
 

10 

population performing a gait analysis test, while some use the strength equal to the 

lowest quintile/quartile of the tested elderly population. Clearly, a research priority 

is to secure a globally accepted definition of sarcopenia that could discriminate the 

characteristics of sarcopenic elderly so that clinicians can make a correct diagnosis 

and future researches can base the studies on the standardised methods. 

1.2.2 Prevalence of Sarcopenia 

Considering the number of definitions available there is unsurprisingly considerable 

heterogeneity in the prevalence of sarcopenia (Table 1.4). This variation is explained 

by the difference in age group, study settings, reference population and definitions 

or cut-offs used (Bijlsma et al., 2013; Beaudart et al., 2015b). Majorities of the 

studies have investigated the prevalence of sarcopenia in Asia, European and 

American community settings, with the definition incorporating low muscle mass 

and low muscle function (Lee et al., 2013; Patel et al., 2013; Patil et al., 2013; Scott 

et al., 2014a; Yoshida et al., 2014). Studies have shown that sarcopenia prevalence 

increases with increasing age and frailty (Lee et al., 2013; Legrand et al., 2013; Lin 

et al., 2013). The prevalence of sarcopenia is lower in studies that include healthier 

subjects, or more stringent exclusion criteria; such as excluding more frequent 

fallers, participants aged over 81 years, or show evidence of cognitive or functional 

impairment (Patil et al., 2013). These stringent criteria resulted in less frail people 

being investigated, which probable resulted a very low prevalence of sarcopenia 

compared to others (2.7% in these Finnish women). The highest prevalence of 

sarcopenia has been reported in residential care settings with the inclusion of older 

and frailer participants, who exhibit multiple co-morbidities (Bahat et al., 2010; 

Landi et al., 2011; Landi et al., 2012b; Smoliner et al., 2014; Senior et al., 2015).



 

Table 1.4 Prevalence of sarcopenia in different populations 

Study Sarcopenia definition and cut-offs Subject characteristics 
n, age (years) 

Setting Prevalence 

     

(Scott et al., 2014a) Definition: low muscle mass and muscle strength  Age: 50-79 years Community dwelling Overall: 5%  
Method: BIA Men: 352, 61.7(7.1) years Australia 

 
 

Cut-offs: lowest 20% of the predictive population 
   

 
Men: <7.09kg/m2 Women: 329, 61.0(6.8) years 

  
 

Women: <5.91kg/m2 
   

 
HGS cut-offs 

   
 

Male<28.8kg 
   

 
Female<18.2kg 

   

(Legrand et al., 2013) Definition: low muscle mass and muscle weakness Age≥80 years Community Dwelling Overall: 12.5%  
Method: BIA Men:103, 84.6(3.4) years Belgium 

 
 

Cut-offs: lowest 20% of the predictive population 
   

 
Men: <8.87kg/m2 Women: 185, 85.0(3.8) years 

  
 

Women: <6.42kg/m2 
   

 
HGS cut-offs 

   
 

Male <30.0kg 
   

 
Female<20.0 

   
 

Walking speed: 0.8m/s 
   

(Volpato et al., 2013) Definition: low muscle mass plus either low HGS or muscle function   Age≥65 years Community dwelling Overall: 10.2%  
Method: BIA Mean age: 77.1(5.5) Italy Male: 4.9%  
Men: <8.87kg/m2 Men: 250 

 
Female: 9.4%  

Women: <6.42kg/m2 Women: 288 
  

 
HGS: based on BMI suggested in EWGSOP 

   
 

Walking speed: 0.8m/s 
   

(Yoshida et al., 2014) Definition: low muscle mass and low muscle strength Age≥65 years Community dwelling Overall: 7.5% 
 

Method: BIA Men: 2343, 72.2 (5.5) years Japan Men:8.8%  
Cut-offs: lowest 20% of the predictive population 

  
Women:7.4%  

Men: <7.09kg/m2 Women: 2468, 72.1(5.7) years 
  

 
Women: <5.91kg/m2 

   
 

HGS cut-offs 
   

 
Male <28.8kg 

   
 

Female<18.2 kg 
   

 
Walking speed: <=0.8m/s 

   

(Landi et al., 2012a) Definition: low muscle mass and low muscle strength or physical performance Age≥70 years Nursing home Overall: 32.8%  
Method: BIA Mean age: 84.1(6.9) Italy Men: 15.6%  
Cut-offs: lowest 20% of the predictive population Men: 31 

 
Women: 17.2%  

Men: <8.87kg/m2 Women: 91 
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Women: <6.42kg/m2 

   
 

HGS cut-offs 
   

 
Male <30.0kg 

   
 

Female<20 kg 
   

 
Walking speed: <=0.8m/s 

   
     

(Bianchi et al., 2015) Definition: EWGSOP low muscle mass and low muscle strength or physical performance Age:65-94 years Community dwelling Overall: 10.2%  
Method: BIA Mean 77.1(5.5) years Italy 

 
 

Men: <8.87kg/m2 Men: 250 
  

 
Women: <6.42kg/m2 Women: 288 

  
 

HGS: based on BMI suggested in EWGSOP 
   

 
Walking speed: <=0.8m/s 

   

(ter Borg et al., 2016) Definition: EWGSOP low muscle mass and low muscle strength or physical performance Age≥65 community dwelling Overall: 23%  
Method: BIA Median Age: 74 years Netherlands 

 
 

Men: <10.75kg/m2 Men: 110 
  

 
Women: <6.75kg/m2 Women: 117 

  
 

Male <30.0kg 
   

 
Female<20 kg 

   
 

Walking speed: <=0.8m/s 
   

(Brown et al., 2016) Definition: EWGSOP low muscle mass and gait speed  Age ≥60 years community dwelling Overall: 36.5%  
Method: BIA 70.1(0.14) US 

 
 

Men: <10.76kg/m2 Male: 1925 
  

 
Women: <6.75kg/m2 Female: 2500 

  
 

Walking speed: <=0.8m/s 
   

(Bianchi et al., 2017) Definition: EWGSOP low muscle mass and gait speed  
 

Hospital Overall: 34.7%  
Method: BIA 81.0(6.8) years Italy 

 
 

Men: <8.87kg/m2 Men: 315 
  

 
Women: <6.42kg/m2 Women: 340 

  
 

HGS: based on BMI suggested in EWGSOP 
   

 
Walking speed: <=0.8m/s 

   



 

 Pathophysiology of sarcopenia 

Ageing accompanied by a decline in skeletal muscle mass and muscle strength is 

directed by several factors; however, the multifaceted mechanisms driving 

sarcopenia are still to be elucidated. Some of the major contributing factors that 

causes sarcopenia are explained below. 

1.3.1 Muscle morphology and denervation 

Sarcopenia is characterized by a reduction in muscle fibre number and fibre size 

with type II muscle fibres showing the greatest prevalence of atrophy at a 

myocellular level (Dreyer et al., 2006; Kosek et al., 2006), such that the quantity of 

MHC2A and 2X mRNA decreases with age (Balagopal et al., 2001). The contribution 

of fibre atrophy and loss was described in the vastus lateralis, whereby 18% smaller 

fibre CSA in the elderly was accompanied by 25% lower total number of muscle 

fibres (Lexell et al., 1988). The main determinant of fibre number reduction with 

ageing is due to denervation. Until approximately 60 years of age, motor units are 

preserved, after which declines with age are observed, associated with a 

neuropathy of the stimulating motor neuron (Ling et al., 2009). Motor neurons 

combine with a series of muscle fibres to form a motor unit, allowing innervation 

from brain to muscle for contraction. Increasing age leads to the death of some of 

these motor neurons resulting in a denervation of all the muscle fibers, leading to 

muscle fibre atrophy and death. The consequence of this denervation is ultimately 

a reduction in muscle mass (Figueiredo et al., 2006). 

Although denervation is unique to ageing, there are several anabolic processes that 

decrease, and catabolic processes that accelerate with age. These include oxidative 

damage, inflammatory and anabolic hormones, and the interaction of external 

factors such as physical activity and diet. These are discussed below. 

1.3.2 Mitochondria and Oxidative phosphorylation 

There is compromised oxidative phosphorylation in ageing muscle (Trifunovic and 

Larsson, 2008; Joseph et al., 2012), consequences due to the reduction in 
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mitochondrial density and function (Short et al., 2005; Sun et al., 2016). The decline 

in mitochondrial DNA number is associated with high levels of free radical 

production and accumulation of mutations in mitochondrial DNA with increasing 

age that eventually results in a decreased amount of mitochondrial protein (Larsen 

et al., 2005; Short et al., 2005). The decreased mitochondrial protein, accumulated 

mutation and higher ROS finally results in a reduction in the capacity to resynthesize 

ATP through oxidative mechanisms (Amara et al., 2008; Chistiakov et al., 2014) 

which is a precursor of muscle catabolism. A study in mice lacking SOD1 (Cu, Zn 

superoxide dismutase) has shown the age related neuromuscular degeneration 

(Larkin et al., 2011; Sakellariou et al., 2014). The reduced mitochondrial content and 

PGC-1 alpha expression along with increment in mitochondrial apoptotic 

susceptibility has been observed with the increment in free radical production; 

which might be associated with sarcopenia (Chabi et al., 2008). Lower mitochondrial 

capacity and efficiency has been found to be correlated with slower walking speed, 

a clinical indicator for sarcopenia (Coen et al., 2012). 

1.3.3 Inflammatory molecules and growth hormones 

There is alteration in the level of inflammatory molecules with ageing. The level of 

several cytokines and regulatory molecules such as TNF-alpha, IL-1, IL 6, myostatin, 

and human leukocyte antigen changes with increasing age. One of the molecules 

that highly contributes to sarcopenia is IL-6; the level of which has been reported to 

increase with ageing. The increased IL-6 level with ageing has been further linked to 

a decrement in bone mineral density and muscle mass (Papadopoulos et al., 1997; 

Ershler and Keller, 2000; Visser et al., 2002), thus, it is very likely that it might be 

associated with sarcopenia. Higher level of IL-6 were positively correlated with age, 

fat mass and waist circumference, while inversely associated with handgrip strength 

(Dutra et al., 2017). While it should be noted that IL-6 also has an anti-inflammatory 

role, reported to help in both local and systemic acute inflammatory response (Xing 

et al., 1998). IL-6 mRNA level increases in contracting muscles and further increases 

with exercise (Ostrowski et al., 1998; Keller et al., 2001; Steensberg et al., 2001). 

Similarly, TNF-alpha accelerates the catabolic pathways in skeletal muscle (Wang et 

al., 2014) and has been reported to cause apoptosis of type I and type II muscle 
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fibres (Pistilli et al., 2006). There is an inverse relation between TNF alpha and thigh 

muscle cross sectional area and handgrip strength in the elderly (Schaap et al., 

2009). Other inflammatory molecules altered with ageing and thereafter 

deteriorates the skeletal muscle function include growth hormone, interleukin-10 

and interleukin-15. 

Anabolic hormones decrease and catabolic hormones increase with ageing. For 

example, there is a lower level of testosterone particularly in elderly males that is 

thought to contribute to muscle loss with age (Harman et al., 2001; Wu et al., 2008). 

The role of testosterone in sarcopenia is also evidenced by the fact that exogenously 

administered testosterone has resulted in increases in muscle mass and muscle 

strength(Harman et al., 2001; Chiang et al., 2018). There is also a reduction in 

anabolic hormones such as growth hormone in elderly people. These declines in 

growth hormone and muscle mass have been shown to be improved with 

exogenous administration of GH in the elderly (Blackman et al., 2002). 

A reduction in level of IGF has been reported with ageing (Landin‐Wllhelmsen et al., 

1994) which has been further linked with poor knee strength, slow walking speed 

and self- reported mobility problems (Cappola et al., 2001). Similarly, it has also 

been found that there is an increment in the level of IGF-1 with high-intensity 

training in the elderly (de Souza Vale et al., 2009). The   low level of IGF-1 associated 

with increasing age and the increase in IGF-1 following strength training in the 

elderly, suggests that IGF-1 might contribute to sarcopenia. 

 

1.3.4 Nutrition and Physical activity 

Loss of appetite is common with ageing (Morley and Silver, 1988; Malafarina et al., 

2013). Appetite is normally assessed from the results of food intake, nutritional 

assessment, body mass or BMI measurements (Mattes, 2005). Loss of appetite has 

been linked to decreased body mass and nutritional deficiencies (Wilson et al., 2005; 

Brownie, 2006 2010). Nutritional deficiencies have been related with impaired 
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quality of life, immune function along with falls, frailty, muscle weakness and 

mortality (Wilson et al., 2005; Agarwal et al., 2013; Bischoff-Ferrari et al., 2016). 

Consistent with these observations of nutrient intake accounting for aspects of 

sarcopenia, is the observation that nutrient supplementation (particularly increased 

protein intake) can increase lean mass in sarcopenic people (Solerte et al., 2008; 

Tieland et al., 2012; Deutz et al., 2014). 

Physical inactivity is also one of the major causes of sarcopenia. Several longitudinal 

and cross sectional studies have reported a low level of physical inactivity with 

increasing age and its association with sarcopenia (Baumgartner et al., 1999; Szulc 

et al., 2004; Lee et al., 2007). There is a negative correlation between muscle mass 

and leisure-time physical activity (Lee et al., 2007), with higher levels of leisure time 

physical activity correlated with higher muscle mass and less total and truncal fat 

(Raguso et al., 2006). Similarly, there is a decrease in sarcopenia risk with daily 

walking and moderate intensity exercise (Park et al., 2010; Marzetti et al., 2017). 

The loss of lean mass with ageing reduces with increased energy expenditure 

through physical activity (Genton et al., 2011). The importance of both diet and 

physical activity is emphasized through the interaction of both external influences, 

such that nutrient supplementation (e.g. proteins and essential amino acids) wit 

exercise in elderly populations have resulted in progressive gains in muscle mass 

and muscle strength (Gryson et al., 2014; Beaudart et al., 2017). 

The above factors represent most of the potential factors that contribute to 

sarcopenia. Although some external factors (i.e. diet and physical activity) can be 

modified, the prevalence of sarcopenia, dependent on the rate of physiological 

deterioration, is undoubtable under the influence of genetic variation. As has been 

observed in those at the elite end of physical fitness, genetics plays a considerable 

role in the accretion of muscle mass, and is likely therefore to contribute to the 

prevalence of sarcopenia. 

1.3.5 Genetic factors 
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There are more than 200 genetic variants that are reported for the association with 

health and fitness related phenotypes (Bray et al., 2009). Despite more SNPs being 

studied, 30 gene variants have commonly been associated with skeletal muscle 

mass and strength related phenotypes and muscle performance (Hughes et al., 

2011; Garatachea and Lucía, 2013; Zarebska et al., 2013). These include SNPs that 

code for a) structural proteins within the muscle or tendon (e.g. COL1A1, PTK2, 

ACTN3) b) favourable enzyme isoforms (e.g. ACE) c) hormonal or messenger 

proteins linked with catabolic or anabolic process (e.g. VDR, ESR1) d) negative 

regulators of muscle growth (MSTN, ACVR1B) e) myotrophic factors (CNTF, TRHR) f) 

body composition regulators (FTO).  In terms of genetic factors, specifically, that can 

contribute to sarcopenia, few studies have investigated muscle mass and muscle 

strength phenotypes and their SNP associations in the elderly. To date, there has 

been four studies that have investigated the association of SNPs with sarcopenia; 

limited to VDR, IL6 and ACTN3 polymorphisms. Roth et al (2002) first investigated 

the association of VDR in elderly females and found that genotype with FF group 

has 2.17-fold higher risk for being sarcopenic compared to f-allele carriers. This 

finding was also replicated in a male population by the same group (Walsh et al., 

2016) with similar results; a 1.3 fold risk for sarcopenia with FF homozygotes. ACTN3 

R577X has been previously investigated for several skeletal muscle phenotypes 

(Delmonico et al., 2008; Roth et al., 2008). Recently, ACTN3 R577X has been found 

to be associated with a 2 fold risk of sarcopenia with those elderly individuals 

expressing the XX genotype compared to RR homozygotes (Cho et al., 2017). 

Another pleiotropic gene variant, IL6, was also investigated for an association with 

sarcopenia. Although despite being conducted in nursing home residents, no 

associations were reported (Tasar, 2018). Unlike the previous studies that used low 

ASM as the cut-off for sarcopenia; this study in Turkey used both low muscle mass 

and muscle function for defining sarcopenia. 

1.3.5.1  Identifying the candidate genes of interest for this thesis 

As there are limited observations of the genetics of sarcopenia in elderly population, 

in order to identify potential genes of interest for inclusion within this thesis, a 

broader range of literature was reviewed, including phenotypes associated with 
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adaptation to training, associations with strength and muscle mass related 

phenotypes or an over representation in elite power athletes. Below the process 

and results of the review are described. 

Previously, heritability of muscle mass and muscle strength were studied to 

understand the role of genetic components on those phenotypes. Although the 

heritability approach has been successful in determining the phenotypes that are 

strongly under genetic control, it does not provide sufficient information on the 

specific gene variant/s that are associated with muscle phenotypes. More recent 

studies are therefore, mostly focused on identifying the specific gene variants that 

are associated with skeletal muscle phenotypes. In doing so, several cross-sectional 

and longitudinal studies have been done (Charbonneau et al., 2008; Yoshihara et al., 

2009; Garatachea and Lucía, 2013). Investigating and identifying the specific gene 

variants that could contribute to the difference in skeletal muscle phenotypes is the 

difficult part of this approach. A complete theoretical knowledge on how the gene 

variant can affect the functional aspect of protein might provide an easy way to 

identify the candidate gene, however, it is a tough and time consuming task to 

identify as much as thousands of gene variants with this approach. Although the 

alternative robust approach, GWAS, utilizes a large sample and is popular these days 

to identify thousands of genes associated with singular phenotypes, the chance of 

false positive result is also quite high. An alternative approach to GWAS that has 

recently been adopted in investigating the suggestive association of polymorphisms 

with skeletal muscle phenotypes is the utilization of Genetic Predisposition Score 

approach (He et al., 2018). This allows the cumulative genetic influences of multiple 

SNPs to be considered without the expense of the GWAS. As it is not possible to 

complete the GWAS analysis in the present thesis due to limited resources and 

difficulty in testing the large sample, the study utilizes the case-association 

approach. With consideration of expenses and equipment available for the study, 

24 candidate SNPs were chosen for the thesis.  

Initially, while doing the literature review during the study design, 36 candidate 

genes were selected. Due to the time constraint, budget and the equipment design 
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(only 24 SNPs genotyping possible in maximum), the number of candidate SNPs was 

reduced to 24 in the present thesis (Table 1.5), based on several criteria such as: 

1) the number of studies supporting the associations between some SNPs and the 
skeletal muscle phenotypes. 

2) whether contradictory findings for some SNPs with the similar skeletal muscle 
phenotypes existed. 

3) likelihood of some genetic variants being functional with the findings from 
existing gene transcriptional analysis.   

4) the necessity for replication in independent elderly population with some of the 
skeletal muscle phenotypes.  

5) investigating the novel possible associations of some SNPs with skeletal muscle 
related phenotypes . 

Table 1.5 Previous studies investigating association between SNPs and skeletal 
muscle phenotypes 

SNPs Gene/polymorphism 
function/ location 

Muscle 
phenotypes 
studied/physical 
performance/ 
population 

Main results References 

ACTN3 
rs1815739 

component of sarcomeric Z-
discs 
 
located on chromosome 11 

and is a nonsense mutation 
R577X in ACTN3 gene resulting in 
lack of protein expression due to 
production of stop codon at 
residue 577 (North et al., 1999) 

Lower mid-thigh 
cross sectional area 
(aged 58-70 years, 
Japan) 

 
 
KE shortening and 
lengthening peak 
torque 

 
 
 
 

Decline in walking 
time after 5 years 

 
 
 

40m sprint time 
 
 
 

 
 
 
 
 

XX 
demonstrated 
significantly 
lower than 
RX/RR 
 
XX group had 
significantly 
reduced than 
RR/RX groups 

 
 
 
XX male had 
significantly 
less walking 
distance time 

 
R allele as 
favourable 
allele and 
contributes for 
faster time in 
additive 
manner 

 
 
 

(Zempo et 
al., 2010) 

 
 

 
 
(Walsh et 
al., 2008) 

 
 
 
 

 
(Delmonico 
et al., 2008) 

 
 

 
(Moran et 
al., 2007) 
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Explosive power of 
leg in elite 
volleyball players 
 
 Sarcopenia 

 

No association 
 
 

 
XX as risk group 
for sarcopenia 

(Ruiz et al., 
2011) 

  
 

(Cho et al., 
2017) 

ACE rs4341 
(I/D)  

D allele increases angiotensin II 
activity 
 
located on human chromosome 

17 and contains a 287bp 

insertion/deletion 

polymorphism in  intron 16 

(Glenn et al., 2009).  

lean mass, and 
body weight; 
appendicular fat 
free mass in older 
women 

 
isometric and 
isokinetic strength 
in healthy young 
men; handgrip 
strength in 
athletes 

 
Handgrip strength 
and vertical jump 
ability in 
adolescents 

 

Higher body 
mass measures 
were 
associated with 
D allele 

 
DD genotype 
was associated 
with higher 
strength 

 
 
 

II genotype is 
associated with 
higher strength 
and jump 
performance 

(Charbonne
au et al., 
2008)  

 
 

 
(Williams et 
al.; Costa et 
al., 2009b) 

 
 
 
 

(Moran et 
al., 2006) 

 

CNTF 
rs1800169 

located on chromosome 11 and 

is a G-A substitution (1357 G → 

A) in the second exon of CNTFR 

gene (Walsh et al., 2009). 

 
AA genotype produces non-
functional protein and CNTF 
level declines with ageing 

Concentric peak 
torque knee 
extensors and 
elbow flexors 
 
concentric knee 
flexors strength in 
middle aged 
women 

 
Handgrip strength 

Heterozygotes 
GA were 
stronger than 
GG individuals 
 
A-allele carriers 
were weaker 
than GG  
 
 
AA 
homozygotes 
had 3.8 kg 
weaker 
handgrip 
strength than 
G-allele 
carriers. 

(Roth et al., 
2001) 

 
 

 
(De Mars et 
al., 2007b) 
 
 
 
(Arking et 
al., 2006) 

 

CNTFR 
rs2070802 

is present in intron 5 , 37bp 
upstream of exon 6 for CNTFR 
(De Mars et al., 2007a). 
 
CNTF interacts with CNTFR for 
signalling 
 
 

60-78 years male T-allele carriers 
possessed 
higher KE and 
KF in male 

(De Mars et 
al., 2007b) 

ESR1 
rs1999805 
rs4870044 

 
 

encodes for the oestrogen that 
function for bone mass and 
bone growth 

Lean mass  Loss of 
oestrogen after 
menopause 
was associated 
with low lean 
mass 

(Poehlman 
et al., 1995) 

FTO 
rs9939609 

associated with obesity related 
phenotypes 

is located on Chromosome 16 

within first intron of FTO gene 

(Ben Halima et al., 2018). 

 

BMI 
Calf circumference 

 

AA was 
associated with 
higher BMI, 
muscle mass, 
and obesity 
related 
phenotypes 

(Sonestedt 
et al., 
2011), 
(Jacobsson 
et al., 2012; 
Al-Serri et 
al., 2018) 
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HIF1A 
rs11549465 

is located on chromosome 14 

and in exon 12 of the HIF1A gene 

(Hlatky et al., 2007) 

 
upregulated during hypoxia 
condition and controls 
expression of genes involved in 
apoptosis, cell proliferation and 
differentiation 
 
C-T transition with T associated 
with higher transactivation 
activity 

maximal oxygen 
consumption with 
exercise training in 
elderly 

 
Comparison of 
frequency 
distribution of 
genotypes 
between the 
groups 

 
 

TT was 
associated with 
higher V02 max 

 
 
TT was over 
represented in 
weightlifters 
and wrestlers 

 
 
 
No association 
with HIF1A 
variants 

(Prior et al., 
2003) 
 

 
 
(Ahmetov 
et al., 2008) 

 
 
 
 
 
(Eynon et 
al., 2010) 

ID3 rs11574 Is located on chromosome 1 

resulting in alanine to threonine 

substitution in C terminus of Id3 

gene (Doran et al., 2010). 

 

has a helix –loop-region with 
specific C-terminus with which it 
binds to E12 and E47 and averts 
their dimerization with tissue 
specific class II bHLH proteins 

fat mass, BMI, 
waist 
circumference 
(WC), and waist‐
hip ratio (WHR) in 
humans 

A-allele was 
associated with 
changes in 
cross sectional 
BMI and fat 
mass 

(Svendstrup 
et al., 2018) 

IGF1 rs35767 is located in promoter of the 

IGF1 gene in chromosome 12 

where 192bp of CA repeats is 

found (Rietveld et al., 2004). 

 
promotes myoblast 
proliferation, differentiation 
during normal muscle growth 
and muscle injury by 
coordinating with other growth 
factors 

Body composition CC genotype 
was associated 
with higher 
trunk and total 
fat and lower 
lean and 
muscle mass 

(Kostek et 
al., 2010) 

IL6 rs1800795 is located in promoter region of 

IL6 gene which is found in 

chromosome 7 and  

G allele linked with higher 
transcription (Murphy et al., 
1997). 

Weightlifters and 
jumpers 

 
 
 

Knee muscle 
strength and frailty 

 
 
 
 

Exceptional 
longevity 

G allele 
overrepresenta
tion 

 
 

No association 
 
 

 
 
 
No association 

(Ruiz et al., 
2010) 

 
 
 

(Walston et 
al., 2005; 
Pereira et 
al., 2011) 

 
 

(Fuku et al., 
2015) 

MTHFR 
rs1801131 
rs1537516 
17421511 

MTHFR rs1801131 (A1298C) 
results decrease in MTHFR 
enzyme activity (Cui et al., 
2012). 
 

Sprint and strength 
athletes 

 
 

VO2max post 
training 

C allele 
overrepresenta
tion 

 
C-allele carriers 
had 
significantly 
improvement 
in VO2 Max 

(Zarebska et 
al., 2014) 

 
 
(Cięszczyk 
et al., 2016) 

PTK2 
rs7843014, 
 rs7460 

components of cell costameres, 
provide an integral link between 
ECM, cytoskeleton and muscle 
fibres in skeletal muscle 

Exceptional 
longevity 

 
 
 

rs7843014 CC 
and rs7460 TT 
association 
with longevity  

 

(Garatachea 
et al., 2014) 
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Specific force in 
healthy men 

AA 
homozygotes 
had higher VL 
specific force 

(Erskine et 
al., 2012; 
Stebbings et 
al., 2017) 

TRHR 
rs7832552 

is located in the region 8q.23.1 
on the surface of  thyrotrophic 
pituitary cells 
 
binding site for TRH and 
thereafter controls the level of 
T4 that plays important role in 
skeletal muscle development 

lean body mass 
 
 

 
exceptional 
longevity 

T allele was 
associated with 
higher lean 
body mass 

 
No associations 

(Liu et al., 
2009; 
Lunardi et 
al., 2013) 
 
(Fuku et al., 
2015) 

TTN 
rs10497520 

missense mutation, C-T 
transition, contribute to 
variation in TTN isoforms 
(Rankinen et al., 2003; Timmons 
et al., 2010). 
 
protein helps in myocyte 
development, function, 
assembly and organization of 
thick and thin filaments during 
myofibrillogenesis  

 

marathon running 
performance and 
muscle fascicle 
length 

 
isometric knee 
strength in CAD 
patients 
 
 
elderly population 
20-83 years for 
isometric knee 
extension 

T-allele carriers 
had better 
marathon 
personal best 
times. 
 
No association 
with strength 

 
 
C-allele is 
predisposing 
allele for knee 
strength in 
elderly 
population 

(Stebbings 
et al., 2018) 

 
 
 

 
(Thomaes 
et al., 2013) 

 
 
(He et al., 
2018) 

VDR 
rs2228570 

known as Fok1 polymorphisms, 

involves C-T transition in exon 2 

of VDR gene in chromosome 12 

(Hou et al., 2015). 

 
helps in calcium accumulation in 
sarcoplasmic reticulum and 
impact in muscle protein 
synthesis 

quadriceps 
strength, 
hamstring 
strength, peak 
torque, FFM 

 
 
 
 
 
 
 

 
FFM/Sarcopenia 

F (C) allele has 
been linked to 
reduced fat-
free-mass and 
men  
 
F allele with 
reduced 
concentric and 
isometric knee 
strength than f-
allele carriers 

 
FF 
homozygotes 
in higher risk 
than f-allele 
carriers and f 
allele 
associated with 
higher FFM 

(Roth et al., 
2004) 

 
 
 

 
(Windelinck
x et al., 
2007) 

 
 

 
 
(Roth et al., 
2004; 
Walsh et al., 
2016) 

MSTN 
rs1805086 

is located in chromosome 2, 
located in exon 2 of the three-
exon gene, involves an A-to-G 
change in the codon that 
encodes the 153th amino acid of 
myostatin  (Ferrell et al., 1999). 
 
modulates the myoblast 
proliferation and acts as the 
inhibitor of the muscle tissue 
growth 

muscle strength 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R153 allele of 
MSTN with 
decreased 
strength 

 
a negative 
influence of 
1RM leg press 
and muscle 
mass of women 
at old age 

 
R allele linked 
to maximal 
isometric 

(Seibert et 
al., 2001; 
Corsi et al., 
2002) 

 
(González-
Freire et al., 
2010) 

 
 
 

 
(Kostek et 
al., 2009; 
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Exceptional 
longevity in 
Japanese 
population 

 
Strength training 
induced 
hypertrophy in 
Chinese population 

 
 
 

Vertical jump 

contraction of 
elbow muscle 
flexors and 
ability to 
produce peak 
power during 
muscle 
contractions  

 
No association 
 
 
 
 
KR has 
significantly 
higher 
increment in 
bicep and 
quadriceps 
thickness than 
KK genotypes 
 

Santiago et 
al., 2011) 

 
 

 
 
 
 

 
(Fuku et al., 
2015) 

 
 
 
(Li et al., 
2014) 
 
(Santiago et 
al., 2011) 

COL1A1 
rs1800012 

 

known by Sp1 polymorphism, 
located in the intronic part 
of COL1A1 gene, associated with 
transcription start site, and -
1997G/T polymorphism is 
located in promoter region of 
this gene (Jin et al., 2009) 
 
encodes type I collagen protein 

 
polymorphism results the 
increment in alpha-1 chain 

hand grip strength 
and biceps 
strength in elderly 
70+ population 

 
 
 

s allele is 
associated with 
the lower 
strength 

 

(Van 
Pottelbergh 
et al., 2001) 

 
 
 
 
 
 

ACVR1B 
rs2854464 

 
 
 
 
 
 
 
 
 
 

ACVR1B  
rs10783485 

rs2854464 is located in a 

putative miR-24-binding site in 

the 3′ untranslated region (UTR) 

of the ACVR1B mRNA 

(Windelinckx et al., 2011). 

 
encodes the Activin A receptor 
type 1b protein, regulates the 
expression level of several genes 
implicated in controlling muscle 
growth 

 rs2854464 A 
allele 
associated with 
higher knee 
strength 

 
over 
representation 
of A allele in 
sprint and 
power 
Caucasians 
athletes 

 
A-allele with 
SMM 

 
C-allele as 
strength 
increasing 
allele for 
isometric knee 
flexion 

(Windelinck
x et al., 
2011) 

 
 

 
(Voisin et 
al., 2016) 

 
 
 

 
 
 
(He et al., 
2018) 

 
(Windelinck
x et al., 
2011) 

 

NOS3 
rs1799983 

is located in Chromosome 7 and 

associated with G>T transition at 

codon 298 at 7th exon and results 

substitution of (Glu298Asp) 

(Heidari et al., 2017). 

 

distribution in 
athletic population 
and long distance 
swimmers 

 
 

T allele was 
overrepresente
d in the power 
athletes 

 
 

(Gómez-
Gallego et 
al., 2009; 
Sessa et al., 
2011; Eider 
et al., 2014; 
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encodes the enzyme eNOS 
which catalyzes the synthesis of 
NO 

 
T allele is associated with 
increased NO activity 

 
 

 
stroke volume 

 
 

 
 
 

T-allele was 
associated with 
higher stroke 
volume and 
lower HR 
during 
submaximal 
dynamic 
exercise in 
postmenopaus
al women 

Zmijewski 
et al., 2018) 

 
(Hand et al., 
2006) 

 



 

 Aims and objectives 

In short, the over-all aim of the current thesis was to investigate the association of 

selected SNPs with sarcopenia and to investigate the association of SNPs with 

skeletal muscle phenotypes. More precisely, the objectives were: 

1) To identify a meaningful definition of sarcopenia that can distinguish the 

sarcopenia group from non-sarcopenia groups based on skeletal muscle phenotypes 

2) To investigate the association of genetic polymorphisms with sarcopenia 

3) To investigate the associations of specific gene variants with skeletal muscle 

size/strength phenotypes 

4) To investigate the predictive power of Genetic Predisposition Score (GPS) for 

explaining the variance of skeletal muscle phenotypes 

 Overview of thesis 

The present thesis is sub-divided into 7 chapters. Chapter 1 (presented above) is the 

literature review and background of the study. Chapter 2 describes the 

methodology applicable for chapters 3, 4, 5 and 6. In brief, Chapter 2 describes the 

muscle mass and muscle strength measurement techniques, and the calculation and 

assessment of each skeletal muscle phenotype used throughout the thesis. It also 

describes the methodology used to assess physical performance, through the One 

Leg Standing Balance Test. Finally, this chapter explains the procedures of DNA 

sample collection and, DNA extraction followed by genotyping procedures. Chapter 

3 investigates a meaningful definition of sarcopenia among 3 previous definitions 

and a novel approach based on skeletal muscle mass and handgrip strength. Chapter 

4 identifies a meaningful definition of sarcopenia based on the discriminating power 

of each definition for skeletal muscle phenotypes used in the present thesis. 

Thereafter, the aim of Chapter 4 is to examine the association of specific gene 

variants with sarcopenia used as a distinct phenotype. It was hypothesized that 

individuals in the sarcopenia group would carry risk alleles for either lower muscle 
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mass or muscle strength or both. Chapter 5 investigates the association of SNPs with 

skeletal muscle phenotypes. More precisely, in Chapter 5 the individual influence of 

24 genetic polymorphisms will be assessed for muscle size (VL-thickness, VLACSA, 

biceps brachii thickness), muscle strength (Handgrip Strength, MVCKE, and MVCEF) 

phenotypes, and the One Leg Standing Balance Test. It was hypothesized that the 

association will be found between selected gene variants and the skeletal muscle 

phenotypes. 

Subsequently in chapter 6, the polygenic approach is utilized to explain the variance 

of skeletal muscle phenotypes. The GPS data-driven approach is used to study the 

effect of multiple gene variants in predicting skeletal muscle phenotypes. Since 

muscle mass and muscle strength are influenced by multiple genes, it is expected 

that a greater phenotype variance could be explained by the polygenic approach 

rather than investigating associations with single candidate polymorphisms. 

Finally, the discussion chapter, Chapter 7, reviewed the results obtained within each 

chapter of this thesis into a coherent narrative that considers the findings within the 

context of current literature. It explains how the sarcopenia group is different from 

non- sarcopenia with neuromuscular parameters under the study. Identification and 

explanation for the risk allele/genotype for sarcopenia is also discussed. Similarly, it 

also explains how the selected candidate SNPs on the present study effects skeletal 

muscle size and strength of the elderly Caucasian female. In linking the results of 

the prior chapters, this chapter also considers potential future directions for 

research in this area. 
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2 . General Methodology 
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 Participant recruitment 

Participants comprised 60-91 years old Caucasian females (n= 307, 70.7±5.7 years, 

66.3±11.2 kg, 1.60±0.06cm) (Mean ± SD) that were recruited between May 2016 to 

September 2017 from South Cheshire and the surrounding areas through 

advertisements and word of mouth. All participants were independently living, 

ambulatory and had no history of severe muscle and bone issues, such as 

osteoporosis, rheumatoid arthritis and cancer, nervous system disorders, such as 

Alzheimer’s, convulsions, epilepsy, or cardiovascular-related diseases. Study 

protocols were in accordance with the guidelines of the Declaration of Helsinki 

(World Medical Association, 2013) and approved by the Ethics Committee of 

Manchester Metropolitan University. Informed written consent was obtained from 

all the participants prior to involvement in the present thesis study. 

 Protocol overview 

Participants attended for testing on a single visit for 3 hours per participant during 

which time they completed anthropometric tests (height, mass, body composition 

and muscle size measures), functional tests of muscle strength and balance, 

followed by collection of either a venous blood or saliva sample. DNA was extracted 

from the collected samples and genotyped for 24 polymorphisms. Physical activity 

of participants was assessed using Physical Activity Scale for Elderly (PASE) 

questionnaire. The order of testing was as follows: questionnaires, 

anthropometrics, muscle phenotype assessment (function, balance and size), body 

composition and finally phlebotomy.  

2.2.1  Anthropometrics 

Standing height was measured with participants’ unshod using a stadiometer to the 

nearest 0.1 cm. Body Mass was measured to the nearest 0.1 kg on a digital scale 

unshod in minimal clothing. 
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2.2.2  Body composition 

Fat and fat-free mass were quantified using Bioelectrical Impedance Analysis (BIA) 

(Model 1500; Bodystat, Isle of Man, UK). Participants were instructed to remove any 

metallic attachments such as watches and bracelets before the test. They were then 

instructed to lie on a physiotherapist bed in a supine position with both upper and 

lower limbs slightly abducted from the body for about 4-5 minutes. Two adhesive 

electrodes were placed on the dorsum of the hand and foot on the right side of the 

body. A negligible electrical current (frequency: 50kHz; amplitude: 0.4mA), which is 

too low for the participant to feel, was then passed between these electrodes. 

Whole-body impedance, resistance to an applied current, Fat-Free Mass (FMM), Fat 

mass, water percentage and Body Mass Index (BMI, body mass/height2) were 

recorded using BIA. Skeletal muscle mass was estimated using a previously 

established formula (Janssen et al., 2000a) as:  

Equation 1: Skeletal Muscle Mass (SMM) = [(Ht2/Rx0.401) + (sex x 3.825) + (age x -

0.071)] + 5.102 

Where Ht is height in cm, R is resistance from BIA and age in years. For sex, a male 

is scored as 1 and female as 0. 

 Skeletal Muscle Index (SMI) was calculated as skeletal muscle mass (SMM) divided 

by the height as;  

Equation 2: SMI= SMM/Ht2 where SMM is in kg and height is in m. 

2.2.3 One Leg Standing Balance Test 

One Leg Standing balance test (OLST) was performed to access the balancing ability 

and balance impairment of participants. OLST is a simple, predictive and inexpensive 

marker for screening the low functional level and frailty associated with ageing 

(Vellas et al., 1997a). Participants were instructed to stand barefoot, then to flex 

either their left or right knee to 90 degree allowing the foot to clear the floor, and 

balance on one leg as long as possible, up to a maximum duration of 30 s (Bohannon 
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et al., 1984), with time  recorded via stop-watch. If participants did not reach 30 

seconds, they were asked to repeat the test twice more and the maximum of the 

three attempts was recorded as their OLST time. Participants alternated attempts 

between left and right leg, leaving 1 min between trials, to reduce the impact of 

accumulated fatigue. The OLST was performed first with eyes open (EO) and eyes 

closed (EC) condition (Bohannon et al., 1984).  

2.2.4  Handgrip Strength 

Handgrip strength (HGS) was measured using a digital load cell handgrip 

dynamometer (JAMAR plus, JLW Instruments, Chicago, USA) with a previously 

validated protocol (Roberts et al., 2011). Participants were instructed to stand in an 

upright position with the dynamometer held with the arm straight, and flexion at 

90 degrees to the shoulder (Figure2.1). Verbal encouragement was provided to 

encourage each participant to squeeze the handgrip dynamometer with maximum 

force, which was maintained for 5 seconds. The highest grip strength of three 

maximal efforts was recorded for the study. The left and right were alternated, with 

1 minute break between trials. 
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Figure 2.1 Handgrip Strength measured using handgrip dynamometer. Strength was 

obtained from a participant of the work described in the current thesis 

2.2.5 Vastus Lateralis Muscle Size 

B-mode ultrasonography (My LabTwice, Esaote Biomedical, Italy) was used to 

determine Vastus Lateralis (VL) muscle size. With the participants standing, the 

origin and insertion of the VL muscle was identified as the proximal and distal 

myotendinous junction of the VL, respectively, using ultrasound (7.5 MHZ, linear 

array probe, 38mm). The origin and insertion of the VL were assessed in a standing 

position to the accumulation of subcutaneous fat in some participants making 

identification of the VL origin impossible in the supine position. The VL length was 

measured with a measuring tape as the distance from origin (head of femur) to 

insertion (VL myotendinous junction). The lateral and medial borders of the VL were 

identified using ultrasound to identify the mid-sagittal line of the VL. The 

participants were then seated subsequent ultrasound procedures. A sagittal plane 

scan was performed at 50% of VL length, on the mid sagittal line of the VL. 
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Figure 2.2Measurement of Vastus lateralis thickness using sagittal plane B-mode 

ultrasound scans. Scan was obtained from a participant of the work described in the 

current thesis. 

For Anatomical Cross-Sectional Area of Vastus Lateralis Muscle (VLACSA), a transverse 

plane ultrasound scan was performed at 50% of VL length, as this corresponds to 

the VL length at which maximum ACSA is found (Morse et al., 2007). Using echo 

absorptive markers every 3 cm from the medial to the lateral border of VL muscle, 

the ultrasound probe was steadily moved over the echo-absorptive markers from 

medial to the lateral edge of VL. Minimal pressure was applied during scanning to 

avoid compression of the muscle. The ultrasound was recorded as a digital video file 

from which individual images were acquired using capture software (Adobe 

Premier, Adobe). Captured images were acquired at contiguous intervals between 

each shadow cast by the echo-absorptive markers. The entire VLACSA was 

reconstructed in a single canvas from each captured image. For the measurement, 

digitizing software (Image J, NIH) was used as the visible aponeurosis around the VL. 
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The reliability and validity of this method were reported high (>0.99) previously 

when compared with MRI (Reeves et al., 2004). 

 

 

Figure 2.3VLACSA measured using single transverse plane B-mode ultrasound scans 

and contour matched. VL= Vastus Lateralis, VI= Vastus Intermedius. Scan was 

obtained from a participant of the work described in the current thesis. 

2.2.6 Biceps brachii thickness 

B-mode ultrasonography (My LabTwice, Esaote Biomedical, Italy) with a 38mm 

probe (7.5 MHz, linear array probe) was used to measure biceps brachii thickness 

following a previously established method (Miyatani et al., 2004). Participants were 

seated with the dominant arm hanging, relaxed at their side; the proximal 

(acromion process) and distal ends (olecranon) of the humerus were identified using 

ultrasound scanning and palpation. Thereafter, a sagittal plane scan was performed 

at 60% length from the proximal end of the humerus, identifying the upper and 

lower aponeurosis of the biceps brachii muscle (Ogasawara et al., 2012). Minimal 

pressure was applied to the ultrasound probe while scanning to avoid compression 

of the muscle. Ultrasound was recorded in real time, from which an image was 

captured from the recorded video. Biceps thickness was recorded as the distance 
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between the superficial and deep aponeurosis, taken at the proximal, middle and 

distal end of the captured image using digitizing software (Image J, NIH). The 

average of the three measurements was recorded as the bicep thickness.  

 

Figure 2.4 Sagittal plane ultrasound at 60% length of the humerus showing biceps 

brachii from a participant of the work described in the current thesis. 

2.2.7  Isometric Knee Extension Maximum Voluntary Contraction 

Isometric Knee Extension Maximum Voluntary Contraction Force (MVCKE) was 

recorded using a load cell (Zemic, Eten‐Leur, Netherlands)  with all participants in a 

seated position in a custom-built dynamometer with knee angle maintained at 120 

degrees (straight is considered as 180 degrees). The load cell was calibrated using 

known loads of 500g-5kg, in 500g increments, prior to every strength testing 

session. The dominant leg was securely fastened using low compliance, nylon straps 

to a force transducer, at some known distance (5cm in most cases) above the lateral 

malleolus (identified by palpation). Participants were instructed to perform MVCKE 

with real-time visual feedback and verbal encouragement from the principal 

investigator. Three trials were performed, with breaks of 1 minute between trials to 

reduce any influence of fatigue (Armatas et al., 2010). The force produced was 
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digitized using an analogue-to-digital converter displayed and recorded on a PC 

(MyLabView, National Instruments, Berkshire, UK). MVCKE was calculated as: 

MVCKE = Force (Output) X (Tibia length- strap distance from ankle) 

2.2.8 Isometric Maximum Voluntary Contraction -Elbow flexion 

Isometric elbow flexion Maximum Voluntary Contraction (MVCEF) was recorded 

using the same approach and equipment as for the MVCKE. The participants were 

seated in the custom-built dynamometer and dominant hand was securely fastened 

to a force transducer with a shoulder flexed. Participants were instructed to perform 

MVCEF with elbow angle maintained at 60 degrees (straight is considered as 0 

degree) whilst receiving real-time visual feedback and verbal encouragement from 

the principal investigator. Three trials were performed, with breaks of 1 minute 

between trials to reduce the influence of fatigue (Armatas et al., 2010). The force 

produced was digitized using an analogue-to-digital converter, displayed and 

recorded on a PC (MyLabView, National Instruments, Berkshire, UK) and recorded 

in Newton (N). 

2.2.9 Physical Activity Scale for Elderly questionnaire 

Physical Activity Scale for Elderly (PASE) questionnaire was used to assess the 

physical activity of participants. PASE is a valid tool for the measurement of physical 

activity, health and physical function and energy expenditure in older individuals 

(Washburn and Ficker, 1999). The low to moderate correlations between the PASE 

score with accelerometers in the different populations have been reported (Dinger 

et al., 2004; Hagiwara et al., 2008; Svege et al., 2012). Participants completed the 

questionnaire in the lab on the testing day. The questionnaire is a 7-day recall 

questionnaire identifying time spent undertaking activities such as sitting, moderate 

intensity activities, recreational activities, strenuous activities and endurance and 

muscle strength related exercises. The questionnaire includes questions related to 

time spent in household work, gardening, caring for dependent person, and work 

(paid or voluntary). The total PASE score was computed by multiplying the amount 

of time spent in each activity (hours/ week) or participation (yes/no) in an activity 
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by the empirically derived item weights and summing over all activities (Washburn 

and Ficker, 1999). 

2.2.10 Genetic Analysis 

2.2.10.1 DNA sample collection 

Two techniques for DNA collection were adopted during the whole testing. All 

participants were encouraged to provide a forearm venous sample (n = 189 

participants), however, in the case were participants were afraid of the needle or 

there was difficulty in getting the blood sample, a saliva sample was collected (n = 

116 participants). Samples from two participants were not accessible and were not 

collected. 

Five mL of blood was collected from a superficial forearm vein by a trained 

phlebotomist (the principal investigator in this case) in 5mL EDTA tubes (BD 

Vacutainer Systems, Plymouth, UK). Samples were stored at -20 ° C before further 

processing. During the DNA extraction process, the blood was first aliquoted in 2mL 

micro-centrifuge tubes (Eppendorf AG, Hamburg, Germany). Saliva samples were 

collected using DNA Saliva Kits (Oragene.DNA, OG-500, Canada) using 

manufacturer’s instructions with participants abstained from food for a period of 3 

hours before collection. They were provided water to prevent dryness of mouth and 

enhance saliva production prior collection. After saliva collection, the samples were 

stored at room temperature in a laboratory until DNA extraction. All the samples 

collected in EDTA tubes/DNA Saliva Kit were coded and labelled anonymously in 

accordance with the Human Tissue Act 2004. 

2.2.10.2 DNA extraction 

Genomic DNA, from both the Blood sample and Saliva sample, was extracted using 

the Qiagen QIAcube spin protocol (Qiagen, Crawley, UK). The extraction process was 

performed in accordance with the guidelines provided by the manufacturer. Qiagen 

DNA Blood Mini kit buffers (Qiagen, Crawley, UK) were used for the extraction. 

While extracting DNA from blood/saliva samples, cell lysis was done with protease 
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and an AL buffer was used during incubation at 56° C for 10 minutes. Centrifugation 

was then performed followed by the addition of ethanol. The resultant lysate was 

centrifuged at 8000 rpm for 60 s to allow binding of silica gel membrane. Additional 

buffer centrifugation cycles were performed to remove the proteins, nucleases and 

other impurities. Elution of the remaining solution was carried out with 200 μL of 

AE buffer into a 1.5 mL micro-centrifuge tube. These procedures were standardised 

in the automated Qiagen QIAcube that could extract DNA from a maximum of 12 

samples at a time. DNA quantity was measured from NanoDrop prior genotyping 

from the 48 random samples and was found to be between 18-65.8 ng/ μL with 

average 40.2±12.91 ng/ μL. Typical yields from whole blood and saliva with this 

protocol are described as good quality with A260/A280 ratios of 1.2-1.7 (Glasel, 1995). 

2.2.10.3  Genotyping 

The extracted DNA samples were genotyped for 24 polymorphisms (Table 2.1). Two 

techniques were adopted for genotyping. EP1 Fluidigm system was used for the 

initial genotyping but in instances when errors occurred (~1%), such as duplicate 

samples were not in 100% agreement, a second run was performed using 

StepOnePlus real-time PCR.  

The work flow process for EP1 included the transferring of samples and assays into 

the IFC, loading the IFC on IFC Controller RX to automatically set up reaction 

chambers, placing the IFC onto the FC1 cycler and start the PCR protocol, reading 

the IFC on the EP1 reader and analysing the software to view and interpret the 

result. 

In brief, four runs were performed and genotyping was determined using Fluidigm 

192.24 Dynamic Array IFC (Integrated Fluidic Circuit, Fluidigm Corp., CA, USA) in 

accordance with the manufacturer’s instructions. Each assay (4 µL) compromised 

2.0 µL of assay loading reagent [2x] (Fluidigm), 1.0 µL SNP genotyping Assay Mix 

[40X] (Applied Bio-systems), 0.2 µL ROX [50X] (Invitrogen, Carlsbad, CA), and 0.8 µL 

DNA-free water. Each sample (4 µL) contained 1.6 µL genomic DNA, 2.0 µL GTX press 

Master Mix [2X] (Applied Biosystems), 0.2 µL Fast GT Sample Loading Reagent [20X] 

(Fluidigm), and 0.2 µL DNA-free water. Non-template controls (NTCs) were included 
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in each run. Each of the assays (3.75 µL) and samples (4 µL) were pipetted into 

separate inlets on the frame of the chip as manufacturer’s instructions. The assays 

and samples were loaded into the chip and mixed using the Integrated IFC Controller 

RX software. When the mixing was completed, the chip was taken out and then 

loaded into a thermal cycler (FC1 Fluidigm) and the GT 192X24 Fast v1.pcl protocol 

was run. Thereafter, fluorescence levels of the VIC and FAM dyes were measured 

for each sample-SNP combination using the EP1 reader (Fluidigm) and genotypes 

were called using the Fluidigm SNP genotyping analysis software (Fluidigm) and 

manually inspected for unusual patterns. 

In circumstances where the genotyping was not successful in the above process, 

StepOnePlus Real-Time PCR system (Applied Biosystems) was used for amplification 

and genotyping for those samples. For genotyping, reaction volume of 10 µL was 

used which contained 0.2 µL of participant DNA (blood/saliva), 5 µL of TaqMan 

genotyping master mix (Applied Biosystems, Paisley, UK), 4.3 µL of nuclease free 

H2O (Qiagen) and 0.5 µL of TaqMan SNP genotyping assay (Applied Biosystems). 

The protocol included: an initial 10 minutes at 95 °C followed by 40 cycles of 

denaturation for 15 seconds at 92 °C, primer annealing and extension for 1 minute 

at 60°C and the plate read. Genotype was determined by using StepOnePlus analysis 

software version 2.3 (Applied Biosystems). Genotypes were identified based on 

reporter dyes VIC and FAM intensity and visualized using cluster plots. All samples 

were analysed in duplicate with 100% agreement to minimise the genotyping errors 

(Tintle et al., 2009). 
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Figure 2.5 Example allelic discrimination plots for IL6 rs1800795 obtained using the 

EP1 system. Green denotes CC, blue denotes GC and red as GG for IL6 rs1800795 in 

this example. 

2.2.11   Statistical Analysis 

A one-way analysis of variance (ANOVA) was conducted to determine any significant 

differences in physical characteristics (stature, BMI, mass and age) between 

genotype groups (Table). When genotype groups were combined into a dominant 

and recessive model, an independent sample t-test was used to identify the 

differences in physical characteristics. Chi-square test was performed to check the 

compliance for the Hardy-Weinberg equilibrium (Table 2.1).



 

Table 2.1Genotype frequency and participant’s physical characteristics with genotypes 
SNPs Frequency χ²                   p-value Stature BMI Mass Age p-value 

IL6 rs1800795 
CC (n=61) 
CG (n=145) 
GG (n=99) 

 
20% 
47.5% 
32.5% 

 
 
0.356 

 
 
0.837 

 
1.59±0.06 
1.60±0.05 
1.60±0.07 

 
25.6±4.0 
25.8±4.4 
26.1±4.0 

 
65.8±11.2 
65.9±11.6 
67.2±11.0 

 
71.3±6.0 
70.0±5.2 
71.5±6.1 

 
≥0.089 

FT0 rs9939609 
AA (n=48) 
AT (n=151) 
TT (n=106) 

 
15.7% 
49.5% 
34.8% 

 
 
0.228 

 
 
0.892 

 
1.59±0.05 
1.60±0.06 
1.59±0.07 

 
26.63±5.70 
25.70±3.77 
25.92±3.85 

 
67.3±14.1 
66.2±10.5 
66.0±10.9 

 
70.4±4.6 
70.9±5.7 
70.7±6.1 

 
≥0.343 

MTHFR 
rs17421511 
AA (n=7) 
AG (n=78) 
GG (n=220) 

 
 
2.3% 
25.6% 
72.1% 

 
 
0.001 

 
 
0.99 

 
1.62±0.10 
1.60±0.06 
1.59±0.06 

 
26.5±4.5 
26.4±4.7 
25.7±3.9 

 
70.6±16.0 
67.8±12.8 
65.7±10.5 

 
72.6±4.8 
70.9±6.0 
70.6±5.6 

 
≥0.129 

ACVR1B 
rs10783485 
GG (n=128) 
GT (n=147) 
TT (n=29) 

 
 
42.1% 
48.4% 
9.5% 

 
 
2.036 

 
 
0.361 

 
1.60±0.05 
1.60±0.07 
1.60±0.07 

 
26.3±4.4 
25.6±4.0 
25.6±3.9 

 
66.9±12.0 
65.8±10.5 
66.0±11.2 

 
70.2±5.6 
71.4±5.9 
69.8±5.1 

 
≥0.138 

NOS3 rs1799983 
GG (n=118) 
GT (n=144) 
TT (n=43) 

 
38.7% 
47.2% 
14.1% 

 
 
0.008 

 
 
0.996 

 
1.60±0.06 
1.60±0.06 
1.58±0.09 

 
26.2±4.4 
25.7±4.0 
25.8±4.1 

 
66.9±11.5 
70.7±5.9 
71.3±4.7 

 
70.6±5.9 
70.7±5.8 
71.3±4.7 

 
≥0.583 

ACVR1B 
rs2854464 
AA (n=153) 
AG (n=128) 
GG (n=24) 

 
 
50.2% 
42.0% 
7.8% 

 
 
0.150 

 
 
0.928 

 
1.60±0.05 
1.60±0.07 
1.61±0.06 

 
26.2±4.3 
25.7±4.1 
25.4±2.9 

 
66.7±11.8 
66.0±11.2 
65.6±8.0 

 
70.6±5.7 
71.2±6.0 
69.6±3.8 

 
≥0.406 

PTK2 rs7460 
AA (n=72) 

 
23.6% 

 
 

 
 

 
1.59±0.05 

 
25.9±3.8 

 
65.7±9.7 

 
70.2±6.4 

 
≥0.257 
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AT (n=153) 
TT (n=80) 

50.2% 
26.2% 

0.005 0.998 
 
 

1.60±0.07 
1.61±0.06 

26.0±4.5 
25.7±3.8 

66.6±12.2 
66.2±10.8 

71.3±5.7 
70.2±5.0 

ESR1 rs1999805 
AA (n=100) 
AG (n=148) 
GG (n=57) 

 
32.8% 
48.5% 
18.7% 

 
 
0.029 

 
 
0.985 

 
1.60±0.06 
1.59±0.07 
1.61±0.05 

 
26.0±4.0 
26.0±4.2 
25.6±4.3 

 
66.4±10.9 
66.3±11.0 
66.3±12.7 

 
70.8±5.8 
70.9±5.6 
70.4±5.7 

 
≥0.469 

PTK2 rs7843014 
AA ((n=105) 
AC (n=142) 
CC (n=57) 

 
34.5% 
46.7% 
18.8% 

 
 
0.534 

 
 
0.766 

 
1.61±0.06 
1.60±0.07 
1.59±0.05 

 
26.0±4.3 
25.7±4.2 
26.1±3.9 

 
67.0±11.8 
66.0±11.4 
65.7±10.2 

 
70.7±5.2 
70.9±5.7 
70.5±6.5 

 
≥0.086 

VDR  rs2228570 
AA (n=103) 
AG (n= 154) 
GG (n=48) 

 
33.8% 
50.5% 
15.7% 

 
 
0.585 

 
 
0.747 
 

 
1.60±0.06 
1.60±0.07 
1.60±0.05 

 
26.2±4.0 
25.9±4.4 
25.3±3.6 

 
66.7±11.2 
66.4±11.7 
65.3±10.2 

 
71.3±6.0 
70.4±5.4 
70.5±5.8 

 
≥0.461 

ID3 rs11574 
CC (n=178) 
CT (n=111) 
TT (n=16) 

 
58.4% 
36.4% 
5.2% 

 
 
0.059 

 
 
0.971 
 

 
1.60±0.06 
1.59±0.07 
1.60±0.06 

 
25.8±4.2 
26.1±4.2 
25.7±3.0 

 
66.1±11.8 
66.7±10.9 
66.0±8.3 

 
70.4±5.6 
70.7±5.3 
75.5±7.6 

 
 
≥0.002 

CNTF rs1800169 
AA (n=3) 
AG (n=77) 
GG (n=225) 

 
1.0% 
25.2% 
73.8% 

 
 
1.662 

 
 
0.436 
 

 
1.56±0.05 
1.60±0.05 
1.60±0.06 

 
26.7±3.4 
25.9±4.4 
25.9±4.1 

 
65.0±9.5 
66.3±11.5 
66.3±11.3 

 
70.5±1.9 
70.8±5.9 
70.8±5.7 

 
≥0.444 

ACE rs4341 
CC (n=63) 
CG (n=142) 
GG (n=100) 

 
20.7% 
46.5% 
32.8% 

 
 
0.921 

 
 
0.631 

 
1.60±0.05 
1.60±0.07 
1.60±0.06 

 
25.8±4.4 
25.9±4.2 
26.0±3.9 

 
65.1±12.1 
66.6±11.4 
66.7±10.6 

 
70.8±5.0 
71.1±6.3 
70.2±5.1 

 
≥0.157 

CNTFR rs2070802 
AA (n=216) 
AT (n=79) 
TT (n=10) 

 
70.8% 
25.9% 
3.3% 

 
 
0.686 

 
 
0.710 

 
1.60±0.06 
1.60±0.06 
1.60±0.05 

 
25.8±4.2 
67.4±11.7 
69.9±9.7 

 
65.8±11.2 
67.4±11.7 
69.9±9.7 

 
70.8±5.5 
70.6±5.7 
72.4±8.7 

 
≥0.332 
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MTHFR rs1801131 
GG (n=27) 
GT (n=133) 
TT (n=144) 

 
8.9% 
43.8% 
47.3% 

 
 
0.224 

 
 
0.894 

 
1.61±0.06 
1.60±0.05 
1.60±0.06 

 
25.6±3.6 
26.2±4.5 
25.7±3.9 

 
66.8±11.4 
67.1±12.1 
65.5±10.6 

 
70.5±5.7 
71.0±5.8 
70.6±5.6 

 
 
≥0.333 

ESR1 rs4870044 
CC (n=158) 
CT (n=122) 
TT (n=24) 

 
52.0% 
40.1% 
7.9% 

 
 
0.004 

 
 
0.998 
 

 
1.60±0.06 
1.60±0.06 
1.61±0.05 

 
25.9±3.7 
26.3±4.8 
25.0±3.2 

 
66.0±10.6 
67.1±12.6 
64.1±9.04 

 
71.0±5.4 
70.7±6.1 
69.7±5.5 

 
 
≥0.343 

COL1A1 rs1800012 
AA (n=10) 
AC (n=89) 
CC (n=205) 

 
3.3% 
29.3% 
67.4% 

 
 
0.008 

 
 
0.996 
 

 
1.598±0.0569 
1.602±0.054 
1.599±0.056 

 
23.1±2.6 
26.5±4.6 
25.8±4.0 

 
59.2±7.6 
68.1±12.6 
65.9±10.7 

 
71.2±5.5 
71.2±5.2 
70.5±5.8 

 
 
≥0.038 

ACTN3 rs1815739 
CC (n=103) 
CT (n=133) 
TT (n=68) 

 
33.9% 
43.8% 
22.4% 

 
 
3.899 

 
 
0.142 

 
1.592±0.0567 
1.606±0.055 
1.596±0.055 

 
26.2±3.7 
26.1±4.2 
25.5±4.3 

 
66.6±10.4 
67.5±11.6 
64.8±11.3 

 
72.0±6.3 
70.8±5.6 
69.9±5.2 

 
 
≥0.071 

HIF1A rs11549465 
CC (n=241) 
CT (n=62) 
TT (n=2) 

 
79.0% 
20.3% 
0.7% 

 
 
0.869 

 
 
0.648 

 
1.600±0.056 
1.599±0.057 
1.597±0.004 

 
25.8±4.3 
26.1±3.3 
33.0±10.3 

 
66.0±11.5 
66.9±9.4 
84.1±25.9 

 
70.6±5.8 
71.7±5.0 
63.8±3.4 

 
 
≥0.047 

MSTN rs1805086 
CC (n=0) 
CT (n=10) 
TT (n=295) 

 
0.0% 
3.3% 
96.7% 

 
 
0.085 

 
 
0.959 
 

 
 
1.618±0.0509 
1.599±0.056 

 
 
26.2±3.6 
25.9±4.2 

 
 
68.7±11.4 
66.2±11.3 

 
 
71.3±4.9 
70.7±5.7 

 
 
≥0.299 

MTHFR rs1537516 
AA (n=4) 
AG (n=56) 
GG (n=245) 

 
1.3% 
18.4% 
80.3% 

 
0.154 

 
0.926 
 
 

 
1.568±0.031 
1.607±0.058 
1.598±0.055 

 
26.2±4.9 
25.3±3.9 
26.0±4.2 

 
64.9±13.9 
65.4±10.2 
66.5±11.5 

 
68.1±6.1 
70.6±6.3 
70.8±5.5 

 
 
≥0.071 

TTN rs10497520 
CC (n=235) 
CT (n=66) 
TT (n=4) 

 
77.1% 
21.6% 
1.3% 

 
 
0.069 

 
 
0.966 

 
1.599±0.055 
1.602±0.0586 
1.595±0.0465 

 
26.0±4.2 
25.7±4.0 
22.2±3.5 

 
66.6±11.6 
65.9±10.2 
56.4±7.3 

 
70.7±5.8 
70.9±5.5 
67.8±2.5 

 
 
≥0.167 
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TRHR rs7832552 
CC (n=137) 
CT (n=130) 
TT (n=37) 

 
45.0% 
42.8% 
12.2% 

 
 
0.510 

 
 
0.775 
 

 
1.600±0.0537 
1.601±0.059 
1.592±0.0517 

 
26.6±4.0 
25.9±3.9 
27.0±5.1 

 
65.4±10.6 
66.6±11.3 
68.7±13.5 

 
69.8±4.9 
71.7±6.0 
71.1±6.8 

 
 
≥0.024 

IGF1 rs35767 
AA (n=4) 
AG (n=76) 
GG (n=225) 

 
1.3% 
24.9% 
73.8% 

 
 
0.740 

 
 
0.691 
 
 

 
1.62±0.044 
1.60±0.056 
1.60±0.056 

 
28.6±8.3 
25.2±3.4 
26.1±4.3 
 

 
74.9±19.7 
64.8±9.4 
66.7±11.7 

 
71.2±4.9 
70.3±6.0 
70.9±5.6 

 
 
≥0.129 
 



 

 

 

 

 

 

 

 

3 .  Evaluation of previously established 

definitions of sarcopenia for assessing 

neuromuscular phenotypes in elderly 

women 
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 Introduction 

Sarcopenia is an important predictor of adverse outcomes such as limited mobility, 

increased risk of falls, decreased quality of life (QoL), hospitalization and mortality, 

and contributes tens of millions to health care costs in the UK (McNamee et al., 

2001; Cruz-Jentoft et al., 2010; Fahy, 2012). The prevalence of sarcopenia within the 

elderly population is attributable to an ageing- associated decline in both muscle 

mass and strength (Thom et al., 2005; Chien et al., 2008; Toran et al., 2012). 

The decline of muscle mass becomes obvious after the 5th decade of life with 1-2% 

declines reported annually (Marcell, 2003; Buford et al., 2010) and can amount to a 

30-40% lower skeletal muscle mass in 80-year-old people than in young adults 

(Frontera et al., 2000). For a long time, sarcopenia (‘poorness of flesh’) was defined 

as the presence of low muscle mass (Rosenberg, 1997). It has however, been found 

that muscle strength or power correlates more with performance of daily life 

activities in old age than muscle mass (Skelton et al., 1994; Bean et al., 2003; Maden-

Wilkinson et al., 2015). Indeed, muscle strength may well decrease more so than 

the related decrease in muscle mass (Goodpaster et al., 2006; McPhee et al., 2018), 

as such, some definitions include handgrip strength (Cruz-Jentoft et al., 2010). 

 To date however, there is no consensus in the operational definition of sarcopenia. 

Due to this inconsistency in the use of definitions, prevalence of sarcopenia varies 

from 3.3% to 20% in the same population when studied with different definitions 

(Dupuy et al., 2015). This heterogeneity in prevalence can be attributed to the 

different cut-offs, diagnostic method, and the characteristics of the elderly 

population and reference population (Pagotto and Silveira, 2014). 

Any definition of sarcopenia should be able to discriminate meaningful 

neuromuscular phenotypes between sarcopenic and non-sarcopenic elderly groups, 

particularly those phenotypes that have been associated with impairments in 

activities of daily living or prevalence of falls. Within the present thesis, a definition 

of sarcopenia is required that will allow for distinction of genotypes between 

sarcopenic and non-sarcopenic elderly women. Sarcopenia has previously been 
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defined based on being able to discriminate group differences in isometric 

maximum voluntary contraction strength knee extension (MVCKE) (Dupuy et al., 

2015) and to predict falls incidence in the elderly (Scott et al., 2014b; Bischoff-

Ferrari et al., 2015). Although knee extension strength is a determinant of Activities 

of Daily Livings (ADLs), the presentation of sarcopenia also needs to consider the 

size of lower limb muscle (as a predictor of whole limb power output) (Macaluso 

and De Vito, 2004), balance performance (as a predictor of falls and injuries) (Bogle 

Thorbahn and Newton, 1996) and potentially also upper limb muscle size and 

strength (Yeung et al., 2017).  

Appendicular muscle cross sectional area (CSA) is often reported as lower in the 

elderly (Overend et al., 1992), however, appendicular lean body mass or skeletal 

muscle mass are often used to define sarcopenia (Cruz-Jentoft et al., 2010). These 

measures of lean mass, presented relative to height as appendicular lean mass index 

(ALMI) and skeletal muscle index (SMI), allow for a description of the changes with 

age to the muscular system more globally than single CSA measures. Although, Dual-

energy X-ray absorptiometry (DEXA) is commonly used for measuring ALMI, the use 

of Bioelectrical Impedance Analysis (BIA) has been suggested as a valid and low-cost 

alternative for measuring Skeletal Muscle Index (SMI) (Wang et al., 2016). The 

present chapter, aimed to evaluate three previous, and a fourth novel approach of 

defining sarcopenia, to study differences in prevalence and neuromuscular function. 

With relevance to this thesis, the overarching aim was to identify a definition of 

sarcopenia that can be subsequently be used for identifying phenotype and 

genotype associations in the present Caucasian elderly females. Of the three 

previously established definitions all were based on skeletal muscle mass (SMM) 

index, the first, as SMM/height2 (SMIA) the second as SMM/body mass (%SMM); and 

the third was based on SMI and Handgrip strength (HGS) cut-offs as suggested by 

European Working Group on Sarcopenia in Older People (EWGSOP). The fourth 

approach was based on a composite Z-score derived from SMI and HGS, and 

defining sarcopenia as individuals in the least second quintile of the composite Z-

score. 
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 Materials and methods 

3.2.1 Study design 

All participants attended for testing on a single session at the MMU Cheshire 

Campus, Crewe. The testing session was conducted in the following order: 

anthropometry, handgrip strength, isometric maximum voluntary contraction knee 

extension (MVCKE) and elbow flexion (MVCEF), ultrasound of the biceps brachii and 

vastus lateralis muscles and a standing balance test.  

3.2.2 Methods 

Detailed descriptions of participant recruitment, assessment of skeletal muscle size 

measures and muscle strength and balance performance; and DNA sample 

collection and genotyping are included in Chapter 2, thus a brief description of these 

methods are detailed below. 

3.2.2.1 Participants 

Three hundred and seven active elderly Caucasian females (age 70.7 (5.7) years, 

mass 66.3 (11.3) kg, height 1.60 (0.06) m; (mean (SD)) volunteered to participate in 

this study from surrounding areas of MMU. Participants met the inclusion criteria 

(described in Chapter 2) and provided written informed consent prior to testing. 

3.2.2.2 Skeletal Muscle Mass Index 

Skeletal muscle mass was calculated using measures of whole-body impedance and 

resistance to an applied current quantified using Bioelectrical Impedance Analysis 

(BIA) (Model 1500; Bodystat, Isle of Man, UK). Skeletal muscle mass was estimated 

using a previously established formula (Janssen et al., 2000a) as: 

Equation 1: Skeletal Muscle Mass (SMM) = [(Ht2/Rx0.401) + (sex x 3.825) + (age x -

0.071)] + 5.102 
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Where Ht is height in cm, R is resistance from BIA and age in years. For sex, a male 

is scored as 1 and female as 0. 

Skeletal Muscle Index (SMI) was calculated as skeletal muscle mass (SMM) divided 

by the height as;  

Equation 2: SMI= SMM/Ht2 where SMM is in kg and height is in m. 

3.2.2.3 Muscle Strength phenotypes 

Skeletal muscle strengths were measured for handgrip, elbow flexor and knee 

extensor muscles. HGS was measured by Handgrip strength dynamometer and 

MVCKE and MVCEF with a customized built dynamometer (detailed in Chapter 2). 

3.2.2.4 Muscle size phenotypes 

The cross-sectional area of the vastus lateralis (VLACSA) and thickness of the biceps 

muscle were measured with B-mode ultrasound as described in the Chapter 2 at 

50% femur length, and 60% humerus length, respectively.  

3.2.2.5 One leg Standing Balance Test 

One Leg Standing balance test (OLST) was performed as described in Chapter 2. 

Briefly, participants were instructed to stand barefoot and to flex either their left or 

right knee to 900 to ensure the foot was not in contact with the floor, and balance 

on one leg as long as possible. The time was recorded with a stop-watch with 30 

seconds as the maximum duration of the test (Bohannon et al., 1984). If they did 

not reach the 30 seconds, they were asked to repeat the test 3 times and the 

maximum of the three was recorded for the study. 

3.2.2.6 Assessment of sarcopenia  

Sarcopenia was assessed in the participants with 4 different definitions. For all 

definitions, SMI was calculated using BIA as described in Chapter 2. The first 

definition, SMIA previously used by (Chien et al., 2008) was calculated as 

SMM/height2. Participants were defined as sarcopenic if SMIA was <6.42 kg/m2
.
 The 
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second definition, %SMM was calculated as SMM/body mass*100. Participants 

were defined as sarcopenic if SMM<22.1% (Janssen et al., 2000b). Definition 3 used 

the measures of low SMI and low HGS as suggested by the EWGSOP; for which 

individuals with SMI <6.76 kg/m2 and HGS<20kg were considered as sarcopenic 

(Cruz-Jentoft et al., 2010). Definition 4, Z-score, uses the composite Z-score 

calculated by summing the Z-score of SMI and HGS consistent with the EWGSOP 

definition of sarcopenia. Unlike the EWGSOP definition, which defines specific cut-

off thresholds for sarcopenia, sarcopenia was defined as individuals in the lowest 

second quintile of the composite Z-score and non-sarcopenia (normal) as the 

individuals at the highest second quintile. 

3.2.3 Statistical Analysis 

Statistical analyses were carried out using SPSS Version 23.0 for Windows (IBM 

Corp., Armonk, NY, USA). To determine parametricity, Kolmogorov-Smirnov test 

was used for sarcopenia and non-sarcopenia groups and Levene’s test for 

homogeneity of variance. If parametric assumptions were met with sarcopenia 

definitions, an independent sample t-test was used for the comparison. In instance, 

when parametric assumptions were violated, a Mann-Whitney test was utilized and 

Monte-Carlo p-value was reported. It should be noted that some participants did 

not complete all tests due to faults during data capture or inaccessibility for the 

specific tests. Data are presented as Mean±SD. Alpha level p< 0.05 was considered 

as statistically significant. 

 Results 

3.3.1 Prevalence of sarcopenia 

The prevalence of sarcopenia according to each definition was: SMIA 60.6%, %SMM 

14.7%, EWGSOP 1.3% and Z-score 40% (Table 3.1). 

3.3.2 Comparison of Neuromuscular outcomes with sarcopenia definitions 
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Based on sarcopenia definitions, Z-score was able to differentiate 5 neuromuscular 

outcome measures, with decreasing order: 4 for SMIA, and 3 for % SMM and 

EWGSOP. Sarcopenia defined by Z- score was able to differentiate all the 

neuromuscular outcome measures between the two groups. When classification 

was based on composite Z-score, significant differences between sarcopenia and 

non-sarcopenia groups for all the neuro-muscular outcome measures; VLACSA, biceps 

thickness, MVCKE, MVCEF and OLST were observed (Table 3.1). With this definition, 

VLACSA is significantly lower by 17.5 % (p < 0.001); MVCKE by 22.8% (p < 0.001); biceps 

thickness by 9.4% (p < 0.001) and OLST by 19.9 % (p <0.001) compared to non-

sarcopenia.



 

 

Table 3.1Population and sarcopenia group characteristics with different sarcopenia definition 

 

 

* and ** denotes the group is significantly different from non-sarcopenia group at p<0.05 and p<0.001 respectively. VLACSA-Vastus Lateralis Anatomical Cross 
Sectional Area, MVCKE-Isometric Maximum Voluntary Contraction for Knee Extension, MVCEF- Isometric Maximum Voluntary Contraction for Elbow Flexion, OLST-
One Leg Standing Test, S- Sarcopenia group, NS- Non sarcopenia group 

  
SMIA 

 
%SMM 

 
EWGSOP 

 
Z-score 

 

Sarcopenia  

Prevalence (%) 

n=307 
 

n=18660.6% n=121 n=45 

14.7% 

n=262 n=4 

1.3% 

n=303 n=123 

40% 

n=123 

General 

characteristics 

S NS S NS S NS S NS 

Age (years) 70.7±5.7 71.0±5.3 70.3±6.3 71.6±5.6 70.6±5.7 76.8±7.0* 70.6±5.7 72.5±5.9** 68.8±4.8 

Body Mass (Kg) 66.3±11.3 63.4±9.3** 70.9±12.5 77.4±13.1** 64.4±9.8 68.5±10.9 66.3±11.3 62.6±10.0** 69.9±12.0 

BMI (Kg/m2) 25.9±4.2 24.6±3.2** 27.9±4.7 30.2±5.5** 25.2±3.4 28.2±2.9 25.9±4.2 24.9±3.7** 27.1±4.7 

HGS (Kg) 29.9±5.0 29.1±4.4** 31.1±5.6 28.4±4.9* 30.2±5.0 17.8±2.2** 30.0±4.9 26.1±3.7** 33.8±4.1 

SMI (kg/m2) 6.56±0.81 6.05±0.51** 7.33±0.53 6.04±0.92** 6.64±0.75 6.29±0.18 6.56±0.81 5.95±0.59** 7.17±0.67 

VLACSA  (cm2) 16.3±3.4 15.5±3.1** 17.6±3.3 16.84±3.71 16.3±3.3 15.9±0.7 16.3±3.3 14.7±3.0** 17.9±3.2 

Bicep thickness 

(cm) 

1.76±0.34 1.72±0.34* 1.82±0.31 1.819±0.362 1.75±0.33 1.51±0.09 1.76±0.33 1.67±0.35** 1.85±0.34 

MVCEF  (N) 117±29 111±25** 127±32 107±21* 119±29 68±11** 118±28 105±24** 131±31 

MVCKE (N) 1649±550 1590±526* 1738±576 1471±558* 1679±545 846±321* 1657±547 1433±463** 1856±558 

OLST(s) 23.9±9.7 23.7±9.8 24.2±9.5 18.5±11.5** 24.8±9.0 9.2±13.8* 24.1±9.5 21.2±11.1** 26.5±7.4 



 

 Discussion 

The current chapter identified that different definitions of sarcopenia result in a 

widely different prevalence of sarcopenia, ranging from 1.3% to 60.6% in the 

present population of women aged >60 years.  Of the four-sarcopenia definitions 

studied, the novel Z-score approach could distinguish the most meaningful 

neuromuscular outcome measures between the sarcopenic and non-sarcopenic 

group. 

In the present study, the prevalence of sarcopenia ranged from 1.3% to 60.6% 

depending on sarcopenia criteria used. This heterogeneity prevalence is consistent 

with previous study, (Bijlsma et al., 2013), and confirms that the criteria, definition 

and threshold will determine prevalence with greater variety shown when 

comparing different study populations. Below, each definition is discussed, based 

on the prevalence, and ability to show distinct differences in neuromuscular 

phenotypes between the sarcopenic and non-sarcopenic populations. 

The SMI definition of sarcopenia has previously resulted in prevalence ranging from 

2.8-42% (Janssen, 2006; Chien et al., 2008; Tichet et al., 2008). At the extremes, this 

lower prevalence in sarcopenia is due to threshold levels being set too 

conservatively (SMI 6.2kg/m2 previously) (Tichet et al., 2008), compared to 

6.42kg/m2 (SMIA) in present study definition based on previous (Chien et al., 2008). 

Although the present study adopted a less stringent level of SMI, this approach was 

successful in being able to distinguish sarcopenic and non-sarcopenic groups in 4/5 

neuromuscular outcome measures. 

The second definition of sarcopenia using % SMM resulted in a prevalence of 14.7% 

in present elderly female population. This prevalence falls within a range similar to 

reported previously using the same approach. For example, the large population 

NHANESS III study, which estimated that 10% of US women above 60 years are 

sarcopenic (Janssen et al., 2002) and 23.6% prevalence in elderly French women 

(Tichet et al., 2008).  In the present study, % SMM definition was able to distinguish 
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group differences in 3/5 neuromuscular outcome measures between sarcopenic 

and non-sarcopenic groups. 

The prevalence of sarcopenia (1.3%) in elderly female in the present study using the 

EWGSOP definition was consistent with studies reported in different populations. 

For instance, the prevalence of sarcopenia was found to be 2.5% in Taiwanese 

women (Wu et al., 2014) 4.5% in German females (Kemmler et al., 2015), 5% in 

Australian males and females (Scott et al., 2014a) and 7.4% in Japanese female 

(Yoshida et al., 2014) using the EWGSOP definition. While others have reported, 

higher prevalence with EWGSOP compared to the present study. It should be noted 

that higher prevalence has been reported ranging between 22-48% in some of the 

studies conducted across Europe, Asia and South America (Arango-Lopera et al., 

2012; Velázquez Alva et al., 2013; Volpato et al., 2013; Yamada et al., 2013; ter Borg 

et al., 2016). These higher prevalances tend to be in populations incorporating the 

oldest old, their own young reference group (rather than cut offs) and those living 

non-independently. The EWGSOP definition used in the present chapter was able to 

distinguish 3/5 neuromuscular phenotypes, and although partially successful as a 

discriminating factor, was not tenable as a method within the present population as 

subsequent genotype analysis would be impossible with such a small population of 

sarcopenic participants (n = 4). 

In the present chapter, the HGS and SMI Z-score approach was developed based on 

the fact that a) differences in SMI alone do not reflect the accelerated loss of muscle 

strength (over size) in the elderly, and 2) it would allow for the clear distinction of 

sarcopenic from non-sarcopenic, into quintiles, allowing for a “stressed phenotype” 

approach to subsequent genotype analysis. A similar quintile approach was adopted 

to define cut-offs for lower muscle mass/body fat (Davison et al., 2002; Batsis et al., 

2013), but to the author’s knowledge this is the first description of sarcopenia using 

a composite Z-score consistent with the EWGSOP. In the present chapter, Z-score 

approach is considered meaningful based on the ability to discriminate the 

neuromuscular outcome measures between the sarcopenia and non-sarcopenia 

groups. Furthermore, any subsequent genotype analysis would be possible given 

the numbers of participants categorised as sarcopenic and non-sarcopenic.  
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Although the EWGSOP is an accepted threshold for identifying sarcopenia 

population based on cut-offs for HGS and SMI, it is however, too conservative 

approach for the present elderly females, as both thresholds have to be met to 

define an individual as sarcopenic. As the aim of the thesis is to be able to 

discriminate sarcopenic from non-sarcopenic based on neuromuscular 

impairments, and genotype, the Z-score approach using SMI and HGS, was able to: 

a) identify a wider population as sarcopenic, and b) show group differences in all 

neuromuscular measures between those identified as sarcopenic and non-

sarcopenic. 

Having considered the definitions above, the subsequent section considers the 

neuromuscular differences between sarcopenic and non-sarcopenic individuals as 

identified using the quintiles Z score approach. Elderly women described as 

sarcopenic using the Z-score approach, were weaker (MVCKE and MVCEF), had lower 

muscle mass (VLACSA and biceps brachii thickness) and worse single leg balance 

(OLST). The specific physiological mechanisms as to why the two groups are 

different in the present study are consistent with what we understand about the 

mechanisms of ageing i.e. changes in hormonal status (Curtis et al., 2015), physical 

activity (Troiano et al., 2008) neurological factors, or genetic factors (Garatachea 

and Lucía, 2013). Based on their specific decrements in strength, balance and 

muscle mass, the present elderly sarcopenic women (despite not being considered 

saropenic based on the EWGSOP at present) are more likely to be at risk of higher 

falls (Landi et al., 2012b), have higher incidence of frailty (Clegg et al., 2013), be less 

likely to be able reach functional thresholds for activities of daily living (Choi et al., 

2013; Shiozu et al., 2015), and are at a high risk of mortality (Norman et al., 2011). 

These sarcopenic women, as classified here, although healthy at the moment could 

be meaningfully categorised as sarcopenic for subsequent phenotype and genetic 

association studies in this thesis, based on the neuromuscular differences identified 

between the groups.  

 Conclusion 

The present chapter concluded that sarcopenia prevalence varied with the use of 

different definitions and definition based on composite Z-score can differentiate 



 

 55 

more features of sarcopenia individuals. It is the only definition that differentiates 

all the neuromuscular phenotypes investigated in the present study that are 

important for the maintenance of independence in the old age between the two 

groups. 
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4 . Genetic associations with sarcopenia 

in elderly Caucasian females 
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 Introduction 

As observed in Chapter 3, there is a variance in the prevalence of sarcopenia within 

elderly women, such that depending on the definition of sarcopenia used, between 

1-61% of elderly women would be considered sarcopenic. The fact that some elderly 

women do not show symptoms of sarcopenia, whilst others of the same age do, 

suggests that some individuals are susceptible to sarcopenia at an earlier age than 

others. The severity of sarcopenia is likely due to a combination of factors including 

physical activity, diet and sedentary behaviour (Carmelli and Reed, 2000; Gerdhem 

et al., 2005; Bruce, 2017; de Camargo Smolarek et al., 2018). The heritability of 

muscle mass and muscle strength as a contributor to the maintenance of muscle 

mass during ageing cannot be neglected (Zhai et al., 2004). The heritability of muscle 

mass and muscle strength have been reported, as high as 66% and 82%, 

respectively, in large population studies of healthy adults (Arden and Spector, 1997; 

Thomis et al., 1998; Abney et al., 2001). Genome Wide Association Studies (GWAS) 

and case-control association studies have identified associations between several 

gene variants and muscle mass and muscle strength phenotypes ranging from young 

to elderly populations (Tan et al., 2012; Garatachea and Lucia, 2013). Taken 

together, the high heritability of muscle mass and muscle strength, and the findings 

from GWAS and association studies, it is possible that individuals carrying a greater 

proportion of favourable gene variants possess a greater ability to preserve muscle 

function despite their old age; hence can maintain independence until later life and 

are less susceptible to sarcopenia in their early stage of ageing. 

To date, there has been a considerable number of studies describing the association 

of single gene variants with muscle mass and muscle strength (Table 1.5). There are 

however, only a limited number that have investigated the genetic associations with 

sarcopenia, in total these include: VDR FokI (Roth et al., 2004; Walsh et al., 2016), 

IL6 (Tasar, 2018) and ACTN3 R577X (Cho et al., 2017) polymorphisms. Considering 

there are now more than 200 gene variants suggested to be associated with physical 

performance and health-related skeletal muscle phenotypes (Bray et al., 2009), it is 

reasonable to assume that SNPs previously associated with skeletal muscle 

phenotypes, could also be associated with sarcopenia.  
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The present chapter therefore, aimed to investigate the association of 24 SNPs 

selected initially (process described in Chapter 1) and sarcopenia, using the 

definition obtained in chapter 3, in elderly females. 

 Methods 

4.2.1 Participants 

60-91 years old Caucasian females (n= 307, 70.7±5.7 years, 66.3±11.3 kg, 1.60±0.06 

m, (Mean ± SD)) were recruited for the study. All the participants provided written 

informed consent and met the inclusion criteria as mentioned in the Chapter 2 prior 

to taking part in this study.  

All the procedures utilised in this Chapter have been described in detail in Chapter 

2, thus only a brief description is provided here. 

4.2.2  Skeletal Muscle Mass Index 

Skeletal muscle mass was calculated using measures of whole-body impedance and 

resistance to an applied current quantified using Bioelectrical Impedance Analysis 

(BIA) (Model 1500; Bodystat, Isle of Man, UK). Skeletal muscle mass was estimated 

using a previously established formula (Janssen et al., 2000a) as:  

Equation 1: Skeletal Muscle Mass (SMM) = [(Ht2/Rx0.401) + (sex x 3.825) + (age x -
0.071)]+ 5.102 

Where Ht is height in cm, R is resistance from BIA and age in years. For sex, a male 
is scored as 1 and female as 0. 

Skeletal Muscle Index (SMI) was calculated as skeletal muscle mass (SMM) divided 
by the height as;  

Equation 2: SMI= SMM/Ht2 where SMM is in kg and height is in m. 

4.2.3  Handgrip Strength 
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Handgrip strength (HGS) was measured using a digital load cell handgrip 

dynamometer. The highest grip strength of three maximal efforts was recorded for 

the study. The left and right hand were alternated, with 1 minute break between 

trials. 

4.2.4 DNA sample collection and genotyping 

Blood (189 samples (~ 62%)) and saliva (116 samples (~38%)) were obtained using 

standard protocols. Blood was drawn from a superficial forearm vein and then 

stored at -20 °C until further processing. For the saliva sample, saliva was collected 

in Oragene.DNA OG-500 collection tubes (DNA Genotek Inc., Ontario, Canada) 

following the company’s protocol and stored at room temperature until DNA 

extraction. DNA was extracted by the QIAcube method; subsequent to which 

genotyping of 24 SNPs described in the Chapter 1, Table 1.5 was performed. 

4.2.5  Assessment of Sarcopenia 

Sarcopenia was defined with the Z-score definition from Chapter 3, which is based 

on the composite Z-score. In short, a composite Z-score was calculated by the 

summation of Z-score of SMI and Z-score of HGS and the individuals in the lowest 

second quintile of the composite Z-score were defined as the sarcopenia group in 

the present study. 

4.2.6  Statistical analysis 

The data were tested for parametricity before completing any statistical analyses. 

Kolmogorov-Smirnov was used to assess the normal distribution of the population 

and Levene’s test for the homogeneity of variance of HGS and SMI. The frequency 

distribution of each SNP was assessed for compliance with Hardy-Weinberg 

equilibrium (HWE) using chi-square tests. Binary logistic regression was performed 

to investigate the association of sarcopenia and the SNPs studied, with age used as 

covariate. In instances where the number of homozygous participants was low, this 

homozygous group was combined with the heterozygous group and a two-group 

analysis was performed. When there was a tendency of association (0.05<p<0.15)  
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(Fischer et al., 2004; Danilovic et al., 2007), as was the case with ACE rs4341, the 

homozygous groups were combined with the heterozygous group in a recessive and 

dominant model and then the analyses were re-run. Odds Ratios for the risk allele 

for sarcopenia were estimated for each SNP. Benjamini-Hochberg correction was 

performed to reduce the chance of type I error for multiple testing (Benjamini and 

Hochberg, 1995). All the tests were performed in SPSS Version 23.0.  p<0.05 was 

considered significant. 

 Results 

All genotype data were compliant with Hardy Weinberg equilibrium as shown in 

Table 2.1 (p>0.05).  The genotype frequency distribution for each SNP between 

sarcopenia and non-sarcopenia group is presented in Table 4.1.  The two SNPs, ACE 

rs4341 and HIF1A rs11549465 were found to be associated with sarcopenia (ACE 

rs4341 before multiple correction). As there were few participants (n=2) with the 

TT genotype in HIF1A rs11549465, they were combined with the heterozygous 

group and analysis was performed. Following binary logistic regression, using age as 

a covariate, HIF1A rs11549465 CC individuals had 2.5 times higher risk of being 

sacropenic than T-allele carriers (OR= 2.45, CI: 95% (1.26-4.78), p=0.008).  

Additionally, ACE rs4341 CC homozygotes were had almost a 2 times greater risk of 

being sarcopenic than G-allele carriers (OR= 1.95, CI: 95% (1.002-3.80), p= 0.049) 

(1.26-4.78), p=0.008). Besides the above two SNPs, no other SNPs showed 

significant association with sarcopenia (Table 4.1).  

Table 4.1 Genotype frequency distribution between sarcopenia and non-sarcopenia 

groups 

SNPs Sarcopenia 
(N=123) 
n (%) 

Non-
sarcopenia 
(N=123) 
n (%) 

Odds ratio CI 95% p-value 

IL6 rs1800795 
CC 
CG 
GG 

 
27 (21.9%) 
53 (43.1%) 
43 (35.0%) 

 
25 (20.3%) 
60 (48.8%) 
38 (30.9%) 

 
1.10 
CC+CG Vs 
GG 

 
0.63-1.94 

 
0.731 

FT0 rs9939609 
AA 
AT 
TT 

 
27 (22.0%) 
56 (45.5%) 
40 (32.5%) 

 
20 (16.2%) 
59 (48.0%) 
44 (35.8%) 

 
0.66 
AA Vs 
AT+TT 

 
0.34-1.28 

 
0.218 
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MTHFR 
rs17421511 
AA 
AG 
GG 

 
1 (0.8%) 
28 (22.8%) 
94 (76.4%) 

 
4 (3.3%) 
34 (27.6%) 
85 (69.1%) 

 
1.53 
AA+AG Vs 
GG 
 

 
0.84-2.79 

 
0.168 

ACVR1B 
rs10783485 
GG 
GT 
TT 

 
54 (43.9%) 
59 (48.0%) 
10 (8.1%) 

 
52 (42.3%) 
58 (47.2%) 
13 (10.6%) 

 
0.82 
GG Vs 
GT+TT 

 

 
0.48-1.40 

 
0.460 

NOS3 
rs1799983 
GG 
GT 
TT 

 
51 (41.5%) 
56 (45.5%) 
16 (13.0%) 

 
44 (35.8%) 
62 (50.4%) 
17 (13.8%) 

 
0.69 
GG Vs 
GT+TT 

 
 
 

 
0.40-1.12 

 
0.181 

ACVR1B 
rs2854464 
AA 
AG 
GG 

 
64 (52.0%) 
52 (42.3%) 
7 (5.7%) 

 
62 (50.4%) 
50 (40.7%) 
11 (8.9%) 

 
0.90 
AA VS 
AG+GG 

 
 

 
0.53-1.52 

 
0.683 

PTK2 rs7460 
AA 
AT 
TT 

 
33 (26.8%) 
61 (49.6%) 
29 (23.6%) 

 
26 (21.1%) 
61 (49.6%) 
36 (29.3%) 

 
0.78 
AA+AT Vs 
TT 

 

 
0.43-1.41 

 
0.401 

ESR1 
rs1999805 
AA 
AG 
GG 

 
38 (30.9%) 
64 (52.0%) 
21 (17.1%) 

 
44 (35.8%) 
55 (44.7%) 
24 (19.5%) 

 
1.279 
AA Vs 
AG+GG 

 
 

 
0.73-2.24 

 
0.391 

PTK2 
rs7843014 
AA 
AC 
CC 

 
41 (33.3%) 
53 (43.1%) 
28 (22.8%) 

 
43 (35.0%) 
62 (50.4%) 
18 (14.6%) 

 
1.81 
AA+AC Vs 
CC 

 
 

 
0.90-3.63 

 
0.097 

VDR 
rs2228570 
AA 
AG 
GG 

 
45 (36.6%) 
59 (48.0%) 
19 (15.4%) 

 
38 (30.9%) 
68 (55.3%) 
17 (13.8%) 

 
0.85 
AA Vs 
AG+GG 

 
 

 
0.49-1.49 

 
0.567 

ID3 rs11574 
CC 
CT 
TT 

 
68 (55.3%) 
45 (36.6%) 
10 (8.1%) 

 
75 (61.0%) 
45 (36.6%) 
3 (2.4%) 

 
2.38 
CC+CT Vs 
TT 

 

 
0.58-9.85 

 
0.230 

CNTF 
rs1800169 
AA 
AG 
GG 

 
1 (0.8%) 
30 (24.4%) 
92 (74.8%) 

 
2 (1.6%) 
29 (23.6%) 
92 (74.8%) 

 
0.92 
AA+AG Vs 
GG 

 

 
0.50-1.69 
 

 
0.793 

ACE rs4341 
CC 
CG 
GG 

 
31 (25.2%) 
59 (48.0%) 
33 (26.8%) 

 
19 (15.5%) 
56 (45.5%) 
48 (39.0%) 

 
1.95 
 CC Vs 
GG+GC 

 

 
1.00-3.80 

 
0.049 
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CNTFR 
rs2070802 
AA 
AT 
TT 

 
92 (74.8%) 
28 (22.8%) 
3 (2.4%) 

 
81 (65.8%) 
37 (30.1%) 
5 (4.1%) 

 
0.61 
AA Vs 
AT+TT 

 

 
0.34-1.09 

 
0.097 

MTHFR 
rs1801131 
GG 
GT 
TT 

 
11 (8.9%) 
53 (43.1%) 
58 (47.1%) 

 
12 (9.8%) 
49 (39.8%) 
62 (50.4%) 

 
1.15 
GG Vs 
GT+TT 

 
 

 
0.46-2.87 

 
0.230 

ESR1 
rs4870044 
CC 
CT 
TT 

 
60 (48.8%) 
56 (45.5%) 
7 (5.7%) 

 
64 (52.0%) 
49 (39.8%) 
9 (7.3%) 

 
1.17 
CC Vs 
CT+TT 

 
 

 
0.69-1.99 

 
0.566 

COL1A 
1rs1800012 
AA 
AC 
CC 

 
2 (1.6%) 
30 (24.4%) 
90 (73.1%) 

 
6 (4.9%) 
39 (31.7%) 
78 (63.4%) 

 
1.76 
AA+AC Vs 
CC 

 
0.99-2.12 

 
0.056 

ACTN3 
rs1815739 
CC 
CT 
TT 

 
43 (35.0%) 
54 (43.9%) 
25 (20.3%) 

 
41 (33.3%) 
53 (43.1%) 
29 (23.6%) 

 
1.56 
TT VS 
CT+CC 

 
 

 
0.81-3.01 

 
0.184 

HIF1A 
rs11549465 
CC 
CT 
TT 

 
104 (85.5%) 
19 (15.5) 
0 (0.0%) 

 
89 (72.4%) 
32 (26.0%) 
2 (1.6%) 

 
2.45 
CC Vs 
CT+TT 
 

 

 
1.26-4.78 

 
0.008 

MSTN 
rs1805086 
CC 
CT 
TT 

 
0 (0.0%) 
1 (0.8%) 
122 (99.2%) 

 
0 (0.0%) 
4 (3.3%) 
119 (96.7%) 

 
4.13 
CC Vs CT 
 
 

 
0.451-37.80 

 
0.209 

MTHFR 
rs1537516 
AA 
AG 
GG 

 
0 (0.0%) 
26 (21.1%) 
97 (78.9%) 

 
4 (3.3%) 
17 (13.8%) 
102 (82.9%) 

 
0.80 
AA+AG Vs 
GG 

 
 

 
0.41-1.58 

 
0.526 

TTN 
rs10497520 
CC 
CT 
TT 

 
95 (77.3%) 
26 (21.1%) 
2 (1.6%) 

 
93 (75.6%) 
28 (22.8%) 
2 (1.6%) 

 
0.91 
CC+CT Vs 
TT 

 
 

 
0.49-1.69 

 
0.755 

TRHR 
rs7832552 
CC 
CT 
TT 

 
53 (43.1%) 
56 (45.5%) 
13 (10.6%) 

 
60 (48.8%) 
45 (36.6%) 
18 (14.6%) 

 
0.65 
CC+CT Vs 
TT 

 

 
0.28-1.47 

 
0.30 

IGF1 rs35767 
AA 
AG 
GG 

 
1 (0.8%) 
28 (22.8%) 
94 (76.4%) 

 
2 (1.6%) 
32 (26.0%) 
89 (72.4%) 

 
1.20 
AA+AG Vs 
GG 

 
 

 
0.65-2.20 

 
0.567 
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n represents number of participants in the specific genotype groups and p value 

denotes the association between the SNPs and sarcopenia and grey genotype 

groups denotes reference group in regression. 

 Discussion 

The present chapter aimed to investigate the genetic association with sarcopenia in 

an elderly Caucasian female population and identified HIF1A rs11549465 and ACE 

rs4341 polymorphisms as being associated with sarcopenia. The present data 

showed that HIF1A rs11549465 CC homozygotes had a 2.5-fold higher risk of 

sarcopenia compared to T-allele carriers. For ACE rs4341, CC homozygotes had a 2-

folds higher risk of being in the sarcopenia group compared to G–allele carriers. 

Genotype frequencies for polymorphisms are presented in the current chapter 

(Table 4.1). 

In the present elderly population, HIF1A rs11549465 CC genotype group was 

observed as the genotype risk group for sarcopenia. The reason for the association 

of the nuclear transcription factor HIF1A protein could be explained by its possible 

role in skeletal muscle physiology. HIF1 protein is stable in hypoxia, mediates several 

biological processes such as apoptosis, cell proliferation and differentiation, and 

controls the genes involved in those processes (Epstein et al., 2001; Hashimoto and 

Shibasaki, 2015). A higher transactivation capacity of HIF1A with the TT variant has 

also previously been reported (Tanimoto et al., 2003), so it is possible that 

individuals with TT genotypes could have balanced mechanisms of muscle cell 

apoptosis, and enhance the muscle cell proliferation and differentiation, which 

ultimately could result in higher muscle mass and muscle strength in the non-

sarcopenia group. This is supported by previous studies that have associated TT 

homozygotes with favourable muscle phenotypes and muscle function in sporting 

performance. For instance, with regards to muscle strength phenotypes, TT 

homozygotes were observed to be significantly overrepresented in weightlifters 

and wrestlers (Gabbasov et al., 2013) and power-oriented athletes (Cięszczyk et al., 

2011; Drozdovska et al., 2013b). This suggests that individuals requiring more 

muscle mass and muscle strength in such sports would have some beneficial effects 
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of the TT variant of HIF1A rs11549465. Sarcopenia described in this thesis, as elderly 

women with lower composite HGS and SMI Z-score, also have smaller muscle mass 

and weaker muscle strength (as observed in chapter 3); hence, the identification of 

HIF1A rs11549465 CC genotype as a risk factor for sarcopenia in the present 

chapter. 

In the present chapter, the ACE rs4341 CC genotype group has been found to be at 

higher risk of being sarcopenic.  The biological role of the ACE enzyme and the 

change in the ACE activity with ACE rs4341 polymorphism may explain the observed 

association. This polymorphism has been reported to be in linkage disequilibrium 

with ACE I/D polymorphism, with the C allele behaving as I allele. Biologically, the 

ACE D allele increases the conversion of Angiotensin I to Angiotensin II and is widely 

expressed in skeletal muscle (Reneland and Lithell, 1994). Angiotensin II helps in 

modulating skeletal muscle hypertrophy in response to mechanical loading (Gordon 

et al., 2001) likely by AT1 receptors. ACE DD has been previously associated with 

higher muscle mass/size and overrepresentation in sports demanding higher 

skeletal muscle strength. For instance, DD genotype was associated with larger 

quadriceps muscle volume in both men and women pre-training (Charbonneau et 

al., 2008), higher isometric and isokinetic strength in knee extensors pre-training 

(Williams et al., 2005), and significant gains in knee extensor strength in post-

training (Folland et al., 2000; Giaccaglia et al., 2008; Pereira et al., 2013). Similarly, 

studies have also evidenced the higher representation of D allele in power-oriented 

athletes (Woods et al., 2001; Tsianos et al., 2004; Costa et al., 2009b). Therefore, it 

is possible that D allele is positively associated with muscle mass and muscle 

strength, and hence could act as the protective allele whereas; I may act as the risk 

allele for sarcopenia. 

It should be noted that the present chapter utilises a Z-score based sarcopenia 

definition for studying the possible associations with the SNPs. Using the other 

sarcopenia definitions and comparing the results with same set of SNPs might yield 

similar or different results. Future studies should therefore, focus on using the 

several established sarcopenia definitions; compare, and associate the similar set of 

SNPs with all the definitions. The use of the Z-score (and quintiles approach) allowed 
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sufficient participants to be defined as sarcopenic, for subsequent inclusion within 

the genetic analysis. The previous definitions of sarcopenia similarly took this 

approach as discussed in the previous chapter. 

Within this chapter, it was found that only 2 of the investigated 24 SNPs were 

associated with sarcopenia, despite hypothesising that more SNPs would be 

associated with sarcopenia before the investigation.  Since the present study used 

a Z-score approach and classified participants between sarcopenia and non-

sarcopenia based on cumulative Z-score of HGS and SMI, it is possible that the 

recruitment of active participants might not be able to discriminate accurately  

between the sarcopenic and non-sarcopenic groups according to genotype, which 

may explain the lack of associations with many of the SNPs. Another possible reason 

could be due to insufficient power. Additionally, the skeletal muscle phenotypes, 

muscle mass and muscle strength, are polygenic in nature (Hughes et al., 2011), 

hence the influence of a single SNP for sarcopenia might be less in the present study. 

A common shortcoming of sarcopenia research is the use of “healthy” older 

participants, so that although only a small number of SNPs were associated with 

sarcopenia, the results are presented in the knowledge of the limitations within the 

heterogeneity of the participants recruited here and in other sarcopenia studies. 

Further research should consider either stressing the sarcopenic phenotype by 

presenting data from non-independently living elderly participants, or associating 

SNPs with more distinct neuromuscular phenotypes that show greater impairments 

through ageing, such as quadriceps muscle size and strength. 

   Conclusion 

The present chapter identified the novel associations of HIF1A rs11549465 CC and 

ACE rs4341 II genotypes as the risk genotype group for sarcopenia in an elderly 

female population. Identification of gene variants associated with sarcopenia might 

help in screening the population prone to sarcopenia in old age. 
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5 . Influence of genetic polymorphism in 

skeletal muscle phenotypes in elderly 

Caucasian females 
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 Introduction 

Sarcopenia is a complex process and is associated with the decline in skeletal muscle 

function (Cruz-Jentoft et al., 2010). Twin studies have suggested the high 

contribution of genetic factors on inter-individual variation in muscle mass and 

muscle strength (Thomis et al., 1998; Abney et al., 2001 ; Silventoinen et al., 2008), 

therefore there is the possibility of associations of Single Nucleotide Polymorphisms 

(SNPs) with muscle mass and strength in the elderly. Chapter 4 identified the 

association of two SNPs, ACE rs4341 and HIF1A rs11549465, with sarcopenia in the 

present elderly females; however, the preceding chapter (Chapter 3) has identified 

that sarcopenia can affect as few as 1.3%–60.6% of the elderly population 

depending on the definition. Although sarcopenia is a meaningful clinical definition, 

the difference in skeletal muscle phenotypes (muscle mass/muscle strength) 

between the two groups are relevant to quality of life (QoL) and Activities of Daily 

Livings (ADLs) (Rizzoli et al., 2013; Beaudart et al., 2015a; Yoshimura et al., 2017). 

Regardless of whether sarcopenic levels are reached, lower muscle mass has been 

linked with functional impairment and physical disability in older people (Janssen et 

al., 2002). Similarly, lower knee strength is linked with higher falls and injuries 

(Takazawa et al., 2003; Chung-Hoon et al., 2016) and lower handgrip strength is 

associated with impaired mobility, functional decline and higher levels of mortality 

(Bohannon, 2015; Stessman et al., 2017; McGrath et al., 2018). 

Inter-individual variability exists between muscle size and muscle strength; up to 

18% (Wakahara et al., 2010) and 20% (Stebbings et al., 2014) population variability 

was reported for appendicular lean muscle size and vastus lateralis muscle volume 

respectively, and up to 16% coefficient of variation (CV) for specific force (Erskine et 

al., 2009; Stebbings et al., 2014) in younger adults. Within the elderly, this variance 

implies that those at the weaker or lower end of the distribution are likely to 

experience a loss of independence at an earlier age. It is likely that the presentation 

of muscle strength and muscle size phenotypes in the elderly are associated with 

numerous SNPs. 
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There are presently numerous studies associating single SNPs with skeletal muscle 

phenotypes in a variety of populations, ranging from young adult athletes to elderly 

(Table 1.5, Chapter 1).  However, there are numerous instances where these SNPs 

show contrasting results depending on the population investigated. In older adult 

populations for instance, ACE I/D is associated with skeletal muscle mass 

phenotypes (Charbonneau et al., 2008) in one study, while not associated in another 

(Pereira et al., 2013). Within female elderly populations, there are presently no 

investigations into the role of multiple SNPs on the plethora of skeletal muscle 

mass/size and strength phenotypes.  

In terms of identifying meaningful phenotypes to investigate SNP associations, the 

previous chapter has observed the differences between sarcopenic and non-

sarcopenic populations for Isometric Knee Extension Maximum Voluntary 

Contraction (MVCKE), Isometric Elbow Flexion Maximum Voluntary Contraction 

(MVCEF), Handgrip Strength (HGS), biceps brachii and Vastus lateralis (VL) muscle 

size measures (Chapter 3). Specific to the present chapter, VL muscle atrophy is 

representative of muscle loss associated with ageing (Lexell et al., 1988) and loss of 

knee extensor strength correlates with functional impairments in the elderly 

(Martien et al., 2015). In addition to lower limb musculature, the upper limb muscle 

size and muscle strength are also prone to decline with ageing (Janssen et al., 2000b; 

Keller and Engelhardt, 2013). Identification of new gene variants or replicating the 

previous findings in the present elderly population could be useful in targeting the 

sarcopenia group with appropriate interventions. 

 Therefore, the present chapter aimed to investigate the association of SNPs on 

skeletal muscle phenotypes, specifically muscle size (biceps brachii thickness, VL 

thickness, VLACSA) and muscle strength (HGS, MVCEF and MVCKE), in a Caucasian 

elderly female population. 
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 Methods 

Detailed descriptions of participant recruitment, assessment of skeletal muscle size 

and strength measures and DNA sample collection and genotyping is included in 

Chapter 2, thus only brief descriptions are provided below. 

5.2.1 Participants 

Three hundred and seven active elderly Caucasian females (age 70.7 (5.7) years, 

mass 66.3 (11.3) kg, height 1.60 (0.06) m; mean(SD)) volunteered to participate in 

this study from surrounding areas of MMU. Participants met the inclusion criteria 

(described in Chapter 2) and provided written informed consent prior to testing. 

5.2.2 Skeletal muscle properties 

5.2.2.1 Muscle strength phenotypes 

Skeletal muscle strength was measured for handgrip, elbow flexor and knee 

extensor muscles. Handgrip strength was measured by Handgrip dynamometer and 

Isometric Maximum Voluntary Contraction of Elbow Flexion and Knee extension 

with a customized built dynamometer (detailed in Chapter 2). 

5.2.2.2  Muscle size phenotypes 

Skeletal muscle size phenotypes included VL at 50% length (VL thickness, VLACSA) and 

biceps brachii thickness at 60% length of the humerus bone. Measurements of 

VLACSA and biceps brachii thickness were conducted using B-mode ultrasound as 

described in Chapter 2. 

5.2.2.3 Sample collection, DNA extraction and genotyping 

Blood (189 samples (~ 62%)) and saliva (116 samples (~38%)) were obtained using 

standard protocols. Blood was drawn from a superficial-forearm vein and then 

stored at -20 °C until further processing. Saliva was collected in Oragene OGR-500 

collection tubes (DNA Genotek Inc., Ontario, Canada) following the company’s 
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protocol and stored at room temperature until DNA extraction. DNA was extracted 

by the QIAcube method, subsequent to which genotyping was performed as 

described in Chapter 2. 

5.2.3 Statistical analysis 

The frequency of all the selected polymorphisms was checked for compliance with 

Hardy-Weinberg equilibrium using chi-square tests. ANCOVA was used to test any 

genotype effects on skeletal muscle phenotypes (muscle size, muscle strength) with 

age used as covariate. When too few participants were in one genotype group, the 

group was combined with the heterozygous group. All significant associations 

identified in the main ANCOVA analyses were subject to post-hoc pairwise 

comparisons using the Benjamini-Hochberg correction. When there was a tendency 

for association (0.05<p<0.15) (Fischer et al., 2004) the two groups with similar 

means were combined and then ANCOVA was re-run for the analysis. All statistical 

analyses were performed using SPSS version 23.0 and statistical significance was 

accepted when p≤0.05. Data are presented as mean (SD). 

 Results 

All the SNPs were in Hardy-Weinberg equilibrium (p≥0.15) and the genotype 

frequencies of all polymorphisms are presented in Table 2.1. In the following 

section, only the SNPs associated with skeletal muscle phenotypes are presented.  

Muscle phenotype differences were observed in elderly women who expressed 

favourable genotype groups for the following SNPs: HGS (PTK2 rs7843014, COL1A1 

rs1800012 and PTK2 rs7460; Figure 1), MVCEF (ACVR1B rs2854464, HIF1A 

rs11549465, PTK2 rs7460 and MTHFR rs1801131; Figure 2), MVCKE (CNTF rs1800169 

and NOS3 rs1799983; Figure 3), bicep thickness (ACE rs4341 and ACVR1B 

rs10783485; Figure 4), VL thickness (TRHR rs7832552 and HIF1A rs11549465; Figure 

5 ) and VLACSA (TRHR rs7832552, ACVR1B rs10783485, HIF1A rs11549465 and FTO 

rs9939609 Figure 6). For the SNPs associated with skeletal muscle phenotypes, 

elderly women in the favourable genotype groups were 5-12% stronger and had 3-

7% larger muscle (Table 5.1) than their counterparts with less favourable genotypes. 



 

 71 

Of the 24 SNPs analysed, 12 showed differences in muscle phenotypes between 

those elderly with and without favourable genotypes (Table 5.1). 

 

 

 

Figure 5.1 Association of SNPs and Handgrip strength (HGS). Comparison of HGS between 
genotype groups for PTK2 rs7843014 (AA+AC=247 Vs CC=57), COL1A1 rs1800012 
(AA+AC= 99 Vs CC=205) and PTK2 rs7460 (AA=72 Vs AT+TT=233) polymorphisms. * 
denotes significant difference 
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Figure 5.2Association of SNPs and Isometric elbow flexion maximum voluntary contraction 
(MVCEF).  Comparison of MVCEF between genotype groups for ACVR1B rs2854464 (AA=153 
Vs AG+GG=151), HIF1A rs11549465 (TT+CT=63 Vs CC=241), PTK2 rs7460 (TT+AT=233 Vs 
AA=71) and MTHFR rs1801131 (GG+GT=159 Vs TT=144). * denotes significant difference. 
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Figure 5.3Association of SNPs and Isometric Knee Extension Maximum Voluntary contraction 
(MVCKE). Comparison of MVCKE between genotype groups for CNTF rs1800169 (AA+AG=80 Vs 
GG=222) and NOS3 rs1799983 (TT+GT= 185 Vs GG= 117) polymorphisms. * denotes significant 
difference. 

 

 

Figure 5.4: Association of SNPs and bicep brachii thickness. Comparison of biceps brachii 
thickness between genotype groups for ACE rs4341 (CC=61 Vs GG+GC= 231) and ACVR1B 
rs10783485 (GT+TT=167 Vs GG=124) polymorphisms. * denotes significant difference. 
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Figure 5.5: Association of SNPs and Vastus lateralis Thickness. Comparison of VL 
thickness between genotype groups for TRHR rs7832552 (CT+TT= 159 Vs CC=130) 
and HIF1A1 rs11549465 (TT+CT=288 Vs CC=2) polymorphisms. * denotes significant 
difference. 

  

0

0.5

1

1.5

2

2.5

CT+TT CC

V
L-

th
ic

kn
es

s 
(c

m
)

TRHR rs7832552

0

0.5

1

1.5

2

2.5

TT CC+CT

V
L-

th
ic

kn
es

s 
(c

m
)

HIF1A rs11549465 

* * 



 

 75 

 

  

 

Figure 5.6Association of SNPs and Vastus Lateralis Anatomical Cross sectional area 
(VLACSA). Comparison of VLACSA between genotype groups for TRHR rs7832552 
(CT+TT=159 Vs CC=130), ACVR1B rs10783485 (GT+TT=168 Vs GG=121), HIF1A 
rs11549465 (CC=228 Vs CT+TT=62) and FTO rs9939609 (AA+AT= 188 Vs TT=102) 
polymorphisms. * denotes significant difference. 
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Table 5.1 Associations between genotype and skeletal muscle phenotypes in elderly 
Caucasian female. 

 

 

Grey shading denotes the favourable groups for skeletal muscle phenotypes. 
Abbreviations: HGS - Handgrip strength, VLACSA - Vastus lateralis anatomical cross 
sectional area, MVCKE - Isometric knee extension maximum voluntary 
contraction, MVCEF – Isometric Elbow flexion maximum voluntary contraction. 

 

  Discussion 

The current chapter aimed to investigate associations between 24 SNPs and skeletal 

muscle phenotypes in elderly females related to muscle size (biceps brachii 

thickness, VL-thickness and VLACSA) and muscle strength (HGS, MVCEF and MVCKE). 

There were significant associations of ACVR1B rs2854464, MTHFR1 rs1801131, 

Polymorphisms Genotypes Phenotypes % 
difference 

p 

TRHR rs7832552 CT+TT Vs CC VL 
thickness 

VLACSA 

3.6 
 
3.0 

0.036 
 
0.032 

HIF1A rs11549465 CT+TT Vs CC 
CC+CT Vs TT 
 
CT+TT Vs CC 

VLACSA 
VL 

thickness 
MVCEF 

 

5.0 
4.0 
 
7.7 

0.037  
0.044 
 
0.009 

PTK2 rs7460 AT+TT Vs AA MVCEF 
HGS 

6.0 
3.5 

0.031 
0.042 

PTK2 rs7843014 AC+AA Vs CC HGS 5.0 0.018 

ACVR1B rs10783485  GT+TT Vs GG VLACSA 
Biceps 

brachii 
thickness 

7.0 
5.0 

0.010 
0.030 

ACVR1B rs2854464 AG+GG Vs AA MVCEF 
 

5.5 0.033 

FTO rs9939609  AT+TT Vs AA VLACSA 6.0 0.013 

NOS3 rs1799983  TT+GT Vs GG MVCKE 7.0 0.042 

CNTF rs1800169 AA+AG Vs GG MVCKE 12.0 0.004 

ACE rs4341 GC+GG Vs CC Biceps 
brachii 

thickness 

5.6 0.039 

COL1A1 rs1800012 AA+AC Vs CC HGS 4.0 0.013 

MTHFR1 rs1801131 GT+GG Vs TT MVCEF 
 

6.5 0.019 
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HIF1A rs11549465 and PTK2 rs7460 with MVCEF, and of PTK2 rs7843014, COL1A 

rs1800012 and PTK2 rs7460 with HGS. Similarly, significant associations of both 

CNTF rs1800169 and NOS3 rs1799983 with MVCKE were observed. For muscle size 

measures, there were significant associations of ACE rs4341 and ACVR1B 

rs10783485 with biceps brachii thickness, ACVR1B rs10783485, TRHR rs7832552, 

HIF1A rs11549465, and FTO rs9939609 with VLACSA, and TRHR rs7832552 and HIF1A 

rs11549465 with VL-thickness. The present study therefore reports novel 

associations with skeletal muscle strength in an elderly Caucasian population, in 

addition to independently replicating some previous reports. 

In the present elderly female population, the genetic variants associated with 

skeletal muscle phenotypes can be described by the biological roles of the genes. 

When the potential mechanisms for the influence of the SNPs is considered, there 

are six thematic areas that are consistent across both muscle size and muscle 

strength: 1) structural protein, 2) epigenetic regulator, 3) transcriptional regulator, 

4) antagonist of muscle growth, and 5) body composition regulator, and 6) 

myotrophic factor. 

5.4.1 Structural protein  

The present study has identified the association of structural protein gene variants 

PTK2 rs7460, PTK2 rs7843014 and COL1A1 rs1800012 with the skeletal muscle 

phenotypes under investigation; PTK2 rs7460 with HGS and MVCEF, PTK2 rs7843014 

and COL1A1 rs1800012 with HGS. These genes encode for a component of muscle 

structural proteins and the extracellular matrix and thus might provide strength and 

integrity for the muscle fibre. The genotypes identified as favourable for skeletal 

muscle phenotypes in the present elderly population have been previously 

associated with exceptional longevity for PTK2 rs7460 TT and PTK2 rs7843014 CC 

(Garatachea et al., 2014) and bone mineral density (BMD) in juvenile idiopathic 

arthritis (Kostik et al., 2013) for COL1A1 rs1800012. The presence of favourable 

genotypes could probably be attributed to a favourable presentation of a structural 

protein. For example, PTK2 rs7843014 CC (associated with higher HGS in the present 

study) has been associated with low focal adhesion kinase (FAK), the lower level of 
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which has been speculated to lead to normal cell division, and linked with longevity 

(Garatachea et al., 2014), consistent with the evidence that muscle mass and muscle 

strength are key determinants of mortality (Rantanen et al., 2000; Ruiz et al., 2008). 

Higher FAK expression has been linked with metastasis and cancer (Lark et al., 2005) 

suggesting an improper integrity. 

The COL1A1 rs1800012 A-allele carriers group had higher handgrip strength in the 

present study. There is evidence that the (A) allele of the Sp1-COL1A1 binding site 

polymorphism is linked with a higher rate of DNA-protein binding, leading to 

transcription increase, elevated expression of COL1A1 protein in osteoblasts culture 

(Mann et al., 2001) and results in a higher proportion of collagen alpha 1. Therefore, 

COL1A1 A-allele carriers have a higher percentage of collagen alpha 1, and recent 

meta-analysis has shown professional soccer players appear less prone to soft tissue 

injury (Wang et al., 2017a). It is possible, therefore, that there is some effect of the 

COL1A1 rs1800012 A-allele that can preserve the integrity of the muscle and explain 

the higher strength observed in elderly women. 

5.4.2 Epigenetic regulator 

MTHFR governs the housekeeping methylation reactions and nucleic acid formation 

(Bailey and Gregory Iii, 1999) and is the key player in epigenetic mechanisms 

(Garcia-Gimenez et al., 2012). The 677C>T mutation of the MTHFR gene (MTHFR 

rs1801131) has been associated with increased level of plasma homocysteine 

concentrations (Frosst et al., 1995; Brattström et al., 1998). MTHFR rs1801131 CC 

homozygotes are likely to have higher homocysteine plasma concentrations (Castro 

et al., 2004) which have been linked with reduced physical activity (Dankner et al., 

2007) and lower quadriceps strength (Kuo et al., 2007). This is consistent, with the 

finding that the CC genotype is associated with lower HGS in the present elderly 

women. 

5.4.3  Transcriptional regulator  

The present study has identified associations of transcription factor and 

transcription regulator gene variants HIF1A rs11549465, NOS3 rs1799983 and ACE 
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rs4341 with the skeletal muscle phenotypes under investigation in the elderly 

female population; HIF1A1 rs11549465 with VL-thickness, VLACSA, and MVCEF, NOS3 

rs1799983 with MVCKE and ACE rs4341 with biceps brachii thickness. 

It has been speculated that observed gene variants might change the transcription 

of genes affecting skeletal muscle and thus can explain the higher muscle size and 

muscle strength in the elderly women studied. For instance, transcription factor 

HIF1A is the sub-unit of heterodimeric transcriptional factor HIF1 that induces the 

transcription of genes involved in cellular proliferation and survival (Lee et al., 2004; 

Hashimoto and Shibasaki, 2015) with HIF1A rs11549465 T allele associated with 

enhanced trans-activation capacity (Tanimoto et al., 2003). Furthermore, previous 

studies have also observed the T-allele to be found more commonly in weightlifters 

and wrestlers (Gabbasov et al., 2013) and power oriented athletes (Cięszczyk et al., 

2011; Drozdovska et al., 2013b), and also associated with maximal oxygen 

consumption post exercise training in elderly Caucasians (Prior et al., 2003). It is 

therefore possible that there is enhanced transactivation capacity with the T allele 

in the present elderly population and a corresponding higher VLACSA, VL-thickness 

and HGS. 

Similarly, NOS3 encodes endothelial NOS (eNOS) that catalyzes the synthesis of NO 

that affects the process of skeletal muscle fibre conversion (Martins et al., 2012), 

mitochondrial energy production (Brown, 2007) and normal muscle hypertrophy 

(Smith et al., 2002). Higher NO activity has been associated with NOS3 rs1799983 T-

allele (Tesauro et al., 2000; Persu et al., 2002) which has been identified as the 

favourable allele in athlete populations (Eider et al., 2014). It is therefore likely that 

NOS3 rs1799983 T- allele carriers have higher NO activity and have higher knee 

strength in the present elderly population. 

 ACE rs4341 D-allele carriers has been associated with thicker biceps brachii 

thickness in the present elderly female population. ACE rs4341 D allele is associated 

with higher ACE activity resulting effective conversion of Angiotensin-I to 

Angiotensin II. Angiotensin II has been linked with modulating skeletal muscle 

hypertrophy in response to mechanical loading (Gordon et al., 2001). Previous 
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studies have also linked the D allele as favourable for skeletal muscle phenotypes 

such as having a higher proportion of Type II fibres (Zhang et al., 2003), larger 

quadriceps muscle volume (Charbonneau et al., 2008), better athletic performance 

(Tsianos et al., 2004; Costa et al., 2009b) and higher muscle strength (Hopkinson et 

al., 2004; Williams et al., 2005). Therefore, it is possible that in present elderly 

women the association of the D allele with thicker biceps brachii thickness could be 

due to higher gene activity of ACE. 

5.4.4  Antagonist of muscle growth 

ACVR1B genotypes, ACVR1B rs10783485 GG and ACVR1B rs2854464 G-allele 

carriers are observed as the favourable genotypes for skeletal muscle phenotypes 

in the present elderly population and could be explained by the biochemical role of 

ACVR1B. The ACVR1B gene encodes the activin A receptor type 1b protein, which is 

a member of the TGF beta family and known to be involved in molecular pathways 

regulating myostatin and activin signalling, signalling pathways identified as a 

negative regulator of muscle growth (McPherron et al., 1997; Thomas et al., 2000). 

The findings of the current study are similar to the previous studies reporting 

ACVR1B rs10783485 G allele in 20-90 years Caucasian male (Windelinckx et al., 

2011) and ACVR1B rs2854464 G-allele (He et al., 2018) favourable for knee strength 

in elderly population. It is therefore possible that the genotype groups that showed 

significantly larger muscle size and higher muscle strength in the present elderly 

female population (ACVR1B rs10783485 GG for biceps brachii thickness and VLACSA; 

ACVR1B rs2854464 G-allele carriers for MVCEF) might show less inhibition of those 

muscle-signalling pathways. 

5.4.5 5.4.5. Body composition regulator 

Body composition indices such as BMI, fat-free mass and other obesity related 

phenotypes are strongly regulated by the FTO gene (Frayling et al., 2007; Sonestedt 

et al., 2011; Livshits et al., 2012). The importance of FTO during skeletal muscle 

development and differentiation was observed in FTO-deficient mice with impaired 

skeletal muscle development. FTO increases during myogenic differentiation, and 

silencing of FTO leads to myogenic suppression (Wang et al., 2017c). A recent study 
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has found an association between FTO and appendicular lean mass, with a 

decrement in appendicular muscle mass when fat mass was controlled (Cordero et 

al., 2018). The present chapter is consistent with the previous studies showing 

associations of the FTO rs9939609 A-allele with body composition parameters such 

as fat mass and lean body mass (Sonestedt et al., 2011; Livshits et al., 2012) and BMI 

(Jacobsson et al., 2012; Al-Serri et al., 2018). Accordingly, the A-allele is associated 

with greater muscle size (VLACSA in this case) in the present elderly women 

population. 

5.4.6 Myotrophic factor 

CNTF rs18000169 and TRHR rs7832552 are gene variants identified as favourable 

for the skeletal muscle phenotypes. CNTF is a signalling molecule with neurotrophic 

and myotrophic role (Forger et al., 1993; Ip et al., 1993). The association of CNTF 

rs18000169 with muscle strength, specifically with MVCKE, in the present elderly 

population can be explained by the biological role of CNTF. Myogenesis process 

upregulates and atrophy mediators downregulates with CNTF treatment 

(Tsompanidis et al., 2016). CNTF level decreases with ageing and exogenous 

administration of CNTF in older rats has shown to improve muscle strength (Guillet 

et al., 1999). A functional gene variant CNTF rs1800169 with AA genotype produces 

the non-functional protein (Takahashi et al., 1994). The present study is consistent 

with most of the studies (Roth et al., 2001; Arking et al., 2006; Walsh et al., 2009) 

who reported GG genotype as the favourable genotypes for skeletal muscle 

phenotypes. It is therefore likely that the present elderly women with GG genotype 

might have more functional protein that could contribute to effective myogenesis 

and hence they are stronger than A-allele carriers. 

TRHR leads to the release of thyroxin, and helps in the skeletal muscle development. 

TRHR also plays an important role in decreasing age-related alteration in tissue 

function (Larsson et al., 1994). The change in the thyroid hormone level results in 

notable symptoms of muscle weakness (Salvatore et al., 2014). A Genome Wide 

Association Study (GWAS) has found the association of TT genotype with higher lean 

body mass in US Caucasians (Liu et al., 2009). Up-regulated luciferase activity was 
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associated with the T allele compared to the C allele in C2C12 skeletal muscle cell 

lines of mice (Fuku et al., 2015). Therefore, it is likely that TT genotype may be 

associated with higher expression of thyroid hormone and thus associated with 

favourable skeletal muscle phenotypes in the present elderly population.  

Several muscle size and strength measures are reported in this study; however, no 

single gene variant was associated with all those measures. The probable reason of 

no association with every muscle measure could be the modest influence of those 

specific gene variants on the specific muscle measures, while the influence could 

not be observed in other muscle measures. It is to be noted that the commonly 

studied ACTN3 R577X gene variant did not show any association with any of the 

studied phenotypes/measures. There are many studies reporting no association of 

ACTN3 with skeletal muscle phenotypes (Ruiz et al., 2011). ACTN3 seems related to 

sprint speed in younger adults, and therefore probably rate of force development 

or the ability to produce force at high contraction velocities (Erskine et al., 2014; 

Broos et al., 2016), and not muscle strength per se.  Perhaps assessing muscle 

function during faster, dynamic contractions in the elderly would show an 

association with ACTN3. One possible reason for no association could be the 

recruitment of independently living, and recreationally active participants, with 

which the discriminating power of genotypes was not able to distinguish the muscle 

phenotypes. 
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 Implications 

Identifying the gene variants that might affect both upper limb and lower limb 

strength, is necessary in the perspective of targeting the development of treatments 

against muscle wasting disorders such as cachexia and sarcopenia. Upper limb 

strength and lower limb strength are very important in the maintenance of activities 

of daily living (Rantanen et al., 2002). Therefore, the gene variants identified in the 

present study that show associations with skeletal muscle phenotypes could be 

beneficial in screening a population for those most prone to develop sarcopenia. 

The proper therapies and interventions can be developed with the understanding 

of gene variants that have influence on skeletal muscle phenotypes in an elderly 

population. 

 Conclusion 

The present study has identified novel gene variants that are associated with muscle 

phenotypes in elderly women. However, the lack of associations of some of the 

possible SNPs believed to be associated with skeletal muscle phenotypes also adds 

to the growing body of literature. Furthermore, the findings of this chapter have 

applications in a variety of areas, specifically ageing, for whom completion of 

activities of daily living in their old age may be improved as a consequence of good 

understanding their individual-specific muscle mechanics. 
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6 . Genetic predisposition scores 

partially predict skeletal muscle 

phenotypes in elderly Caucasian 

females 
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 Introduction 

Heritability of muscle mass (66%) and muscle strength (82%) (Arden and Spector; 

Thomis et al., 1998; Abney et al., 2001) are high, suggesting a strong control of 

genetics in skeletal muscle phenotypes. Cross-sectional studies or case control 

studies have identified more than 200 genes associated with physical performance 

and health-related fitness phenotypes (Bray et al., 2009). Although several Single 

Nucleotide Polymorphisms (SNPs) have been studied with skeletal muscle related 

phenotypes, only a few of them have been replicated successfully (Loos et al., 2015); 

while some of them could not be replicated or have been tested on single occasions. 

This suggests that observed skeletal muscle phenotypes are not related to single 

gene variants (Tan et al., 2012) but are likely to be polygenic. It can therefore, be 

assumed that many individual gene variants might contribute to skeletal muscle 

phenotypes and should be considered together to obtain a more complete 

understanding of the genetic influence on muscle phenotypes. Although most of the 

associations between individual SNPs and skeletal muscle phenotypes in the 

presently studied elderly population did not reach significance (Chapter 5), 

considering all gene variants together might help to understand the combined 

effect of other gene variants. 

 There are many approaches to study the polygenic influence in skeletal muscle 

phenotypes (Charlier et al., 2016). (Hughes et al., 2011; Charlier et al., 2016) used 

the polygenic concept for the first time to study the multiple genes contribution to 

elite endurance athletes. The genetic algorithm was used whereby each 

polymorphism receives a score (known as Genetic Score, GS) based on their 

influence in the skeletal muscle phenotypes; with this approach, each favourable 

allele gets a score of 1 in an additive manner. For instance, if R is the favourable 

allele in the ACTN3 rs1815739 polymorphism, then RR=2, RX=1, XX=0. Subsequently, 

the Total Genotype Score (TGStotal) can be calculated summing the GS for the 

selected polymorphisms, which is then transformed to lie within the range 0-100 

(Santiago et al., 2010). Some studies have identified that athletes competing at the 

elite level in sports and activities demanding higher muscle mass/strength, possess 

significantly higher TGS than non-athlete populations (Ruiz et al., 2009; Santiago et 
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al., 2010; Massidda et al., 2014). Although there have been many modifications in 

the construction of the polygenic model for studying skeletal muscle strength/mass 

and performance, the overall basis of this approach is giving a genotype score based 

on the positive/negative effect of alleles on phenotypes (Charlier et al., 2016). 

Including all of the measured SNPs within the TGS can induce noise, therefore an 

alternative approach is to only include those SNPs that have shown an association 

with the phenotypes, an approach named as data-driven Genotype Predisposition 

Score (GPSdd) (Thomaes et al., 2011; Thomaes et al., 2013; He et al., 2018).  

The decline in muscle size and strength with age, can lead to significant loss of 

independence and physical function (Cruz-Jentoft et al., 2010). Several studies have 

shown the association of muscle mass and strength with SNPs in an ageing 

population (Tan et al., 2012; Garatachea and Lucía, 2013). An understanding of the 

polygenic profile of neuromuscular phenotypes may be beneficial for the 

understanding of disability and sarcopenia in old age. To the best of the author’s 

knowledge, no study has examined the predictive ability of a Genetic Predisposition 

Score (GPS) based on the gene variants related to muscle phenotypes in elderly 

females, to explain individual differences in muscle mass and muscle strength. In 

this chapter, the author uses the GPSdd approach to investigate the influence of 

multiple gene variants in the skeletal muscle phenotypes in Caucasian elderly 

females aged over 60 years. This approach has been utilized in several studies to 

study the genetic influence in peak VO2 (Thomaes et al., 2011); muscle size, muscle 

strength and trainability (Thomaes et al., 2013); VO2 max training response 

(Bouchard et al., 2010), and knee extension strength (Charlier et al., 2016; He et al., 

2018).  

Therefore, the aim of the present chapter are divided into three parts 1) to assess 

the predictive power of data-driven GPS (GPSdd) on skeletal muscular phenotypes,  

2) to assess if the traditional TGS approach is associated with the skeletal muscle 

phenotypes, and 3) to study if there is difference in TGS between the sarcopenia 

and non-sarcopenia groups in elderly Caucasian female. 

 Methods 
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6.2.1  Participants 

Three hundred, 60-91 years old Caucasian females (70.7±5.7 years, 66.3±11.3 kg, 

1.60±0.06 m) (Mean±SD) who were ambulatory and had no history of severe muscle 

and bone issues such as osteoporosis, rheumatoid arthritis and cancer, and nervous 

system disorder like Alzheimer’s, convulsions, epilepsy, and cardiovascular related 

diseases volunteered for this study. Study protocols were in accordance with the 

guidelines of the Declaration of Helsinki and approved by the Ethics Committee of 

Manchester Metropolitan University. Informed written consent was obtained from 

all the participants prior to involvement in this study. 

6.2.2 Procedures 

All participants attended for testing on a single session at the MMU Cheshire 

Campus, Crewe. The testing session was conducted in the following order: 

anthropometry, handgrip strength, isometric knee extension maximum voluntary 

contraction (MVCKE), ultrasound of bicep and Vastus Lateralis muscle and DNA 

sample collection (blood/saliva).  DNA extraction and genotyping were performed 

later. 

6.2.2.1 Handgrip strength 

Handgrip strength (HGS) was measured using a digital load cell handgrip 

dynamometer (JAMAR plus, JLW Instruments, Chicago, USA) with a validated 

protocol (Roberts et al., 2011). Briefly, participants were verbally encouraged to 

squeeze the handle of dynamometer with maximum strength three times in a 

standing position with the dynamometer maintained at a right angle to the 

shoulder. Each trial was performed with at least 1-minute rest between efforts and 

the highest of the three trials was recorded for the study.  

6.2.2.2  Isometric Knee Extension Maximum Voluntary Contraction 

Isometric Knee Extension Maximum Voluntary Contraction (MVCKE) was measured 

as described in Chapter 2 (Methodology). Briefly, for assessment of MVCKE, 
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participants were seated in a customized built dynamometer (MMU, UK) with knee 

at 120 degree (straight is considered as 180 degree). The dominant leg was securely 

fastened to the force transducer above the lateral malleolus (identified by 

palpation) at the known distance. Participants were instructed to perform MVCKE 

with real-time visual feedback and verbal encouragement from the principal 

investigator. This was repeated 3 times with a short rest interval and the highest 

value of three total attempts was recorded for the MVCKE.  

6.2.2.3 Biceps brachii thickness 

Biceps brachii thickness was measured at 60% length of the humerus bone as 

described in Chapter 2. 

6.2.2.4  Vastus lateralis muscle area 

Skeletal muscle phenotype, VLACSA was measured at 50% VL length as described in 

Chapter 2. In short, the ultrasound was recorded as a digital video file, from which 

individual images were acquired, using capture software (Adobe Premier, Adobe), 

between each shadow cast by the echo-absorptive markers. The entire VLACSA was 

reconstructed in a single canvas from each captured image and measured using 

digitizing software (Image J, NIH). 

6.2.2.5  Sample collection, DNA extraction and genotyping 

Blood and saliva samples were collected as described in the Chapter 2. Briefly, blood 

was drawn from a superficial-forearm vein by the principal investigator and then 

stored at -20°C until further processing. For the saliva sample, saliva was collected 

in Oragene.DNA OG-500 collection tubes (DNA Genotek Inc., Ontario, Canada) 

following the company’s protocol and stored at room temperature until DNA 

extraction. DNA was extracted by the QIAcube method; subsequent to which 

genotyping was performed as described in Chapter 2. 

6.2.3 Statistical Analysis 
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Chi square was performed to examine any deviations of the SNPs from the Hardy-

Weinberg equilibrium. GS was assigned as described previously (Williams and 

Folland, 2008). A backward regression was performed to identify the SNPs 

significantly associated with skeletal muscle phenotypes with age as a covariate. 

Phenotype related predisposing alleles are regarded as positively associated with 

the skeletal muscle phenotypes. Thereafter, GPS was calculated from those selected 

subsets of SNPs as mentioned previously (Thomaes et al., 2011; He et al., 2018). 

Finally, linear regression was carried out with GPS as an independent variable and 

age as confounding factor where it was observed significant; and skeletal muscle 

phenotypes as dependent variable.  

In the case of traditional TGS model, TGS was calculated from the SNPs whose allele 

direction are well described in previous studies (for ACTN3 rs1815739, ACE rs4341, 

CNTF rs1800169, TRHR rs7832552, HIF1A rs11549465, NOS3 rs1799983, MSTN 

rs1805086, VDR rs2228570 and FTO rs9939609)  as favourable and unfavourable 

alleles for the skeletal muscle phenotypes.  

For both the GPS and TGS approach, independent samples t-test was carried out 

between the sarcopenia and non-sarcopenia group. Statistical significance was set 

at p<0.05 for the analyses. All the statistics were performed in IBM SPSS Version 23. 

 

 Results 

All the SNPs under the study were compliant with Hardy Weinberg Equilibrium as 

tested by the Chi square test; shown in the table 2.1 (in Chapter 2 Methodology). A 

general characteristic of the participants is given in table 6.1 below. 

      GPS approach 

The GPS models with age explained 17.2%, 8.7%, 2.2% and 14.5% variance of HGS, 

MVCKE, biceps brachii thickness and VLACSA size. GPSdd alone explained 5.0%, 2.2%, 

2.2% and 8.2% variance of HGS, MVCKE, biceps brachii thickness and VLACSA size 

(Table 2). Out of 24 SNPs in the current study, 10 SNPs were found to be associated 
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with at least one of the skeletal muscle phenotypes under investigation. PTK2 

rs7460 was found to be associated with all the skeletal muscle phenotypes, and in 

descending number of phenotype associations: PTK2 rs7843014 and HIF1A 

rs11549465 with 3, TRHR rs7832552 with 2 and ACE rs4341, CNTF rs1800169, CNTFR 

rs2070802, FTO rs9939609, MTHFR rs1801131, and MTHFR rs17421511 with 1 

phenotype (table 6.3). The other SNPs did not show any significant associations with 

the phenotypes considered in this chapter.  

     TGS approach and sarcopenia 

While studying the association of skeletal muscle phenotypes with TGS, the present 

chapter found an association between the TGS (calculated from the established 9 

SNPs from previous studies)  and VLACSA; F (1,283)=6.383, p=0.012); while it did not 

find any association between TGS and other skeletal muscle phenotypes; for HGS (F 

(1,298)=0.198, p=0.657)), MVCKE (F (1,295)=1.66, p=0.199)) and bicep brachii 

thickness (F (1,284)=2.634, p=0.106)). 

Similarly, the present chapter did not find any difference in TGS between sarcopenia 

and non-sarcopenia group; t(240)=0.317, p=0.752. 
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Table 6.1 General characteristics of participants 

Variables Mean ± SD (n=300) 

Body Mass (kg) 66.32±11.27 

Age (years) 70.74±5.66  

Handgrip Strength(kg) 29.97±4.97  

Biceps brachii thickness (cm) 1.76±0.34 

Vastus lateralis anatomical cross sectional  

area (cm2) 

16.32±3.38 

Isometric Knee Extension Maximum 

 Voluntary Contraction (N) 

1651±546  

 

Table 6.2Relation between GPS models and skeletal muscle phenotypes 

Abbreviations: VLACSA- Vastus Lateralis Muscle Anatomical Cross Sectional Area; HGS- 
Handgrip Strength; MVCKE- Isometric Knee Extension Maximum Voluntary Contraction 

  

 GPS AGE  R2 

 estimate B 
value 

Partial 
correlation 

p-value  estimate B 
value 

Partial  
correlation 

p-
value 

 

VLACSA 0.769 0.278 0.286 <0.001 -0.174 -0.290 -0.298 <0.001 0.145 

Biceps 
brachii 
thickness 

0.063 0.149 0.149 0.012 - - - - 0.022 

HGS 1.031 0.209 0.224 <0.001 -0.322 -0.367 -0.374 <0.001 0.172 

MVCKE 95.83 0.142 0.147 0.011 -25.11 -0.260 -0.263 <0.001 0.087 
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Table 6.3 SNPs and skeletal muscle phenotypes 

SNPs VLACSA Bicep 

thickness 

HGS MVCKE 

TRHR rs7832552 * - - - 

HIF1A rs11549465 * - * - 

ACE 4341 - * - - 

PTK2 rs7460 * * * * 

PTK2 rs7843014 * * - - 

MTHFR1 rs17421511 - - * - 

MTHFR1 rs1801131 - - * - 

CNTF rs1800169 - - - * 

CNTFR rs2070802 * - - - 

FTO rs9939609 * - - - 

 

* and - denote significant and no association of SNPs with muscle phenotypes, 

respectively. Abbreviations: VLACSA-Vastus Lateralis-Anatomical Cross Sectional 

Area; MVCKE, Isometric Maximum voluntary contraction- Knee Extension, HGS-

Handgrip Strength. 



 

 

Figure 6.1  Distribution of genetic predisposition score (GPS) with Skeletal Muscle Phenotype 

Participant frequency distribution (bars) and GPS (line) for A) HGS (Handgrip strength) B) MVCKE (Isometic Knee extension -Maximum Voluntary Contraction) C) Biceps brachii 
thickness D) VLACSA (Vastus Lateralis-Anatomical Cross Sectional Area). Dot and error bar represents absolute mean and standard error of the mean respectively
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 Discussion 

The present chapter has used the construction of GPSs to explain the effect of gene 

variants in skeletal muscle phenotypes; muscle mass and muscle strength, in elderly 

Caucasian females. Unlike previous research that has studied whole body muscle 

mass (SMM/FFM) and knee strength with a single gene variant or with a polygenic 

approach, this study focused on the specific muscle size and function within the 

lower limb (Vastus Lateralis), and upper limb (biceps and forearm) for the first time. 

It was hypothesised that considering the polygenic nature of skeletal muscle 

phenotypes, multiple SNPs (24 SNPs in this case) might better explain the genetic 

influences than when investigated individually. Although the GPSs in this study were 

calculated based on the limited subset of significant SNPs (GPSdd approach), they 

explained 2.2%, 8.2%, 5.0% and 2.2% of the variance in bicep thickness, VLACSA, HGS 

and MVCKE respectively, in the present elderly Caucasian females. Some of the 

selected SNPs in this chapter are previously reported to be associated with skeletal 

muscle phenotypes while some of them are studied for the first time; hence, this 

chapter is partially replicating the previous findings for some SNPs and suggesting 

some novel gene variants with skeletal muscle phenotypes in elderly females. It can 

be implicated from the present data that elderly females possessing more of the 

predisposing alleles for skeletal muscle mass/strength could maintain their 

independence and less likely to reach sarcopenic thresholds until much later in life. 

It should be considered that the established associations between the GPSs and phenotypes 

are derived from the same population of elderly women. The rationale for using the same 

population to create the TGS was established by some of the previous studies (Charlier et 

al., 2016; He et al., 2018)and allows for the accumulated influence of marginal effect SNPs 

within a relatively small population. This approach has however been criticised due to the 

fact that within group GPS correlations may inflate the level of association for a combined 

GPS. One approach to validate the associations within the present population was to 

produce a Total Genotype Score (TGS) using a historical evidence based approach as 

described in several studies (Williams and Folland, 2008; Drozdovska et al., 2013a). Despite 

being an established approach to conduct GPS and allowing individual data driven SNP 

allocation to the TGS, the GPSdd used in the present chapter was also compared to the 

traditional approach (TGS). The present chapter found association between the TGS and 
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VLACSA among four phenotypes investigated. It was found using the historical approach that 

firstly, only nine SNPs could be used (as opposed to 24 in the GPSdd approach) as there was 

not sufficient evidence for allocating the genotype score in the present elderly females, but 

secondly that association were observed for VLACSA consistent with the GPSdd approach. It 

is acknowledged therefore that cross validation is required in an independent population 

as discussed below in limitations. 

6.4.1 Genetic predisposition scores 

This study has assessed the GPS for the first time explaining skeletal muscle 

phenotypes in a large number of elderly females. A subset of SNPs was selected 

based on backward regression analysis, a procedure which has been applied by 

other groups (Bouchard et al., 2010; Buxens et al., 2011; Thomaes et al., 2013; 

Charlier et al., 2016; He et al., 2018). This study is consistent with other studies that 

have shown that a higher GPS is positively associated with higher knee strength 

(Charlier et al., 2016; He et al., 2018) and gains in peak VO2 max post training 

(Thomaes et al., 2011). One of the studies so far that has studied regional muscle 

size measures,  rectus femoris diameter measured by ultrasonography, has shown 

that higher GPS was associated with bigger rectus femoris diameter (Thomaes et al., 

2013). The difference in the SNP pool, subject characteristics and the study design 

might contribute to the difference in predictive power of GPS among several 

studies. The present study is the first to assess the GPS for vastus lateralis and biceps 

muscle size; and found that GPS alone predicted 8.2% and 2.2 % variance 

respectively in the elderly population. As VL is representative of the general 

quadriceps atrophy with age (Maden-Wilkinson et al., 2013), the GPS predicted 

variance of 8.2% in this elderly population suggests genetics can partially explain the 

variance of muscle size; hence, could predict the adverse outcome of sarcopenia in 

old age. The data on the elderly females in this study shows that if there is an 

increment in 1 favourable allele, the area of the VL increases by nearly 0.77cm2. 

Similarly, GPS predicted that 5.0% of the variance of HGS with 4 subsets of 

significant SNPs showing that with an increment of 1 predisposing allele, there is an 

increment in 1kg of HGS. Similarly, GPS explained 2.2% variance in biceps brachii 
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thickness in elderly population and shows that an increment in 1 favourable allele 

increases the biceps brachii thickness by approximately 0.06 cm.  

While considering the traditional TGS approach based on 9 SNPs, this chapter 

identified that TGS is associated with VLACSA, while did not associate with other 

skeletal muscle phenotypes. This finding is consistent with  a previous study that 

has reported that TGS is associated with athlete status (Drozdovska et al., 2013a). 

The lack of association with other phenotypes could be due to less influence of 

genetics on those phenotypes or inclusion of limited number (n=9) of SNPs in the 

present chapter. 

The present study did not find any difference in TGS between the sarcopenic and 

non-sarcopenic groups. The possible explanation for no difference could be due to 

the inclusion of less number of SNPs in the present elderly females. Previous studies 

have reported that the muscle mass/strength phenotypes are multifactorial in 

nature (Prior et al., 2007). Therefore, the consideration of other environmental 

factors along with inclusion of many SNPs that can affect skeletal muscle 

phenotypes might provide better understanding of genetics between the two 

groups. 

6.4.2 Gene variants contributing to Genetic Predisposition Profiles   

Several GWAS and case-controlled association studies have reported the 

association of specific gene variants with skeletal muscle phenotypes; muscle mass 

and muscle strength. Among the gene variants, some of them are replicated 

successfully in most of the population, while some of them could be replicated with 

limited success (Tan et al., 2012). GWAS are often utilized to select the regions in 

DNA that might be associated with skeletal muscle phenotypes (Liu et al., 2009). 

Alternatively, the GPS model can be useful to identify any suggestive associations. 

With the GPS, this study has suggested new associations of some SNPs for the 

skeletal muscle phenotypes under investigation in the present elderly population. 

Similarly, our study also confirms some previous associations.   
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To the author’s knowledge, this study is the first to report associations between the 

muscle size and absolute muscle strength phenotypes in any age group with PTK2 

polymorphisms. The present study has found PTK2 rs7460 T is a favourable allele 

for all phenotypes under this study, while PTK2 rs7843014 C is a predisposing allele 

for muscle mass phenotypes. The PTK2 gene encodes for focal adhesion 

kinase (FAK) protein, and the mentioned polymorphisms have previously been 

investigated with muscle-specific force in young adults (Erskine et al., 2012; 

Stebbings et al., 2017) and also with exceptional longevity (Garatachea et al., 2014). 

Lower expression of FAK observed with PTK2 rs7460 TT and PTK2 rs7843014 CC 

genotypes has been linked with exceptional longevity in a Spanish elderly 

population (Garatachea et al., 2014); alternatively, higher levels of FAK has been 

reported in muscle wasting condition such as cancer cachexia (Gabarra-Niecko et 

al., 2003). Therefore, it is possible that the PTK2 rs7460 T and PTK2 rs7843014 C 

alleles are muscle mass and muscle strength predisposing alleles in this present 

elderly population (Table 6.3).  

Another novel finding from the present study is the suggestive association of 

skeletal muscle size with FTO rs9939609; with the A-allele favouring a larger vastus 

lateralis muscle. Similar associations of the A-allele have been observed with 

obesity-related phenotypes in previous GWAS and SNP association studies (Frayling 

et al., 2007; Livingstone et al., 2016; Al-Serri et al., 2018) and with fat mass and lean 

body mass (Sonestedt et al., 2011; Livshits et al., 2012). The present study also 

identified CNTF rs1800169 G as a pre-disposing allele for MVCKE, which is consistent 

to the finding of a previous study (Roth et al., 2001). A functional gene variant CNTF 

rs1800169 with AA genotype has been observed to produce a non-functional 

protein variant (Takahashi et al., 1994); hence the result of a functional protein in 

the group possessing GG genotype might explain the higher strength in the present 

elderly. Similarly, the present study also observed CNTFR rs2070802; with the T 

allele as the predisposing allele for muscle size, specifically VLACSA. The finding of the 

present study concurs with others reporting the positive association of TT/T 

genotype/allele with muscle strength phenotypes (De Mars et al., 2007b). Muscle 
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mass is the main determinant of muscle strength (Maughan et al., 1983b); hence 

the association of the CNTFR rs2070802 T allele with VLACSA  is convincible in this 

population. HIF1A rs11549465 T allele has been found as a predisposing allele for 

both muscle size and muscle strength phenotypes in this study. The T-allele is 

associated with enhanced transactivation capacity (Tanimoto et al., 2003) and 

found to be overrepresented in weightlifters, wrestlers (Gabbasov et al., 2013), and 

power-oriented athletes. This suggests individuals demanding more strength for 

such sports possess significantly higher number of HIF1A rs11549465 T–allele than 

the normal population. This is consistent with the observation from the present 

study that HIF1A rs11549465 T-allele is associated with higher muscle size and 

strength phenotypes in the present elderly population.  

TRHR rs7832552 was associated with muscle size phenotypes (VL-thickness and 

VLACSA), with T as predisposing allele. This finding is in line with studies supporting 

the T allele as the favourable for muscle mass; for example, a GWAS has identified 

individuals homozygous for T allele to have an average of 2.5 kg higher lean body 

mass compared to the heterozygotes and C-allele homozygotes, and this was 

replicated in three independent samples (Liu et al., 2009). In the present study, ACE 

rs4341 polymorphism was associated with muscle size, specifically the G allele was 

associated with thicker biceps brachii thickness. This polymorphism has been 

reported to be in linkage disequilibrium with the ACE I/D polymorphism (Glenn et 

al., 2009). The ACE D allele is positively related with greater lean mass, body mass 

and quadriceps muscle volume (Charbonneau et al., 2008) or appendicular fat free 

mass in older women (Lima et al., 2011). As biceps brachii thickness is 

representative of muscle size parameters, this study also supports that ACE D (G) 

allele is associated with the thicker muscle size in the present elderly population. 

Similarly, MTHFR rs1801131 polymorphism has been associated with Handgrip 

strength with T as predisposing allele in elderly population. It has previously been 

observed that the presence of the C allele appears to be advantageous in sprint-

strength and strength athletes, suggesting that exercise induced hypomethylation 

helps in higher expression of the genes promoting muscle growth (Eynon et al., 
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2011). However, it needs to be validated how the MTHFR rs1801131 C variant 

affects the hypomethylation process. On the other hand, MTHFR rs1801131 CC 

genotype has been linked with a higher homocysteine plasma concentration (Castro 

et al., 2004). Previous studies have evidenced that higher homocysteine levels are 

associated with reduced physical activity (Dankner et al., 2007) and quadriceps 

strength (Kuo et al., 2007). The plausible reason to observe T-allele as the 

predisposing allele for strength in the present study could be due to the detrimental 

effect of the C-allele that could be mediated by homocysteine levels.  

  Limitations 

This study has some limitations. There are controversies in some of favourable 

directions of the SNPs for association with muscle strength, hence the coding might 

be wrong or the author might have coded from a false positive result. This might 

have a negative effect on the validity of the GPS model, or could contribute to the 

lower explained variance in the present data compared to others. Similarly, this 

study always scored heterozygotes with intermediate values in consistency with a 

previous study (He et al., 2018). However, it is likely that some of the heterozygotes 

might have its affect as comparable to homozygotes (complete dominance) or even 

better than homozygotes (over dominance).Some of this limitation was overcome 

by including a historical TGS based approach, however this was only partially 

successful due to there being only sufficient evidence to include 9 SNPs as opposed 

to the 24 from the GPSdd approach. It should also be noted that in this study each 

predisposing allele carries an equal weight in the summed GPSdd model. This ignores 

the fact that different gene variants might affect the muscular phenotypes 

unequally. Therefore, weighing the contribution of each SNPs for the observed 

phenotypes might be more effective than assigning the equal weight for all SNPs 

(Massidda et al., 2014; Charlier et al., 2016). The observed muscular phenotypes are 

also affected by environmental factors such as lifestyle, particularly present or 

previous levels of physical activity which could potentially induce epigenetic 

modifications. In those instances, GPS might be unfavourable to predict the exact 
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variance observed in the participants. Epigenetic processes such as methylation and 

phosphorylation might affect gene expression differently; hence, accounting for 

those modifications could also improve the understanding of the polygenic effect 

on muscle related phenotypes. It can also been seen that some of the SNPs such as 

ACTN3 rs1815739 R-allele which have been replicated so many times and known as 

the predisposing allele for skeletal muscle function did not show any association in 

this study. This might be due to the interactions with other SNPs considered in this 

study. Similarly, the ACTN3 genotype is reported to be associated with high velocity 

contraction of muscle in most of the studies (Erskine et al., 2014; Broos et al., 2016) 

which is different from isometric knee extensor strength included in the present 

study. Furthermore, many SNPs have been identified to affect skeletal muscle 

phenotypes; hence, accounting all the SNPs might produce different results. 

Similarly, sub-group validation would be impossible within sarcopenic group in the 

present study, due to small numbers after dividing the same population into test 

group and validation group.  With all of those (commonly encountered) limitations 

of the GPS approach being considered it is likely that future studies investigating 

similar phenotypes and participants, would expect higher or lower levels of 

explained variance compared to those reported here. Replication studies are 

therefore encouraged to validate the present findings on the sarcopenic muscle.  

  Conclusion 

In the current chapter, a GPSdd alone was able to explain up to 8.2% and 5.0% 

variance in skeletal muscle size (VLACSA) and muscle strength (HGS) phenotypes 

respectively in elderly females. This study identified genetic variants PTK2 

rs7843014, PTK2 rs7460, ACE rs4341, FTO rs9939609, CNTF rs1800169, CNTFR 

rs2070802, MTHFR rs1801131, MTHFR rs17421511, HIF1A rs11549465 and TRHR 

rs7832552 to be associated with some of the skeletal muscle phenotypes under 

investigation. Similarly, VLACSA was the phenotype that was associated with both 

traditional TGS and GPSdd approaches. The present chapter also concluded that 

there is no difference in TGS between the sarcopenia and non-sarcopenia groups. 
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Identifying the gene variants that might affect the skeletal muscle phenotypes could 

be beneficial in targeting the development of treatments against muscle wasting 

disorders such as cachexia and sarcopenia. 
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7 . Discussion 
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 Main findings and implications for future research 

The main findings of the present thesis established how sarcopenia prevalence 

varied with different definitions, as observed in previous studies (Bijlsma et al., 

2013). Within Chapter 3, a meaningful definition was established based on how the 

neuromuscular characteristics are differentiated between sarcopenic and non-

sarcopenic groups, whilst maintaining a reasonable population sample for 

subsequent genetic analysis. A novel approach was identified using a Z-score 

consistent with guidelines established by the EWGSOP that was able to differentiate 

the sarcopenia and non-sarcopenia groups using neuromuscular phenotypes. Using 

this robust definition of sarcopenia, Chapter 4 revealed novel associations of 

sarcopenia with the genetic variants, ACE rs4341 and HIF1A rs11549465. In Chapter 

5, association of gene variants with several skeletal muscle phenotypes, that were 

differentiated by sarcopenia definitions in chapter 3, were investigated. Twelve 

SNPs were found to be associated with skeletal muscle phenotypes of strength 

(MVCKE, MVCEF and HGS) and muscle size (VLACSA, VL thickness and biceps brachii 

thickness). Based on these observations, a polygenic approach was undertaken in 

Chapter 6, and determined that GPSdd approach was able to explain up to 8.2% 

variance of muscle size measures (VLACSA) and up to 5.0% of muscle strength (HGS). 

7.1.1  Sarcopenia prevalence and neuromuscular outcome measures 

Prior to investigating the genetic influence in sarcopenia, it was important to 

identify a definition of sarcopenia that can differentiate the most meaningful 

neuromuscular outcome measures between sarcopenia and non-sarcopenia 

groups. However, the lack of consensus in the operational definition leads to varying 

prevalence in the same population (Dupuy et al., 2015). Hence, Chapter 3 

investigated the definition of sarcopenia based on discriminating power between 

two groups with 4 definitions: Definition 1 (SMIA), Definition II (% SMM), Definition 

III (EWGSOP) and a novel Definition IV (Z-score). The previous definitions failed to 

fully discriminate the characteristics of sarcopenic elderly on the basis of 
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neuromuscular phenotypes; while a novel approach based on Z-score differentiated 

the two groups in all the functional characteristics investigated in the present thesis 

(biceps brachii thickness, VLACSA, MVCEF, MVCKE and OLST). These phenotypes of low 

muscle strength and low muscle mass have been previously associated with the risk 

of high mortality (Janssen et al., 2000b), falls (Landi et al., 2012b), frailty (Clegg et 

al., 2013) and reduced ability to reach functional thresholds for activities of daily 

living (Shiozu et al., 2015). Using Z-score definition based on HGS and SMI, a 

definition of sarcopenia was established for subsequent analysis within the thesis. 

7.1.2  Association of SNPs with sarcopenia and skeletal muscle phenotypes 

As sarcopenia is multifactorial in nature and genetics has a high contribution for 

muscle mass and muscle strength, the association of sarcopenia with gene variants 

selected in the current thesis were investigated in Chapter 4. 24 SNPs were selected 

based on the rationale presented in chapter 1, and associations were assessed 

between sarcopenic and non-sarcopenic elderly women. This thesis identified ACE 

rs4341 CC and HIF1A rs11549465 CC as risk genotypes for being in the sarcopenia 

group. The possible reasons for association of ACE rs4341 and HIF1A rs11549465 

genotypes with sarcopenia are discussed later in this chapter. With the 

identification of new gene variants (ACE and HIF1A) that are associated with 

sarcopenia, it might be beneficial for the screening for risk genotypes of elderly 

population that are prone to develop sarcopenia at their old age. Previous studies 

have investigated ACTN3, IL6 and VDR polymorphisms association with sarcopenia; 

however, IL6 rs1800795 was not found to be associated with sarcopenia (Tasar, 

2018); which is in agreement with the present thesis. Although previous studies 

have found association of VDR FokI and ACTN3 R577X with sarcopenia (Roth et al., 

2004; Cho et al., 2017), the present study did not find any such association. The 

probable reason could be the inclusion of low muscle mass only as the definition for 

defining sarcopenia in the previous studies, while the present study used low SMI 

and low HGS in combination. 
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As sarcopenia is not a clinical definition to distinguish people’s ability to perform 

daily activities, the other skeletal muscle phenotypes that might affect an 

individual’s independence were analysed for association with SNPs in Chapter 5. The 

main finding of this thesis (Chapter 5) was the identification of twelve gene variants 

associated with investigated skeletal muscle phenotypes. In doing so, it replicated 

the findings of a previous study for one gene variant; and identified 11 other novel 

gene variants with one or more skeletal muscle phenotypes; muscle strength (HGS, 

MVCEF and MVCKE), and muscle size (biceps brachii thickness, VL-thickness and 

VLACSA). 

The gene and muscle phenotype associations in chapter 4 and 5 are consistent with 

previous studies that have found either similar SNPs-phenotype associations, or 

have presented favourable allele/genotypes in a range of populations. These 

previous associations are presented below (Table 7.1), after which, mechanisms for 

the most prominent SNPs associations observed in Chapters 4-5 are discussed.



 

 

 

Table 7.1 Associations between genotype and skeletal muscle phenotypes in present elderly population and suggesting similar 
associations in previous studies 

Gene variants Present thesis 
favourable 
genotypes 

Present thesis 
phenotypes 

Previous supporting findings 

TRHR rs7832552 CT+TT Vs CC VL-thickness Lean body mass (Liu et al., 2009) 

HIF1A rs11549465 CT+TT Vs CC 

CC+CT Vs TT 

 

VLACSA/HGS 

VL thickness  

Sarcopenia 

T-allele overrepresentation in weightlifters and wrestlers (Gabbasov et al., 

2013) and power-oriented athletes (Cięszczyk et al., 2011)  

PTK2 rs7460 AT+TT Vs AA MVCEF 

HGS 

Exceptional longevity (Garatachea et al., 2014) 

PTK2 rs7843014 AC+AA Vs CC HGS Exceptional longevity (Garatachea et al., 2014) 

ACVR1B 

rs10783485  

GT+TT Vs GG VLACSA 

Biceps brachii thickness 

Knee strength (Windelinckx et al., 2011) 

ACVR1B rs2854464 AG+GG Vs AA HGS Knee strength (He et al., 2018) 

FTO rs9939609  AA+AT Vs TT VLACSA Fat mass and lean body mass (Sonestedt et al., 2011) 

NOS3 rs1799983  TT+GT Vs GG MVCKE T allele as favourable allele in power oriented athletes (Gómez-Gallego et al., 

2009); and long distance swimmers (Zmijewski et al., 2018). 

CNTF rs1800169 AA+AG Vs GG MVCKE Handgrip strength (Arking et al., 2006), gain in absolute strength after training 

(Walsh et al., 2009), lower HGS in middle aged female with AA genotype (De 

Mars et al., 2007b). 

ACE rs4341 GC+GG Vs CC Biceps brachii thickness 

Sarcopenia 

quadriceps muscle volume (Charbonneau et al., 2008)), better athletic 

performance (Costa et al., 2009a), 
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higher muscle strength (Williams et al., 2005) 

COL1A1 rs1800012 AA+AC Vs CC HGS Less likely for soft tissue injury in professional soccer players with AA genotype 

(Wang et al., 2017a) 

MTHFR1 rs1801131 GT+GG Vs TT MVCEF CC genotypes exhibiting higher Homocysteine plasma concentration (Castro et 

al., 2004); and that has been linked with reduced physical activity (Dankner et 

al., 2007) and reduced quadriceps strength (Kuo et al., 2007) 

Grey shaded genotype groups denote the favourable genotypes for skeletal muscle phenotypes investigated. Abbreviations: MVCEF, Isometric Maximum Voluntary 
Contraction- Elbow flexion; MVCKE, Isometric Maximum Voluntary Contraction-Knee extension; HGS, Handgrip strength; VLACSA, Vastus lateralis anatomical cross 
sectional area



 

PTK2 rs7460 TT and PTK2 rs7843014  

PTK2 rs7843014 and PTK2 rs7460 were investigated for association with sarcopenia 

(Chapter 4) and skeletal muscle phenotypes investigated (Chapter 5) in the current 

thesis. Although there was no association of PTK2 polymorphisms with sarcopenia 

(Chapter 4), in Chapter 5 for the first time associations of PTK2 rs7843014 and PTK2 

rs7460 were found with upper limb strength; PTK2 rs7460 T-allele carriers for MVCEF 

and HGS and PTK2 rs7843014 A-allele carriers with HGS only. These SNPs were 

previously investigated with VL specific force (Stebbings et al., 2017) and 

exceptional longevity (Garatachea et al., 2014). The PTK2 rs7843014 A-allele and 

PTK2 rs7460 T-allele have previously been associated with exceptional longevity in 

an elderly Spanish population and lower Focal Adhesion Kinase (FAK) in luciferase 

gene assay (Garatachea et al., 2014). The authors speculated the low FAK could be 

associated with normal cell division and thus associated with longevity (Garatachea 

et al., 2014) as higher FAK has been previously associated with cancer and 

metastasis (Sood et al., 2004; Lark et al., 2005). Similarly, a lower muscle strength 

has been linked with early mortality, potentially reflecting this association between 

FAK, PTK2 polymorphisms and longevity (Metter et al., 2002). Hence, the 

identification of novel associations of these SNPs with skeletal muscle phenotypes 

may be due to lower FAK activity in the present elderly participants who are PTK2 

rs7460 T-allele carriers and PTK2 rs7843014 A-allele carriers. 

CNTF rs1800169 

The present thesis did not find any association of CNTF rs1800169 with sarcopenia 

(Chapter 4); while it found that elderly women with CNTF rs1800169 GG genotype 

had higher MVCKE. The biological role of CNTF could explain the observed 

association in the present thesis. Myogenesis process upregulates and atrophy 

mediators downregulates with the CNTF treatment (Tsompanidis et al., 2016). CNTF 

level decreases with ageing and exogenous administration of CNTF in older rats has 

shown to improve muscle strength (Guillet et al., 1999). The non-functional protein 

has previously been associated with CNTF 1800169 AA genotype (Takahashi et al., 

1994). It is therefore reasonable to assume that individuals producing the 
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functioning CNTF protein, GG homozygotes, would exhibit a higher MVCKE. The 

present thesis finding is consistent with previous reports that showed higher 

handgrip strength in G-allele carriers amongst elderly women aged 70-79 years 

(Arking et al., 2006), greater gain in absolute strength in women post training with 

GG genotypes (Walsh et al., 2009) and lower HGS in middle aged females with AA 

genotype (De Mars et al., 2007b). 

HIF1A rs11549465  

To the best of the author’s knowledge, this is the first study reporting an association 

of HIF1A rs11549465 with sarcopenia (Chapter 4), and associations with HGS, VL-

thickness and VLACSA (Chapter 5) in an elderly population. The present thesis found 

HIF1A rs11549465 T-allele carriers had larger VLACSA and HGS than CC homozygotes, 

while TT homozygotes were found to be associated with thicker VL-thickness than 

C-allele carriers (Chapter 5). The biological role of HIF1A and the functional efficacy 

of HIF1A rs11549465 could explain the possible reason for this association. The 

HIF1A rs11549465 T-allele has previously been shown to enhance the 

transactivation capacity of HIF1A (Tanimoto et al., 2003). Although HIF1A is 

primarily associated with a hypoxic upregulation of glycolytic muscle metabolism in 

fast twitch muscle, there have been studies that have found that T-allele is 

overrepresented in weightlifters and wrestlers (Gabbasov et al., 2013) and power-

oriented athletes (Cięszczyk et al., 2011). This overrepresentation of HIF1A 

rs11549465 T-allele within sports requiring a high level of strength and muscle mass 

is consistent with those elderly women who were not-sarcopenic, and had higher 

strength and muscle size phenotypes. Whist it is well established that the 

transactivation capacity increases with the T allele, the underlying mechanism/s 

responsible for the observed association with sarcopenia (Chapter 4) and HGS, 

VLACSA and VL-thickness (Chapter 5) remains unclear and warrants further research. 

ACE rs4341 
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In the present thesis, ACE rs4341 has been investigated for the association with 

sarcopenia (Chapter 4) and skeletal muscle phenotypes (Chapter 5). This 

polymorphism has been reported to be in linkage disequilibrium with ACE I/D 

polymorphism, with the C allele behaving as I allele. Individuals with CC genotype 

were more likely to be sarcopenic and have thinner biceps brachii thickness 

(Chapter 5). These novel associations of ACE rs4341 with sarcopenia and biceps 

brachii thickness could be explained by the biological and function role of the ACE 

enzyme and its altered activity with I/D allele. The ACE D allele has been previously 

associated with higher ACE activity (Rigat et al., 1990) and thus helps in effective 

conversion of Angiotensin I to Angiotensin II, which is known to modulate skeletal 

muscle hypertrophy (Gordon et al., 2001). The current thesis finding is in agreement 

with previous studies that have shown the association of D allele with higher muscle 

mass and muscle strength phenotypes; such as higher quadriceps muscle volume 

(Charbonneau et al., 2008), better athletic performance (Costa et al., 2009b) and 

higher muscle strength (Hopkinson et al., 2004; Williams et al., 2005). Future 

research should extend these observations to different muscle and population 

samples to ascertain if the findings of Chapter 4 and Chapter 5 are specific to biceps 

brachii of elderly women or if these findings can be replicated in male elderly or 

younger female/male and other ethnic groups. 

NOS3 rs1799983 

To the knowledge of the author, the current thesis (Chapter 5) is the first to 

associate higher MVCKE and with T-allele carriers of NOS3 rs1799983 in the elderly. 

This finding is consistent with previous studies that have reported the T allele as 

favourable in power oriented athletes (Gómez-Gallego et al., 2009) and long 

distance swimmers (Zmijewski et al., 2018). Biologically, the NOS3 gene encodes the 

enzyme endothelial NOS (eNOS) that catalyses the synthesis of NO. NO has been 

identified as a determinant of individual variations in health and exercise related 

phenotypes (Bray et al., 2009), skeletal muscle fibre conversion (Martins et al., 

2012), mitochondrial energy production (Brown, 2007) and normal muscle 
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hypertrophy (Smith et al., 2002). The NOS3 rs1799983 T-allele has been associated 

with higher NO activity compared to the C-allele (Persu et al., 2002). This association 

of increased NO activity from previous studies and its role in muscle phenotypes 

provide a potential basis for the present observation that elderly women who carry 

the T-allele possess greater muscle strength.  

MTHFR rs1801131 

The current thesis (Chapter 4) did not find any association of MTHFR rs1801131 with 

sarcopenia, but a novel association between the MTHFR rs1801131 polymorphism 

and MVCEF in elderly women was observed. It is possible that the MTHFR gene 

variant association with homocysteine and methylation may explain the observed 

association in the present thesis (Chapter 5). The MTHFR rs1801131 CC genotypes 

exhibit higher homocysteine plasma concentration (Castro et al., 2004). The 

hyperhomocysteinaemia has been linked with reduced physical activity (Dankner et 

al., 2007) and reduced quadriceps strength (Kuo et al., 2007) previously.  Consistent 

with the lower strength in the present C-allele carriers, muscle strength might have 

been affected by the homocysteine-related protein damage due to 

homocysteinylation (Kuo et al., 2007).  

Contrasting to this hypothesis, however, is the fact that the CC genotype is 

favourable in athletic populations (Zarebska et al., 2014), and it has been suggested 

that this genotype might be associated with hypo-methylation, and leads to 

favourable expression of genes involved in myogenesis (Zarebska et al., 2014). 

Although the finding is opposite to the current thesis, it is possible that methylation 

pattern will differ with age in MTHFR gene. It is thus suggested that the methylation 

pattern in MTHFR gene should be studied functionally with ageing to confirm the 

present study result. 
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TRHR rs7832552  

TRHR rs7832552 was investigated for association with sarcopenia (Chapter 4) and 

skeletal muscle phenotypes (Chapter 5). Although the present thesis did not find 

association of TRHR genotype with sarcopenia, it was associated with muscle size 

measures, with T-allele carriers having a thicker VL and larger VLACSA than CC 

homozygotes. This finding is consistent with the report that T-allele carriers have a 

higher lean mass (Liu et al., 2009). The mechanism underlying higher muscle mass 

in T-allele carriers could be explained by raised luciferase activity, observed in C212 

muscle cell lines. The higher luciferase could result in a higher thyroid hormone level 

known to preserve muscle strength (Salvatore et al., 2014). Despite higher muscle 

mass in T-allele carriers, there was no difference in strength in this population 

(Chapter 5). This is similar to the previous study that reported no association of 

TRHR genotype with muscle strength (Lunardi et al., 2013). 

COL1A1 rs1800012  

In the present thesis, COL1A1 rs1800012 T-allele carriers had higher HGS (Chapter 

5), although this SNP was not associated with sarcopenia (Chapter 4). There is a 

change in binding capacity of Sp1 transcription factor with G-T transition in COL1A1 

rs1800012 (Mann et al., 2001) and results in a higher proportion of alpha 1 than 

alpha 2 compared to their normal ratio of 2:1. The present study showed that T-

allele carriers have greater strength than GG homozygotes, which is contrary to a 

previous study in an elderly male population (Van Pottelbergh et al., 2001). The 

present finding might be possible due to the extra production of collagen alpha 1 

with G-T transition. T–alleles as favourable allele, reported as stronger in chapter 5, 

are previously found to have higher bone mineral density (Berg et al., 2000), also 

described as appear to experience lower risk for ligament and tendon sports related 

injury (Wang et al., 2017a). This might suggest there is some favourable expression 

of collagen in T-allele carriers, which presents as higher muscle strength in elderly 

women. As there is contrary in the observation with muscle strength and BMD, a 
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good predictor of muscle strength, the author urge to study with this polymorphism 

in other population. 

FTO rs9939609 

The present thesis investigated the association of the FTO rs9939609 polymorphism 

with sarcopenia (Chapter 4) and skeletal muscle phenotypes (Chapter 5). No 

association was observed between FTO rs9939609 and sarcopenia; for the first 

time, however, an association was found between a larger VLACSA and elderly FTO A-

allele carriers. FTO has been widely studied with obesity-related phenotypes 

(Frayling et al., 2007). More recently, the role of FTO in skeletal muscle development 

has been investigated. FTO-deficient mice have impaired skeletal muscle 

development, and increased levels of FTO during myogenic differentiation and 

silencing lead to myogenic suppression in cell lines (Wang et al., 2017c). The FTO 

rs9939609 A-allele has been linked with higher fat mass and lean body mass 

(Sonestedt et al., 2011). It is possible that the FTO A-allele favourably influences lean 

mass accretion, positively influencing body composition and thus is associated with 

VLACSA. 

ACVR1B rs2854464 and ACVR1B rs10783485 

Other novel associations in chapter 5 were that of the ACVR1B rs2854464 G-allele 

with HGS and ACVR1B rs10783485 GG genotype with thicker biceps brachii and 

larger VLACSA. ACVR1B  gene encodes the activin A receptor type 1b protein, which 

is a member of TGF beta family and known to be involved in molecular pathways 

regulating myostatin and activin signalling  - signalling pathways identified as a 

negative regulator of muscle growth (McPherron et al., 1997). The findings of the 

current study (Chapter 5) is similar to the previous studies reporting a ACVR1B 

rs10783485 G-allele association with knee strength in 20-90 years old Caucasian 

males (Windelinckx et al., 2011) and that the ACVR1B  rs2854464 G-allele (He et al., 

2018) was favourable for knee strength in a 60-83 years old elderly population. It is 
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therefore possible that the G-allele of the two ACVR1B SNPs in Chapter 5 might 

show less antagonist nature in muscle signalling pathways. 

In contrast, however, studies have reported ACVR1B rs2854464 AA genotype as 

favourable for knee strength in young adults (Windelinckx et al., 2011) and to be 

over-represented in Caucasian sprint/power athletes (Voisin et al., 2016). As the 

real mechanism behind the association is not functionally tested, the author urges 

functional study and validation of this finding in other populations. 

7.1.3 Polygenic profiling 

Since both muscle mass and muscle strength are multifactorial in nature and there 

is high heritability for muscle mass and muscle strength, there was the possibility 

that numerous SNPs would be associated with skeletal muscle phenotypes. In 

Chapter 6, it was found that there was involvement of subsets of SNPs for the 

observed phenotypes when multiple SNPs were considered at a time. The GPS in 

Chapter 6 were calculated based on the limited subset of significant SNPs (GPSdd 

approach) which were able to explain 5.0%, 2.2%, 2.2% and 8.2% variance of HGS, 

MVCKE, biceps brachii thickness and VLACSA respectively, in the present elderly 

Caucasian females. Although the amount of explained variance for muscle size and 

strength measures in this thesis are rather small compared to the heritability 

estimates from twin studies phenotypes (Tiainen et al., 2004; Silventoinen et al., 

2008; Zempo et al., 2017). Heritability estimates are however based on genome 

wide influences, in contrast in the present thesis, the variance of muscle size and 

muscle strength measures when accounted by only 24 SNPs. There are numerous 

genes identified that affect the skeletal muscle phenotypes (Roth et al., 2012; 

Garatachea and Lucía, 2013; Matteini et al., 2016; Tikkanen et al., 2017; Willems et 

al., 2017). Given the multitude of external factors that can influence muscle 

phenotypes as people age, the associated variances in the present thesis represent 

a step forward in the understanding of the genetics of sarcopenia and the ageing 

muscle. The lower explained variance in the present thesis suggests the likelihood 
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of involvement of many SNPs (more than considered in the present thesis) and other 

environmental factors that could explain the observed muscle phenotypes. The fact 

remains however, that as this is the first GPS study of muscle phenotypes in elderly 

women, with the uncovering of more associated SNPs, the strength of the GPS 

association can only improve in future research. 

 Methodological considerations and limitations 

The findings of the current thesis have a wide range of implications in disease 

related to muscle wasting. With the identification of new gene variants that are 

associated with skeletal muscle phenotypes important for the maintenance of 

individual independence, the finding can be implemented as the new target for the 

treatment of sarcopenia and thus generating new directions for future research. 

Considering sarcopenia can affect both upper and lower limb muscle mass and 

muscle strength (Candow and Chilibeck, 2005), vastus lateralis and biceps brachii 

muscles were chosen as suitable muscles for assessing the size measures in the 

present thesis. Similarly, elbow flexion and handgrip strength were selected for the 

measurement of upper limb strength and knee extension muscle strength for 

assessing lower limb strength. As ageing results in deterioration in physical 

performance; hence the standing balance test was considered for the study. 

Knee extensor strength is important for various functional activities such as 

ambulation (Fukagawa et al., 1995), jumping (Yamauchi and Ishii, 2007) and 

squatting (Fujita et al., 2016). Lower muscle strength in the elderly, has been shown 

to contribute specifically to a decrease in walking speed (LaRoche et al., 2011), a 

decrease in gait speed (Alqahtani et al., 2017) and a decline in quality of life 

(Trombetti et al., 2016). While it is simple to assess the whole quadriceps femoris 

(QF) function via the use of dynamometer (Chapter 2), it is less convenient to assess 

morphological characteristics of each constituent muscle (Blazevich et al., 2006). 

Therefore, the VL muscle was selected as a representative of QF for more detailed 

assessment as consistent with previous studies (Trappe et al., 2001; Reeves et al., 
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2004). As there are differences in CSA between the muscles of the lower limb, more 

studies are required to confirm if the implications made in the current thesis in 

directing developments for sarcopenia are equally comparable between different 

muscle groups. 

In terms of the upper limb strength phenotypes, decreased handgrip strength in the 

elderly has been linked with health decline, specifically its association with 

functional disability (Giampaoli et al., 1999) and mortality (Al Snih et al., 2002). 

Throughout the thesis, based on the relationship between knee extensor 

strength/HGS and functional measures such as activities of daily living, implications 

are made about the impact of having unfavourable alleles/genotypes, and the 

potential impact on broader daily life. During the conception of the phenotype 

assessment, it was determined that (due to time constraints), identifying the 

neuromuscular phenotype in the first instance was the first step in understanding 

the genetics of sarcopenia. Subsequent research should include direct measures of 

daily life tasks, including gait analysis, stair climbing and more functional measures.  

As mentioned, however, the neuromuscular phenotypes presented throughout this 

thesis are considered essential as the determinants of those functional tasks.  

In the present thesis, the body composition of participants was measured using 

Bioelectrical Impedance Analysis (BIA). SMM was estimated using the cross-

validated predictive equation (Janssen et al., 2000a). BIA has been described as a 

reliable and valid tool when compared with MRI (Janssen et al., 2000a). It should be 

acknowledged that the estimation of FFM is affected by several factors such as 

temperature (8% change in resistance with 8.4 °C change in skin temperature)  

(Gudivaka et al., 1996), hydration status (Lukaski et al., 1986) and body position 

while testing (Deurenberg et al., 1998). The standard error of the estimate (SEE) is 

reported between 0.81-2.7 kg when compared to appendicular lean mass or skeletal 

muscle mass measured with MRI/DEXA (Janssen et al., 2000a). It is also affected by 

sex, age, disease state, or ethnicity (Rush et al., 2006). In the present thesis, 

participants were tested during the test regardless if they were hydrated or not 
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before the test; hence, the result may have been affected. The implications are 

reduced somewhat, particularly in the sarcopenia chapter as a) classification was 

based on the Z-score rather than the absolute SMM, and b) there were no genetic 

differences or associations with any of the BIA measures. 

One Leg Standing balance test (OLST) was performed to access balance impairment 

of the elderly participants. This test has been described as a simple, predictive and 

inexpensive marker for screening the low functional level and frailty associated with 

ageing (Vellas et al., 1997b) and 30 s duration is considered the standard test 

(Bohannon et al., 1984). Although the normal ranges with eyes open condition for 

60-69 years and 70-79 years are suggested as 22.5±8.6 s and 14.2±9.3 s respectively, 

and with eyes closed 10.2±8.6 s and 4.3±3.0 s respectively (Bohannon et al., 1984), 

over 60% of the participants in the current population passed the 30 s-eye open test 

easily (70.7±5.7 years, OLST 23.9±9.7s). Therefore, the test might not be predictive 

for checking the balance impairment in the present thesis. It is important to note, 

however, that despite these shortcomings OLST was differentiated by the 

sarcopenia definition between the two groups in the present study.  

 Conclusion 

The findings of the current thesis add to the growing body of literature investigating 

a genetic influence on human skeletal muscle phenotypes, in particular to 

sarcopenia and skeletal muscle size and strength measures in elderly Caucasian 

female population. Additionally, the study also estimated the predictive power of 

the GPS approach to explain the variance in muscle size and muscle strength 

phenotypes observed in studied elderly women.  

As there is no consensus in the clinical definition of sarcopenia, the present study 

identified the definition based on a Z-score could differentiate most of the 

neuromuscular characteristics of sarcopenic elderly and identified the HIF1A 

rs11549465 and ACE rs4341 as the gene variants associated with sarcopenia. In 
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addition, 12 novel gene associations were observed with skeletal muscle 

phenotypes investigated in the present thesis. The biological role of associated 

SNPs, specifically genes identified as encoding for structural protein, epigenetic 

regulator, transcriptional regulator, muscle growth inhibitor, body composition 

regulator or myotrophic factor could explain the observed associations. A GPSdd 

approach was successful in explaining up to 14.5% and 17.2% variance of the 

observed skeletal muscle size and strength respectively in the women studied in the 

present thesis. The present findings could contribute to augmenting understanding 

of skeletal muscle disorders, which may have implications for how sarcopenia and 

cachexia or other muscle wasting condition are treated and/or prevented in future. 

 Directions for future research 

The specific areas for future research have been explained in the subsequent 

chapters of the current thesis. Therefore, this section discusses the broader 

directions for future research, considering the findings of the current thesis, to add 

knowledge in the field of ageing genetics. Within the chapters included in the 

present thesis (Chapter 4, 5 and 6), SNPs were found to be associated with several 

functional and morphological skeletal muscle phenotypes and sarcopenia. Although 

the current thesis findings (Chapter 5) replicated the finding of CNTF rs1800012 in 

an independent elderly population and identified several novel gene associations 

with skeletal muscle phenotypes, several genes have been identified as potential 

candidates for associations with skeletal muscle phenotypes and athlete 

performance (Abe et al., 2018). Such findings should be replicated independently or 

investigated further using direct measurements of skeletal muscle mass and muscle 

strength (related phenotypes) with a similar approach to that employed in the 

current thesis. Hence, new research should bolster the field of ageing muscle 

genetics by strengthening the evidence of existing associations by independently 

replicating in other populations and identifying the new gene variants associated 

with skeletal muscle phenotypes with direct measurement of a plethora of muscles 

in a large and different population. 
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In the present elderly population, the finding demonstrated a somewhat 

unpredictable nature of candidate gene associations. For instance, ACTN3 

genotype, which is widely studied with multiple phenotypes, did not show any 

association with any of the phenotypes in the current study. On the other hand, 

some of the SNPs showed associations with HGS but not with MVCEF. The findings 

of the current thesis therefore suggest the inclusion of broad, and where possible, 

rigorous measurements of phenotype. 

It is well established that both skeletal muscle size and strength are polygenic 

phenotypes, in the present thesis 24 SNPs predicted 8.2% variance of muscle size 

measures and 5.0% for muscle strength measures. Therefore, the future research 

should focus on incorporating the SNPs reported in the present thesis and those 

reported in other studies. 
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The gerontological syndrome, sarcopenia, has been defined using measures of skeletal muscle mass 

index (SMI) and handgrip strength (HGS) in the elderly [1]. Any definition of sarcopenia should be 

able to discriminate meaningful outcome measures between sarcopenic and non-sarcopenic (NS) 

elderly. Independence and activities of daily living in the elderly are determined by the decline in 

neuromuscular outcome measures such as muscle size, strength and balance performance [2]. The 

purpose of this study is to identify which commonly used standard definitions of sarcopenia in older 

Caucasian females discriminate meaningful outcome measures between sarcopenic and NS older 

women.  

150 Caucasian participants (71±5 yrs, 1.59±0.06 m, 66.8±12.3 kg, mean±SD) were classified into two 

groups, sarcopenic and NS, using 5 previously established definitions based on measures of SMI, 

(Skeletal Muscle Mass (derived from bio-impedance measured impedance) divided by height2) and 

HGS. Six neuromuscular parameters were measured to assess whether differences existed between 

sarcopenic and NS participants: Isometric Maximum Voluntary Contraction-Knee Extension 

(MVCKE) and Isometric MVCEF (Elbow Flexion) were measured by dynamometer. Biceps brachii 

muscle thickness and Vastus Lateralis Anatomical Cross Sectional Area (VLACSA) were measured with 

B-mode ultrasonography. Physiological Cross Sectional Area of Vastus Lateralis (VLPCSA) was 

measured as volume/fascicle length. 30sec standing balance test was performed with eyes open (BT-

EO) or eyes closed (BT-EC). 

Based on previous definitions of sarcopenia, the prevalence of sarcopenia in the present elderly ranged 

from 1.3-70%. The definition suggested by EWGSOP (2SD below young SMI and HGS, sarcopenic 

prevalence = 21%) shows the sarcopenic group to have lower Isometric MVCKE, VL-PCSA, BT-EO, 

and BT-EC compared to NS (4/6 measured outcomes). Of the other sarcopenic definitions used; 2SD 

SMI below young, 2SD SMI below old, least quintile of HGS, cut-off from NHANES III study [3] 

sarcopenic prevalence was 36.7%, 1.3%, 20% and 70% respectively, and showed sarcopenic group 

differences in 1, 0, 2 and 0 of the neuromuscular outcome measures, respectively.  

In conclusion, when considering definitions of sarcopenia, based on the ability to distinguish 

differences in neuromuscular parameters between sarcopenic and NS, the EWGSOP was the only 

definition to discriminate MVCKE, and VLPCSA, and showed group differences in a further 2 measures. 

Despite sarcopenia being classically defined as a decline in muscle mass, the only definition that was 

able to successfully discriminate MVCKE and PCSA between sarcopenic and NS, included the 

measurement of handgrip strength and SMI together. 
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Appendix 2 

 

Table:  Polymorphisms used in genotyping, identification of allele-specific probes and when known the flanking 
primers and probes used for DNA amplification 

SNPs VIC® FAM® Primer  (5’-3’) 

ACTN3 rs1815739 
 

T-allele C-allele  

ACE rs4341 
 

C-allele G-allele ACE111 
CCCATCCTTTCTCCCATTTCTC 
ACE112 
AGCTGGAATAAAATTGGCGAAAC 
ACE113 
CCTCCCAAAGTGCTGGGATTA 

CNTF rs1800169 
 

A-allele G- allele  

MSTN rs1805086 
 

C-allele T-allele  

COL1A1 rs1800012 
 

A-allele C-allele  

VDR rs2228570 
 

A-allele G-allele  

TRHR rs7832552 
 

C-allele T-allele  

PTK2 rs7843014 
 

A-allele C-allele  

PTK2 rs7460 
 

A-allele T-allele  

IGF1 rs35767 
 

A-allele G-allele  

IL6 rs1800795 
 

C-allele G-allele  

ACVR1B rs2854464 
 

A-allele G-allele  

ACVR1B rs10783485 
 

G-allele T-allele  

ESR1 rs1999805 
 

A-allele G-allele  

ESR1 rs4870044 
 

C-allele T-allele  

MTHFR rs1537516 
 

A-allele G-allele  

MTHFR rs17421511 
 

A-allele G-allele  

MTHFR rs1801131 
 

G-allele T-allele  
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HIF1A rs11549465 
 

C-allele T-allele  

ID3 rs11574 
 

C-allele T-allele  

NOS3 rs1799983 G-allele T-allele  

FT0 rs9939609 
 

A-allele T-allele  

CNTFR rs2070802 A-allele T-allele  

TTN rs10497520 C-allele T-allele  
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Appendix 3 

 
Association of SNPs and Handgrip strength (HGS). Comparison of HGS between genotype groups for PTK2 

rs7843014 (AA=105, AC=142 Vs CC=57) and PTK2 rs7460 (AA=72, AT=153 and TT=80) polymorphisms. 

Black color denotes group with highest mean followed by grey and white color. 
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Association of SNPs and Isometric elbow flexion maximum voluntary contraction (MVCEF).  

Comparison of MVCEF between genotype groups for ACVR1B rs2854464 (AA=153, AG=127, 

GG=24), PTK2 rs7460 (TT=80, AT=153 and AA=71) and MTHFR rs1801131 (GG=2, GT=132, 

TT=144). Black color denotes group with highest mean followed by grey and white color. 

 

Association of SNPs and Isometric Knee Extension Maximum Voluntary contraction (MVCKE). 

Comparison of MVCKE between genotype groups for NOS3 rs1799983 (TT=43, GT= 142 and GG= 

117) polymorphisms. Black color denotes group with highest mean followed by grey and white 

color. 
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Association of SNPs and bicep brachii thickness. Comparison of biceps brachii thickness between 

genotype groups for ACE rs4341 (CC=61, GC=135, GG=96) and ACVR1B rs10783485 (TT=26, TG=141, 

GG=124) polymorphisms. Black color denotes group with highest mean followed by grey and white color. 

 

 

Association of SNPs and Vastus lateralis thickness. Comparison of VL thickness between genotype groups 

for TRHR rs7832552 (TT=37, CT=122 and CC=130). Black color denotes group with highest mean followed 

by grey and white color. 
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Association of SNPs and Vastus Lateralis Anatomical Cross sectional area (VLACSA). Comparison of VLACSA 

between genotype groups for TRHR rs7832552 (TT=37, CT=122 and CC=130), ACVR1B rs10783485 

(TT=28, GT=140 and GG=121) and FTO rs9939609 (AA=45, AT=143 and TT=102) polymorphisms. Black 

color denotes group with highest mean followed by grey and white color. 

 

 Figure:  Association of SNPs with skeletal muscle phenotypes 
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