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A b s t r a c t  o f  t h e  T h e s is

Tree Based Methods for Rule Extraction from 
Artificial Neural Networks

Artificial Neural Networks are powerful and flexible tools for pattern recog­

nition, inspired by biological neurons, such as those making up the human brain. 

Artificial neural networks have successfully found widespread use, but further 

adoption is hindered in many areas because, like their biological counterparts, 

artificial neural networks do not reveal the knowledge they have learnt in a 

readily understandable form.

This thesis presents new algorithms for extracting decision trees from arti­

ficial neural networks. Decision trees, unlike neural networks, are a graphical 

representation of a decision process that are intuitively easy to understand. This 

thesis extends previous algorithms in this area by making use of new develop­

ments in decision trees. The algorithms developed do not require specialised 

neural network architectures or training algorithms and can be applied to ex­

isting neural networks and other classifier types that are black boxes.

In addition to algorithms for the extraction from classification domains, this 

thesis also presents algorithms to extract model trees from artificial neural net­

works trained on regression problems. Artificial neural networks make excellent 

models for function appromimation, but extraction from such neural networks 

has been a neglected area of research.

To show the real-world applicability of these algorithms an empirical eval­

uation was completed on 16 real-world datasets from the standard machine 

learning benchmark repositories. This evaluation confirms that the algorithms 

are capable of extracting decision trees that achieve higher predictive classifi­

cation accuracy than decision trees directly induced on the datasets, and also 

maintains high level of fidelity with the neural network from which they are 

extracted.
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CH APTER 1

Introduction

Pattern Recognition encompasses a wide range of information processing prob­

lems, such as recognising a family member’s face, recognising their voice on a 

poor quality telephone line, deciding which move to make next in chess, di­

agnosing diseases, to predicting future movements of the stock market. The 

human brain seems remarkably well adapted to solving many of these types of 

tasks. For example, we are often able to recognise old school friends even after 

an absence of many years, regardless of the fact that their features may have 

changed dramatically in the intervening years.

However, creating computer programs to solve such problems has been prob­

lematic. It is often difficult to express a solution to these types of problems as a 

series of procedural steps, which is the traditional form of a computer program. 

Neural networks provide an alternative style of information processing that is 

well suited to solving the pattern recognition problem. Neural networks are a 

collection of computational models and techniques based on biological neural 

networks such as the human brain. However, neural networks are ‘black boxes’ 

and do not reveal how they make their decisions. This thesis shows how a com­

prehensible representation of the decision process in the form of a decision tree 

can be extracted from trained neural networks.

The Pattern Recognition problem as described by Ripley [69] is:

Given some examples of complex signals and the correct deci­

sions for them, make decisions automatically for a stream of future 

examples.

The basic framework for classification[69] is that certain objects need to be
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classified as coming from a number of classes C\,. . Ck - A process called feature 

extraction takes a number (p) of measurements from the object. This produces 

a vector of features, X, commonly called an instance. X  therefore belongs to an 

instance space Sfr. The instance space, «̂ T, being x x • • • x 3CV where 3C\ 

is either the set of Reals, R, for real valued features or a finite set for nominal 

valued feature. The task is then to build a classifier, (7, that given an instance, 

X  =  x, will classify it as one of the K  classes, that is

C\ 3C (1.1)

1.1 Artificial Intelligence and Artificial Neural Networks

The field of Artificial Intelligence can be considered an attempt to solve compu­

tationally tasks that would usually be assumed to require intelligence1. Defining 

artificial intelligence requires a definition of (natural) intelligence which quickly 

becomes philosophical. Turing attempted to side-step the issue of definition 

by setting the well-known Turing test [88] for artificial intelligence. The test 

required an artificial intelligence program to convince someone through text- 

based conversation that they were in conversation with a human. But the test 

sets a very high bar, a program passing the test would certainly be considered 

artificially intelligent, but a program that fails the test could still be considered 

intelligent. For example, a young child that could not read would fail the test.

Symbolic AI techniques have attempted to create artificial intelligence at 

an abstract level. It is characterised by attempts to reason using sets of facts 

and rules. Symbolic AI has a long history with some early successes such as 

Mycin[78] an expert system capable of diagnosing infectious blood diseases and 

recommending antibiotics. The CYC project[47] aimed to create a database 

of ‘common sense’ using a formal symbolic representation based on predicate 

logic which although it may not have achieved its grandiose aim of building 

a system which acts with common sense [98], its database of common sense

1Of course once a task can be shown to be performed without requiring real intelligence 
the resulting system which performed this task ceases to meet the definition -  hence one 
reason for the sometimes perceived failure of AI

2



rules has been used for providing a natural language interface to databases in 

commercial applications[19].

In contrast to symbolic AI, neural networks, or, more precisely artificial neu­

ral networks, take a more biologically inspired approach to AI and attempt to 

model the neurons of the brain. It was originally hoped that intelligence would 

emerge from systems that modelled a significant number of neurons. Although 

the more ambitious hopes for neural networks may not have been realised the 

field has matured into providing a set of very practical and powerful tools for 

solving the specific problem of pattern recognition as described in the previous 

section. Neural networks have been widely applied to multiple problem do­

mains including financial[59], engineering[57], medical[22], and computer games 

domains [82].

1.2 Rule Extraction From Artificial Neural Networks

Andrews[4] gives an excellent overview of the importance of rule extraction 

from neural networks. Making a neural network transparent has several bene­

fits. Users of symbolic AI systems, such as Case-Based Reasoning[92], Expert 

Systems[36], and Decision Trees[65], benefit from explicit declarative explana­

tions of the systems reasoning and decision making processes. This explanation 

often includes a step-by-step explanation of the decision process, and it has 

been shown that this level of detail is often required for user acceptance[20]. 

In contrast users of neural networks are denied these benefits because of the 

opaqueness of neural networks. Safety critical systems seldom use neural net­

works because of their lack of transparency. In addition, a safety critical system 

needs to be able to be interpreted unambiguously. Increasingly, software sys­

tems are required to be verified to be correct or match the system specification. 

A neural network because of its black box nature is difficult to verify, but it 

is possible to verify the rule sets extracted. The extracted rules can then be 

manipulated using logic to verify a system meets the system requirements.

3



1.3 Thesis Aims and Objectives

Aims

The aim of this research project is to create a series of algorithms which will

meet the following criteria:

• extract rules from artificial neural networks in both classification and re­

gression domains;

• create rules that are easy to comprehend;

• outperform direct decision tree induction;

• be widely applicable to a wide range of different artificial neural network 

architectures;

• will not require specialist training algorithms.

Objectives

To achieve the above aim the following objectives will be investigated:

• research and review the pattern recognition problem with respect to clas­

sification and regression domains;

• identify by examining artificial neural networks and their architectures 

and training algorithms why the knowledge within an artificial neural 

networks is difficult to interpret;

• compare and contrast artificial neural networks with decision trees to iden­

tify the strength and weaknesses of both approaches;

• review current rule extraction algorithms to identify the current strengths 

and weaknesses of these algorithms;

• develop new algorithms to overcome the limitations identified in the review 

of current rule extraction algorithms;

4



• implement new algorithms for rule extraction;

• implement an evaluation methodology for comparing the performance of 

rule extraction algorithms on multiple datasets;

• analyse the new algorithms on synthetic datasets to gain insight into the 

operation of the component parts of the algorithm;

• evaluate the algorithms on real-world datasets to show the real-world ap­

plicability of the algorithms.

1.4 Thesis Overview

Chapter 2 will review artificial neural networks. The review will concentrate on 

the multilayer perceptron architecture and error backpropagation, which is the 

most popular training algorithm for this architecture. Chapter 3 examines deci­

sion trees and the information theory approach to growing decision trees will be 

examined. Chapter 4 examines the rule extraction task and reviews current rule 

extraction algorithms, highlighting the deficiencies addressed by the new algo­

rithms presented in the subsequent chapters. Chapter 5 will introduce, ExTree 

and ExLMT, new rule extraction algorithms for classification problems. In ad­

dition to introducing these algorithms this Chapter will analyse the algorithms 

on synthetic datasets. Chapter 6 will give the results of an empirical evaluation 

of these algorithms using real-world datasets. Chapter 7 will present the ExMT 

algorithm which extracts rules in the form of model trees from artificial neural 

networks in regression-based domains. This chapter will also give the results of 

an empirical evaluation of ExMT on real-world regression datasets. Chapter 8 
will conclude the thesis summarising the earlier chapters and giving details of 

potential future research directions.

5



CH APTER 2

Artificial Neural Networks

The field of (artificial) neural networks consists of a large collection of informa­

tion processing models and techniques that were originally inspired by biological 

nervous systems such as the human brain. A biological nervous system is based 

around a collection of interconnected neurons. Figure 2.1 shows a typical bio­

logical neuron.

Neurons communicate using electrical pulses. A  neuron receives pulses at 

its dendrites and sends pulses down its axon. The electrical pulse starts at or 

near the cell membrane then propagates down the axon to the other neurons. 

A synapse is the connection between the firing neuron at its axon and the 

receiving neurons dendrites. These synaptic connections can either impose an 

excitation or inhibition effect on the pulse. A typical neuron is constantly 

receiving thousands of pulses sent from other neurons, with the strength of the 

pulses regulated by the synapses. The cell body acts as a leaky integrator of 

these pulses and if the sum of these pulses reach a threshold limit then the 

neuron itself fires, sending a pulse on to other neurons.

Biological neurons and neural networks are one of the most complex natu­

rally occurring systems and there are many aspects that the above description 

does not take into account. For example, brain chemistry such as hormonal 

changes can affect brain function. However, most of the research into artificial 

neural networks is based on this model. The human brain has an estimated 

100 billion neurons and 60 trillion synaptic connections[96], so, although an 

individual neuron may seem relatively simple it is the size and complexity of 

the interconnected network that makes the complex animal behaviour that is

6
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F ig u re  2 .1 : A biological neuron showing the dendrites at the top which 

receive pulses from the other connected neurons.

observed in the natural world, and even human consciousness, possible.

Although often considered a new field, intrinsically linked to the computer 

age, neural networks are rooted in the purely logical simulations of biological 

neurons created by McCulloch and Pitts[50], Neural networks are based around 

a number of individual models of neurons arranged in a network. These artificial 

neurons accept a number of weighted inputs and process this input in some way 

to produce an output. The weight on the input is used to model the synaptic 

inhibitory or excitation effect. It is the value of these weights that determine the 

function of the neural network. Figure 2.2(a) models the logical AND operator 

such that given two binary inputs, X  <E {0, l } 2, the output will be 1, if and only 

if X  is equal to (1,1). Figure 2.2(b) models the OR operator which results in 1 
if either or both inputs has the value 1.

Minsky[53] showed that the processing power of a single (artificial) neuron 

had a substantial limitation: classification tasks that could not be solved by 

a single decision surface could not be solved by a single neuron. For example, 

a single neuron could not implement the logical XOR operator. Therefore, a 

neuron is limited to problems which are linear separable. For a two input clas­

sification task this means a single line must be able to separate the two classes.



X 1 1 X 1 1

£ > 1 £  >0.5

x 2 x 2

(a) A neuron implementing the AND function, (b) A neuron implementing the OR function.

F ig u re  2.2 : Artificial neurons implementing the AND and O R  logical func­

tions.

In higher input dimensions the classes must be separable by a single hyperplane. 

Figure 2.3 illustrates linear-separable and nonlinear-separable problems. In Fig­

ure 2.3(a) the two classes are separable by a single straight line as indicated by 

the dashed line and is therefore linearly separable. In Figure 2.3(b) the points 

are arranged in two concentric circles precluding a single line separating the two 

classes and therefore represents a nonlinear-separable problem.

The inability of a single neuron to separate nonlinear-separable classes meant 

that neural networks were not practical for pattern recognition tasks. However, 

it is possible by arranging multiple interconnected neurons together in an archi­

tecture known as a multilayer perceptrons(MLP) to solve nonlinear-separable 

classification problems. Although this was known at the time when the limita­

tions of single neurons were being recognised[53], it was not until the discovery 

of the error back-propagation by gradient descent method[94, 71] allowing MLPs 

to be trained that they became useful. It is this type of model that will be used 

in this thesis.

A typical two layer MLP is shown in Figure 2.5. For each layer in the 

neural network a set of weights is required. The matrix W  represents the in-
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F ig u re  2 .3 :  Linear and nonlinear separably pattern spaces.
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F ig u re  2 .4 : An artificial neuron with inputs X\andX^ and bias with weights

w u w 2, w 3.

F ig u re  2 .5 : A  two layer M LP with two inputs, 3 hidden nodes and a single 

output node.
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terconnecting weights between layers and is normally represented in the matrix 

form,

W  =

wn w12 

W21 ' • •

wu

W j  1 .............. Wji

where tu^is the weight connecting node j  to node i. The superscript is used to 

distinguish which layer the weight matrix belongs to (i.e. W 1 is the first layer, 

W 2 is the second layer).

The neuron performs two processing steps. First, it calculates the net input, 

a, which is simply the inputs, z, to the neuron multiplied by the corresponding 

weights,

aj =  ^ w jizi. (2.1)
i

Second, the output for the neuron is obtained by applying a nonlinear activation 

function, g(-) to the net input. The activation function must be nonlinear to 

allow the network to approximate nonlinear functions. In addition for back- 

propagation learning, the activation function must be differentiable and have a 

bounded output range such as [—1. . .  1] . Common activations functions that 

meet these requirements are the unipolar sigmoid function,

9(a)
1

1 -f e~a ’
(2 .2)

and the bipolar sigmoid function,

(2.3)

The advantage of these functions is that their derivatives can be expressed 

simply in terms of the activation function itself, giving

9 »  =  9(a) ( 1 - 9(a)), (2.4)

for the unipolar sigmoid function and

9\a) =  \ ( !  -  9(a)2) ■ (2.5)
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for the bipolar sigmoid function.

Training is the process of selecting a set of weights that produce a desired 

network function C. This is done by presenting to the neural network a set of 

instances with known classifications and adjusting the weights until the error 

between the output of the neural network and the true classification is min­

imised.

The most popular training algorithm is error back-propagation using gradi­

ent descent, which is often, but somewhat misleadingly, referred to simply as 

back-propagation. Using summed square error (SSE) as the error measure the 

error for pattern n and the whole dataset can be written as

E" =  \ E f e - i t ) 2 (2-6)
1 fc=l

,E  =  (2.7)
n

where y^is the output of the network and is the a priori known classification 

of that pattern.

The derivative of En with respect to the weights Wji, is

dEn
dwji

then by application of the chain rule this can be written as

dEn dEn daj
dw^ daj dw^

( 2 .8)

(2.9)

where a is the net input. The activation with respect to the weights can then 

be written as
daj
dwji =  *i-

Substituting Eq. (2.10) into Eq. (2.9) gives

dEn _  dEn
dwji daj '

( 2 . 10 )

( 2 . 1 1 )

The ^ 7  term is usually referred to as the error term and is represented as 6

giving
dEn
dwji = SjZi. (2.12)
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For the output layers this can be calculated as

dEn dyk 
dyk dak =  9fM

dEn 
dyk '

The ¿s for the neurons in the hidden layer become

(2.13)

. v—v dEn dak , . y™' r i a\
d i r 9’ {a‘ ) ^ ' Wk,k' { ]

where the sum runs over all k neurons to which neuron j  sends connections. 

This has the effect that Sj ,  (the ‘blame’) assigned to the neuron j  is passed back 

to the neurons that connect to it, in proportion to how much it contributed to 

the output of neuron j.

Using the unipolar activation given in Eq. (2.2), and SSE given in Eq. (2.6) 

for the error function the Ss becomes

Sk — yk tk, (2.15)

5i =  2 j(! -Z j)^ 2 w kjSkt (2.16)
k

where the sum runs over all neurons k to which neuron j  sends connections.

Having obtained the derivatives of the error with respect to the weights, the 

gradient descent method can be used to find a set of weights to minimise the 

error. Starting with a random set of weights1, the weights are updated such 

that the E, as defined in Eq. (2.6), is decreased. This is achieved by taking a 

small step (in weight space) in the direction that results in the greatest descent, 

which will be the negative of the gradient that was just found. Therefore

W t+1 =  W* +  AW * (2.17)

where

A  =  rjSjXi. (2.18)

This update to the weights is recalculated for each instance in the training

data. After all the instances in the training set have been processed (1 epoch of

lAlthough small random weights are sufficient, initialising the weights using algorithms 
such as Nguyen and Widrow[58] will increase the convergence speed.
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training) if E is below the predetermined limit ¿?max then training is complete 

else further epochs of training are repeated until E falls below Emax-

The algorithm described is the standard algorithm of MLP training but 

there have been numerous improvements proposed that can be made to the 

algorithm[9, 31, 69, 23].

The basic back-propagation algorithm has three main problems:

• It can be very slow to converge to a solution, taking several thousand 

epochs to converge to a set of weights that will solve even simple problems 

like representing the XOR function.

• Gradient descent is not guaranteed to converge to the optimal solution, 

and can get ‘stuck’ in local minima as shown in Figure 2.6.

• It can overfit the training set reducing the neural networks ability to 

generalise to previously unseen instances.

Figure 2.6: Minima on the Error Surface: E plotted against W

The speed of convergence is dependent on the value of the learning rate 77 
in Eq. (2.18). If 77 is small enough then the algorithm should converge to

14



a minima in a smooth descent, but this will take an unpractical number of 

iterations. Increasing r] will speed the descent but may result in an unstable 

descent that may ‘overshoot’ the minima and actually increase E. It can be 

shown analytically[40] that the optimal value for 77 decreases in proportion to 

the time-step such that

V* °c (2-19)

However for practical applications this results in convergence taking too long. 

Therefore, 77 tends to be set at a higher value using trial and error. A related 

improvement is the inclusion of a momentum term[60] to the delta, such that 

Eq.(2.17) becomes

W 4+1 =  W* +  A W 4 +  ¿tW4_1. (2.20)

The additional term added to the delta includes a fraction, p, of the previous 

delta. This has the effect of altering the step size according to the error surface. 

When the error surface is constantly downhill in the same direction the delta 

term will ‘gather momentum’ increasing the step size, but when the surface 

is uneven or ‘bumpy’ the momentum term will dampen the rate of descent 

resulting in smaller, more cautious steps. Fausett[23] reports an experiment 

where adding a momentum term speeded up convergence from 387 epochs to 

38 epochs. Riedmiller[68] took a more radical approach to the problem of 

step size and proposed the Resilient Back-propagation(Rprop) algorithm which 

attempted to ‘eliminate the harmful influence of the size of the partial derivative 

on the weight step.’ In Rprop the derivative is used only to indicate the direction 

of the step with the size of the step being calculated so that it is proportionate 

to the time-step. This is somewhat similar to the update of the learning rate 

previously discussed.

However, the biggest improvement in terms of speed of convergence has 

come from the realisation that the back-propagation method of finding the 

derivatives can be combined with optimisation techniques other than gradient 

descent, such as Quasi-Newton, conjugate gradients, and Levenberg-Marquardt 

(L-M) techniques. For example, Demuth[21] showed that the L-M algorithm
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was six times faster on the well-known diabetes dataset and was 25 times faster 

learning the Sine function. Masters[49, 48] gives details on how these more ad­

vanced algorithms can be applied to MLP training. However it should be noted 

that the neural networks community has, in general, been slow to adopt these 

more advanced optimisation techniques. Reasons for this reluctance include 

the gradient descent technique being ‘tried and tested’ and relatively simple to 

implement, but also because it is slightly closer to the biological neuron model 

discussed earlier in this Chapter.

As already discussed a potential problem of training MLPs is that the al­

gorithm can converge to a local minima instead of the global minima. There 

are currently no known ways of eliminating this problem entirely. Although ap­

proaches that change the error landscape such as changing the error function in 

Eq. (2.6) to a cross-entropy based measure[39] and scaling the individual input 

vectors can lessen the problem but not eliminate it. An alternative approach 

is to attempt to test whether the minima found is really the global minima by 

trying to ‘escape’ from it. Masters[49] shows how a form of simulated anneal­

ing can be used to achieve this. In practice the most common way to avoid 

sub-optimal solutions is to retrain the MLP with different initial weights and 

choose the MLP with the lowest E.

A further problem with the standard back-propagation algorithm is that 

if E  is minimised to its lowest point using the training set then the neural 

networks will most likely have overfitted the training set. To show the effects 

of overfitting, a dataset was created by sampling 21 points from the function 

y =  sin(3/f) ±  v where v is a uniform random number between 0 and 0.25, 

with t being 1 ,2 . . .  21. A MLP with 20 neurons in the hidden layer was trained 

using this data. Figure 2.7(a) shows the extreme overfitting that occurred. 

Although the E  for the dataset is zero the neural network failed to interpolate 

or generalise to points outside the original dataset. Figure 2.7(b) shows a MLP 

with 5 neurons in the hidden layer. Although the error on the training data will 

be higher for this neural network its ability to generalise to unseen instances is
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(a) 20 Hidden Neurons

(b) 5 Hidden Neurons

Figure 2.7: Overfitting Comparison of a MLP with 20 and 5 Hidden Neu­

rons
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far greater than the previous 20 neuron network. The most common approach 

to solving this problem is early stopping. To use this method the training set 

is further divided into 2 sets: a new smaller training set and a validation set. 

For each epoch, E  is calculated for both the training set and the validation 

set. Training proceeds as normal minimising the error on the training data but 

training is stopped when the error for the validation set starts to rise. However/ 

the scheme is not without its critics, for example, Ripley[69] suggested that this 

is dangerous because he had encountered examples in which, after an initial 

drop, the error on the validation set rose slowly for a number of iterations, then 

fell dramatically to a small fraction of its previous minimum. Early stopping 

may result in training being stopped before the minimum error on the validation 

set is found. A different approach to improving generalisation is to add a 

regulation term to the error function, such that Eq. (2.6) is replaced by

where E is a standard error function such as SSE, and f2 is the regulation term 

and v is a constant determining the importance applied to the regulation term. 

The purpose of Q, is to measure the complexity o f the neural network. The 

addition of the regulation term, f2, means that the MLP training algorithm 

balances minimising error with increasing model complexity.

There have been several suggestions on how model complexity should be 

measured[31]. A common measure is weight decay, such that Omega is the sum 

of squares of the weights,

where i ranges over all the weights in the neural network. When this measure

E =  E + vQ,, ( 2 . 2 1 )

( 2.22)

is used it has the effect that when E is minimised for a given value of E the 

weights will decay towards zero, hence the name weight decay.
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2.1 Analysis of Neural Network Training

This section presents an analysis of how artificial neural networks learn a given 

pattern classification task or approximate a given function.

2 .1 .1  T h e  X O R  C la s s if ic a t io n  T a s k

The XOR classification is of historical importance to artificial neural networks 

because it cannot be solved by a single layer of perceptrons as demonstrated by 

Minsky[53]. However, it can be solved with a multilayer perceptron with a single 

hidden layer. The task is to classify a two attribute pattern according to the 

eXclusive-OR function as illustrated by the truth table in Table 2.1. Figure 2.8 

shows the pattern space for the XOR problem. Notice that the two classes are 

not linear separable. A MLP of the type in Figure 2.5 can be trained to solve

X i *2 y
0 0 0

0 1 l

1 0 l

1 1 0
A------ri----- n --------------rr-77* = ^ = =

F ig u re  2 .8 : Pattern Space for T a b le  2 .1 :  Truth table for the

XOR function. XOR function.

the XOR classification problem. The hidden layer consisting of two neurons hi 

and h2 each represent a nonlinear function of the pattern space. Figure 2.9(a) 

shows the output from hi which gives a value of 1 at (1,0) before gradually 

sloping away to give a value 0 at (0,1). Figure 2.9(b) shows the output from h2 

which gives a value of 0 at (1,0) before steeply rising to give a value 1 at (0,1).

Figure 2.9(c) shows the surface created by the output node that combines 

the hi and h2 hidden nodes. Figure 2.9(d) shows the pattern space with the



decision boundaries formed by the hidden neurons. Because the hidden neurons 

used smooth continuous functions the decision boundaries are not sharp, but if 

a classification threshold of 0.5 is applied then the boundaries become distinct 

as shown by the dotted lines in Figure 2.9(d).

0 0 .2  0 .4  0 .6  0 .8  X) 1

(c) Output Surface. (d) Decision boundaries in pattern space.

F ig u re  2 .9 : Decision surfaces and boundaries for the X O R  problem formed 

by the hidden and output neurons o f the M LP.
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2.2 Hidden Layer Transform

The previous section looked at neural networks solving the XOR problem from 

the perspective of the hidden neurons being decision planes in pattern space. 

In this section an alternative but equivalent view will be shown. The hidden 

layer (or layers) can be seen as a transformation such that the classification task 

becomes linearly separable. Consider the following two-input (x i,x2) two-class 

classification problem,

1

V = 1

0

, where x2 > 2x\ +  1 A <  0 

, where — x2 < 2 x  — 1 Ax > 0 

, elsewhere .

(2.23)

The dataset was 10,000 data points uniformly sampled from Eq. (2.23). The 

dataset in pattern space for this problem is shown in Figure 2.10. As can be 

seen from the pattern space, the task is to separate the red class 1 points, which 

form a triangle, from the remaining blue class 0 points. Although a very simple 

classification task it is clearly not linearly separable. A MLP with two hidden 

nodes hi and h2 was trained for 125 epochs. The error over the 120 steadily 

reduced towards near 0 as shown in Figure 2.11.

Figure 2.12(a) shows how before training the hidden layer transformation 

starts in a random state which squashes all the points into the top left corner 

with the decision plane not separating any of the data points. As training 

progresses, shown in Figures 2.12(a)- 2.12(f), the hidden layer transformation 

’fans out’ the points simultaneously keeping the class l(red) points in the top 

left corner and moving the class 0(blue) points away from the top left corner. 

At the same time the decision plane of the output neuron moves up to the top- 

left hand corner to separate these now linearly separable classes. This shows 

how a problem which is not linearly separable in x x x x2 can be transformed 

by the hidden layer into a problem that is linearly separable in hx x h2. In this 

illustrative example the number of inputs and outputs was limited to two for
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Figure 2.10: Pattern space for the triangle problem.

MSE

F i g u r e  2 .1 1 :  Mean squared error over time for the triangle problem.
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(a) Epochs 0 (b) Epochs 25

(e) Epochs 100 (f) Epochs 125

F ig u re  2 .1 2 : As the neural network passes through an increasing number 

of training epochs the hidden layer separates the blue and red 

points until they are linearly separable.
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ease of plotting but, of course, both can be of a higher dimension.

2.3 Regression Problems

The previous examples examine how MLPs can be applied to classification, 

but the other significant use of MLPs is function approximation to solve re­

gression problems. Regression problems are those that have a continuous(IR) 

valued output. Real world examples of regression problems include predicting 

house prices, stock prices, and population growth. The input, X , can also be 

continuous(M) or a nominal valued attribute as in the classification task. Mir­

roring Eq. (1.1), the regression task can be specified as finding a function of the 

form,

/ : # ■ - +  R. (2.24)

A useful categorisation of regression problems is into linear regression and non­

linear regression. Linear regression can be expressed as finding a model of the 

form y  =  Xfi +  e where e models the ‘error’ in Y  and is usually assumed to be 

Gaussian distributed. The value to be predicted, Y, is usually referred to as the 

dependent variable and the values used to make the prediction(attributes) are 

referred to as the dependent variable. A simple linear regression problem with 

a single independent variable is shown in Figure 2.13. The data points were 

sampled from the function y =  2x +  3 with Gaussian noise added with mean 

0 and standard deviation of 1.5. The dashed line shows the linear regression 

fit with least squares and the solid line shows the target function y =  2x +  3. 

Linear regression fitted using least squares performs well but is limited to fitting 

linear models.

Real world phenomena are often nonlinear in nature. A MLP of the form 

y = 9l {Y ,92(wiXi)) where gl(-) is the activation function for the output layer 

and 52( ‘) activation function for the hidden layer, provides a model that

can approximate the regression task as given in Eq. (2.24) with some practically- 

satisfiable assumptions[95]. The back-propagation training method previously 

described can be used to train the neural network on regression problems. The
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F ig u re  2 .1 3 : An example linear regression on points sampled from the func-

output function is normally changed to a linear function such as the identity 

function g(a) =  a. This simplifies the calculation of the derivative for the output 

layer, because gf(a) =  1, so that Eq. (2.13) simplifies to To demonstrate 

how a neural network can be used to solve a regression problem, a neural network 

was trained to approximate the function,

A dataset was created by linearly sampling the function at 121 points. Initial 

experiments were carried out to find a suitable architecture and parameters for 

the neural network. These experiments suggested a MLP with one hidden layer 

of 7 neurons could be trained to solve this problem. The hidden neurons used 

an unipolar sigmoid function(Eq. (2.2)). The single output neuron used the 

Identity functioned) =  a). Figure 2.14 shows how the MLP training reduced 

the MSE over the 120 epochs.

Figure. 2.15 shows how the MLP approximation becomes closer to the target 

function(Eq. (2.25)) during the training. Starting with the random untrained 

MLP shown in Figure 2.15(a) with a MSE of 13.56, after being trained for 120

tion y — 2x +  3 +  e.

y =  5sin(x) +  sin(3x). (2.25)
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epochs the error of the MLP approximation is reduced to 0.00054 as shown in 

the Figure 2.15(f). Comparing the graph of the MSE reduction in Figure 2.14 

with the sequence of function approximations in Figure 2.15 it can seen how 

a after only a couple of epochs the MSE dropped rapidly as the MLP quickly 

provided a gross approximation of the target function. Training then plateaued 

until around epoch 80 when the MLP finally approximated the finer detail of 

the target function in the interval 4 <  x <  5 as can be seen in Figures 2.15(e) 

and 2.15(f).

A MLP approximates a function such as Eq. (2.25) by combining the func­

tions of the hidden neurons. In this case the unipolar sigmoid, Eq. (2.2), was 

used as the transfer function. The input weights and the output layer weights 

for each hidden neuron transforms the sigmoid transfer function. The output 

neuron then combines the hidden neuron functions into the final output function 

for the MLP.

Figure 2.16 shows each of the hidden neuron functions for the trained MLP 

and how they combine to form the final output function. In a similar manner to 

the analysis of the classification based neural network in Section 2.2 the regres­

sion neural networks hidden layer can be viewed as transforming the nonlinear 

function in X  into a linear function which can then be fitted by the linear 

output neuron.

MSE

Epoch

F i g u r e  2 . 1 4 :  M S E  r e d u c t io n  o n  y  =  5 s i n ( i )  +  s in ( 3 x )  o v e r  1 2 0  e p o c h s .
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2.4 Summary

This chapter began by looking at the biological motivation behind neural net­

works. The artificial neuron model was examined and used to implement simple 

logical operators. However, the power of a single neuron is limited because it 

cannot solve nonlinear-separable classification problems. Therefore, the mul­

tilayer perceptron which can solve nonlinear-separable classification problems 

was also examined. The MLP will be the standard neural architecture used 

within this thesis. The gradient descent using error back-propagation training 

algorithm as the most popular and well-known neural network training algo­

rithm was then derived, A review of the more advanced training algorithms 

used in this thesis was then given. Illustrative examples of how MLP learn 

and store their ’knowledge’ for classification was given with an emphasis on 

how the hidden layer transforms the pattern space. Finally, in addition to solv­

ing classification problems, neural networks are universal approximators, so are 

particularly effective at solving regression problems. The regression MLP was 

contrasted with the classification MLP and an example of how regression MLPs 

can approximate a given function was demonstrated.
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F i g u r e  2 .1 5 :  MLP function fitting of y — 5sin(x)+sin(3x) over 120 epochs.
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Figure 2 .16 : Hidden layer neurons combining to approximate y  — 5 sin(x) +  

sin(3x).
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CH APTER 3

Decision Trees

Decision trees are one of the most widely used classifier models. Decision trees 

are directed acyclic graphs consisting of nodes and connections (edges) that 

illustrate decision rules. Each non-terminal node has an associated splitting 

test, which splits the data into mutually exclusive subsets. The terminal nodes, 

called leaves, represent a classification. This has the effect of partitioning the 

instance spare, 3C, into a series of disjoint regions separated by axis-parallel 

hyperplanes,

X  = |J n = 0’ where x * ±  X"*. (3T)
ter

The leaf nodes, T, correspond to each region and are assigned a class label. A 

decision tree for Quinlan’s classic ‘play/not play tennis’ example[63] is shown 

in Figure 3.1.

Outlook

o \ro
oü) %</>

Humidity Play Windy¿ \
m0t Play Play 1

.X
Not
Play Play

F ig u re  3 .1 : A decision tree for Quinlan’s tennis problem.
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Attribute Value

Outlook Sunny

Windy True

Humidity Normal

Table 3.1: An instance from the tennis dataset

To classify an instance using a decision tree: start at the root node and 

follow the tree down the branches according to the splitting tests until a leaf 

node representing a class is reached. For example, to classify the instance in 

Table 3.1 using the tree given in Figure 3.1, start at the root node which tests 

the value of the attribute Outlook, which, for this instance, is sunny. Following 

the leftmost branch requires a test on the Humidity attribute, therefore the 

rightmost branch, representing normal, should be followed which terminates in 

a leaf node labelled Play and this instance (day) should thus be classified as a 

good day to play tennis.

Although Decision Trees are simple to understand, the method of creating 

or inducing a decision tree from a dataset of examples is a nontrivial task, in 

fact, it has been shown to be NP complete[35]. Modern Decision Tree induction 

algorithms have their roots in the work of CART by Breiman[l2] and ID3 by 

Quinlan [63]. Breiman comes from a statistical background and produced a set 

of decision tree algorithms based on established statistical measures such as the 

Gini index. Around the same time, Quinlan, who had an Al/machine learning 

background, was developing his own algorithm based around an information 

measure derived from information entropy. The CART algorithm was quickly 

commercialised by its authors into a data-mining tool whereas Quinlan’s ID3, 

has become the benchmark for modern Decision Tree research.

Nearly all Decision Tree algorithms take a divide and conquer approach, 

using a technique known as recursive partitioning:
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1. If all instances at a node all belong to the same class C then stop and 

label the node C.

2. If the instances do not all belong to the same class then:

(a) Find all possible splits

(b) Find the best possible split by applying splitting test

(c) Label edge resulting from split

(d) goto 1 for each subnode

The splitting test is the heart of the algorithm and measures the purity (one 

class dominating the set) of the subsets created by a split. Popular measures 

of impurity include information gain used by ID3,C4.5[65], chi-squared used by 

CHAID[43] and gini used by CART[12]. This thesis concentrates on information 

gain as it has been shown empirically[52] to be able to produce trees that 

compare favourably with the other main decision tree algorithms over a wide 

range of datasets.

ID3 and its successor C4.5 use information entropy to determine on which 

attribute to split. These methods select the attribute that results in the most 

information being obtained. Information here is not the ambiguous common 

notion of information, but a precise concept that was defined in Shannon’s 

information theory[77]. The information entropy can be considered a purity 

measure where a set containing instances that all belong to the same class 

would have a value 0. Conversely, sets of instances containing a mix of classes 

would have an entropy value greater than 0, indicating the impurity of the set.

More formally, the information conveyed by a message can be thought of as 

the number of possibilities it eliminates. A message that eliminates all but a 

fraction p of the possibilities can be given the value — log2(p). The logarithm 

is used to make the values additive and when base 2 is used for the logarithm 

the units of information are called bits. The average amount of information to
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classify a pattern, in a training set, 5, can be calculated as

K

info(S) =  - ( Q) l og2 (p(Ci)) bits, 
2=1

(3.2)

where
freq(C<,5)

m )  — fsi— ’

and the freq(C,-, S) is the number of objects belonging to C* in set S and K  is the 

number of classes. The information gained by splitting the data can be found 

by calculating the average amount of information needed to classify an instance 

before splitting the data and subtracting the amount of information needed to 

classify an instance for each of the subsets created by the split. Therefore, for 

a split which results in N  subsets, the sum of the average information of the N

subsets S =  {«Si, 5 2 ,. . . ,  «Sfy} is

n  ̂ICI
infoipiii(S) =  J J  x info(Si) bits. (3.4)

The total information gained by the split can be calculated as

gain(S) =  info(S) -  infospnt{S). (3.5)

Information gain has a bias towards selecting tests with many outcomes. For 

example, in the extreme case of a split which resulted in a unique subset for every 

instance, each subset would be 100% pure resulting in the maximium amount 

of information gain. Quinlan[65] proposed a modification to information gain 

giving information gain ratio. This is calculated by dividing the information 

gain by the information gained solely by splitting the data into the number 

of outcomes resulting from the test. The information gained by arbitrarily 

splitting a set S into N  subsets is given by

split info(X) =  ^¡ff x loS2 • (3-6)

The gain ratio of test X  can thus be calculated as

gain ratio (X ) = gain(X) 
split info(X) (3.7)
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F ig u re  3 .2 : A  subtree replacement operation removes the W in d y  subtree 

and replaces it with the Not Play leaf node.

The best split S* is the split that maximises the information gain ratio

S* =  argmax (gainratio(JA)). (3.8)

3.1 Pruning

A flaw of the recursive partitioning algorithm is that it tends to overfit the 

training data. The model is too specific to the noise (outliers, anomalies and 

measurement error) contained in the training data. Overfitting reduces the 

model’s ability to generalise and thus predict the classification of previously 

unseen instances. Overfitting also results in larger trees that reduce the com­

prehensibility of a model. A solution to this problem is to apply Occam’s Razor 

to the tree in a process aptly named pruning. In the top down construction of 

decision trees the most general concepts are at the root and concepts become 

more specific towards the leaf nodes. Pruning, therefore, starts at the bottom 

of the tree with the most specific concepts, and estimates the difference in error 

of replacing each subtree with a single leaf node. Figure 3.2 shows a typical 

pruning operation: the is Windy subtree is replaced with single leaf node which



classifies the instances as Not Play. The challenge with pruning is determining 

whether the pruning was beneficial or not. Any pruning will increase the error 

on the original training data; if it did not then the subtree would not have been 

grown initially. A simple solution to this problem is to set aside a subset of 

the training data that is to be used exclusively for pruning. An example of this 

approach is reduced error pruning[65]. This pruning set can then be used to 

evaluate the error of each potential pruning operation. This approach has the 

significant disadvantage that not all the information in the training set is used 

to grow the tree initially. The second approach is to use all the training set 

to grow the tree and then use an estimate of the error due to the replacement 

using the training set. Any pruning operation will increase the error on the 

original training dataset. Therefore, Quinlan proposed pessimistic pruning[65], 

a heuristically based method, that attempts to estimate the true error of a 

pruning operation using only the original training set. The method is loosely 

based on the familiar statistical concept of confidence limits but violates some 

of the rigorous statistical underpinnings. The pessimistic error estimate, e, is

given by

f  + M +  Z \ J ~ N -  +  N  +  e = --------------------- --------*-------------- W 1
1 +  i iA ^  N

(3.9)

where N is the number of instances that reached that node, and /  is the frac­

tion of incorrectly classified instances, z is the number of standard deviations 

corresponding to a desired confidence value. The statistical underpinnings for 

pessimistic pruning are not rigorous, but in practice it performs well, and has 

the substantial benefit of allowing the whole dataset to be used in the tree 

building stage.

3.2 Example of Decision Tree Induction

This section will illustrate the induction and pruning of a C4.5 style decision 

tree from a synthetic dataset. The classification problem is to decide whether 

a given berry is edible or poisonous. The decision tree will be induced from a
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Colour Taste #  Instances Edible

Red Sour 30 Poison

Red Sweet 30 Edible

Red Salty 30 Edible

Blue Sour 1 Edible

Blue Sweet 40 Poison

Blue Salty 40 Poison

Table 3.2: An abbreviated version of the berry dataset showing how many 

instances of the 171 instances match the given colour taste com­

binations.

dataset of 171 examples. For simplicity only two attributes will be considered: 

colour which can be either red or blue, and taste which can be either sour, sweet 

or salty. Table 3.2 summaries the significant attributes of the dataset.

3.2.1 Induction

Before deciding which attribute to split on, the information content of the Berry 

dataset before it is split must be found. This can be considered how much 

information is expected to be required to classify a single instance in the Berry 

dataset. Using Eq. (3.2) this can be calculated as

info(Berry) =  -  '¿T P{Ct) log2(Cj)bits,
i={eat,poison}

where
P(Ceat)

num. edible 
total instances

pin \ _  num- P01S0n 
poison instances

Substituting this back into Eq. (3.10) gives

61
171

110
171’

(3.10)

info(Berrï) =  -  ( ^  log, ( ^ j )  +  ^  log, (  j £ [ )  )  bits

=  1.05664. (3.11)
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The next stage is decide whether to split the data on colour or taste. The 

information gained by spitting on colour can be calculated using Eq. (3.4) as

mîo colour (Berry) =  inio(Red) + -p^mio(Blue). (3.12)

Using Eq. (3.2) info (Red) can be calculated as

i€{poison,eat)

info (Red) =  -  £  P(Q)  log 2(P(Q))

=  1.05664bits. (3.13)

Similarly, info (Blue) can be calculated as

iÇi {poison,eat)

info (Blue) =  — P(Cj) log2(P(Ci))bits

= -(sl0g2(I)+èl0&(è))bits
=  0.09599704bits. (3.14)

Combining Eq. (3.12), Eq. (3.13) and Eq. (3.14) the total expected informa­

tion required after splitting on colour can now be calculated as info^/our =  

info (Red) +  ^-in fo(5 /ue) =  0.601587. The information gained by this split 

can then be calculated as

gain(Coiowr) =  info(Perry) — info (CoZ our)

=  0.939931 -  0.601587 (3.15)

=  0.33834 .

Because the taste attribute will result in a multiway split, Quinlan’s information 

gain ratio, Eq. (3.7) is required. The expected information gained by splitting 

the Berry dataset into two subsets containing 90 and 81 instances respectively 

can be calculated as

spilt info(6erry) = - ^ l o g 2 ( | 0  +  ^ l o g 2 (| L )

=  0.998 . (3.16)
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Using the results of Eq. (3.15) and Eq. (3.16) the information gain ratio, previ­

ously defined in Eq. (3.7), can now be calculated as

gain (Colour)
gain ratio (Colour) =

split info(Berry) 

=  0.339022 .

(3.17)

Similarly, the information gain ratio for the taste split can be calculated as

31 70 70
infotaste =  — info(Saur) +  — info(Sweef) +  — info (Salty)

=  0.843891 , (3.18)

where

t o f o 5 » r - ~ 1 0 g S ( i ) + | j l O ga ( | _

=  -0.205593 ,

(3.19)

and

mfo(S«,eei) =  - ^ l o g 2 ( | )  +  ^ l o g 2 

=  -0.985228 ,

and

30, / 30\
70 ° S2 \70y

40, /  40N
+  70 log2 l 70,infOgaity

=  -0.985228 ,

gain (taste) =  info (Berry) — info (Taste) 

=  0.939931 -0.843891 

=  0.0960405 .

(3.20)
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Red Blue

F ig u re  3 .3 : The full decision tree for the berry dataset.

Finally, the gain ratio can be calculated as

r /r> . 31 , /  31 \ 70 , /  70 \ 70 ,
split info3 (Berry) =  —  log, j  +  —  log, j  +  m  log,

_70_'
171

gain ratio(Tasie) =

=  1.5016 .
gain (Taste)

split info3(¿terry) 

=  0.639589 . (3.21)

Because gain ratio (Colour) > gain ratio(Tasie) the root split of this decision 

tree should be based on colour. This process is applied recursively for each 

branch. The induced decision tree for the Berry dataset is shown in Figure 3.3.

3 .2 .1 .1  Pruning the Berry Tree

After the tree is grown it normally overfits the data and needs therefore to be 

pruned back to improve generalisation. For example, using the decision tree 

in Figure 3.3, starting at the right subtree, Colour =  Blue, the error for this 

subtree can be calculated by summing the pessimistic error for the three leaf 

nodes. Calculating the pessimistic error for each node from left to right gives 

blue and sour e/ =  0.75, blue and sweet el =  1.36, blue and salty ef =  1.36. 

This gives a combined pessimistic error of el — 3.47. If the parent node colour 

=  blue was turned into a poison leaf node it would have /  =  ^  and classify 81
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instances giving an et value of 2.56. This means the subtree is replaced by a 

leaf node. This follows the pruning rule that if a subtree has an e' higher than 

its parent node then it is pruned away. If we now consider the left subtree that 

begins with the test colour=red, the pessimistic error for this subtree is 1.35 

+  1.35 +  1.35 giving e/ =  4.05. The error at the parent node Colour = red is 

33.59. Pruning the subtree would substantially increase the pessimistic error 

so the subtree is not replaced. Finally the root node is examined; replacing it 

with the majority class poison would classify 61 of the 171 instances incorrectly 

which would give a pessimistic error of 65.79. The left and right branches of the 

subtree are calculated, as previously, giving a pessimistic error of 4.05 +  2.56 

=  6.61. Again, this replacement would substantially increase the pessimistic 

error so no pruning takes place. The pruning procedure for this tree, therefore, 

only replaced the right subtree colour = blue with a poison leaf node which 

produces the pruned decision tree shown in Figure 3.4 and the pattern space in 

Figure 3.5.

3.3 Refinements to Decision Trees

The previous sections described the basic algorithm for decision tree induction. 

This section briefly reviews some of the refinements and modifications made to 

decision tree induction.

3.3.1 Continuous Attributes

The examples previously given only dealt with discrete attributes from a finite 

set, for example Colour € {Red, Green, Blue}. However, many attributes are, 

of course, continuous in nature, such as temperature. Various methods have 

been proposed to overcome this limitation. When using the original ID3 al­

gorithm it is normal to prediscretize the continuous attributes. For example, 

temperature could be changed from the continuous valued Celsius scale to Tem­

perature € (Cold, Warm, Hot}. This can be done either manually using domain
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Colour

Poison

0/30

Red Blue

Taste Poison

Sour Sweet Salty 1/81

Eat Eat

0/30 0/30

F ig u re  3 .4 : The pruned berry decision tree.

Salty Eat _ .
Sour Poison Poison

Sw eet Eat

Red Blue
Color

F ig u re  3 .5 :  The pattern space of the berry decision tree.
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knowledge, or automatically. Automatic approaches include equal-interval bin­

ning where the range of the continuous variable is split into v bins. Unless 

the data is distributed uniformly along its range this can result in very uneven 

binning with some bins containing many instances and other bins containing 

only a few, or even no, instances. An alternative is equal-frequency binning 

which splits the numeric attribute into a set of v bins each containing an equal 

number of instances. This still has the significant disadvantage of ignoring the 

class attribute which can result in poorly chosen boundaries. C4.5 does not 

require continuous attributes to be prediscretized. At each node C4.5 considers 

each of the possible ways to create a binary partition of the data. For example, 

given a 10 instance data set with an attribute temperature with the following 

set of values {10, 28, 31, 38, 50, 66, 76, 84, 90, 100}, C4.5 would consider the 

information gained by splitting at each of the possible 9 split points. The proce­

dure is computationally complex because it first requires the v values in the set 

to be sorted and then for up to v — 1 splits to be considered. In practice, many 

datasets do not contain unique values for each instance so fewer than v — 1 

splits need to be considered. In addition to the computational requirement, 

this approach results only in binary splits which can be suboptimal in terms of 

clarity of explanation.

Quinlan’s original ID3 algorithm always splits a discrete attribute with v 

possible values into v branches. For example, splitting on the taste attribute 

(Table 3.2) would result in a 3 way split. This raises two concerns. First, by 

splitting the data into many subsets, each containing only a few instances means 

patterns in the data become undetectable. Second, the gain ratio heuristic 

is unsuitable for comparing attributes which differ greatly in the number of 

possible values. Quinlan’s C4.5 introduced an algorithm[65] to group attributes 

then create splits based on these groups. For an attribute with 4 possible values 

there are 15 possible groupings. The relation between the number of possible 

values v and the number of possible groupings is the Bell number1 which quickly

xThis is given by Bv =  o z) where S(x,y) is a Stirling number of the second kind. 
Therefore, this grows exponentially. For example, the number of groupings for an attribute 
with 10 possible values is Bio — 115975
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(a) Multivalued Binary Split (b) {1 } { k-1} Binary Split

F ig u re  3 .6 : A ny general multivalued split can be replaced with a { 1 } {k -1 } 

binary split.

becomes too large.

Quinlan in the C4.5 algorithm used another heuristic-based algorithm to 

find groupings. It is an iterative algorithm which starts with the v potential 

splits and then compares each pairwise merger of these v partitions. After the 

best pairwise merger in terms of gain ratio is found the algorithm merges the 

two attributes then repeats again comparing each possible pairwise merge. The 

algorithm continues iterating until merging does not increase the gain ratio or 

only two subgroups remain. This algorithm results in far fewer comparisons 

than Bv but is still computationally intensive and being heuristic has no guar­

antee that it is close to finding the optimal grouping.

3.3.2 B inary Splits

The technique used by CART considers only binary splits such that for for an 

attribute with v possible values there are 2V~X possible groupings. A simpler ap­

proach is to restrict the binary groupings into two groups: one containing only 1 

value and the other group containing all the other possible values. For example, 

given the possible value set {a,b,c}, only consider the groupings { {a } ,{b ,c } } ,  

{ {b } ,{a ,c } } ,  { {c } ,{a ,b } } .  This leads to a much more tractable number of group­

ings to test. It is obvious that any grouping can be emulated by repeated binary 

grouping of this type, as in Figure 3.6. However, because not all groupings are
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X0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(a) Two Class Classification (b) Step Approximation

F ig u re  3 .7 : The decision boundary is not parallel to an axis so must be

considered, patterns in the data may still become undetectable.

3.3.3 O blique H yperplanes

The split types considered to this point have all resulted in splits which are 

parallel to the axis, as demonstrated in Figure 3.5. The advantage of such 

splits is the ease in which they can be understood, but the disadvantage is that 

they can result in overly large trees for relatively simple concepts. Oblique 

decision trees[89] use a linear combination of attributes which, by combining 

two attributes, can form non-axis parallel decision planes. Consider the simple 

partition of the pattern space shown in Figure 3.7; a decision tree restricted 

to only axis-parallel splits would have to approximate the split with a series of 

steps as shown. Not only would this result in degraded performance it would 

also fail to capture the real relationship between x  and y. In contrast, an oblique 

test of the form

where ai , . . . ,  a<i+1 are real-valued coefficients could easily represent the function 

with a split test such as x  -  y > 0. This would not only result in a smaller 

tree but it is also a closer representation of the ’true’ relationship between 

the variables. The drawback is the creation of such splits is computationally

approximated with a step function.

d

(3.22)
i=l
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intensive[55] and often much harder to understand than axis-parallel splits es­

pecially in dimensions above two.

3.3.4 m-of-n Splits

The m-of-n test has been proposed as an alternative splitting test [54]. In this 

case instead of splitting based on the value of a single attribute, the tree splits 

are based on whether m conditions out of the set of n conditions can be met. 

For example, in the test, 2-of{colour =  blue, taste = salty, size =  big}, any 2 

of the 3 conditions must be true. This type of split has the advantage that it 

can represent some concepts more concisely, which results in smaller decision 

trees. However, it is not inherently more powerful as any m-of-n test can be 

rewritten in standard Boolean(DNF) form as used in C4.5. The m-of-n type 

test is used in the Trepan rule extraction method (See Section 4)

3.3.5 Fuzzy Decision Trees

A significant disadvantage of decision trees is the sharp decision boundaries. In 

a decision tree split such as the root node in Figure 3.1 which has a split based 

on the Outlook attribute, if the attribute outlook =  rain then with this type 

of split the decision is made based solely on the rightmost branch ignoring the 

’knowledge’ captured in the sunny and overcast branches. This, at first, may 

seem entirely reasonable; however, weather is not a discrete phenomenon, as 

some rain storms are heavier than others.

Fuzzy set theory [99] is an extension to set theory to incorporate the concept 

of membership of a set. For example, a day with a heavy downpour would have 

a high degree of membership to the class rain, a very low membership of sunny 

and low membership of overcast. A day with light rain may have a medium 

degree of membership with rain but also a medium level of membership with 

overcast.

In terms of decision trees the last example of a day with light rain will 

have a decision based on the rain branch but will also be influenced by the
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1

F ig u re  3.8: A fuzzy membership function for heat which shows as temper­

ature increases membership of cold decreases and membership 
of hot increases.

overcast and sunny branches but to a lesser degree, based on the degree of 

membership. As discussed in Section 3.3.1, continuous attributes are discretized 

either before tree induction or as part of the algorithm. This can have a drastic 

effect on instances which are close to the boundaries. Fuzzy sets can be used to 

alleviate this problem by creating membership functions that give instances a 

membership degree based on how far the instance is from the mean. Instances 

close to the mean would have a high degree of membership with the degree of 

membership reducing as the instances move away from the mean. There have 

been several attempts to combine fuzzy set theory and decision trees[38, 18].

Figure 3.8 shows a potential split on temperature at 50. Using traditional 

crisp splits an instance with a temperature of 48 and another instance which 

is identical, apart from having a temperature of 51 could have very different 

outcomes based on the divergent paths each instance has taken through the 

decision tree. If fuzzy membership is used the decision tree would be more likely 

to classify these instances the same by combining the results of the divergent 

paths.
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3.4 Summary

This chapter has introduced the pattern classification technique of decision 

trees. Decision trees are an easy to comprehend, graphical representation of 

a decision process. Algorithms for inducing and pruning a decision tree were 

discussed with an emphasis on the C4.5 algorithm. The focus on C4.5 was 

because the tree induction parts of the rule extraction algorithms developed in 

Chapter 5 are likewise based on information entropy. An illustrative example 

of tree induction and pruning was given. The chapter concluded with a brief 

review of refinements and developments of decision trees.
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CH APTER  4

Rule Extraction From Artificial Neural

Networks

Neural networks’ greatest weakness is their opaqueness. Unlike symbolic rule 

based systems, which explicitly show their reasoning, neural networks hide their 

knowledge in the complex interrelationships of their weights. This means that, 

although neural networks provide excellent models for prediction, they provide 

no insight into the relationships between input variables and output that the 

model may have found. For example, researchers at MMU have created a neural 

network that can classify a person’s responses as either deceptive or truthful, 

using clues in their nonverbal behaviour (e.g. eye moments, shrugs). Although 

the neural network has good predictive accuracy it does not reveal the relation­

ships it has found between nonverbal behaviour and deception[70].

This chapter begins by looking at the rule extraction task and examines 

why neural networks are black-boxes. A comparison of neural networks and 

decisions trees is then given. Previous work in rule extraction is then reviewed. 

Finally, the chapter concludes with an overview of the contributions the novel 

algorithms, presented in the remainder of this thesis, will make to the field of 

rule extraction.

4.1 The Rule Extraction Task

The aim of rule extraction is to reduce the complexity of a neural network into 

a more easily understood symbolic form. These rules can then be analysed for 

trustworthiness for safety critical systems or used to provide insights into the
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Figure 4.1: A multilayer neural network illustrating the weights between 

inputs and neurons and between neurons.

relationships found by the neural network. As shown in Figure 4.1 the neural 

network model is difficult to interpret. The knowledge within the neural network 

is hidden in the complex interrelationships of the neurons. In examining the 

weight matrix for meaning it can be tempting to think that a large weight value 

attached to an input indicates that the input is important. However, this can 

be misleading because although a large weight does indeed indicate that the 

input’s contribution to the connected hidden neuron is significant, that hidden 

neuron may itself contribute very little to the output value. Alternatively, the 

same input may connect to another hidden neuron with an equal weight, but 

of opposing sign cancelling out any effect. Moreover, several small weights that 

may seem insignificant may have an aggregate effect that is far more significant 

than a single large weight. If two inputs are strongly correlated, but both 

irrelevant to the classification, and one ends up with a large weight, then through 

the training process the neural network may balance this out, not through 

decreasing that weight, but by increasing the other input’s weight to cancel out 

the effect of the original large weight. This gives the illusion that both inputs 

are important to the classification when, in reality, neither is important.

This means making conclusions about the relationships between the input
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and output values based on the weight matrix is difficult. However, an early 

method of trying to visualize the weight matrix was the Hinton diagram[71]. 

Such diagrams show each weight as an individual square with the magnitude 

indicated by area and the sign by the colour (red negative, green positive). The 

weights are organised on a grid such that columns represent inputs and the rows 

represent neurons.

Figure 4.2 shows a Hinton diagram for a neural that has been trained to 

solve the XOR problem. The diagram shows that each neuron is connected to 

the inputs by 2 weights of opposing signs but equal magnitude. This has the 

effect that if both inputs have a value of 1 then each hidden node will receive 

two weighted sums of equal magnitude, but opposite signs, which will then 

cancel out. This creates the desired behaviour for the XOR function such that 

if both inputs have a value of 1 then the output value is 0. It can also be seen 

that the other input patterns are handled correctly: if both inputs are 0 then 

the hidden layer output must be 0; if only one input is a 1 then the output of 

the hidden layer will be have a high positive or negative value. This leaves the 

output neuron to act as an absolute function.

Although the Hinton map allows a visual representation of the weight matrix 

it is not easy to interpret. It also becomes more complex as the number of inputs 

and neurons increase as shown in Figure 4.3, which shows a Hinton diagram 

for a neural network for a breast cancer dataset that will be used in Chapter 6. 

The Hinton diagram can be useful for seeing if an input has little or no effect, 

and there are techniques for rearranging the grid to make certain relationships 

between inputs and outputs more apparent, but these generally require domain 

knowledge. The Hinton diagram is a limited tool, but does further illustrate 

how it is difficult to elicit meaning directly from the weight matrix of a neural 

network.

Although neural networks are good classifiers they provide no insight into the 

relationships between input and output variables the model may have found. In 

comparison, symbolic rule-based systems, such as decision trees, explicitly reveal

50



1 2 
Input

Figure 4.2: A simple Hinton diagram for XOR neural network.

F ig u re  4.3: A Hinton diagram for breast cancer neural network.
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F ig u re  4.4: A decision tree for a simple animal classification task.

the knowledge they have acquired in an easy to comprehend form. For example, 

looking at the decision tree in Figure 4.4 it is easy to see the relationship between 

the input attributes Legs and Green, and the output classification. No specialist 

knowledge or further processing is required to understand the knowledge within 

the model.

4.2 Previous Work

A taxonomy for ordering and grouping rule extraction algorithms has been 

proposed[4], and considers the following aspects of the rule extraction algo­

rithms:

1. Expressive power

2. Translucency

3. Specialised Training Regimes

4. Quality of the extracted rules

5. Algorithmic complexity.
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Expressive power refers to the type of rules extracted from the neural net­

work as separate from the technique that extracts them. Rule extraction tech­

niques so far have extracted rules expressed in Boolean logic, Fuzzy logic, 

IF .. .Then.. .rules, M-of-N rules, and Decision Trees.

Translucency means the level of granularity with which the neural network is 

examined. Craven and Shavlik[15] divide these into decompositional techniques 

which examined the individual weights, and pedagogical techniques which treat 

the neural network as a black box. Pedagogical techniques use the neural net­

work as an oracle by repeatedly asking it questions in the form of instances 

and then using the classifications to create a descriptive model of the neural 

network.

Specialised Training Regimes are required by many of the rule extraction 

algorithms. Either modifications to the standard neural network training algo­

rithms, or the use of a specific architecture, or both axe needed. Although these 

techniques have been successful in extracting rules, such methods cannot be 

applied to existing neural networks models. This is a significant disadvantage 

because many existing proofs of desirable properties, such as the universal ap­

proximator proof, do not then apply to these modified versions. Furthermore, 

such methods cannot be applied to pre-existing trained neural networks which 

are already being used effectively.

Andrews[85] proposes four measures for the quality of the rules extracted 

from neural networks: accuracy, fidelity, consistency and comprehensibility. Ac­

curacy measures the ability of the rule set to correctly classify previously unseen 

instances from the problem domain. Fidelity is how well the extracted rule set 

corresponds to the original neural network. Consistency, in this context, is 

whether the extracted rule set is the same under different training sessions of 

the neural network. Comprehensibility is a measure of the number of rules 

produced by the extraction algorithm.

The final dimension is algorithmic complexity, which attempts to provide a 

measure for the efficiency of an algorithm; examining such aspects as whether
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the algorithm scales exponentially with the number of hidden neurons or in­

puts, which would mean the algorithm would not be applicable to large neural 

networks.

Several approaches to rule extraction from neural networks have been pro­

posed and a few of the significant ones are now discussed. An early approach 

to rule extraction was the The Connectionist Scientist Game[51]. Inspired by 

the induction of scientific hypotheses, this method uses an iterative technique. 

First, a neural network is trained, which in their analogy is like a scientist de­

veloping intuitions about a problem domain. Second, rules are extracted from 

the network, the analogy being that this is like forming explicit hypotheses 

which can then be checked to see if they cover the domain. Third, the rules are 

translated back into weights to be injected back into the neural network. This 

sequence of extraction and injection is repeated until the rule base adequately 

characterises the domain. In the same paper, RuleNet, an architecture which 

implements the Connectionist Scientist Game is presented. RuleNet maps in­

put strings of n symbols to output strings of n symbols. The RuleNet system 

uses a fixed 3 layer architecture with an input layer of n units, a hidden layer 

of m condition unit and an output layer of n units. Each unit in the condition 

layer represented an IF..THEN rule which can be extracted in the extraction 

phase. As RuleNet requires a fixed architecture and learning algorithm, it is 

not applicable to pre-existing trained neural networks, but does represent an 

early recognition of the need for rule extraction.

The Subset rule extraction method[87] is typical of the decompositional 

approach, and similar methods have been proposed by Saito and Nakano[72] 

and Fu[28]. The subset method extracts a series of rules from each node in 

the network. A rule is created for each combination (or subset) of inputs that 

could cause a node to activate. For example given the node in Figure 4.5 the 

following rules could be extracted: a A  b A  c = >  y, a A  b A  -id = >  y, 

a A  c A  ~'d =>• y, b A  c A  ->d = >  y, b A  c A  ->d ==*> y. This particular 

implementation requires the outputs of the nodes to be binary and therefore
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F ig u re  4 .5 :  A neuron with 4 inputs and a threshold value of 3.

cannot be applied to pre-existing MLPs that normally have neurons with real 

value outputs. Moreover, the number of rules increases exponentially with the 

number of nodes making the algorithm intractable for large networks. This 

approach was extended by the n-oi-m algorithm by Towell and Shavlik[87]. A 

n-of-m rule contains a set, m, of tests of which n must be satisfied for the 

rule to be evaluated as true. For example, the n-oi-m rule 2-of-{?q,r2,r 3} is 

equivalent to (rq A r2) V (rq A r3) V (r2 A r3). This style of rule is particularly 

appropriate for representing the activation of a neural node. For example, 

the rules of Figure 4.5 can be represented as 3-of-{a, b, c, ->d}. However, for 

a multiple layered network to be represented in a concise number of n-of-m 

rules and overcome the exponential growth problem of the subset algorithm, 

the antecedents of the rules should be equivalent, i.e. it does not matter which 

n are true. Standard back-propagation has no predisposition to favour such an 

arrangement. Therefore, either the neural network needs to be initialised using 

a pre-existing rule set and/or trained using a special training algorithm[87].

Algorithms[42, 56] have been proposed which extract fuzzy rule sets from 

neural networks. These approaches usually require a domain expert to label the 

resulting fuzzy sets and/or require specialised neural network architectures and 

training algorithms. These approaches have generally been applied to rule re­

finement where a pre-existing set of fuzzy rules have their membership functions 

refined by the neural network. Jang and Sun[37j note a functional equivalence
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between radial-basis-function networks and fuzzy inference systems under some 

conditions. However, it has been shown that the equivalence conditions are more 

restrictive than was initially thought resulting in specialised training algorithms 

again being required [3].

Trepan[16] follows the pedagogical approach to rule extraction. Trepan cre­

ates an n-oi-m decision tree [54], which, in addition to the C4.5-style splitting 

rule, can make use of a n-of-ra splitting rule at any of the nodes. The use of 

n-of-m splits can fit certain concepts more naturally than C4.5-style splits at 

the cost of a certain amount of comprehensibility. Another interesting feature 

of Trepan is its use of best-first tree expansion in contrast to the more usual 

depth-first expansion. The next node to expand is the node that maximises the 

function,

n* =  arg max (reach (n) (1 — fidelity (n )) ) , (4.1)
n

where reach(n) is the number of instances that have reached node n and fidelity(n) 

is the percentage of instances at node n that the decision tree and the neural 

network classify as belonging to the same class. This has the effect of concen­

trating growth of the tree in the region that most increases fidelity. However, 

after the tree is fully grown and pruned the difference between the two meth­

ods is negligible. The real advantage of this approach is the ability to more 

precisely control whether the tree should be large, which increases accuracy 

but decreases comprehensibility, or the tree should be small, which decreases 

accuracy but increases comprehensibility. Trepan uses information gain to de­

cide on which attribute to base the splitting test. To extract ‘knowledge’ from 

the neural network Trepan uses a sampling and querying approach. The neu­

ral network is used as an oracle which can be queried for the class assignment 

of a sampled instance. To create a query instance Trepan models the original 

dataset using an empirical distribution for nominal attributes and kernel density 

estimation[79] for the continuous attributes. The empirical distribution means 

the nominal values are sampled with a probability based on their frequency in 

the original dataset. For continuous attributes, a probability density function 

(PDF) using a kernel density estimate with a Gaussian kernel is sampled.
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4.3 Comparison of Neural Networks and Decision Trees

Decision trees and neural networks most significant difference is their compre­

hensibility: decision trees are easy to understand, neural networks are block 

boxes. However, neural networks and decisions trees also differ in the way 

they partition the instance space. Neural networks can represent any borel- 

measurable function[33][13], whereas traditional decision trees are only capable 

of representing concepts that are representable as Boolean functions.

Consider, a classification task as represented in Figure 4.6, the two classes to 

be separated are the Red points in the circle, and the Blue points covering the 

remainder of the instance space. A neural network can learn this function easily 

as shown in Figure 4.7. The neural network fits a function over the instance 

space, which starts at a value of 0 at the 4 corners of 9C before steeply rising 

to one in the centre of !%. If a threshold value on the output is set to 0.5 then 

a decision boundary is created that models the original in Figure 4.6.

In contrast, a decision tree is limited to solving this problem through re­

peated binary partitioning of the instance space. A  decision tree for this dataset 

is shown in Figure 4.8. It starts by partitioning off the area x > 0.8 and the 

area x <  —0.8 as belonging to the Blue class. The remaining area is then par­

titioned on y. First the area y < —0.8 and then the area above 0.8 is classed 

as Blue. This leaves the centre square to be classified as Red. The decision 

tree in Figure 4.8(a) is far more comprehensible than the neural network in 

Figure 4.7(a), but the decision tree is limited by the axis-parallel splits which 

results in errors as shown in Figure 4.8(b). The points outside the circle but 

within the axis-parallel decision planes are incorrectly labelled as class Red, but 

should be classified as class Blue, and a few points which are inside the circle 

but outside the decision planes are incorrectly labelled as class Blue when they 

should be labelled as class Red.

This discussion illustrates a difference between neural networks and de-
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F ig u re  4 .6 :  Pattern space of circle dataset with a decision boundary at 

x2 + y2 =  0.8 .
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F ig u re  4 .7 :  A  neural network and resulting instance space that solves the 

circle dataset.
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F ig u re  4.8: A Decision Tree and resulting instance space that solves the 

circle dataset.
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algorithms and/or pre-specified neural network architectures which means they 

cannot be used to extract rules from in situ neural networks. Therefore, they 

do not benefit from the important theoretical results that have been proved 

for standard neural network architectures and training algorithms. Pedagogical 

techniques[17], have the advantage of being more flexible and can be applied to 

a number of neural network architectures, but tend not to have such high levels 

of fidelity.

The existing algorithms differed in the type of rules extracted; some use 

formal logic to represent the rules, which has the advantage of being able to be 

manipulated using standard logic but axe perhaps not the most comprehensible 

form, other algorithms used IF..THEN rules and decision trees as the output 

form, which are more easily comprehended.

In the remaining chapters several new algorithms axe developed. These al­

gorithms axe pedagogical and will use various forms of decision trees for the 

output form so that the rules produced will be easy to comprehend. All the 

algorithms will make use of Craven’s sampling and querying to extract informa­

tion from the new network. The dataset used to train a neural network is the 

set of points in the instance space SC that the neural network has been trained 

to classify, but the neural network will be expected to generalise to all points 

within SC. To capture the totality of the information within the neural network 

a rule extraction algorithm can sample more points in SC by generating queries 

in the form of new instances and then requesting the neural network, which acts 

as an oracle, to classify them. For example, in Figure 4.9(a) the relationship 

between the blue points and the red points is unclear. However, if more points 

are added as shown by the square markers in Figure 4.9(b) then the underlying 

relationship (the W  pattern) becomes clear.

In Chapter 5 the first algorithm ExTree will be developed. It will be similar 

to the Trepan algorithm but will produce a standard C4.5-style decision tree as 

opposed to the n-of-ra decision tree the Trepan algorithm produces. ExTree will 

then be analysed on a number of synthetic datasets to assess how the various
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F ig u re  4 .9 :  In the original dataset the relationship between the two classes 

is unclear but by sampling extra points the underlying relation­

ship is revealed.
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aspects of the algorithm contribute to classification accuracy and fidelity.

The second algorithm to be developed will be ExLMT which will extend the 

ExTree algorithm by extracting a Logistic Model Tree which include logistic 

models at the leaf nodes. Traditional decision trees are limited to axis-parallel 

splits whereas neural networks have more flexible decision planes as described 

in Chapter 2. The Logistic Model Tree allows non-axis parallel decision planes 

in the leaf nodes which is expected to increase the fidelity with the neural 

network. In Chapter 6 ExTree and ExLMT will be evaluated and analysed on 

a large number of real-world datasets.

ExTree and ExLMT are only applicable to extracting rules from classifi­

cation neural networks, and the final algorithm to be developed will be the 

ExMT algorithm which will be applicable to regression neural networks. ExMT 

achieves this by extracting a Model Tree also explained in Chapter 7. ExMT will 

also be evaluated and analysed on a number of real-world regression datasets.

4.5 Summary

This chapter began by examining the problem of rule extraction from neural 

networks. The first section discussed why neural networks are black boxes and 

used Hinton diagrams to visualize the weight matrix. A review of previous rule 

extraction algorithms was then given. This review made use of Andrews’[4] 

taxonomy to analyse and define the rule extraction techniques. A comparison 

between decision trees and neural networks was then given. The chapter ended 

with an overview of the novel rule extraction algorithms, which will be developed 

and evaluated in the remaining chapters of this thesis.
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CH APTER  5

ExTree and ExLM T

In this Chapter ExTree, a novel algorithm for extracting decision trees from 

artificial neural networks, is developed. An extension to this algorithm, ExLMT, 

which extracts a Logistic Model tree is also presented. Both these algorithms are 

for extracting rules from the neural networks trained on classification problems. 

Extraction from regression problems will be considered in Chapter 7.

It has been previously established that a substantial weakness of neural 

networks is their inability to explain their reasoning. This opaqueness limits 

the applications where neural networks can be used. Although several rule 

extraction methods have been proposed, as discussed in Section 4, the ExTree 

algorithm presented in this chapter possesses additional desirable properties. 

It extracts a C4.5-style decision tree which is a familiar, graphical and easy to 

understand representation of a decision process.

ExTree being a pedagogic method requires a trained neural network to act 

as an oracle. By repeatedly asking the neural network questions, in the form of 

requests to classify instances, the knowledge hidden within the neural network 

can be extracted. In Chapter 6, ExTree will be applied to MLPs trained with 

backpropagation but ExTree can easily be extended to other neural network 

types such as Radial Basis Function Networks(RBF), or other pattern recogni­

tion techniques that are opaque. ExTree does not require the neural network to 

use a specialised training algorithm, or pre-specified architecture and only re­

quires that it fulfils the pattern recognition mapping, C : SC —► 1 . . .  AT, defined 

in Chapter 1. Once a trained neural network is available, ExTree proceeds in a 

similar manner to decision tree induction algorithms: recursively splitting the 

tree by finding the best attribute to split on.
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ExTree is similar to standard decision tree induction algorithms such as 

CART and C4.5, discussed in Chapter 3. However, unlike C4.5 and CART, 

ExTree has access not only to a training set but also to a neural network which 

has already been trained on that training set. Standard decision tree induction 

algorithms have the limitation that the selection of the splitting test is based 

on fewer and fewer instances as the tree grows downwards. The splitting tests 

that are near the bottom of the tree are often poorly chosen because there is 

insufficient data to find the optimal split. ExTree alleviates this problem by 

generating new instances, and then querying the neural network, which acts as 

an oracle, with the newly created instances. ExTree can then select a splitting 

test based on the newly created instances as well as the original dataset.

5.1 The Algorithm

The algorithm for ExTree is given in Figure 5.1. The algorithm follows the basic 

decision tree algorithm given in Chapter 3. An overview of the algorithm is now 

presented, followed by a more detailed discussion of the main components of 

the algorithm.

The algorithm extracts a decision tree from a neural network which has 

been previously trained to a high level of accuracy using a standard training 

algorithm on a dataset S. The ExTree algorithm starts with the original dataset, 

5, which is relabelled using the neural network. The algorithm also requires a 

set of constraints, Const, defining the values that each of the attributes in the 

dataset can hold. Initially, these constraints represent the whole of the instance 

space, SC and will be further refined as the algorithm moves down the tree. A 

set of N new unlabelled instances is then created that satisfies the constraints 

in Const by creating a model of the dataset and sampling from it, as discussed 

in Section 4.4. The new instances are labelled using the neural network in its 

role as an oracle, and are added to the existing dataset. If all the instances 

belong to the same class Ck then the current node is labelled as Class Ck- If the 

instances do not all belong to the same class then a split which creates subsets
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of instances which are purer than the original set is found. For each subset, a 

set of constraints is created from the parent constraints that define the area of 

the 5C that would go into the subset. The algorithm is then applied recursively 

for each subset until the subsets meet an acceptable level of purity.

5.1.1 New Instances and Oracle Querying

An advantage of the ExTree algorithm is that new instances can be created 

and classified by the neural network. New instances are created at a node to 

provide more information on which to base the selection of a split test. ExTree 

uses Craven’s sampling and querying approach[16] to elicit knowledge from the 

neural network. It models the original dataset then samples this model to create 

new instances. These new instances are then used to query the neural network 

to obtain class labels, which has the effect of expanding the original dataset. It is 

desirable to model instances based on the current dataset because in real world 

datasets much of the potential pattern space 9C is of little interest. For example, 

in a house price dataset the instances which represent 1 bedroom houses with 

5 bathrooms are valid datapoints but are of little real world interest. The new 

instances, therefore, are created by fitting a distribution to each attribute which 

can then be sampled to create new instances.

For nominal attributes an empirical distribution is used for the model. This 

means nominal values in the new instances are sampled according to their fre­

quency in the original dataset. For example, if an attribute Colour belonged to 

the set {red, green, blue} in a dataset with 15 red instances, 25 green instances 

and 10 blue instances then the new instances would be created such that ap­

proximately of the instances are red, ^  of the instances are green, ^  of the 

instances are blue.

For numeric continuous attributes a probability density function (PDF) is
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ExTree( dataset S, constraints Const )

BEGIN

Newlnstances :=

Create N new instances constrained by Const’, 

FOR each instance in Newlnstances

Label instance using neural network 

S := S + Newlnstances;

IF all S belongs to Ck THEN 

label node as leaf Ck 

RETURN 

ELSE

Find Best Split S*

Split the S into subsets Si..¿^according to S*

FOR each subsetSj

BEGIN

IF the number of instances in subset is 0 

THEN mark node as dominating class of parent 

ELSE IF node is a mixture of classes

Create new Constraint Consti from Const,

ExTree (oracle, Si, Consti)

END

Figure 5.1: The pseduo code of the ExTree algorithm.
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F ig u re  5 .2 :  A  example Kernel-density estimation using five gaussian ker­

nels.

estimated using kernel density estimation with a Gaussian kernel such that,

where m is the number of original instances, ut is the attribute value for the 

zth examples, and a is the width for the Gaussian kernel. As illustrated in 

Figure 5.2, kernel density estimation can be thought of as creating a PDF by 

summing a series of Gaussian functions centred on the current data points with 

a standard deviation or width determined by the size of the dataset. Based on 

preliminary experiments, ExTree uses a width of 1 />/m which provides accept­

able performance over several datasets but could be further optimised. The new 

instances’ attribute values are then sampled from this PDF. The new instances 

are then labelled by the neural network to produce a set of instances to be 

added to the relabelled dataset ^  to create the new training set ST giving,

=  (5.2)

When new instances are created at the root node all instances in the dataset can 

be used to model the attribute distributions. As the tree grows each splitting
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test partitions the pattern space. Any new instances created at nodes below the 

root node should be instances that would have reached that node according to 

the split tests of the higher nodes. This means new instances should be sampled 

from the region of SC that the current node represents. If this is not the case 

then the tree will recursively split on the same attribute at the same split point.

ExTree is able to create new instances that match this criteria by maintain­

ing a set of constraints which flows down the tree with the training instances. 

These constraints specify what conditions an instance must have satisfied to 

have reached a node as determined by the splitting test above. For example 

the constraints for the rightmost leaf node in Figure 3.1 in Chapter 3 will be 

Outlook =  Rain, Windy = False. The new instances created at this node would 

have to fulfil the constraints, so, in this case, only the humidity value is free. 

New instances are created by sampling from the region of SC that is bounded 

by the constraints.

Consider a simple two class classification problem with classes Red and Blue. 

The patterns space J  =  i x t /  where 0 <  Ox <  1 and 0 <  y <  1. The Blue 

class is Gaussian distributed and centred on the point (0.3, 0.25) with standard 

deviation of 0.25. The Red class is Gaussian distributed and centred around 

the point (0.75,0.75) with a standard deviation of 0.25.

Figure 5.4 shows this instance space. A fragment of the ExTree extracted 

decision tree is shown in Figure 5.3 with the nodes labelled 1 through 4. Fig­

ure 5.4 shows, for each of the 4 labelled nodes, how the constraints restrict the 

region of SC that ExTree can sample. In Figure 5.4(a) there are no constraints 

on the instance space. In Figures 5.4(b)- 5.4(d) the area that each node rep­

resents in instance space is further constrained. This illustrates how, as the 

decision tree grows, the number of original instances used to select the splitting 

test decreases. New instances are created such that each bounded area has a 

constant number of instances.

Figure 5.5 shows how the kernel density estimates change as we move down 

the tree. By recalculating the KDE at each new node in the tree the local nature
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true false

\
node 4 B

Figure 5.3: Decision tree fragment for red/blue problem.

of relationships between the attributes is captured. Notice that the difference 

between node 3 and node 4 is a split on y but this still affects the kernel density 

estimate of x because the area of is still further constrained, thus it is taking 

into account the relationship between x and y.

5.1.2 Class Relabelling

Real-world datasets often contain noise in the output attribute in the form 

of misclassified instances. If noisy data is used for decision tree induction it 

can result in overly large trees because it attempts to fit the noise. This can 

obscure the true relationship between the predictor attributes and the class 

variable. ExTree overcomes this by using the neural networks as an oracle
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(a) Unconstrained Instance Space at Node 1 (b) Node 2
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Figure 5.4: The yellow areas show the subspace of SC that is bounded by 

the constraints at nodes 1 to 4.
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(a) No Constraints at Node 1 the root node

Figure 5.5: The kernel density estimation of x at the four labelled nodes.
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to relabel the entire dataset. Because the primary aim of rule extraction is 

to model the neural network, relabelling the dataset using the neural network 

creates a noise-free dataset. A new dataset, is created by relabelling the 

instances in the training dataset with the classification given to them by the 

neural network, such that

^  =  { X , c ( X ) } .  (5.3)

5.1.3 Split Types

ExTree uses recursive partitioning, as described in Chapter 3, to form a tree. 

Therefore, at each interior node ExTree must form a splitting test that partitions 

the instance space, 3C, into two or more regions. ExTree considers two types of 

tests: one for attributes that have values that are continuous numeric and one 

for attributes that are discrete.

For discrete attributes, ExTree creates a branch for each possible value of 

the attribute. This can have the disadvantage, as described in Section 3.3.2, as 

attributes with a large number of possible values, can cause the data to be split 

into many partitions each containing only a few instances. This results in the 

splitting test created at the next level in the tree being selected based on fewer 

instances. However, because ExTree can create new instances and label them 

using the neural network this is not such a concern as it is with regular decision 

tree induction.

For a continuous numeric attribute, V =  v, a binary split is made with two 

outcomes v <  z and v > z. The threshold value, z, is determined by first sorting 

the set of instances on the value of attribute V. For a set with n unique values 

in the dataset for attribute V  there will be n — 1 possible split points that could 

partition the set into two. ExTree uses the heuristic of choosing the midpoint 

of the bounding values as the split point, so for the set {10,14,20,30} the split 

points considered would be 12, 17, 25. Again, it is expected that by creating 

new instances ExTree will find a split point z closer to the optimum.

Consider the dataset in Figure 5.6(a), assume the optimal split point is at
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Figure 5.6: The optimal split point is shown by the dotted line. The shad­

ing indicates the region in which the splitpoint must lie given 

the dataset.

x =  0.5 as illustrated by the dotted line. The best potential split according to 

the dataset lies between 0.4 and 0.8, which is shown by the shaded area. Using 

the midpoint of the bounding values heuristic, the split point would be 0.6. In 

Figure 5.6(b) the dataset is augmented by additional instances (shown as solid 

markers) this reduces the bounds of the region in which the optimal split point 

must lie to the region bounded by 0.45 and 0.6. Applying the midpoint rule 

finds a split point at 0.525 which is much closer to the optimal.

5.1.4 Split Selection

To determine which one of the possible splits to use, ExTree uses Information 

Gain Ratio, which is a modification by Quinlan[65] to his Information Gain 

measure described in Chapter 3. Information Gain has an intrinsic bias towards 

selecting tests with many outcomes. Gain Ratio is determined by dividing the 

Information Gain by the Information gained by arbitrarily splitting the data 

into the number of outcomes resulting from the test. The information gained 

by arbitrarily splitting a set S into n subsets is given by

split infbnpO =  x log2 • (5-4)
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The gain ratio of test X  can, therefore, be calculated as

gain ratio (X) = gain(X) 
split info„(X) (5.5)

5.1.5 Pruning

ExTree only stops growing the tree when the set of instances reaching a node all 

belong to the same class, or the instances cannot be split any further. For the 

majority of datasets which contain noise this will lead to overfitting as described 

in Chapter 3. ExTree uses the method of subtree replacement to post-prune the 

decision tree. Pruning creates a smaller decision tree that would be expected 

to generalise better and be more comprehensible. Starting at the leaf nodes 

and working back towards the root, each subtree is tested to determine whether 

or not replacement would be beneficial. To determine if the replacement is 

beneficial the classification error on a validation set for the tree before and after 

the replacement is compared. If the tree after the replacement has a lower 

error then the subtree is replaced. As discussed in Section 3.1 using a subset 

of the training instances reduces the number of instances that can be used for 

the training phase. ExTree overcomes this limitation because it can create new 

instances and use these to augment the original training set. The pruning set 

can also be made as large as the original training set of instances.

5.2 Analysis on Synthetic Data

Once upon a time, in July 1991, the monks of Corsendonk Priory 

were faced with a school held in their priory, namely the 2nd Eu­

ropean Summer School on Machine Learning. After listening more 

than one week to a wide variety of learning algorithms, they felt 

rather confused: Which algorithm would be optimal? And which one 

to avoid? As a consequence of this dilemma, they created a simple 

task on which all learning algorithms ought to be be compared: the 

three MONK’s problems. -  Sebastian Thrun.
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xiiHead shape G 

X 2 :B o d y  shape G 

£3: Is smiling G 

£4: Holding G

£5: Jacket colour G 

x&:Wearing a tie G

{round,square,octagon} 

{round, square, oct agon } 

{yes,no}

{sword,balloon,flag} 

{red,yellow,green,blue} 

{yes,no}

Table 5.1: The attributes for the monk’s robots dataset.

The Monk’s problems[84] are a set of synthetic machine learning problems which 

illustrate certain characteristics found in real world problems. In the original 

study[84] 25 machine learning algorithms were compared, and the datasets have 

also been used in several other studies [5, 100]. Because the datasets are syn­

thetic the mapping relationship, Eq. (1.1), between the inputs and outputs is 

known. This makes the problems particularly useful for both comparing and 

analysing machine learning algorithms. In this section ExTree is compared with 

C4.5 on the Monk’s problems. This will show the deficiencies in C4.5 induced 

trees and how ExTree is able to overcome them by extracting a decision tree 

from a well-trained neural network

The three Monk’s problems are based on a fictional robot domain. All three 

Monk’s datasets are two-class classification problems with 6 attributes. For 

each dataset, the problem is to determine to which of the two potential classes 

a given robot belongs. The attributes, listed in Table 5.1, are all discrete and 

describe various characteristics of the robots. Because the pattern space, X ', is 

discrete its total size can be easily found by multiplying the number of elements 

in each attribute. This gives 3 x 3 x 2 x 3 x 4 x 2 =  432. The test set for each 

problem is the full 432 instances covering all of X . The training set for each 

problem is a smaller subset of these instances. The two classes are coded such 

that class 1 is ‘doesn’t belong’ and class 2 is ‘belongs’ .

Initial experiments were carried out to find suitable neural network training 

parameters and architectures. Neural networks generally performed well across
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Figure 5.7: A C4.5 tree induced for monk training dataset 1.

a number of training parameters on the Monk’s problems, demonstrating that 

neural networks are well-suited to these tasks.

5.2.1 P roblem  1

The function for problem 1 is (Head Shape = Body Shape) or (Jacket Colour = 

Red). The training set is 124 randomly selected instances with no added noise. 

A neural network MLP was trained using error backpropagation to minimise the 

summed squared error for 500 epochs. The MLP had a single hidden layer with 

5 neurons. The hidden and output layers used the unipolar sigmoid transfer 

function. A learning rate of 0.2 and momentum term of 0.3 was used. This 

neural network obtained 100% classification on both the training and test sets.

Figure 5.7 shows a C4.5 decision tree that was induced on the training set. 

This decision tree classified 76% of the testset correctly. This highlights some 

deficiencies with decision induction. In this case the attribute which gives the
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Figure 5.8: Phantom relations can appear when there is not enough data 

points to determine the true relationship.

most information initially is Jacket Colour. Knowing that the attribute Jacket 

Colour has a value of Red determines the class of 29 of the 124 instances so 

this is the correct first split from an information entropy viewpoint. However, 

after splitting on Jacket Colour this leaves only 95 instances to determine the 

more complex part of the problem Head shape =  Body shape. The problem is 

exacerbated because the multiway split means that the remaining 95 instances 

are split between the red, green and blue branches. At this stage there are 

insufficient instances to determine the ’true’ relationship between the attributes 

and information theory ’breaks down’ selecting attributes which have no bearing 

on the classification. For example on the Jacket Colour — Green branch, a split 

is made based on Tie, then is Smiling this is a result of ‘phantom’ relationships 

in the data appearing stronger than the true global relationship because of lack 

of instances.

These ‘phantom’ relationships can arise because either the lack of instances 

allows strong local relationships in the instance space to be mistaken for global 

relationships or random relationships in the data can appear to be the true 

relationship. Consider the points in Figure 5.8(a), at first it appears the rela­

tionship between x and y is linear such as the function y =  2x but after adding 

more points, as in Figure 5.8(b), the true relationship, y -  4Sin(8x), becomes 

clear. The solution is to acquire more information by creating new instances.
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Figure 5.9: An ExTree tree for the monk training dataset 1.

Figure 5.9 shows a decision tree extracted from the previously trained neural 

network using ExTree, which sampled an extra 500 points at each node. This 

decision tree achieved 100% accuracy on both the training and test set and 

therefore, also 100% fidelity with the neural network. The ExTree extracted 

decision tree starts the same as the C4.5 decision tree with a split on Jacket 

Colour. After this point we can see the advantage of the sampling and querying 

approach. At each of the 3 colour branches another 500 instances are created 

and labelled by the neural network. This allowed the decision to represent the 

correct relationship Head Shape = =  Body Shape at each node. This example 

shows the advantage of the sampling and querying and how this leads to better 

splitting decisions.

5.2.2 P roblem  2

The function for problem 2 is that exactly two of the six attributes must have 

their first value. For example, if Body Shape and Head Shape both equal their 

first value, round, this would imply that for the robot to be a member of class 

2 the robot’s other attributes were not equal to their first value that is is smil­

ing ^ yes, holding ±  sword, jacket colour ^  red, and has tie ^  yes. This 

problem is similar to parity problems and is particularly difficult for decision 

tree algorithms[84]. The training set for this problem is 169 randomly selected 

instances, with no noise added.



A neural network was trained on the data. The neural network used a 

learning rate of 0.5 and a momentum term of 0.2. The neural network, as 

before, used 5 hidden neurons and one output neuron. All neurons used the 

unipolar sigmoid function as the activation function. The neural network was 

trained for 500 epochs of error backpropagation. The trained neural network 

obtained a 100% classification rate for both training and test sets.

A C4.5 decision was induced on the dataset. This tree achieved a classifi­

cation rate of 65% which is lower than selecting the majority class (class 1) for 

every instance, which, for this test set, would have correctly classified 67% of 

the instances. This problem requires global knowledge meaning all six of the 

attributes’ values are required to make a decision at any point in . This is 

in contrast to other problems where in certain parts of X  only local knowledge 

represented by a subset of the attribute values is required. This is not a prob­

lem for neural networks such as MLPs which learn such tasks well because they 

consider each instance as a whole. In contrast, decision tree induction performs 

badly on these problems because they consider each attribute in turn. With 

this dataset, no attribute in isolation gives more information about the class 

than the others. It is only after each attribute has been considered that a clas­

sification is possible. However, it is possible for a decision tree to represent such 

functions by splitting on each attribute in turn, regardless of the small amount 

of information gained, to create a full tree where each path between the root 

and leaf nodes tests each attribute. In practice, decision tree algorithms can 

rarely achieve this because, as in Monk Problem 1, the number of instances in 

the dataset does not sufficiently cover X .

ExTree with its sampling and querying technique can generate these new 

instances to provide adequate coverage of . An ExTree extracted decision 

tree from the trained neural network achieved a 100% classification rate on both 

the training and test set.
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5.2.3 P roblem  3

The function for problem 3 is (jacket colour =  green and holding = sword) V 

(jacket colour ±  blue and body shape ^ octagon) . This is not a particularly hard 

problem for decision trees or neural networks, but in the training dataset for 

this problem 5% of the instances are misclassified. This introduces an element 

of noise into the dataset. Figure 5.10 shows a decision tree induced on the 

training set. C4.5 does well on this problem and correctly classifies 93% of the 

training data and 97% of the test data. However, the C4.5 tree ignores the 

second part of the function (jacket colour ^ blue and body shape ±  octagon) 

capturing only the relationship (jacket colour = green and holding = sword). 

This results in 12 misclassified instances in the test set. A neural network 

was created which correctly classified 95% of the training data and 100% of 

the noise-free test data. The neural network used 2 hidden layers with bipolar 

sigmoid activation functions. The ExIYee extracted decision tree is shown in 

Figure 5.11. The ExTYee decision tree discovered the full relationship between 

the attributes including the (jacket colour ?  blue and body shape jl octagon) 

part missed by the C4.5 tree. By using the neural network as an oracle to relabel 

the misclassified instances in the training set the extracted tree was unaffected 

by the noise and therefore achieved 100% classification on the test set.
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Figure 5.11: An ExTree decision tree for Monk problem 3.

5.2.4 Continuous P roblem  1

The monk datasets are useful for the analysis of machine learning classifiers but 

do not include continuous attributes in the dataset. To examine how ExTree 

handles continuous data a simple synthetic dataset was created. This classifica­

tion problem is a two class classification problem. The pattern space is defined 

by SC — x x y : 0 <  x < 2n,—l < y <  1. The point (x,y), if in the region 

defined by y < sin(x), is of class 1, else it is class 2. Figure 5.12 illustrates the 

pattern space.

The training set for this problem consisted of 100 random points sampled 

from SC. The test consisted of 400 uniformly sampled points covering SC. A 

neural network with 3 hidden neurons can learn this problem with an accuracy 

on the test set of 97%. A C4.5 induced decision tree, as shown in Figure 5.13(a), 

only learns the problem to an accuracy of 85%.

The approximation to the decision boundary is shown in Figure 5.14(a). The 

region that classified correctly as Class 1 is shaded blue. The region incorrectly 

classified as Class 1 is shaded green. The region correctly classified as Class 2 

as white without shading. The region incorrectly classified as Class 2 is shaded
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F ig u r e  5 .1 2 : The pattern space for continuous problem 1. The shaded re­

gion is class 1 and the unshaded region is class 2.

Instances Accuracy Fidelity Nodes Leaves Depth

0 87% 84% 9 5 4

100 88% 89% 13 7 5

200 93% 94% 21 11 6

Table 5.2: As the number of new instances increases the fidelity and accu­

racy for ExTree increases on the Sine dataset.

yellow. As shown in Figure 5.14(a) the stepwise approximation results in many 

errors close to the decision boundary.

ExTree can improve on this performance in two ways. First, it can find 

better split points. To demonstrate this ExTree was confined to creating a 

tree of the same size as the C4.5 tree but allowed to refine the split points. 

The resulting tree is shown in Figure 5.13(b). The slight refinement in the 

split points increased the accuracy to 87% and the fidelity to 84%. Second, by
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F ig u re  5 .1 3 : C4.5 and ExTree decision trees for the Sine dataset .
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F ig u re  5 .1 4 : Decision boundaries for C4.5 and ExTree on the Sine dataset.
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increasing the number of instances ExTree can more closely approximate the

curved decision boundary, as shown in Figure 5.14(b), but the tree grows in 
complexity.

Table 5.2 shows the improvement in fidelity with the neural network and the 

accuracy as the number of new instances are created and the resulting increase 

in tree size.

5.3 ExLMT

In the first part of this Chapter, ExTree, a rule extraction method for classifi­

cation problems was developed. In this section an extension of this method will 

be developed. The results on the real-world datasets in the next Chapter shows 

that on many datasets there remains a significant gap between the knowledge 

discovered by the neural network and the knowledge extracted by ExTree. To 

attempt to overcome this ExLMT was developed. This new method extracts 

Logistic Model Trees(LMTs)[46]. These are a recent addition to the field of 

decision trees that replace the leaf nodes of regular decision trees with logistic 

regression functions.

The following sections review logistic regression and logitBoost. The new 

ExLMT algorithm is described. ExLMT is then analysed on synthetic datasets 

to see how it can improve on ExTree.

5.3.1 Logistic Regression

Logistic regression is a statistical method used to predict posterior class prob­

abilities P(C =  k | X  =  x) for the K  classes. Logistic regression fits a logistic 

function of the form
gpO+PxXi

y  ~  i +  eP o +P ix i (5 -6)

to the class probabilities, where fa are the parameters to be estimated. The 

motivation for using the logistic function can be demonstrated by considering
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P (C  =  1 I x)

F ig u r e  5 .1 5 : Logistic regression curve giving posterior probabilities a two 
class problem.

the univariate case with a dichotomous dependent class variable.

Figure 5.15 shows a typical two class problem separable by the independent 

variable x. For low values of x , Cx is more probable and for high values C2 

becomes more probable. As can be seen in Figure 5.15 the logistic curve provides 

an excellent approximation to the posterior probability P(C  =  1 | x). Points 

close to x =  0 have a low probability of belonging to Class 1 which increases 

rapidly as the points move closer to x =  30.

When dealing with the multivariate case the posterior probabilities become

e ( k ) + P l X l + 0 2 X 2 +  ■■ + 0 p X p

P (C k I x) j  e /30+/3iii+/32X2+ ••• +()pXp ‘ 

By applying the logit transform,

logit (x) =  log ( — i—
\1 — X

to Eq. (5.7) achieves

log
(  P(C =  h\x) \ 
\1 -  P(C = k | x ) ) —  Po +  P i X i  +  /32x 2 + "F PpXp .

(5.7)

(5.8)

(5.9)
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This has the advantage of making the right side of Eq. (5.9)linear in x, whilst the 

left hand side can be interpreted as the log odds of x being a member of Class k. 
The standard method of estimating the unknown parameters ftn is through the 

statistical method of Maximum Likelihood. By defining a likelihood function 

such as

¿(A-^)  =  p{& \P) =  \ [p {x i\ ft) , (5.10)
i

the parameters ft that maximises £(0\ £?) can then be found by using iterative 

methods similar to how the parameters (weights) are found in neural networks.

Once ft is obtained, a classification k* for an unknown instance x can be 

obtained by

k* =  argmax P(C  =  k | X  =  x). (5.11)
k

5.3.1.1 LogitBoost

Friedman[27] analysed boosting algorithms by recasting them as additive mod­

els, which are well-documented in the statistical literature. This analysis re­

sulted in a new boosting algorithm, LogitBoost.

Figure 5.16 shows an overview of the algorithm. LogitBoost uses an ensemble 

of functions Fk to predict classes 1...K using M  ‘weak learners’

K

Fk(x) =  Y^fmk{x). (5.12)
m= 1

Each of the ‘weak learners’ f mk can be any algorithm that fulfils Eq. (1.1). 

When f mk are linear functions in x then Fmk is equivalent to the logistic model 

previously described. Therefore, the LogitBoost algorithm can be seen as an 

iterative Newton method of fitting the logistic regression function. This iterative 

nature is exploited by the logistic model tree growing stage of the ExLMT 

algorithm described in Section 5.4.
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1. Start with weights Wik — 1/iV, i =  1 , . . . ,  N, k =  1 , . . . ,  J, Fk(x) =  0 

andpk(x) =  l/K \fk

2. Repeat for m =  1 ,2 , . . . ,  M:

(a) Repeat for k — 1 , . . . ,  K\

i. Compute working responses and weights in the fcth class

Vik-Pkj x j) 
l k P k ( X i ) ( l  -  P k ( X i ) )  

w i k  =  P k { X i ) { l  -  P k ( x i ) )

ii. Fit the function f mk(x) by a weighted least-squares regression 

of Zik to Xi with weights Wjk

(b) Set

Figure 5.16: LogitBoost: an adaptive newton algorithm(adapted from

Fk{x) Fk{x) + fmk

3. Output Classifier

arg max Fk(x)
k

Friedman [27]).
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5.4 The ExLMT Algorithm

The ExLMT algorithm is similar to the ExTree algorithm given previously. It 

follows the same top down recursive partitioning approach and uses information 

gain ratio to determine the attribute to split on. The main difference is the 

additional creation and refinement of the logistic models.

Figure 5.17 shows a flowchart of the ExLMT algorithm. Comparing the 

ExTree algorithm (Figure 5.1) with the ExLMT algorithm the main difference 

is the creation and refinement of the logistic regression model.

C reate Initial Logistic Regression M odel An initial Logistic regression model 

is built using all the data in the relabelled and expanded training set 

ST. The logistic regression model is then fitted using the LogitBoost 

method[27j. LogitBoost uses an ensemble of functions F*. to predict classes 

1...K using M  ‘weak learners’ . Figure 5.16 details the LogitBoost algo­

rithm as originally given by Friedman[27].

R efine Logistic M odel For each node resulting from the split created at the 

previous stage the logistic regression function is refined based only on the 

subset of &  that reached that node. This refinement means that as the 

tree grows the logistic regression models capture information local to the 

region of SC that the tree structure above has partitioned. Because of the 

iterative and additive nature of the LogitBoost algorithm, the refinement 

is simply running more iterations on a copy of the LogitBoost model of 

the node above but using only the subset of SC that reached the node.

5.4.1 Illustrative Exam ple

Consider the simple 2 attribute 2 classification problem

c(x, y)

1 (y >  0.7 +  0.65 A x <  0.5)

‘ 1 (y > -0.4a: +  0.4 A x > 0.5) 

0 elsewhere.

(5.13)
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F ig u re  5 .17 : P seudocode for the ExLM T algorithm.
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Figure 5 .18 : Pattern space for Eq (5.13) with class 0 shown in yellow and 

class 1 in blue.

The pattern space for this problem is shown in Figure 5.18. A training set was 

created by randomly sampling 400 points from this mapping. It can be easily 

seen that splitting at x =  0.5 would be a good first split which separates the 

majority of the instances, but within each half of the pattern space the next 

splitting point becomes more difficult to find.

A C4.5 induced decision tree induced on this training set is shown in Fig­

ure 5.19. The C4.5 tree as expected starts with a split on x around 0.5. Then 

proceeds to approximate the diagonal decision boundaries in each half with step 

functions. The ExTVee algorithm of the last section only made small improve­

ments to this. It finds slightly better split points and by creating new instances 

can increase the accuracy of the approximation to the diagonal decision bound­

aries, but at the cost of increasing the complexity of the tree. By replacing the 

leaf nodes of the decision tree with the logistic models much smaller trees can
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Figure 5.19: A C4.5 tree approximation to Eq. (5.13).

LMT1: 15.34 +  16.84a: +  -23.64y 

LMT2: -12.52 -  12.49s+ 31.052/

Figure 5.20: ExLM T approximation to Eq. (5.13).
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F ig u re  5.21: Probability density from Eq. (5.13).

be created.

Figure 5.20 shows an ExLMT tree extracted from a neural network trained 

on the training data. The initial split point on x has moved closer to the optimal 

0.5 but the most significant change is the way the logistic models have enabled 

the tree to be significantly smaller. The two logistic models LM1 and LM2 give 

probability density functions for the regions x <  0.5 and x > 0.5 respectively.

The probability density function for the pattern space is shown in Fig­

ure 5.21. The exact decision boundaries can be calculated from the Logistic 

models by finding the sign boundaries LM1=LM2=0 and rearranging for y

LMT1: 15.34 +  16.84x +  -23.64y =  0 

y =  0.71x +  0.65

LMT2: -12.52 - 12.49x +  31.05y =  0

y =  0.4x +  0.4 .

This shows that the decision boundaries are very close approximations to the 

original generating function Eq. (5.13).
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5.5 Summary

In this Chapter the new rule extraction algorithm ExTree was presented. Us­

ing the taxonomy provided by Andrews [4], discussed, in Chapter 1, ExTree 

is a pedagogical method and uses the sampling and querying approach first 

proposed by Craven[16] meaning it is independent of the neural network ar­

chitecture and training algorithm. The new algorithm was then analysed on 

the synthetic monk datasets which showed that the extracted rules were able 

to achieve 100% fidelity with the neural network and 100% classification accu­

racy. This improvement, although significant, does have a cost in computational 

time and also increases the size of the tree. The Monk’s problems contain only 

discrete attributes therefore a continuous attribute problem was created this 

demonstrated the ability of ExTree to extract decision trees on such problems 

and also produced trees which had improved classification accuracy over C4.5. 

This dataset also demonstrated a limitation of ExTree which is that it can only 

create axis-parallel decision boundaries like C4.5. Therefore, this chapter also 

introduced an extension of the previous ExTree algorithm, ExLMT, which re­

placed the leaf nodes with logistic models. This allowed the leaf nodes to model 

non-axis parallel splits. An example of ExLMT was then given which showed 

how it was possible to extract a very close approximation to the original gener­

ating function of a dataset from a neural network trained on that dataset. In 

the next chapter both these algorithms will be evaluated on real-world datasets.
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CH APTER  6

Empirical Evaluation of ExTree

The novel ExTree algorithm was introduced in the previous chapter. The algo­

rithm was successfully applied to the synthetic Monk’s datasets[84]. Although 

an algorithm can be demonstrated to work on idealised synthetic data it is 

important to demonstrate it on real world data[61]. Real-world datasets by 

their nature have unknown characteristics which present unique challenges to 

machine learning algorithms. In this Chapter ExTree is evaluated on a number 

of real-world datasets. The performance on these datasets is compared to C4.5 

and MLPs.

6.1 Evaluation Methodology

To evaluate the effectiveness of ExTree an evaluation methodology was required. 

There are three measures used to evaluate the ExTree algorithm with other ma­

chine learning algorithms: predictive accuracy, fidelity and tree size. Predictive 

accuracy is a measure of how well a machine learning algorithm classifies pre­

viously unseen instances and is simply the percentage of instances in a test set 

which the classifier C classifies correctly. Given a set of n instances with known 

classifications t\ ...tn and the classifications, y\... yn, given to these instances 

by a classifier, the classification accuracy is

accuracy = El* eqfa, U ) (6.1)n

where

eq(x,y) =
1 if x =  y,

(6.2)
0 elsewhere.
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To measure how well the extracted decision tree models the knowledge within 

the neural network the fidelity measure is used. This is the percentage of in­

stances in a given dataset for which two classifiers predict the same class. Given 

the classifications from the first classifier, y{ . . .  y\, and the classifications from 

the second classifier, y\... y„, fidelity can be calculated as

fidelity =  e3(yj’ y i) ' (6.3)

To evaluate comprehensibility the tree size is used, measured as the total number 

of nodes in the tree including the root node, interior nodes and leaf nodes.

6.1.1 k-Fold Cross Validation

In evaluating a classification algorithm, the dataset plays two roles: first as 

training data from which to build the model, and second as test data to estimate 

how well the model can predict. The obvious way to achieve this is to split the 

data into two subsets and use the first to train and the second to test the 

model. A problem using this approach is that with small datasets, such as 

some of the common benchmark datasets, 50% of the dataset is not sufficiently 

representative enough of the problem domain to build a model. Furthermore, 

this approach is very unstable, which means that the prediction of classification 

accuracy can fluctuate substantially depending on which instances are assigned 

to which subset. To overcome this problem k-fold cross validation[83] can be 

used. The first step is to randomly split the data into k subsets or folds. For 

each subset a model is trained on all the k — 1 other subsets then tested on the 

remaining subset. The final result is found by summing the correctly classified 

instances in each of the k folds and dividing by the total number of instances. 

For example, if the dataset had 100 instances and 5-fold validation was used 

each of the 5 subsets would contain 20 instances.

Figure 6.1 shows how 5-fold cross validation would split a dataset into train­

ing and test subsets. A model would then be created for each of the 5 subsets. 

Each model would be tested on one of the 5 subsets with the remaining 4 sub-
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Subset 1 Test Training Training Training Training

Subset 2 Training Test Training Training Training

Subset 3 Training Training Test Training Training

Subset 4 Training Training Training Test Training

Subset 5 Training Training Training Training Test

Model 1 Model 2 Model 3 Model 4 Model 5

Figure 6.1: k-Fold Cross Validation for k=5.

sets being used as training data. The classification accuracy for the dataset can 

be calculated by summing how many of the 20 instances each of the 5 models 

classified correctly by dividing by 100 which is the total number of instances in 

the dataset. This produces an unbiased[6] estimate of the predictive accuracy 

of the model on the dataset.

A further refinement to cross validation is stratification which attempts to 

keep the proportion of classes in each fold equal to the proportion in the whole 

dataset. A k-fold cross validation can still be sensitive to which instances are in 

which fold. This is particularly problematic for small datasets or datasets with 

a large amount of noise. To improve the estimate of the predictive accuracy, the 

whole of the k-fold cross validation process itself can be repeated a number of 

times with the instances being randomly assigned to each fold. This, however, 

increases the amount of computation required to estimate the predictive accu­

racy of the machine learning algorithm being tested. The estimates of predictive 

accuracy, fidelity and tree size in this Chapter use 10-fold cross validation. The 

use of 10 folds is somewhat arbitrary but is the standard for estimating predic­

tive accuracy and has been used in many machine learning comparisons such 

as the Statlog project[52]. The 10 fold validation itself is repeated 10 times for 

each dataset, requiring the machine learning algorithm to be run 100 times to 

obtain estimates for just one dataset.
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Figure 6.2: A comparison of algorithms with different deviations but same

6.1.2 C om paring T w o M achine Learning A lgorithm s on a Single

The k-fold cross validation results in k results for each algorithm. Therefore, 

comparing two machine learning algorithms creates two sets of results, R1, R2, 

each containing k results. It is reasonable to assume that these results will be 

normally distributed for each machine learning algorithm as shown in Figure 6.2.

The further apart the distributions are the more likely it is that the difference 

between the algorithms is significant. However, as shown in Figure 6.2, the 

deviation of the results also needs to be taken into account. The more the 

distributions overlap the more likely it becomes that there is no significant 

difference between the algorithms. The paired i-test[62] is a statistical measure 

that allows quantification of the difference between two sets of paired values such 

as the results from the k-fold cross validation. The i-test divides the difference 

in the mean of the two results by the standard error, Sd which measures the 

spread of the two sets of results. This gives the following formulae to calculate 

the t value,

difference in mean.

Dataset

Rl -  R2
(6.4)

Var(JÏ') +  V a r (g ) -  2Cov(/?», IP) 
k (6.5)
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Cov(i?\ B2) =  -  W ). (6.6)
1=1

The t statistic can then be compared to the tables[l] of the critical values 

for the t distribution with k -  1 degrees of freedom. The derivation of the 

t-test assumes the paired values, in this case the accuracy on each fold, are 

independent. However, as training data is repeated in each of the ^-training 

datasets(Figure 6.1), this assumption is violated. Therefore, although it is 

common practice within the machine learning community[6] the results of a 

t-test on a fc-fold cross validation should be viewed with some caution. In 

the results tables that follow in this section t-tests shown to be significant are 

indicated in bold.

6.1.3 Comparing Two Machine Learning Algorithms on Multiple 

Datasets

The last section showed how a paired t-test method can be used to test the 

significance of two machine learning algorithms on a single dataset. It is also 

useful to compare learning algorithms across multiple datasets. Again, there are 

two algorithms with a number of paired results, so, superficially, the f-test may 

seem appropriate. However, in this situation the f-test is unsuitable as there 

is no reason to expect the results for an algorithm to be normally distributed 

over different datasets. The datasets are completely independent of one another 

because the accuracy achieved on one dataset has no influence on the accuracy 

achieved on another dataset.

Comparing two machine learning algorithms on m datasets creates . . .  dm 

differences. For functionally identical algorithms these differences would be 0. 

The larger the magnitude of the differences the more likely the difference be­

tween the two algorithms is significant. The Wilcoxon signed-rank test allows 

us to test whether the magnitude of the differences are significant. This test is 

similar to the paired t-test but is non-parametric so does not make the assump­

tion that the observations are normally distributed. The null hypothesis for this
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test is that the two samples were drawn from identical populations, that is the 

difference between the algorithms is insignificant. It is calculated by ranking 

the d\...dm by magnitude in ascending order such that each dj is assigned a 

rank of r*. The W + statistic can then be calculated as

W + = '£ i ri. (6.7)
Tj>0

The Wilcoxon signed-rank test is determining whether the differences are dis­

tributed symmetrically around 0 which would indicate there is no significant 

difference between the algorithms being tested. The W + statistic is then eval­

uated against standard statistical tables to determine if it is significant[lj.

6.2 The Datasets

ExTree was evaluated using 12 benchmark machine learning datasets, which 

except for the Grub Damage dataset, are part of the well-known UCI machine­

learning repository[32]. The following section gives a brief description of these 

datasets.

B alance Scale Klahr and Seiger[45] generated this dataset to model the re­

sults of a psychological experiment that they carried out. The data models 

a balance scale with the inputs representing the mass on each side and 

the distance from the fulcrum. The output class represents whether the 

balance scale was tipped to the left or right, or balanced.

Sonar This dataset was originally used by Gorman and Sejnowski[29] in their 

study on using neural networks to classify sonar signals. The dataset 

was obtained by bouncing a sonar signal off a series of rocks and metal 

cylinders (mines). The input was the amount of energy in 60 frequency 

bands integrated over a set interval. The output class indicates whether 

the object was a rock or a metal cylinder.

D iabetes This dataset is based on data from the National Institute of Dia­

betes, Digestive and Kidney Diseases. The data describes various medical
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attributes of patients with the output class representing whether that 

patient was diabetic. The data in its current form was first used by 

Smith[81], and is a subset of the original dataset containing only females 

who are at least 21 years old and of Pima Indian heritage.

H eart Disease Originally collected by Robert Detrano, MD., Ph.D at the 

V.A. Medical Centre, Long Beach and Cleveland Clinic Foundation. The 

version used here is the processed form used in the Statlog project[52]. 

Statlog included only 13 of the original 75 medical attributes as inputs and 

removed 6 patient records with missing attribute values and an additional 

27 records for unknown reasons, leaving a dataset of 270 records. The 

output class was whether the patient had heart disease.

H epatitis A medical dataset containing the results of various medical tests 

and relevant attributes of a patient. The output class being whether they 

died of the hepatitis infection.

H ousing The dataset contains details of houses in the Boston, MA area. Orig­

inally the dataset included the house price in dollars and this was used 

as the output variable in regression studies[8, 66]. Boz[10] modified this 

dataset to create a classification problem which is used in this evaluation, 

by discretizing the house price attribute to two classes corresponding to 

whether the house price was above or below $2,000.

L abor The dataset is based on data from labor negotiations in Canada during 

1987-88 for the business and personal service sector. The input attributes 

describe relevant details of the contracts and the output class is whether 

the negotiation was successful. Although the positive cases are examples 

of actual successful contracts, the unsuccessful examples were obtained by 

interviewing experts or inventing near misses.

W in e  The dataset contains the results of a chemical analysis of wines grown in 

a region of Italy using three different cultivars. Unfortunately the exact
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meaning of the inputs has been lost to time. The output class is which of 

the three cultivars the wine was produced from.

G rub Dam age Unlike the other datasets that come from the machine learning 

dataset collection at UCI[32], this dataset was from R. J Townsend at 

AgResearch. Grass Grub insects are a major cause of pasture damage. 

The dataset includes measures thought to affect grub population. The 

output class is whether the grub population was low, average, high or 

very high.

Z oo  Regarded as a relatively simple classification task, the zoo dataset contains 

the attributes of various animals with the output class being which of 7 

groups they belong to. The groups are defined by the creator of the 

dataset, Richard S. Forsyth

Iris A well-known dataset from the seminal paper by Fisher[24], The dataset 

inputs are the features of various individual iris plants and the class at­

tribute is whether it is an example of an Iris Sentosa, Iris Verisilour or Iris 

Virginica.

Prim ary Tum or Donated by M. Zwitter and M. Soklic at the University 

Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. It was in­

troduced to the machine learning community via Kononenko[14]. The 

dataset details medical attributes of various patients who had been diag­

nosed with a tumor. The output class for this dataset is the location of 

the primary tumor.

A summary of the main features of the twelve datasets is given in Table 6.1. The 

datasets represent a variety of problem domains and present different challenges 

to machine-learning algorithms. The machine-learning community has a bias 

towards using datasets from the medical domain and this is represented by four 

of the datasets being medical in nature. With the exception of the Balance 

Scale dataset all the datasets are based on measured or observed data, and are, 

therefore, likely to contain noise. Four of the datasets only have continuous
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inputs and four datasets are purely nominal. The remaining eight datasets 

have a mixture of continuous and nominal inputs. Five of the datasets have 

more than two classes; the remaining seven datasets have a dichotomous class 

variable.

Dataset Instances Inputs Continuous Classes

Balance Scale 625 4 4 3

Sonar 208 60 60 2

Diabetes 768 8 8 2

Heart 270 13 13 2

Hepatitis 155 19 6 2

Housing 506 13 13 2

Labor 57 16 8 2

Wine 178 13 0 3

Grub Damage 155 8 2 4

Zoo 101 16 0 7

Iris 150 4 0 3

Primary Tumor 339 16 0 21

Table 6.1: The characteristics of the 12 datasets used in the evaluation.

6.3 Neural Networks - MLP

To create the neural networks from which to extract rules using ExTree an 

evaluation was undertaken. The purpose of this evaluation was to find a series 

o f networks that had greater accuracy than C4.5. A basic type of Multilayer 

perceptron(MLP) was used as described in Chapter 2. For datasets with more 

than one output class 1-of-iV encoding was used. This assigns an output neuron 

to each class. The classification of an instance is determined by which output 

node had the highest value. Additionally, the output nodes used the softmax 

activation function [39] which forces the sum of the output nodes to always
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equal 1. This allows the output values for each neuron to be interpreted as 

the probability that the instance belongs to that class. The softmax activation 

function changes the activation function for an output node i to

exp Oj

E j M ’
(6.8)

where j  runs over the number of the K  output neurons for the K  classes. For 

datasets with two classes a single output node is able to adequately represent 

the dichotomous class attribute. Experiments with different combinations of 

network topology and learning algorithm parameters were carried out using 10- 

fold cross validation. The best network configuration for each dataset was then 

used as the basis for the rule extraction phase. The aim was to find a neural 

network which outperformed C4.5, for each of the datasets, to make the rule 

extraction by ExTree worthwhile. For many of the datasets it is probable that 

a better performing neural network could be found. The accuracy of the neural 

networks compared to C4.5 are given in Table 6.2. For the best performing 

neural network on each dataset Table 6.3 gives the learning rate, momentum 

term, validation set size, maximum number of epochs, number of neurons in 

the hidden layer and whether a decay term was used.

For purposes of comparison, predictive classification accuracy results were 

obtained for these datasets using Quinlan’s C4.5 algorithm1. The C4.5 al­

gorithm used confidence based pruning with a confidence parameter of 0.25. 

Binary splitting of nominal attributes was not used in these experiments.

6.4 Initial Results

Table 6.4 shows the results of the 10-times repeated 10-fold cross validation.

For all the datasets, apart from the Primary-Tumor dataset, the decision tree

extracted by ExTree had a higher accuracy than the C4.5 tree grown on the

1This was not the ’official’ C4.5 released by Quinlan but a C + +  work-a-like implementation 
which shares much of the code base of the ExTree implementation to ensure a fair comparison
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Dataset C4.5 ANN

Balance Scale 77.82 96.00
Sonar 73.61 79.31
Diabetes 73.15 77.61
Heart 77.02 83.46

Hepatitis 77.02 85.82
Housing 83.12 88.93
Labor 80.7 91.57
Wine 89.34 93.65
Grub Damage 39.43 46
Zoo 92.61 94.69
Iris 94.73 95.8

Primary Tumor 41.39 44.28

Table 6.2: Neural network and C4.5 accuracy results.

Dataset Hidden

Layers

Epochs Learning Validation Momentum Decay

Balance Scale 10,5 2500 0.1 0 0.9 No
Sonar 20 500 0.2 0 0.3 Yes
Diabetes 20 500 0.2 0 0.3 Yes
Heart 20 500 0.2 0 0.3 Yes
Hepatitis 20 500 0.2 0 0.3 Yes
Housing 2 2000 0.2 0 0.3 No
Labor 25 2500 0.1 25 0.9 Yes
Wine 25 2500 0.1 25 0.9 Yes
Grub Damage 25 2500 0.1 25 0.9 Yes
Zoo 10 2000 0.3 0 0.2 No
Iris 10 2000 0.3 0 0.2 No
Primary Tumor 10 2000 0.3 25 0.2 No

Table 6.3: Neural network parameters.
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Dataset C4.5 ExTree (-1)

Balance Scale 77.82 81.05

Sonar 73.61 73.69

Diabetes 73.15 76.03

Heart Statlog 77.02 82.74

Hepatitis 77.02 82.81

Housing 83.12 83.96

Labor 80.70 85.83

Wine 89.34 90.78

Grub Damage 35.96 42.39

Zoo 92.61 92.70

Iris 94.73 95.00

Primary Tumor 41.01 40.95

T a b le  6 .4 :  Comparison of predictive classification accuracy for C 4.5  and 

ExTree.
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same data. The largest improvement is on the Grub Damage dataset with an 

improvement of 6.43%. The Primary-Tumor dataset made a slight decrease 

in predictive accuracy of 0.06%. A paired t-test showed the difference was 

statistically significant at p <  0.05. This is not emboldened in the Table because 

it was a decrease. A Wilcoxon Rank Sign Test was carried out and again showed 

the difference between C4.5 and ExTree to be significant (p =  0.0034)

Dataset C4.5 ExTree (-1)

Balance Scale 77.48 80.84

Sonar 73.44 77.28

Diabetes 83.91 92.38

Heart Statlog 85.81 92.26

Hepatitis 86.98 92.82

Housing 85.22 89.72

Labor 81.2 90.40

Wine 90.56 92.98

Grub Damage 53.14 79.25

Zoo 94.75 95.95

Iris 97.07 97.00

Primary Tumor 55.89 70.80

Table 6.5: Comparison of Fidelity for C4.5 and ExTree.

Table 6.5 shows the fidelity results for ExTree compared with the C4.5 al­

gorithm. C4.5 is not a rule extraction algorithm and therefore, it would be ex­

pected that the ExTree algorithm would have significantly better fidelity than 

C4.5. However, the results are given here to give an indication of how much the 

fidelity is increased by the extraction process. For example, two algorithms that 

obtained 100% accuracy would also have 100% fidelity even though there was 

no extraction link between the algorithms. This can be seen in the Iris dataset 

which superficially has a high fidelity of 97% but because it is a reasonably easy
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dataset as reflected in the accuracy results in Table 6.2 this result is in fact 

the worst result as C4.5 achieved approximately the same result. In terms of 

gain over C4.5 the largest increase was on the Primary Tumor dataset which in­

creased fidelity by nearly 15% but the overall fidelity was still only 70.8% which 

means a significant amount of knowledge was not extracted. A Wilcoxon Sign 

Rank test showed the overall difference in fidelity between C4.5 and ExTree to 

be significant which shows the extraction process works (p =  0.00097).

Dataset C4.5 ExTree

Balance Scale 77.82 193.4

Sonar 27.9 53.32

Diabetes 43.4 55.2

Heart Statlog 34.64 46.68

Hepatitis 20.12 22.5

Housing 38.04 93.08

Labor 7.92 15.7

Wine 17.35 28.09

Grub Damage 56.73 31.89

Zoo 15.7 36.48

Iris 8.28 22.16

Primary Tumor 89.9 136.19

Table 6.6: Comparision of tree size of C4.5 and ExTree.

Table 6.6 gives the average number of nodes including leaf nodes in the 

decision tree created for each dataset. Apart from the Grub Damage dataset 

the trees for the extracted trees are significantly larger than those created by 

C4.5. It should be noted however that tree node growth is exponential, i.e. a 

fully grown binary tree of depth 4 has 15 nodes whereas a tree with only one 

more level has 31 nodes. By comparing this with the accuracy results from 

Table 6.4 it is seen that increase in size is representative of the increase of 

information extracted. However, the large increase in size and therefore the
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Dataset No Relabel Relabel

Balance Scale 77.82 77.76
Sonar 73.61 74.99

Diabetes 73.15 75.48

Heart Statlog 77.02 82.00

Hepatitis 77.02 81.94

Housing 83.12 84.28
Labor 80.70 82.00

Wine 89.34 90.51

Grub Damage 35.96 42.43

Zoo 92.61 92.30

Iris 94.73 95.00

Primary Tumor 41.01 39.58

T a b le  6 .7 :  Effect of relabelling on accuracy.

reduced overall comprehensibility of the model may not be worth the modest 

improvement in accuracy. Of course, the cost-benefit of the comprehensibility- 

accuracy trade-off is problem-domain specific.

6.5 Effect of Relabelling

This section will examine how relabelling the dataset affects the accuracy of the 

decision tree as discussed in Chapter 5. As discussed in the previous chapter 

the purpose of relabelling is to take advantage of the neural network’s ability 

to deal with noise in the dataset. A  t-test showed the difference between a 

decision tree grown on only the original dataset and the decision tree grown on 

the relabelled dataset was significant on five o f the twelve datasets, suggesting 

these are the noisiest o f the datasets, or more precisely the datasets with most 

noise that the neural network could ’filter out’ . Although the t-test did not show 

the difference between the accuracy for the Primary Tumor and Zoo datasets
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Dataset No Relabel Relabel

Balance Scale 77.82 81.32

Sonar 27.9 24.36

Diabetes 43.4 45.94

Heart Statlog 34.64 26.14

Hepatitis 20.12 10.08

Housing 38.04 35.46

Labor 7.92 7.75

Wine 17.35 17.08

Grub Damage 56.73 32.93

Zoo 15.7 15.7

Iris 8.28 7.76

Primary Tumor 89.9 84.02

T a b le  6 .8 : Effect of relabelling on tree size

to be significant, accuracy did drop slightly after relabelling. An explanation 

could be that the neural network was ‘smoothing’ too much. The advantage of 

relabelling the data is that the neural network removes some of the noise in the 

dataset (smooths) but, potentially, if the neural network smooths the data too 

much the decision tree part of the algorithm could underfit the data.

Relabelling had a significant effect on tree size. In six of the eleven datasets 

it reduced the size of the tree significantly. This is likely to be because the neural 

network’s ability to ’see through’ the noise resulted in a decision tree that did not 

overfit the data. The Balance Scale dataset, known to be noise free, increased 

in size, however, from table 6.2 it is known that the neural network achieved 

only 96% accuracy so relabelling the dataset will have introduced noise to the 

dataset resulting in an increase in decision tree size.

Table 6.9 shows the effect of relabelling on the fidelity between the neural 

network and the extracted decision tree. As predicted, all except one of the
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Dataset No Relabel Relabel

Balance Scale 77.48 77.37
Sonar 73.44 77.9

Diabetes 83.91 91.94

Heart Statlog 85.81 90.93

Hepatitis 86.98 92.65

Housing 85.22 89.96

Labor 81.2 84.37

Wine 90.56 91.4

Grub Damage 53.14 77.74

Zoo 94.75 96.06

Iris 97.07 96.87

Primary Tumor 55.89 68.08

T a b le  6 .9 : Effect o f relabelling on fidelity

datasets showed an increase in fidelity after relabelling. Using a series of ¿-tests 

it was found that 10 of the datasets had significant increases in fidelity. The grub 

damage dataset showed the largest increase in fidelity, from relabelling alone, 

increasing from 53.14% to 77.4%. This could have been due to the suspected 

large amount of noise in this dataset being smoothed out by the neural network. 

The noise-free Balance Scale dataset showed no improvement in fidelity with a 

statistically insignificant drop of 0.11%. Although there is no noise to remove it 

was expected that the fidelity would have increased by relabelling because the 

tree would be modelling the function of the neural network and not the original 

dataset. The reason this did not occur could be because there are insufficient 

instances in the dataset for a decision tree to model, neither the generating 

function of the original dataset nor the function learnt by the neural network, 

close enough to achieve an accuracy above approximately 77%. This reasoning 

is supported by the results in the next section on generating new instances.
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Dataset 0 1 2 4

Balance Scale 77.76 81.05 83.18 87.39

Sonar 74.99 73.69 71.68 72.47

Diabetes 75.48 76.03 76.05 76.13

Heart Statlog 82.00 82.74 81.59 81.78

Hepatitis 81.94 82.81 81.46 82.03

Housing 84.28 83.96 84.80 84.54

Labor 82.00 85.83 83.57 86.67

Wine 90.51 90.78 89.28 89.49

Grub Damage 42.43 42.39 42.74 43.53

Zoo 92.30 92.7 92.70 91.8

Iris 95.00 95 95.00 95.07

Primary Tumor 39.58 40.95 41.54 40.8

T a b le  6 .1 0 : The effect of new instances on accuracy.

6.6 New Instances

This section examines the effect of adding new instances to the dataset. For each 

of the twelve datasets, a decision tree was extracted from the neural network 

with 1, 2, and 4 times the number of instances that were in the original dataset. 

Table 6.10 shows the results of this experiment. When the number of new in­

stances was set to double the number in the original dataset, all eleven datasets 

showed an improvement in accuracy over both C4.5 and the decision tree ex­

tracted from the relabelled data. A t-test showed the improvement over C4.5 

to be statistically significant for 8 of the datasets. As the number of datasets 

was increased to 2 and 4 times the original number the accuracy started to fall 

for about half the datasets.

Table 6.11 shows that increasing the number of new instances increased 

the fidelity for 8 datasets. However somewhat counter-intuitively, the fidelity 

dropped for some of the datasets as the number of new instances increased.
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Dataset 0 1 2 4

Balance Scale 77.37 80.84 83.33 88.12

Sonar 77.9 77.28 75.55 76.53

Diabetes 91.94 92.38 92.77 93.16

Heart Statlog 90.93 92.26 92.77 92.93

Hepatitis 92.65 92.82 91.59 92.85

Housing 89.96 89.72 89.56 90.14

Labor 84.37 90.4 89.27 92.23

Wine 91.4 92.98 91.07 92.64

Grub Damage 77.74 79.25 78.08 80.55

Zoo 96.06 95.95 95.85 94.93

Iris 96.87 97 97.33 97.6

Primary Tumor 68.08 70.8 74.81 70.95

T a b le  6 .1 1 : The effect of new instances on fidelity.

The likely explanation for this comes from the way fidelity is measured. Because 

fidelity is measured against the original dataset even if the fidelity of the decision 

tree is increased in X  overall, if the dataset has strong interlinked dependencies 

between attributes, the fidelity in the area of SC covered by the original dataset 

may be reduced. That is, the fidelity within an area of the input space that is 

o f little interest may increase at the cost of reducing the fidelity within an area 

of greater interest.

Previously it was speculated that there was not enough instances in the 

dataset for a decision tree to model the Balance Scale dataset above about 77% 

and the results here are consistent with that prediction. Increasing the number 

of new instances increased the fidelity of the Balance Scale datasets smoothly 

from 77.37% to 88.12% with accuracy also improving from 77.76% to 87.38%.
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6.7 Ensembles

This section shows the general applicability of the ExTree technique by applying 

it to an ensemble of neural networks. Ensemble methods, also called commit­

tee methods, combine the results of multiple classifiers to classify an instance. 

Although there are several methods to create ensembles such as Stacking[97], 

Boosting[73], and Bagging[ll]. The results presented in this section were ob­

tained using Bagging, which is the simplest of these methods. The often-used 

analogy for ensemble methods is that a decision reached by a group of experts 

is often better than a decision made by a single expert. The Bagging method 

gives equal weighting to all the individual classifiers. Following the ‘group of 

experts’ analogy, this is the same as considering all experts to have equal ex­

pertise for all problems, which is rarely the case. However, generally bagged 

ensembles perform as well or better than a single classifier.

In the simplest case of a group of g neural networks trained on the same 

problem, assuming the neural networks started with the same weights, all the 

individual networks would be identical and there would be no benefit of combin­

ing the results of the individual neural networks. Initialising the neural networks 

with different weights does introduce some variation but training still tends to 

converge the neural networks to sets of weights which produce similar final clas­

sifications. This is normally a desirable property but, in this case, means the 

ensemble would be no more powerful as a classifier than an individual neural 

network.

The bagging method provides a different training set for each classifier in 

the ensemble which produces a group of quite different neural networks. The 

bagging method applied to g classifiers with a training dataset containing n 

instances, creates g new datasets with n instances in each by re-sampling with 

replacement from the original dataset. This has the effect that some instances 

will not appear in all of the g new datasets and some instances will be repeated 

multiple times within the same dataset. This produces an ensemble of classifiers 

that each have expertise in a slightly different area of the pattern space, 3C.
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Ensembles which combine the predictions of multiple classifiers are more 

opaque than a single classifier. To demonstrate the flexibility of the ExTree 

algorithm, it was used to extract a decision tree from an ensemble of neural 

networks trained on each of the twelve datasets. For each of the datasets an 

ensemble of ten neural networks using bagging was created. The ExTree algo­

rithm, relabelled the instances and doubled the number of instances.

Dataset C4.5 ExTree (Ensemble)

Balance Scale 77.82 81.42

Sonar 73.61 71.34

Diabetes 73.15 75.82

Heart Statlog 77.02 81.15

Hepatitis 77.02 82.68

Housing 83.12 84.46

Labor 80.70 83.03

Wine 89.34 90.63

Grub Damage 35.96 39.46

Zoo 92.61 92.42

Iris 94.73 95.07

Primary Tumor 41.01 42.52

Table 6.12: Accuracy for decision tree extracted from ensembles using ex- 

Tree compared with C4.5.

Table 6.12 shows that as on a single neural network the ExTree algorithm 

extracted a decision tree that had higher accuracy than a decision tree induced 

using C4.5. The ¿-tests showed that for 9 of the datasets the difference was 

significant. Applying the more sophisticated Boosting algorithm would have 

improved the accuracy results of the ensemble itself which would have led to 

better accuracy results for the extracted decision tree. The results prove that 

the ExTree algorithm is applicable to ensembles. As expected the Wilcoxon
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Dataset C4.5 ExTree(Ensemble)

Balance Scale 77.48 81.42

Sonar 73.44 76.45

Diabetes 83.91 92.2

Heart Statlog 85.81 91.59

Hepatitis 86.98 92.51

Housing 85.22 90.37

Labor 81.2 88.5

Wine 90.56 92.77

Grub Damage 53.14 62.92

Zoo 94.75 94.88

Iris 97.07 97.53

Primary Tumor 55.89 71.95

Table 6.13: Fidelity for decision tree extracted from ensembles using Ex- 

Tree compared with C4.5.
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Sign Rank test confirmed the algorithms to be significantly different.

Table 6.13 shows the fidelity of the extracted trees with the ensemble. The 

C4.5 fidelity results are provided for comparison. The ¿-tests showed the fidelity 

was significantly higher for 10 of the datasets. The increase in fidelity will, in 

part, be due to the increase in accuracy of the ensemble. The fidelity results 

further demonstrate the flexibility of the ExTree algorithm to be applied to 

other classifier types.

6.8 E x L M T

In this section the ExLMT algorithm, introduced in Section 5.3, which produces 

the Logistic Model Trees instead of the traditional C4.5-style trees is evaluated.

Dataset C4.5 ExTree ExLMT

Balance Scale 77.82 81.05 93.33*

Sonar 73.61 73.69 77.99*

Diabetes 73.15 76.03 77.1 *

Heart Statlog 77.02 82.74 83.44*

Hepatitis 77.02 82.81 85.06*

Housing 83.12 83.96 85.57*

Labor 80.70 85.83 90.67*

Wine 89.34 90.78 92.32*

Grub Damage 35.96 42.39 44.03*

Zoo 92.61 92.70 93.7 *

Iris 94.73 95.00 95.8 *

Primary Tumor 41.01 40.95 42.48*

Table 6.14: Comparison of predictive classification accuracy for C4.5 and 

ExTree and ExLMT.
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Table 6.14 compares the accuracy of C4.5, ExTree and ExLMT. ExTree and 

ExLMT both used the neural network to relabel the dataset and doubled the 

size of the dataset by creating new instances. The decision trees extracted using 

ExLMT had significantly better accuracy than C4.5 and ExTree for all eleven 

datasets.

Dataset C4.5 ExTree ExLMT

Balance Scale 77.37 80.84 93.94

Sonar 77.9 77.28 84.53

Diabetes 91.94 92.38 98.28

Heart Statlog 90.93 92.26 98.44

Hepatitis 92.65 92.82 96.29

Housing 89.96 89.72 93.04

Labor 84.37 90.4 96.63

Wine 91.4 92.98 96.2

Grub Damage 77.74 79.25 88.18

Zoo 96.06 95.95 93.7

Iris 96.87 97 95.8

Primary Tumor 68.08 70.8 84.22

Table 6.15: Comparison of fidelity of C4.5, ExTree, ExLMT.

Table 6.15 compares the fidelity of C4.5, ExTree and ExLMT. Again, ExLMT 

had a significantly higher fidelity with the neural network than either C4.5 or 

ExTree.

Table 6.16 compares the resulting size of the trees from C4.5, ExTree and 

ExLMT. The ExLMT grown trees have substantially fewer nodes than the C4.5 

and ExTree decision trees, and although smaller trees are easier to comprehend, 

the logistic models at the leaf nodes are far less comprehensible than the simple 

class labels of the C4.5 and ExTree leaf nodes. Wilcoxon Rank Sign tests showed 

the differences in both fidelity and accuracy to be significant when ExLMT was
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Dataset C4.5 ExTree ExLMT

Balance Scale 77.82 193.4 18
Sonar 27.9 53.32 7.18
Diabetes 43.4 55.2 3.92

Heart Statlog 34.64 46.68 4.52

Hepatitis 20.12 22.5 2.18
Housing 38.04 93.08 35.76

Labor 7.92 15.7 1.81

Wine 17.35 28.09 3.37

Grub Damage 56.73 31.89 27.37

Zoo 15.7 36.48 1.68

Iris 8.28 22.16 5.56

Primary Tumor 89.9 136.19 21.24

Table 6.16: Comparison of tree size for C4.5, ExTree, ExLMT.

compared with both C4.5 and ExTree. Overall the results showed, as predicted, 

that ExLMT increases the accuracy and fidelity significantly and also reduces 

tree size, but at the cost of introducing more complicated leaf nodes.

6.9 Summary

In this chapter ExTree was evaluated on twelve real-world datasets. To ensure 

the results and the conclusions drawn from them were valid, a comprehensive 

evaluation methodology was developed. This evaluation methodology used re­

peated /c-fold cross validation, t-tests and Wilcoxon hypothesis testing.

The results clearly showed the feasibility of the ExTree rule extraction 

method by successfully extracting a decision tree from each of the neural net­

works tested. Comparing ExTree with C4.5 showed ExTree produced trees with 

higher predictive accuracy, with ExTree achieving higher predictive accuracy on 

eleven of the twelve datasets and a statistically significant improvement on 7
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of the datasets. In addition to predictive accuracy, the fidelity of ExTree to 

the original neural network was evaluated, and, as expected, ExTree had much 

higher fidelity with the neural network than C4.5. This confirmed that the de­

cision tree extracted by ExTree was modelling the knowledge within the neural 

network and not just producing decision trees with better predictive accuracy.

To better understand ExTree performance on real-world data, experiments 

testing the relabelling and instance generation components of the ExTree algo­

rithm were conducted. These experiments showed that relabelling contributed 

to the increase in predictive accuracy and reduced tree size for many of the 

datasets. The experiments also showed that increasing the number of instances 

created in the instance generation phase of ExTree substantially increased fi­

delity. To demonstrate the ability of ExTree to be applied to other machine 

learning algorithms that produce oblique classifiers, ExTree was successfully 

applied to a bagged ensemble of neural networks.

Finally, ExLMT, a modified version of ExTree that replaces the leaf nodes 

with logistic models was evaluated. The results showed that this modification 

increased accuracy, fidelity and reduced tree size at the cost of more complex 

leaf nodes.
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CH APTER  7

ExM T: Extraction in Regression Domains

In the previous two chapters, ExTree, a novel algorithm for extraction of deci­

sion trees from neural networks was developed and evaluated. ExTree is only 

applicable to neural networks trained on classification problems. Previous re­

search into rule extraction techniques has been predominately concerned with 

neural networks trained on classification problems. However, neural networks 

are universal approximators and make powerful models for regression based 

problems. ExMT is a new rule extraction algorithm that extracts a model 

tree[64] from neural networks trained on regression problems.

The next section examines previous work in rule extraction in regressions 

domains. Section 7.2 reviews the model tree representation, which is the basis 

of the new rule extraction algorithm. Section 7.3 presents the new ExMT rule 

extraction algorithm itself. Section 7.4 presents and discusses the results of an 

empirical evaluation of ExMT on real-world datasets. Section 7.4.4 provides 

an empirical comparison of ExMT and ANN-DT[75], a previous rule extraction 

algorithm. Finally, the last Section provides a summary of the chapter.

7.1 Previous Techniques

Rule extraction from neural networks trained for regression problems is a ne­

glected area in the rule extraction literature[86], This section briefly reviews two 

algorithms developed for regression domains. Setiono suggest a decompositional 

approach called REFANN[76] that extracts IF..THEN rules from the neurons 

in the hidden layer. This is analogous to the SUBSET style methods[87] used 

for classification based rule extraction. The IF region THEN linear function of
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x rules are extracted in two parts. The linear function is a three-piece linear 

equation that approximates the activation function of each hidden neuron as 

illustrated in Figure 7.1.

This linear approximation to the sinusoid introduces error as shown by the 

grey shading. The region is the hyperplane defined by the product of the inputs 

and weights. To aid comprehension a further stage can be applied that replaces 

the oblique hyperplanes used in the conditions with axis-parallel hyperplanes, 

which are found using C4.5. This is achieved by creating a classification dataset 

from the original regression training set by replacing the continuous output value 

with a region number, then training the C4.5 algorithm using this dataset. 

IF..THEN rule extraction is applied to the C4.5 tree and finally the regions 

are replaced with the corresponding 3-piece approximation extracted from the 

neuron for that region.

Being a decompositional approach REFANN has the associated benefits and 

drawbacks[4]. Empirical evaluations show the approach to have a high degree 

of accuracy ‘and exceptional fidelity. The drawbacks are the constraints on the 

neural network architecture. For example, because the number of rules is 3 times 

the number of hidden neurons, the neural network model needs to be pruned 

to reduce the number of neurons, and therefore the number of rules extracted. 

Not only does this pruning of the neurons mean that special training algorithms 

are required it is also likely to reduce the classification accuracy of the neural 

network.

The pedagogical extraction technique ANN-DT[74] was extended to re­

gression problems[75]. This algorithm also uses the sampling and querying 

approach[16]. New query instances are created which are ‘near’ existing in­

stances in the instance space as defined by either Euclidean distance or a dis­

tance metric proposed by Gower[30], suitable for mixed continuous and discrete 

attributes. The tree induction aspects of ANN-DT(e) are based on CART[12] 

and therefore uses weighted variance as the split minimisation criteria. The
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F ig u re  7.1: Three piece approximation to tanh.

weighted variance of split of the data S into n subsets can be calculated as

v  =  ¿  j§ | Var(Si), (7.1)

where Var(5j) is the variance of output attribute of the ith subset of S. A second 

version of the algorithm ANN-DT(s) uses a form of significance analysis on the 

neural network to determine the most significant attribute. The split point 

on the attribute found to be most significant is determined using the weighted 

variance measure(Eq. (7.1).

The regression tree formed by ANN-DT has the same form as CART’s re­

gression trees with leaf nodes being assigned the mean value of the instances 

that reach that node, so ANN-DT gives a piecewise constant approximation of 

the neural network. Figure 7.2 shows a typical piecewise constant approxima­

tion to a curve. The datapoints shown clearly follow a curve, but the only way 

a piecewise constant classifier, such as CART or ANN-DT, can model this is 

through splitting the curve into sections and predicting the mean value for each 

section. This produces a step approximation to the curve. This will inherently 

create errors which are equal to the distance between the datapoints and the 

mean line for each section.
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1  X

Figure 7.2: Piecewise constant approximation to a nonlinear function.

7.2 Model Trees and M5 Induction

Decision Trees induction techniques such as ID3/C4.5[65], and CHAID[43] have 

proved popular in pattern classification domains. The main advantage is that 

the inherent graphical representation is easy to comprehend. However, these 

trees are only capable of predicting categorical values and cannot, therefore, 

be applied to regression problems which require the prediction of a continuous 
output variable.

Model Trees[64, 91] attempt to take the advantages that decision trees have 

in the classification domain and transfer them to the regression domain. Pre­

viously, decision tree algorithms that have been applied to regression problems 

required the class variable to be discretized which meant only average values 

could be predicted. This is shown in Figure 7.2, which shows an approxima­

tion to a continuous value through discretizing the value. The curve to be 

approximated is split into sections and for each section the mean value of the 

datapoints in that section is used as the predicted value. Unless the function 

being approximated is a step function this will result in an error. This error 

will increase the further the function being approximated diverges from being 

an axis-parallel step function. To reduce this error the function can be split into
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more sections, but this will increase the size of the decision tree and therefore 

reduce comprehensibility. The most significant improvement model trees pro­

vide is that they can predict a continuous class value directly, so do not need 

to discretize the target variable.

The M5 model tree induction algorithm follows the same top down recur­

sive partitioning approach as classification decision tree algorithms such as C4.5, 

CART and CHAID. Standard deviation of the numeric class value is used to 

determine which attribute to split on[64]. Discretization is not necessary be­

cause the leaf nodes are replaced with a multivariate linear model predicting a 

continuous class value. Prediction is then accomplished in two stages. First, 

the tree structure defines in which area of instance space the predictive value 

lies. Second, the linear model for that region then predicts the final class value. 

The Model Tree is, therefore, a piecewise linear representation as shown in 

Figure 7.3.

7.3 E x M T

The previous two sections reviewed previous rule extraction techniques and pro­

vided a summary of the model tree and the M5 algorithm for inducing model 

trees. In this section two new algorithms, ExMT(a) and ExMT(b) for rule ex­

traction in regression domains are developed. The difference between the two 

versions is the measure used for splitting. ExMT(a) like M5 uses standard devi­

ation and ExMT(b) uses a measure based on Root Mean Squared Error (RMSE). 

Using standard deviation has the advantage that it is quick to calculate, but 

has a significant weakness when used for the induction of model trees. The next 

section will examine this weakness before demonstrating that RMSE provides a 

more accurate measure but at the cost of increasing computational time. The 

way ExMT handles nominal values will then be discussed. The section ends 

with a step-by-step description of the algorithm.
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7.3.1 Split Selection

bxNI r(a) uses the suine standard deviation bused meusure us A15 to determine 

the correct uttribute und point to split on. All possible split points ure consid­

ered so for un uttribute with m distinct vulues in the training set it will consider 

ull m -  1 possible split points. The best split is the one which most reduces the 

stundurd deviution of the class values. The reduction in standard deviation by 

splitting a set S into N  subsets is given by

N 19-1
sdr =  StdDev(S) StdDev(Si). (7.2)

127



This is analogous to the split info measure used by C4.5 and ExTVee given in 

Eq. (3.5). To illustrate this a simple dataset was created with 51 points sampled 

from

V =
lAx  +  0.15 +  e x <  0.325 

0.2a: +  0.6 +  e x >  0.325.
(7.3)

where e is a Gaussian noise term with mean 0 and standard deviation 0.05. 

Consider the 51 points for attribute x shown in Figure 7.4(a), there are 50 

possible split points and therefore 50 possible SDR values. The largest SDR 

value for attribute x is at split 16 as shown in Figure 7.4(b). This is the best 

split point for attribute x so if this was higher than the SDR for the other 

attributes then a split would be made on attribute x at splitpoint 16, which in 

this dataset was x <  0.325. As shown in Figure 7.4(b) as the split point moves 

closer to the optimum split point the SDR value increases.

Therefore, the difference between the splitting measure used by M5 and 

ExMT(a) is that M5 uses the standard deviation of the class values in the 

original dataset where ExMT(a) uses the standard deviation of the class values 

of the relabelled instances and the newly created instances.

However, splitting on standard deviation is best applied to situations when 

the points are clustered around distinct mean values. Figure 7.5(a) demon­

strates a situation where the points are clustered around 2 values (0.25 and 

0.75) and splitting based on reducing variance works well. A classifier which is 

limited to predicting mean values (CART, ANN-DT) will create a tree predicting 

a class value of 0.25 for x <  0.5 and 0.75 for x >  0.5. In this case standard 

deviation reduction works well and finds the optimal classifier.

In Figure 7.5(b) the points are generated from the function

y  =

0.2a:+  0.25 x <  0.5 

—0.3a: +  0.9 x >  0.5,
(7.4)

with a small amount of Gaussian noise added. The optimal classifier is obviously 

Eq (7.4) but the optimal split point x =  0.5 can still be easily found using
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standard deviation. A classifier predicting mean values for the region x <  0.5 

and the region x > 0.5 will still give reasonable results because, although the 

generating function is a 2 section piece-wise linear function, this is still a close 

fit. Furthermore, the two clusters have distinct means. However, Figure 7.5 

demonstrates a dataset that is obviously easy to approximate by a 2 section 

piecewise linear fit, but splitting on standard deviation will not find the optimal 

splitting point.

The dataset shown in Figure 7.5(c) consists of 21 data points generated from 

the function,

{x x <  0.5
(7.5)

—x +  1 x > 0.5,

The dataset has Standard Deviation of 0.156. The optimal splitting point for 

a 2 piece piecewise linear fit is x <  0.5. This creates two subsets which also 

have a Standard Deviation of approximately 0.156 resulting in this split not 

being chosen. The leaf node would then predict the mean value of 0.24 for 

piece-wise constant methods such as CART and ANN-DT. A Model Tree based 

method will attempt to fit a single linear regression line to all the points in 

the range 0 <  x <  1, but the best linear fit that is possible is axis-parallel so, 

again, it is the same as predicting the mean of 0.24. In the previous examples 

Standard Deviation is a good measure for determining the split point when 

fitting a piecewise constant model, but when the model being fitted is piecewise 

linear it can prove to be a poor measure in many situations. This is because 

the standard deviation reduction chooses split points that reduce the spread of 

the data points, which is only optimal when predicting the mean of the values. 

If a linear model is to be fitted then the best measure for determining the split 

point is to reduce the error between the points and the best regression line 

through those points. The error can be measured using Root Mean Squared 

Error, RMSE(Eq. (7.10)).

Figure 7.6(a) shows a split point of 0.2; the linear regression to the left of 

the split point has no error, but the linear regression to the right of the split
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point has substantial error.

Figure 7.6(b) shows how moving the split point to x =  0.4, which is closer 

to the optimal split point, substantially reduces the error in the right-hand-side 

regression line. Moving the split point to the optimal split point of x =  0.5, as 

shown in Figure 7.6(c), reduces the error to 0 for both regression lines.

Figure 7.6(d) shows that as the split point moves to the right of the optimal 

split point the error of the left-hand-side regression line increases. If the criteria 

for splitting is based on reducing the RMSE of the regression line then the 

optimal x =  0.5 split point would be selected.

Basing the split criteria on the RMSE of the linear regression fit does come at 

substantial computational cost. For each possible splitting point it requires two 

linear regressions to be performed. For this reason, two versions of ExMT are 

evaluated ExMT(a) that uses Standard Deviation for determining the splitting 

point, and ExMT(b) that uses the RMSE based measure.

7.3.2 N om inal Values

The linear models used by the model tree require the nominal values to be 

converted to numeric values. One proposed solution[91] is to apply the method 

used by CART[12] to model trees. Consider an attribute, A , with m possible 

values A i , . . . ,  Am. The average class value for each of the m values is calcu­

lated and the m values are then ordered by this average class value. This tends 

to produce an ordering of the m values that is positively correlated with the 

class value. CART recalculates this ordering at every node of the tree based 

on the instances that have reached that node. In contrast, the M5 algorithm

[91] makes use of the same ordering for the whole tree. Because the ordering is 

fixed for the whole tree, it is possible to improve the efficiency of the algorithm 

by converting the attribute A at the Root node into m — 1 synthetic binary 

attributes. The m — 1 synthetic binary attributes correspond to whether the 

original attribute was a member of the zth ordered attribute values. For ex-
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(c) Split Point, X < 0.5 (d) Split Point, x < 0.65

Figure 7.6: Splitting on RMSE between linear regression and data points.
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ample, consider the attribute degree G {geography, computing, drama} and the 

class attribute mark  G {1 , . . .100} .  If the average class mark for geography, 

computing, and drama were 80, 65, 90 respectively then the ordering would be 

computing =  0, geography =  1, and drama =  2. The synthetic binary attributes 

would then be

sAi =

sA 2 =

1 degree G {c o m p u tin g }

0 elsewhere.

1 degree G { co m p u tin g , g eo g r a p h y }  

0 elsewhere.

(7.6)

(7.7)

The coding for the degree attribute can then be seen in Table7.1.

sAl sA2 Degree

0 0 Drama

0 1 Geography

1 1 Computing

Table 7.1: The degree attribute after a binary transform.

7.3.3 E xM T  A lgorithm

The algorithm starts with a neural network and the dataset used to train it. The 

dataset is then relabelled by replacing the output attribute for each instance 

in the dataset with the output value of the neural network for that instance. 

New instances are then created by modelling the dataset and sampling from it. 

These new instances axe then labelled using the neural network in its role as 

an oracle. The new instances are then added to the original dataset. A Model 

Tree is then induced from the new enlarged dataset in a similar way to the M5 

algorithm. ExMT(a) uses Standard Deviation as the split criteria, like M5, but 

the ExMT(b) uses a RMSE based split measure.

A step-by-step description of the algorithm is now presented.
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Stage 1: O btain the trained neural network ExMT places no constraints 

on the topology or training algorithm of the neural network

Stage 2: R elabel the dataset The dataset used to initially train the neural 

network is relabelled by the fully trained neural network. This aims to 

reduce noise in the class attribute of the dataset.

Stage 3: G enerate new data instances To elicit the knowledge stored in 

the neural network, a number of new instances are created and then la­

belled by the neural network. The new instances are created based on 

the original dataset. Nominal attributes are sampled according to their 

frequency in the original dataset. For example, in a dataset with 20 in­

stances, with a colour attribute with 10 instances being Red, 5 Green and 5 

Blue, the colour attribute of the new instances would have the same prob­

abilities, Red(0.5), Green(0.25), Blue(0.25). For continuous attributes a 

Kernel Density estimate [79] is made of the distribution. Random values 

are then sampled from this distribution, and the new instances are then 

labelled by the neural network.

Stage 4 - 6  C reate M odel Tree

Stage 4: C reate C andidate Splits ExMT only considers binary splits for 

both continuous and nominal attributes. For continuous attributes the 

values in the dataset are sorted with each midpoint between the values 

being considered as a splitting point.

Stage 5: Select Best Split To measure the benefit of each possible split the 

reduction in the standard deviation(StdDev) of the class value after the 

split is used. For a Split T that splits the dataset S into subsets Si and 

Sr, the measure used is

for the method ExMT (a). For method ExMT(b) the following measure is

i(T, S) =  StdDev(S) -  ( StdDev(Si) +  ^  S td D ev ^
\ P  P
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used

i(T, S) =  MSD(S) -  MSD(S,) +  M SD(ft) A  (7.9)

where MSD(S') is the mean squared difference between the predictions 

from the neural network and a linear regression model for set S.

Stage 6: Create the Linear m odels for leaf nodes A linear model for each 

node in the tree is created.

Stage 7: C om pare the Linear M odel The ideal way of pruning a tree is to 

compare the error for each interior node linear model to the subtree below 

it. If the error is lower for the interior node the subtree below is removed 

and the interior node becomes a leaf node. However, in real world prob­

lems the expected error is, of course, unknown so it is approximated. A 

subset of the training data can be set aside and used as a pruning set, but 

this reduces the amount of data that can be used to induce the model. 

The residual error of a model is the difference between the predicted val­

ues and the actual values. When pruning decision trees, such as C4.5 

the residual error cannot be reduced at the pruning stage because the 

growing of the tree has already reduced the residual. In contrast, model 

trees reduce another measure of error such as standard deviation at the 

tree growing stage so can reduce the residual error at pruning time. A 

parsimonious multiplicative factor of (n +  v)/(n — v) is used, where n is 

the number of training instances and v is the number of parameters in 

the model. This has the effect of favouring smaller, simpler models at the 

cost of accuracy.

7.4 Evaluation

The evaluation of the ExMT algorithms follows the same general approach as 

used in evaluating ExTree in Chapter 6. Again, stratified fc-fold validation is 

used with a k value of 10 chosen, as is standard in machine learning. The fc-fold 

evaluation itself was repeated 10 times to produce reliable, unbiased estimates
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of predictive accuracy and fidelity and tree size. This results in the classifier 

being executed 100 times for each estimate of classification accuracy or fidelity. 

To compare two classifiers on the same dataset a standard two-tailed i-test 

was used. In the tables, bold indicates a result was a significant improvement 

over M5(p < 0.05). To compare the performance of two classifiers over a se­

ries of datasets the Wilcoxon signed rank test is used. However, the measures 

used in classification domains for predictive classification accuracy (6.1) and 

fidelity (6.3) have to be modified for regression domains.

Two measures were used to assess the predictive accuracy of the methods. 

The basic measure is mean squared error, which is the average of the squares of 

the differences between the predicted value and the actual values. Normally the 

square root of MSE is used so that the measure is comparable to the dimensions 

of the values being predicted giving root mean squared error (RMSE). This can

be calculated as

RMSE = (7.10)

where U and yi are the actual and predicted values, respectively, for instance i 

of the M  instances.

A variation of RMSE is root relative mean squared error(RRMSE). This 

measures the performance of the predictor relative to merely predicting the 

mean value, t =  j j  of the target value. RRMSE can be calculated as

RRMSE =  <7-n )

Fidelity is how closely the extracted rules model the neural network. Fidelity 

was measured in two ways. First, the mean squared difference

Fidelity = ^  ^ {V i  ~ nrii))2, (7.12)
i

where M  is the number of instances, nrii is the output from the neural network, 

and ?/i is the output from the tree for instance i. Second, a relative fidelity 

measure was calculated that is relative to predicting the mean target value,

RelativeFidelity =  100 x nn»)2 _ (7.13)Hi iy-Vp)2
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7.4.1 Datasets

The datasets were chosen from the UCI machine learning repository[32]. Based 

on some initial experiments only datasets on which neural networks outper­

formed M5 were chosen. If it is already possible to produce a model tree using 

M5 that outperforms a neural network then there is little incentive to extract a 

model tree from the neural network. The datasets represent a range of real-world 

problem domains. The predictor variables include nominal and continuous at­

tributes. The total number of instances, the number of numeric attributes and 

the number of nominal attributes of each of the datasets is given in Table 7.2.

Dataset Instances Numeric Nominal

bolts 40 7 0

fishcatch 158 5 2

sleep 62 7 0

vineyard 52 4 0

cpu-rm 209 6 1

Table 7.2: Characteristics of datasets used in evaluation.

B olts The Bolts dataset comes from the operation of an industrial machine 

that counts the number of bolts to be packaged. The predictor variables 

include various settings of the machine, such as conveyor belt speed, and 

the sensitivity of the ‘electric eye’ . The value to predict is the time the 

machine will take to count 20 bolts.

Fishcatch The Fishcatch dataset[44] was obtained from data taken from a 158 

fish caught in a Finnish lake. The predictor variables are attributes such 

as species, sex, width, and height of the fish. The value to predict is the 

weight of the fish.

Sleep The task provided by the Sleep dataset[2] is to predict how many hours

138



of sleep a mammal requires, based on attributes such as brain weight, 

body weight, life span etc.

V ineyard The Vineyard dataset[80] is the yield of the vine rows in a vineyard 

close to Lake Erie. The task is to predict the yield for 1991 based on 

yields from previous years.

C P U  The task provided by the CPU dataset[44] is to predict the relative per­

formance of a CPU based on a number of technical attributes of the CPU.

7.4.2 Neural Network Setup

The neural networks used in the evaluation were standard multilayer feed­

forward neural networks. The hidden neurons used bipolar sigmoid as the trans­

fer function. For the output nodes a linear function ( f (x ) =  x) was used as the 

transfer function. All nodes used the dot product for the net function. The net­

works were trained using the GNBR[25] training algorithm that combines the 

speed of the Levenberg-Marquardt optimisation with Bayesian régularisation 

as discussed in Chapter 2. The régularisation favours smoother functions that 

are less likely to overfit and therefore improves the generalisation ability of the 

neural network. Initial experiments were carried out using standard gradient 

descent back-propagation, as used in Chapter 5 for the evaluation of ExTree 

on classification datasets. However, it was found that using gradient descent 

caused the experiments to take an impractical amount of time to complete. 

Every result in the evaluation of an algorithm is found by averaging 10 runs of 

10-fold validation requiring the neural network to be trained 100 times for each 

dataset for every set of ExMT parameters evaluated. The line search in the 

Levenberg-Marquardt algorithm significantly speeds up the training, making 

the large number of runs required to produce unbiased estimates of predictive 

accuracy and fidelity feasible. The switch of training algorithm is due to in­

creased complexity of fitting an exact regression curve over finding a decision 

boundary and does not affect the architecture of the neural network, which 

remains a multilayer perceptron with one or more hidden layers with bipolar
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Dataset MLP CART M5 ExMT (a) ExMT(b)

bolts 3.72 11.16 6.39 5.81 4.94
fishcatch 52.51 92.11 57.31 65.65 50.19
sleep 3.47 4.12 3.82 3.52 3.52
vineyard 2.56 3.06 3.82 2.62 2.54

cpu-rm 20.22 36.75 27.45 20.54 21.77

Table 7.3: Comparison of Root-MSE.

sigmoid nodes in the hidden layer. Moreover, because the ExMT method takes 

as its starting point a trained neural network, the actual training algorithm that 

finds the weights can be any optimisation method; the rule extraction process 

is unaffected.

7.4.3 Results

The RMSE results (Table 7.3) clearly show that the CART method, which 

only uses a mean value at the nodes, produces trees with significantly higher 

error rates than the model tree based methods. The ExMT(a) method pro­

duced trees with a lower RMSE than M5 for all but the fishcatch dataset, for 

which it produced a tree with a higher error rate but a smaller tree size. The 

ExMT(b) method produced tees with significantly lower errors than both M5 

and ExMT (a). Wilcox Signed Rank tests showed the difference between both 

versions of ExMT and M5 to be significant and also showed the difference be­

tween the two version to be significant but less so.

Tables 7.5 and 7.6 show that ExMT(a) had a higher degree of fidelity than 

the M5 tree except again for the fishcatch dataset. ExMT(b) had a higher 

degree of fidelity with the neural network than the M5 on all the datasets. 

It also had a higher degree of fidelity than ExMT(a). Wilcoxon Signed Rank
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Dataset MLP CART M5 ExMT(a) ExMT(b)

bolts 15.6 45.43 25.19 22.62 18.94

fishcatch 15.14 26.55 16.19 18.67 14.27

sleep 84.74 103.2 94.82 89.2 86.11

vineyard 66.32 79.66 101.93 65.61 66.7

cpu-rm 11.57 29.81 20.04 16.22 12.98

Table 7.4: Comparison of root-relative-MSE.

Dataset M5 ExMT(a) ExMT(b)

bolts 23.51 19.79 16.79

fishcatch 46.87 52.51 36.36

sleep 1.23 0.31 0.29

vineyard 1.27 0.58 0.51

cpu-rm 27.45 20.22 19.05

Table 7.5: Comparison of fidelity root-MSE.

Dataset M5 ExMT(a) ExMT(b)

bolts 5.86 5.13 4.37

fishcatch 13.27 14.86 10.32

sleep 29.89 7.58 6.78

vineyard 35.63 16.78 14.01

cpu-rm 19.89 16.86 12.6

Table 7.6: Comparison of fidelity root-relative-MSE.
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Dataset CART M5 ExMT(a) ExMT(b)

bolts 6.40 4.45 3.74 10.69
fishcatch 27.82 4.08 3.92 20.06
sleep 11.96 2.30 1.00 14.84

vineyard 35.50 2.33 5.68 15.32

cpu-rm 31.1 2.68 7.04 24.00

Table 7.7: Comparison of tree size for CART, M5, ExMT(a), ExMT(b).

test showed the difference between M5 and both ExMT(a) and ExMT(b) to 

be significant and also the difference between ExMT(a) and ExMT(b) to be 

statistically significant.

Table 7.7 shows the average number of nodes in the tree for the various 

tree induction methods. As expected, the CART approach that is restricted 

to predicting mean values produces the largest trees. The ExMT(a) method 

produces trees which are smaller than the equivalent M5 tree on 3 of the 5 

datasets, which possibly demonstrates the smoothing potential of extracting 

from the neural network. The results for ExMT(b) shows the large improve­

ments in error reduction and fidelity have come at the cost of increased tree 

size.

The results show the potential of extracting model trees from artificial neural 

networks. The ExMT(a) method being the closest to the original M5 method 

showed that it was possible to produce trees that were smaller than M5 but 

have higher accuracy. This indicates that M5 does produce suboptimal model 

trees. The ExMT(b) method improved on the accuracy and fidelity results of 

M5 at the cost of increased computational time and larger trees. If we consider 

the Bolts dataset, as shown in the results section, the M5 obtained an average 

RRMSE of 25.19 whereas the ExMT(a) algorithm reduced the RRMSE to 22.62.

Figures 7.7 and 7.8 show typical trees created by the algorithms. Both 

algorithms created a three node tree with three corresponding linear regression
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models. Although both trees split on the same two attributes, TIME and 

TOTAL, the split points were different. The linear regression models for the 

ExMT(a) tree used made use of more of the attributes than the M5 tree. This 

can be explained by the ExMT(a) method having more data due to the sampling 

at Stage 3. Furthermore, because the purity measures o f Stage 5 are based on 

the outputs of the neural network, this has the effect of reducing noise in the 

dataset resulting in more accurate trees.

7.4.4 Comparison with AN N -D T

In this section ExMT will be evaluated against the ANN-DT algorithm by 

Schmitz, et al[75]. In the original study introducing ANN-DT it was evaluated 

using an artificial dataset containing 3 continuous attributes ($, x, s) and one 

discrete^). The attributes are bounded such that 0 <  ((?,£, s) <  1) and </> e  
{0, \ }. The target attribute, y, is given by

y =  sin(47T0 — 0) -f ax -h bs +  ce. (7.14)

The ce term adds noise to the dataset with e being a random variable from a 

normal distribution with mean 0 and standard deviation 1. The training data 

was 300 randomly sampled points with the constants having values a =  0.3, b =  

0.0, c =  0.2. Because b is set to 0 the s attribute has no effect, forcing the 

algorithms to deal with a superfluous variable.

The test set consisted of a further 1,200 randomly sampled points but with 

the c constant having a value of 0, which results in a test dataset containing 

no noise. As observed by Schmitz this dataset presents a difficult learning 

task as several splits on both 4> and 6 are required before the error is reduced 

significantly and the error term in the training dataset can cause overfitting.

As can be seen from the results in Table 7.8 the ExMT(b) method signifi­

cantly outperformed the ANN-DT algorithms. This shows the clear advantage 

o f ExMT(b) linear nodes in representing this function. Moreover, the ExMT(b)

143



Time < 32.19

Model
1

Model 1
T20B0LT = 2 * TIME 

Model 2
T20B0LT = 0.4649 * TIME + 5.2598 

Model 3
T20B0LT = 74.9445

Figure 7.7: M5 tree for Bolts dataset .

Dataset ANN CART M5 ANN-DT(e) ANN-DT(s) ExMT(b)

Sin Cos R2 86.1 32.9 61 77.6 82.3 92

Sin Cos Fidelity 27.5 56 84 87.2 88

Table 7.8: RMSE for Sine Cosine dataset.

144



Model 1 
T20B0LT =

Model 2 
T20B0LT =

Model 3 
T20B0LT =

Time < 25.73

T

Total < 15 Model

3

-3.3344 * TOTAL + -0.1002 * SENS + 1.9909 * TIME + 34.2875

0.032 * RUN + 0.6192 * SPEED1 + -0.2163 * TOTAL + 0.6414 * TIME + 5.6058

-0.1146 * RUN + -2.2886 * TOTAL + 1.3716 * NUMBER2 + 0.6851 * TIME + 67.2983

Figure 7.8: M5 tree for Bolts dataset .
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performed better than a M5 induced tree which shows the benefit of extracting 

the model from the trained neural network. The fidelity was also higher than 

the ANN-DT algorithms, again due to ExMT(b) using linear nodes. The stan­

dard tree induction methods CART and M5 had very low fidelity, as expected, 

because they make no attempt to describe the neural network and are included 

merely as a baseline for comparison.

7.5 Summary

This chapter has introduced, ExMT, a new algorithm for rule extraction from 

neural networks trained to solve regression problems. The chapter started with 

a review of the current algorithms for rule extraction, which established that, 

in comparison to rule extraction from classification based neural networks, ex­

traction from regression neural networks had been a neglected area of research.

The previous classifications extraction algorithms introduced in Chapter 5 

had successfully used decision trees to represent the rules extracted and was 

particularly influenced by C4.5. For regression rules C4.5 is not appropriate so 

Model Trees were used as the tree type for the extracted rules. Model Trees 

have the advantage of being a graphical representation of a decision process but 

can predict a continuous output class. Therefore, Model Trees and the model 

tree induction algorithm M5 were analysed.

The new extraction algorithm, ExMT, itself was then described. The M5 

algorithm used standard deviation for determining the split points which is 

reasonably fast to calculate, but a problem with this measure and its interaction 

with the linear models at the leaf nodes was highlighted. For this reason two 

extraction methods were proposed ExMT(a) that used standard deviation like 

M5, and ExMT(b) that used a new measure based on the difference between 

the root mean square error of the nodes linear model and the neural network.

Both algorithms were then evaluated on a number of real world datasets. 

The results were compared to the M5 algorithm. The results showed that the
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model tree extraction algorithm produced rules which had a high level of fidelity 

with the neural network and also were more accurate than the M5 algorithm. 

Furthermore, the ExMT(b) algorithm significantly outperformed both M5 and 

the ExMT(a) algorithm. This means the limitations previously discussed in the 

chapter when using standard deviation for split points does impact real world 

datasets. Finally, the ExMT(b) algorithm was evaluated against the ANN-DT 

algorithm using a synthetic dataset which had been introduced in the original 

ANN-DT paper. This evaluation showed that the ExMT(b) outperformed both 

versions of ANN-DT.
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CH APTER 8

Conclusion and Future Directions

This thesis has developed new algorithms to extract decision trees from neural 

networks to solve the well-known ‘black box’ problem.

8.1 Summary

The aim of this thesis as stated in Chapter 1 was to create a series of algorithms 

to extract rules from artificial neural networks. This research covered in the 

preceding chapters has fulfilled this aim. This section will now summarise how 

the research in each chapter contributed to meeting the objectives.

Chapter 1 provided a review of the general pattern recognition task. The 

terminology of pattern recognition used throughout the thesis was introduced. 

A brief introduction to neural networks and decision trees was presented.

Chapter 2 provided an analysis of neural networks. The chapter started 

by examining the biological origins of artificial neural networks and how this 

was developed into the model of an artificial neuron. The inability of a single 

artificial neuron to model non-linear separable classes, such as the XOR func­

tion, were highlighted. This limitation of a single artificial neuron led to the 

development of the multilayer perceptron. Although multilayer neural networks 

overcame the linear separability problem, it made training more complicated, 

requiring backpropagation of errors through the neural network. An analysis 

of how backpropagation and related algorithms trained the weight matrix was 

presented. A significant problem with moving to multilayered neural networks 

was the black box nature of the resulting neural networks. The complex weight 

matrices trained by the backpropagation algorithms give no insight into the
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relationship between inputs and outputs that the neural network has learnt. 

Solving this black box problem was the focus of this thesis.

Chapter 3 provided an analysis of decision trees and their respective in­

duction algorithms. Decisions trees, in contrast to neural networks, provide a 

graphical model of a decision process that is easy to comprehend. The recur­

sive partitioning method with particular emphasis on the information entropy 

based C4.5 algorithm was analysed. Although much easier to understand, de­

cision trees and the induction algorithms have a number of limitations which 

were highlighted.

Chapter 4 examined the rule extraction task. The chapter started with a 

review of the black box nature of neural networks. The Hinton map, an early 

method for visualising neural network weight matrix, was examined and shown 

to be insufficient for interpreting the weight matrix. Previous rule extraction 

techniques were reviewed and analysed using the rule extraction taxonomy pro­

vided by Andrews [4]. An outline of rule extraction algorithms that were devel­

oped in the remainder of the thesis was presented. Central to these algorithms 

was the Sampling and Querying approach by Craven[16] which was discussed.

In Chapter 5 the novel rule extraction algorithms ExTree and ExLMT were 

developed. These algorithms were developed to extract decision trees from neu­

ral networks trained in classification domains. Both algorithms were pedagogic 

and used Sampling and Querying to extract the knowledge hidden in the neural 

network. The ExTree algorithm was analysed on the synthetic Monk’s datasets. 

This analysis confirmed that the decision trees extracted using ExTree outper­

formed the C4.5 induced algorithms by finding better split points, eliminating 

noise in the dataset, and overcoming the limitation of decision trees where de­

cisions towards the bottom of the tree are based on too few instances. ExTree 

was also analysed on datasets with continuous input attributes. This showed 

that increasing the number of instances, by sampling and querying, created ap­

proximations much closer to the nonlinear decisions boundaries. The second 

algorithm developed in this chapter was the ExLMT algorithm. This algorithm
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replaced the leaf nodes of ExTree with logistic models which created a signif­

icantly closer approximation to nonlinear decision boundaries. This increased 

both the predictive classification accuracy and the fidelity with the neural net­

work at the cost of reducing the comprehensibility of the decision tree.

Chapter 6 presented an empirical evaluation of ExTree and ExLMT on 12 

real-world datasets. A comprehensive evaluation methodology was developed 

that was based around repeated fc-fold evaluation. This included statistical 

tests to compare two algorithms on a single dataset, and tests to compare two 

algorithms over a range of datasets. The extraction algorithms were compared 

to multilayer peceptrons and the C4.5 induction algorithm. The evaluation 

measured and compared the predictive classification accuracy, fidelity and com­

prehensibility of the algorithms. Various aspects of the algorithm were indi­

vidually evaluated to examine the effect of each, for example, relabelling. The 

evaluation confirmed the results of the synthetic datasets. As expected the 

extracted decision trees had substantially higher fidelity with the neural net­

work, but also achieved higher classification accuracy. The ExLMT achieved 

significantly higher fidelity and classification accuracy than ExTree. To demon­

strate the flexibility of ExTree to be applied to different classifier types, it was 

successfully applied to ensembles of multilayer perceptrons.

In Chapter 7, ExMT a novel algorithm for extracting decision trees in regres­

sion domains was developed. This replaces the leaf nodes of a regular decision 

tree with a linear regression function creating a Model Tree. This chapter 

started with a review of the regression task and previous algorithms for rule 

extraction in regression domains. The ExMT algorithm was based on the M5 

Model Tree induction algorithm and therefore this was analysed. A significant 

limitation in the way the M5 algorithm found split points was found and, be­

cause of this, two versions of ExMT were developed: one which used the same 

flawed measure as M5 and a more computationally expensive method of finding 

the split points. An empirical evaluation on regression datasets was then pre­

sented. This compared the extracted model trees with M5 trees and the MLP. 

This used an evaluation methodology based on that used in Chapter 6 but

150



used new measures for the predictive accuracy and fidelity which were suited 

to the regression domain. As expected this evaluation showed significant im­

provements in fidelity but also predictive accuracy. The chapter concluded with 

a comparison of ExMT with ANN-DT, an earlier rule extraction technique for 

regression domains, which showed the that ExMT outperformed ANN-DT in 

both classification accuracy and fidelity.

8.2 Overall Conclusion

Neural networks are powerful classifiers and function approximators but their 

adoption in many areas has been impeded due to their black box nature. Every 

successful neural network has learnt an important mapping between the input 

attributes and the output, but this knowledge is trapped within the complex 

weight matrix. In this thesis algorithms for extracting decision trees from neural 

networks have been developed. Extracting decision trees from neural networks 

has two benefits. First, they open up the black box allowing us to see inside 

a trained neural network. Second, they produce better classifiers and function 

approximators than directly inducing decision trees. The cost of this benefit 

is some reduction in comprehensibility, in comparison to directly induced deci­

sion trees, and an increase in computational time. Rule extraction algorithms 

have been proposed before but the algorithms in this thesis have extended the 

sampling and querying approach to newer, more powerful decision tree types: 

logistic model trees and model trees. By using the model tree as form of out­

put, extraction from neural networks trained in regression domains was possible, 

which has been a neglected area of rule extraction.

8.3 Limitations and Future Directions

This section will briefly examine future research directions resulting from the 

work presented in this thesis.
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8.3.1 Comprehensibility Measures

Andrews et al.[4], as described in Chapter 1 proposed four dimensions with 

which to measure the quality of the rules extracted by rule extraction algo­

rithms: accuracy, fidelity, consistency, and comprehensibility. This thesis has 

concentrated on accuracy and fidelity. Comprehensibility was measured through 

tree size but this is acknowledged to be only one aspect of comprehensibility 

and further research is required to measure and improve the rule extraction 

algorithms’ performance in this area. Comprehensibility is difficult to measure 

and difficult to represent in a single number. Although heuristic measures such 

as tree size can give an indication to the likely comprehensibility of the model, 

the real test of comprehensibility remains how easily the user of the model can 

understand the knowledge represented by the model. This type of test is, of 

course, subjective. In Chapter 6 and Section 7.4 it was shown that the ExTree 

and ExMT algorithms were applicable to a wide range of real world problem 

domains. This testing shows the real-world applicability of the algorithms but 

does not show the algorithms in actual use on a current real-world problem 

where domain experts are eager to examine the resulting rules. The next stage, 

now the benchmark testing has been completed, would be to apply these al­

gorithms to current real-world problems. Applying the algorithms in this way 

would test how well the extracted model could be comprehended by a domain 

expert.

Chapters 5 and 6 showed how changing the leaf nodes to logistic models 

decreased the tree size. However, the effect on comprehensibility is hard to 

measure, as a logistic model is not as simple to understand as a single attribute 

split but is easier to comprehend than a large subtree. Again, real world testing 

on current real-world problems in collaboration with domain experts would 

enable decisions to be made about how much the comprehensibility was affected 

by the logistic model nodes.
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8.3.2 Instance Generation

The current modeling of data attributes is based on randomly sampling from 

empirical distributions for nominal attributes and from a PDF obtained us­

ing kernel density estimation for continuous attributes. The random sampling 

means the rules are not consistent between runs of the algorithm. Another 

problem is the relationships between the attributes are not taken into account. 

Although the random sampling approach is widely applicable and does not re­

quire domain knowledge to use, it fails to capture known dependencies among 

the attributes.

Dependent on the problem domain there may be better ways of creating the 

new instances. For example, in domains where input data is cheap to capture 

but the classification is expensive a large number of unlabelled data may exist. 

For the ’lie detector’ mentioned in Chapter 1 it is relatively easy to capture video 

of people talking and turn those clips into instances, but to label those instances 

requires prior knowledge of whether the person was being deceitful or not. If 

an algorithm could use this unlabelled data instead of randomly sampling from 

the input space this would ensure the new instances maintain any relationships 

between attributes. In other problem domains relationships between attributes 

are well-known and the ’new instance generator’ used in the extraction algo­

rithms could enforce these relationships. It is expected that by maintaining the 

attribute relationships the extracted rules would be of higher quality (accuracy 

and fidelity) and fewer new instances would be required because the instances 

would be focused on the relevant parts of the instance space.

8.3.3 Active Learning

In domains where there is neither an abundance of unlabelled data or known 

relationships between attributes it may be possible to use active learning[90] 

to guide the creation of new instances. Active learning refers to a learning 

system where the learner guides the selection of instances. An active learner 

selects the instance whose classification will reveal the most information. The
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game of twenty questions where an object or person is identified by asking no 

more than twenty ‘yes or no’ questions is an example of active learning. A 

random sample of 20 questions and answers about an object is not nearly as 

useful as 20 guided questions and answers. Active learning has been applied to 

neural network learning by Baum[7], but active learning, although not random, 

can still create instances which have no natural meaning. For example, in the 

work by Baum the problem was character recognition and the active learning 

algorithm created images which contained no recognisable characters. Active 

learning could provide an elegant solution to the creation of new instances 

but current results in this area are limited with Freund providing the most 

theoretical results[26].

8.3.4 Fuzzy Logic

A potential way that tree size could be decreased and comprehensibility in­

creased is by using fuzzy splits at the nodes. Fuzzy sets and fuzzy decision trees 

were briefly discussed in Chapter 3. Fuzzy trees, by relaxing the crisp decision 

boundaries, are more likely to represent the neural network using a smaller tree. 

If the fuzzy sets have meaningful linguistic terms (for example temp € {cold, 

cool, warm, hot}) then the comprehensibility of the tree will not be significantly 

degraded. Extracting fuzzy trees seems a logical next step and should lead to 

smaller, more comprehensible, trees. Combining decision trees with fuzzy trees 

has been previously examined[18][38]. However, creating optimal membership 

functions for the attributes remains problematic. It may be possible to use the 

sampling and querying approach of the neural network that has been success­

fully used in this thesis to augment the dataset to enhance the selection of the 

membership functions in a fuzzy decision tree.

8.3.5 Extraction from Recurrent Neural Networks

Previous research had mainly focused on feed-forward neural network classifi­

cation problems. A significant contribution of this thesis was the application
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of decision tree extraction to regression neural networks, which had been a ne­

glected area of research. Extraction from recurrent neural networks represents 

another neglected area of research. Recurrent neural networks are cyclic mean­

ing the output of a layer can be the input of a preceding layer. This enables the 

neural network to maintain state. This type of neural network is applicable to 

pattern recognition problems that are temporal, for example speech recognition. 

The Backpropagation-through-time[93] algorithm is a popular training method 

for such neural networks and has been applied to real world problems. The 

recurrent connections makes analysis of what they have leaxnt even more diffi­

cult than for feed-forward neural networks. A significant problem in extracting 

from recurrent neural networks would be finding a suitable form to represent 

the extracted knowledge. Temporal logics should be considered but do not fulfil 

the criterion of being easy to comprehend. There has been some research into 

creating temporal decision trees[41] which could provide a way of representing 

the knowledge of a recurrent neural network in an easy to understand form 

similar to that used in this thesis.

8.3.6 Computational Time

The extraction algorithms developed in this thesis take considerably longer than 

direct decision tree induction. There are two elements that contribute to this 

increase in computational time: training the neural network and creating the 

new instances. Neural Network training as an iterative technique can be very 

time consuming. How long a neural network will take to train is very difficult 

to predict because there are no theoretical guarantees that back-propagation 

will find a solution so training may need to be restarted. Early stopping tech­

niques such as stopping based on a validation set also complicate estimating 

the training time required by a neural network.

If the extraction algorithm is being used as a decision tree induction algo­

rithm then it is correct to include the neural network training time as part of 

the computational cost of creating the decision tree. However, the algorithms
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were developed under the assumption that the algorithm would be extracting 

rules from a previously existing trained neural network.

The second increase in computational time is the result of new instance 

creation. The modeling of the dataset by kernel density estimation and the 

labelling by the neural network increases the computational time at each node. 

Furthermore, because the new instances reveal more complex relationships, as 

seen for example in the monk’s datasets, this increases the number of nodes in 

the tree resulting in an increase in computational time that grows exponentially 

each time the tree size increases by a level.

Although the computational time of creating the tree is increased over C4.5, 

the computational time for using the resulting tree to make a decision is the 

same for trees of the same size. In many domains an increase in the compu­

tational time of producing a tree is worthwhile if it produces a more accurate 

classifier.

8.4 Final Comments

This thesis has proposed rule extraction algorithms for both classification and 

regression problems. Although extracting rules from classification based neural 

networks has been the subject of previous research, the algorithms presented 

in this thesis have extended that work by using new advances in decision tree 

induction. In contrast, rule extraction for regression problems is an area that 

has, so far, been neglected. The model tree extraction algorithms presented 

demonstrate it is possible to extend decision tree extraction to neural networks 

in regression domains and that it is beneficial.

The ’black-box’ problem is far from solved but the methods show the poten­

tial for decision tree extraction from neural networks. The methods achieved 

higher classification accuracy than the decision tree induction algorithms which 

alone illustrates the utility of training a neural network and then extracting a 

decision tree, even if the neural network itself is not of interest and all that is
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desired is the most accurate decision tree possible. The fidelity results showed 

that much of the knowledge was being extracted but the results show there is 

still room for improvement in rule extraction. Although there is work to be done 

hopefully the results presented in this thesis represent a step towards opening 

the ‘black box’ .
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Logistic Model Tree Extraction From 
Artificial Neural Networks

Darren Dancey, Zuhair A . Bandar, and David McLean

Abstract—Artificial neural networks (ANNs) are a powerful and 
widely used pattern recognition technique. However, they remain 
“ black boxes”  giving no explanation for the decisions they make. 
This paper presents a new algorithm for extracting a logistic model 
tree (LMT) from a neural network, which gives a symbolic rep­
resentation of the knowledge hidden within the ANN. Landwehr’s 
LMTs are based on standard decision trees, but the terminal nodes 
are replaced with logistic regression functions. This paper reports 
the results of an empirical evaluation that compares the new deci­
sion tree extraction algorithm with Quinlan’s C4.5 and ExTree. 
The evaluation used 12 standard benchmark datasets from the 
University of California, Irvine machine-learning repository. The 
results of this evaluation demonstrate that the new algorithm 
produces decision trees that have higher accuracy and higher 
fidelity than decision trees created by both C4.5 and ExTree.

Index Terms—Artificial intelligence, feedforward neural net­
works, multilayer perceptrons (MPLs), neural networks.

I. Introduction

A RTIFICIAL neural networks (ANNs) are universal ap­
proximators and, therefore, can approximate any Borel 

measurable function to an arbitrary accuracy [1], For classi­
fication, this means that neural networks can easily solve any 
practical classification problem [2] and have been successfully 
applied to a diverse range of problem domains. For example, 
recent applications have included problems from financial [3], 
engineering [4], and medical [5] domains.

However, despite their relative success, the further adoption 
o f neural networks in some areas has been impeded due to 
their inability to explain, in a comprehensible form, how they 
have made a decision. This lack o f transparency in the neural 
network’s reasoning has been termed the Black Box problem. 
Andrews et al. [6] observed that ANNs must obtain the capabil­
ity to explain their decisions in a human-comprehensible form  
before they can gain widespread user acceptance and to enhance 
their overall u tility  as learning and generalization tools.

Neural networks store their “ knowledge”  in a series of real­
valued weight matrices representing a combination o f nonlin­
ear transforms from an input space to an output space. Rule 
extraction attempts to translate this numerically stored knowl­
edge into a symbolic form that can be readily comprehended. 
The ability to extract symbolic knowledge has many potential 
advantages: the knowledge obtained from the neural network
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can lead to new insights into patterns and dependencies within 
the data; from symbolic knowledge, it is easier to see which 
features of the data are the most important; and the explanation 
of a decision is essential for many applications, such as safety- 
critical systems.

Andrews e t al. [6] and Tickle et al. [7], [8] summarize several 
proposed approaches to rule extraction. Many of the earlier 
approaches required specialized neural network architectures or 
training schemes. This lim ited their applicability; in particular, 
they cannot be applied to in situ neural networks. The other 
approach is to view the extraction process as a learning task. 
This approach does not examine the weight matrices directly 
but tries to approximate the neural network by learning its 
input-output mappings.

An example o f this second approach has been to extract 
decision trees from the neural network [9]—[11]. Decision trees 
[12], [13] are a graphical representation of a decision process. 
The combination o f symbolic information and graphical pre­
sentation make decision trees one o f the most comprehensible 
representations of pattern recognition knowledge. However, 
decision trees are a more lim ited form of classifier than neural 
networks [14]. This paper presents a new rule extraction method 
that extracts a logistic model tree (LMT) from a trained neural 
network. LMTs [15] are a recent addition to decision trees 
that replace the terminal nodes o f a decision tree with logistic 
regression functions. This has the advantage o f producing deci­
sion trees that are more comprehensible, have higher accuracy, 
and have higher fidelity with the neural network than previous 
decision tree extraction algorithms.

This paper is organized as follows. The next section recaps 
the pattern classification problem and some relevant techniques 
used to solve it. Section III overviews rule extraction and 
important previous rule extraction methods. Section IV  de­
scribes ExLMT, which is our new rule extraction method. In 
Section V, ExLMT is empirically evaluated on a number of 
standard benchmark datasets from the University of California, 
Irvine (UCI) machine-learning repository. Sections V I and V II 
provide the discussion and the conclusion, respectively.

II. Pattern Classification

The basic framework for classification [2] is that objects 
need to be classified as coining from a number o f classes 
C i , . . . ,  C k  ■ A process called feature extraction takes a number 
of measurements p  from the object. This produces a vector of 
features X  commonly called an instance. X ,  therefore, belongs 
to an instance space X  =  X x x X% x • • • x X p, where X , is 
either the set o f real numbers for continuous valued features

1083-4419/$25.00 © 2007 IEEE
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or a finite set for nominal valued features. The task is then to 
build a classifier c that, given an instance, X  — x , w ill classify 
it as belonging to one o f the K  classes, i.e.,

c : X - + {  1 , 2 , ( 1 )

To estimate c, a training set T  must be available that consists 
o f a series o f instances augmented with a known classification. 
These example instances with known classification can then be 
used to estimate the parameters in c.

Neural networks are one method of implementing such a 
classifier. ExLMT also makes use o f decision trees and logistic 
regression to implement classifiers, and these three methods 
w ill be briefly described next.

1) Neural Networks: The field o f neural networks consists 
of a large collection o f models and techniques origi­
nally inspired by biological nervous systems, such as 
the human brain [16], [17]. The basic building block 
of neural networks is the artificial neuron [18]. These 
artificial neurons accept a number o f weighted inputs then 
process these inputs to produce an output. It is the value 
of these weights that determine the function mapping of 
the neural network. Using the backpropagation algorithm 
[19], multiple layers o f perceptrons organized into a 
network are able to learn nonlinear mappings such as the 
pattern recognition task o f (1).

2) Decision Trees: Decision trees [12], [13] are one of 
the most widely used classifier models. They are di­
rected acyclic graphs consisting o f nodes and connections 
(edges) that illustrate decision rules. Each nonterminal 
node has a splitting test associated with it, which splits 
the data into mutually exclusive subsets. The terminal 
nodes called leaves represent a classification. This has the 
effect of partitioning the instance space X  into a series of 
disjoint regions R  separated by axis-parallel hyperplanes

Andrews e t  al. [6] classifies rule extraction algorithms along 
the following five dimensions:

1) expressive power;
2) translucency;
3) specialized training regimes;
4) quality o f the extracted rules;
5) algorithmic complexity.

The expressive power refers to the type of rules extracted from 
the neural network. Previous rule extraction techniques have 
extracted rules expressed in various form including Boolean 
logic [21], fuzzy logic [22], IF . . .  THEN .. .  rules [23], 
n-of-m  rules [24], and decision trees [9], [10].

The Translucency means the level of granularity with which 
the neural network is examined. Craven and Shavlik [9] divided 
these into decompositional techniques, which examined the 
individual weights, and pedagogical techniques, which treated 
the neural network as a black box and learns the concept 
represented by the neural network by using it as an oracle.

Many o f the rule extraction algorithms require the standard 
neural network training algorithms, such as backpropagation, to 
be modified. Although such techniques have been successful, 
they tend not to be portable across different neural network 
types. Andrews et al. [6] proposes four metrics for measuring 
the quality o f the rules extracted from the neural network: 
accuracy, fidelity, consistency, and comprehensibility. Accuracy 
measures the ability o f the rule set to correctly classify previ­
ously unseen instances from the problem domain, i.e.,

P ( c ( X )  =  C ) .  (4)

Fidelity is how well the extracted classifier (c) corresponds 
to the original neural network (nn). It can be stated as the 
probability

X  =  [ J  X r , X r n  X T' =  0, where X r ±  X r' . (2)
reR

3) Logistic Regression: Logistic regression [20] is a statis­
tical method used to predict posterior-class probabilities 
P ( C  =  k\X =  x )  for the K  classes. Logistic regression 
for n variables fits a logistic function o f the form

l + e 0o+^0iXi
(3)

to the class probabilities, where f t  are the parameters to 
be most commonly estimated using maximum-likelihood 
estimation.

III. Rule Extraction

Rule extraction from neural networks aims to reduce the 
complexity o f a neural network into a more easily understood 
symbolic form. These rules can then be analyzed for trustwor­
thiness for safety-critical systems or used to provide insights 
into the relationships found by the neural network.

P ( c ( X )  =  n n ( X ) ) .  (5)

Consistency, in this context, is whether the extracted rule set 
is the same under different training sessions o f the neural 
network. Comprehensibility is a measure o f the number o f rules 
produced by the extraction algorithm. The final dimension is 
algorithmic complexity, which attempts to provide a measure 
o f the efficiency o f the technique, considering such aspects as 
whether the algorithm scales exponentially with the number of 
hidden nodes or inputs.

A. Existing Extraction M ethods

The subset rule extraction method [23] is typical o f the 
decompositional approach, and similar methods have been pro­
posed by Saito and Nakano [25] and Fu [21]. The subset method 
extracts a series o f rules from each node in the network. A 
rule is created for each combination (or subset) o f inputs that 
could cause a node to activate. For example, given the node 
in Fig. 1, the following rules could be extracted: a  A b A c = >  
y , a A b A -id  = >  y , a A c A ->d = »  y , b A c A ->d = »  y , b A 
c A -id  = >  y . This particular implementation requires the
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Fig. 1. Neural node with four inputs and a threshold value o f  three.

ou tp u ts  o f  the n o d e s  to  b e  b in a ry  a n d , th e re fo re , ca n n o t  b e  
a p p lie d  to  p ree x is t in g  m u lt ila y e r  p e r ce p tro n s  (M L P s )  that n or ­
m a lly  h av e  n o d e s  w ith  rea l v a lu ed  ou tp u ts . M o r e o v e r , the 
n u m b e r  o f  ru les  in cre a se s  e x p o n e n t ia lly  w ith  the n u m b e r  o f  
n o d e s , m a k in g  th e a lg o r ith m  in tra cta b le  f o r  la rg e  n etw ork s . 
T h is  a p p ro a ch  w a s  e x te n d e d  b y  th e n-of-m  m e th o d , a g a in  b y  
T o w e ll  and  S h a v lik  [2 3 ] ,  A  n - o f - m  ru le  co n ta in s  a  set m  o f  
tests, o f  w h ic h  n  m u st b e  sa tis fie d  fo r  the ru le  to  b e  ev a lu a ted  as 
true. F o r  e x a m p le , th e n - o f - m  ru le  2 - o f - { r i , r 2 , r 3 }  is  e q u iv ­

a len t to  (n A V2) V (n A 7-3) V (r2 A 7-3). T h is  s ty le  o f  ru le 
is p a rticu la r ly  a p p rop r ia te  f o r  rep resen tin g  th e a ctiv a tion  o f  a 
n eura l n o d e . F o r  e x a m p le , the ru les  o f  F ig . 1 ca n  b e  rep resen ted  
as 3 - o f - { a ,  b, c, -> d }. H o w e v e r , f o r  a m u lt ip le -la y e re d  n e tw ork  
to  b e  rep resen ted  in  a  c o n c is e  n u m b e r  o f  n - o f - m  ru les  and  o v e r ­
c o m e  the e x p o n e n tia l g ro w th  p r o b le m  o f  th e su b set a lg or ith m , 
th e a n teced en ts  o f  the ru les  s h o u ld  b e  eq u iv a len t, i .e ., it d o e s  
n o t m atter w h ich  n  is  true. S tan d ard  b a c k p r o p a g a t io n  has n o  
p r e d is p o s it io n  to  fa v o r  su ch  an a rra n g em en t. T h e r e fo r e , e ith er 
th e neural n e tw o rk  n e e d s  to  b e  in it ia liz e d  u s in g  a p re e x is t in g  
ru le  set a n d /o r  tra ined  u s in g  a s p e c ia l tra in in g  a lg or ith m .

A lg o r ith m s  [2 6 ] ,  [2 7 ]  h a v e  b e e n  p r o p o s e d  w h ic h  extract 
fu z z y  ru le  sets [2 8 ]  f r o m  n eu ra l n e tw o rk s . T h e s e  a p p ro a ch e s  
u su a lly  req u ire  a  d o m a in  e x p e r t  to  la b e l th e resu ltin g  fu z z y  
sets  a n d /o r  req u ire  s p e c ia l iz e d  neural n e tw o rk  arch itectu res  
a n d  tra in in g  a lg o r ith m s . T h e s e  a p p r o a c h e s  h a v e  g e n e ra lly  b e e n  
a p p lie d  to  ru le  re fin e m e n t , w h e r e  a  p r e e x is t in g  set o f  fu z z y  
ru les  h a v e  th e ir  m e m b e r s h ip  fu n c t io n s  re fin e d  b y  the neural 
n e tw ork . Jang a n d  Su n  [2 9 ]  h a v e  n o te d  a  fu n c t io n a l e q u iv a le n ce  
b e tw e e n  rad ia l b a s is  fu n c t io n  n e tw o rk s  a n d  fu z z y  in fe r e n c e  
s y s te m s  u n d er  s o m e  c o n d it io n s . H o w e v e r , it h as b e e n  s h o w n  
that th e e q u iv a le n c e  c o n d it io n s  are  m o r e  res tr ictiv e  than w a s  

in itia lly  th ou g h t, re su ltin g  in  s p e c ia l tra in in g  a lg o r ith m s  aga in  
b e in g  req u ired  [3 0 ] ,

T rep a n  [3 1 ]  f o l lo w s  the p e d a g o g ic a l  a p p ro a ch  to  ru le  e x ­
traction . T rep a n  cre a te s  an  n - o f - m  d e c is io n  tree [3 2 ] ,  w h ic h , 
in  a d d ition  to  th e C 4 .5 -s t y le  sp littin g  ru le , ca n  m a k e  u se  o f  
an n - o f - m  sp littin g  ru le  at a n y  o f  th e n o d e s . T h e  u se  o f  n -  
o f - m  sp lits  ca n  fit certa in  c o n c e p t s  m o r e  n aturally  than C 4 .5 -  
s ty le  sp lits  at th e c o s t  o f  a ce rta in  a m o u n t  o f  co m p r e h e n s ib ility . 
A n o th e r  in terestin g  fea tu re  o f  T rep a n  is  its u se  o f  b est first tree 
e x p a n s io n  in con tra st to  the m o r e  u su a l d ep th -firs t e x p a n s io n . 
T h e  n ext n o d e  to  e x p a n d  is  the n o d e  that m a x im iz e s  the 
fu n c t io n

n* =  a r g m a x  ( r e a c h ( n )  (1  -  f i d e l i t y ^ ) ) )  (6 )
n

w h e re  rea ch  ( n )  is th e n u m b e r  o f  in sta n ces  that h av e  re a ch e d  
n o d e  n and  f id e l i t y (n )  is  the p e r ce n ta g e  o f  in sta n ces  at n o d e  n  
that the d e c is io n  tree  a n d  the neural n etw ork  are c la s s if ie d  as 
the sa m e  c la s s . T h is  h as th e e f fe c t  o f  co n ce n tra tin g  g ro w th  o f  
the tree  in  th e r e g io n  that in cre a se s  f id e lity  the m ost . H o w e v e r , 
a fter  th e tree  is  fu l ly  g r o w n  and p ru n ed , the d if fe r e n c e  b e tw e e n  
the tw o  m e th o d s  is n e g lig ib le . B u t, the real a d v a n ta g e  o f  th is 
a p p ro a ch  is th e a b ility  to  m o r e  p r e c is e ly  co n tro l the a c c u r a c y  
g ro w th  tr a d e o ff .  T o  d e c id e  w h ic h  attribute to  b a se  th e sp littin g  
test o n , T rep a n  u se s  in fo rm a tio n  g a in . T o  ex tra ct the “ k n o w l­
e d g e ”  f r o m  th e neural n e tw ork , T rep a n  u ses a s a m p lin g -a n d -  
q u e r y in g  a p p ro a ch . T h e  neural n e tw ork  is u sed  as an o r a c le , 
w h ic h  ca n  b e  q u e r ie d  f o r  the c la ss  a ssig n m en t o f  a  s a m p le d  
in sta n ce . T o  crea te  a  q u e r y  in sta n ce , T rep a n  m o d e ls  th e o r ig in a l 
dataset u s in g  an  e m p ir ic a l  d is tr ib u tion  fo r  n om in a l attributes 
and  k ern e l d e n s ity  e s tim a tion  [3 3 ]  f o r  the c o n t in u o u s  attributes. 
T h e  e m p ir ic a l d is tr ib u t io n  m ea n s  that th e n om in a l v a lu e s  are  
s a m p le d  w ith  a p r o b a b ility  b a se d  o n  their fr e q u e n c y  in the 
o r ig in a l da taset. F o r  th e  c o n t in u o u s  attributes, a  p r o b a b il ity -  
d en s ity  fu n c t io n  (P D F ) , u s in g  a k ern el d en s ity  es tim a te  w ith  
a  G a u ss ia n  k ern e l, is  sa m p le d .

E x T r e e  [1 0 ]  c re a te s  a  tree  u sin g  the m o r e  c o m p r e h e n s ib le  
C 4 .5 -s t y le  s p lit t in g  ru les . U n lik e  T rep a n , E x T r e e  u se s  a  s im p le  
d ep th -firs t tree  e x p a n s io n  s c h e m e , resu ltin g  in la rg e  trees  that 
o v e r fit  th e  data . A  s im ila r  m e th o d  to  that e m p lo y e d  in  Q u in la n ’ s 
C 4 .5  a lg o r ith m  is th en  u se d  to  p ru n e  the tree.

E x T r e e  u se s  a  s lig h t ly  m o d if ie d  v e rs io n  o f  in fo r m a tio n - 
g a in  ra tio , w h ic h  is  a  m o d if ic a t io n  to  in fo rm a tio n  g a in  that 
c o m p e n s a te s  f o r  m u lt iw a y  sp lits . E x T re e , lik e  T rep a n , s a m p le s  
f r o m  e m p ir ic a l d is tr ib u t io n s  f o r  n o m in a l attributes a n d  a k ern e l 
d en s ity  e s tim a te  o f  th e P D F  f o r  th e c o n t in u o u s  attributes.

A  fu rth er a d v a n ta g e  o f  the p e d a g o g ic a l  a p p ro a ch e s  is that 
th ey  ca n  b e  a p p lie d  to  a n y  “ b la c k -b o x ”  c la ss ifie r , su ch  as 
e n se m b le s  o f  n eu ra l n e tw o rk s  [3 4 ] ,

IV. E x L M T

T h is  s e c t io n  d e s c r ib e s  E x L M T , a n ew  m eth od  o f  e x tra c tin g  
an L M T  fr o m  a neura l n e tw o rk . C u rren t d e c is io n  tree e x tra c tio n  
m e th o d s  su ch  as  T re p a n  a n d  E x T r e e  h ave p r o d u c e d  re a s o n ­
a b le  resu lts  o n  m a n y  d a ta sets , bu t th ere  rem ain s a s ig n ific a n t  

g a p  b e tw e e n  th e  a c c u r a c y  o f  th e  n eura l n e tw o rk  a n d  th e  e x ­
tracted  d e c is i o n  tree. T h is  c le a r ly  in d ica tes  that m o r e  in fo r ­
m a tio n  re m a in s  to  b e  e x tra c te d . M o r e o v e r , o n  m a n y  d atasets , 
the e x tra c te d  d e c is i o n  trees  a n d  th e neural n e tw o rk  d is a g r e e  
o n  th e c la s s if ic a t io n  o n  a  s ig n ific a n t  n u m b er  o f  in sta n ces  
( lo w  fid e lity ) .

E x L M T  e x tra cts  a f o r m  o f  L M T  fr o m  th e n eu ra l n e tw ork . 
T h e  L M T  m e th o d  is a re ce n t co n tr ib u tio n  to  th e m a c h in e ­
le a rn in g  f ie ld  [1 5 ] ,  D e c is io n  trees  p r o d u c e d  b y  L M T  are s im ila r  

to  s tan dard  d e c is i o n  trees  but h a v e  th e term in al n o d e s  r e p la c e d  
b y  a  p o ly t o m o u s  lo g is t i c  r e g r e s s io n  m o d e l. T h e  re p la c e m e n t  
o f  the term in a l n o d e s  b y  lo g is t ic  m o d e ls  h as tw o  s ig n ific a n t 
e f fe c t s :  T h e  d e c is io n  tree  n o w  p r e d ic ts  c la s s  p r o b a b ilit ie s  in ­
stea d  o f  g iv in g  a s im p le  c la s s  a ss ig n m en t and the n o d e s  are 
lin ea r  c o m b in a t io n s  o f  a  su b se t o f  th e attributes r e su lt in g  in 
d e c is io n  h y p e rp la n e s  that are  n o t  a x is -p a ra lle l. F ig . 2  s h o w s  
h o w  a t w o  L M T  tree  m a y  fit a 2 -D  in sta n ces  s p a ce . F ig . 3 g iv e s
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Fig. 2. Decision hyperplanes o f  an LMT tree. Instances inside the gray box 
are o f  class 1. Instances outside the box are o f  class 2. The solid axis-parallel 
lines show the C4.5-style splitting rules, and the dotted lines show the nonaxis 
parallel splits achievable by using the logistic regression nodes.

an  o v e r v ie w  o f  the E x L M T  a lg o r ith m . E a ch  o f  th e c o m p o n e n t  

s tep s w ill n o w  b e  e x p a n d e d .

S tep  1) Acquire or tra in the neural network: b e fo r e  the 
E x L M T  ca n  b e  u se d  to  b u ild  a  d e c is io n  tree, a 
tra in ed  neural n e tw o rk  is  req u ired . T h e  E x T re e  
m e th o d , b e in g  a p e d a g o g ic a l  ty p e  o f  ru le  e x tra ction , 
is  in d e p e n d e n t o f  th e n eu ra l n e tw o r k  a rch itectu re  
and tra in in g  a lg or ith m .

S tep  2 )  Relabel the dateset: re ca ll that th e o r ig in a l tra in in g  
set T  c o n s is te d  o f  th e  in sta n ce  X  a n d  a k n o w n  c la s ­
s if ica tio n  C . A  n e w  re la b e le d  dataset K  is  crea ted  
re p la c in g  the k n o w n  c la s s if ic a t io n  w ith  th e m a p p in g  
o f  th e n eura l n e tw o r k  c ,  su ch  that

7 ^ = { X , c ( X ) } .  (7 )

S tep  3) Generate new data: E x L M T  u ses  C r a v e n ’ s 
s a m p lin g -a n d -q u e r y in g  a p p ro a ch  [31] to  e lic it  
k n o w le d g e  fr o m  the n eura l n e tw o rk . E x L M T  m o d e ls  
the o r ig in a l da taset th en  s a m p le s  th is  m o d e l  to  crea te  
n e w  in sta n ces . T h e s e  n e w  in sta n ces  are  th en  u sed  

to  q u e r y  the n eu ra l n e tw o rk , o b ta in in g  c la s s  la b e ls . 
T h is  has the e f fe c t  o f  e x p a n d in g  th e  o r ig in a l dataset. 
T o  m o d e l  th e n o m in a l a ttribu tes , an e m p ir ic a l d is ­
tr ib u tion  is u sed . T h is  m ea n s  that n om in a l v a lu es  
in  th e n e w  in sta n ces  are s a m p le d  a c c o r d in g  t o  th eir 
f r e q u e n c y  in  the o r ig in a l da taset. F o r  c o n t in u o u s  
attributes, a P D F  is  e s t im a ted  u s in g  k ern e l d en s ity  
es tim a tion  w ith  a G a u ss ia n  k ern el

w h e r e  m  is  th e n u m b e r  o f  o r ig in a l in sta n ces , u* 
is th e attribute v a lu e  fo r  the ith  e x a m p le s , an d  a 
is  the w id th  fo r  th e G a u ss ia n  k ern e l. A s  illu strated  
in  F ig . 4 , th e k ern e l d e n s ity  e s t im a tio n  ca n  b e  
th ou g h t o f  as c re a t in g  a  P D F  b y  s u m m in g  a  series  
o f  G a u ss ia n  fu n c t io n s  c e n te r e d  o n  the cu rren t data

Fig. 3. Outline o f  the ExLMT algorithm.

Fig. 4. Kemel density estimation using five Gaussian kernels.
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1) Start with weights ti\* =  1 /TV, i =  1 ,..., N, k =  1 ,..., J, Fk(x) =  0 
and pt(x) = l/K Vfc

2) Repeat for m = 1 ,2 ,..., M:
a) Repeat for k =  1 ,..., K:

i) Compute working responses and weights in the kth class

vik -  p*te)
** p*(it)(i -P k M )

W *  =  P k ( * i ) ( l  -  P k (* i ))

ii) Fit the fimction fmk{x) by a weighted least-squares regression of 
Zj* to Xi with weights in*

b) Set

U { x )  -  ^  (/-*(*)
Fk(x) *- Fk(x) + ink

c) P k ( x )  « -

3) Output Classifier
arg max ilt(z)

Fig. 5. LogitBoost: an adaptive Newton algorithm.

points with a standard deviation, or bandwidth, de­
termined by the size of the dataset. Based on some 
preliminary experiments, ExLMT uses a bandwidth 
of 1 /s/rn. The new instances’ attribute values are 
then sampled from this PDF. The new instances T* 
are then labeled by the neural network to produce a 
set o f instances to be added to the relabeled dataset 
7Z, such that

T ' =  71UT*. (9)
The next three steps create the LMT tree follow­

ing the procedure given by Landwehr [15], Nodes 
continue to be split while they contain at least ten 
instances or all the instances belong to the same 
class.

Step 4) Create in itia l logistic regression model: an initia l 
logistic regression model is built using all the data in 
T '. The logistic regression model is then fitted using 
the LogitBoost method [35], LogitBoost uses a en­
semble of functions Fk to predict classes 1 
using M  “ weak learners.”  Fig. 5 details the Logit­
Boost algorithm as originally given by Friedman.

K

Flc{%) — y  * fmk{z) (10)
m=l

Each o f the “weak learners”  f mk can be any algo­
rithm that fu lfils (1). When f mk are linear functions 
in x , then F mk is equivalent to the logistic model. 
The LogitBoost algorithm can then be seen as an 
iterative Newton method of fitting the logistic re­
gression function.

Step 5) Create candidate splits: when deciding which at­
tribute to split on, ExLMT considers two types of 
splitting rules. For discrete features, ExLMT creates 
a branch for each possible value of the feature. For 
real valued features, a binary split is made with two

outcomes X i  <  a  and > a . To determine the 
threshold value a, the set o f instances are sorted 
on the value o f feature X i . An ordered set o f m  
instances can be divided into two ordered subsets 
m  — 1 ways. ExLMT considers each of these m — 1 
ways to divide the data for each o f the real-valued 
features.

Step 6) Select best split: the previous step resulted in 
set o f z  candidate splitting tests, {Tx, T2, . . .  ,T r }; 
ExLMT uses an information-gain ratio [12], an in­
formation entropy-based method to choose among 
this candidate tests. The aim is to select the test, 
which gives the most information about the class of 
the instances. The information gained by an event 
occurring is inversely proportional to the probability 
o f the event occurring. The information o f an event 
E  occurring can be defined as log2( l/p (£ 1)) =  
— l ° g 2( p ( E ) )  bits. Thus, the average amount of 
information needed to classify a pattern in a set S  
can be calculated as

K
info(S) =  -  ̂ p ( C i)  log2 (p (C i)) bits (11)

i=l

with P ( C i )  being the probability of an instance in 
set S  being a member o f class Cj. The information 
gained by splitting the data according to test T  
can be found by calculating the average amount 
o f information needed to classify an instance be­
fore splitting the data and subtracting the amount 
o f information needed to classify an instance for 
each o f the subsets created by the split. Therefore, 
for a test T  which results in N  subsets, the sum 
of the average information of the N  subsets, S  =  
iX tS i. is

in fo r(S ) =  X I W  x info(S‘ ) bits- (12)
«=i 1*1

The total information gained by test T  can be calcu­
lated as

gain(T) =  info(S) -  in fo r(5 ). (13)

Information gain has a natural bias toward selecting 
the test, which splits the data into many groups. To 
overcome this bias, the information gain is divided 
by the information gained by arbitrarily splitting the 
set into the same number o f subsets as the test. The 
information gained by arbitrarily splitting a set 5  
into N  subsets is given by

split in fo(T ) =  X J  j | j i  x log2 . (14)
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TABLE I
Dataset Characteristics

Dataset Instances Features Continuous Classes
Balance Scale 625 4 4 3
Sonar 208 60 60 2
Diabetes 768 8 8 2
Heart 270 13 13 2
Hepatitis 155 19 6 2
Housing 506 13 13 2
Labor 57 16 8 2
Wine 178 13 0 3
Grub Damage 155 8 2 4
Zoo 101 16 0 7
Iris 150 4 0 3
Primary Tumor 339 16 0 21

validation was repeated ten times. A paired ¿-test was used to 
test whether the difference between methods on each dataset 
was significant. Values where P  <  0.05 were considered to be 
significant. To test whether the difference between the methods 
across the 12 datasets as a whole was significant, the Wilcoxon 
rank sign test was used. This test is similar to the well-known 
paired <-test but does not make the assumption that the data are 
normally distributed. The null hypothesis for this test is that the 
two samples were drawn from identical populations, or from 
symmetric populations with the same mean. It is calculated by 
finding the differences between each matched pair, then ranking 
these differences by magnitude. The ranks are then labeled as 
negative i f  the difference was negative. The test statistic is then 
found by taking the smaller o f the W + or W - ,  where

The gain ratio o f test T  can, thus, be calculated as 
gain(T)gain ratio(T) = split in fo(T ) ’ (15)

W +  =  ^ (P o s itiv e  Ranks) 

W_ =  ^(N ega tive  Ranks).

ExLMT then uses the best split T*, which is the split 
that maximizes the information-gain ratio

The W  statistic is then evaluated against standard statistical 
tables to determine i f  it is significant.

T* =  arg max (gainratio(T i)). (16)
t

Step 7) Refine logistic model: for each node resulting from 
the split created at the previous stage, the logistic 
regression function is refined based only on the 
subset o f T  that reached that node. This refinement 
means that, as the tree grows, the logistic regression 
models capture information local to the region o f X  
that the tree structure above has partitioned. Because 
o f the iterative and additive nature o f the LogitBoost 
algorithm, the refinement is simply running more 
iterations o f a copy o f the LogitBoost model of 
the node above but using only the subset of T  that 
reached this node.

V. E m p ir ic a l  E v a l u a t io n

ExLMT was evaluated using the criteria outlined in 
Section III on 12 standard benchmarking datasets from the 
well-known UCI machine-learning repository [36], The pri­
mary characteristics of the datasets are given in Table I.

The datasets represent a wide range o f classification prob­
lem domains. Because all the datasets, with the exception of 
balance-scale, are based on measured or observed data, they are 
likely to contain noise. Four o f the datasets have only continu­
ous features, and four datasets are purely nominal. The remain­
ing eight datasets have a mixture of continuous and nominal 
features. Five o f the datasets have more than two classes. The 
remaining seven datasets have a dichotomous class variable. 
Missing values in the datasets were replaced with the mean 
value of that feature. Other than this replacement, no other mod­
ifications to the datasets were made. A stratified tenfold cross- 
validation [37] was carried out comparing ExLMT, ExTree, and 
C4.5. To further improve the reliability o f the results, the cross­

A. Neural N etwork Parameters

To evaluate the rule extraction algorithms, neural networks 
with good predictive accuracy on the benchmark datasets were 
required. The neural networks were standard MLPs using back- 
propagation [19]. To avoid overfitting by the neural network, a 
momentum term was used [19]. The training algorithm min­
imized the summed squared error with a weight decay term 
added, again to reduce the chance o f overfitting. Given that 
the output o f neural networks is y  =  /(x ;w ). The training 
examples are a set {x p, t p}. The error, E  being minimized by 
backpropagation, is then

£  = £ ( i P - / ( x P ; w ) p ) 2 + $ - a ?)
p

$  is the decay term and is defined as the sum of the weights w

$  =  08)i
where the sum runs over all the weights and biases.

Table I I  details the parameters used for the backpropagation 
algorithm for each dataset. The best parameters were chosen 
from a small selection o f preliminary experiments, but further 
optimization of the parameters is likely to be possible. Epochs 
was the maximum number of iterations of the backpropagation 
algorithm. Validation size was the percentage of T  set aside to 
be used as a validation set. LR and MR are the learning and 
momentum rates, respectively. Decay refers to whether a decay 
term was used in the error function.

B. Results

Table III shows the average percentage accuracy o f ExLMT 
compared to the original neural network, C4.5 and ExTree.
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TABLE II
Neural Network  Parameters

Dataset Hidden
Layers

Epochs Val. Size LR MR Decay

Balance Scale 10,5 2500 0 0.1 0.9 No
Sonar 20 500 0 0.2 0.3 Yes
Diabetes 20 500 0 0.2 0.3 Yes
Heart 20 500 0 0.2 0.3 Yes
Hepatitis 20 500 0 0.2 0.3 Yes
Housing 2 2000 0 0.2 0.3 No
Labor 25 2500 25 0.1 0.9 Yes
Wine 25 2500 25 0.1 0.9 Yes
Grub Damage 25 2500 25 0.1 0.9 Yes
Zoo 10 2000 0 0.3 0.2 No
Iris 10 2000 0 0.3 0.2 No
Primary Tumor 10 2000 25 0.3 0.2 No

TABLE III
Classification A ccuracy : MLP, C4.5, and ExTree and ExLMT

Dataset MLP C4.5 ExTree ExLMT
Balance Scale 96.00 77.82 81.05 * 93.33 *
Sonar 79.31 73.61 73.69 77.99 *
Diabetes 77.61 73.15 76.03 * 77.1 ♦
Heart Statlog 83.46 77.02 82.74 * 83.44 *
Hepatitis 85.82 77.02 82.81 * 85.06 *
Housing 88.93 83.12 83.96 85.57 *
Labor 91.57 80.70 85.83 * 90.67 *
Wine 93.65 89.34 90.78 92.32 *
Grub Damage 46 35.96 42.39 * 44.03 *
Zoo 94.69 92.61 92.70 93.7 *
Iris 95.8 94.73 95.00 95.8 *
Primary Tumor 44.28 41.01 40.95 42.48 *

TABLE IV
Comparison of Classification A ccuracy : Number of T imes 

Algorithm  in Column Outperformed Algorithm  in Row

- MLP C4.5 ExTree ExLMT
MLP - 0 0 0
C4.5 12 - 11 12
ExTree 12 1 - 12
ExLMT 11 0 0 -

Table IV  shows how the different methods compare with 
each other. Both tree-extraction techniques, ExTree and 
ExLMT, which extracted trees with higher accuracy than the 
C4.5-induced decision tree. ExLMT managed to extract de­
cision trees that outperformed both C4.5 and ExTree trees 
on all 12 datasets. On one dataset (Iris), ExLMT extracted 
a decision tree with the same classification accuracy as the 
neural network. On seven o f the datasets, ExLMT was within 
a percentage point o f the accuracy o f the neural network. 
Wilcoxon ranks sign tests showed that improvement in ac­
curacy by ExLMT over C4.5 on the 12 datasets overall was 
significant (p  =  0.0005). A further Wilcoxon test showed that 
the improvement o f ExLMT over ExTree was also significant 
(p  =  0.0005).

Table V shows the average fidelity o f ExLMT with the neural 
network. The fidelity o f C4.5 with the neural network was 
also calculated to give a baseline fidelity measure. Fidelity was

TABLE V
Percentage Fidelity : C4.5, ExTree, and LMT. * ¿-Test Showed 

Improvement Against C4.5 Was Significant

Dataset C4.5 ExTree ExLMT
Balance Scale 77.48 80.84* 93.94 *
Sonar 73.44 77.28 * 84.53 *
Diabetes 83.91 92.38 * 98.28 *
Heart Statlog 85.81 92.26 * 98.44 *
Hepatitis 86.98 92.82 * 96.29 *
Housing 85.22 89.72 * 93.04 *
Labor 81.2 90.40 * 96.63 *
Wine 90.56 92.98 * 96.20 *
Grub Damage 53.14 79.25 * 88.18 *
Zoo 94.75 95.95 * 93.70
Iris 97.07 97.00 95.80
Primary Tumor 55.89 70.8 * 84.22 *

TABLE VI
Tree Size

Dataset C4.5 ExTree ExLMT
Balance Scale 77.82 193.4 18
Sonar 27.9 53.32 7.18
Diabetes 43.4 55.2 3.92
Heart Statlog 34.64 46.68 4.52
Hepatitis 20.12 22.5 2.18
Housing 38.04 93.08 35.76
Labor 7.92 15.7 1.81
Wine 17.35 28.09 3.37
Grub Damage 56.73 31.89 27.37
Zoo 15.7 36.48 1.68
Iris 8.28 22.16 5.56
Primary Tumor 89.9 136.19 21.24

calculated as the percentage o f the m  instances that a classifier, 
and the original neural network classified the same giving

m
fidelity (c i, ¿2) =  1/m  ̂  isEqual (c i( jj) , C2(Xi)) (19)

where

isEqual(a,b) =  { j ’ ^

The fidelity o f the ExLMT-extracted trees was compared to 
C4.5-induced trees and trees extracted using ExTree. Wilcoxon 
rank sign tests showed that the overall difference between 
ExLMT and both C4.5 and ExTree to be significant (p =  
0.001, p  =  0.002). f-tests showed that the difference on all but 
two datasets to be significant.

Table V I shows the average size o f the tree produced by the 
three decision-tree algorithms.

V I. D is c u ssio n

The results o f the empirical evaluation showed that ExLMT- 
extracted trees have higher accuracy and fidelity than the Ex- 
Tree. This clearly demonstrates the advantage o f the logistic 
models at the leaf nodes.

Interestingly, the fidelity on the Zoo and Iris datasets was 
lower with ExLMT than with the C4.5-produced decision tree.
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plasma <» 127: negative 
plasma > 127
| mass <» 29.9: negative 
j mass > 29.9
| | pressure <= 61: positive
j I pressure > 61
I j | plasma <« 157 
| | j | age <= 30
| I I I Preg <= 0
i l | j  | pressure <= 68: positive
j | | j  j pressure > 68
¡ i l l  I I  insu <- 135
| | j | I I I  mass 35.5: negative
| | I I I I I  mass > 35.5: positive
| | | j j |  insu > 135: negative
¡ i l l  pregnant > 0
¡ ¡ ¡ j  | pregnant <- 2: negative
| I j I I pregnant > 2
| j j | | |  pedigree <- 0.332: negative
| | j | | |  pedigree > 0.332
j j j j i l l  plasma <« 144: positive
| | j | I I I  plasma > 144: negative
j i j j age > 30: positive
j | j plasma > 157: positive

Fig. 6. C4.5-induced decision tree for the diabetes dataset.

However, the ExLMT-extracted tree, for these datasets, was 
significantly smaller than either the C4.5- or ExTree-produced 
trees. A possible explanation o f this is that the simple logistic 
regression was a more appropriate model than a tree structure 
for these simple datasets.

A drawback of the original ExTree algorithm was that it 
produced trees with a large number o f nodes, which reduces the 
comprehensibility o f the model. ExLMT’s logistic model leaves 
are a much more compact representation but are less compre­
hensible than the simple class assignment at the leaf node as 
used by C4.5 and ExTree. Although ExLMT produces trees 
with significantly less nodes than ExTree or even C4.5, whether 
these trees are more comprehensible overall is subjective.

I f  we consider two decision trees for the diabetes dataset, 
one induced using C4.5 (Fig. 6) and the other extracted from 
the ANN using ExLMT (Fig. 7). The C4.5 tree has 25 nodes, 
o f which 13 are leaf nodes. In contrast, the ExLMT tree had 
only seven nodes, o f which four were leaf nodes with logistic 
models. As shown previously in Table III, the ExLMT trees 
outperformed the C4.5 trees on this dataset. Both trees begin 
with a split on the plasma-glucose concentration level. This 
indicates that plasma is the most significant attribute. However, 
C4.5 and ExLMT differ in where the split point is made. 
C4.5 split at 127, which resulted in two subsets with 437 and 
255 instances. ExLMT split at 139, which resulted in two 
subsets with 515 and 177' instances. The second level of the 
trees differ significantly. C4.5 chose to label the larger less- 
than-127 subset as negative for diabetes. Then, preceded to fur­
ther partition the remaining instances with a 23-node subtree. 
Conversely, ExLMT did not split the higher than-139 group of 
instances instead assigning a single logistic model, ClassO =  
15.49 — 0.13pregnant — 0.08plasma +  0.04pressure +  
—0.02skin +  —0.13mass +  —2.49pedigree. This model had 
slightly higher accuracy and higher fidelity than the subtree 
and, in the opinion of the authors, is as comprehsible i f  not 
more so.

plasma <- 139.014612 
| pregnant <= 8.02428: Model 1
| pregnant > 8.02428
j | pedigree <« 0.464: Model 2
j j pedigree > 0.464: Model 3
plasma > 139.014612: Model 4
Model 1: Class 0 » 14.2 + -0.llpregnant +
-0.05plasma + 0.02pressure 

+ -0.14mass * + -3.54pedigree + -0.02age

Model 2: Class 0 - 23.52 + -0.83pregnant + 
-O.llplasma + 0.02pressure + -0.03skin + -O.lSmass + 
-6.76pedigree + 0.12age

Model 3: Class 0 - 6.24 + -1.52pregnant +
-0.04plasma + 0.24pressure +■ -0.17skin +
0.Olinsurance + -0.17mass + -4.31pedigree + 0.09age

Model 4: Class 0 - 15.49 + -0.13pregnant + 
-0.08plasma + 0.04pressure + -0.02skin +
-0.13mass + -2.49pedigree

Fig. 7. ExLMT-extracted tree for the diabetes dataset.

V II. Conclusion

This paper has demonstrated a new method ExLMT, which 
is for extracting a decision tree from a trained neural network. 
An empirical evaluation was carried out comparing this new 
method to ExTree, a method that extracts traditional C4.5-style 
decision trees, and the C4.5 method that induced trees directly 
from the dataset. The evaluation was based on 12 well-known 
datasets from the UCI machine-learning repository. The evalu­
ation showed that the extracted LMTs had significantly higher 
classification accuracy than either the corresponding C4.5 or 
ExTree trees. Additionally, on a majority of the datasets, the 
ExLMT-extracted trees had significantly higher fidelity with 
the neural networks than trees extracted using ExTree. ExLMT 
produced much smaller trees than either C4.5 or ExTree but, 
because o f the additional logistic model at the leave nodes, it is 
unclear i f  these are easier to comprehend.
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Abstract
Artificial Neural Networks (ANNs) have proved both a pop­
ular and powerful technique for pattern recognition tasks in 
a number of problem domains. However, the adoption of 
ANNs in many areas has been impeded, due to their inabil­
ity to explain how they came to their conclusion, or show in 
a readily comprehendible form the knowledge they have ob­
tained.
This paper presents an algorithm that addresses these prob­
lems. The algorithm achieves this by extracting a Decision 
Tree, a graphical and easily understood symbolic representa­
tion of a decision process, from a trained ANN. The algorithm 
does not make assumptions about the ANN’s architecture or 
training algorithm; therefore, it can be applied to any type of 
ANN. The algorithm is empirically compared with Quinlan’s 
C4.5 (a common Decision Tree induction algorithm) using 
standard benchmark datasets. For most of the datasets used 
in the evaluation, the new algorithm is shown to extract De­
cision Trees that have a higher predictive accuracy than those 
induced using C4.5 directly.

Introduction
T h e  tw o  m ain  a p p roa ch es  to m a ch in e  learn in g  h ave b een  A r ­
tific ia l N eural N e tw o r k s (A N N s )  and s y m b o lic  learn in g  a l­
g or ith m s . A N N s  ch a ra cte r is t ica lly  p r o d u c e  m o d e ls  that are 
ca p a b le  o f  g en era liz in g  to  p re v io u s ly  u nseen  data (p r e d ic ­
t io n ). H ow ev er , A N N ’s d o  not e x p lic it ly  revea l the rea son ­
in g  beh in d  their d e c is io n s . C o n v e rse ly , s y m b o li c  learn ing 
m eth od s , d o  not g en era lize  as w e ll as A N N s , but present 
the ex p la n a tion  beh in d  th eir rea son in g  ex p lic it ly . T h is  pa­
p e r  presents a m eth od  that ex tra cts  a s y m b o lic  rep resen ta ­
tion  fr o m  the k n o w le d g e  e m b e d d e d  w ith in  an A N N . T h e re ­
fo r e  c o m b in in g  the p red ic t iv e  a ccu ra cy  o f  an  A N N  w ith  the 
a d van tage  o f  an e x p lic it  ex p la n a tion  p r o v id e d  b y  a s y m b o lic  
m o d e l.

Artificial Neural Networks
T h e  fie ld  o f  A rtific ia l N eural N etw ork s  co n s is ts  o f  a large 
c o l le c t io n  o f  m o d e ls  an d  te ch n iq u es  o r ig in a lly  in sp ired  by 
b io lo g ic a l  n erv ou s  system s su ch  as the hum an brain . A N N s  
are ba sed  arou nd  a n u m ber o f  in d iv id u a l m o d e ls  o f  n euron s

Copyright ©  2004, American Association for Artificial Intelli­
gence (www.aaai.org). All rights reserved.
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(fig u re  1) a rra n g ed  in  a  n e tw ork . T h e s e  artificia l n eu ron s  a c ­
c e p t  a  n u m b er  o f  weighted in pu ts a n d  p r o ce ss  th ese  in pu ts 
to  p r o d u c e  an  ou tpu t. It is  th e v a lu e  o f  th ese  w e ig h ts  that 
d e te rm in e  th e fu n c t io n  o f  the A N N . U s in g  the b a ck p ro p - 
a g a tion  a lg o r ith m  (R u m e lh a rt , H in ton , &  W illia m s  1 9 8 6 ), 
M u ltila y e r  P e r ce p tro n s  (M L P s )  a re  a b le  to  learn  n on -lin ea r  
m a p p in g s . It is  th is  ty p e  o f  m o d e l that w ill b e  u sed  th rou g h ­
o u t th is paper. A  ty p ica l t w o  la y e r  M L P  is  s h o w n  in  fig u re  2 .

Decision Trees
D e c is io n  T r e e s  are  o n e  o f  th e m o s t  w id e ly  u sed  c la ss ifie r  
m o d e ls (M ic h ie ,  S p ieg e lh a lte r , &  T a y lo r  19 9 4). D e c is io n
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F igure 3: D e c is io n  fo r  Q u in la n ’ s P la y -N o t  P lay  E xam ple

T rees  are d irected  a c y c l i c  graphs c o n s is t in g  o f  n od es  and 
co n n e c t io n s  (e d g e s )  that illustrate d e c is io n  ru les. E ach  n on ­
term inal n od e  has a sp littin g  test a ssoc ia ted  w ith  it, w h ich  
sp lits  the data in to  m u tu ally  e x c lu s iv e  subsets. T h e  term inal 
n o d es  ca lle d  leaves represent a  c la ss ifica tion . A  D e c is io n  
T ree  fo r  the Q u in la n ’ s c la s s ic  ‘ p la y /n o t  p lay  ten n is ’ e x a m - 
p Ie (Q u in lan  1 9 8 6 ) is  sh ow n  in  figu re  3.

T o  m ake a d e c is io n  u sin g  a D e c is io n  T ree  start at the root 
n o d e  and fo l lo w  the tree d o w n  the bran ch es, a c c o r d in g  to 
the tests f o r  the in stan ce  b e in g  c la ss ifie d , until a  le a f  n od e  
rep resen ting  the cla ss  is  rea ch ed . A lth o u g h  D e c is io n  T rees 
are v ery  s im p le  to  understand, the m eth od  o f  crea tin g  a d e ­
c is io n  tree fr o m  ex a m p les  is  a n ontriv ia l task, in  fa ct, it has 
been  sh ow n  to  b e  N P  co m p le te (H y a fil &  R iv est 1976).

Rule Extraction From Multilayer Perceptrons
M u ltila yer P ercep tron ’ s (M L P ’ s ) greatest w ea k n ess  is  their 
la ck  o f  transparency. U n lik e  d e c is io n  trees, w h ich  sh ow  
their rea son in g  ex p lic it ly , M L P s  h ide  their k n o w le d g e  in  the 
c o m p le x  in terrelationsh ips o f  their w e ig h ts . T h is  m ean s that 
a lth ou g h  M L P s  o ften  p r o v id e  e x ce lle n t  m o d e ls  f o r  p r e d ic ­
tion , th ey  p ro v id e  n o  in sigh t in to  the re la tion sh ip s  b etw een  
input va lu es and ou tpu t va lu es that the m o d e l m ay have 
fo u n d (A n d re w s , D ied er ich , &  T ic k le  1 9 9 5 ). F or  e x a m p le , 
R o th w e ll(2 0 0 2 ) has crea ted  an A N N  that ca n  c la s s ify  a per­
son s  resp on ses as either d e c e p tiv e  o r  truthful, u sin g  c lu es  in 
th eir nonverba l b eh a v iou r  (e y e  m om en ts , sh ru gs e tc )  but a l­
th ou gh  the A N N  has g o o d  p red ictiv e  a ccu ra cy  it d o e s  not 
reveal the re lationsh ips it has fo u n d  b e tw een  n on verba l b e ­
h av iou r  and d ecep tion .

T h e  aim  o f  rule ex traction  is  to  red u ce  the c o m p le x ity  
o f  an A N N  in to  a  m o r e  ea s ily  u n d erstood  s y m b o lic  fo rm . 
T h e s e  ru les can  then b e  a n a ly zed  f o r  trustw orth iness fo r  
sa fe ty  critica l system s o r  used  to  p r o v id e  in sigh ts  in to  the 
rela tion sh ips fo u n d  b y  the A N N .

T h ere  have been  tw o  m ain  a p p roa ch es  to  extractin g  
ru les fro m  trained A N N s  d e c o m p o s it io n a l and p e d a g o g i-  
ca l(C ra v en  &  S h av lik  19 9 4a ). T h e  d e c o m p o s it io n a l ap ­
p roa ch  ex a m in es  the in d iv id u a l w e ig h ts  o f  the u n d er ly in g  
A N N . T h is  a p p roa ch  is ty p ified  b y  the K T  a lgorith m (F u

1995). T h e  se co n d  a p p roa ch  to  rule extraction  is the p ed ­
a g o g ica l a p p roa ch . T h is  a p p roa ch  is ty p ified  b y  the Trepan  
a lgor ith m (C ra v cn  &  S h av lik  19 9 4b ). T h is  app roach  treats 
the A N N  lik e  a ’ b la ck  b o x ’ , and u ses a s y m b o lic  learn ing 
a lgorith m  to  ’ learn ’ the ru les w h ich  represent the m ap pin g  
the A N N  has fou n d .

ExTrce
E xT ree  is an a lg or ilh m (fig u re  5 ) fo r  extracting D e c is io n  
T rees  fr o m  trained A N N s . E xT ree is an ex a m p le  o f  the 
p e d a g og ica l a p p roa ch  to ru le ex traction . E xT ree uses 
C ra v en ’s q u ery in g  and sa m p lin g  m eth od  (C raven  &  Sh avlik  
1995), but u n like C ra v e n ’s T repan , w h ich  uses M o fN  based  
sp lits (M u rlh y  1 9 9 5 ), E xT ree  uses standard splitting tests like  
C A R T  and C 4 .5 .

T h e  standard D e c is io n  T ree  in d u ction  a lgorithm s h ave the 
lim itation  that the se le c t io n  o f  the sp littin g  test is based  o n  
fe w e r  and fe w e r  in stances as the tree g row s  d ow n w ard s. 
T h e re fo re , the sp littin g  tests that are near the b ottom  o f  the 
tree are o fte n  p o o r ly  ch o se n  b eca u se  they arc based  o n  less 
data. E x T ree  a lleviates this p rob lem  b y  generating n ew  in ­
stances then q u ery in g  the A N N  (w h ic h  acts as an o ra c le )  
w ith  the n ew ly  created  in stances. E xT ree  can  then se lect a 
sp litting test based  o n  the n e w ly  created  instances as w ell as 
the orig in a l dataset.

E xT ree  requ ires a trained A N N  to  a ct as an o ra c le . In the 
next se ction  E xT ree  is a p p lied  to trained M L P s  but E x T rec 
c o u ld  b e  as ea s ily  a p p lied  to  o th er A N N  types such  as trained 
R adial B asis  F u n ction  n etw ork s  o r  even  oth er pattern r e c o g ­
n ition  tech n iq u es  w h ich  are op a q u e . E x T rec  d o e s  not require 
the A N N  to  use a sp ec ia l train ing a lgorith m  or arch itecture 
o n ly  that it m ap s the input sp a ce  to  1 o f  K  classes . O n c e  a 
trained A N N  is ava ilab le  E x T rec  p r o ce e d s  in a sim ilar m an ­
ner to D e c is io n  T ree  in d u ction  a lgorith m s recu rsive ly  sp lit­
ting the tree b y  fin d in g  the best feature to split on .

Split Types
E xT ree co n s id e rs  tw o  ty pes o f  tests: f o r  d iscrete  features E x ­
T rec  creates a  b ra n ch  f o r  ea ch  p o ss ib le  value o f  the feature, 
f o r  con tin u ou s  n u m eric  features  a b inary split is m ad e w ith  
tw o  o u tc o m e s  A  <  Z  and A > Z. T h e  threshold  value Z  is 
determ in ed  b y  first sortin g  the set o f  in stances on  the va lu e 
o f  feature A. F or a set w ith  m u n iqu e  values fo r  feature A 
there w ill b e  m — 1 p o s s ib le  sp lit p o in ts  that co u ld  parti­
tion  the set in to  tw o . E x T ree  c h o o s e s  a split p o in t h a lfw a y  
b etw een  the b ou n d in g  va lu es.

Split Selection Measure
T o  d eterm in e  w h ich  o n e  o f  the p o ss ib le  splits to  u se, E x - 
T ree  uses a m o d ifica tio n  o f  In form a tion  G a in . In form ation  
G a in  has a b ias  tow a rd s  se le c t in g  tests w ith  m any o u tco m e s . 
Q u in la n (1 9 9 9 ) p r o p o s e d  a m o d ifica tio n  to  In form ation  G ain  
g iv in g  In form a tion  G a in  R a tio . G a in  R a tio  is determ in ed  
b y  d iv id in g  the In fo rm a tion  G a in  b y  the In form a tion  ga in ed  
s o le ly  b y  sp littin g  the data in to  the n u m ber o f  o u tco m e s  re ­
sulting fr o m  the test. T h e  in fo rm a tion  ga in ed  b y  arbitrarily
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F igu re 4 : A  D e c is io n  T ree  d em on stra tin g  a con stra in t

Extree( dataset S , constraints Const ) 
BEGIN
Newlnstances :=

Create N  new instances constrained 
by Const;
FOR each instance in Newlnstances 

Label instance using ANN 
S := S + Newlnstances;
IF all S belongs to Ck THEN 

label node as leaf Ck  
9 RETURN
ELSE

Find Best Split S *
Split the S into subsets Si..S„according 

to S*
FOR each subsetSj 
BEGIN

IF the number of instances in 
subset is 0

THEN mark node as dominating class 
of parent
ELSE IF node is a mixture of classes

Create new Constraint Consti from Const, 
ExTree (oracle, Si,  Constj )

END

F igu re  5 : E x T ree  A lg o r ith m

sp littin g  a  set S  in to  n su b sets  is  g iv e n  b y

sp lit i n f o ( X )  =  ] § !  x  l ° g 2 • 0 )

T h e  ga in  ratio o f  test X  ca n  thus b e  ca lcu la ted  as 

. / „ v  g a in ( X )
ga ,n  m w (X )  =  s p | | | in fo (x ) . (2 )

Oracle Querying

w h ich  con ta in  n o ise  this w ill lead  to  overfittin g . E x T ree  uses 
a fo r m  o f  p ost-p ru n in g  to  crea te  sm a ller  trees that sh ou ld  
g en era lize  better and b e  m o r e  co m p re h e n d ib le . B e fo re  train­
in g , 3 3 %  o f  the train in g data is se t-a s id e  as a va lid ation  
set. E x T ree  uses the pru n in g  m eth od  o f  subtree rep la ce ­
m ent. Starting at th e lea v es  and w o rk in g  ba ck  tow ard s the 
roo t, ea ch  su btree  is tested  u sin g  the va lid ation  set to  d e ter­
m in e  w h eth er  the rep la cem en t w o u ld  be b en e fic ia l. I f  the 
tree w ith  the rep lacem en t has a lo w e r  error then the subtree  
is rep laced .

A s  p r e v io u s ly  stated the ad va n ta ge  o f  p e d a g o g ic a l a p ­
p roa ch es  su ch  as E x T ree  is that n ew  in sta n ces  ca n  b e  created  
a n d  c la ss ifie d  by  the A N N . E x T ree  is a b le  to  crea te  these 
n e w  in stan ces  b y  m ain ta in in g  a  set o f  con stra in ts  w h ich  
f lo w s  d o w n  the tree w ith  the tra in in g  in stan ces . T h e s e  c o n ­
straints s p e c ify  w h at co n d it io n s  an in stan ce  m ust have satis­
fied  to  h ave reach ed  a n o d e  as d e te rm in ed  b y  the sp littin g  
tests a b o v e . F or ex a m p le , n ew  in stan ces  crea ted  at n od e  
1 in  figu re  4  m ust sa tis fy  the con stra in ts : A ttl  <  5 0  and 
Att2 <  15. G iv en  these con stra in ts , n ew  in stan ces  ca n  c r e ­
ated  b y  sa m p lin g  lin ea rly  in the area  o f  input sp a ce  d e lim ­
ited  b y  the con stra in ts . C u rren tly  E x T ree  m a k es  an  extra  
100  extra  in stan ces  at e v e r  sp lit p o in t but id ea lly  the n u m ­
b er  o f  extra in stances crea ted  w o u ld  be ad ju sted  to  su ite the 
dataset.

Pruning
E x T ree  o n ly  s top s  g ro w in g  the tree  w h en  the set o f  in stances 
rea ch in g  a n od e  all b e lo n g  to  the sa m e  c la s s  o r  the in stances 
ca n  not be split any further. F o r  the m a jo r ity  o f  datasets

Empirical Evaluation of Extrcc
E x T ree  w a s  eva lu ated  u sin g  b en ch m a rk  m a ch in e  learn in g  
datasets fr o m  the w e ll k n ow n  U C I m a ch in e  learn ing re p o s i-  
to ry (B la k e  &  M e rz  1 9 9 8 ). T h e  p red ict iv e  p er form a n ce  o f  a 
trained M L P s  and C 4 .5  in d u ced  D e c is io n  T rees  w ere  c o m ­
pared o n  n u m ber o f  datasets. N in e  datasets fr o m  th ose  
w h ich  the M L P  o u tp e r fo rm e d  the C 4 .5  D e c is io n  T ree  w e re  
ra n d om ly  c h o se n  to  b e  u sed  in  this eva lu ation . T h e  n u m ­
ber o f  input featu res  and n u m b er  o f  c la s s e s  f o r  ea ch  dataset 
is g iv en  in tab le  1. T h e  B a la n c e  s ca le  dataset is an artifi­
c ia l dataset o r ig in a lly  gen era ted  to  m o d e l p s y c h o lo g ic a l e x ­
per im en ts , all the o th ers  a re  re a l-w o r ld  datasets o r ig in a lly  
c o l le c t e d  in their re sp e ct iv e  fie ld s  and then d on a ted  to  the 
U C I m a ch in e  lea rn in g  rep ository . T h e  H epatitis, D ia b etes , 
H ou s in g  an d  H eart datasets c o n s is t  o f  o n ly  n u m eric  features. 
T h e  V ote  dataset co n s is ts  o f  p u re ly  d iscre te  data. T h e  L a b o r  
an d  C o l i c  datasets h av e  a  m ix tu re  o f  n u m eric  an d  d iscre te  
features. T h e  H ou s in g  dataset in its o r ig in a l fo rm  has a c o n ­
tinu ous ou tpu t v a lu e , but f o r  th ese  ex p erim en ts  it has b een



Dataset num of features num of classes
Balance-scale 4 3
Colic 8 2
Diabetes 24 2
Eucalyptus 19 5
Heart-statlog 13 2
Hepatitis 20 2
Housing 14 2
Labor 16 2
Vote 17 2

Table 1: Number of features and classes for datasets

transformed into a two class discrete problem of predicting 
whether the output value is above $20000.

To measure the performance of the algorithm, two stan­
dard statistical techniques were used: Stratified ten fold 
cross-validation(Stone 1974) was used to obtain a reliable 
measure of the predictive accuracy of the algorithm on the 
datasets and a Wilcoxon(Wilcoxon 1945) rank sign test was 
used to test whether the difference in accuracy between Ex- 
Tree and C4.5 was statistically significant. In all the ex­
periments the same ANN topology was used: a two-layer 
MLP, with five hidden nodes. A ll training was done using 
gradient descent with momentum to minimize a cross en­
tropy (Van Ooyen &  Nienhuis 1992) error function. The 
hidden nodes used the bipolar activation function. The 
nodes in the output layer used the softmax activation func­
tion1. Learning rate and momentum were set at 0.01 and 
0.9 respectively. Performance of the ANNs could possi­
bly be improved by optimizing the learning rate, momen­
tum and architecture of each ANN to each of the individual 
datasets but because the purpose of this paper is to illus­
trate the validity of the ExTree approach to rule extraction 
this has not been done. To foster generalization, 33% of 
the training set was set aside to be used as an early stop­
ping validation set. The input features were normalized to 
have a mean of 0, and a standard deviation of 1 for the 
ANN as is normal for MLP training(Demuth &  Beale 2002; 
Haykin 1999). For purposes of comparison, predictive clas­
sification accuracy results were obtained for these datasets 
using an implementation of Quinlan’s C4.5 algorithm* 2. The 
C4.5 implementation used the same validation set based 
pruning technique as ExTree to ensure that any differences 
in predictive accuracy were not due to the pruning techique 
used.

Table 2 shows the results obtained using 10-fold cross- 
validation. As expected the results confirm that ANNs do 
outperform C4.5. C4.5 does not make maximum use of 
the information present in the datasets. ExTree performed 
slightly better on average than C4.5 did. ExTree produced

'The combination of softmax activation functions and a cross 
entropy error function has the advantage of allowing a probabilistic 
interpretation of the ANNs output(Ripley 1996)(Bishop 1995),

2It should be noted that this was not the ’official’ C4.5 released
by Quinlan but a C++ work-a-like implementation which shares 
much of the codebase of the ExTree implementation to ensure a 
fair comparison.

DataSet Neural(CE) C4.52 ExTree 100
Balance-scale 89.60 77.92 78.60
Colic 82.61 81.52 81.79
Diabetes 75.91 72.53 76.04
Eucalyptus 62.09 60.60 57.20
Heart-statlog 83.33 71.11 78.15
Hepatitis 83.87 70.32 80.65
Housing 87.55 82.41 85.18
Labor 90.35 83.33 85.96
Vote 96.09 93.79 95.63
Mean 84.18 77.69 79.80

Table 2: Percentage of Instances Classified Correctly

more accurate models on 8 of the 9 datasets. A Wilcoxon 
rank sum test showed that the difference between the C4.5 
and Extree was significant (p <  0.01). ExTree appeared to 
do particularly well on numerically dominated datasets with 
the largest improvement over C4.5 made on the Heart and 
Hepatitis datasets which consist o f purely numeric features. 
A likely explanation for this improvement is that if the re­
gion of X  where the optimal splitting point lies is sparsely 
represented in the dataset then C4.5 w ill be unlikely to find 
it, whereas ExTree w ill have sampled extra points in the re­
gion and so w ill be able to produce a more accurate estimate 
of the optimal splitting point. There are still large differ­
ences between many of results obtained by the ANN and 
ExTree which suggests that there is still much knowledge to 
be extracted. The ANN outperformed both ExTree and C4.5 
by around 10% on the Balance scale dataset. This is almost 
certainly due to Decision Trees not being able to represent 
the mapping required by the balance scale dataset3 This in­
dicates that there w ill be ANNs that ExTree w ill be unable to 
extract sufficiently comprehensible rules from because De­
cision Trees are simply not powerful enough to represent the 
function that the ANN has learnt.

Conclusion
A method for extracting Decision Trees from trained A r­
tificial Neural Networks regardless of the ANNs architec­
ture and independent o f its learning algorithm has been pre­
sented. It was found that the trees produced had better pre­
dictive accuracy than trees produced using the C4.5 based 
learning algorithm for eight of the nine datasets. The results 
obtained using the ExTree algorithm indicate that querying 
and sampling the ANN to induce a C4.5 like decision tree 
is a workable approach for a wide range of problem do­
mains. The results showed that there were still large d if­
ferences between the predictive accuracy of the underlying 
ANN and ExTree on some datasets. This suggests there is 
further knowledge to be extracted from the ANN. An obvi­
ous next step to achieving this would be to modify the num­
ber of new instances generated at the nodes (currently 100).

3Because balance scale is an artificial dataset the concept func­
tion is actually known: (Featurel x Feature2) is equal, greater than 
or less than (Feature2 x Feature3)?



Preliminary experiments using an increased number of gen­
erated instances on a subset of the datasets used in this paper 
have indicated an improvement in predictive accuracy.

The results report in the last section used ANNs had not 
been optimized for the individual datasets. Optimizing the 
ANN topology would most likely increase the accuracy of 
the ANN which would in turn increase the accuracy of the 
Decision Tree extracted by ExTree.
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