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ABSTRACT 

This investigation is concerned with the application of complex quantitative analysis to 
remotely sensed data for mapping soils. The major aim of this thesis is to examine, by 
means of illustrative examples, the utility of complex image metrics in the detection, 
differentiation, and partitioning of satellite images of soil landscapes. Satellite images 
have been widely used for soil mapping. In order to realise the maximum potential of 
satellite imagery, improvements are needed both in visual presentation of such images, 
and in their automatic classification, in order to reveal the complex properties of soil 
landscape. 

A Landsat TM image of the Al-Ahsa area of Saudi Arabia was used in the investigation. 
It presents an ideal region for remote sensing studies due to the absence of vegetation 
cover and the existence of different type of landforms in a region of low topography. 
Three techniques for modelling complex elements of images were used and evaluated� 
Fast Fourier Transform (FFT), Artificial Neural Network Analysis (ANN), Fractal and 
Multifractal Analysis. 

The FFT technique developed in this thesis isolates spatial frequency components in 
specific wavebands. The inverse FFT images are enhanced to (i) display optimised 
zoning of the image, and (ii) to display specific features. This technique partitions 
images into major zones that are different zones from the standard soil maps. The ANN 
technique developed is a non-linear measure of image texture. It shows difference 
within an image. The texture model is trained on areas selected on the basis of the 
existing soil map. Substitution analysis of training areas allows an assessment of image 
zones and boundaries. The texture image is displayed by linear contrast stretch. 
Zonation does not correspond with published maps or with FFT zonation. The fractal 
method is based on the local fractal dimension that is used as a texture measure based 
on a moving pre-set size filter over the entire image. The resulting images do not give 
zones but shows clear patterns of complexity such as spatial transitions. It is possible to 
derive areas of similar patterns of transition in complexity. 

There are implications of these results for soil mapping at the theoretical and practical 
levels. The implications of the theoretical level are about the existences of soil units 
defined following the classical approach. In the practical level, the classical approach 
would be abandoned. There is at present nowhere near the same support of the ideas to 
complement the traditional mapping approach and raise awareness that soils are 
inherently complex. The study has important implications for classical theory and 
practice of soil mapping. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

This thesis is concerned with the problem of mapping the complex properties of soil. 

That is not the complexity of patterns of soil properties but the intrinsic property of 

complexity itself. In contrast with almost all mapping studies of soil this thesis address 

the problem of mapping metrics of complexity rather than complex patterns of simple 

metrics. It avoids, therefore, the simplifying assumptions of identifying soil units, the 

first level of application of any traditional metric system. In this thesis soil units are 

used only as a comparison of metrics of complexity with conventional mapping 

procedures. The significance of this is first, it allows a test of conventional mapping 

methods. But, secondly, it provides a more objective means of testing what field 

scientists have established, the existence of real units in a very complex world. 

The problem of mapping complexity is central to the whole problem of soil resource 

mapping. In this, there are two issues, of complexity and of adequately mapping large 

areas. These problems are related of course but not totally. Soils are intrinsically and 

extremely complex even at microscopic scale and this complexity is apparent at all 

small scales. For mapping, however, the usefulness of the exercise is only at scales, 
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which involve large areas. Soil resource mapping is a regional issue. At such scales 

complexity is inherent if only because the problem scale is so such smaller than the 

mapping scale. Soils are mapped in the field at 1: 5000 to 1: 10000 scales or by remote 

sensing at 1 :5000 to 1: 25000, but they are interpreted and the subject of planning at the 

1: 50,000 to 1: 1,000,000 scale. Complexity is the norm in this situation. 

The problems of studying soil resources are adequately mapping large areas and 

characterising and displaying complex phenomena. Such study is made possible only 

because of the availability of remotely sensed digital images of the earth's surface. 

Although there are a number of field studies which have dealt with soil complexity, 

these are, if only because of cost of sampling and analysis, of limited extent (Webster 

and Oliver, 1990). They range from studies of individual fields or problems of the order 

of 100 m to studies of soil properties over centimetres. In all such studies soils are 

sampled at discrete locations or soil properties interpolated. Only images provide 

empirically derived continuous measures of soil properties, which allow us properly to 

study complexity. 

The application of remotely sensed data in the field of soil cartography began in the 

thirties with the utilisation of low-level aerial photography. Aerial photography has been 

used as useful supplement to field survey for delineating soil boundaries. The 

methodology developed during World War II and continues to be developed today using 

satellite images (Mather, 1987; Townshend, 1981; Brady and Weil, 1999). The early 
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applications of Landsat data were based on the interpretation of colour and grey tone 

differences between terrain features and were limited mainly to small scale mapping of 

large geographical areas. Such interpretations were confirmed by field checking because 

soil characteristics can only be substantiated in the field (Mulders, 1987; White, 1977). 

Landsat satellite data are routinely available as single images covering over 30,000 

square kilometres. Data is of reflectance of solar radiation in up to six visible and 

infrared wavebands at 30-meter resolution. The relations between Landsat reflectance 

measures and soil properties are well established (Mulders, 1987; Barret and Curtis, 

1990). Satellite remote sensing is now widely used in conjunction with field survey and 

classical soil series modelling for compiling soil maps (Burrough, 1986; Mather, 1987). 

1.2 Classical approach of Soil Classification and mapping 

The soil is at the interface between the atmosphere and the lithosphere, which is the 

mantle of rocks making up the crust of the earth (White, 1987). Because of complexity 

of soil constituents and of the physical, chemical, and biological forces to which it is 

exposed, there is little merit in attempting to give a particular definition of soil (Rowell, 

1994; White, 1987; Wild, 1993). What is clear is that there is an extraordinary range of 

soil types in the landscape. This due to the great diversity of, 1) parent material, 2) 

climate, 3) vegetation, 4) organisms and topography, and 5) time (Brady and Weil 1999; 

White 1987). 
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The classical approach to soil mapping 1s to apply a predetermined system of 

classification to an area. Such systems are developed on an empirical base to provide a 

rational and complete expression of the relation of soil to soil forming factors. In 

general the process of classification can be described (White, 1987) as 1) identification 

of the full range of fluctuation in the population, 2) creation of classes within the 

population according to similarity between individuals, 3) and prediction of the likely 

adaptation of a confused individual to a class. 

The purpose of soil classification, like any other classification, is to group soils with 

similar properties so that the name of the group is useful in transporting information 

about members. Although the members may differ in other respects, the soil group 

should give information that applies to all members of the same group (Brady and Weil 

1999; Rowell, 1994; White, 1987; Wild, 1993), and distinguishes them from members 

of other groups. White (1987) considers that soil classification is more difficult and 

contentious than the classification of other natural populations, because of the lack of 

distinguishable heredity characteristics of individuals within one generation that are 

transmitted from one generation to another. 

Many soil classification systems have been developed. Each has aimed to develop its 

own system in order to assess specific soil resources, but for international understanding 

more general classification systems are required. The two commonly used soil 

classification systems have been recommended by F AO (F AO/UNESCO Soil Map of 
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the World) and USDA (US Department of Agriculture). In addition, there are national 

classification systems such as the Soil classification for England and Wales, Canadian 

Soil classification, and Australian Soil Classification. The discussion of these systems is 

beyond the scope of this research. 

Soil survey primarily involves collecting information about soils in the field. This 

information will usually be complemented by laboratory measurements on samples 

from the field. The effort put into survey and the methods used depend on the human 

and financial resources available, the purpose of the survey, and the limitation of any 

classes to be created. 

The output map of soil survey may be a classification, and a map showing the 

distribution of different soil classes at a scale consistent with sampling on the ground 

(Rowell, 1994; White, 1987). The information needs for soil survey depend on its 

declared approaches, for which they generally viewed as much wider than simply the 

mapping of soil units (Townshend, 1981; Courtney and Trudgill, 1984). 

Reliability of soil information is a critical factor for developing robust and coherent 

analysis of soil mapping systems and evaluating landscape and land-cover more 

efficiently. In addition, an accurate soil map is one of the key data layers in integrating 

soil data with remote sensing and GIS data (Adams et al., 1995; Brady and Weil, 1999; 

Burgess and Webster, 1980). In using such technologies, soil properties have to be 
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inferred from aerial photography and satellite data. Although these techniques provide 

a way to extrapolate from ground-based observations; the conventional methods are not 

substituted. On the other hand, the available soil map derived by conventional soil 

survey may not provide the desired accuracy for several reasons, one of which is the 

subjectivity of the mapping methods (Burrough, 1989; Campbell, 1996; Brady and 

Weil, 1999). 

There are mainly two basic approaches to soil remote sensing. One, following the 

classical approach, is to produce a high quality image that can be used by soil scientists 

to make important decision about the available soil types, their distribution and 

boundaries. Since soil has a complex nature, it is often not possible to assign soil to 

predefined classes. Therefore, the operator skill of image analysis together with 

deduction plays an important role in image interpretation. Most remote sensing 

techniques are capable of detecting superficial phenomena, and offer a synoptic view of 

the landscape. However, in the study of soils, which are three-dimensional natural 

bodies, fieldwork is always a necessary complement to check the allocation of units and 

designation of boundaries. 

The second approach is the structural approach, which is described in the following 

section. 
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1.3 Structural approach to soil classification and mapping 

In the sixties the application of remote sensing to soil mapping received a new stimulus 

with development of a structural approach to soil cartography (Burrough, 1989; Brady 

and Weil, 1999; Fisher, 1987). With this approach, the object of soil cartography is not 

to map the distribution of definite, predefined classification groups of soil types, but to 

map groups derived from measurement of soil parameters in geographical space with 

their heterogeneity and structure (Burrough, 1989; Odeh et al., 1992; Townshend, 

1981 ). Combinations of soil components with detailed characteristics of point measures 

and their pattern and structure are used to characterise soil types. In addition, soil 

boundaries and soil map units are not necessarily discrete and homogeneous but can be 

regarded as continuous and heterogeneous (Fryberger et al., 1983; Fryberger et al., 

1984; Odeh et al., 1992). Units of such maps are characterised not by the dominant soil 

but by combinations of soil properties with details of the content, complexity, genesis 

and relative area of each component. For mapping soil cover types and compilation of 

such soil maps remote sensing is ideal. 

In the structural approach mathematical and statistical algorithms are used for dividing 

the image into areas of different spectral responses, which are assumed to be related to 

soil properties. There is potential for extending this approach, which is based on the 

development in mathematical and statistical techniques for analysing and modelling 

large complex data sets. Soil phenomena have been modelled using geostatisical 

(kriging) methods, artificial neural net models, and some limited work has been 
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undertaken on fractal as well as multifractal properties and structures. Advanced 

geostatistcal methods involving analysis of the semivariogram and kriging have been 

applied to soils with considerable success (Burrough, 1989; Webster and Oliver, 1990; 

Odeh et al., 1992) but only over limited areas. As suggested by several researchers, the 

utility of both kriging and fuzzy k-means are optimums for soil mapping. For instance, 

the kriging method can be utilised in order to create a detailed spectral soil map beyond 

the limitation of sizes of pixels by interpolating unsampled locations. Fuzzy k-means 

clustering analysis can then be used for classifying the final kriged map (Burrough, 

1997). In the fractal method, Zeng et al. ( 1996) demonstrated considerable potential for 

understanding soil behaviour by quantifying soil structure using and computing fractal 

parameters of soil density, and the utility of fractal lacunarity together with fractal 

dimension for quantifying small scale soil structure over data generated with x-ray 

computed topography. Also, Culling (1986) has used fractal dimension to measure the 

spatial variation of soil-pH values on a small transect of soil. Such models may be able 

to form the basis for a structural approach to soil classification and mapping which 

allows the soil scientist to measure and model complex spatial properties and patterns. 

1.4 Purpose of study 

This investigation is concerned with the application of complex quantitative analysis to 

remotely sensed data for mapping soils. It uses a set of techniques for measuring 

complex properties of image data, which were available in commercial software 

packages. These are: 
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• Fast Fourier Analysis for the isolation and mapping of spatial frequency spectra

bands of images.

• Artificial Neural Network Models of image texture modelling.

• Fractal and Multifractal Analysis of local and whole image properties.

The first aim was to apply each technique to the classification and segmentation of a 

satellite image, which represented a set of soil landscapes relatively unaffected by 

vegetation. 

In the application of each technique, the objectives were: 

• To develop the procedures by which a soil map could be obtained,

• To explore the controls on the procedures and the relations of image outputs to

these controls,

• To develop an appropriate means of visualisation.

A further aim was to evaluate the usefulness of the three techniques for soil mapping. In 

this evaluation there were two objectives: 

• Comparison of the performance of the three techniques m mapping soil

landscapes.

• Comparison of the three techniques singly and in combination with conventional

soil mapping.
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CHAPTER2 

THE GEOLOGICAL AND PHYSIOGRAPHICAL 

FEATURES OF THE STUDY AREA AND SOILS 

RESOURSES 

2.1 Introduction 

This chapter deals briefly with main physical factors and their influence on soil 

formation. The brief description of the landform units is also covered in this chapter 

together with a consideration from first principles of the soil reflective responses, which 

might be expected in the soils of the study region. 

Soil is formed as a result of the interaction of many factors, the most important of which 

are parent material, climate, organisms, relief, and time (Brady and Weil, 1999). These 

soil-forming factors control the nature and rate of soil formation. To these must be 

added the effects of human activity which in the case of the Al-Ahsa oasis are 

significant, see figure 2.1 (Al-Jabr, 1989). In areas away from the oasis the general 

absence of vegetation means that the soil landscape at the regional scale reflects closely 

parent material and relief and process of erosion and deposition. 
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Soil may form by the weathering of consolidated rock or unconsolidated superficial 

deposits, which have been transported by water, wind or gravity (see Figure 2.2). These 

deposits originate from denudation of consolidated rock. Generally, weathering 

proceeds by physical disruption of the rock structure which exposes the constituent 

minerals to chemicals alteration. Forces of expansion and contraction induced by 

diurnal temperature variations cause rock shattering and exfoliation, which are found in 

desert soil surfaces (Al-Barrak, 1993; El-Khatib, 1980). 

Even water in arid and semi-arid area is dominant agent in weathering, not only it 

because initiates solution and hydrolysis, but also because it sustains plant life on rock 

surfaces. In arid and semi-arid areas lichens play a special part in the weathering 

because they produce chelating agents which trap the elements of the decomposing rock 

in organo-metallic complexes. Generally speaking, the growth, death and decay of 

plants and other organisms markedly enhance the solvent action of rainwater by the 

addition of carbon dioxide from respiration. Plant roots also contribute to the physical 

disintegration of rock (Al-Barrak, 1993; El-Khatib, 1980). 

Water carrying suspended rock fragments has a scourmg action on surfaces. The 

suspended material can vary in size from the finest grains to the gravel, and pebbles 

moved along and constantly abraded by running water in drainage path. Particles carried 

by wind also have a sandblasting effect, and the combination of wind and water to form 
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waves produces powerful forces along shorelines and along exposed rock surfaces (Al­

Barrak, 1993). 

2.2 Geological History and formations 

At the regional level the major control on differences in soil properties is geology. The 

Arabian Peninsula is a huge crusted plate composed of ancient sedimentary and 

volcanic rocks, deformed and metamorphosed and injected by plutonic intrusions. In 

Precambrian time, the peninsula was attached to Africa as part of the Nubian Shield. In 

the late Precambrian, the surface was deeply eroded and peniplaned (see Figure 2.3). 

At the beginning of the Cambrian, a great sedimentary basin or geosycline (the Tethys) 

had developed north and east of Arabia. Turkey, northern Iraq, and south-western Iran 

now occupy the area that developed by the Great Basin (Al-Jahr, 1989; Al-Sayari and 

Zott, 1978; El-Khatib, 1980). Many thousands of meters of sediment accumulated in 

this deep, slowly-sinking trough throughout the Palaeozoic, Mesozoic, and early 

Cenozoic times, aligned along the junction between the Arabian and Iranian plates. The 

thick sequence of marine strata in the geosyncline was buckled into great folds and 

sliced by overthrusts at the time oflate Cretaceous (Al-Barrak, 1993; Al-Jahr, 1989). 

In the middle Tertiary, the Arabian plate split away from the African shield along the 

Red Sea trough. It then began moving slowly north-eastward, impinging on the edge of 

the great Asian plate in Iran and sliding beneath the latter plate. This separation of 
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Arabia from Africa was accompanied by extensive volcanism along the western edge of 

the peninsula. The Arabian plate remained relatively stable, and its cover of shelf 

sediment was barely disturbed throughout the Palaeozoic and Mesozoic, and during the 

Tertiary orogeny. 

Eastern part of Saudi Arabia is underlain mainly by marine limestones, sandstones and 

shales deposited since Palaeozoic times. Occasional periods of emergence are indicated 

by gabs and unconformities. To the north and north-west as far as the Iraq frontier, the 

border of this area is the outcrop of the boundary between the upper-most Cretaceous 

(Aruma Formation) and basal Tertiary (base ofUmm er Radhuma formation). 

The general dip of the strata is from strata to the east in a gentle, continuous manner, 

interrupted in the eastern part of bordering the Arabian Gulf by a series of folds oriented 

mainly in a north-south direction (Al-Barrak, 1993; Al-Jabr, 1989). 

2.3 Geological Formations and Topographical features of the Al-Ahsa 

region 

2.3.1 Geological Structures 

Figure 2.4 shows the geological formations of the region with respect to its relationship 

to topography, soils, and hydrology. The Al-Ahsa region is underlain mainly by marine 

limestone, sandstone, and shale deposited since Palaeozoic times. Gaps and 
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unconformities indicate occasional periods of emergence. Geologically a part of the 

Arabian Shelf, the Mesozoic and Cenozoic series of strata dip towards the east. The 

outcrops consist only of Tertiary and Quaternary sedimentary rocks. The morphogeny 

and hydrogeology of this area is strongly influenced by the Ghawar structure developed 

out by Cretaceous and lower Tertiary tectonics. This north-south-trending anticline west 

of Al-Ahsa is 20 to 40 kilometers wide and contains the world's largest oil field (Al­

Sayari and Zott, 1978; El-khatib, 1980). 

2.3.2 Neogene formation 

This formation is what mainly determines the soil characteristics of the study region, 

since it is the most extensive and recent set of parent materials. The Neogene is a series 

of mainly continental and transitional sediments, younger than the Eocene and older 

than the Quaternary. The most frequent lithological types are sandy limestone, marls, 

chalky limestones with subordinate sandstone and clay. Due to the depositional 

environments, both lateral and vertical changes are frequent and rapid. 

The Neogene series has been subdivided from the base upwards into the following 

formations: 

• Hadrukh formation (Th). It is composed principally of white, grey and pink silty­

calcareous sandstones, with sandy limestone and sandy marl.

• Dam formation (Td). It is pink marls with intercalations of red and green clays,

sandstones, chalky and coquina limestons.
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Hofuf formation (Thf). It is sandy cream and white marl, with subordinate tan rubbly 

sandy limestone and chalky limestones. In certain areas, gravel, conglomerate, and sand 

are present near the base. 

2.3.3 Unconsolidated sedimentary materials 

Several low basins are floored with thin but extensive layers of gravel representing 

concentrations of coarse debris from the surrounding area, residual material derived 

from older sediment or rock by removal of intergranular fines, and lag concentrations 

from earlier gravel deposits (Qgl). They may consist of mixed limestone and quartz 

pebbles along with quartz and other pebbles derived from the basement complex (Qg2). 

2.3.3 Silt and gravel 

Silt and associated fine sediments including caliche-like and gypsiferous deposits in 

undrained depression (Qs); gravel composed chiefly of limestone and other gravels in 

some areas (Qg); unconsolidated surface deposits, sand and gravel; may include 

unrecognized equivalents of other units of Quaternary age (Qu). 

2.3.4 Sabkha deposits 

Sabkhas are filled with silt, clay, and muddy sand along with gypsum and anhydrite, 

and frequently a salty surface covering. They underly coastal and inland playas (Qsb ). 
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2.3.5 Aeolian sands 

Large areas, particularly in the south-eastern coastal area covered by aeolian sand 

deposits (Qes). These include the following types of area: 

• Dikakah irrgular surface of bush and grass covered sand.

• Barchan dunes and various undulating sand sheets.

2.4 Soil and landform units 

Figures 2.5 and 2.6 show the distribution of soils and landforms units. These units are 

defined by the United States/Saudi Arabian Joint Commission for Economic 

Development for the Ministry of Agriculture and Water, Land Management Department 

(MAW, 1986, 1995). 

2.4.1 Alluvial plain 

The mapping unit consists of nearly level and gently sloping plains. Small intermittent 

streams begin and generally terminate within the alluvial plain zone. Drainage nets are 

not well developed. The Gypsiorthids and similar soils are on linear and convex plains. 

They are loamy, slightly saline to strongly saline soils (Al-Barrak, 1993; MAW, 1986, 

1995). 

The Calciorthids are in small depression on linear and concave plains throughout most 

of the alluvial plains. They are deep, loamy, calcareous, and slightly saline to strongly 
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saline soils. There are also intermixed throughout the unit with small areas of very 

gravel soils (Al-Barrak, 1993; El-Khatib, 1980; MAW, 1986, 1995). 

2.4.2 Gypseous pediplain with sand cover 

Gypseous pediplain map unit supports of two main types of soils. About 45 percent of 

the unit consists of shallow Gypsiferous, loamy soil underlain by gypsum pan. These 

soils are well drained, strongly saline and calcareous. Their permeability is slow; 

infiltration rate is moderately high; and available water capacity is low. These soils are 

classified as Gypsiorthids/Petric Gypsisols (MAW, 1986, 1995). 

About 30 percent of the unit has moderately deep, loamy soils that are well-drained, 

strongly saline, slowly permeable and have moderate infiltration rate and low available 

water capacity. In addition, about 20 percent of the area is occupied by rock outcrops 

and very shallow soils (Al-Barrak, 1993; El-Khatib, 1980, MAW, 1986, 1995). 

2.4.3 Sand sheet and dunes 

The map unit of sand sheet consists of gently sloping to steep soils on dunes. The dunes 

are 2 to 4 meters high and are closely spaced throughout the map unit. There is no 

evident drainage pattern. Individual areas of this map unit are irregular in shape and 

range from 3,000 to 40.000 hectares in size (MAW, 1986, 1995). 
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About 80 percent of the unit are Torripsamments on dunes and 20 percent minor soils 

and areas of rock outcrop. The Torripsamments and similar soils are on dunes and their 

slope range from 3 to 60 percent. The steeper soils are on the lee side of the dunes. The 

Torripsamments are deep, sandy, and non-saline to slightly saline soils. Also, included 

in this map unit are small areas of nearly level and gently sloping sandy soils in 

interdunal areas, small areas of loamy soils, soils that have excess gypsum, and 

moderately saline and strongly saline soils, all of which are in interdunal depressions 

(El-Khatib 1980, MAW, 1986, 1995). 

2.4.4 Sabkha 

The Sabkha map unit consists of playas and local basins without a drainage outlet. 

They receive runoff from the surrounding higher lands and remain wet for most of the 

time, and are even ponded for short periods after any appreciable rain in the area. The 

soils are stratified consisting of deep, loamy, or clay, strongly saline material. They 

contain large crystals of gypsum that occur in thin layers. The water table is high, and 

the surface, when dry, has a puff or a crust of salts. The soils are classified Salorthids / 

Gypsic Solonchaks (MAW, 1986, 1995). 

2.4.5 Sand dunes 

The mapping unit of this zone consists of gently sloping to steep soils on dunes with 

nearly level and gently sloping soils on plains. The dunes are mostly less than 5 meters 

high. A drainage pattern is not evident and individual areas of this unit are irregular in 
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shape and range from about 6,000 to 200,000 hectares in size (El-Khatib, 1980, MAW, 

1986, 1995). 

This map unit is about 60 percent Torripsamments on dunes, 30 percent Gypsiorthids, 

and 10 percent minor soils. The Torripsamments and Gypsiorthids are intricately mixed. 

The Torripsamments and similar soils are on dunes, and the steeper soils are on the lee 

side of dunes; the soils are deep, sandy, non-saline to slightly saline soils. Permeability 

is rapid and the water retention difference is moderately low (MAW, 1986, 1995). 

The Gypsiorthids and similar soils are on plains between dunes. They are loamy, 

strongly saline soils and very shallow and shallow to a layer cemented by crystalline 

gypsum. Also included in this map unit are nearly level and gently sloping sandy soils 

in small-scattered interdunal areas (MAW, 1986, 1995). 

2.5 A brief review of soil reflectance factors 

Arid lands are ideal for spectral remote sensing of soils due to the lack of vegetation and 

the favourable exposure of surface. Spectral reflectance curves from most soil materials 

are generally less complex in appearance than those from vegetation (Asrar, 1989; El­

Baz, 1984; Swain and Davis, 1978). Figure 2.8, for example, shows typical spectral 

reflectance curves for clay and sandy soils. As this curve indicates, one of the most 

outstanding reflectance characteristics of these soils is a generally increasing level of 

reflectance with increasing wavelength, particularly in the visible and near-infrared 
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portions of the spectrum. However, the effects of variations in water holding capacity 

affect this trend in the moisture sensitive near infrared (Swain and Davis, 1978). 

Texture, moisture content, organic matter, and iron oxide control soil spectral 

properties. 

2.5.1 Soil texture, water content, and surface roughness effects 

Soil texture is perhaps the main criterion used in classifying soils. The term soil texture 

basically refers to the relative proportions of clay, silt, and sand particles in a mass of 

soil (Kahle, 1984; Asrar, 1989; Belward and Valenzuela, 1991; Barrett and Curt, 1992; 

Lillesand and Kiefer, 1994). Two of the most widely used systems of soil classification 

based on size of constituent particles are given in table 2.1. 

Table 2.1: Particle size classes most widely adopted internationally (after White, 1997). 

Soil Particle Size (mm) 

Soil Name Engineering Definition Agricultural Soil Science Definition 

Gravel 2.0 - 76.2 2.0 - 76.2 

Sand 0.074-2.0 0.05 - 2.0 

Silt 0.005 - 0.74 0.002 - 0.05 

Clay Below 0.005 Below 0.002 
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In general, as the moisture content of soil increases, the reflectance decreases 

particularly in the water absorption bands. This would be attributed, of course, to fact 

that the incoming radiation is strongly absorbed by water in specific wavebands 

irrespective of the material containing the water (Hunt and Salisbury, 1970, Kahle, 

1984). 

The water absorption bands around 1.4 and 1.9 µm relate to the fundamental vibration 

frequencies of water molecules in the soil. Generally, the decreased reflectance in the 

water absorption bands causes a decreased reflectance in the wavelengths between the 

water absorption bands (Swain and Davis, 1978; Asrar, 1989; Belward and Valenzuela, 

1991). 
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Figure 2.9 shows the different percentage of moisture content in silty loam soil, 

indicating the greatest effect in the water absorption bands at 1.4 and 1.9 µm. This 

would be attributed to the strong relationship between soil texture and water content, for 

instance, the relative proportions of sand, silt, and clay do indeed affected the movement 

of air and water through a soil (Swain and Davis, 1978; Asrar, 1989; Belward and 

Valenzuela, 1991). 

On the contrary, some spectral response of soils, kaolinitic ones for example, that 

contain finer particles exhibit lower spectral reflectance than sandy or sandy loam soils 

owing to the absorption of infrared radiation that is controlled by clay minerals (Kahle, 

1984; Asrar, 1989; Whalley et al., 1991). 

In addition to the effect of water content on soil, there is also a great effect of soil 

texture on surface roughness. For instance, small particle size produces smooth soil 

surfaces, which have high levels of reflectance (Belward and Valenzuela, 1991). In 

short, if the particle size decreases, the soil surface becomes smoother and more 

incoming energy is reflected. Whalley et al. ( 1991) showed in detail that the reflectance 

increased with decreased particle size. Reflectance also decreased exponentially with 

increase in water content for sand and sandy loam soils. However, the values of 

reflectance of clayey soil or soils containing finer particles were less than those of sand 

or sandy loam soil. This was attributed to the absorption of infrared light by clayey 

minerals, such as Kaolinite. 
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2.5.2 Tone and Colour 

Tone is an important parameter in image interpretation; it is a measure of the relative 

brightness or colour of an object. The relative image tones can be differentiated between 

the various physical ground attributes such as low and higher ground. For instance, in 

the drainage conditions, higher ground is generally drier with lighter tones whilst the 

lower ground is wetter with darker tones (Campbell, 1996). 

2.5.3 Mineral content 

The inorganic component of most consists primarily of crystalline minerals, with 

appreciable amount of non-crystalline materials (Jackson et al., 1986). Soil minerals are 

derived from weathered rocks. These minerals are classified into primary and secondary 

minerals, depending on the type of weathering. Primary minerals are embodied into 

soils when rocks disintegrate as a result of mechanical weathering. The chemical 

weathering of primary minerals creates secondary minerals. The reflectance properties 

of soil minerals are affected by isomorphous substitution within some of these minerals 

and by their impurities. Isomorphous substitution occurs when different atoms occupy 

the same site within a crystal lattice of clay minerals. An example of this phenomenon is 

the mineral pyroxene. Some clay minerals, which are members of the same 

isomorphous series is also a factor in determining soil reflectance. Minerals in nature 

are rarely pure, since trace elements are often trapped in crystal lattice drying 

crystallisation. These impurities affect the colour and other reflectance properties of 

minerals (Hunt and Salisbury, 1970). 
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The most abundant products of chemical weathering are clay minerals and oxides of 

iron, aluminium, silicon and titanium. The process also produces carbonates, sulphate, 

and phosphates. These minerals tend to be stable in soil, as long as the environmental 

conditions permit. Therefore, elemental composition is another factor in determining 

soil reflectance (Hunt and Salisbury, 1970). 

Unsatisfied valences occur on the surfaces and at the edges of clay mineral particles. 

The exposed oxygen and hydroxyls of the silica and alumina sheets act as negatively 

charged sites, and these sites attract hydrogen ions. The hydroxyl groups formed at the 

edge of clay particles cause specific absorption features in the soil reflectance curves 

(Hunt and Salisbury, 1970). 

One of a significant factor that influences the spectral reflectance characteristics of soil 

is iron oxide. This is attributed to the red colours of many soils that contain unhydrated 

iron oxide. However, not only the iron oxide determines redness, but also a combination 

of manganese dioxide as well as partially hydrated iron oxide (Hunt and Salisbury, 

1971 a, b, and c ). Therefore, a significant decrease in reflectance is based on the amount 

of iron oxide in a soil. In general, lower iron oxide content is associated with greater 

reflectance in the visible region. Figure 2.10 shows that the iron oxide content of the 

soil can cause a difference in reflectance of as much as 40 percent (Hunt and Salisbury, 

1971a, b, and c). 
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Crystalline particles of both primary and secondary minerals are often coated with non­

crystalline substances in soils, which consist of organic and inorganic materials. These 

particle coating substances often serve as cementing agents that bind particles into 

aggregates. Soil reflectance is therefore affected by both particle coating and by 

aggregation (Irons et al., 1989) 

2.5.4 Organic matter content 

The soil organic matter content is another property that significantly influences the 

reflectance characteristics of soil. Organic matter is composed of a) nonhumic 

substances such as carbohydrates, proteins, peptides, aminoacides, fats, waxes, resins, 

and pigments, and b) humic substances, being humic acids, fulvic acids, and humins. In 

general, the higher the percentage of organic matter contents in a soil, the lower levels 

of spectral reflectance will be (Figure 2.11 ). The most affected part of the 

electromagnetic spectrum is the wave bands in the visible part of the spectrum (Swain 

and Davis, 1978; Asrar, 1989; Belward and Valenzuela, 1991). 

In colour remote sensing images, areas of high organic matter content usually appear 

dark. Moreover, soils that have a low amount of organic matter content tend to reflect 

more light and sometimes appear as light brown or grey in colour. However, soils that 

have developed under different climatic conditions may not show the same relationship 

between colour and organic matter content (Asrar, 1989; Belward and Valenzuela, 

1991). 
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In general, as would be expected, a dark soil area which exhibits no inverting between 

the reflective and thermal portions of the spectrum, is evidence of a relatively moist soil. 

Any areas that exhibit light in both the reflective and the thermal portions of the 

spectrum are evidence of a relatively light-coloured, dry soil. And, any area which is 

dark in the reflective portion but light in the thermal portion of spectrum, might be due 

to a high percentage of organic matter content, or be evidence of a relatively dry soil. 

2.5.5 Pattern 

The pattern is an important parameter in image interpretation. It refers to the spatial 

arrangement of objects. The pattern can be formed by different object elements, such as 

rock or drainage type. A specific description can be used for different types of a pattern 

(i.e. in drainage pattern such as linear, radial, rectangular, concentric). Pattern depends 

as a whole on scale, where a unit, which may form a pattern on a large scale, may have 

to be described under a textural term on small-scale images (Campbell, 1996). 
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Table 2.2: Summary of landform unit, soil type, and reflectance properties. 

Landform unit Soil type Reflectance properties 

Sabkha Salorthid / Gypsic solochk Low in dry and crust, 

medium low in dry, very 

low in wet 

Alluvial plain Gypsiorthid / Calciorthid Medium, medium low in 

moister content 

Sand sheet and dunes Torri psamment High in dunes, medium 

in interdunal 

Gypseous pediplain Gypsiorthid / Petric Gypsisls Medium, medium high 

with minerals 

2.6 Conclusion 

It is possible to specify how particular soil properties influence the wavelengths and 

amounts of reflectance radiation. Reflectance from soils is a compound effect of its 

various constituents. Net reflectance may not easily be interpretable in terms of 

reflectance from soil constituents. Measured reflectance by satellite sensors introduces 

their effects due to radiance mixing, and non-direct reflectance. However, it has been 

demonstrated repeatedly (Barret and Curtis, 1992; Campbell, 1996) that soil properties 

and types can be distinguished by satellite remote sensing. This thesis assumes, 

therefore, that soil properties either simple or compound, can be distinguished by 

satellite remote sensing. 
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In the next chapter, the research methodology including selection of study sites together 

with data processing will be described. 
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CHAPTER3 

RESEARCH DESIGN AND DATA PROCESSING 

STRATEGY 

3.1 Introduction 

The principal use of remote sensing in soil studies and soil mapping is in discriminating 

and mapping different soil landscape units. The allocation of a soil type to a unit of land 

is a fundamental problem of soil mapping, for which conventional field survey is used 

sometimes in combination with remote sensing. Since soil types are normally 

determined a priori then the classification of remotely sensed images is by hard 

classification techniques only. If the soil types are reasonably discrete and mutually 

exclusive and thus separable by sharp boundaries, then such techniques can be 

successful. Unfortunately soil landscapes are always continuous and often have no clear 

boundaries. Therefore, humans visually interpret remotely sensed data by 

synergistically taking into account context, edges, texture, and tonal variation or colour. 

Most digital image processing classification algorithms such as hard and soft classifiers 

or even linear mixed models, based on the use of the spectral tonal information, are used 

to derive image maps on the assumption of existing mappable units. With both visual 

and digital mapping techniques, complexity is a problem, and neither uses any measures 

of complexity. 
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However, other measures are available, which do not assume units. They measure 

spectral properties of complex patterns. Three methods were selected (Fast Fourier 

transform (FFT), Artificial neural network (ANN), and Fractal and Multifractal) from 

what was known of those available. In none is there any prior assumption about the 

existence of units. The three methods are chosen in order to explore mathematical 

relations and to find out more about complex structures by examining different aspects 

of complexity. These techniques were applied to three test areas (described in chapter 2) 

which have an assemblage of different soil landforms exposed in relatively small areas 

of eastern Saudi Arabia and an absence of vegetation cover. This chapter describes the 

method for establishing the working procedures and for subsequently assessing their 

utility for mapping soil landscapes. 

This chapter is divided into two mam sections. The first section describes the 

methodology and research design that was followed to establish the techniques. The 

second section describes the method of data processing undertaken in each area to 

assess the utility of the techniques. 

3.2 Spectral Analysis Technique 

Spectral analysis was based on the Fast Fourier Transform (FFT) technique. This 

routine of FFT when applied to an image is to transfer it from the spatial domain to 

frequency domain, where the frequency components can be manipulated (Mather, 1987; 

Jensen, 1996). 

41 



The spectral image processing technique developed in this study for the enhancement of 

spectral and textural features is basically an extension of the general FFT filtering 

procedures used in image processing (Pratt, 1978; Mather, 1987; Jensen, 1996). Image 

filtering using predefined operators such as compass gradient, line filtering or Laplacian 

masks are useful for the enhancement of general spatial or directional features (Pratt, 

1978). However, if feature size is to be taken into consideration, then special 

convolution operators are required. Gonzalez and Waintz (1987) stated that frequency 

domain filtering techniques allow filtering functions to be more conveniently specified. 

Masks in the frequency domain act as spatial frequency filters in the spatial domain. 

Which is related by inverse transform from the Fourier transform. 

FFT displayed as a 2D plot or image of points, which shows variance components. This 

is best viewed as a radial plot with distance related to frequency and angle related to 

angular direction of the frequency. Specific spatial frequencies correspond to rings 

around the centre and specific frequency bands to donut shaped areas. 

Using conventional image masking techniques both a kernel and donut shaped masks 

can be defined to cover parts of the FFT image (the user must consider the low 

frequencies, in order to avoid artefact output image, see figure 3.1). These masks can 

then be used to retain or exclude parts of the FFT and hence to retain or exclude specific 

spatial frequencies. The resulting spatial frequencies are then reconstituted using the 

inverse FFT. The resulting images are images of the spatial frequency components of 
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Figure 3.1 A filtered inverse FFT image of Band 7 showing an artefact features when
the low frequency blocked out. 
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reflectance. The first research problem is to establish the location of the donut areas in 

the FFT and hence the spatial frequencies. 

The Fast Fourier Transform analysis output produced images in which it was difficult to 

distinguish and to identify complex elements from raw data. It was necessary to apply 

conventional enhancement techniques in order to establish a displaying system for 

examining results. Enhancement techniques used are described in chapter 5. Since it 

was not possible, a priori to know which elements of images were important, a range of 

enhancement techniques were employed which exposed and emphasised different image 

elements. The effects of these techniques are described by figure 3 .2. 

• PCT: One of the method producing a hard-copy remote sensing brightness map is

to output a density-sliced map to a screen or printer. Density slicing refers to the

conversion of continues tone of an image into a series of discrete class interval

corresponds to a specific brightness value range.

• Infrequency: Another method to produce a hard-copy, which is basically a

histogram inversion. This method can produce the image in which the bright

pixels represent those grey levels in the original image, which were infrequent.

• Unsupervised fuzzy k-means: It is an unsupervised soft classifier that considers

each pixel in a fuzzy classification has m membership grade values. The

intensity of a pixel in each band is proportional to the degree of membership of

that pixel to the corresponding cluster output.
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Figure 3.2: Illustration of the displaying methods (PCT, Infrequeny, Unsupervised 
fuzzy k-means cluster). 
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3.3 The Artificial Neural Network Technique 

Artificial Neural Network (ANN) models have been used widely for classifying land 

cover/land use in remotely sensed data (Campbell, 1996; Jensen, 1996, Mather et al., 

1998). Such models are not known to have been used for identifying complex elements 

of soil landscapes. ANN models have showed limited success in other areas of feature 

recognition in a variety of application areas (Heddi and Petch, 1998; Clark and Boyce, 

1999). 

Before describing the ANN technique and the approach to the research problem 

developed in this project the neural net model is described. The basic element of a 

network is the processing node. Each processing node mimics the biological neurone 

and performs two functions. First it sums the values of its inputs. This sum is passed 

through an arbitrary activation function to produce the node's output value. The 

processing nodes are organised into layers, each generally interconnected to the 

following layer. There are no interconnections within a layer, however. In addition, 

there is an input layer that serves as a distribution structure for data being presented to 

the network. No processing is done at this layer. One or more actual processing layers 

follow the input layer. Any layers in between the input and output layers are termed 

hidden layers. Figure 3.3 shows the network structure that being implemented in this 

investigation, which is the basic three layers neural network. The interconnections 

between each node have an associated weight. When a value is passed down that 
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interconnection, it is multiplied by the weight. These weight values contain the 

distributed learned information of the network. 

As described in chapter 5, there are many algorithms for processing the artificial neural 

network analysis. One of the most widely used algorithms is the backpropagation 

algorithm, which was used in this investigation. Dackpropagation is an iterative, 

gradient training procedure. The training data consists of a pair of data vectors. The 

input data vector is the pattern to be learned and the desired output vector is the set of 

output values that should be produced by the network upon recall of the input training 

pattern. The goal of the training is to minimise the overall error between the desired and 

actual outputs of the network. Backprobagation methods have been used in this study. 

The ANN architecture has proven to be robust and flexible and has been used widely in 

image processing for image classification (recent studies e.g Mather et al., 1998; Foody 

and Boyd, 1999; Kavzoglu and Mather, 1999). As with other classification techniques, 

the quality of output is controlled by the set-up training sites. 

However, the interesting possibility for using these networks is that, while performing 

some form of feature extraction the training mechanism adapts the weight sets in such a 

way that elements shape of image features are recognised. This capacity for feature 

recognition was used here to model and map textural elements of images. 
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Input Layer Hidden Layer Output Layer 

Figure 3 .3 Neural netwoFk structure for 3 x 3 window of pixels values. 
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Texture is a complex element of soil images. That is texture is the aggregate of unit 

features that may be too small to be discerned individually on an image. When the scale 

of an image is reduced, the texture becomes progressively finer and ultimately 

disappears. Consequently, texture is important on large scales or full resolution images 

where it can help to differentiate between features of similar reflectance, such as smooth 

texture of sandy alluvial materials, which will contrast, with rough texture of coarse 

deposits. Texture is usually random and non-random at different scale. It has 

superimposed and non-homogenous elements, which have non-linear variation. 

In an image the way in which texture is modelled is using the nine pixels around a pixel 

(i.e. relationship itself) in the inputs layer with the pixel value as the output. The ANN 

model expresses the relation between a pixel values and its neighbours and as such is a 

measure, albeit a restricted on, of texture. In ANN, the model is first generated from test 

data using inputs from selected training areas. Then the model is used to generate 

predicted values for larger images using the nine input layers. The output images are 

predicted values of reflectance using a whole image model of texture. 

The output image pixel values show differences due to the values of the set of nine 

pixels around each pixel and due to the texture model/ ANN model. In order to show 

texture effects the output image is divided by the original image. Differences in the 

resulting image show therefore differences in the extent to which local textures differs 

from the overall image texture. 
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Knowing this a strategy can be derived to show how within the limitations of the ANN 

software available, texture varies across the image. By selective inclusion and exclusion 

of training areas across parts of the image, the effect of different areas on the whole 

image texture model can be controlled. The texture patterns in the resulting image can 

then be examined to see how training area selection affects the texture patterns and 

features. 

Four areas ABCD were used in each image and the following training area selection 

used. 

• ABCD.

• ABC: taking out linear feature training D.

• ABO: taking out training C.

• BCD: taking out A.

• AABCD: adding up another training for A.

• AB BCD: adding up another training for B.

• ABCCD: adding up another training for C.

• ABCDD: adding up another training for linear feature D.

Due to the lack and drawback and limitations of the software that was used to process 

the neural network analysis, the training sets was tripled using the same co-ordinates, 

otherwise the system will not run and train the neural network structure for this 

particular investigation. 
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Experiment were carried out, using another subset, to ascertain the optimum training 

set-up whether moving windows or single input image and number of elements to use in 

the hidden layer. It was found that a 3 x 3 moving window was most appropriate, and 

the number of elements in the input layer of the network was 9 elements as images. The 

number of elements in the hidden layer was 5 elements, and that based on the 

suggestion of several researchers, that the number of hidden layers and the number of 

elements per layer affect the performance of neural networks. Therefore, to avoid the 

network from being static within a localised minima if too many number of elements 

has been selected, or fewer number of elements would not partition the image properly, 

the decision of number of elements should be half of input and output elements (Paola 

and Schowengerdt, 1994; Rau et al., 1994; Bruzzone et al., 1997). The design, structure, 

and implementation of experimental strategy for neural network analysis are described 

chapter 5. 

3.4 Multifractal Analysis 

Many remotely sensed images are difficult to analyze by means of classical image 

processing tools because they are very complex and irregular. Such shapes are obtained 

for instance Landsat data with the spatial distribution of surface features, such as 

geomorphological and geological units. The important information often lies in the 

texture and not in the contours (Bagnold, 1965). In these environments, classical 

methods of image analysis such as enhancements techniques, conventional 

classification, and soft and linear mixed model classification may not reasonably 
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distinguish complex elements (i.e. soil properties, lithological properties) in the field of 

satellite image processing. That is why new techniques are needed to extract the features 

of interest. 

Remote sensing of the earth creates a problem of interrelating the characteristics of 

geophysical fields with those of spatial features observed at different spatial resolutions. 

Different sampling of irregular 3 dimensions geophysical fields may strongly change 

their pattern, depending on the pixel size. It is far from being an easy task to try and find 

some universal distribution the characteristics of which, within certain limits, would be 

independent of the spatial resolution cell. Therefore, the description of geophysical 

fields depends closely on the characteristics of the remote sensing system (Clarks, 1986; 

De Cola, 1989; Lam, 1990; Olsen et al., 1993). 

In recent years in part as a response to this problem, the use of fractal geometry in 

image processing has grown, especially for texture characterisation (Lam et al., 1997, 

1998; Quattrochi et al., 1997, 1998). In particular, the fractal dimension employed as 

descriptor of natural object surfaces has been widely investigated. However, as pointed 

out by Levy-Vehel (1998), the fractal dimension does not fully characterise textures. To 

overcome the limitations of the single fractal dimension, fractal geometry has to be 

extended and multifractal parameters estimated (Levy-Vehel, 1998). 
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Attempts are now being made to use fractal and multifractal geometry to quantitatively 

describe complex elements estimated from remotely sensed images. The estimates of 

these complex elements then can be interpreted in terms of geophysical and 

geographical parameters (e.g. Levy-Vehel and Berroir, 1991, 1993; Levy-Vehel, 1998; 

Mather et al., 1998; Emerson et al., 1999; Qiu et al., 1999; Heddi et al., 1999). 

The Multifractal technique provides a stable and reliable means of identifying features 

of images. It is primarily designed to compute the fractal dimension for natural surfaces 

using data from satellite imagery (Levy-Vehel, 1998). The underlying concept of 

rnultifractal estimation is not only to measure changes that occur gradually for the 

majority of land surface but also to measure minor changes within the majority of land 

surface that should be considered as a complexity. 

Data sets from test segments I, II, and III with size 128 x 128 pixels were used to 

compute the local fractal dimensions for each cell in the matrix array. The local estimate 

of the fractal dimension is based on: 

• Edge detection; this approach uses the initial discrete values and quantifies the

local fractal dimension around each cell.

• The segmentation process; this is based on the fact that multifractal exponents

respond differently to signals as step edges, lines, or comers.
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The edge detection and segmentation of images can be achieved by using the 

multifractal technique. In order to produce a segmented image, the data sets must be 

enhanced by pointwise Hoelder exponent capacities. The selected exponent capacities 

are MAX, ISO, and SUM as suggested by Levy-Vehel (1998) because these exponents 

are suitable to extract information such as linear features, for instance, from satellite 

imagery. The pointwise Hoelder exponent capacities depend on the size of the kernel 

window similar to moving filters. Although the larger size of the kernel window will 

reduce time computing, the result will not be optimum in terms of presenting and 

identifying complex features. Therefore, the smaller the size of the kernel window, the 

better the results especially for complex elements. Multifractal segmentation of images 

can be achieved by changing parameter values. These parameters are point values of 1 

or 2, where spread values are ranging from 0.1 to 0.9. The set-up parameters of 

multifractal segmentation of this investigation processing are presented in table 6.1 

chapter 6. These parameters produce different segmentation images. This means, the 

larger the number of spread values the more points to trace the edges of data sets 

imagery, where the small number of spread values, the fewer points to trace the edges. 

Then, we use the regularisation dimension. This computes the fractal dimension of 

images that are expressed as contour zonations, and the local fractal dimension presents 

individual contour line. The computation of the regular dimension of the image is based 

on its parameter values. Therefore, the parameter values, which show the number of 

contour lines to be presented in images, were set-up as 4, 8, 16, 32, 64 lines. These 
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numbers of lines should show the sensitivity of partitioning in identifying complex 

features. 

3.5 Data Processing Strategies 

3.5.1 Test Segments 

The best available soil data for large areas is from Landsat satellite imagery of arid 

zones. In such areas there is little vegetation and soil properties and patterns are easily 

detected. The study site selected to be examined for the experimental methods of this 

research is the Al-Ahsa region between the Arabian Gulf and the As Summan 

Limestone Plateau in the eastern province, Saudi Arabia. The test segments are about 20 

Kilometres east of Hofuf City, and about 30 kilometres away from the Arabian Gulf. 

The general geomorphology of Alahsa area consists of (i) sand sheets and sabkhas, (ii) 

alluvial plain, (iii) sand sheets and dunes, (iv) sand dunes, (v) and gypseos pediplain 

with sand cover (see chapter 2). 

3.5.2 Data sources 

To perform this study, Satellite imagery is used from the Landsat 5 Thematic Mapper 

(TM) sensor taken on 28 May 1996 at sun time 6:22:51. The co-ordinates of the image 

centre are 25° 40' for the latitude and 49° 51' for the longitude. The TM sensor 

records seven bands of the region of the visible and infrared electromagnetic spectrum 

(see table 3.1). The subset of Landsat imagery was used to represent the selected test 
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segments. This subset consisted of 1024 x 1024 pixels, which represents about 30 km x 

30 km on the ground. 

Satellite TM image bands 4 and 7 were used for this investigation and the selection was 

based on two procedures. The statistical investigation, which was the first procedure, 

was based on an examination of the scatter plot of TM bands to find two bands that 

would contain the most information (figure 3.4). The visual inspection was based on 

comparison of each stretched TM band, first as grey level images, and then as colour 

composites of three bands. The factor governing this assessment was the ability of 

individual bands to distinguish between different landforms depicted on the general soil 

map (1 :250,000) land resources map (1 :500,000), topographic map (1 :50,000 and 

I :250,000), and geologic map (1 :500,000) of the test area, bearing in mind the spectral 

reflectance characteristics of different soil landscape. 

Using the latter procedure, it was evident that the best three band colour composite that 

offered the best discrimination between various soil-landscape for the three test 

segments was TM band 7 displayed as red; TM 4 displayed as green; and TM band 1 

displayed as blue. 

3.5.3 Image Processing 

The EASI/P ACE version 6.2 image-processing package was used for the creation of the 

Band-pass filters and for processing the original data as well as the transformed image 
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data sets. The EASI/PACE package has implemented on an IBM PC/Pentium Pro 

compatible. The EASI/P ACE module Imageworks was used to produce and create the 

Band-pass filters for each data set using Graphic command parameters. The image 

enhancement techniques such as PCT, histogram inversion, and unsupervised fuzzy k­

means-clustering algorithm were applied to the various image data sets. All of these 

methods were carried out by EASI/P ACE 6.2 image processing package. 

The ANN modelling was also carried out using EASI/P ACE image processing software. 

The neural network NN module is a back propagation method, which was used to carry 

out the model design in order to (i) create the network architecture model, (ii) training, 

and (iii) running supervised neural network classifier (iv) producing hard copy image by 

using linear contrast stretch enhancement. 

A Signal processing software package called Fraclab from INRA France was used to 

compute the fractal dimension values of bands 4 and 7. The Fraclab is designed to run 

on Matlab platforms to provide specialised spatial analytical functions for characterising 

signal processing and digital image processing such as remotely sensed data. 
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V, 

00 

Band Bandwidth (µm) IFOV(m) ··· Quantization (bits) Principal applications 
. . . .  ·······•····· ···················•·

1 0.45-0.52 30 X 30 8 Designed for water-body penetration, Coastal-water mapping, 
Soil and Vegetation discrimination, Forest mapping, Cultural 
feature identification. 

2 0.52-0.60 30 X 30 8 Designed for green reflectance peak for vegetation 
discrimination and vigour assessment, Useful for cultural feature 
identification 

3 0.63-0.69 30 X 30 8 Chlorophyll absorption for plant for plant species differentiation. 
4 0.76-0.90 30 X 30 8 Useful for determining vegetation types, water bodies, spring 

lines and drainage network morohometrv. Geobotanical studies. 
5 1.55-1.75 30 X 30 8 Useful for vegetation moisture content and soil moisture content, 

snow/cloud differentiation. 

6 10.4-12.5 120 X 120 8 Useful in thermal mapping of sediments, Lithological mapping, 
ground water studies, topographic mapping and extraction of 
subsurface anomalies, Discrimination of siliceous rocks. 

7 2.08-2.35 30 X 30 8 Useful for discrimination of metamorphic rocks, hydrous mineral 
and carbonates separation, Hydrothermal alteration. 

Table 3.1: Characteristics of Landsat TM system (adapted from Jensen, 1996). 
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Figure 3.4 Scatter plot of Band 7 against Band 4. 
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3.6 Summary 

Different methods of processing techniques were described in this chapter. These 

methods include the spectral analysis technique which is based on the spatial filtering; 

emphasising or de-emphasising certain frequency components of an image for 

investigating the best frequency components that represent the data sets, that were 

performed only on a single band (bands 4 and 7). This technique produced images using 

inverse fast Fourier transform. The design of a set of display techniques was also 

described (e.g. PCT, Infrequency enhancement, and Unsupervised fuzzy k-means). This 

was followed by a description of the second technique which was based on the feed 

forward neural network using both a backpropagation algorithm as well as the 

convolution filter, which were performed on single band or individual bands of 

multispectral data sets, to obtain the optimum contrast between different objects ( e.g. 

landform units and boundaries). The multifractal analysis procedure was also discussed. 

This technique is potentially superior to the other techniques, since it was expected to 

produce the optimal results ( chapter 6), when used as an indicator of feature space, or 

by directly using the segmentation as classified outputs (De Cola, 1989). 

Each technique has been used in image processing. However, it is rare for FFT to be 

applied other than in signal noise extraction and it is used here to try to identify spatial 

spectral features. ANN is not known to have been used in earth resource analysis other 

than for conventional classification. Fractal and multifractal analysis similarly are not 

known to have been used for image segmentation for soil resource mapping. 
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Image processing technique, however, is not limited to the methods described briefly in 

this chapter. The content of this chapter is restricted to the digital image processing 

approach. The details of image analysis are described in chapters 4, 5, and 6. 
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4.1 Introduction 

CHAPTER4 

SPECTRAL ANALYSIS 

The spectral analysis chapter is concerned with the application of complex quantitative 

analysis to remotely sensed data sets as a method of measuring spatial patterns and 

structures. The principal objective of this part of the study is to assess if and how 

spectral analysis model can be used for defining patterns of the reflectance properties of 

soil. Also, the purpose here is to examine how far the patterns can be revealed through a 

set of image enhancement and visualisation procedures. 

4.2 Spatial spectra as a property of images 

4.2.1 Spatial filtering 

Spatial filtering is a pixel by pixel transformation of an image. The transformation 

depends not only on the grey levels of the pixel being processed, but also on the grey 

levels of neighbouring pixels. Consequently, spatial filtering is an operation to alter the 

grey level of a pixel according to its relationship with the grey levels of other pixels 

(Jensen, 1997, Richards, 1994; Schowengerdt, 1983; Mather, 1987). 

General spatial filters used in image processing of remotely sensed imagery are based 

on three basic types (i) low pass filter, (ii) high pass filter, and (iii) band pass filter. 

Figure 4.1 depicted the three basic types of spatial filters. Schowengerdt (1983) stated 

62 



that these basic filters might be combined to form a wide variety of more complex 

filters. In digital remotely sensed imagery, spatial filtering are two-dimensional 

functions as shown in Figure 4.1. 

The effects of low pass and high pass filtering on an image and its histogram are well 

distinguished. Further substantial details about these filters are given in Hord (1982), 

Niblack (1986), and Richards (1994). Low-pass filtering smoothes the detail in an 

image and reduces the grey level range which is the image contrast. On the contrary, the 

high pass filtering enhances the detail at the expense of large area radiometry and 

produces an image with relatively narrow histogram centred at zero grey level (Hord, 

1982; Jensen, 1997). The histogram of high pass images is virtually always symmetric 

about mean grey level of zero. As a result, high pass must be contrast stretched to all 

positive Grey levels for display. Figure 4.2 represents the application of low pass and 

high pass filtering of Landsat imagery. 

The primary use of band pass filter is for eliminating periodic noise from an image. This 

type of filter can be constructed in a similar way as previous filter, although band pass 

filters have not had general application in image processing of remotely sensed imagery, 

(Jensen, 1997; Schowengerdt, 1983; Sonka et al., 1994). The next section is the 

advanced spatial filtering, which will be described thoroughly, and is known as Fast 

Fourier Transform. 
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Figure 4.1: The three basic types of spatial filters (above), frequency filters displayed in

3 D representing (a) low-pass filter, (b) high-pass filter, and (c) band-pass filter (down)

(after Schowengerdt, 1983 and Sonka, et al. 1994).
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Figure 4.2: Image formation in the spatial and Fourier domains (Schowengerdt, 1983). 
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4.2.2 Fourier analysis 

4.2.2.1 Introduction 

Any image can be separated into its various spatial frequency components through 

application of a quantitative operation called a Fourier transform. This produces a set of 

sinusoidal waves that in combination represent the original series more or less exactly. 

The Fourier transform operates on a single band image in order to break down the 

image into its frequency components (Lillesand and Kiefer, 1994; Mather, 1987; 

Richards, 1994). The sinusoidal waves with varying amplitudes, frequencies, and 

directions characterise the scale components of the image (Jensen, 1996; Sonka et al., 

1994 ). The scale components are expressed as a two-dimensional space in which they 

are given in terms of frequency, which are cycles per basic interval. This is called the 

frequency domain whereas the normal row and column co-ordinate system in which 

images are normally expressed is termed the spatial domain (Mather, 1987; Niblack, 

1986; Richards, 1994). 

In Fourier transform, the grey scale values, forming a single band image, can be viewed 

as a three dimensional surface. The rows and columns are defining two axes and the 

grey scale value at each pixel giving the third dimension. Mather (1987) stated that the 

Fourier transform provides details of (i) the frequency of each of the scale components 

of the image and (ii) the proportion of information associated with each frequency 

component. Frequency can be characterised with respect to cycles per basic interval. 

Where the basic interval in the across-row direction is the number of pixels on the scan 
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lines, the basic interval in the down column direction is the number of scan lines 

(Jensen, 1997; Lillesand and Kiefer, 1994; Mather, 1987). 

4.2.2.2 Computation of the discrete Fourier Transform 

Fourier analysis is a mathematical technique for separating an image into its various 

spatial frequency components (Jensen, 1996; Watson, 1993). To utilise Fourier analysis 

in digital image processing of remotely sensed data, the two-dimensional discrete 

Fourier transform equation must be implemented, which can be defined for a square 

image as: 

F(u,v) 
1 N-lM-1

--I L f (x' y )e-21r;c•; + z 
NM x=O y=O

Where: F (u, v) = frequency spectrum of the original image/ (x, y) 

N = number of pixels in the x direction 

M = number of pixels in the y direction 

Because every remotely sensed image may be described as a two-dimensional discrete 

function, this equation may be used to compute the Fourier transform of an image 

(Niblack, 1986; Sonka et al., 1994). Since the Fourier transform is a reversible process, 

the image information from the frequency domain can be converted to the spatial 

domain using an inverse Fourier transform of the form: 

f(x,y) 
N-lM-l 

L L F ( u' v) e 2 Jri < � + Z )
u=O v=O 
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When the Fourier Transform is computed, the output will be two images. The first 

image is the magnitude of the Fourier transform and can be displayed as a two­

dimensional image (Niblack, 1986; Sonka, et al. 1994). It represents the magnitude and 

the direction of the different frequency components in the image f (x, y). The other 

image represents phase information in the image/ (x, y). Although we usually ignore the 

phase information when we display the Fourier transform, we cannot offset the original 

image without it (Jensen, 1996; Richards, 1994; Watson, 1993). Frequencies, for 

instance, are along two directions (x and y), the digital value component frequency = 

(0,0) is at (M/2+ 1, M/2+ 1) where M is the image size. On a 1024 x 1024 image, for 

example, the digital value should be at (513,513). Points away from the digital value 

indicate higher frequencies. The transform at point (M/2+ 1 +x, M/2+ 1 +y) corresponds to 

the cosine wave component which repeats every Mix pixels along x direction and every 

Mly pixels along y direction (Mather, 1987; Sonka et al., 1994). 

4.2.2.3 Fourier transform applications in remote sensing 

The idea of using Fast Fourier transformation is based on the ability of utilising 

frequencies over satellite images whenever an image is transferred from spatial domain 

into frequency domain. In many remote-sensing images, most of the visually 

interpretable data in the Fourier transform are contained in the magnitude of the 

transform images (Jensen, 1996; Gonzalez and Wintz, 1987; Muller, 1988). The 

Fourier magnitude images are symmetric about their centre (Andres et al., 1994; 

Hassan, 1988; Olsson and Eklunch 1994; Pratt et al., 1980). Therefore, the intensity at 
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the centre represents the magnitude of the lowest frequency component. The frequency 

increases away from the centre and any bright values found in and around the centre 

indicate that an image is dominated by very low spatial frequencies. 

Fourier techniques have been used in image analysis to identify and to eliminate noise 

effects to identify the components of interference, and as an aid to discovering the 

sources and identifying potential resolution within the imaging system (Jensen, 1996; 

Mather, 1987; Richards, 1994; Schott, 1997). Using fast Fourier transform, we can 

manipulate directly the frequency information of the image. The manipulation can be 

performed by multiplying the Fourier transform of the original image by a mask image, 

the frequency domain filter, which will block (or weaken) certain frequency 

components by eliminating the values of certain parts of the frequency spectrum. Then 

we compute the inverse Fourier transform of the manipulated frequency spectrum to 

obtain a filtered image in the spatial domain (Jensen, 1996; Schott, 1997). 

Removal of noise from an image first requires identification of the noise either in the 

spatial image or in the frequency image. Once the noise pattern is identified, there are 

three methods for noise suppression which are based on (i) blocking (ii) smoothing, (iii) 

and interpolation. The blocking filter sets selected values of the blocking filter and uses 

a rounding algorithm based on the sine function (Bracewell, 1986) to taper values at the 

edges of the filter. The interpolation filter uses values just beyond the edge of the noise 
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and bilinearly interpolates across the noise pattern. This latter filter is the least intrusive 

filter and is useful for testing whether a blocking or smoothing filter is necessary. 

Selection of an appropriate filter is dependent upon the type of noise present. Several 

geometric shapes of filters are provided for various types of noise patterns, which are 

based on point, full line, rectangular, periodic block, wedge, angular harmonic, and 

ellipse. The ellipse shape filter is used to reduce noise that clusters along either the line 

or pixel axis in the frequency domain. 

According to Stromberg and Farr (1986), any differences between the original and the 

Fourier spectrum image could be used to aid in classifying features with different 

texture. In addition, authors described a frequency domain texture classification process 

that used annular band pass filters to recognise and place apart regions, which contain 

specific texture patterns. This method was applied to characterise geological textures in 

a SAR image. 

Ehrhard et al. (1993) has modified Stromberg and Farr's method to adapt to optical 

implementation. The modified method constructs a large number of images from 

information that has been placed apart in the frequency domain by single side band-pass 

filters. Also this method eliminates the low pass filter required by the Stromberg 

method, when computing the magnitude of the filtered images. The band pass filtered 

magnitudes within each band pass are aggregated to create the single image for each 
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annular band. The statistical classifier is applied over the sets of images for the selected 

annular bands to identify the unique textural features within an object class. In short, it 

has been demonstrated that when the Fourier transforms were multiplied by a set of 

band-pass filters, the inverse transforms could be used as a texture metric images to 

successfully classify background land cover types using conventional statistical 

classifiers. 

4.3 Data processing for spectral analysis 

4.3.1 Strategic investigative procedures 

The Image processing technique investigated m this study (Figure 4.3) for the 

enhancement of spectral and textural features is an extension of the general filtering 

procedures. Image filtering using predefined operators such as compass gradient, line 

filtering, or Laplacian masks is useful for the enhancement of general spatial or 

directional features (Pratt, 1978). However, if feature sizes are to be taken into 

consideration, then special convolution operators are required. Gonzalez and Wintz 

(1987) stated that frequency domain filtering techniques allow special filtering functions 

to be more conveniently specified. Spatial masks for the speed and simplicity of 

implementation can then approximate the frequency domain filtering functions. 

In order to make analysis and interpretation on the transformed images, displaying 

technique as well as frequency components should be established. It was found that the 

suitable technique in terms of making interpretation is to use pseudo colour and 
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Figure 4.3: A colour composite of Landsat TM imagery of the study area (Band 7, 4, 
and 1, size 1024 x 1024 pixels). 
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infrequency techniques (described thoroughly in sections 4.3.2 & 4.3.3 for PCT and 

section 4.3.3.4 for infrequency) 

Removal of frequency from an image first requires identification of the kernel of band­

pass filter size, and this procedure (method of trial and error) can be achieved in 

frequency image by drawing circles from the origin of the magnitude image. Once the 

kernel filter is identified, the other ring filters can be drawn gradually away from the 

Kernel filter. The band-pass filters designed are described in table 4.1 and shown in 

Figure 4.4. 

Table 4.1: Masking filters. 

Filter Inner radius Pixels Outer radius Pixels 

Kernel filter 40 . . . .

First filter 50 60 

Second filter 60 70 

Third filter 70 80 

Fourth filter 80 90 

Fifth filter 90 100 
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(c) 

(e) 

(g) 

Figure 4.4: Fourier transformed filters, a) original magnitude image, b) kernel band­
pass, c) first band-pass, d) second band-pass, e) third band-pass, f) fourth band-pass, g) 

fifth band-pass. 
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4.3.2 Pseudo-colour images 

Most video display systems have the ability to show a single image band in 256 distinct 

colours on the display monitor. When this is done, we say the image band is being 

shown in pseudo-colour mode. This is distinct from showing a single grey scale image. 

Pseudo-colour mode is useful since every level in an image can be shown in a different 

colour, thus allowing grey levels of interest to be highlighted or allowing grey levels 

close in value to be readily distinguished from each other since they can be assigned 

very different colours (Campbell, 1996; Jensen, 1996; Mather, 1999). 

Pseudo-colouring is made possible by the use of a Pseudo-Colour Table (PCT). PCTs 

work by mapping each input grey level from an image band to three output levels, one 

for each of red, green, and blue. These new output levels are passed to the colour guns 

thus showing the image in pseudo-colour on the display monitor. A PCT is made up of 

three sections: red, green, and blue, each with 256 entries. Given an input grey level x, a 

red section R, a green section G, and a blue section B then: 

r = R(x) 

g = G(x) 

b = B(x) 

Where r, g, b, are the output levels for the red, green, and blue colour guns. The entries 

in a PCT can be modified allowing different colours to be chosen. 
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Table 4.2: An Example of Pseudo-Colour Table. 

Input Output Output Output 
Grey Red Green Blue Resulting Colour 
Level Level Level Level 

0 0 0 255 Bright Blue 

1 255 0 0 Bright Red 

2 0 255 0 Bright Green 

3 200 200 200 Light Grey 

4 0 0 0 Black 

5 0 0 128 Dark Blue 

... ... . . . . . . . . .

254 160 160 0 Medium Yellow 

255 160 255 160 Light, Bright Green 

In the example PCT in Table 4.2, we see that when pseudo-colour mode is enable for an 

image band, all image pixels with a grey level of O will displayed in bright blue, pixels 

with a grey level of 1 in bright red, and so on and so forth. 

The predefined Pseudo-colour tables, which are available in the EASI/P ACE image 

processing system, allow the user to quickly replace the existing PCT with a standard 

PCT provided by the systems, which is based on series of short colour ramps is applied 

to the inverse filtered FFT images. 

4.3.3 Enhancement Techniques 

The Landsat satellite sensors were designed to be capable of detecting a wide range of 

terrain brightness, from oceans or black basalt plateau, to snow or desert areas. A very 
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wide few individual scenes have brightness ranges that utilise the full sensitivity range 

of the sensor. Therefore, pixel values in Landsat scene commonly occupy a relatively 

small part of possible range of image values. The examination of the image histogram is 

a useful and necessary preliminary step for successful manipulation of image contrast. 

The image histogram describes the frequency of occurrence (along the vertical axis) of 

the grey levels (along the horizontal axis) in an image. From the previous, it can be seen 

that the pixel values occupy only a small area of the available range. This limited range 

causes the low contrast and enhancement techniques were used to stretch the data to 

occupy the full range of the grey levels available; this produces an image with greater 

range and shows greater contrast. Of the many methods available for contrast stretching 

the two most popular are the simple linear stretch, and the histogram equalisation 

stretch. (Campbell, 1996; Jensen, 1996; Mather, 1999). The following image 

enhancements as: 

4.3.3.1 Linear contrast stretch 

Performs a linear contrast stretch. The linear function maps (stretches) input grey level 

between the minimum and maximum values found in the selected input image, to output 

grey level between O and 255. With a 2% tail trimming of image histogram data is 

performed before the minimum and maximum values are determined. The contrast 

stretch is performed evenly across the input range of grey levels. 
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4.3.3.2 Histogram Equalisation 

Performs histogram equalisation. The equalisation function produces an image where 

output grey levels are uniformly distributed between O and 255. The lookup table 

function is derived from a cumulative frequency distribution of the input image data. 

4.3.3.3 Square root contrast stretch 

Performs square-root contrast stretch. The square-root function maps (stretches) input 

grey levels between the minimum and maximum values found in the selected input 

image, to output grey levels between O and 255. With a 2% tail trimming of image 

histogram data is performed before the minimum and maximum values are determined. 

Unlike the linear function, the contrast stretch is greater at the lower end of the input 

data range. 

4.3.3.4 Infrequency 

Infrequency brightening (also termed "histogram inversion") produces an image m 

which the high (bright) pixels represent those grey levels in the original image which 

were infrequent (i.e. accounted for a small proportion of the entire image). The lookup 

table function is derived from an inverted (upside down) histogram of the input image 

data values. 
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This function is useful for highlighting rare or small features in an image that may 

otherwise go unnoticed. The infrequency enhancement "brightens" these features so that 

they become more obvious. This enhancement can be useful in the detection of 

lineaments or edges, which owing to the thinness of their dimensions can go unnoticed. 

Performs infrequency brightening or histogram inversion. The function produces an 

output image where infrequently occurring grey levels are assigned high grey levels in 

the output and vice versa. The lookup table function is derived from an inverted, upside 

down, histogram of the input image data. 

4.3.4 Unsupervised classifier 

Fuzzy set concepts were first proposed by Zadeh ( 1965) to produce a mathematical 

method for dealing with continuous data. The term fuzzy has appeared to describe 

undetermined values in data, which means inaccuracies in measurement or estimation, 

or to describe imprecise or overlapping semantics used to describe or classify data. 

Therefore, fuzzy set classification logic, which takes into account the heterogeneous and 

imprecise nature of the real world may be used in conjunction with supervised and 

unsupervised classification algorithms (Burrough and McDonnell, 1998; Bonham­

Carter, 1994; Jones, 1997). 

The IFOV (instantaneous field of view) of a sensor system normally records the 

reflected or emitted radiant flux from heterogeneous mixtures of biophysical materials 
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such as soil, water, and vegetation. Also, surface features usually grade into one another 

without sharp, hard boundaries. Reality is actually very indefinite and heterogeneous 

(Wang, 1991; Lam, 1993 ). In addition, conventional classification methods of remotely 

sensed data generally produce discrete information categories. And, it is inherently 

assumed that classes memberships are precisely defined, so that the attribution of a pixel 

to a cover category is always achievable (Swain and Davis, 1978, Curran, 1985). As a 

result, analysts usually use very precise classical set theory to classify remotely sensed 

data into discrete, homogeneous information classes, ignoring the ambiguity found in 

the real world. Unlike being assigned to a single class out of number of possible classes, 

each pixel in a fuzzy classification has number of membership grade values, each 

associated with how probable it is to be associated with each of the classes of interest 

(Figure 4.5). For this, the information may be used by the analyst to extract more 

definite landscape information, especially concerning the makeup of mixed pixels 

(Fisher and Pathirana, 1990 and 1993; Foody and Trodd, 1993; Jensen, 1996). 

In classical set theory, the membership of a set is defined as true or false, 1 or 0. 

However, membership of a fuzzy set is expressed on a continuous scale from 1 for 

identifying full membership to 0 for identifying no membership at all. In addition, 

fuzzy membership values must lie in the range as mentioned above, but there are no 

practical controls on the choice of fuzzy membership values. Thus, the values are 

simply chosen to reflect the degree of membership of a set that is based on subjective 
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judgment and, therefore, values need not increase or decrease routinely with class 

number (Campbell, 1997, Maselli et al., 1996, Jones, 1997). 

The method of fuzzy k-means, which is also known as fuzzy c-means, is such a 

technique that has been used in soil science, vegetation mapping, and many other 

disciplines (McBratney and de Gruitjer, 1993; Odeh et al., 1990; Jensen, 1996). Many 

authors prefer to term the method continuous classification rather than fuzzy 

classification. For this reason, McBratney and de Gruitjer (1992) proposed the term 

continuous classification to better describe the method of grouping data using the fuzzy 

k-means technique.

Fuzzy k-means as described by Bonham-Carter ( 1994 ), McBratney and Odeh ( 1997) 

works by an iterative procedure that usually starts with an initial random allocation of 

the objects to be classified to k clusters (Figure 4.5). After given the cluster-allocation, 

the centre of each cluster is calculated as the average of the attributes of the objects. In 

the next step, the objects are reallocated among the classes according to the relative 

similarity between objects and clusters. Reallocation proceeds by iteration until a stable 

solution is reached where similar objects are grouped in one cluster. Allocation of 

objects in conventional k-means is always to the nearest cluster, with membership 

function equal 1 to this cluster, and membership function equal O to all others, while 

fuzzy k-means membership values may range from O to 1. 

81 



00 
N 

True 

False 

0 

Conventional Classification 

30 60 

Hypothetical Near-lnfrared Brightness Value 

(a) 

Fuzzy Classification 

24 30 36 55 60 70 

90 

1 

0.7 

0.3 
0 

90 

Figure 4.5: Illustration of differences of(a) conventional classification. (b) fuzzy k-means classification (after Jensen, 1996). 



4.4 Results and Discussions 

4.4.1 Introduction 

The Fourier models as described earlier in section (4.2.2) were applied to band 4 and 7 

of Hofuf data sets for images of size 1024 rows by 1024 columns. Three test areas were 

selected for this particular investigation, which are within the Hofuf image data sets 

(test area I, II and, III), and the size of each segment is 128 rows by 128 columns 

(Figure 4.6). 

The results of the Fourier analysis procedure described earlier in this chapter are 

expressed as images of spectral components (Figure 4.7). These images show the 

contributions of particular spatial spectral wavebands to the reflectance image at each 

pixel. Higher values show that the selected waveband dominates in that area of the 

image more than in areas with lower values. The images can thus be considered as maps 

of spatial spectral dominance. Since the images are automatically rescaled by the image­

processing algorithm it is not possible to assign any meaning to the actual values or to 

frequency distributions. Statistical parameters also have no direct meaning. 

The assessment of results is based first on a consideration of the frequency distributions 

of image Digital Numbers and secondly on a set of enhancement techniques which are 

derived experimentally. These are an unsupervised fuzzy k-means classifier, an 

infrequency enhancement (histogram inversion), and a pseudo-colour look up table 
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a 

figure 4.6: Images of Landsat-TM Band 7 representing (a) segment I, (b) segment II
and (c) segment III. 
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•❖ 
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(g) Fifth inverse band-pass

Figure 4. 7: Images (a) - (g) represent the original image and the filtered inverse FFT
images of segment I. 
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(PCT). The land resource map and soil map for the test areas are described in chapter 2. 

Copies of these maps are provided in the pocket appendix at the end of this thesis. 

4.4.2 Image statistics 

The resulting data structures for the transformed images as well as the original Landsat 

TM data images were compared on the basis of histograms of bands 4 and 7. Only the 

histograms of band 7 are considered in this discussion, due to the similarity of results. 

The data structures of the transformed images were somewhat different from the 

original images. The histogram of Band 7 raw data shows four or five broad peaks 

across a dynamic range of values from O - 210 out of the full O - 255 range. The peak in 

the 140 - 150 DN range appears a dual peak. Other peaks are at approximately 40, 65 

and 190 DN (see figure 4.8). A division of the image into five classes is supported by 

the subsequent fuzzy k-mean cluster unsupervised classification that finds five areas. 

The histograms of the filtered inverse FFT images show that peaks are (i) preserved, (ii) 

sharpened of peaks in higher part of range, (iii) some discernible relative shifts in range 

of heights peak. There are differences in these histograms but it is not possible to 

associate peaks across pass-bands but this is probably reasonable (see figures 4.9 to 

4.14). Frequency histograms are not likely to be sensitive indicators of different spectral 

contributions, especially as the band-passes are a mixture of the low frequency kernel 

plus a specific higher frequency band. 
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Figure 4.8: Histogram of the original TM raw data (Band 7) 
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Figure 4.9: Histogram of kernel filtere image (Band 7). 
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Figure 4.10: Histogram of first band-pass filtered image (Band 7). 
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Figure 4. 11: Histogram of second band-pass filtered image (Band 7). 
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Figure 4.12: Histogram of the third band-pass filtered image (Band 7). 
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Figure 4. 13: Histogram of the fourth band-pass filtered image (Band 7). 
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Figure 4.14: Histogram of the fifth band-pass filtered image (Band 7). 



The fact that there are identifiable differences implies that there are real spatial spectral 

component effects within the image. These are analysed below in terms of image 

properties. 

4.4.3 Assessment of output images 

Inverse transform of filtered FFT are presented using a set of enhancement techniques 

(described earlier in sections 4.32, 4.3.3.4 and 4.3.5). The PCT image for the original 

band 7 (Figure 4.15a) shows that partitioning of the test areas I, II and III, lacks spatial 

coherence. All the images of the original raw data appear dominated by noise when the 

DN values are presented as PCT enhancements in which all data values have equal 

weight. 

In contrast, the filtered inverse FFT images (Figures 4.15 (b) to (g)) presented as PCT 

enhancements show a reasonable partitioning into zones. The coherence gradually 

changes with band-passes. Starting from the filtered kernel inverse FFT images, the 

coherence is relatively high. Coherence of spatial elements is lower for images 

increasing shorter partial spectral band-passes. PCT transform revealed the presence of 

complex linear feature which was persistent for all band-pass images. This feature can 

be distinguished visually in the kernel image (Figure 4.15 (b)), however, in the other 

band-pass images (Figures 4.15 (c) to (g)) the clarity of the feature degrades gradually 

from the kernel image to the fifth band-pass image. 
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Band 4 shows a different spatial effect of band-pass filtering with PCT enhancement 

from the previous band. The major main grouping is less than in Band 7. This is 

noticeable and clear visually by recognising and identifying the grouping features, 

which is presented in red, orange, and yellow patterns. Unfortunately band 4 showed 

less partitioning presentation, due to the lower amount of information of spectral 

reflectance in the feature space. However, the degree of partitioning other features is 

noticeable, but in a poor scattering and arrangement of colour scheme. For instance, it is 

difficult to distinguish a clear and dominance feature in the original image. But, when 

evaluating the performance of the filtered inverse FFT images presented as PCT 

enhancements, the resulting images showed clear patterns. Also, the degree of 

coherence of patterns degrades gradually from kernel-filtered image to the last band­

pass filtered image. The kernel-filtered image, for instance, shows the clearest 

presentation of pattern features. 

There is a reasonable contrast among various features of the filtered images except in 

the original image. One of the most apparent features in the original image of Band 7 is 

not clear (Figure 4.16 (a)). Additionally, because of lack of partitioning of the image, 

the coherence of features is poor. However, not only do filtered inverse FFT images 

show a good contrast between features but also the partitioning of the patterns is clear. 

However, the coherence of patterns is degraded gradually from the first to the fifth 

filtered inverse FFT images (Figures 4.16 (b) to (g)). 
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In addition to the various zones of the image, there are significant linear features being 

delineated in the filtered images with different degrees of contrast. For instance, the 

images (Figures 4.16 (d) and (e)) showed clearly a thin linear feature delineated over 

much of their area. Although linear features are less apparent in other images such as 

Figures 4.16 (b) and (g), these features have a clear and persistent pattern. 

The infrequent features are also clear in Band 4, with similar feature identification to 

Band 7. The major difference between Band 4 and Band 7 is quality and clarity of the 

various features. The situation is also similar when comparing the original raw data to 

the filtered images. These contrasts can be described in terms of coherency of features 

and robustness of patterns. For instance, the features of the original image are less clear 

than in the filtered image. The infrequent features are scattered and did not show any 

apparent and well developed arrangement of patterns. However, in the case of filtered 

images the situation is totally different in terms of representing coherent images. Even 

though the degree of coherency of features is different (e.g. kernel image, first band­

pass and fifth band-pass filter), these features are partitioned and can be identified 

easily. 

The spatial arrangement of features of unsupervised fuzzy k-means results are less 

scattered than the previous transformation, due to the forcing into classes by the system. 

Therefore, these features appeared as coherent patterns. But this apparent coherency 

changes from the original raw data to the filtered images. For instance, the original raw 
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data of band 7 has more scattered patterns especially in the right part of the image, 

while the filtered images showed more coherent patterns, which are easily 

distinguished. However, the quality of pattern especially in the right part is degraded. 

The filtered kernel shows the clearest partitioning of features. Although the other 

filtered images showed clear features, they have a broken appearance compared with the 

kernel filtered. 

In Band 4, there is a surprising feature in the original image especially in the middle 

part of the image. This feature, which is in blue colour, is not present in the filtered 

images. The quality of patterns in the original raw data showed more features than in 

Band 7. For instance, there are more noticeable patterns and these can be distinguished 

all over the image. Although the filtered images showed fewer patterns, they are clearly 

defined. 

4.4.4 Analysis of images for soil Landscape identification 

4.4.4.1 Test segment I

Figure 4.15 shows pseudo-colour images of TM band-7 displayed using stepped 

predefined pseudo colour tables, which are based on a series of short colour ramps 

(described earlier in section 4.3.2). The procedures were applied to the original image 

and the transformed band-pass images as well. Although this PCT displays reasonable 

discrimination between different soil units, this basic routine did not exploit fully the 
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(a) 

(b) (c) 

(f) (g) 

Figure 4.15 :PCT images of Band 7, (a) original (b ) kernel ( c) First 
band-pass ( d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 
(Segment I). 
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ROB colour space, due to, probably, the low degree of digital brightness for this 

particular band (Table 4.2). 

By transforming the original image figure 4.6 (a) from original mode to colour mapped 

mode using PCT procedure, the end product was the image shown in figure (4.15 (a) to 

(g)). It can be seen that the transformed images (Figure 4.15 (b) to (g)) have been 

divided into coherent zones. Those zones having similar colour and texture can be 

clearly recognised, and discriminated over the whole images. Comparing these images 

with soil maps (MAW, 1986, 1995), there is a close correspondence between the 

spectral filtered images and the mapped units. However, the images show greater detail 

as might be expected. The PCT original image (Figure 4.15 (a)) produced more zones 

than the soil maps with broken and complex patterns. 

The band-pass images especially the kernel image (Figure 4.15 (b)) produced coherent 

zones. There was also a linear feature established by this procedure. The sabkha unit has 

a very low reflectance in the IR band- 7 region. It is displayed as green, yellow, and 

orange colours and shows a clear black linear feature within the area. These patterns can 

be easily discriminated by the colour zones. Within the sabkha unit, there is a distinct 

zone in the northwest comer appearing as a light green colour zone. 

The sand sheet area is displayed in dark blue colour, with a few small green and light 

blue zones (Figure 4.15). The transition between sand sheet and alluvial plain areas is 
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represented by a complex linear feature. In addition, there were many well-defined 

black linear features within this area especially in the filtered band-pass image (Figure 

4.15b ), which can be easily distinguished. 

The alluvial plain area can be partitioned into four zones according to its appearance in 

these images. First one is the blue colour zone located in the north east and east of this 

unit, with elongated dark blue areas, and an oval green colour zone at the north part of 

this unit, where there may be a few dunes. Second zone is the light blue, which is 

displayed as a broken patterns in the original raw data (Figure 4.15 (a)), while it is 

coherent in the transformed images especially in the kernel band-pass image (Figure 

4.15 (b)). Third zone is considered as a transitional zone, which is displayed as a 

moderate blue and located in-between the light blue and dark blue zones. Fourth zone is 

the green colour; with a two sharper green colour spots, which might be related to the 

appearance of dunes. In addition, the four zones were well established and can be 

discriminated from each other. 

The infrequency enhancement images of band- 7 are presented in figure 4.16. The raw 

data and the six of band-pass images are displayed as grey scale. These images are 

transformed using infrequency enhancement technique to enhance the discrimination 

between different soil units, in other words, it highlights the infrequent features. Various 

zones exhibit some degree of grey scheme variation except the raw data (Figure 4.16 
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Figure 4.16:Infrequency images of Band 7, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass
(Segment I). 
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(a)) which shows less variation, and does not show the detailed variations as produced 

by band-pass images (Figures 4.16 (b) to (g)). 

In these images, the improvements of patterns in the spatial information are self-evident. 

The degree of similarity between the images and soil maps (MAW, 1986, 1995) is not 

fully convincing. The sabkha area, discriminated by its grey brightening, is displayed as 

one zone, with a few very small white zones. However, the sand sheet and alluvial plain 

areas, are difficult to discriminate. 

The units mapped in the soil map as three individual units (sabkha, sand sheet & dunes, 

and alluvial plain) can be partitioned into more zones, as might be expected. The one at 

north west of sabkha area can be discriminated by its light grey especially in the kernel 

band-pass image (Figure 4.16 (b)). The small area within the alluvial plain unit can be 

easily identified which might be represented as an aeolian sand dune that covers a small 

part of this unit. 

The sand sheet area can be separated into two geomorphologic features: a) the grey and 

light grey, which represent dunes, b) the black area would be presented as a sand sheet 

area. The alluvial plain area also can be divided into two features, a grey and a light 

grey feature. These features can be easily identified and appeared like a coherent zone 

especially in the fourth band-pass image (Figure 4.16 (f)). With respect to linear 
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features, the band-pass filter images shown clear and robust linear features, especially in 

fourth and fifth band-pass images (Figure 4.16 (f) and (g)). 

Figure 4.17 shows the results of unsupervised fuzzy k-means clustering that was applied 

to both the raw data and the band-pass images of band 7. These images show five 

different classes represented by different colours. Comparison of these images to soil 

maps (MAW, 1986, 1995) indicates a reasonable agreement for most of the areas. 

Greater disagreement occurs in the middle and east part of the alluvial plain and sand 

sheet & dunes areas, where there are mixed zones in the images, which in the map were 

classified as individual zones. The same thing is found in the sand sheet area but with 

slightly less severity especially in the raw data (Figure 4.17 (a)). 

While it appears mixed and incoherent in the original image (Figure 4.17 (a)), the band­

pass images (Figure 4.17 (b) to (g)) produced robust and coherent zones as well as 

linear features. For example, the alluvial plain appears like a uniform zone in the 

transformed images, with small zones coloured as yellow and blue, which may be 

represented as dunes. The sand sheet is produced very neatly in the band-pass images 

especially figure 4.17 (b ), rather than the raw data, which produced scattered and broken 

classes. 

103 



(a) 

(d) (e) 

(t) (g) 

Figure 4.17: Unsupervised fuzzy k-means images of Band 7, (a) original (b) kernel (c) First 

band-pass (d) second band pass (e) third band pass (t) fourth band pass (g) fifth band pass

(Segment I). 
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(a) 

(c) 

(d) 

(f) (g) 

Figure 4.18: PCT images of Band 4, (a) ori ginal (b) kernel (c) First
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 
(Segment I). 
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(a) 

(b) 

(f) (g) 

Figure 4.19: Infrequency images of Band 4, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (t) fourth band pass (g) fifth band pass 
(Segment I). 
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Figure 4.20: Unsupervised fuzzy k-means images of Band 4, (a) original (b) kernel (c) First 

band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass

(Segment I).
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In terms of linear feature, the original image presented unstable linear features, while 

the band-pass images (figure 4.17 (b) to (g)) produced a clear linear feature, which can 

be easily identified. There is an elongated blue area between green colour area (sabkha) 

and light green (alluvial plain), where there may be a transitional zone. 

In Band 4, the resulting outputs are similar with some degree of differences in pattern 

and texture. Of all the soil areas in segment I enhanced using the PCT procedure, 

sabkha area is the only distinct one and show some differences from Band 7, which 

dominated by distinct green colour (Figure 4.18). Also, no major differences in the 

infrequency images except the alluvial plain area which is less complex than in Band 7 

(Figure 4.19). In the cluster images, both Bands have similar features, with minor 

differences especially in the sabkha and the alluvial plain. The sand sheet is more or less 

similar for both bands (Figure 4.20). Overall the resulting images of Band 7 are clearer 

than in Band 4. 

4.4.4.2 Test Segment II 

The band-pass images especially the kernel image produced coherent zones and can be 

identified easily across the image. In addition, there are linear features established by 

this procedure, one example is seen in the gypsiferous pediplain area. Two thin roughly 

circular linear features can be identified, shown in black. The gypsiferous pediplain 

landform is displayed as a green colour and is a coherent area but within it are linear 

features. In addition, it appears also in light green in the other location of the image 
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(b) (c) 

(d) (e) 

(f) (g) 

Figure 4.21: PCT images of Band 7, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass
(Segment II). 
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such as the rounded green colour at the bottom of the image, with two elongated 

features in the east and northeast of the image. 

The gypsiferous pediplain area is dominated by light blue colour, with scattered green 

and dark blue zones (Figure 4.21 ). These zones are coherent and can be easily 

identified. The sand sheet area is displayed in dark blue colour, with a few small zones 

in very dark blue, which can be identified especially in the raw data (4.21 (a)). 

However, in the transformed images, there are only very dark blue zones. There is a 

clear linear feature between the sand sheet and the sabkha areas, which can be identified 

especially in the kernel band-pass image (Figure 4.21 (b)). This linear feature is difficult 

to distinguish in the raw data image. 

Infrequency images exhibit some degree of coherent and robust features except the 

original image (Figure 4.22 (a)). In the west part of the area, which is the gypsiferous 

pediplain, features are not well defined in the original image where there are mixed 

elongated light grey zones. However, the band-pass images are well defined, and the 

scattering areas are not apparent especially in the kernel, first, and third band-pass filters 

(Figures 4.22 (b), (c) and (e)). The infrequency images also show a number of zones in 

the subkha area that can be separated into three (Figure 4.22 (b)). 

In general, there were many zones automatically drawn in the transformed band-pass 

images. These zones can be recognised and discriminated across the set of images. In 
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Figure 4.22: Infrequency images of Band 7, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 
(Segment fl). 
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addition, linear features in band-pass images are shown as clear and robust lines, 

especially in fourth and fifth band-pass images (Figure 4.22 (f) and (g)). 

Comparing figure 4.23 with the soil maps (MAW, 1986, 1995) indicates little 

correspondence between most of the areas. Greater disagreement occurs in the middle 

part of the sabkha area, where there are much more complex zones, in what is classified 

as an individual zone. The same thing occurred in the other areas. The overall 

comparison between the original image to band-pass images show that the band-pass 

images (Figure 4.23 (b) to (g)) produced robust and coherent zones and linear features 

as well. Further, while the sabkha appears a little bit mixed and incoherent in the 

original raw data (Figure 4.23 (a)), it appears like a uniform area of two zones in the 

transformed images, with small zones displayed as yellow and blue, which may be 

interpreted as dunes. The other soil units were represented very clearly in the band-pass 

images, especially figure 4.23 (b ). 

The PCT images of Band 4 show similar features in most cases to Band 7 except there 

is somewhat less complexity especially in the sabkha area (Figure 4.24). Greater 

agreement with Band 7 is seen in the infrequency images as well as the cluster images, 

where not only most of main areas (sabkha, gypsiferous pediplain, and the sand sheet) 

are similar but also the minor areas except a few parts. But overall Band 7 produced 

clearer features than Band 4 (Figures 4.25 and 4.26). 
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Figure 4.23: Unsupervised fuzzy k-means images of Band 7, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 
(Segment II). 
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(a) 

(b) (c) 

(d) (e) 

(f) (g) 

Figure 4.24: PCT images of Band 4, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 

(Segment II). 
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(a) 

(b) (c) 

(e) 

(f) (g) 

Figure 4.25: Infrequency images of Band 4, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third ba11d pass (t) fourth band pass (g) fifth band pass 
(Segment II). 
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Figure 4.26: Unsupervised fuzzy k-means images of Band 4, (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (t) fourth band pass (g) fifth band pass 
(Segment II). 
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4.4.4.3 Test Segment III 

Most of the band-pass images (Figure 4.27 (b) to (g)) produced coherent zones and the 

most distinguishable features are in the kernel image. A clear linear feature, shown in 

these images, is self-evident. The sabkha unit, for instance, has a very low reflectance in 

the IR band- 7 region, which displayed as green, yellow, and orange colour. It also 

shows a clear black linear feature. 

The light blue colour zone, shown in the raw data, is scattered and has complex patterns 

(Figure 4.27 (a)). In the filtered images especially the kernel band-pass image (Figure 

4.27 (b)), there are consistent robust patterns. The green colour zone in the filtered 

images (Figure 4.27 (b) to (g)), was well established and can be discriminated from 

other areas. However, with the raw data image it is difficult to define and match the 

extent of the green zones 

In images of figure 4.28, the improvements of coherent patterns in the spatial 

information are self-evident. The degree of similarity between the images and soil maps 

(MAW, 1986, 1995) is not fully convincing. For example the sabkha area, discriminated 

by its grey brightening, is displayed as two zones in the raw data (4.28 (a)). However, 

the surrounded zones are difficult to discriminate and it is difficult to interpret a linear 

feature. The established zones in the transformed band-pass images (Figure 4.28 (b) to 

(g)) are coherent and easily discriminated. In terms of linear features, the band-pass 
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(a) 

(c) 

Figure 4. 27 : PCT images of Band 7 , (a) original (b) kernel (c) First 
band-pass (d) second band pass (e) third band pass (t) fourth band pass (g) fifth band pass 

(Segment ill). 
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(a) 

(b) (c) 

(e) 

Figure 4.28: Infrequency images of Band 7, (a) original (b) kernel (c) First 

band-pass (d) second band pass (e) third band pass (t) fou1th band pass (g) fifth band pass

(Segment ID).

119 



(a) 

:-x 

L 

(d) (e) 

(g) 

Figure 4.29:Unsupervised fuzzy k-means images of Band 7, (a) original (b) kernel (c) First

band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 

(Segment III). 
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(a) 

(b) (c) 

(e) 

(f) (g) 

Figure 4.30:PCT images of Band 4, (a) o riginal (b) ke rnel (c) Firs t  
band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 
(Segment III). 
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(a) 

(b) (c) 

(e) 

Figure 4.31 : Infrequency images of Band 4, (a) original (b) kernel (c) First

band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass

(Segment III).
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Figure 4.32: Unsupervised fuzzy k-means images of Band 4, (a) original (b) kernel (c) First 

band-pass (d) second band pass (e) third band pass (f) fourth band pass (g) fifth band pass 

(Segment III). 
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Table 4.4. Summary of the features identification of the inverse filtered images. 

List landform Soil type PCT 

Simple identifiable units 
Sabkha Salorthid / Gypsic solochk A thin linear areas as arte-

fact unit 

Many simple identifiable 
Alluvial plain Gypssiorthid / Calciorthid 

zones within the landform 

Simple identifiable zones 

Sand sheet and Dunes T orripsamment 
and surrounded by linear 
features within the land-
form 

Somewhat complex identi-

Gypsiferous pediplain Gypsiorthid / Petrie yypsisls 
fiable zones and no evi-
dence of linear features 
within the landform 

Infrequency Unsupervised clustering 

Simple identifiable units 
Two dominant units 

Clear thick linear feature 
Clear thick border zone 

zone 

Clear identifiable linear 
features . Zones established One dominant zone 
within the landform 

Many clear zones within Simple identifiable zones 
the landform within the landform 

Approximately one domi-
Somewhat complex, no nant identifiable zone, few 
evidence of linear features small zones within the 

landform 



filter images produce clear and robust linear features especially in third and fourth band­

pass images (Figure 4.28 (d) and (f). 

In cluster images, all the main soil areas are clear and there is some agreement with soil 

maps (MAW, 1986, 1995). In terms of linear features, the raw data presents a linear 

feature, but well defined in the band-pass images (figure 4.29 (b) to (g». The elongated 

blue area between green colour area (sabkha) and light green area (alluvial plain) is well 

established where there might be a transitional soil zone. 

There are few differences between features in Band 4 than in Band 7. The one feature 

that appeared somewhat different is the sabkha area as it is always different in other 

images (Figure 4.30). The features of the infrequency and the cluster images are similar 

in Bnad 7 with minor differences in other parts, but the overall results of Band 7 shows 

clearer features than Band 4 (Figures 4.31 and 4.32). Table 4.4 summarises the features 

identification of this spectral model. 

4.6 Summary 

In this chapter, the spectral analysis, which was based on the Fast Fourier Transform, 

was described. Using masking techniques in the analysis of spatial frequencies in the 

images, it is shown that low frequencies dominate the overall pattern. Generally 

complexity of image elements increases with addition of high frequencies and different 

parts of the image show different effects of specific frequency bands. Based on visual 
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interpretation, specific wavebands affect components of specific areas to different 

degrees. The use of spectral method, using masking techniques, together with the 

enhancement techniques has shown distinct features in the output images. Each 

enhancement has the capability of partitioning the data sets. Both peT and infrequency 

enhancements show more features than the cluster method. The degree of producing 

coherent patterns was achieved. Both wavebands show similar results, but the overall 

results show that the features in band 7 are clearer than in Band 4. 

The spatial spectral approach at one level confirms the portioning of test areas into the 

conventionally mapped units. However, it is shown that some areas are intrinsically 

more complex while others are well represented by the units at this scale. There is clear 

evidence that at this scale there are transition zones that are sufficiently extensive to be 

mapped as distinct units. Also there are clear linear features within zones. In addition 

the complexity of particular unit types is not consistent from one test segment to 

another. 
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CHAPTERS 

ARTIFICIAL NEURAL NETWORK MODELLING 

5.1 Introduction 

A neural network, considered as a non-linear regression model, has become a practical 

tool for use in many classification, pattern recognition, optimisation, and forecasting 

applications. An Artificial Neural network, in concept, is a connectionist model which 

requires processing of many inputs in parallel. In addition, in the light of memory, it is 

essentially content-addressable versus location-specific so that the contents of many 

locations contribute to the definition of values (Hewitson amd Crane 1993; Atkinson 

and Tatnall, 1997; Bruzzone et al., 1997). 

Neural networks are modelled after the constructs of the human brain, wherein 

intelligence is stored in neural pathways as well as in memory. In artificial neural 

networks, knowledge is stored in the form of weights applied to node, that is, as 

multiplicative values to be applied to input. Instead of algorithms to determine values, a 

supervised network is presented with repeated examples of inputs and corresponding 

correct outputs and allowed self-learning (Beale and Jackson, 1991; Bischof et at., 

1992; Jarvis and Stuart, 1996; Poala and Schowengerdt, 1997). 
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5.2 Multilayer Perceptrons (MLP) 

5.2.1 Introduction 

The multilayer perceptrons are perhaps the most popular network architecture in use 

today, developed originally by Rumehart and McClelland (1986) and discussed at 

length in most Neural Network text books such as Beale and Jackson (1991), IIaykin 

(1994), and Bishop (1995). Each unit of a MLP computes a biased weighted sum of 

their inputs and passes this activation level through a transfer function to produce their 

output, and the units are arranged in a layered feed-forward topology (Aleksander and 

Morton, 1995; Gurney 1997). Thus, the network has a simple interpretation as a form of 

input-output model, with the weights and thresholds that are the free parameters of the 

model. Such units in each layer determine the function complexity. Important issues in 

MLP design include specification of the number of hidden layers and the number of 

units in these layers (Haykin, 1994; Bishop, 1995; Gurney, 1997; Hewitson and Crane, 

1993). 

The number of input and output units is defined by the problem. The number of hidden 

layers and units to use is far from clear. A good starting point in model design preferred 

by several researchers, is to use one hidden layer, with the number of units equal to half 

the sum of the number of input and output units (Key et at., 1990; Benediktsson et ai., 

1990a; Ripley, 1996; Benediktsson and Sveinsson , 1997). 
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5.2.2 Training Multilayer Perceptrons 

Once the number of layers, and number of units in each layer, have been selected, the 

network's weights and thresholds must be set so as to minimise the prediction error 

made by the network. This is the role of the training algorithms. Most of the historical 

cases adjust the weights and thresholds in order to minimise the error. This process is 

equivalent to fitting the model represented by the network to the training data available 

(Beale and Jackson, 1991; Dreyer, 1993; Ripley, 1996). The error of particular 

configuration of the network can be determined by running all the training cases 

through the network, comparing the actual output generated with the desired or target 

outputs. The differences are combined together by an error function to give the network 

error. The most common error function is the sum-squared error, where the individual 

errors of output units on each case are squared and summed together (Hewitson and 

Crane, 1993; Aleksander and Morton, 1995; Bishop, 1995; Gurney, 1997). 

In traditional modelling approaches, i. e. linear modelling, it is possible to 

algorithmically determine the model configuration which absolutely minimises this 

error. The price paid for the greater non-linear modelling power of neural networks is 

that, though the user can adjust a network to lower its error, they can never be sure that 

the error could not be lower still (Beale and Jackson, 1991; Haykin, 1994; Bishop, 

1995). 
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Each of the N weights and thresholds of the network is taken to be a dimension in space. 

The N+ lth dimension is the network error. For any possible configuration of weights 

the error can be plotted in the N+ 1 th dimension, forming an error surface. The objective 

of network training is to find the lowest point in this multi-dimensional space. In a 

linear model, with sum-squared error function, the error surface is a parabola, which 

means that it is a smooth bowl-shape with a single minimum. Therefore, it is easy to 

locate the minimum (Beale and Jackson, 1991; Haykin, 1994; Bishop, 1995). 

Neural network error surfaces are much more complex, and are characterised by a 

number of unhelpful features, such as local minima. It is not possible to analytically 

determine where the global minimum of the error surface is, and therefore neural 

network training is essentially an exploration of the error surface (Carling, 1992; 

Haykin, 1994; Fausett, 1994; Patterson, 1996). From an initially random configuration 

of weights and thresholds (i. e. a random point on the error surface), the training 

algorithms incrementally seek for global minimum (Fausett, 1994; Patterson, 1996). It 

can be achieved typically by calculating the gradient of the error surface at the current 

point, and then using that information to make a downhill move. Eventually, the 

algorithm stops in a low point, which may be a local minimum, but, on the other hand, 

could be the global minimum (Beale and Jackson, 1991; Bishop, 1995). 
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5.2.3 The Back Propagation Algorithm 

The best-known example of a neural network-training algorithm is back propagation 

(Patterson, 1996; Haykin, 1994; Fausett, 1996). Modern second-order algorithms such 

as Conjugate Gradient Descent and Levenberg-Marquardt are substantially faster for 

many problems, but back propagation still has advantages in some circumstances, and is 

the easiest algorithm to understand. There are also heuristic modifications of back 

propagation, which work well for some problem domains, such as quick propagation 

and delta-bar-delta (Beale and Jackson, 1991; Aleksander and Morton, 1995; Gurney, 

1997). 

Most neural network methods are based on the minimisation of a cost function. The 

most commonly used optimisation approach applied for the minimisation is the gradient 

descent. Both the delta rule and the back propagation algorithm are derived by 

minimising the criterion function: 

N 1 N m 

E = I & p& = - I L 
p=1 2 p=1 j=1 

Where p is a pattern number, N is the sample size, tpj is the desired output of the jth 

output neuron, Opj is the actual output of the neuron and m is the number of output 

neuron. 
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In back propagation algorithm, the gradient vector of the error surface is calculated. The 

vector points in the direction of steepest descent from the current point, so by searching 

short distances, it can decrease the error. A sequence of such moves will eventually find 

minima of some sort. The difficult part is to decide how large the step should be (Beale 

and Jackson, 1991; Aleksander and Morton, 1995; Gurney, 1997). Large steps may 

converge more quickly, but may also overstep the solution or go off in the wrong 

direction. In neural network training, for example, is where the algorithm progresses 

very slowly along a steep, narrow, valley, bouncing from one side across to the other. In 

contrast, very small steps may go in the correct direction, but they also require a large 

number of iterations (Beale and Jackson, 1991; Aleksander and Morton, 1995; Gurney, 

1997). In practice, the step size is proportional to the slope and to a special constant 

which is learning rate. The correct setting for the learning rate is application dependent, 

and is typically chosen by experiment, and it may also be time varying, and getting 

smaller as the algorithm progresses (Beale and Jackson, 1991; Aleksander and Morton, 

1995; Gurney, 1997). 

The algorithm is also usually modified by inclusion of a momentum term, and this 

encourages movement in a fixed direction, so that if several steps are taken in the same 

direction, the algorithm picks up speed. It gives the ability to escape local minima, and 

also to move rapidly over flat spots and plateaus (Haykin, 1994; Bishop, 1995). 

Therefore, the algorithm progresses iteratively through a number of epochs. On each 

epoch, the training cases are each submitted in turn to network, and target and actual 
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outputs compared and the error calculated (Haykin, 1994; Bishop, 1995). The error 

together with the error surface gradient is used to adjust the weights, and then the 

process repeats (Hay kin, 1994; Bishop, 1995). The initial network configuration is 

random and training stops when a given number of epochs elapse, or when the error 

reaches an acceptable level, or when the error stops improving (Beale and Jackson, 

1991; Aleksander and Morton, 1995; Gurney, 1997). 

5.2.4 Over-fitting and Generalisation 

The most desirable property of a network is its ability to generalise to new cases (Beale 

and Jackson, 1991; Aleksander and Morton, 1995; Gurney, 1997). In reality, the 

network is trained to minimise the error on the training set, and short of having a perfect 

and infi'nitely large training set, this is not the same thing as minimising the error on the 

real error surface (Haykin, 1994; Bishop, 1995). 

The most important manifestation of this distinction is the problem of over-fitting 

(Haykin, 1994; Bishop, 1995). It is easiest to demonstrate this concept using polynomial 

curve fitting rather than neural networks, but the concept is precisely the same. The data 

is probably noisy, so that it is not necessarily expecting the best model to pass exactly 

through all the points (Haykin, 1994; Bishop, 1995). For instance, a low-order 

polynomial may not be sufficiently flexible to fit close to the points, whereas a high­

order polynomial is actually too flexible, fitting the data exactly by adopting a highly 

eccentric shape that is actually unrelated to the underlying function (Haykin, 1994; 

Bishop, 1995). 
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Neural networks have precisely the same problem. A network with more weights 

models a more complex function, and therefore prone to over-fitting (Beale and 

Jackson, 1991; Aleksander and Morton, 1995; Gurney, 1997). However, a network with 

fewer weights may not be sufficiently powerful to model the underlying function. For 

example, networks with no hidden layers actually model a simple linear function. On 

the contrary, larger networks will almost invariably achieve a lower error eventually, 

but may indicate over-fitting rather than good modelling, so that a cross-verification 

should be used (Beale and Jackson, 1991; Aleksander and Morton, 1995; Gurney, 

1997). 

Some of the training cases are reserved, and not actually used for training in the back 

propagation algorithm (Beale and Jackson, 1991; Aleksander and Morton, 1995; 

Gurney, 1997). They are used, instead, to keep an independent check on the progress of 

the algorithm. It is invariably the case that the initial performance of the network on 

training and verification sets is the same. As training progresses, the training error 

naturally drops, and providing training is minimising the true error function, the 

verification error drops too (Beale and Jackson, 1991; Aleksander and Morton, 1995; 

Gurney, 1997). However, if the verification stops dropping, or indeed starts to rise, this 

indicates that the network is starting to over-fit the data, and training should cease 

(Gurney, 1997). When over-fitting occurs during the training process like this it is 

called over-learning (Aleksander and Morton, 1995). In this case, it is usually advisable 

to decrease the number of hidden units and/or hidden layers, as the network is over-

134 



powerful for the problem at hand. In contrast, if the network is not sufficiently powerful 

to model the underlying function, over-learning is not likely to occur, and neither 

training nor verification errors will drop to a satisfactory level (Haykin, 1994; Bishop, 

1995). 

A problem with this approach of repeated experimentation is that the verification set 

does actually playa key role in selecting the model, which means that it is actually part 

of the training process (Haykin, 1994; Bishop, 1995). Its reliability as an independent 

guide to performance of the model is therefore compromised with sufficient 

experiments. In order to add confidence in the performance of the final model, it is 

therefore normal practice to reserve a third set of cases, which is known as a test set. 

The final model is tested with test set data, to ensure that the results on verification and 

training set are real, and not artefacts of the training process. Of course, to fulfil this role 

properly the test set should be used only once, if it is in tum used to adjust and reiterate 

the training process, it effectively becomes verification data (Haykin, 1994; Bishop, 

1995). 

5.2.5 Other Neural Networks 

5.2.5.1 Radial Basis Function Networks 

Weights and threshold define MLP units, which together give the equation of the 

defining line, and the rate of fall-off of the function from that line. Before application of 

the sigmoid activation function, the activation level of the unit is a hyperplane. In 
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contrast, its centre point and a radius define a radial unit. A point in N dimensional 

space is defined using N numbers, which exactly corresponds to the number of weights 

in a linear unit, so the centre of a radial unit is stored as weights. The radius or 

(deviation) value is stored as the threshold (Beale and Jackson, 1991; Aleksander and 

Morton, 1995; Gurney, 1997). It is worth emphasizing that the weights and thresholds in 

a radial unit are actually entirely different to those in a linear unit. The terminology here 

is critical and must be remembered that the radial weights really form a point, and a 

radial threshold is really a deviation (Haykin, 1994; Bishop, 1995). 

A radial basis function network (RBF), therefore, has a hidden layer of radial units, each 

actually necessary to have more than one hidden layer to model any shape of function. 

And, then it turns out to be quite sufficient to use linear combination of these outputs. 

The RBF has an output layer containing linear units with linear activation function 

(Haykin, 1994; Bishop, 1995). 

RBF networks have a number of advantages over MLPs. Firstly, RBFs, can model any 

non-linear function using a single hidden layer, which removes some design-decisions 

about numbers of layers. Secondly, the simple linear transformation in the output layer 

can be optimised fully using traditional linear modelling techniques, which are fast and 

do not suffer from problems such as local minima, so that RBF networks can therefore 

be trained extremely quickly (Beale and Jackson, 1991; Aleksander and Morton, 1995; 

Gurney, 1997). On the other hand, before linear optimisation can be applied to the 
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output layer of an RBF network, the number of radial units must be decided, and then 

centres and deviations must be set. Although it is much faster than MLP training, the 

algorithms to do this are no less prone to discovering sub-optimal combinations 

(Hay kin, 1994; Bishop, 1995). 

5.2.5.2 Kohonen Networks 

Kohonen networks are used quite differently to the other networks. Whereas all other 

networks are designed for supervised learning tasks, Kohonen networks are designed 

primarily for unsupervised learning (Fausett, 1994; Haykin, 1994; Patterson, 1996). 

Whereas in supervised learning the training data set contains cases featuring input 

variables together with the associated outputs, in unsupervised learning the training data 

set contains only input variables (Haykin, 1994; Bishop, 1995). 

One possible use is therefore in exploratory data analysis (Ito and Omatu, 1997). The 

Kohonen network can learn to recognize clusters of data, and can also relate similar 

classes to each other. The user can build up an understanding of the data, which is used 

to refine the network. As classes of data are recognized, they can be labeled, so that the 

network becomes capable of classification tasks. Kohonen networks can also be used 

for classification when output classes are immediately available, and the advantage in 

this case is the ability to highlight similarities between classes (Beale and Jackson, 

1991; Haykin, 1994; Bishop, 1995). 
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A Kohonen network has only two layers, and they are the input layer and an output 

layer which known as the topological map layer. The units in the topological map layer 

are laid out in space typically in two dimensions. Kohonen networks are trained using 

an iterative algorithm. Starting with initially random set of radial centres, the algorithm 

gradually adjusts them to reflect the clustering of the training data (Beale and Jackson, 

1991; Haykin, 1994; Bishop, 1995). Since there are no known application of ANN in 

image processing which deal with texture models, the discussion which follows 

examines the features of ANN and benefits of ANN through a consideration of its use in 

image processing. 

5.3 ANN in Image Processing 

ANN is widely used in image processing as a classification algorithm. There are many 

studies which have shown that the artificial neural network technique produced similar 

or superior classification results to those of the conventional statistical classifiers (Key 

et al., 1989; Liu and Xiao 1991; Heermann and Khazenie 1992; Li et al., 1993; Paola 

and Schowengerdt 1994 ; Yoshida and Omatu 1994). The increase in accuracy can be 

attributed to the using of multi-source data, i.e. when texture and ancillary data are used 

(Fisher et al., 1994; Bruzzone et a!., 1997; Mather et al., 1998; Lee et al., 1987; Wang 

1993; Zhuang et al., 1991). With multi-source data the distributions tend to be less 

regular and for this reason the non-parametric neural network method might be a better 

choice for parameter estimation (Benediktsson et al., 1990 and 1993). 
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One of the interesting finding of the feasibility of using ANN is that minimal training 

sets are satisfactory for neural network classifiers (Hepner et al., 1990; Ritter and 

Hepner, 1990). According to Key et al. (1990), this is quite possible because a statistical 

classifier does not have enough data to describe the parameters of assumed distribution. 

However, Benediktsson et al. (1990a, 1990b, and 1998) and Bichof et al. (1992) 

preferred using a conventional statistical classifier to an artificial neural network when 

the distribution of the data is well known. On the contrary, Key et al. (1989, 1990) 

pointed out that the artificial neural network may have great flexibility in classification 

of pixels in the data set that differ significantly from those in the selected training sets. 

Furthermore, the neural network has the power for a complex data set of differentiating 

between classes, and this capability can be applied to very complex data sets, which 

have shapeless distributions (Fierens et al., 1994; Paola and Schowengerdt, 1994). In 

general, the greater generalisation capability of the neural network allows extension to 

images not used in the training. For instance, Key et al. (1990) stated that the neural 

network correctly classified a much higher percentage of imagery collected on a second 

date than the maximum likelihood method. 

These studies show clearly the power of ANN algorithms in dealing with complex non­

linear relations and in allocating value with poor training data sets. ANN models are 

used in this study not to classify images but to model image texture. ANN models are 

not known to have been used to model texture of images for earth resource applications. 
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There are number of algorithm for measuring texture used for images in the visible and 

infrared wavebands and for radar images. These are, however, simple linear functions of 

image properties. A simple ANN model is developed here in order to address this 

problem (chapter 3, section 3.3). 

5.4 Experimental Strategies 

A simple segmentation of an image of part of AI-Ahsa region was used as a test data 

sets. The subsets I, II and III, which are composed of 128 lines x 128 pixels, of Landsat 

Thematic Mapper (TM) data in bands 4 and 7 were used. 

5.4.1 Convolution filter model 

The neural network was configured as a fully interconnected back propagation linkage 

at three layers. The input layer was composed of i) 3 x 3 x 1 (Band 7), ii) 3 x 3 x 1 

(Band 4) array of neurones. This provides a 3 x 3 pixel window to move across the TM 

data assuring a simultaneous consideration of texture as well as spectral decision space 

parameters. Using the 3 x 3 window of input neurones allowed the network to 

assimilate data of spatially adjacent pixels in both the training and classification 

operations. 

The second layer was a single, which is known as a hidden layer, 5 neurones for both 

band 4 and 7. Typically the hidden layers of neurones capture low-level features, such 

as presence of a simple pattern in a single band, or some weighted average of several 
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spectral bands. Successive layers of neurones then may use the signals from neurones in 

the preceding layers to form more complex precepts, which may be associated more 

closely with desired classification in the training set. Several researchers have 

determined that the number of hidden layers and the number of neural units per layer 

greatly affect the performance of neural networks (Rumelhart et at., 1986; Gorman and 

Sejnowski, 1988). 

The output layer is composed of three neurones (Three different soil areas) and 4 

neurones (Four different areas) or 5 neurones (Four areas with one duplicated) 

representing the target classes of landscape that were to be produced by the network. 

5.4.2 Training Set Strategy 

To describe the soil units with respect to complex elements as well as a linear feature in 

between, the training template of bitmaps were created. The area between different 

landforms was traced and part of it digitised on screen over the original images, and a 

selected training set of each land unit was derived representing different types of soil 

landscape units, typically from one to two blocks of around 100 pixels in size. 

Therefore, a training set-up that establishes sensitive clustering is optimum. The 

selection of four training areas (ABCD) is based on the result of unsupervised fuzzy k­

means, and then by a selective inclusion set of training areas (Le. AABCD, ABBCD, 

ABCCD, and ABCDD) and exclusion set of training areas (Le. ABC, ABD, ACD, and 

BCD). These training set-ups are used to examine the effect of different areas on the 
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whole image texture and hence to asses if the resulting textural map represents real 

features or artefacts. 

5.5 Results and Discussions 

5.5.1 Introduction 

The ANN models as described earlier in this chapter were applied to bands 4 and 7 of 

AI-Ahsa data sets (Test areas I, II and III). There were three test segments selected for 

this particular investigation, and the size of each segment is 128 rows by 128 columns. 

The first results of the ANN modelling procedure are expressed as images of predicted 

values of each pixel based on its relation to its eight neighbour pixels. These images 

since they present pixel values in relation to a 3 x 3 area that surrounds them can be 

looked at as images of texture of reflectance. However, predicted pixel values will 

depend in the first place on the range of values in the 3 x 3 set. Thus, differences in 

texture across the image cannot be distinguished from differences of sets of values 

across the image. In order to eliminate this effect, the first image pixel values are 

divided by the original values. The resulting output image is then more a direct function 

of texture. Differences in values of the output image are differences in the degree to 

which the whole image ANN model does not fit the local situation. The assessment of 

texture image results is based first on a consideration of image structures such as mean 

and standard deviation, assuring a normal frequency distribution of Digital image 
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Numbers and secondly on a consideration of images subject to enhancement techniques 

which are determined experimentally. 

5.5.2 Image Statistics 

The output images were compared in terms of image statistics and histograms. The 

output images relate to training areas of the image A, B, C, and D. the combinations of 

training sets considered are: (i) ABCD for the four areas, (ii) ABC, ABD, ACD, and 

BCD for three areas, and (iii) AABCD, ABBCD, ABCCD, and ABCDD. The table of 

image statistics for both bands 4 and 7 shows wide deviations in mean and standard 

deviations of digital number in response to different training area set-ups. For Band 4 

mean values differ between 20.4 and 40.2 and standard deviations for these means are 

4.07 and 21.2. Wide fluctuations in means can perhaps be expected with an output 

which is computed as a division of two images (see tables 5.1, 5.2, 5.3). 

Inclusion and exclusion of areas have profound effects on the frequency histogram of 

the output images. Excluding the training area for zones A and B produce two radically 

different histograms with significant differences in the numbers of peaks, their degree of 

separation and their Kurtosis. Excluding the training area for zones C and D have 

smaller effects on the histograms. Conversely, inclusion the training area for A and B 

produce marked changes in the histograms. Here too are differences in the number of 

peaks and their separation and kurtosis. Whereas inclusion of the training area for C and 

D does not have substantial effects in relation to the histograms of Bands 4 and 7 with 
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Table 5.1. Image statistics of segment I. 

Test-I Mean St. deviation Minimum Maximum 

ABCD-4 29.23 8.58 10.00 68 .00 

ABCD-7 28 .67 6.83 7.00 53 .00 

ABC-4 34.81 6.52 15.00 79.00 

ABC-7 33 .74 5.96 7.00 68.00 

ABD-4 29.69 8.69 13 .00 77.00 

ABD-7 27.78 6.87 7.00 54.00 

ACD-4 36.13 7.93 13 .00 79.00 

ACD-7 35.91 10.01 7.00 53 .00 

BCD-4 40.26 21.21 2.00 98 .00 

BCD-7 40.26 21.21 2.00 98.00 

AABCD-4 21.70 6.96 8.00 59.00 

AABCD-7 20.40 4.07 4.00 41 .00 

ABBCD-4 27.30 9.66 8.00 66.00 

ABBCD-7 24.77 7.37 5.00 53 .00 

ABCCD-4 28.19 10.03 8.00 77.00 

ABCCD-7 26.42 8.41 5.00 49.00 

ABCDD-4 29.61 9.18 10.00 77.00 

ABCDD-7 28 .26 7.91 7.00 53 .00 
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Table 5.2. Image statistics of segment II . 

Test-ll Mean St. deviation Minimum Maximum 

ABCD-4 2l.28 7.31 7.00 59.00 

ABCD-7 20.60 6.29 3.00 49.00 

ABC-4 25 .93 5.28 17.00 66.00 

ABC-7 26.28 4.09 7.00 58.00 

ABD-4 2l.78 7.00 7.00 60.00 

ABD-7 20.90 5.66 3.00 49.00 

ACD-4 20.75 7.97 7.00 59.00 

ACD-7 21 .97 9.35 4.00 49.00 

BCD-4 32.56 18.30 6.00 79.00 

BCD-7 34.43 14.86 7.00 79.00 

AABCD-4 18.28 4.36 10.00 66.00 

AABCD-7 17.65 4.21 4.00 73 .00 

ABBCD-4 20.42 7.73 7.00 67 .00 

ABBCD-7 16.67 5.67 2.00 49.00 

ABCCD-4 21.48 7.49 5.00 60.00 

ABCCD-7 19.53 6.97 2.00 49.00 

ABCDD-4 21 .72 6.07 7.00 59.00 

ABCDD-7 18.70 6.08 
:: ... 

3.00 49.00 
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Table 5.3. Image statistics of segment III. 

Test-ill Mean St. deviation Minimum Maximum 

ABCD-4 33.14 16.58 10.00 98 .00 

ABCD-7 29.09 13 .02 6.00 67.00 

ABC-4 41 .44 11.53 19.00 98 .00 

ABC-7 37.48 10.39 6.00 81 .00 

ABD-4 37.05 14.69 12.00 95 .00 

ABD-7 27.54 13 .99 6.00 68 .00 

ACD-4 35.39 13 .59 12.00 98 .00 

ACD-7 30.31 9.02 6.00 62.00 

BCD-4 39.46 23 .90 11.00 105.00 

BCD-7 39.19 29.65 2.00 102.00 

AABCD-4 32.08 12.17 8.00 84.00 

AABCD-7 24.82 8.52 6.00 59.00 

ABBCD-4 28.31 17.55 8.00 98.00 

ABBCD-7 24.75 13.42 6.00 64.00 

ABCCD-4 37.24 15.95 9.00 98.00 

ABCCD-7 26.79 14.26 6.00 61.00 

ABCDD-4 32.12 15 .99 9.00 95 .00 

ABCDD-7 27.85 12.84 6.00 67.00 
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Figure 5.1: Histogram of the second output of the ABeD image (Band 7, Segment I) . 
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Figure 5.2: Histogram of the second output of the ABC image (Band7, segment J). 
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Figure 5.3: Histogram of the second output of the ABD image (Band 7, segment I) . 
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Figure 5.4: Histogram of the second outpout of the ACD image (Band 7, segment I). 
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Figure 5.5: Histogram of the second out pout of the BCD image (Band 7, segment I) . 
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Figure 5.6: Histogram of the second output of the AABCD image (Band 7, segment J). 
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Figure 5.7: Histogram of the second output of the ABBCD image (Band 7, segment I) . 
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Figure 5.8: Histogram of the second output of the ABCCD image (Band 7, segment I). 
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Figure 5.9: Histogram of the second output of the ABCDD image (Band 7, segment I). 



training areas ABCD. This indicates that areas A and B have more than one textural 

element. They probably are best not being regarded as uniform zones on the basis of this 

measure of texture, whereas zones C and D can be regarded as uniform. The question 

remains of whether or not the parts of the overall distribution represent coherent spatial 

zones on the image and whether or not the training areas selection affects are effects the 

mapping of textural zones (see Figure 5.10 that shows the location of the training areas). 

5.5.3 Assessment of output images 

The ANN image results are presented using linear contrast stretch. These images show 

clear differences in partitioning of the test areas I, II, III. Moreover, the images produce 

patterns that can be interpreted in terms of the main geographical elements of the test 

areas. Figure 5.11 (a) shows the output image for the full training set-up ABCD for 

Band 7. In this figure, area A is distinguished as a clear relatively uniform texture zone. 

Areas B and C are recognised but there is considerable mixing of texture zones and 

confusion between C and D and B and D. Exclusion of training zones (Figure 5.11 (c), 

(e), (g) and (i)) shows a number of effects. Area A remains in each case where it is 

represented by a training area, a clearly defined and homogenous zone. With a double 

training zone (Figure 5.11 (k)) it contains a larger number of unclassified pixels that 

have a coherent pattern. Overall, however, zone A is shown to have a specific textural 

pattern distinct from other textural patterns in segment I. zone B in each case, with both 

exclusion and inclusion of training area, is a zone of mixed texture. One textural 

element 
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Figure 5.10: Illustration diagram of the three segments showing the four zones A, B, C, 
andD. 
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is shown in figure 5.11 (a), (g), (i), (k), (m), and (q) to form a boundary of transition 

zone between B and C. Zone C is also one of mixed texture with a boundary or 

transition zone apparent in figure 5.10 (a), (e), (k), (m), and (q). Double training areas in 

zone D confirms (Figure 5.11 (q)) the distinct nature of boundary zones. Confusion 

between zones arising from exclusion of training areas indicates that the excluded 

training set represents a real distinct textural zone with specific textural properties. 

Overall, the images show that the texture zones correspond to the spectral band pass 

zones shown in chapter 4. The zones do not all have simple distinct textures. Zones A 

and D are simple distinct but the other zones are mixed and these zones are 

characterised by the mixture and spatial arrangement of textural features. In zone B and 

C these textural elements include similar textures to those of the boundary or 

transitional zone, 

Output images of Band 4 in segment I reveal eventually the same points about the 

degree of distributions and homogeneity of the four zones ABC and D. however, what is 

clear for each zone is that the spatial extent and patterns of textural elements is different 

from Band 7. The zones are approximately in the same locations in that the boundary or 

transition zones are more or less in the same positions and have the same extent. But, 

there are differences and it remains to be investigated whether these differences are real 

or artefacts of the image processing. 

158 



Output images of the segment II are presented in figure 5.13. Although area A is 

recognised, there is considerable mixing of texture zones. Other areas are also appeared 

as mixing of texture zone except area C that is distinguished as a clear texture (Figure 

5.13 (a)). Not only area A remains in each case, with both exclusion and inclusion, a 

mixed texture, but also area B is a mixed texture as well with a transition zone to 

apparent in most of the images of figure 5.13. However, homogeneous exclusion of 

training zones shows areas A and D. Band 4 shows somewhat similar points about the 

degree of distributions and homogeneity of the four zones. But there are distinct 

differences for each zone in terms of the spatial extent and pattern of textural elements 

from Band 7. 

In segment III, there are similarities to segment I because they have similar landform 

(i.e. sabkha, alluvial plain, and sand sheet & dunes). Of all the four zones, area A is less 

complex than areas B, C, D. There are, however, mixed texture zones in area A, for 

instance figure 5.15 (k) and (m). While area B shows mixed and clear textural zones, 

area C is the most complex of mixing texture zones and difficult to distinguish except 

the image of figure 5.15 (c) and (m). In Band 4, there are some similarities of the main 

textural zones to band 7, although the mixing textural zones are somewhat different. 

Most of the distinguished linear features and zones in band 7 are clearer than in Band 4. 
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(a) ABCD (b) ABCD 

(c) ABC (d) ABC 

(e) ABD (f) ABD 

Figure 5.11 : Images (a) to (r) represent the ANN outputs of the training scheme for 
Band 7. 
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(g) ACD (h) ACD 

(\) AABD 

Figure 5.11 (Continued). 
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(m)ABBCD (n) ABBCD 

... 

(0) ABCCD (P)ABCCD 

(q) ABCDD 
(r) ABCnD 

Figure 5.11 (Continued). 
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(a)ABCD (b) ABCD 

(c) ABC (d) ABC 

(e) ABD (t) ABD 

Figure 5.12 Images (a) to (r) represent the ANN outputs of the training scheme for 
Band 4. 
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(g) ACD (h) ACD 

U)BCD 

(k) AABD 
(I) AABD 

Figure 5.12 (Continued). 
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(m)ABBCD (n) ABBCD 

(q) ABCDD (r) ABCDD 

Figure 5.12 (Continued). 
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(a) ABCD (b) ABCD 

(c) ABC (d) ABC 

(e) ABD (t) ABD 

Figure 5.13 Images (a) to (r) represent the ANN outputs of the training scheme for 
Band 7. 
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(g) ACD (h) ACD 

(i) BCD G)BCD 

(k) AABD 
(I) AABD 

Figure 5.13 (Continued). 
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(m)ABBCD (n) ABBCD 

(0) ABCCD (P)ABCCD 

(q)ABCDD 
(r) ABCDD 

Figure 5.13 (Continued). 
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(a) ABCD (b) ABCD 

(d) ABC 

(e) ABD (f) ABD 

Figure 5.14 Images (a) to (r) represent the ANN outputs of the training scheme for 
Band 4. 
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(g) ACD (h) ACD 

(i) BCD mBCD 

(k) AABD (I) AABD 

Figure 5.14 (Continued). 
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(m)ABBCD (n) ABBCD 

(0) ABCCD (P)ABCCD 

(q) ABCDD 
(r) ABCDD 

Figure 5.14 (Continued). 
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(a)ABCD (b) ABeD 

(c) ABC (d) ABC 

(e) ABD (f) ABD 

Figure 5.15 Images (a) to (r) represent the ANN outputs of the training scheme for 
Band 7. 
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(g) ACD (h) ACD 

(i) BCD U)BCD 

(k) AABD (1) AABD 

Figure 5.15 (Continued). 
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(m)ABBCD 

x 

:: 

(0) ABCCD (P)ABCCD 

(q) ABCDD (r) ABCDD 

Figure 5.15 (Continued). 

174 



(a) ABCD (b) ABCD 

(c) ABC (d) ABC 

(e) ABD (f) ABD 

Figure 5.16 Images (a) to (r) represent the ANN outputs of the training scheme for 
Band 4. 
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(g) ACD (h) ACD 

(i) BCD G)BCD 

(k) AABD (I) AABD 

Figure 5.16 (Continued) . 
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(m)ABBCD (n) ABBCD 

(0) ABCCD (P)ABCCD 

(q) ABCnD 
(r) ABCDD 

Figure 5.16 (Continued). 
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5.5.4 Analysis of images for soil landscape identification 

Because of the way the training areas were selected, that is, on the basis of the 

interpreted inverse filtered FFT images, it is not possible to infer anything about the 

evidence for soil zones. By using training areas in areas A, B, C, and D we of necessity 

assume that such areas exist. 

It is possible to argue that the training areas with their combinations of excluded and 

included members represent a set of training areas from the images, which are not 

severely biased. The indication that this is so is given by the fact that all the images 

show more or less the same number and spatial arrangement of sub-areas. 

This is hardly surprising in one sense since the whole argument about the interpretation 

of the complex elements is based on the fact that image reflectance is controlled by real 

soil, and rock reflectance properties. Thus, there are bound to be persistent patterns of 

reflectance related to the main physical features of the study areas. However, what are 

not set by the selection of the training areas are the positions and nature of boundary 

zones and the patterns of texture within parts of the image. This means, we can usefully 

examine the relation between image segmentation using ANN and soil/landform units 

(MA W, 1986, 1995) in terms of boundary properties and within zone variability. 
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5.5.4.1 Test segment I 

The end product of the main soil/landform units of this segment is given in figure 5.11, 

which consists of sabkha, sand sheet & dunes, and alluvial plain. The sabkha area is 

well defined and appears as a distinct zone from other areas. It corresponds closely with 

the mapped soil and landform units in this test segment. In Band 7 the boundary with 

both the sand sheet & dunes and alluvial plain is clear and sharp and in many image 

represented by a thin line of unclassified pixels. In Band 4 the boundary is much less 

distinct and more irregular. The boundary zone is also narrower in Band 7. 

The sand sheet & dunes unit in Band 7 appears as a distinct zone but its boundary with 

alluvial plain consists of a zone that is sharply defined on the alluvial plain side but not 

on the sand sheet side in both Bands 7 and 4. The boundary zone is narrower in Band 4. 

Two texture types with complex patterns consistently represent the sand sheet area. 

The alluvial plain area is a complex, poorly defined area, with main textural elements 

similar to the boundary zones with sabkha and the sand sheet & dunes areas. There are 

distinct alluvial plain textures but they are not present as a coherent distinct zone. 

5.5.4.2 Test segment II 

Test segment II consists of sabkha, sand sheet, and gypsiferous pediplain. The result of 

pattern of these units is much less clear than in test segment I or segment III. The area 

that is consistently well defined and appears as a distinct relatively homogenous 
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Table 5.4 ° Summary of the features identification of the ANN imageso 

.. .... . ................ . 

:List °landfqihl\;': 

Sabkha Salorthid / Gypsic solochk 

Alluvial plain Gypssiorthid / Calciorthid 

Sand sheet and Dunes I Torripsamment 

Gypsiferous pediplain Gypsiorthid / Petrie yypsisls 

One dominant identifiable zone, unclassified thin linear feature, few images 
show somewhat complex features 

Somewhat complex zones, few images show simple zones, few identifiable 
broader linear features 

More or less complex identifiable zones, very complex in few images, no 
evidence of linear features 

In most cases very complex features, very few cases show identifiable 
zones 



unit is the sand sheet area, whereas the sabkha areas are extremely complex in terms of 

texture components and patterns. There is considerable ambiguity about the location and 

extent of the boundary zone between sabkha and the gypsiferous pediplain. The 

gypsiferous pediplain also is extremely complex. Band 4 shows greater complexity in 

the units and more ambiguity in the boundary zones than Band 7. 

5.5.4.3 Test segment III 

In this segment, the sand sheet is a very complex area, shown as a very broad, poorly 

defined boundary to the sabkha. Appearances are much more complex in Band 7 than 

Band 4. The sabkha unit is a persistent and well-defined area but complex. There is 

ambiguity in boundary areas with sand sheet but not with alluvial plain. The boundary 

with alluvial plain is consistently narrower and sharper than with sand sheet. The 

alluvial plain is clear, in consistent location and made up two or more textural elements 

with complex patterns. Table 5.4 summarises the feature identification of the ANN 

model. 

5.6 Summary 

This study has explored the ANN method of maximising and utilising the soil mapping 

of digital imagery. The texture approach together with training strategy show different 

output images in terms of identifying linear features and zones. Of all the resulting 

images of the training scheme, the images of the ABC training parameters was the most 

simple and coherent in terms of identifying the main soil zones. Although this ANN 
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method is under prior assumption of selecting the training areas, the training strategy 

has shown that the outputs of the data sets sometimes are simple and sometimes are 

complex. This means that this method can be used, as a measure of complex elements in 

the feature space scales. 
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6.1 Introduction 

CHAPTER 6 

MULTIFRACTAL ANALYSIS 

In the interpretation and analysis of digital images of remotely sensed data, the scale of 

observation and measurement is critical in determining image properties and features. 

Many environmental processes and patterns are scale dependent in the sense that the 

way they appear is homogeneous at one spatial scale and heterogeneous at another 

(Davis et at., 1991; Ehleringer and Field, 1993). Since spatial heterogeneity constrains 

the ability to transform information from one scale to another, an important issue in the 

integration and analysis of remote sensing data is the resolution scales of different data 

sets. Several studies have shown that landscape pattern has a significant influence on the 

response of measurements to changes in spatial scale (Turner et at., 1989a and 1989b; 

Lam and Quattrochi 1992). Scale in a remote sensing perspective can be characterised 

as the integral of space and time over which a measurement is made. Thus, the element 

of scale is presented as a metric used to measure the space and time elements for a 

phenomenon or process under observation (Davis et at., 1991; Quattrochi, 1993). 

In this chapter, the fractal and multi fractal analyses are presented as a means of 

examining the multi-scale properties of images. This is one of a set of such analyses but 
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has been widely used by mathematicians and is available in standard software products 

(Fraclab with Matlab). Most of the simulated fractals features are homogeneous since 

the fractals consist of a geometrical figure repeated on an ever-reduced scale. As a result 

the fractal dimension of any feature will remain the same on all scales. In the real world 

fractals are not homogeneous features. This means there is rarely an identical stimulus 

repeated on all scales. Two features might have the same fractal dimension and yet look 

completely different. Therefore, the real world fractals are heterogeneous features in 

which there is non- uniformity possessing rich scaling and self-similarity properties that 

can change from point to point. Since there is always some kind of scaling restriction 

with physical fractals for obvious reason, the development of multifractal analysis may 

resolve such complexity. 

6.2 Fractal analysis 

6.2.1 Background 

Fractal analysis has become a familiar term in the worlds research in the last 10 years 

especially in geoscience research following the pioneering work of Benoit Mandelbrot 

and others (Culling, 1984; Townshend and Justice, 1988; De Cola, 1989; Turner et al., 

1989a, 1989b; Lam and Quattrochi, 1992; Kineman, 1993; Steyaert, 1993). In addition, 

fractals and fractal analysis have been suggested as an innovative technique for 

characterising remote sensing images as well as identifying the effects of scale changes 

on the properties of images (De Cola, 1989; Lam and Quattrochi, 1992). Fractal 

dimension is key parameter of fractal analysis that is used to represent the spatial 
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complexity of point patterns, lines, and surfaces. This means the hiegher the fractal 

dimension, the more complex the form. Recent studies of fractal analysis, such as the 

concept of self-affinity, random fractal, and multifractals, have expanded fractal 

applications to many phenomena where pure fractals with strict self-similarity do not 

exist (Loveyjoy and Schertzer, 1990; Levy-Vehel and Berroir, 1991; Evertsz and 

Mandelbrot, 1992; Lavallee et a/., 1993; Levy-Vehel and Berroir, 1993; Davis et a/., 

1994; Levy-Vehel, 1998; Levy-Vehel and Vojak, 1998) 

Moreover, fractals are seen as a potentially robust method for understanding landscape 

complexity in which landscape features become fragmented depending upon the scale 

of observation and measurement (Qiu et a/., 1999; Emerson et a/., 1999). Consequently, 

heterogeneity controls our perception of the landscape being composed of a patchwork 

of different elements that make the landscape complex in appearance, structure, and 

function. The complexity, therefore, results from fundamental interactions that generate 

patterns composed of (i) physical processes that alter landscape structure and (ii) 

cultural and human-induced activities (Loveyjoy and Schertzer, 1990; Lavallee et a/., 

1993; Qiu et a/., 1999; Emerson et a/., 1999). Understanding how of the geometric 

shape and size of the land cover patterns, for instance, in terms of complexity are related 

to natural and human processes in order to determine the appropriate spatial scales and 

the type of remote sensing data to use in analysis of landscape dynamics (Qiu et a/., 

1999; Emerson et a/., 1999). Therefore, fractals can be applied to a variety of landscape 

problems because they have the opportunity to describe many of the irregular, 
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fragmented patterns found in nature (Mandelbrot, 1983). Since the applications of 

fractals are varied, there are some limitations describing the degree to which the area of 

a landscape patch is related to its edge, and how this measure can be modified to 

address diversity. In order to measure the heterogeneity of the landscape and the 

complexity of patch interaction within it, the fractal relation to patch area to patch edge 

of this landscape must be determined (Olsen, et at., 1993). However, there is another 

factor that affects the extant biophysical processes across a landscape. The juxtaposition 

of a patch to other patches, therefore, in terms of spatial arrangement can have 

significant effects, as can the number of different patches in one area and the equal 

distribution of patches across the landscape (Rex and Malanson, 1990; Olsen, et al., 

1993). Olsen et al. (1993) used fractals as a method for determining patch complexity 

and addressed their effectiveness when combined with measures to determine richness 

and evenness of patches within a landscape. 

The reason that fractal has been adopted in research is the fact that many patterns in the 

natural world are not measured as well as they should be. These patterns have 

underlying spatial structure of considerable complexity based on self-similarity 

(Loveyjoy and Schertzer, 1990; Lavallee et ai., 1993; Qiu et al., 1999; Emerson et al., 

1999). 

Remote sensing is a discipline that concerns itself with the observation and monitoring 

of the state of the planet. The observation is basically consisting of natural patterns in 

the spatial and temporal domains (Campbell, 1996; Jensen, 1996). Further, the patterns 
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are often observed at a variety of different space scales. As a result, it is extensively 

valuable that fractals could have much relevance for remote sensing.(Qiu et a/., 1999; 

Emerson et a/., 1999). 

Unfortunately, the number of practitioners in remote sensing who have tried to apply 

fractal analysis techniques to the data sets is extremely small, this is attributed to the 

lack of mathematical background especially fractal geometry as well as the lack of 

availability of software packages. 

6.2.2 Fractal Theory 

Starting with the theory of a line, Euclidean geometry explains that it is a figure of one 

dimension, which is basically the length. If the line is extending many times around and 

around, back and forth without crossing itself until it fills a sheet of paper, Euclidean 

geometry defines, it still as a line, a figure of one dimension. However, our intuitions 

strongly tell us that if the line fills the entire plane, it must be two-dimensional. 

In classical geometry, the dimension of a curve is defined as 1, a plane as 2, and cube as 

3. This is called topological dimension and is characterised by real value between 1 and 

2, according to the curve's degree of complexity. Similarity, a plan may have a 

dimension whose value lies between 2 and 3. This concept of fractional dimension was 

formulated by mathematicians Hausdorff and Besicovitch (Mandelbrot, 1983). 

Mandelbrot (1983) later called it fractal dimension and defined fractals as a set for 
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which the topological Haudorff-Besicovitch dimension strictly exceeds the topological 

dimension. Since then, the definition of fractals has been modified and a complete 

definition is still lacking. 

The derivation of fractals arIses from the fact that most spatial pattern of nature, 

including curves and surfaces, are so irregular and fragmented that classical geometry 

finds difficult to provide tools for analysis of their forms. For instance, the coastline of 

an island is neither straight nor circular, and no other classical curve can serve in 

describing and explaining its form without extra artificiality and complexity. 

The key concept of fractals is the use of self-similarity to define D. Many curves and 

surfaces are statistically self-similar meaning that each portion can be considered as a 

reduced scale image of the whole. Thus, D can be defined as 

D = logN I log(Jlr) 

Where llr is a similarity ratio, and N is the number of steps needed to traverse the curve 

Practically, the D value of a curve (e.g. coastline) is estimated by measuring the length 

of the curve using various step sizes. The more irregular the curve, the greater increase 

in length as step size decreases. And D can be estimated by the following regression 

equation: 
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LogL = C + B logG 

D = J-B 

Where L is the length of the curve, G is the step size, B is the slope of the regression, 

and C is a constant. The D value of a surface can be estimated in a similar fashion and is 

discussed in detail in the methods section. Another aspect of fractal concepts is the 

generation of fractal curves and surfaces. Based on the model of Brownian motion in 

physics, together with the concept of self-similarity. 

6.2.3 Fractal Surface Measurement Methods 

Several approaches to estimate the fractal dimension of real textures have been 

proposed in the literature, but the most widely used methods that have been used by 

geoscientists are described briefly in next subsections. 

6.2.3.1 Isarithm ftJetllOd 

The isarithm method, sometimes called the walking-divider method, utilises the 

isarithms of the surface as a means in determining the fractal dimension D of the surface 

where the equation is written as: 

DsurJace = Disarithm + 1 
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The algorithm was evolved from Goodchild (1980), Shelberg, et al. (1983), and Jaggi, 

et al. (1993). In addition to the data matrix with numbers of rows and columns 

specified. 

6.2.3.2 Variogram Met/rod 

In this method, the variogram function, which describes how variance in surface height 

varies with distance, is used for estimating the fractal dimension. The only difference 

between the traditional variogram and the variogram used in fractal estimation is that 

distance and variance are portrayed in double-log form. The slope of linear regression 

performed between these two variables is then used to determine the fractal dimension, 

where the equation is written as: 

D=3-(b/2) 

The algorithm was pioneered and evolved from Mark and Aronson (1984), and being 

developed by Jaggi, et al. (1993). 

6.2.3.3 Triangular Prism Method 

The triangular prism method compares the surface areas of the triangular prisms with 

the pixel area (step size squared) in log-log form (Clarks, 1986; Jaggi, et al., 1993). For 

each step size, the triangular prisms are constructed by connecting the heights of the 

four corners of the pixel to its centre, with the centre height being the average of its 
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comers. The areas of these surfaces can be calculated by using trigonometric formulae. 

The fractal dimension is calculated by performing regression on the surface areas and 

pixel areas, where the equation is written as 

D=2-b 

This algorithm was evolved by Clarks (1986) and developed by Jaggi et al. (1993). 

6.3 Applications of Monofractal 

In geosciences, fractals have been used mainly for measuring and simulating spatial 

forms and processes, and are considered an attractive spatial analytical tool (Goodchild 

and Mark, 1987; Jaggi et al., 1993). Despite the numerous applications in the last two 

decades, there are very few direct references to the application of fractals in remote 

sensing (De Cola, 1989; Lam, 1990). An expanded employment of fractals in remote 

sensing research is considered useful to a better understanding of the relation between 

surface variation and spatial properties of remotely sensed data. This is especially true 

when one considers that remote sensing is the main source of data that we can use for 

analysing the spatial dependence of surface and atmospheric phenomena at relatively 

large scales and over large areas (Lovejoy and Schertzer, 1988; Davis et al., 1991). 

The measurement of the fractal dimension, D of a spatial phenomenon is the first step 

toward an understanding of spatial complexity. The higher the D, the more spatial 
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complexity is present. The fractal dimension of a point pattern can be any value 

between 0 and I; a curve, between I and 2; and a surface, between 2 and 3. For 

instance, coastlines have dimension values typically approximately 1.2-1.3, and 

topographic surfaces around 2.2-2.3 (De Cola, 1989; Lam, 1990). However, in spectral 

reflectance surfaces, such as those reflected by Landsat-TM, the fractal dimensions are 

much higher, approximately 2.7-2.9 (Lam, 1990; Jaggi et al., 1993; Lam et al., 1998; 

Emerson et al., 1999; Qiu et al., 1999). 

The fractal dimension has been used as a spatial measure for describing the complexity 

of spatial data, including remote sensing imagery (Lam 1990). The fractal dimension of 

a linear feature such as a coastline can be any value between 1 and 2, depending on its 

complexity. Similarly, for a surface, the fractal dimension lies between 2 and 3. This 

dimension value is derived from the entire surface, and it reflects the overall 

characteristics of the surface. When applied to remote sensing data, an image will be 

represented as a surface and the fractal dimension value of the surface represents the 

complexity of the image. In addition, it has been shown that fractal dimension changes 

across the spectral bands of Landsat TM imagery (De Cola, 1989; Lam, 1990). 

6.4 Multifractal Approach 

The definition of generalised fractal dimension described in the previous section 6.2 

supplies a method for estimation based on the concept of the three methods. However, 

as demonstrated by Dubuc et al. (1989), although very simple to use, the mono fractal 
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methods have many limitations and drawbacks that make it not so attractive for discrete 

image processing. In particular, the results are strongly dependent on the origin of the 

partitioning grid. 

Since the mathematical definition of the multi fractal approach is beyond the scope of 

this research, a brief definition of fundamental facts about the multi fractal theory is 

presented. Complete and rigorous definitions of multifractal theory can be found in 

(Falconer, 1990; Levy Vehel and Vojak, 1998; Dekking. et al., 1999). 

The following is the Local Singularity Coefficient: 

a (x) = lim 
Ii --+ 0 

log J1 (f3 Ii ( X » 
log 8 

Where P/j (x) is an open-ball of diameter J centred on the point x and when the limit 

exists, 

(l(x) is often called the Holder coefficient. 

E = inf{ s lim inf 
co 

I IE;I 
s 

dim = O} 
0 ..... 0 i= 0 
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It is quite straightforward that to apply multifractal tools to image analysis. Following 

the previous equations, points are naturally associated to pixels of the image, open-balls 

to windows centered on each pixel, measures to functions of grey level intensities. 

A first natural choice is to define the measure J1 as the SUM of the grey level intensities 

of pixels (i, j) contained in a window centered on pixel (x, y). Other functions of grey 

level intensities of the image can be defined in which we can distinguish three types of 

functions of grey level intensities according to their respective properties. The first one 

is the SUM capacity. The following is the MAX capacity leading to local singularity 

coefficients reflecting the sharpness of the image in the neighborhood of the pixel (x, y), 

which is altimetric. The ISO capacity is planimetric since it is sensitive to the spatial 

distribution of the measure. The SUM is considered as a mixed capacity since it 

responds to both sharpness and spatial distribution of the measure. 

6.S Application to image analysis 

Fractal and multifractal analysis was introduced in image processing, but it is not yet 

used extensively. Several studies have used the fractal dimension to perform texture 
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classification and image segmentation (Lam, 1990; Jaggi et al., 1993; Lam et al., 1998; 

Emerson et al., 1999~ Qiu et al., 1999). However, few studies have been devoted to the 

use of multi fractals in image analysis (Falconer,1994; Levey-Vehel and Vojak, 1996). 

The multi fractal approach assumes that the 2D grey level image can be considered as a 

3 D surface in which the grey levels can be assimilated to a spatial coordinate on the z­

dimensional. However Levy-Vehel (1998) pointed out that this assumption has no 

theoretical basis, since the scaling properties of the grey levels are generally different 

from those of the space coordinates. Therefore, the grey levels should be considered 

only as a relative measure of fractal dimension. 

6.6 Image processing 

The fractal and multi fractal modelling procedures which are used in this investigation 

consist of the following stages: 

• Computing the pointwise Hoelder exponent capacities (U4X, ISO and SUM) 

based on the kernel window sizes of 1 x 1 to 5 x 5 and applied to the data sets. 

This produces image of the Hoelder exponents for the three image segments I, 

II, and III. 

• Computing the multifractal segmentation based on difference between the raw 

data and the exponents capacity using a set of segmentation parameters (table 

6.1). This procedure produces a set of images which present sequentially the 

detection of edge elements defines major edge features and zones within an 

image. 
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Table 6.1: Multifractal segmentation parameters. 

I I 
Point 

I 
Spread 

I 
Segment-l I 0.1 

Segment-2 1 0.3 

Segment-3 I 0.5 

Segment-4 1 0.7 

Segment-5 1 0.9 

Segment-6 2 0.1 

• The final stage is to compute the regularisation dimension, which is based on 

measuring the fractal dimensions across the data set. Visualisation of the 

regularization dimension using multiple passes (voices) of the data set (4, 8, 16, 

32, and 64), which allows visual exploration of the fractal patterns. Images of 

regularization dimension show isolines of equal fractal dimensions. Isolines 

enclose areas of fractal dimensions. Concentrations of isolines indicate transition 

areas of fractal dimensions within the image. Areas free of isolines indicate 

relatively homogenous areas in terms of fractal dimensions. 
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6.7 Results and Discussions 

6.7.1 Introduction 

Fractal and multifractal analysis models were applied to Bands 4 and Band 7 of the AI­

Ahsa data sets. The same subsets of test segments I, II and III that have been used for 

the previous models (FFT and ANN) were also used for this technique. In this section, 

the discussion covers the resulting images of fractal and multi fractal processing, which 

include the following: 

• Statistics that are determined by the pointwise Hoelder exponents images. 

• Enhanced images derived from the pointwise Hoelder exponents for image 

processing with .M4..X, ISO and SUM values. 

• Multifractal segmentation images derived from a sequence of segmentation 

parameters. 

• Regularisation dimensions derived using a sequence of regularisation parameters 

in order to produce a contour zonation based on local fractal dimension. 

The results of the fractal and multi fractal modelling procedure are expressed as images 

of enhanced pointwise Hoelder exponent capacities (.M4..X, ISO and SUM). Each 

capacity of the Hoelder exponents has different properties as follows: 

• MAX is a multifractal measure of the local peakedness of fractal dimension. 

• ISO is a multi fractal measure of the local uniformity of fractal dimension. 
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• SUM incorporates both sharpness and spatial distribution of fractal values and is 

the sum of ISO and MAX. 

The segmentation image is an extracted image of detected change between the original 

raw data and the Hoe1der exponent images of MAX, ISO and SUM. Images of 

segmentation show edge elements in the original images. The contour image is based on 

the measuring of the regularisation dimension that computes the fractal dimension. 

Thus, the end product appeares as a different colour contouring zonation of specific 

fractal dimension. 

6.7.2 Image statistics 

The resulting data structure of multifractal modelling of the enhancement procedures 

(pointwise Hoe1der exponents, MAX, ISO and SUM) were compared in terms of image 

statistics and histograms. The statistics of mean values and standard deviation of 

Hoelder exponents differed considerably. The image of the MAX capacity presents, for 

instance, the lowest values of its image mean value, whereas the SUM capacity presents 

the highest of statistics values. The mean value of the ISO capacity is in between the 

mean value of the previous capacities (see table 6.2). 

The histograms of these exponents' capacity images were totally different from each 

other (see figures 6.1, 6.2, 6.3). For instance, the histogram of the .MAX image shows 

one dominant peak across the dynamic range of values from 0 to 100 out of the normal 
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o to 255 range. This peak is somewhat concentrated at the first hundred of the dynamic 

range, but the rest of the dynamic range appears as a very small pin. However, the 

appearance of the ISO histogram is stretched through the full dynamic range and it 

shows two dominant peaks. The first peak is very thin and very high at the first two of 

the dynamic range, while the second peaks is very broad and appears in range of 40-250 

DN. The SUM histogram shows two dominant peaks but they are different from the 

previous exponent image because both peaks are thin; even-though the peak at 

approximately the 210-240 DN appeared somewhat broader. 

On the basis of the image statistics there are no clear structures in terms of local peaked­

ness of fractal dimension. However, for local homogeneity of fractal dimension there 

are two distinct types of feature with very high and very low levels of homogeneity in 

fractal dimensions. The SUM histogram simply reflects the joint distributions. 
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Table 6.2: Image statistics of Hoelder exponent images for the three segments. 

Segment I Min. value Max. value Median Mean S. deviation I 
MAX-4 0.00 255.00 90.00 93.41 63.42 

IMAX-7 0.00 255.00 121.00 115.94 81.45 

ISO-4 0.00 255.00 170.00 154.39 60.66 

ISO-7 0.00 255.00 178.00 162.98 63.32 

SUM-4 0.00 255.00 235.00 218.12 59.06 

SUM-7 0.00 255.00 210.00 193.83 57.81 

Segment II Min. value Max. value Median Mean S. deviation I 
MAX-4 0.00 255.00 20.00 30.45 35.43 

MAX-7 0.00 255.00 8.00 18.43 26.29 

ISO-4 0.00 255 .00 170.00 155.36 64.23 

ISO-7 0.00 255.00 178.00 161.33 67.00 

SUM-4 0.00 255 .00 227.00 208.23 60.45 

SUM-7 0.00 255.00 210.00 192.56 58.62 

Segment III Min. value Max. value Median Mean S. deviation 

MAX-4 0.00 255.00 12.00 20.13 25.71 

IMAX-7 0.00 255.00 12.00 20.47 27.44 

ISO-4 0.00 255.00 178.00 160.44 62.49 

~SO-7 0.00 255.00 186.00 165.33 67.70 

SUM-4 0.00 255.00 231.00 213.69 57.85 

SUM-7 0.00 255.00 219.00 199.25 60.73 
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Figure 6.1: Histogram of the MAX pointwise Hoelder exponent image (Band 7, segment I) . 
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Figure 6.2: Histogram of the ISO pointwise Hoelder exponent image (Band 7, segment I) . 
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Figure 6 .3: Histogram of the SUM pointwise Hoelder exponent image (Band 7, segment I). 
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6.7.3 Assessment of output images 

Segment I shows clear areas of greater peakedness in multifractal dimensions. These 

follow the boundary zones identified in other analysis between sabkha and alluvial 

plain. But there are clear areas of higher peakedness within the sabkha. The sand sheet 

shows distinct texture of peaked-ness in contrast to the alluvial plain. 

In segment II, the sabkha area is shown in MAX mutifractal to be very complex with 

irregular boundary zones (of high multifractal peaked-ness and low multi fractal 

homogeneity) distinct from both gypsiferous pediplain and sand sheet. The sand sheet 

shows texture in multifractal measures, while the gypsiferous pediplain is relatively 

uniform. 

In segment III, both sabkha and sand sheet show complex multifractal properties with 

irregular boundary zones (of high multifractal peakedness and low multifractal 

homogeneously) within them. As in segments I and II, the alluvial plain shows no 

distinguishing features of multifractal peakedness or homogeneity. 

Both band 4 and 7 show essentially the same features which are clearer in Band 7 

especially in segment III. 

Edge feature detection of the Hoelder exponent images show the 'contours' within the 

images in sequentially sensitive steps. Figure 6.7 shows the output image for the MAX 
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exponent images. The edge of the sabkha unit is distinguished as two patterns. No edges 

of alluvial plain appeared. Very few edges points appeared in the sand sheet area. Figure 

6.8, Sabkha and Sand sheet are detected, while a very few edges appeared in the alluvial 

plain. In figure 6.9 is more or less similar in points because this exponent is the 

combined of MAX and ISO values. In Band 4, there are not many edge features except 

in the sand sheet area, which can be distinguished but with no significant edges as it 

appeared in the sabkha area. 

In segment II, the sabkha area is very complex for all Hoelder exponents images 

(Figures 6.13, 6.14, 6.15), whereas the sand sheet area is distinct but less complex. In 

the gypsiferous pediplain unit, there is no evidence of edge patterns and it is displayed 

as a homogenous area except figure 6.14 (e), which shows few scattered edges. The 

results of Band 4 and 7 are more or less similar, where sabkha and sand sheet areas are 

complex, but the gypsiferous pediplain is homogenous. 

The edge of the sabkha area is also detected in segment III in addition to another edges 

patterns appeared within the area, this means this area is heterogeneous (Figure 6.19). 

There is no evidence of edges patterns in other areas, and since these areas are showing 

to be uniform, that means they are homogeneous. In other exponents (Figure 6.20, 

6.21), although the edge of sabkha area is detected, it is more complex than the MAX 

exponent images. Band 4 shows more complexity of edges patterns, and it is difficult to 

draw interpretation of any features except in the images of figure 6.22. The edges 
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patterns are only self-evident in the sabkha area, while other areas are simple and 

homogenous. 

In the regularisation dimension images, both Bands 7 and 4 show somewhat similar 

complexities of patterns. They show that sabkka and sand sheet areas in each case are 

very complex in terms of spatial differences in fractal dimensions, while the alluvial 

plain is very simple. In all segments, the heterogeneity of patterns within the sabkha and 

sand sheet areas are self-evident (Figures 6.25 to 6.30). Overall both bands (7 and 4) 

show the same main areas, but different features within them especially in segment III 

(e. g. sabkha area is more complex in Band 4 than in Band 7). 

6.7.4 Analysis of multifractal images for soil landscape identification 

6.7.4.1 Test Segment I 

In this segment, the sabkha unit appeared as complex features. Many complex linear 

patterns of fractal properties are identified within and at the edges of this area. There is 

no evidence of dominant zones. The alluvial plain area is very simple in each case and 

does not have any linear features or dominant zones. It can be considered as a 

homogenous area. The sand sheet area is somewhat more complex than the alluvial 

plain because in most cases it appears as complex features (Figures 6.8 to 6.12). 

However, there is no evidence of linear features or zones. There are few differences 

between Band 4 and 7, but Band 7 is somewhat less complex that Band 4. 
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Figure 6.4 Images a to f represent different Hoelder exponent images for Band 4 and 7 

(Test area 1). 
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b (MAX Band 4) 

d (ISO Band 4) 

Figure 6.5: Images a to f represent different Hoelder exponent images for Band 4 and 7 
(Segment II) . 
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d (ISO Band 4) 

Figure 6.6: Images a to frepresent different Hoelder exponent images for Band 4 and 7 
(Segment III) . 
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Figure 6.7: Images (a) to (f) represent MAX Hoelder exponent of multifractal 
segmentation of different parameters setup for Band 7 (Segment I), 
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Figure 6.8: Images a to f represent ISO Hoelder exponent of multifractal segmentation 
images of different parameters setup for Band 7 (Segment I). 
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Figure 6.9: Images (a) to (t) represent SUM Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 7 (Segment I). 
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Figure 6.10: Images (a) to (f) represent MAX Hoelder exponent of multifractal 
segmentation images of different parameters setup for Band 4 (Segment I). 
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Figure 6.11: Images (a) to (f) represent ISO Hoelder exponent of multifractal 
segmentation images of different parameters setup for Band 4 (Segment I). 
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Figure 6.12: Images (a) to (f) represent SUM Hoelder exponent of multifractal 
segmentation images of different parameters setup for Band 4 (Segment I). 
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Figure 6.13: Images (a) to (f) represent MAX Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 7 (Segment II). 
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Figure 6.14: Images (a) to (f) represent ISO Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 7 (Segment II). 
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Figure 6.15: Images (a) to (f) represent SUM Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 7 (Segment II). 
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Figure 6.16: Images (a) to (f) represent MAX Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 4 (Segment I). 
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Figure 6.17: Images (a) to (f) represent ISO Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 4 (Segment II). 
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Figure 6.18: Images (a) to (f) represent SUM Hoelder exponent of multi fractal 
segmentation images of different parameters setup for band 4 (Segment II). 
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Figure 6.19: Images (a) to (f) represent MAX Hoelder exponent of multifractal 
segmentation images of different parameters setup for Band 7 (Segment III). 
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Figure 6.20: Images (a) to Ct) represent ISO Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 7 (Segment III), 
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Figure 6.21: Images (a) to (f) represent SUM Hoelder exponent of multifractal 
segmentation images of different parameters for Band 7 (Segment III). 
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Figure 6.22: Images (a) to (t) represent MAX Hoelder exponent of multifractal 
segmentation images of different parameters setup for Band 4 (Segment III). 
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Figure 6.23: Images (a) to (b) represent ISO Hoelder exponent of multifractal 
segmentation images of different parameters setup for Band 4 (Segment III). 
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Figure 6.24: Images (a) to (f) represent SUM Hoelder exponent of multi fractal 
segmentation images of different parameters setup for Band 4 (Segment III). 
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6.7.4.2 Test Segment II 

The sabkha area is very complex in each ouput. Linear features are self-evident and can 

be easily distinguished throughout the sabkha area. Other linear features are also 

detected within the sabkha area, but are very complex. There is no evidence of zones. In 

most cases, the gypsiferous pediplain is simple except images in figures 6.14( e) and 

6.17(e), which show some kind of complexity. Neither linear features nor zones are 

evident in the gypsiferous pediplain area. The sand sheet area, in each case, is very 

complex and it is difficult to distinguish either linear feature or zones that might be 

considered as a heterogeneous plain. Bands 4 and 7 show essentially the same features 

but they are somewhat clearer in Band 7. 

6.7.4.3 Test Segment III 

The edges detection of sabkha area are pronounced, and not only many linear features 

almost surround the area, but also many linear features appeared within the whole 

sabkha area, which show that this area is a very complex heterogeneous area. In most 

analysis, the sand sheet shows complex elements, while the alluvial plain is a simple 

and generally homogenous area. No linear features or zones are distinct in these areas. 

There are no major differences between Bands 4 and 7 (Figures 6.19 to 6.24). 

6.7.5 Analysis of fractal images for soil landscape identification 

Figures 6.25 and 6.26 show the regularisation dimension images for segment I. In these 

images the sabkha area is complex and shows very clear spatial transitions to the 
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alluvial plain area, which might represent transition zone. The alluvial plain is simple 

and generally homogenous though a transition zone is evident across it a N-S direction. 

The sand sheet area is a very complex showing very complex patterns across the area. 

Overall Bands 7 and 4 show similar features with somewhat clearer features in Band 7. 

Segments II and III show that sabkha areas are complex (Figures 6.27 to 6.30), but 

complexities of features are greater in segment II (Figures 6.27 and 6.28). Also, the 

sand sheet areas are very complex, which show many patterns across the area in these 

segments. The gypsiferous pediplain, which only appears in segment II, is somewhat 

complex. Similar features are self-evident in both bands (7 and 4), but clearer in Band 7. 

However, the gypsiferous pediplain area is simpler in band 4 than in Band 7. Table 6.3 

summarises the features identification of the fractal and multi fractal model. 
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(d) (e) 

Figure 6.26 : Images (a) to (e) represent the Fractal dimensions images of different 
parameters setup for Band 4 (Segment I) . 
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(d) (e) 

Figure 6.26: Images (a) to (e) represent the Fractal dimensions images of different 
parameters setup for Band 4 (Segment I) . 
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(b) (c) 

(d) (e) 

Figure 6.27: Images (a) to (e) represent the Fractal dimensions images of different 
parameters setup for Band 7 (Segment II). 
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Figure 6.28 Images (a) to (e) represent the Fractal dimension images of different 
parameters setup for Band 4 (Segment II). 
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Figure 6.29: Images (a) to (e) represent the Fractal dimensions images of different 
parameters setup for Band 7 (Segment III) . 
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Figure 6.30: Images (a) to (e) represent the Fractal dimensions images of different 
parameters for Band 4 (Segment Ill). 
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Table 6 .3 . Summary of the features identification of the fractal images. 

List landform Soil type Hoelder exponent images 

Very complex features, 

Sabkha Salorthid / Gypsic solochk 
clear identifiable transition 
zones, broad linear fea-
tures 

Clear and simple identifi-
Alluvial plain Gypssiorthid / Calciorthid able landform, no linear 

features 

Very complex features, no 
Sand sheet and Dunes Torripsamment evidence of linear features 

Very simple feature, no 
appearance of features or 

Gypsiferous pediplain Gypsiorthid / Petric yypsisls 
patterns diversity in this 
landform 

Segmentation images 
Regularisation dimension 
images 

Very complex features, 
Broad identifiable linear 

Many complex features, 

features 
broad transition zones 

Very simple feature, nei- Simple features, few linear 
ther evidence of zones nor features, no evidence of 
linear features dominant zones 

Very simple feature III 
Very complex features in 

some cases, and very 
complex III another, 

each segments, many lin-
no 

ear features 
linear features 

Very simple in most cases 
Approximately simple fea-

except somewhat complex 
tures, except somewhat 

in ISO images, no linear 
complex in Band 7, no 

features 
evidence of dominant 
zones 



6.8 Summary 

In this chapter we have described fractal and multifractal methods for analysing data in 

relation to remote sensing imagery. This chapter has explored these methods of 

measuring the fractal and multifractal properties of the data sets. It was shown that the 

Hoelder exponents capacities show discernible results in terms of complex elements. 

Also, these exponents have shown the diversity of output in the segmentation images. 

Of all these exponents, MAX segmentation images were the most partitioned in terms of 

showing linear features. In the regularisation images, not only the main soil units has 

been identified but also many linear features within and between these units were self­

evident such as the transition zone between sabkha and alluvial plain areas in segment I. 

Both wavebands 4 and 7 show the same features with minor differences. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

7.1 Introduction 

The purpose of this chapter is to assess the potential of the complex mapping techniques 

described in this thesis for mapping soil landscapes. Additionally, it is to investigate the 

relations between elements identified by the three techniques in order to (i) distinguish 

artefacts from real, complex features, and (ii) identify how spatial phenomena are 

represented by the various metrics. The first issue in this assessment is whether or not 

the resulting maps are interpretable in terms of individual complex elements. The 

second is about the relationship between complex elements viz. spatial frequency 

components, ANN model behaviour, and fractal structure. A third issue following from 

these is whether or not the complex mapped elements have any relation to traditional 

soil map units. A further issue not examined here is the field evidence for the complex 

elements. 

For all techniques, in order to interpret output images, it is necessary to have at least two 

spectrally different image features when using complex elements over a data set. For 

this reason, but to avoid unnecessary complexity in images, three situations were 

selected for image segments where the same sets of image features could be expected. 
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In addition, not only different types of units but also two wavebands of Landsat TM are 

considered in order to help assess what features are real and what are artefacts. 

7.2 The Interpretation of maps in terms of complex elements 

7.2.1 Theoretical Considerations 

The FFT method developed in this thesis isolates spatial frequency components in 

specific wavebands. The filtered inverse FFT produces an image, which shows the 

radiation in specific spatial frequency bands. 

In other areas of image analysis, specific wavebands are used for feature identification. 

For example, low frequencies are removed to extract the high frequencies in images, 

which show features such as building in photographs (Rosenfeld and Kak, 1976; Pratt, 

1978; Green, 1983; Ekstrom, 1984; Niblack, 1986; Gonzalez and Wintz, 1987). In this 

work, however, it was shown that if low frequencies are blacked out, the resulting 

images could not be interpreted. Each image considered here, therefore, retains low 

frequencies. That is, the major large features of the image are always present. The 

differences between images are only due to differences in medium to high frequencies. 

Four broad types of area can be distinguished in the three study segments in terms of 

traditional theory of soil formation. These are sand sheet, sabkha, gypsiferous pediplain, 

and alluvial plains. Three types are present in each segment. There is no assumption, 

however, that the frequency components of the images are directly related to 
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geomorphological/soil units. We can expect that there will be, across the area of the 

image, differences in the size, extent and pattern of surface features that will produce 

differences in spatial spectra. The question is then whether these results are coherent 

and interpretable. The set of images from the filtered inverse FFT procedure shows the 

set of spatial frequency components of the image in two wavebands. The images are 

enhanced to (i) display optimised (forced) zoning of the image, and (ii) to display 

specific elements based on infrequency. If there are real zones of spatial frequency 

properties related to soil properties, then we would expect a strong correspondence 

between the spatial patterns of the first two displays and the display of infrequent 

components would highlight transition or boundary areas between zones. 

The ANN method developed in this investigation is a non linear measure of image 

texture. However, the measure is relative to the image as a whole and is, in this sense, 

arbitrary. Difference within an image shows relative differences in texture. For this 

reason, training areas are changed systematically. By changing the measure of image 

texture the stability of texture patterns can be tested. Display of these texture images is 

by simple linear contrast stretch. Thus, there is no process of selection of image 

elements. The set of output images, as opposed to single images, shows the textural 

zones. 

There is a subjective element in the selection of training sets since initially four are 

chosen which correspond to the main zones identified in the FFT analysis and which are 
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at least in part based on classical soil units mapped by MAW (1986, 1995). However, 

by using additional training areas in each of the four units and considering every 

combination of training areas against units, it should be possible to judge if the 

inclusion or exclusion and duplication of training areas has an effect on output images. 

If the classical soil units are real, then the addition of training areas in individual units 

should have little effect and the exclusion of units should have a marked effect. If no 

real units exist then there should be little effect either of addition or subtraction of 

training areas. If there are real units and they differ from the classical ones then the 

addition and subtraction processes should both have a marked effect on the output 

image elements. 

The fractal properties are a quantitative measure of the irregular features in terms of 

measuring, for instance, soil landscape properties of patterns and texture. That is based 

on the local fractal dimensions that are used as a texture measure. Because a local 

fractal represents more than a point, its estimates should be realised by moving a pre-set 

size filter over the entire image. This is a crucial issue because there is an effect of 

selection of the filter size, which relates to heterogeneity and homogeneity within the 

image. If the size is too large, the boundaries are somewhat blurred, while the local 

fractal dimensionality estimates will be erratic if it is too small. 

It is reasonable to assume that different kinds of soil landscape features might have 

characteristically different texture, pattern, or roughness at different scales that in tum 
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could be expressed in terms of a set local fractal properties. Consequently, multifractal 

analysis of remotely sensed data may reveal information on patterns of soil and rock 

outcrops much better than single local procedures. The multi fractal analysis of images 

should provide for a more accurate representation of the nature of the complexity both 

of boundaries and surfaces. 

Further, if there are real physical patterns of complexity, the three techniques should 

confirm this in the output images with consistent patterns or features. We can expect, 

however, that there are differences in the images between the techniques because the 

complex spatial properties of soils are manifest in different ways. We can expect 

differences between images also because of artefacts. Additionally, there will be 

differences between images for TM bands 4 and 7 simply because these bands show 

different properties of soils. The types of features, which are expected with each of, the 

techniques, coupled with the image enhancement technique, are summarised below: 
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Table 7.1: Summary of major identifying features for the three techniques. 

I Techniques I Types of features I 
FFT Zones, linear features, transition zones 

ANN Zones, transition zones 

Multifractal Transition zones, edges of patterns, 

contours 

7.2.2 Empirical Results 

Analysis of spatial frequencies allows us to partition images into major zones. In each 

of the areas there are 3 mapped soil Ilandform units (MAW, 1986, 1995). Partitioning of 

the filtered images gives 5 zones in each case. These filtered images show the 

following: 

• The dominant spatial frequencies are the low frequencies. 

• Specific spatial frequencies are associated with patterns in specific zones, but 

these are not a dominant element of images. 

• Existence of boundary zones in each area 

• Some units are represented by two or more zones. 

• Soil units are not everywhere the same in the study segments in terms of spatial 

frequencies. 

• Band 7 and 4 are essentially the same, but show different degrees of complexity 

in different segments. 

• There are linear features, narrower zones of specific spatial frequencies. 
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ANN models of texture also show 5 mapped zones in each segment based on 3 or 4 

different training zones and with a variety of training areas set-ups. The results achieved 

may be summarised as follow: 

• Some soil units are represented by two or more zones. 

• These are boundary zones which are similar to zones in the soil units with two 

zones. 

• Individual soil unit types are different in complexity between areas. 

• Broad patterns of texture are not the same in each segment for the same soil 

units. 

• The output images are similar to those of spatial frequencies, but show clearly 

differences in the patterns and features of specific parts of the image segments. 

• Patterns of mixed zones are different between soil unit types. 

• Bands 7 and 4 are essentially the same, but show different degrees of complexity 

in different zones and in different segments. There is no consistent relation to 

mapped units. 

Multifractal analysis does not give zones but shows in the Hoelder exponents and the 

segmentation images that there are clear patterns of complexity (e. g. spatial transition), 

which have some correspondence to the soil units. The results achieved may be 

summarised as follow: 

• Sabkha areas are everywhere the most complex and the area within sabkha to be 

is made up of linear transition zones in each of the segments. 
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• Only parts of the sand sheets show similar levels of complexity but the patterns 

are patchy. 

• Other areas are homogenous or show local transitions within transitions m 

patterns rather than between zones. 

• Segmentation of edges confirms these patterns and also shows that Bands 7 and 

4 are markedly different in contributing to the local spatial transition properties 

of soils. 

• Regularisation dimension images allow a broad partitioning of the images. They 

show that transitions across the image are not related to specific boundaries. 

The dimension of the image segments is related to the patterns and density of 

transitions. However, there are no consistent patterns and densities that 

correspond to soil units or the soil zones identified by FFT or ANN analysis. 

Table 7.2 summarises the mapping of soil units and zones by the three techniques. 
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Table 7.2: The relation of the three complex metrics to mapped units. 

I Units I FFT I ANN I Multifractal 

Clearly 

Mapped units Sabkha 
Clear and Clear and differentiated, 
simple simple complex linear 

transitions 

Clearly Ambiguous 

Sand sheet 
Moderately differentiated, borders, 
complex zones Complex patch complex patch 

transitions transitions 

Alluvial plain Simple 
Ambiguous, 

Simple complex 

Gypsiferous 
Complex, 

Complex Complex linear pediplain 
transitions 

Simple well Complex 
defined or 

Zones Well simple ambiguous 
identified from Boundary areas 

defined with sand sheet 
image analysis and between 

alluvial plain 

7.3 Discussion 

It is not surprising that patterns of mapped soil units (MAW, 1986, 1995) are 

perceivable in almost every output image. Although the units are mapped at 1: 50, 000 

and produced at 1: 250,000 scale and the images are displayed at approximately 1: 

50,000 scale, the position of the unit boundaries are clear and well defined to the 

Landsat-5 Thematic Mapper image features. These boundaries fit well, in the sense, that 

the positions of the boundaries correspond to positions of the image features. 
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What has to be perceived is that the process of the "fitting" is a complex process of 

searching and interpreting image elements because the correspondence between the soil 

unit boundaries and image elements is not a simple one-to-one correspondence with 

linear features in reflectance images. Unlike locations along the positions of unit 

boundaries the degree of clarity of a boundary varies, the nature of the boundary 

changes and in some places disappears, whereas differences are perceived on the basis 

of colour tone and texture in any combination. In traditional mapping using remotely 

sensed data, it is combination of evidence with contextual information on geology and 

topography that is used to map soils. However, to look at images more objectively 

would lead to different results. In this study the objectivity is attempted by applying 

metrics of complex elements of images. 

A simple fuzzy k-means cluster applied to raw data and to spatial spectral components 

gives different zones from the soil maps. In the study segments, each of which has three 

mapped units, the automatic classification algorithm perceives five zones. This indicates 

that more units are identified than by the traditional method at this scale, which is the 

scale at which the maps are produced and used. The key here is that in the analysis, 

there is no zone that has more status than the others. Only if we presume that the soil 

units are real then it is perceptive to explain the "additional" zones as sub-members of 

the units. With this presumption, at this scale we must accept five units in each segment 

of the whole image. The credibility of the areas mapped by the complex measures is 

then established, in advance of any field evidence, although conglomeration of evidence 
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from different measures of complex elements of image will produce different results. 

Then it is possible to assess the difference between the areas derived from complex 

measures and the traditional mapping units. 

Unsupervised classification of raw data in Band 4 and 7, spatial spectral segmentation 

and the ANN texture analysis all confirm that the study segments are made up of 5 types 

of area. These five areas can be considered to correspond to the soil units (Sabkha, sand 

sheet, alluvial plain, and gypsiferuous pediplain) added to areas that represent part of 

these units and are also found in the transitional zones between the units. With this 

description, it could be based on a presumption of the reality of soil units. Alternatively, 

the pattern can be described as distributions of soil properties (reflectance) with the 

study segments, which show: 

1. areas of more or less uniform and distinct properties. 

2. areas of mixed properties with specific patterns of two (or more members). 

3. areas of more or less uniform properties of which are not distinct but are similar 

to properties of one of the members of mixed areas. 

The third types of area are between areas of distinct uniform properties and of mixed 

properties. In patterns of mixed properties, they can be (amongst other possible 

theoretical patterns not observed in this study) linear or patchy within a mosaic. The 

distribution of the third type of area can be as the adjacent area with the common 

property as part of its mixture on one side only of perceivably linear patterns as in 
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segment I in which it gives a sharp boundary on one side and a broken or irregular 

boundary on the other. Once accepting these types of area as being of similar 

environments and the reality broad environmental conditions of the study segments, 

then the analysis of spatial spectra and texture (ANN model) also show that the 

properties of types of units are not consistent across all areas. This leads us to assume 

the existence of units. Another alternative, perhaps more objective, description would be 

that there is a variety or if it is demonstrable (which with only three study segments it is 

not) a spectrum of patterns of properties. It is possible to envisage, for instance, a range 

of patchiness of soil properties within a mixture from small widely spaced patches to 

large closely spaced patches. 

Results of the fractal and multifractal analysis gIve a clear, objective picture of 

distribution of variability of areas in the study segments. The concept that emerges from 

these analyses is of continuous spatial distributions of complexity rather than zonation 

texture or other properties. These analyses confirm the idea, developed with the spatial 

spectral and ANN models of broad areas of the study segments or soil units being 

associated with particular levels and patterns of complexity. However, this description 

also leads us to assume the existence of zones or units. 

In the fractal and multifractal results, more objectively, an impression is given of a 

surface of complexity. It has particular parts of the surface, which have broadly similar 
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degrees and patterns of complexity. Other parts are characterised by gradients of 

complexity with some of them gradual and some of them steep. 

Consequently, there are implications of these results for soil mapping at the theoretical 

and practical levels. In the theoretical level the implication are about the existence of 

soil units defined following the classical approach. The existence of coherent reiterative 

and robust spatial patterns of complex metrics gives confidence to the idea that such 

patterns are real. The fact that they do not conform to soil units suggests that the units 

are not appropriate of the soil landscape. In the practical level, it is unlikely that the 

classical approach would be abandoned. There are good reasons why it should not be 

abandoned. Most important of these is that the units are based on substantial bodies of 

theory on fieldwork and on sampling. There is at present nowhere near the same support 

of the ideas of mapping complex elements. It seems, therefore, that the place of these 

ideas is to complement the traditional mapping approach and raise awareness that soils 

are inherently complex. 

7.4 Conclusion 

The aims and objectives of this thesis were (Chapter 1, page 9): 

• The first aim was to apply each technique to the classification and segmentation of a 

satellite image, which represented a set of soil landscapes relatively unaffected by 

vegetation. 
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In the application of each technique, the objectives were: 

• To develop the procedures by which a soil map could be obtained, 

• To explore the controls on the procedures and the relations of image outputs to 

these controls, 

• To develop an appropriate means of visualisation. 

A further aim was to evaluate the usefulness of the three techniques for soil mapping. In 

this evaluation there were two objectives: 

• Comparison of the performance of the three techniques m mappmg soil 

landscapes. 

• Comparison of the three techniques singly and in combination with conventional 

soil mapping. 

n conclusion, this study has shown: 

• Procedures were established for techniques which resulted in robust and 

coherent images of soil landscapes which could be simply interpreted in the light 

of knowledge of soil properties and soil forming factors in the study area. 

• FFT and fractal and multifractal analysis provided unsupervised mapping 

outputs. 

• Visualisation procedures of the outputs of each technique were established by 

trial and error. 
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• Techniques showed different properties. Some similarities in segmentation of 

images but more significantly major differences. Demonstrates that there are 

several types of complexity which reveal different spatial soil properties. 

• Comparison of each technique with conventional soil maps showed that at the 

scale of mapping the conventional maps neglect many spatial properties of soil 

and conflict with zones and boundaries revealed through objective techniques 

(FFT, FractallMultifractal). 

• Even on the basis of supervised classification (ANN) based on conventional 

maps, the images showed much more complex segmentation than the 

conventional maps. 

7.5 Further Work 

More detailed investigations are required in various regions with different geological 

and geomorphological conditions as well as different land-cover/land-use type (Le. 

vegetation, urbanisation, agricultural). The FFT method has shown its utility in being 

able to show and partition the data sets into zones. It would be useful if this method 

more used for vegetation problems such as (i) forest disease (Le. in terms of dry and 

healthy trees), (ii) deciduous and coniferous forest, (iii) grassland and cropland. Because 

the ANN method used in this study is based on a prior assumption about zones, it needs 

to be used in unsupervised manner in order better to assess the textural division of soil 

landscapes. Also, since the fractal method seemed to be superior to the other methods, 

further investigations are recommended especially measuring other complex 
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phenomena. There are some particular aspects of the investigation that may prove 

advantageous in further investigations as they were given brief considerations. 

It would also be useful if sample sets within the test segments under investigation could 

be extensively studied regarding the soil properties and soil reflectance (i.e. field 

spectroscopy measurements in order to establish an empirical field base for the ideas 

expressed here). Since the higher spectral resolution will ensure more spectral 

sensitivity to the different landforms and the greater number of bands will increase the 

number of complex components, and this gives the complex metrics the ability to show 

deeper investigations in terms of measuring complex phenomena, particularly fractal 

properties. 
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Figure 5.10: Illustration diagram of the three segments showing the four zones A, B, C, 
andD. 




