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Abstract 12 

In songbirds, singing with precision (vocal consistency) has been proposed to reflect 13 

whole-organism performance. Vocal consistency is measured using Spectrogram Cross-14 

Correlation (SPCC), assessing the acoustic similarity between subsequent renditions of 15 

the same note. To test whether the SPCC is sensitive to the acoustic discrepancies found 16 

in birdsong, we created a set of 40,000 synthetic sounds, that were designed based on 17 

the song of 345 species. This set included 10,000 reference sounds and 30,000 inexact 18 

variants with known differences in frequency, bandwidth or duration with respect the 19 

reference sounds. We found that SPCC is sensitive to acoustic discrepancies within the 20 

natural range of vocal consistency, supporting this method as a tool to assess vocal 21 

consistency in songbirds. Importantly, the sensitivity of SPCC was significantly affected 22 

by the bandwidth of sounds. The predictions derived from the analysis of synthetic 23 

sounds were then validated using 954 song recordings from 345 species (20 families). 24 

Based on psychoacoustic studies from birds and humans, we propose that the sensitivity 25 

of SPCC to acoustic discrepancies mirrors a perceptual bias in sound discrimination. 26 

Nevertheless, we suggest the tool be used with care, since sound bandwidth varies 27 

largely between singing styles and therefore SPCC scores may not be comparable. 28 

  29 
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I. INTRODUCTION 30 

Birdsong is arguably one of the most complex acoustic signals in animal communication. 31 

Although it is known for the diversity of songs and motifs, singing involves the execution 32 

of complex motor patterns through the coordination of various muscle systems 33 

(Suthers, 2004). As in other animal displays, motor performance of song relays 34 

important information about a bird’s quality that is relevant during social interactions 35 

(Byers et al., 2010; Sakata and Vehrencamp, 2012; Botero and de Kort, 2013). One 36 

important aspect of motor performance is precision, the ability to produce the same act 37 

with minimal variation (Lane and Briffa, 2021). In birdsong, precision can be measured 38 

as vocal consistency, which refers to the ability to produce the same note without 39 

variation (de Kort et al., 2009; Sakata and Vehrencamp, 2012).  40 

A note is a short acoustic structure with a stereotypic shape within an individual’s 41 

repertoire, generally defined as a continuous trace in the spectrogram (Knudsen and 42 

Gentner, 2010). When a bird produces subsequent renditions of the same note, it is 43 

executing the same motor pattern multiple times (Allan and Suthers, 1994; Suthers et 44 

al., 1996). Hence, small discrepancies in the acoustic structure among renditions of the 45 

same note within song must be due to variation in the brain and muscle activation 46 

patterns during the execution. Most movements performed during singing occur inside 47 

the body, hidden from view, but the song output is the manifestation of these motor 48 

patterns. By measuring the acoustic similarity between two renditions of the same note 49 

type, we can assess the precision in which the same motor pattern has been executed, 50 

referred to as vocal consistency (Cardoso, 2017). Other types of variation in vocal 51 

output, such as learning accuracy or syntactical arrangement are not included here as 52 

vocal consistency. In some species it has been shown that vocal consistency is a signal 53 
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of fitness related to reproductive success, perhaps associated with the neuro-motor 54 

skills of the individual (Sakata and Vehrencamp, 2012; Botero and de Kort, 2013; Sierro, 55 

2022). Furthermore, vocal consistency varies seasonally in relation to the breeding 56 

season, similar to seasonal changes in hormone levels and brain structures, and with age 57 

(Smith et al., 1997; Ballentine et al., 2004; Botero et al., 2009; de Kort et al., 2009; 58 

Cramer, 2013; Vehrencamp et al., 2013; Sierro et al., 2022) which further supports the 59 

importance of vocal consistency in communication of birds.  60 

Playback studies have shown that songbirds react differently to high and low consistency 61 

songs (de Kort et al., 2009; Rivera-Gutierrez et al., 2011). In fact, songbirds are highly 62 

sensitive to minute variations in the acoustic structure of sounds (Margoliash, 1983; 63 

Theunissen and Doupe, 1998; Lawson et al., 2018; Fishbein et al., 2019). Birds can 64 

identify frequency discrepancies between sounds as small as 1% and they are most 65 

sensitive to sounds within the range of 2-5 kHz, with decreasing sensitivity towards 66 

lower and higher frequencies, resembling in general terms the audiogram curve of 67 

humans (Dooling et al., 2000; Knudsen and Gentner, 2010). Field studies show that 68 

spectral characteristics of song seem crucial in species recognition (Falls, 1963; 69 

Bremond, 1976; Fletcher and Smith, 1978; Nelson, 1989). In the temporal dimension, 70 

songbirds are able to discriminate differences in duration when sounds are at least 14-71 

23% different in duration, with shorter sounds being generally more difficult to 72 

discriminate (Maier and Klump, 1990). These results are similar to those found in 73 

humans (Maier and Klump, 1990), although birds seem to be more sensitive to temporal 74 

discrepancies in complex sounds (Dooling et al., 2002).  75 

Since birds are highly sensitive to minute acoustic discrepancies, the method to measure 76 

vocal consistency must be equally sensitive. A commonly used method is the 77 



 5 

Spectrogram Cross-Correlation (SPCC) algorithm that measures the acoustic similarity 78 

between two sounds represented by two spectrograms (Clark et al., 1987). A 79 

spectrogram is essentially a double matrix with frequency in the Y-axis, time in the X-80 

axis and the sound amplitude in each time-frequency bin. Two spectrogram matrices 81 

can be overlaid to estimate a correlation coefficient, as a measure of similarity between 82 

the two sounds, but there are many options for how these two spectrograms are 83 

aligned, a common problem when comparing time series. In the SPCC, this problem is 84 

solved by the second step in the method, the cross-correlation algorithm, which 85 

computes multiple correlations of both spectrograms at different temporal alignments. 86 

By definition, such optimization process will result in a lower sensitivity of the method 87 

to detect temporal discrepancies. After this process, the peak correlation coefficient 88 

from all correlations computed is selected as the acoustic similarity score between the 89 

two sounds (Clark et al., 1987). The cross-correlation algorithm is essentially an 90 

optimizer (in the temporal dimension) that provides the similarity score between two 91 

sounds, rendering an acoustic similarity score from 0 (no similarity) to 1 (identical).  92 

The SPCC has been shown to be a suitable tool to measure vocal consistency (Khanna et 93 

al., 1997), reflecting biologically meaningful variation in birdsong such as individual 94 

differences or age variation (de Kort et al., 2009; Rivera-Gutierrez et al., 2012; Cramer, 95 

2013). However, it is unclear how sensitive the method is to acoustic discrepancies 96 

found within the range of vocal consistency in birds. There are also reservations as to 97 

whether it provides an objective, universal tool to measure vocal consistency regardless 98 

of the singing style or song attributes (Cardoso, 2017). This a common problem in the 99 

study of vocal performance, since different singing styles might impose different 100 

physiological challenges and therefore the assessment of vocal performance is difficult 101 
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to generalize (Cardoso, 2017). The bounded, standardized and unit-less nature of the 102 

SPCC similarity score has been an argument for the universality of the index, but it is still 103 

possible that the temporal or spectral properties of the sounds influence the SPCC 104 

response to acoustic discrepancies.  105 

Here, we investigate the response of SPCC to acoustic discrepancies in a controlled set 106 

of synthetic sounds that can be defined and manipulated. These synthetic sounds 107 

emulate whistle-like vocalizations of songbirds when upper harmonics are filtered out 108 

by the vocal tract (Nowicki, 1987; Nowicki et al., 1989; McGregor and Dabelsteen, 1996; 109 

Fletcher and Tarnopolsky, 1999). We used this set of synthetic sounds to test: 1) if the 110 

SPCC method is sensitive to acoustic discrepancies within the range of natural variation 111 

found in birdsong and 2) whether the SPCC response is influenced by the spectral or 112 

temporal properties of sound. Because the cross-correlation algorithm of SPCC acts as 113 

an optimizer in the temporal dimension, we expect that the SPCC sensitivity to temporal 114 

discrepancies will be lower than to spectral discrepancies. We then tested the findings 115 

and predictions derived from the analysis of synthetic sounds in a data base of natural 116 

song recordings from 345 different species of songbirds (20 different families) from 117 

around the world. Finally, we compare the quantitative properties of SPCC with 118 

published data on the perception of acoustic discrepancies by birds, evaluating the 119 

validity of this method to provide a biologically meaningful measure of vocal 120 

consistency. 121 

II. METHODS 122 

 A. Natural variation in birdsong 123 

To create the synthetic sounds that simulated bird notes, we used data derived from the 124 

analysis of 954 different recordings from 345 species that belong to 20 different families 125 
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(Acrocephalidae, Cettiidae, Cinclidae, Emberizidae, Estrildidae, Fringillidae, Icteridae, 126 

Mimidae, Motacillidae, Muscicapidae, Paridae, Passerellidae, Passeridae, Petroicidae, 127 

Phylloscopidae, Remizidae, Sittidae, Troglodytidae, Turdidae and Vireonidae). For all 20 128 

families, we reviewed the song of all species (1,815 species in total) by listening to at 129 

least two recordings from the Xeno-Canto repository (www.xeno-canto.org). Then, we 130 

selected all those species that produced trills, defined as the consecutive repetition of 131 

the same note type at least 5 times. A note was defined as a continuous trace in the 132 

spectrogram, and the sample includes a large diversity of note’s shapes (Figure 1). From 133 

each species, we selected a maximum of 5 different recordings, with high signal-to-noise 134 

ratio and selected a maximum of 5 different trills.  135 

In each trill, we measured the duration of individual notes manually and tracked the 136 

fundamental frequency (window size: 512 samples; 90% overlap, amplitude threshold; 137 

15%). The fundamental frequency (F0) is a series of values measuring the peak 138 

frequency of a note at each time point (window) (Figure 2B). The F0 range was defined 139 

as the distance in kHz between the highest and the lowest values of the F0, hereafter 140 

referred to as bandwidth (Figure 2B). The central frequency was defined as the 141 

equidistant point in the F0 range, hereafter refer to only as frequency (Figure 2B). To 142 

measure the within-trill variation, we calculated the percentage difference between 143 

each note and the mean duration, mean bandwidth and mean frequency of all notes in 144 

the trill. Estimating percentages with zero in the denominator can be problematic, but 145 

we did not encounter any case where the mean bandwidth of all notes within a trill was 146 

zero, see the next section. 147 

http://www.xeno-canto.org/
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 148 

FIG 1 – Spectrograms showing different types of bird sounds included in our multi-149 

species analysis. From top to bottom, Acrocephalus paludicola, Setophaga pinus, 150 

Acrocephalus atyphus, Aimophila notosticta, Anthus spinoletta, Locustella montis. 151 

 A. Study design and sound synthesis 152 

To investigate the response of the SPCC score to acoustic discrepancies in frequency, 153 

bandwidth and duration, we created a set of 10,000 reference sounds that were tonal 154 

sounds with a gradient of possible frequency modulations, including pure tones, and no 155 
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harmonics. The frequency modulation followed a shape based on a sine function (see 156 

Figure S1). These synthetic sounds had a central frequency of 4.1 kHz, matching the 157 

mean frequency measured in natural birdsong. They ranged from 0 kHz bandwidth (pure 158 

tone) to 1.64 kHz bandwidth, matching the mean bandwidth measured in birdsong, and 159 

a note length between 28 and 172 ms, matching the natural range in note length 160 

measured in birdsong as mean ± one standard deviation (SD). For each reference sound 161 

we synthesized 3 inexact copies, one for each treatment group, hereafter frequency, 162 

bandwidth and duration treatments (Figure 2). Each variant differed from the reference 163 

sound in just one parameter. For the frequency treatment, we created inexact variants 164 

that had the same spectrographic shape, bandwidth and duration but with a higher or 165 

lower frequency (Figure 2A). For the bandwidth treatment, we created inexact copies 166 

that differed in bandwidth from the reference sound, by stretching or shrinking the 167 

reference sound in the frequency spectrum while keeping the duration and frequency 168 

unchanged (Figure 2B). Finally, in the duration treatment, we stretched or contracted 169 

the reference sound in the temporal dimension to create an inexact variant that differed 170 

only in duration, but with the same bandwidth and frequency (Figure 2C). The full 171 

synthesis process as well as the following acoustic analyses were conducted in R 172 

software (Sueur et al., 2006; Ligges, 2013; R Core Team, 2022). 173 

The range of the variation introduced between a reference and a variant sound was 174 

derived from the naturally occurring variation between notes of the same trill measured 175 

in our birdsong database. In real birdsong, we measured the absolute difference in 176 

frequency, bandwidth and duration between notes of the same trill, relative to the mean 177 

frequency, bandwidth and duration of all notes within that trill. The absolute difference 178 

was transformed to a percentage relative to the mean frequency, bandwidth or duration 179 
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found in that trill. Then, we calculated the mean of the differences per species and took 180 

the 75% quartile of the variation in frequency (6.0%), bandwidth (43.3%) and note 181 

duration (15.4%) as the maximum variation introduced between reference and variant 182 

sounds in each treatment of the set of synthetic sounds. Then, for each variant sound 183 

we calculated the frequency and the duration as a percentage of the model frequency 184 

and duration. In the case of bandwidth, we calculated a range of possible bandwidths 185 

for variants, ranging from 0 to 0.71 Hz, which is 43.3% of the maximum bandwidth (i.e. 186 

1.64 kHz). A random value within this range was then added or subtracted to the 187 

bandwidth defined for the model sound. We did this because estimating a percentage 188 

of 0 kHz, or very low bandwidth sounds like pure tones, would lead to very small 189 

variations in bandwidth and therefore a bias throughout the range of bandwidth 190 

discrepancies. 191 

 192 

 193 

FIG 1 – Spectrograms of a synthetic sound built as a reference (red) and three inexact 194 

variants (green), one for the frequency treatment (A), one for the bandwidth treatment 195 

(B), and one for the duration treatment (C). Maximum, minimum and frequency 196 

indicated in 1B, as measured in the fundamental frequency (shown in a red line) 197 

C. Measuring sound similarity with the Spectrogram Cross-Correlation algorithm  198 

We measured the acoustic similarity between each synthetic sound (reference) and 199 

each variant using the SPCC algorithm (Clark et al., 1987; Cortopassi and Bradbury, 200 
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2000). First, we computed the spectrogram matrices using an FFT algorithm with a 201 

window size of 512 samples, 80 % overlap between successive windows and ‘Hanning’ 202 

window type (Figure 3A). The algorithm overlays two spectrogram matrices at multiple 203 

(consecutive) time offsets, calculating a correlation coefficient at each point (Figure 3B). 204 

Plotting each correlation coefficient per time offset will produce a curve (Figure 3C), 205 

with the peak correlation in the curve taken as the acoustic similarity between those 206 

two sounds.  207 

 208 

FIG 2 – Example of SPCC algorithm used to compare two notes of the trill of a blue tit 209 

(Cyanistes caeruleus). The two notes to be compared (A) are overlaid at different time 210 

offsets during the SPCC (B), producing multiple correlations coefficients, one at each of 211 

these alignments (C). The maximum correlation is taken as the SPCC score (C). 212 

 D. Statistical modelling of SPCC response 213 

All measures are presented as mean ± one SD, unless otherwise indicated. Statistical 214 

analysis was carried out in R software (Bates et al., 2015; R Core Team, 2022).  215 

We fitted Linear Models (LMs) to the SPCC score, the response variable, as a function of 216 

the difference between variant-reference sound pairs, taking the variation in frequency, 217 

bandwidth and duration as a percentage. In the case of variation in frequency and 218 

duration, the percentage was taken using the model as a reference (denominator). In 219 



 12 

the case of bandwidth, the model could be a pure tone (i.e. 0 Hz of bandwidth) and, to 220 

avoid having 0 as a denominator, we selected the highest value of bandwidth (between 221 

the model and the variant) as a reference (denominator) to estimate the percentage 222 

difference in bandwidth between model and variant. This solved the problem, as by 223 

definition there was no case where both variant and model were pure tones. 224 

Three models were fitted, one for each treatment. The estimated parameter for the 225 

variable “variant-reference difference” would indicate the SPCC sensitivity to acoustic 226 

discrepancies. In the models, we also included the absolute bandwidth and note 227 

duration of the reference sound and the full interaction with the variant-reference 228 

differences, to explore how the acoustic structure of the note influenced the SPCC 229 

sensitivity. These variables, bandwidth and duration of model sound, were scaled and 230 

center to allow us to compare the impact regardless of different units (Gelman, 2008). 231 

Based on preliminary analysis and given the bounded distribution of SPCC score 232 

between 0 and 1, we transformed the response variable using an arcsine and a logit 233 

function. Both transformations seemed appropriate in some part of the distribution 234 

range but neither led to a reasonably good fit throughout the entire range. We observed 235 

that there was a change in the slope or curve (SPCC sensitivity) towards larger values of 236 

variant-reference difference, particularly in the frequency and the bandwidth 237 

treatments. Thus, we decided to fit two models in each case, splitting the range of 238 

acoustic discrepancies into two parts after calculating the break point by fitting a 239 

segmented model (Muggeo, 2008). Data were then split into two groups: one with small 240 

acoustic differences, those variant-reference pairs with a difference below the 241 

estimated break point, and another with large acoustic differences for those variant-242 

reference pairs with acoustic differences larger than the break point (Figure 4). In the 243 
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frequency and the bandwidth treatments, we fitted a LM with an arcsine transformation 244 

of the SPCC score for the small differences group, while for large differences group we 245 

fitted an LM with a logistic transformation of the SPCC score. For the duration 246 

treatment, a single model with an arcsine transformation fitted well for the entire range 247 

of acoustic differences. We considered a variable to have a significant impact on the 248 

SPCC score if the 95% confidence intervals (CI) did not overlap with zero.  249 

 D. Testing the results with real birdsong 250 

We investigated whether the conclusions derived from the analysis of synthetic sounds 251 

were reflected in real data using the multi-species song data. To this end, we first 252 

classified all notes as being narrowband sounds, with a bandwidth lower than 100 Hz, 253 

and broadband sounds, those with a bandwidth higher than 100 Hz. Then, all notes were 254 

classified as similar in frequency if the difference in their frequency was less than 63 Hz 255 

with respect to the mean trill frequency, or different in frequency If the difference 256 

between the note and the trill central was larger than 63 Hz. The 63 Hz frequency 257 

threshold was the median variation in frequency in all notes from the birdsong data set, 258 

with respect to mean frequency within trill, dividing the whole sample approximately in 259 

half. Similarly, all notes were classified as different duration if the difference between 260 

note duration and mean trill note duration was larger than 4%. Again, this threshold was 261 

the median difference in note duration in our birdsong data. This analysis allowed us to 262 

explore the impact of bandwidth in measuring vocal consistency when two notes were 263 

different in frequency or in duration. We used a Mann-Whitney U test to compare the 264 

SPCC scores of broad and narrowband trills with the same and with different frequency. 265 

Similarly, we compared the SPCC scores of notes of narrow and broad bandwidth that 266 

were different in duration, but not in frequency. 267 
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III. RESULTS 268 

 A. SPCC response to discrepancies in synthetic sounds 269 

We found that the relationship between SPCC score and acoustic discrepancies fitted an 270 

arcsine curve in the duration treatment and for small acoustic differences of the 271 

bandwidth and frequency treatments. In the case of large acoustic differences in the 272 

frequency and the bandwidth treatment, the observed pattern best fitted a logistic 273 

curve. The breakpoints detected by the segmented models were 3.4% ± 0.12% SE in the 274 

case of frequency discrepancies and 21.3% ± 0.36% SE in the case of bandwidth 275 

discrepancies. In general, qualitative results from the arcsine and logistic models in the 276 

frequency and bandwidth treatments were very similar, henceforth we will refer to the 277 

arcsine curves (Table 1), although for completeness the logit models are presented in 278 

Table S1. 279 

In all cases, the SPCC method was sensitive to acoustic discrepancies between 280 

reference-variant pairs, as the SPCC score showed a significant negative correlation with 281 

the acoustic discrepancies in frequency, bandwidth and duration generated between 282 

the reference-variant pairs (Figure 5, Table 1). The SPCC method was most sensitive to 283 

differences in frequency, with a mean decrease of 22% in SPCC score with an increment 284 

of 1% in frequency difference (Figure 5, Table 1). SPCC was less sensitive to differences 285 

in bandwidth as SPCC score decreased by a mean of 4.7% with a 1% increment in 286 

bandwidth differences, and finally, SPCC was least sensitive to differences in duration, 287 

as SPCC decreased by a mean of 1.8% with a 1% increment in the difference in duration 288 

(Figure 5, Table 1). Note that these estimates considered the average change in SPCC 289 

throughout the range of variations. We also found that the SPCC score was influenced 290 

by the bandwidth of the sounds being compared in all treatments, but the direction and 291 
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size of the effect of bandwidth varied across treatments (Figure 5, Table 1). In the 292 

frequency treatment, where sounds were only different in frequency, the SPCC score 293 

was generally higher if the reference sound had a broad bandwidth than if it was 294 

narrowband sound (Figure 5). This is shown in the model by the positive, significant 295 

impact of model bandwidth and its interaction with variant-reference difference (Table 296 

1). The steeper down slope in the SPCC response for narrowband notes in the frequency 297 

treatment is shown in Figure 5A, with the bandwidth shown by a gray gradient. See also 298 

a visual explanation in Figure 6A-B. For the bandwidth treatment, the impact of 299 

bandwidth was similar to the frequency treatment but smaller (Table 1). In the duration 300 

treatment, the impact of bandwidth was opposite, as the same difference in duration 301 

rendered a higher SPCC score in narrowband sounds (Figure 5B & Figure 5C-D). In 302 

general, shorter sounds rendered higher SPCC scores in all treatments, as shown by the 303 

negative effect of note duration and its interactions with the reference-variant 304 

difference (Table 1). This means that SPCC was less sensitive to acoustic discrepancies 305 

of shorter sounds, although this effect was relatively small. Finally, we see a significant 306 

interaction in all models of both bandwidth and duration with the model-variant 307 

difference (Table 1). This indicates that the impact of bandwidth and duration explained 308 

before is not homogeneous thorughout the range of acoustic discrepancies but 309 

increases with increasing acoustic discrepancies. Such effect is represented in Figure 3A-310 

C as all three lines showing sensitivity for sounds of different bandwidth converge in the 311 

upper left corner.  312 

Our detailed quantitative analysis allows to derive the exact sensitivity of SPCC 313 

throughout the range of acoustic discrepancies, while considering the effect of 314 

bandwidth and duration. To derive the exact values one can apply the estimated 315 
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coefficients using a linear model: SPCC = αp + βw – γd + δ(pw) + ψ(pd). P is the 316 

percentage difference between sounds while the bandwidth and duration of the model 317 

sound are represented by w and d respectively. Then, α is the model-variant coefficient, 318 

β is the bandwidth coefficient, γ is the duration coefficient, δ is the coefficient for the 319 

model-variant interaction with bandwidth and ψ is the coefficient for the model-variant 320 

interaction with duration. In the models shown in Table 1 and S1, the explanatory 321 

variables are scaled and center so we can compare the impact of each predictor. In order 322 

to get the real values for sensitivity we provide the estimates derived from a model with 323 

the original, non-scaled variables (Tables S2 & S3). 324 

 325 

FIG 3 – Response of the SPCC score to acoustic discrepancies in frequency, defined as 326 

the equidistant point between maximum and minimum points of the F0 (A), bandwidth, 327 

defined as the distance in kHz between the maximum and minimum frequencies of the 328 

F0 (B), and sound duration in milliseconds (C). The gray gradient of the points shows the 329 

bandwidth of the reference sound from 0 kHz, i.e. a pure tone (light gray) to 1.6 kHz 330 

(black). For each treatment, lines represent the predicted values from the model 331 

adjusted to different bandwidth (0 kHz in yellow, 0.5 kHz in blue and 1.7 kHz in red). 332 

SPCC algorithm is most sensitive to frequency discrepancies in sounds, as shown by the 333 

steeper down slope in (A) regarding the frequency treatment. The duration treatment 334 

in (C) shows the shallowest slope, indicating that SPCC is least sensitive to temporal 335 

discrepancies. Figure (A) shows the impact of bandwidth in the SPCC response when 336 
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dealing with frequency discrepancies. Here, SPCC score of narrowband notes (light gray) 337 

decrease in a steeper slope than broadband sounds (black). This effect is opposite in the 338 

case of SPCC response to discrepancies in duration, where narrowband sounds (light 339 

gray) have a very shallow slope compared to broadband sounds (black). 340 

  B. SPCC and bandwidth in real birdsong 341 

The birdsong database included 28,266 notes of 3,100 trills in 954 different recordings 342 

from 345 species in 20 families (17.3 ± 13.5 species per family). As predicted by our 343 

analysis of synthetic sounds, we found that SPCC scores were significantly higher in 344 

broadband notes than in narrowband notes if they differed in frequency (Broadband: 345 

0.80 ± 0.11, Narrowband: 0.68 ± 0.20 SPCC score, W = 13819, P < 0.001, 5% CI = -0.13, 346 

95% CI = -0.05; Figure 5A and 5A-B) but not if they were similar in frequency (Broadband: 347 

0.85 ± 0.09, Narrowband: 0.87 ± 0.08 SPCC score, W = 39891, P = 0.004, 5% CI = 0.009, 348 

95% =0.045, Figure 5B and 5A-B). Similarly, analysis of real birdsong confirmed our 349 

findings on the impact of bandwidth on SPCC between sounds of different duration. In 350 

this case, broadband sounds showed significantly lower SPCC scores than narrowband 351 

sounds, for the same difference in duration (Broadband: 0.84 ± 0.10, Narrowband: 0.87 352 

± 0.09 SPCC score, W = 31169, P < 0.001, 5% CI = 0.017, 95% =0.052, Figure 5C and 5C-353 

D). 354 
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 355 

FIG 4 – Differences in SPCC score between broad band sounds (dark grey) and narrow 356 

band sounds (light grey), measured in natural song of 345 different species. As predicted 357 

by our analysis of synthetic sounds, SPCC scores of narrow band sounds with different 358 

frequency, i.e. different F0 but same shape and duration, is lower than in broadband 359 

sounds (A). However, if frequency is the same, narrow band sounds have higher SPCC 360 

scores (B). When two narrowband sounds differ in duration (but with the same 361 

frequency) they show higher SPCC scores than two broadband sounds of different 362 

duration (C).  363 
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TABLE 1 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with an arcsine transformation of the SPCC score. For each fixed effect, the model 
estimate, the lower and higher CI and the T statistic are shown. The estimate of the parameter of 
reference-variant difference indicates the slope in the correlation between the SPCC score and the 
programmed difference between synthetic sounds, i.e., the sensitivity of the SPCC. The bandwidth of the 
sounds being compared has a significant impact on the SPCC score, especially in the frequency and duration 
treatment but with opposite effects. The duration of the sound shows a significant impact on the SPCC 
score as shorter sounds tend to have higher SPCC values, but the effect size is small. 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept 0.911 874.2 0.91 0.913 < 0.0001 

Model-variant difference  -0.22 -168.9 -0.222 -0.217 < 0.0001 

Bandwidth 0.08 61.1 0.078 0.083 0.26 

Duration -0.015 -11.7 -0.018 -0.013 0.92 

Model-variant difference : 
Bandwidth 

0.044 33.7 0.042 0.047 < 0.0001 

Model-variant difference : 
Duration 

-0.009 -6.8 -0.012 -0.006 < 0.0001 

Bandwidth Intercept 0.998 742.3 0.998 0.998 < 0.0001 

Model-variant difference  -0.047 -269.6 -0.047 -0.046 < 0.0001 

Bandwidth 0.000 0.2 -0.003 0.004 0.83431 

Duration 0.000 0.2 -0.003 0.004 0.81524 

Model-variant difference : 
Bandwidth 

0.002 14.4 0.002 0.003 < 0.0001 

Model-variant difference : 
Duration 

-0.002 -14.1 -0.003 -0.002 < 0.0001 

Duration Intercept 0.999 1307.1 0.999 0.999 < 0.0001 

Model-variant difference  -0.018 -282.5 -0.018 -0.018 < 0.0001 

Bandwidth -0.012 -10.6 -0.015 -0.01 < 0.0001 

Duration -0.004 -3.6 -0.006 -0.002 < 0.001 

Model-variant difference : 
Bandwidth 

-0.004 -64.9 -0.004 -0.004 < 0.0001 

Model-variant difference : 
Duration 

-0.001 -22.7 -0.002 -0.001 < 0.0001 
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 366 

FIG 5 – Visual representation of the impact of bandwidth on SPCC sensitivity to 367 

differences in frequency, using natural notes recorded from blue tit song. In green, two 368 

notes types arbitrarily used as a reference. Another rendition of each note type is 369 

overlaid using red colors. (A) depicts the two note types (green) and variants (red) that 370 

differed mainly in frequency, with the associated cross-correlation curve in (B). The 371 

broadband note (type II) produces a high SPCC score by shifting the red note earlier in 372 

time. This is shown by the peak in correlation before zero in the X-axis in the cross-373 

correlation curve for note type II in (B). Hence, for the same difference in frequency, the 374 

SPCC score is lower in narrowband notes in grey (type I), compared to broadband notes 375 

in black (type II). (C) depicts two pairs of notes that differ in duration, but not in 376 

frequency, with the respective SPCC curves on (D). In this case, the red note in the 377 

narrowband note (type I) shows a high overlap regardless of the difference in duration, 378 

whereas lengthening a broadband note (type II) will change the shape of the note and 379 

therefore reduce the SPCC score. In this case, (D) shows that for the same difference in 380 



 21 

duration, narrowband notes in grey (type I) render a slightly higher SPCC score than 381 

broadband notes in black (type II). 382 

IV. DISCUSSION 383 

Our results support the use of SPCC to measure vocal consistency in birds, since the 384 

acoustic similarity score derived from SPCC correlated significantly with the known 385 

acoustic discrepancies between synthetic sounds as found in natural birdsong. As 386 

expected from the optimizing algorithm in SPCC, the SPCC sensitivity to spectral 387 

differences was higher than to temporal differences, when both parameters were within 388 

the range of natural variation in vocal consistency found in birds. The relationship 389 

between SPCC and acoustic discrepancies (sensitivity) was not linear and best fitted an 390 

arcsine curve or a logistic curve. We also found that, in the case of spectral discrepancies 391 

(frequency and bandwidth), the sensitivity of SPCC decreased as the note bandwidth 392 

increased. This means that spectral discrepancies between narrowband sounds were 393 

easier to detect than those in broadband sounds. The opposite pattern was found when 394 

measuring differences in duration. Differences in note duration between broadband 395 

sounds were easier to detect than those in narrowband sounds. In general, shorter 396 

sounds produced higher SPCC scores, suggesting that SPCC is less sensitive when dealing 397 

with shorter sounds. The findings derived from the analysis of synthetic sounds were 398 

confirmed in our analysis of birdsong in 345 different species as: 1) broadband sounds 399 

had lower SPCC than narrowband sounds when notes differed in frequency and 2) 400 

narrowband sounds of different duration had higher SPCC scores than broadband 401 

sounds with the same difference in duration. Quantifying the SPCC response along the 402 

range of acoustic discrepancies found in birdsong allows us to compare the properties 403 

of SPCC with the perceptual abilities found in birds, based on literature. Furthermore, 404 
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such a quantitative analysis permits researchers to determine the suitability of the 405 

method for their study model and scientific question.  406 

We found that the response of SPCC along the range of acoustic discrepancies was not 407 

linear, which is likely due to the frequency resolution of the spectrograms that limits 408 

detectability of small acoustic differences. As differences between two sounds approach 409 

the frequency resolution, such differences are more difficult to detect and therefore the 410 

sensitivity of SPCC is reduced. The frequency resolution is determined by the chosen 411 

window length of the FFT algorithm. Increasing the window length would increase 412 

frequency resolution and thus SPCC sensitivity to small spectral discrepancies but, in 413 

turn, temporal resolution would be lower, compromising sensitivity of SPCC to temporal 414 

differences. Choosing the appropriate window length is an important step depending 415 

on the target of the study (Khanna et al., 1997; De Kort et al., 2002).  416 

In birds, frequency discrimination threshold is estimated in 1%  (Dooling, 1982). In our 417 

simulated data, the SPCC score of acoustic similarity decreased by 4.4 % when two 418 

sounds of intermediate bandwidth differ by 1% in frequency, strongly supporting this 419 

method to measure the smallest frequency discrepancies perceived by birds. In contrast 420 

with a 1% discrimination threshold for frequency differences, birds are only able to 421 

detect discrepancies in duration when two sounds are at least 14% different in duration, 422 

going up to 23% for short sounds of 100 ms (Maier and Klump, 1990). For a 14% 423 

difference in duration between two sounds, the SPCC similarity score decrease by 3.1%, 424 

again supporting the use of SPCC to assess the smallest temporal differences as 425 

perceived by birds. Hence, the sensitivity of SPCC to detect temporal discrepancies is in 426 

practice relatively similar to the frequency sensitivity if we consider the hearing 427 

capacities of birds (Knudsen and Gentner, 2010). Technically, a lower sensitivity of SPCC 428 
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to temporal discrepancies is inherent to the method due to the cross-correlation 429 

algorithm. By computing multiple comparisons at different time offsets, the SPCC 430 

maximizes the chances of finding a match (i.e. optimization), while reducing the 431 

sensitivity to temporal discrepancies. However, this step is important to solve the 432 

problem of aligning two time series during their comparison. There are alternative 433 

methods to solve the alignment problem (i.e., Dynamic Time Warping; DTW) but, unless 434 

the optimization acts in the three dimensions (i.e. conducting a second cross-correlation 435 

in the frequency axis), this step will always cause differential sensitivity in the acoustic 436 

similarity score between spectral, amplitude or temporal discrepancies.  437 

Another consequence of the cross-correlation algorithm, computing multiple 438 

comparisons in time (X-axis), implies that the frequency bandwidth (Y-axis) influences 439 

the SPCC score. Considering two sounds that differ in frequency, two pure tones of zero 440 

bandwidth will be represented by two parallel lines in the spectrogram. These two lines 441 

will never overlap regardless of the cross-correlation process sliding two notes along the 442 

temporal dimension, rendering low SPCC scores (Figure 6). On the other hand, 443 

broadband sounds of different frequency can be partly matched during SPCC if the 444 

difference in frequency is smaller than the bandwidth (Figure 6). The better fit of a 445 

logistic curve to large acoustic differences indicates that there is a threshold over which 446 

SPCC is relatively insensitive to increasing differences, as the logistic curve will approach 447 

zero asymptotically. Nevertheless, this is close to the upper range of the natural 448 

variation in vocal consistency, which implies a minor issue in the use of the method. 449 

When considering differences in note duration between sounds, two pure tones of 450 

different duration are essentially two overlapping lines, meaning that the shape of the 451 

note does not vary by changing the duration and thus, SPCC renders high scores. 452 
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However, the spectrographic shape of a sound with modulating frequency will change 453 

substantially by changing the note’s duration, meaning that the SPCC score will decrease 454 

considerably in response to differences in duration. These examples show the impact of 455 

bandwidth on the SPCC response, indicating that the same difference in frequency or 456 

duration is not reflected with a similar decrease in SPCC if measured in two pairs of 457 

sounds with different bandwidths.  458 

At first, the impact of bandwidth on SPCC sensitivity may appear a flaw, implying that 459 

measurement of vocal consistency is biased, but this bias may not be a drawback if birds 460 

show similar perception of acoustic differences. In fact, it is expected that sensitivity to 461 

detect acoustic discrepancies by birds or other animals will not follow a linear response 462 

and will likely be affected by sound structure, as found in the SPCC response. Common 463 

starlings (Sturnus vulgaris), show lower discrimination thresholds when presented with 464 

two pure tones than when presented with a frequency modulated tone (Langemann and 465 

Klump, 1992). In humans, the threshold of frequency discrimination increases 466 

significantly with increasing frequency modulation (Dooley and Moore, 1988). Similarly, 467 

when two pure tones of different frequency are presented in sequence, the threshold 468 

of frequency discrimination is lower than when those two tones are presented by 469 

modulating the first frequency into the second frequency (Fastl, 1978). These studies 470 

strongly suggest that assessing acoustic differences is more difficult when the sounds to 471 

be compared have frequency modulations. In this sense, the impact of bandwidth in the 472 

SPCC score could mirror the perception of acoustic discrepancies in frequency, if birds 473 

follow similar perceptual patterns (Knudsen and Gentner, 2010). Other psychoacoustic 474 

studies in common starlings also show that sensitivity to frequency differences is higher 475 
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for longer sounds (Maier and Klump, 1990), again similar to our findings that SPCC 476 

sensitivity is higher for longer sounds.  477 

If ability to detect vocal inconsistencies is higher in narrowband sounds, receivers could 478 

show a preference for narrowband trills to assess motor performance skills faster and 479 

more accurately. From the sender’s perspective, less skilled birds could in turn use 480 

broadband trills to ‘hide’ their mistakes, as inconsistencies are difficult to perceive. In 481 

line with this idea, common nightingales (Luscinia megarhynchos) produce narrowband 482 

trills (whistle songs) that are important in mate attraction, and vocal consistency within 483 

those trills indicates male quality (Bartsch et al., 2016). It has been shown that 484 

individuals with higher vocal consistency produced more narrowband trills (Bartsch et 485 

al., 2016), which suggests that less skilled individuals could hide their mistakes by 486 

avoiding narrowband trills. Common nightingales also produce fast trills of broadband 487 

tones during simulated intrasexual conflicts (Schmidt et al., 2008), a type of song that is 488 

challenging and indicates muscle speed (Podos, 1997; Podos et al., 2016). Hence, it 489 

seems possible that individual song repertoire (i.e. diversity of song types within 490 

individuals) may serve to demonstrate neuro-motor skills in relation to different 491 

performance constraints (Cardoso, 2017). In this case, narrowband trills may display 492 

precision (Cardoso, 2017; Lane and Briffa, 2021) while fast broadband trills may display 493 

speed  (Podos and Nowicki, 2004; Lane and Briffa, 2021). This could help explain the lack 494 

of ecological correlates of some performance parameters in studies that use multiple 495 

song types (Cardoso, 2012). 496 

In conclusion, our results support the use of the SPCC method to measure vocal 497 

consistency in birdsong elements and possibly in other taxa. Our findings further support 498 

multiple field studies that found meaningful correlations between vocal consistency 499 
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measured by SPCC and individual features or ecological factors. Despite these results in 500 

support of SPCC as a biologically meaningful measure of vocal consistency, there are 501 

some concerns. We found that the sensitivity of SPCC was not linear along the range of 502 

naturally occurring vocal (in)consistency and that sensitivity to detect acoustic 503 

discrepancies is significantly affected by frequency bandwidth. We suggest that these 504 

patterns found in SPCC sensitivity may reflect a similar perceptual pattern in acoustic 505 

discrimination in bird hearing. Further empirical studies are needed to explore bird 506 

perception of vocal consistency and how it is affected by acoustic structure of sound. 507 

Despite this, we recommend caution when comparing absolute values of SPCC scores if 508 

the songs analyzed have different spectral structure (e.g. emitted by different species). 509 

If appropriate, a possible solution would be to normalize or standardize SPCC scores 510 

using statistical techniques to compare vocal consistency. Finally, we highlight the 511 

importance of understanding and validating the methods of measuring song 512 

performance to provide meaningful measures that can be generalized (Cardoso, 2017). 513 
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Supporting information 649 

 650 
TABLE S1 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with a logistic transformation of the SPCC score. For each fixed effect, the model 
estimate, the lower and higher CI of the estimate and the T statistic are shown. The estimate of the 
parameter of reference-variant difference indicates the slope in the correlation between the SPCC score 
and the programmed difference between synthetic sounds, i.e., the sensitivity of the SPCC to detect 
acoustic differences in each treatment. The slope is significantly lower than zero, indicating that the 
acoustic similarity from SPCC is sensitive to acoustic variation in the three treatments. The SPCC is most 
sensitive to spectral differences (frequency and bandwidth) than in temporal differences (duration). The 
bandwidth of the sounds being compared has a significant impact on the SPCC score, especially in the 
frequency and duration treatment but with opposite effects. The duration of the sound shows a significant 
impact on the SPCC score as shorter sounds tend to have higher SPCC values, but the effect size is relatively 
small. 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept 0.74 39.8 0.811 0.659 < 0.0001 

Model-variant difference  -0.384 -32.3 -0.406 -0.361 < 0.0001 

Bandwidth 0.193 3.3 0.08 0.304 < 0.001 

Duration -0.056 -1 -0.17 0.058 0.33347 

Model-variant difference : 
Bandwidth 

0.102 8.3 0.078 0.125 < 0.0001 

Model-variant difference : 
Duration 

-0.007 -0.5 -0.031 0.018 0.60 

Bandwidth Intercept 0.991 23.7 1 0.962 < 0.0001 

Model-variant difference  -0.069 -24.8 -0.075 -0.064 < 0.0001 

Bandwidth 0.305 4.4 0.17 0.435 < 0.0001 

Duration -0.045 -0.6 -0.184 0.095 0.53 

Model-variant difference : 
Bandwidth 

-0.007 -2.7 -0.013 -0.002 0.008 

Model-variant difference : 
Duration 

-0.004 -1.5 -0.01 0.001 0.13 
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TABLE S2 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with an arcsine transformation of the SPCC score. In this case, the variables 
“bandwidth” and “duration” were not scaled. The estimates from these models can be used to derive the 
sensitivity of SPCC at the chosen range of acoustic discrepancies and for a given bandwidth and sound 
duration 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept 0.999 183.3 0.998 1 < 0.0001 

Model-variant difference  -0.278 -66.7 -0.286 -0.27 < 0.0001 

Bandwidth 0 1.1 0 0 0.26 

Duration 0.006 0.1 -0.117 0.129 0.92 

Model-variant difference : 
Bandwidth 

0 33.7 0 0 < 0.0001 

Model-variant difference : 
Duration 

-0.216 -6.8 -0.277 -0.154 < 0.0001 

Bandwidth Intercept 0.998 247.9 0.997 0.999 < 0.0001 

Model-variant difference  -0.045 -83.8 -0.046 -0.044 < 0.0001 

Bandwidth 0 0.2 0 0 0.83 

Duration 0.011 0.2 -0.084 0.106 0.82 

Model-variant difference : 
Bandwidth 

0 14.4 0 0 < 0.0001 

Model-variant difference : 
Duration 

-0.059 -14.1 -0.067 -0.051 < 0.0001 

Duration Intercept 1 427.1 1 1 < 0.0001 

Model-variant difference  -0.007 -36.6 -0.008 -0.007 < 0.0001 

Bandwidth 0 -10.6 0 0 < 0.0001 

Duration -0.1 -3.6 -0.155 -0.045 < 0.001 

Model-variant difference : 
Bandwidth 

0 -64.9 0 0 < 0.0001 

Model-variant difference : 
Duration 

-0.035 -22.7 -0.038 -0.032 < 0.0001 
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TABLE S3 – Output of the model investigating the SPCC response to acoustic differences in frequency, 
duration and bandwidth, with a logistic transformation of the SPCC score. In this case, the variables 
“bandwidth” and “duration” were not scaled. The estimates from these models can be used to derive the 
sensitivity of SPCC at the chosen range of acoustic discrepancies and for a given bandwidth and sound 
duration 

Treatment Parameters Estimate T CI 5% CI 95% P 

Frequency Intercept -0.983 239.8 -0.975 -0.989 < 0.0001 

Model-variant difference  -0.787 -166.1 -0.794 -0.78 < 0.0001 

Bandwidth 0.257 13.7 0.221 0.293 < 0.0001 

Duration 0.001 0 -0.036 0.038 0.96 

Model-variant difference : 
Bandwidth 

0.09 16.5 0.079 0.101 < 0.0001 

Model-variant difference : 
Duration 

-0.025 -4.6 -0.036 -0.014 < 0.0001 

Bandwidth Intercept 0.923 4.9 0.648 0.997 < 0.0001 

Model-variant difference  -0.044 -4.7 -0.062 -0.026 < 0.0001 

Bandwidth 0.001 4.4 0 0.001 < 0.0001 

Duration -0.882 -0.6 0.962 0.763 0.53 

Model-variant difference : 
Bandwidth 

0 -2.7 0 0 0.008 

Model-variant difference : 
Duration 

-0.102 -1.5 -0.23 0.029 0.13 
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 662 

 663 
FIG S1 – The shape of the synthetic sounds was based on a sine shape with a starting 664 

point in sin(𝑥𝜋) and ending point in sin(𝑦𝜋), where 𝑥 could be a value between 0 to 1 665 

and 𝑦 could be a value from 1 to 2. The entire range is depicted in blue in the figure, 666 

while the yellow and red traces show two possible shapes that would derive from the 667 

process. The selected shape would then be transported so a central frequency of 4.1 668 

kHz and then adjusted to match a randomly selected bandwidth between 0 and 1.64 669 

kHz. In the case of a 0 kHz bandwidth, the resulting sound would be a pure tone, 670 

regardless of the original shape.  671 


