
Please cite the Published Version

Benn, Yael , Ivanova, Anna A, Clark, Oliver , Mineroff, Zachary, Seikus, Chloe, Silva, Jack
Santos, Varley, Rosemary and Fedorenko, Evelina (2023) The language network is not engaged
in object categorization. Cerebral Cortex. ISSN 1047-3211

DOI: https://doi.org/10.1093/cercor/bhad289

Publisher: Oxford University Press (OUP)

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/632437/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article which appeared in Cerebral Cortex,
published by Oxford University Press.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-7482-5927
https://orcid.org/0000-0002-1294-7360
https://doi.org/10.1093/cercor/bhad289
https://e-space.mmu.ac.uk/632437/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Received: September 27, 2021. Revised: July 12, 2023. Accepted: July 13, 2023
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, 2023, 1–21

https://doi.org/10.1093/cercor/bhad289

Original Article

The language network is not engaged in object
categorization
Yael Benn 1,† ,*, Anna A. Ivanova2,3,†, Oliver Clark1, Zachary Mineroff2,3, Chloe Seikus4, Jack Santos Silva4, Rosemary Varley4,‡,

Evelina Fedorenko2,3,‡

1Department of Psychology, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom,
2Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,
3McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,
4Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK

*Corresponding author: Department of Psychology, Manchester Metropolitan University, Brooks Building, Birley Fields Campus, 53 Bonsall Street, Manchester M15
6GX, United Kingdom. Email: y.benn@mmu.ac.uk
†Yael Benn and Anna A. Ivanova contributed equally
‡Co-senior authors

The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates
categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other,
irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-
dimensional categories, e.g. “Yellow Things”) more than categorization of items that share many features (high-dimensional categories,
e.g. “Animals”). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with
healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not
all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-
responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general
multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not
implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain
regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and
many cognitive tasks in adults.

Key words: aphasia; categorization; fMRI; language.

Introduction
The role of language in mediating or augmenting thought is the
subject of long-standing debate. According to one view, language
is necessary for many cognitive functions, such as math, logic,
and propositional thought (Darwin 1871; Dennett 1994; Bickerton
1995; Carruthers 2002; Bermúdez 2007; Baldo et al. 2010; Baldo
et al. 2015, and others). However, a large body of evidence sup-
ports a different view: that language is cognitively and neurally
independent from the rest of human cognition. This evidence
includes the lack of activity in the language brain regions during
non-linguistic tasks (Monti et al. 2009; Fedorenko et al. 2011; Monti
et al. 2012; Amalric and Dehaene 2016; Amalric and Dehaene
2019; Ivanova et al. 2021), the retained ability of some individuals
with aphasia to perform such tasks (e.g. Varley et al. 2005; Siegal
and Varley 2006; Bek et al. 2013; Benn et al. 2013), and variability
across cultures in the use of language resources during thought
(Kim 2002). However, the role of language is still contested for one
important aspect of human cognition: categorization.

Like other animals, humans can convert rich, multi-dimensional
perceptual inputs into a latent lower-dimensional structured
representation of the world. Grouping discriminable individual
objects and events into classes allows us not only to decide
whether some new object/event belongs to a particular category,

but also to draw powerful inferences about shared properties
from one category member to another (Mervis and Rosch 1981;
Smith and Medin 1981; Wasserman et al. 1988; Smith and Heise
1992; Pearce 1994; Mareschal and Quinn 2001; Murphy 2002).

In contrast to other animals, humans additionally label individ-
ual categories with words—the core building blocks of a powerful
communication system that allows us to share complex thoughts
with one another. Even though categorization is a basic cogni-
tive capacity that evolved long before language, evidence exists
that word learning affects category learning in development (e.g.
Gershkoff-Stowe et al. 1997; Sloutsky and Fisher 2004; Plunkett
et al. 2008; Waxman and Gelman 2009; Ferguson and Waxman
2017) and, to some extent, in adulthood (Lupyan et al. 2007;
Brojde et al. 2011; Lupyan and Casasanto 2015). Here, we ask
the following: how does language affect the process of grouping
objects into categories when the category boundaries are already
known?

High-dimensional and low-dimensional
categories
Before summarizing the key prior evidence, it is important to
introduce a distinction that some have considered to be relevant
to the question of whether language affects categorization.
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Lupyan and colleagues (e.g. Lupyan 2009; Lupyan and Mirman
2013; Perry and Lupyan 2014) distinguish between “high-
dimensional” (HD) categories, where members share many
features, and “low-dimensional” (LD) categories, where members
share one or a few features. HD categories typically correspond
to established sets that reflect either the taxonomic (similarity-
based) or relational/thematic (co-occurrence-based) structure
of the world (Bain 1855; Mirman et al. 2017). Taxonomic HD
categories can often be labeled by superordinate terms such as
ANIMALS, FRUIT, or TOOLS. Relational HD categories correspond
to common events/scenarios: for example, THINGS YOU TAKE
ON A PICNIC or NON-FOOD THINGS FOUND IN THE KITCHEN.
For such relational categories, the shared features have to do with
typical co-occurrences (e.g. although a fridge and a spatula are
quite different, they both co-occur with a large number of kitchen
objects, like a stove, pots and pans, a kettle, etc.). In contrast to
HD categories, LD categories are more likely to be novel groupings
of items that often straddle taxonomic and relational boundaries,
such as THINGS MADE OF WOOD or THINGS THAT ARE YELLOW
(e.g. things made of wood may include a cupboard, a sledge, and
a wooden spoon, and things that are yellow may include a lemon,
a yellow hat, and a canary).

Similar distinctions have been made by others, in related liter-
atures. For example, Barsalou (1983) distinguishes between “com-
mon” categories, which mirror the correlational structure of the
environment, and “ad-hoc,” or “goal-derived,” categories, which
are constructed for a specific goal and are thus often based on a
small number of features. Kloos and Sloutsky (2008) and Sloutsky
(2010) distinguish between “dense” and “sparse” categories based
on the ratio of category-relevant variance to total variance. Mem-
bers of statistically dense categories share many inter-correlated
features that matter for category membership, and members of
sparse categories have very few features in common, with many
other features varying independently and being irrelevant for
category membership. Couchman et al. (2010) contrast family-
resemblance categorization, which relies on judgments of overall
similarity, considering multiple features in tandem, and criterial-
attribute categorization (or “rule-based categorization”), which
requires adhering to a single-dimensional criterial attribute and
suppressing all other, irrelevant dimensions (see also Ashby and
O’Brien 2005). Langland et al. (2021) relate the HD/LD distinction
to the concrete/abstract distinction, arguing that items in con-
crete categories have many shared features, whereas identifying
items from an abstract category requires generalizing over many
irrelevant properties to identify a small set of commonalities. In
this work, we use the HD/LD category distinction proposed by
Lupyan et al. (although see the discussion for criticisms of that
distinction).

The LD-specific language recruitment hypothesis
One claim that emerged in the literature in recent years is that
language plays a special role in LD categorization (Lupyan 2009;
Lupyan 2012; Lupyan and Mirman 2013). The argument goes as
follows: during LD categorization, only one to two features are
relevant to the task, whereas the rest of the features interfere
and have to be inhibited; for instance, when categorizing objects
by color, their shape and function have to be ignored. A verbal
label (e.g. “yellow”) can help maintain focus on the relevant
categorization criterion and reduce interference from irrelevant
features. The hypothesis states that language resources are used
to maintain the label and are therefore more important for LD
categorization compared with holistic, HD categorization.

Fig. 1. Trial structure in (A) Aphasia Study 1 and (B) Aphasia Study 2 and
the fMRI experiment. HD, high dimensional category; LD, low dimensional
category.

The LD-specific language recruitment hypothesis predicts that
reduced availability of language resources should lead to a greater
disruption of LD compared with HD categorization.

This prediction found some support in the aphasia litera-
ture. Some patients with linguistic deficits have been reported to
exhibit impairments in non-verbal categorization tasks when the
task required focusing on one particular dimension and ignoring
other salient dimensions (De Renzi and Spinnler 1967; Cohen et al.
1980; Cohen and Woll 1981; Hjelmquist 1989; Davidoff and Rober-
son 2004). Building on these findings, Lupyan (2009) manipulated
verbal versus spatial interference in a dual-task paradigm in neu-
rotypical participants and found that verbal, but not visuo-spatial,
interference affected the participants’ ability to decide whether
an object belongs to an LD category. In contrast, verbal and visuo-
spatial interference had similar (and negligible) effects on HD
categorization. In a follow-up study, Lupyan and Mirman (2013)
directly compared performance on HD and LD categorization in
individuals with aphasia and neurotypical controls. Participants
were provided with a category descriptor (or label) and then had
to select from a picture array the subset of objects that belong to
the target category (similar to Fig. 1, top). Performance in the LD
condition was lower for both groups, but critically, the HD versus
LD difference was larger in individuals with aphasia, particularly
in those with low scores on a picture-naming task. Lupyan and
colleagues therefore concluded that access to lexical resources is
important for LD categorization.

However, evidence from aphasia does not provide uniform
support for the LD-specific language recruitment hypothesis.
For example, Burger and Muma (1980) found deficits in HD
categorization in individuals with anomia and in individuals with
Wernicke’s aphasia using a task similar to that used in Lupyan and
Mirman (2013). Others described aphasia-related categorization
deficits for both HD and LD categories (Koemeda-Lutz et al. 1987)
or no deficits in either (Hough 1993). Further, variations in the task
(such as showing the category label to the participant during the
entire trial versus just at the beginning of the trial) significantly
affected categorization performance in participants with aphasia
(Koemeda-Lutz et al. 1987), suggesting that task demands may
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contribute to the observed results (above and beyond alleged
effects of category type). Finally, some have argued for a
relationship between categorization difficulties and conceptual-
semantic rather than purely linguistic impairments (Caramazza
et al. 1982; Whitehouse et al. 1978; cf. Le Dorze and Nespoulous
1989).

The possible role of cognitive control
mechanisms in LD categorization
Even if individuals with aphasia consistently showed a selective
impairment in LD categorization, this result would not neces-
sarily implicate language as the source of the deficit. In par-
ticular, the language network in the left hemisphere, especially
in the left frontal cortex, lies adjacent to the domain-general
multiple demand network, which supports executive functions,
like working memory (WM) and inhibitory control (Duncan 2010;
Fedorenko et al. 2012; Duncan 2013; Fedorenko et al. 2013; Assem
et al. 2020b). As a result, left hemisphere damage can lead to joint
linguistic and domain-general executive deficits (Gainotti et al.
1986; Baldo et al. 2010). Prior work has shown that performance on
executive function tasks, not language tasks, predicts success in
learning novel categories (Vallila-Rohter and Kiran 2015), and LD
categorization consist of novel grouping of elements that are not
typically grouped together. Further, the multiple demand network,
but not the language network, is robustly sensitive to cogni-
tive effort across domains (e.g. Fedorenko et al. 2011; Fedorenko
et al. 2013; Hugdahl et al. 2015; Shashidhara et al. 2019), and LD
categorization appears to be more cognitively challenging than
HD categorization: LD categories are harder to learn for both
human children (e.g. Kloos and Sloutsky 2008) and non-human
primates (Couchman et al. 2010), require supervision (e.g. Kloos
and Sloutsky 2008), and are generally linked with executively-
taxing intentional learning (Kemler Nelson 1984; Ashby et al.
1998; Ashby and Ell 2001; Ashby and O’Brien 2005; Couchman
et al. 2010). It is therefore possible that impaired performance
on LD categorization (and on categorization tasks more broadly)
depends on domain-general cognitive control resources rather
than on language resources.

The LD-specific language recruitment hypothesis further
predicts that LD categories would evoke stronger activity within
the language brain regions. To our knowledge, this hypothesis
has not been directly tested in the neuroimaging literature;
instead, many studies have investigated differences between
taxonomic and thematic relations (Sachs et al. 2008; Kalénine
et al. 2009; Sass et al. 2009; Lewis et al. 2015), both of which
are considered HD. Further, few neuroimaging studies employ
methods that would be required to dissociate the contributions of
language-specific regions from those of domain-general cognitive
control regions: given the inter-individual variability in the
precise locations of functional areas, voxels in anatomically
identical locations within the frontal lobe might be language-
specific in one individual and domain-general in another, so
traditional group-based analyses (Friston et al. 1994) would fail to
distinguish between them (Fedorenko et al. 2012; Nieto-Castañón
and Fedorenko 2012; Fedorenko and Blank 2020). Disentangling
the role of language and executive resources in LD categorization
requires identification of language-specific and domain-general
cognitive control regions in individual participants and testing
their responses to LD compared with HD conditions.

Current study
Here, we re-examine the role of language in LD and HD catego-
rization by reporting evidence from two behavioral studies with

patients with aphasia (and patients with Parkinson’s disease and
healthy adults as controls) and an functional Magnetic Resonance
Imaging (fMRI) study. In Study 1, we use the setup from Lupyan
and Mirman (2013; L&M henceforth) to determine whether their
findings can be replicated in a sample of participants with mod-
erate aphasia. In Study 2, we adjust the experimental paradigm
to reduce task complexity by decreasing the amount of visual
information on the screen at any one time, and test whether
the LD-selective categorization impairment holds in a sample
of individuals with severe anomia. In the fMRI study, we collect
data from neurotypical individuals to test the prediction that the
language system is engaged during LD categorization more than
during HD categorization.

To foreshadow our results, the LD-selective categorization
impairment was observed only in some participants with severe
anomia (Study 2), not in the general aphasia sample (Study 1).
Only three of the five individuals with severe anomia exhibited
an LD-selective categorization impairment, casting doubt at the
immediate causal link between language (or naming ability)
and LD categorization. Finally, the fMRI study revealed low
engagement of the language network during both LD and
HD categorization, with no significant difference between the
two. Thus, the influence of language on LD categorization is
behaviorally inconsistent and is not supported by fMRI evidence,
leading us to conclude that the language system does not play a
special role in LD (single-feature-based) categorization and is not
engaged during categorization in general.

Aphasia Study 1
The aim of Study 1 was to test the LD-specific language recruit-
ment hypothesis using a paradigm that is closely related to the
original L&M study. L&M compared LD and HD categorization per-
formance in participants with anomic aphasia and in neurotyp-
ical controls. They found (i) lower performance on LD compared
with HD categories in both healthy adults and participants with
anomic aphasia; and, critically, (ii) a greater decrement in perfor-
mance for the LD, compared with the HD condition in participants
with aphasia. We explored whether these same effects would
replicate in our sample of participants with moderate aphasia.
To additionally examine the extent to which performance might
depend on the general effect of brain damage, as opposed to a
linguistic impairment, we also included a group of individuals
with Parkinson’s disease (PD).

Methods
Participants
Neurotypical older participants (n = 9 (6 F), age M = 67.89,
SD = 14.98) were recruited by convenience sampling; individuals
with chronic aphasia (n = 11 (3 F), age M = 61.18, SD = 12.09) were
recruited from the UCL Aphasia Clinic Research Register. The
aphasia group included patients with a range of aphasia types
and severities. Unlike L&M, we did not try to limit our sample
to individuals classified as having “Anomic” aphasia, given that
the use of such rigid classification labels fails to account for the
heterogeneity among the symptoms observed across patients
(Badecker and Caramazza 1985; Caramazza and Badecker 1989;
Wilson et al. 2023), and given that some degree of anomia is
present in all forms of aphasia (e.g. Goodglass and Geschwind
1976; Blumstein 1988). According to the normative literature
on the Boston Naming Test (BNT; Goodglass et al. 1983), which
recommends accounting for age, education, and gender when
diagnosing anomia (Welch et al. 1996; Zec et al. 2007), 7 of
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Table 1. Participant information, study 1.

Group Participant Age Education Gender TPO
(months)

BNT HD accuracy
(SD)

LD accuracy
(SD)

Neurotypical 1 75 Up to 16 F - 51 97% (17) 96% (20)
2 68 Up to 16 F - 55 98% (15) 97% (17)
3 68 Up to 16 M - 55 98% (14) 97% (17)
4 56 Degree-Level F - 59 100% (7) 98% (14)
5 98 Up to 16 F - 47 94% (24) 93% (26)
6 54 Degree-Level M - 53 99% (11) 97% (17)
7 69 Up to 16 M - 55 98% (14) 97% (17)
8 76 Up to 16 F - 52 96% (20) 94% (24)
9 47 Up to 18 F - 58 99% (12) 97% (17)

PD 1 60 Postgraduate M 36 59 99% (9) 98% (14)
2 58 Degree-Level M 12 58 99% (9) 99% (11)
3 80 Up to 18 F 48 58 98% (14) 99% (9)
4 56 Postgraduate F 48 54 99% (10) 98% (16)
5 66 Degree-Level F 72 59 99% (9) 97% (17)
6 75 Degree-Level F 96 56 98% (15) 97% (17)
7 59 Degree-Level F 60 55 98% (16) 97% (18)
8 69 Postgraduate F 36 54 100% (7) 96% (19)
9 63 Postgraduate F 60 56 98% (14) 98% (16)
10 77 Degree-Level M 12 46 98% (15) 99% (9)
11 72 Postgraduate M 120 53 96% (19) 98% (14)
12 75 Degree-Level M 2 58 98% (15) 96% (19)
13 75 Postgraduate F 360 53 96% (20) 96% (20)

Aphasia 1 52 Degree-Level M 120 30 92% (27) 89% (32)
2 57 Up to 16 M 84 57 99% (10) 98% (14)
3 52 Up to 18 M 48 52 98% (15) 97% (18)
4 59 Postgraduate M 120 43 100% (7) 98% (15)
5 79 Up to 16 F 36 50 95% (23) 96% 20)
6 44 Up to 18 F 12 14 98% (16) 95% (21)
7 81 Up to 16 M 96 57 92% (27) 95% (21)
8 56 Up to 18 M 60 12 90% (31) 89% (31)
9 57 Up to 18 M 48 51 100% (7) 98% (14)
10 60 Up to 16 M 132 34 96% (19) 95% (22)
11 76 Up to 16 F 84 14 93% (26) 93% (26)

TPO, time post onset; BNT, Boston Naming Test; HD, high dimension categories; LD, low dimension categories; SD, standard deviation

the 11 participants in the aphasia group (P1, P4, P6, P8, P9,
P10, and P11) were below the cut-off for normative naming
performance. Individuals with PD (n = 13 (8 F), age M = 68.08,
SD = 8.20) were recruited from the Parkinson’s UK Research
Registry. For detailed participant information, see Table 1. All
participants used English as their primary language. Patients were
offered a £10.00 reimbursement. Ethical approval was granted by
the UCL Research Ethics panel, Project ID: LC/2013/05, and all
volunteers gave informed consent to participate in the study.

Design and materials
The critical categorization task was modeled closely on L&M’s
study, with two modifications. First, the original study used
34 unique categories (18 HD categories and 16 LD categories),
with some repetition of categories in each condition. We chose
to not repeat any categories, so we limited the materials to
16 categories in each condition (dropping “BODY PARTS” and
“FACIAL FEATURES” from the HD set). And second, we used a
different set of images. L&M used normed color drawings (Rossion
and Pourtois 2004), and we used high-quality color photographs
selected from the Hemera Photo Objects 5000 and Google Images.
For each category, we selected 8–15 targets and 25–27 distractors.
Distractors included some items which were related to the target
category (for example, for the category “DANGEROUS ANIMALS,”
13 of the 26 distractors were animals that were not dangerous, and
the category “ANIMALS WITH STRIPES” included distractors that

were animals without stripes, and inanimate objects with stripes).
A total of 1087 unique images were used (any given image
appeared as a target in 0–2 categories and as a distractor in
0–2 categories). All photographs depicted objects on a white
background. The materials and the experimental scripts for all
studies are available on OSF: https://osf.io/guwh8/.

To determine the extent of lexical impairment in the aphasia
group and to compare lexical abilities across the three groups,
all participants completed the BNT (Goodglass et al. 1983), where
they were sequentially presented with up to 60 line drawings
of objects and asked to overtly name each one. The standard
discontinuation rule was applied, with testing stopped after eight
consecutive failed naming attempts. No semantic or phonological
cues were given.

Experimental procedure
Testing was carried out individually either in a quiet well-lit room
at the UCL Aphasia clinic or at the participants’ home, using a
MacBook Pro (Retina, 13-inch display) and an external computer
mouse. The study was set up using PsychoPy (Version 1.83), and
the procedure closely followed that used in L&M’s study, except
where noted. On each trial (see Fig. 1A for a sample HD and LD
trial), participants were presented with a 4 x 5 grid of images. The
image sets for the individual trials—each consisting of 20 images
(4 targets and 16 distractors)—were randomly selected from the
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pool of targets/distractors for each participant separately. The cat-
egory was stated at the top of the screen in lower-case Arial bold
letters (e.g. “objects that hold water”) and remained on the screen
for the duration of the trial. Participants selected the objects that
belonged to the target category by clicking on each relevant image.
A gray frame appeared around an image once it was clicked;
clicking the image again de-selected it (removed the gray frame)
to allow participants to modify responses. Once the participant
had selected all of the images they deemed appropriate for the
target category, they clicked a large green button with the word
“Done” at the bottom of the screen (in the L&M version, the button
said “click here when done”). Doing so triggered the next trial.
Although each trial contained a fixed number of targets (four),
participants were not informed of the number of targets during
the instructions and could therefore select as many images as
they wished on any given trial. No time limit was imposed on
the trials, but participants were encouraged to work as quickly
and accurately as possible. HD and LD trials were interleaved,
and the order of conditions was randomized for each participant.
Each participant performed the experiment twice for a total of
64 trials (32 per condition), but in contrast to L&M, different
sets of images were used for the two instances of each category
to minimize practice effects. Responses were recorded for each
image; response times were recorded for each trial (the time from
the onset of the trial until the “Done” button was pressed). The
session lasted approximately 1 hour. The BNT (Goodglass et al.
2001) was administered between the two runs of the study.

We wish to note that in their study, L&M state that they only
included ‘the correct responses’ in their RT analyses. It is not
clear what is meant here given the internal complexity of the
trials (i.e., possible errors including misses and false alarms).
It is possible that L&M only included trials where no errors of
any kind were made, but they also talk about ‘per click’ RTs,
which is not consistent with this interpretation. It also appears
that L&M analyzed median, not mean RTs. For simplicity and to
avoid collider bias (Elwert and Winship 2014), we chose to analyze
all trials here. We use mean per-trial values, but we make the
per-image data available on OSF (https://osf.io/guwh8/), so other
researchers could perform additional analyses.

Statistical analyses
To determine possible differences in demographics and BNT
scores across groups, we conducted ANOVA tests (with follow-
up Bonferroni-corrected t-tests), implemented in SPSS 22 (IBM
Corp 2013). For the critical analyses, we used linear/logistic mixed
effect regression models (Baayen et al. 2008). Given that correct
or incorrect selection of items is categorical in nature, we use
logistic regression to analyze accuracy measures (Jaeger 2008). For
response times, we use linear regression. When specifying model
contrasts, we used sum coding for category dimension (HD vs. LD);
the effect of group was therefore estimated across both category
dimensions. For the participant group (neurotypical vs. aphasia vs.
PD), we used dummy coding with “neurotypical” as the reference
level; thus, the effect of category was estimated specifically for
the neurotypical group (with interaction terms denoting whether
the category effect differed for the aphasia/PD groups). For
completeness and to facilitate result comparison with L&M, we
also ran pairwise comparisons across groups using “aphasia” as
the reference level (the results were Bonferroni-corrected, n = 2).
The mixed effect analyses were run using the lmer function from
the lme4 R package (Bates et al. 2015); statistical significance of
the effects was evaluated using the lmerTest package (Kuznetsova
et al. 2017); follow-up comparisons were conducted using the
emmeans package (https://cran.r-project.org/package=emmeans).

Lastly, due to a technical error, if participants accidently double-
clicked the “Done” button, the next set of images was skipped,
and the software registered it as though no response was made
by participants. As a result, we excluded trials where no selection
was made and where the trial length was less than 5 seconds.
This resulted in the exclusion of 40 trials (out of 2,112; ∼ 2%),
spread randomly between participants, groups and categories.
The analysis code is available on OSF: https://osf.io/guwh8/.

Results
Group profiles
As expected, the neurotypical, aphasia, and PD groups differed
significantly in their BNT scores (F(2,31) = 9.85, P < 0.001). Post-hoc
pairwise comparisons showed that the BNT scores of participants
with aphasia (M = 37.64, SD = 17.78) were significantly lower than
those of neurotypical participants (P = 0.005) or participants with
PD (P = 0.001), with the latter two groups not differing significantly
(M = 53.89, SD = 3.66 vs. M = 55.21, SD = 3.42; P > 0.999). The groups
did not differ in age (F(2,31) = 1.45, P = 0.250), but a significant
difference was observed in the level of education (F(2,31) = 14.36,
P < 0.001): participants in the PD group were significantly more
educated than both neurotypical participants (P = 0.001) and par-
ticipants with aphasia (P = 0.002), with the latter two not differing
significantly (P > 0.999).

Categorization task
Categorization results for Study 1 are summarized in Fig. 2.

Accuracy

We did not observe predicted categorization deficits in the aphasia
group. Participants with aphasia had high accuracy for both
LD (M = 0.95, SD = 0.03) and HD categories (M = 0.95, SD = 0.03;
LD > HD: β = −0.11, SE = 0.26, P = 0.672). The overall accuracy for
participants with aphasia (M = 0.95, SD = 0.03) was similar to neu-
rotypical participants (M = 0.97, SD = 0.02; neurotypical>aphasia:
β = 0.36, SE = 0.26, P = 0.166) and slightly lower than for partici-
pants with PD (M = 0.98, SD = 0.01; PD > aphasia: β = 0.69, SE = 0.24,
P = 0.004). The key comparison—interaction between category
dimension and group (aphasia vs. neurotypical)—was marginally
significant (β = −0.26, SE = 0.14, P = 0.055), and the trend was in
the opposite direction from that predicted by the LD-specific
language recruitment hypothesis (the performance gap for the
neurotypical group was larger). The category dimension by
group interaction for the aphasia versus PD comparison was not
significant (β = −0.12, SE = 0.13, P = 0.341). Thus, we did not observe
LD-specific categorization impairment in the aphasia group.

We additionally conducted an exploratory analysis to investi-
gate the difference between the aphasia and PD groups. Given that
the PD group had a higher average education level, we repeated
the analysis above with “education level” as an additional fixed
effect. The updated model had a similar fit to the data com-
pared with the original (as per the likelihood ratio test: χ2 = 1.55,
P = 0.213); under this model, the difference between the aphasia
and the PD groups was no longer significant (β = 0.44, SE = 0.31,
P = 0.158). The significance of other effects was unchanged.

Response times

The RT analysis revealed that participants with aphasia were
faster to respond during LD trials (M = 32.36, SD = 9.33) com-
pared with HD trials (M = 37.10, SD = 12.90; LD > HD: β = −4.75,
SE = 2.26, P = 0.042), in contrast to the predictions of the LD-
specific language recruitment hypothesis. The overall RTs for
participants with aphasia (M = 34.70, SD = 11.30) were longer than
for neurotypical participants (M = 26.30, SD = 12.10; β = −8.42,
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Fig. 2. Study 1 results. (A) accuracy and (B) response time (RT) across the three participant groups (here, RT is the time from trial onset until participants
pressed the “done” button). (C) Accuracy and (D) RT plotted against participants’ BNT scores, a measure of naming performance. Here and elsewhere,
error bars depict the standard error across participants.

SE = 4.02, P = 0.044) and the PD group (M = 21.40, SD = 5.14;
β = −13.30, SE = 3.66, P < 0.001). The interactions between category
dimension and group were not significant (neurotypical>aphasia:
β = 0.82, SE = 1.29, P = 0.522; PD > aphasia: β = 1.98, SE = 1.17,
P = 0.091). Follow-up analyses showed no overall effect of category
dimension across groups (β = 3.81, SE = 2.19, P = 0.249), within the
neurotypical group (β = 3.92, SE = 2.34, P = 0.271) or within the PD
group (β = 2.76, SE = 2.27, P = 0.521).

Effect of naming performance

To explore the effect of naming ability on the categorization task
performance, we fitted a logistic mixed effect linear regression
model with the BNT score, category dimension, and their inter-
action as fixed effects and participants (across the three groups)
and categories (e.g. “DANGEROUS ANIMALS”) as random effects.
Similar to L&M, we also included education level as a fixed effect.

We found that BNT was a significant predictor of accuracy
(β = 0.36, SE = 0.08, P < 0.001) and RT (β = −5.26, SE = 1.41, P < 0.001),
such that higher BNT scores corresponded to more accurate
and faster performance (Fig. 2C, D). There was no main effect
of category dimension (accuracy: β = −0.24, SE = 0.26, P = 0.358; RT:
β = −3.73, SE = 2.14, P = 0.092) and no interaction between BNT and
category dimension (accuracy: β = −0.05, SE = 0.04, P = 0.271; RT:
β = 0.74, SE = 0.49, P = 0.131). Education was a significant predictor
for both accuracy (β = 0.23, SE = 0.07, P = 0.001) and RT (β = −2.95,
SE = 1.24, P = 0.024). Whereas these results indicate that there

exists a relationship between the BNT score and categorization
performance, they do not support the LD-specific language
recruitment hypothesis.

Interim discussion
In Study 1, we use the setup from a previous study (Lupyan and
Mirman 2013, or L&M) to test the hypothesis that language is
selectively recruited to support LD categorization. To examine
the generality of the language-categorization link, we recruited a
group of individuals with aphasia with diverse degrees of aphasia
severity. We found that the aphasia group performed comparably
to the control groups on the categorization tasks. Naming ability
(as measured with the BNT) predicted overall categorization per-
formance, but we observed no interaction between naming ability
and category dimension (HD vs LD). In summary, Study 1 provides
no support for the hypothesis that language plays a special role
in LD categorization.

Participants with aphasia performed object categorization as
accurately as the neurotypical controls. Participants with PD per-
formed better than the other groups, but this difference is likely
explained by the higher education level in this group. As in L&M,
participants with aphasia were significantly slower to complete
the categorization task compared with the neurotypical group,
and to our additional, PD control group. However, this slower per-
formance in the aphasia group can be explained by the presence
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of motor impairments (e.g. right hemiplegia)—often more severe
than in participants with PD—which often necessitate use of their
non-preferred hand. This difference could also be explained by
the fact that participants with aphasia may require longer to pro-
cess the category descriptions, which are presented verbally and
sometimes in lengthy phrases (e.g. “NON-FOOD THINGS FOUND
IN THE KITCHEN”). Thus, we are hesitant to place a lot of weight
on the RT differences.

Across groups, BNT scores significantly predicted performance
on all three outcome measures (although this effect did not differ
for LD and HD categorization). Although BNT scores may be a
proxy for the severity of linguistic impairment, they also might
index the degree of executive function impairments (Higby et al.
2019). Due to the proximity of language-specific and multiple-
demand brain regions in some parts of the brain (Fedorenko et al.
2012; Fedorenko and Blank 2020), brain damage that causes lower
BNT scores is also likely to lead to difficulties with cognitively
demanding tasks. The categorization task adopted from L&M
involves visual search and selecting among multiple options,
which require a substantial degree of cognitive control (Posner
and Petersen 1990; Petersen and Posner 2012); thus, categoriza-
tion difficulties on the current task might reflect this increased
recruitment of executive/cognitive control resources.

Given the heterogeneity of the aphasia group in Study 1 and
a relatively low sample size, our results in this section should be
interpreted with caution. Therefore, in the next two studies, we (i)
test the hypothesis that LD-specific categorization impairments
might be observed specifically in participants with low BNT scores
(Aphasia Study 2) and (ii) evaluate the relative contributions of
language and executive resource to categorization in neurotypical
participants (fMRI experiment).

For Aphasia Study 2 and the fMRI experiment, we use a mod-
ified paradigm that temporally separates the process of reading
the category label and the process of categorizing objects based
on that label. Reading the label necessarily requires the use of
language but is not the target of the LD-specific categorization
hypothesis: thus, in the new setup, participants first read the label
and then make categorization judgments.

Aphasia Study 2
The aim of Study 2 was 3-fold. First, we wanted to further probe
the relationship between naming ability (BNT scores) and cate-
gorization performance, which was reported by L&M and found
in Study 1. Thus, we recruited participants with aphasia who
had severe anomia, as measured by the BNT (score range 1–11,
compared with 12–57 in Study 1; see Tables 1 and 2). Second, we
adjusted the paradigm to minimize executive demands, including
attention, visual search, selection/inhibition, and updating. Third,
we sought to validate a version of the task that could be used in an
fMRI setting (time-locked to events). See Fig. 1B for the modified
task setup.

Method
Participants
Neurotypical participants (n = 15 (15 F), age M = 72.47, SD = 6.41)
were recruited by convenience sampling; patients with chronic
aphasia and severe lexical impairment (n = 5 (all males), age
M = 66.60, SD = 8.91) were recruited from Aphasia volunteer
research registers; PD patients (n = 15 (1 F), age M = 66.60, SD = 6.38)
were recruited from the Parkinson’s UK Research Registry
(see Table 2 for detailed participant information). None of the

participants took part in Study 1. All participants used English as
their primary language and were offered a £15.00 reimbursement.
Ethical approval was granted by the UCL Research Ethics panel,
Project ID: LC/2013/05, and all volunteers gave informed consent
to participate in the study.

Design and materials
The categories were identical to those of Study 1. The images were
also largely the same although some were replaced by better qual-
ity photographs. Unlike Study 1, we presented the images sequen-
tially (Fig. 2B). Each block started with a category label, followed
by 12 images presented one at a time. The category label remained
on the screen to minimize memory demands. The images for each
category block were randomly selected from the general set of
pictures for that category. The number of targets varied across
blocks (minimum: 4, maximum: 6) so as to minimize the implicit
learning of a fixed number of targets. Categories were grouped by
dimension (LD/HD) into groups of four, for a total of eight blocks
(four blocks per dimension). These 8-block sequences (“runs”)
were separated by a rest period of fixation (10 s in duration). The
order of runs, the order of conditions within runs (LD first vs. HD
first), the order of categories within runs, and the order of images
within category blocks were randomized for each participant.

Experimental procedure
Testing was carried out individually either in a quiet well-lit room
at a clinic nearest to the participant’s location or in their home,
using a Dell Latitude E5540 (14.1-inch display). The paradigm was
set up using Python (version 2.7.10). Each category block started
with an instruction screen presented for 2 s that read “Please find
[CATEGORY LABEL]” (e.g. “Please find objects that hold water”).
Given that the participants in the aphasia group had severe
lexical impairment and had difficulty processing orthographic
information, the experimenter read the category label aloud to
all participants (in all groups) during this trial-initial 2 s window.
This screen was followed by a sequence of 12 images presented
one at a time for a maximum of 10 s per image. For each image,
participants had to decide whether the depicted object belong to
the target category by pressing one of two keys on the keyboard:
the “Y” key marked with a green sticker for YES, or the “N” key
marked with a red sticker for NO. If no response was recorded for
10s, the experiment advanced to the next image. Responses and
response times were recorded for each image. The session lasted
approximately 1 hour. The BNT was administered at the beginning
of the testing session.

Statistical analyses
The statistical analysis procedure was the same as in Study 1. No
trials were excluded.

Results
Group profiles
As expected, the groups differed significantly in their BNT
scores (F(2,32) = 202.67, P < 0.001). Post-hoc pairwise comparisons
revealed that the BNT scores of participants with aphasia
(M = 6.00, SD = 4.00) were significantly lower than both neurotyp-
ical participants (P < 0.001) and participants with PD (P < 0.001),
with the latter two groups not differing significantly (M = 53.67,
SD = 5.42 vs. M = 54.87, SD = 4.73, P > 0.999). The groups did not
differ in age (F(2,32) = 3.23, P = 0.053), but a significant difference
was observed in the level of education (F(2,32) = 5.42, P = 0.009),
with neurotypical participants and participants with PD having
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Table 2. Participant information, study 2.

Group Participant Age Education Gender TPO
(months)

BNT HD Accuracy
(SD)

LD Accuracy
(SD)

Neurotypical 1 68 Degree-Level F - 51 99% (11) 98% (14)
2 61 Postgraduate F - 41 98% (12) 98% (12)
3 85 Degree-Level F - 54 99% (10) 95% (21)
4 73 Postgraduate F - 58 95% (21) 96% (19)
5 72 Up to 18 F - 58 99% (9) 99% (9)
6 77 Postgraduate F - 55 96% (21) 99% (11)
7 77 Degree-Level F - 59 97% (17) 98% (12)
8 66 Degree-Level F - 57 98% (13) 99% (7)
9 66 Postgraduate F - 54 98% (12) 98% (12)
10 76 Degree-Level F - 59 99% (9) 98% (14)
11 65 Postgraduate F - 56 98% (15) 98% (13)
12 80 Up to 18 F - 45 97% (18) 99% (11)
13 74 Postgraduate F - 54 98% (12) 99% (10)
14 71 Degree-Level F - 57 96% (20) 95% (23)
15 76 Degree-Level F - 47 96% (19) 95% (22)

PD 1 71 Degree-Level M 24 58 98% (13) 97% (17)
2 78 Degree-Level M 24 47 95% (22) 93% (25)
3 64 Postgraduate M 30 48 98% (13) 95% (21)
4 72 Postgraduate M 18 59 98% (14) 96% (19)
5 54 Degree-Level M 204 58 97% (16) 97% (16)
6 72 Degree-Level M 4 48 96% (21) 98% (14)
7 62 Postgraduate F 120 56 98% (14) 99% (9)
8 65 Postgraduate M 17 59 97% (17) 98% (13)
9 74 Up to 18 M 96 56 96% (19) 97% (17)
10 67 Up to 16 M 60 54 99% (9) 98% (13)
11 67 Postgraduate M 72 59 98% (14) 96% (19)
12 59 Postgraduate M 30 58 99% (10) 99% (7)
13 59 Degree-Level M 48 60 97% (18) 99% (11)
14 67 Degree-Level M 18 55 97% (17) 95% (22)
15 68 Degree-Level M 98 48 92% (27) 94% (23)

Aphasia 1 58 Up to 18 M 42 5 88% (32) 82% (39)
2 68 Up to 16 M 68 9 77% (42) 79% (41)
3 77 Up to 18 M 111 11 91% (29) 88% (33)
4 57 Degree-Level M 34 1 96% (19) 95% (22)
5 73 Up to 18 M 326 4 96% (19) 91% (28)

TPO, time post onset; BNT, Boston Naming Test; HD, high dimension categories; LD, low dimension categories; SD, standard deviation

significantly more years of education than participants with
aphasia (P = 0.010 and 0.016, respectively). The neurotypical
participants and participants with PD did not differ (P > 0.999).

Categorization task
Categorization results for Study 2 are summarized in Fig. 3.

Accuracy

As in Study 1, participants with aphasia had similar accura-
cies for LD (M = 0.87, SD = 0.07) and HD categories (M = 0.90,
SD = 0.08; LD > HD: β = −0.24, SE = 0.22, P = 0.282). Participants
with aphasia had overall lower accuracies (M = 0.88, SD = 0.07)
compared with neurotypical participants (M = 0.98, SD = 0.01;
neurotypical>aphasia: β = 1.70, SE = 0.28, P < 0.001) and partici-
pants with PD (M = 0.97, SD = 0.02; PD > aphasia: β = 1.44, SE = 0.28,
P < 0.001), which is consistent with the negative relationship
between naming ability and categorization performance observed
in Study 1. We did not observe a reliable category dimension by
group interaction for the aphasia versus neurotypical comparison
(β = 0.44, SE = 0.26, P = 0.086), nor for the aphasia versus PD
comparison (β = 0.42, SE = 0.23, P = 0.070). Critically, in accordance
with the LD-specific language recruitment hypothesis, we
observed a category dimension by group interaction both for
the aphasia versus neurotypical comparison (β = 0.37, SE = 0.16,

P = 0.021) and for the aphasia versus PD comparison (β = 0.32,
SE = 0.15, P = 0.037).

Response times

RT results were also consistent with the LD-specific language
recruitment hypothesis. Participants with aphasia were slower
to respond during LD trials (M = 2.37, SD = 0.70) compared with
HD trials (M = 2.22, SD = 0.64; LD > HD: β = 0.16, SE = 0.08, P = 0.044).
The overall RTs for participants with aphasia (M = 2.30, SD = 0.64)
were longer than for neurotypical participants (M = 1.48, SD = 0.34;
β = −.81, SE = 0.19, P < 0.001) and participants with PD (M = 1.43,
SD = 0.29; β = −0.86, SE = 0.19, P < 0.001). We also observed an
interaction between group and category dimension for both the
neurotypical versus aphasia comparison (β = −0.23, SE = 0.03,
P < 0.001) and the PD versus aphasia comparison (β = −0.19,
SE = 0.03, P < 0.001), such that participants with aphasia had
longer RTs for LD categories compared with HD categories.

Effect of naming performance

As in Study 1, BNT was a significant predictor of categorization
performance (accuracy: β = 0.50, SE = 0.11, P < 0.001; RT: β = −0.29,
SE = 0.07, P < 0.001). There was no main effect of category
dimension (accuracy: β = 0.06, SE = 0.21, P = 0.787; RT: β = −0.02,
SE = 0.07, P = 0.742); however, unlike Study 1, and as predicted by
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Fig. 3. Study 2 results. (A) Accuracy and (B) RT across the three participant groups (here, RT is the time until participants pressed a “yes” or “no” button
for each image within a trial). (C) Accuracy and (D) RT plotted against participants’ BNT scores, a measure of naming performance.

the LD-specific language recruitment hypothesis, we observed an
interaction between BNT and category dimension for accuracy
(β = 0.13, SE = 0.05, P = 0.007) and RT (β = −0.08, SE = 0.01, P < 0.001).
Finally, education was not a significant predictor of performance
in this dataset (accuracy: β = 0.12, SE = 0.13, P = 0.372; RT: β = −0.01,
SE = 0.08, P = 0.940).

Single case analysis

Although the effect of naming performance in Study 2 is in
line with L&M’s prediction, careful examination of individual
participants’ scores casts doubt on the causal relationship
between naming ability and categorization performance. Specif-
ically, participants A4 and A5 in the aphasia group (Table 2)
had very low BNT scores (1/60 and 4/60), but nonetheless
performed well relative to both the neurotypical and PD groups
(accuracy: LD A4 = 95%; A5 = 91%; HD A4 = 96%; A5 = 96%). Using
the Adjusted F Calculator for comparing single cases to groups
(Hulleman and Humphreys 2007), these two participants did
not differ significantly from the combined neurotypical and PD
groups for either the HD condition (A4: F[1,29] < 0.01, P (one-
tailed) = 0.414; A5: F[1,29] < 0.01, P (one-tailed) = 0.414) or the LD
condition (A4: F[1,29] = 0.02, P (one-tailed) = 0.337; A5: F[1,29] = 0.14,
P (one-tailed) = 0.154). This dissociation indicates that naming
impairment is not necessarily accompanied by a decrement in
LD categorization.

Interim discussion
In Study 2, we examined object categorization performance of
individuals with severe anomia using a modified task paradigm

(with the goal of reducing executive demands). We found that, in
accordance with the LD-selective language recruitment hypothe-
sis, individuals with aphasia were impaired on LD categorization
more than on HD categorization. However, performance of indi-
vidual participants offers a reason to be skeptical about a direct
link between naming and categorization. Participants A4 and A5
demonstrated dissociation between these two tasks: despite very
low BNT scores (lower than 5/60), they performed similarly on
the HD and LD categorization trials, and their accuracy on both
conditions was well within the range of the control groups.

Dissociations observed in individual case studies are critical in
informing debates about cognitive architecture (e.g. Caramazza
and McCloskey 1988; Badecker et al. 1991; Caramazza and
Coltheart 2006). Naturally occurring brain lesions do not respect
the boundaries between functionally distinct brain areas, and
comorbidities or associations of impairments are common (e.g.
Bates et al. 2003). For example, damage to the left inferior frontal
gyrus (LIFG) is likely to cause multiple cognitive impairments due
to the high functional heterogeneity of that region (Fedorenko
et al. 2012; Fedorenko and Blank 2020). Thus, a correlation that we
observe between naming and categorization might be because the
brain regions that support these functions are located nearby and
thus are likely to be damaged together (rather than naming and
categorization engaging the same brain region/mechanism). The
dissociation that we observe in participants A4 and A5 supports
this possibility: in both cases, severely limited lexical access
did not prevent success on the categorization task, revealing
that intact linguistic (naming) skills are not necessary for object
categorization.
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As in Study 1, naming ability significantly predicted perfor-
mance. Furthermore, possibly because in this study we recruited
participants with aphasia who had extremely poor naming per-
formance, we also observed a group difference: participants with
aphasia had lower accuracy and longer response times than the
two control groups. This evidence points to a possible link between
naming performance and categorization. As in Study 1, this link
might arise from the fact that task instructions are presented ver-
bally; thus, linguistic impairments might affect task performance
simply because they make it more challenging to process the
instructions. Another explanation, also offered by L&M, is that LD
categorization is correlated with naming impairments because
both tasks may be affected by damage to cognitive control
mechanisms, which lay in close proximity to language areas,
especially in the LIFG (Thompson-Schill et al. 1997; Kan and
Thompson-Schill 2004; Fedorenko et al. 2012). In line with this
conjecture, Hu et al. (2021) observed strong neural responses (in
fMRI) in the domain-general MD network during an object naming
task. Thus, the correlation between anomia severity and object
categorization performance does not offer evidence of a language-
specific impairment and might reflect an executive impairment
instead.

The results of Studies 1 and 2 did not allow us to resolve the
question of whether language plays a key role in LD categoriza-
tion. Study 1 failed to replicate the selective LD categorization
impairments as reported in L&M. Study 2 did show a selective
decrease in accuracy (and increase in RTs) for LD categories in par-
ticipants with low naming scores, as predicted by the LD-specific
language recruitment hypothesis. However, this piece of evidence
is undermined by the dissociation observed in participants A4 and
A5 and the possibility that the performance deficits in individuals
with severe anomia could be caused by damage to the domain-
general executive brain regions that are adjacent to the language
system in the left frontal lobe.

To definitively establish whether LD categorization recruits the
language system, we next turned to fMRI.

fMRI experiment
To further test the relationship between language and categoriza-
tion, we conducted an fMRI experiment. Neurotypical participants
performed the same LD/HD categorization task as participants
in Study 2. In addition, they completed two functional “localizer”
tasks (Saxe et al. 2006; Fedorenko et al. 2010) that were used
to identify the networks of interest: the language network and
the multiple demand network. The use of standard, extensively
validated language network and multiple demand networks local-
izers allows us to identify and characterize these networks con-
sistently across studies (Saxe et al. 2006; Fedorenko 2021).

The language localizer was designed to identify brain regions
that respond more strongly to meaningful and structured lan-
guage than a perceptually similar control condition (for example,
sentences versus meaningless sequences of letters (“nonwords”);
Fedorenko et al. 2010). A large number of studies have shown that
sentences>nonwords and similar contrasts pick out a set of brain
regions that are strongly and selectively recruited for language
processing, including spoken, written, and signed language com-
prehension, spoken and written language production, and inner
speech (Amit et al. 2017; Braga et al. 2020; Fedorenko et al. 2010,
2011; Giglio et al. 2022; Hu et al. 2021; Menenti et al. 2011; Scott
et al. 2017; Silbert et al. 2014). These regions (henceforth, the lan-
guage network) also respond to linguistic units at different levels
of the processing hierarchy, including both phrases and single

words (albeit no single region or voxel is sensitive just to word-
level or sentence-level meaning; Blank et al. 2016; Fedorenko
et al. 2020). Therefore, if a task requires activating verbal labels,
we expect to observe activity in the regions identified with the
language localizer.

The multiple demand localizer identifies a set of brain regions
that respond to a wide range of cognitively demanding tasks.
Specifically, these regions are sensitive to general cognitive effort,
exhibiting higher activity when the task is more difficult (Assem
et al. 2020b; Duncan 2010; Fedorenko et al. 2013; Hugdahl et al.
2015). The hard>easy response signature in the multiple demand
network holds across many diverse tasks, including spatial WM,
logic, math, relational reasoning, and cognitive control (Fedorenko
et al. 2013; Coetzee and Monti 2018; Shashidhara et al. 2019;
Assem et al. 2020b). Thus, if LD categorization is more cognitively
challenging, we expect it to elicit higher activity in the multiple
demand network.

Examining activation patterns in both the language and the
multiple demand networks allows us to examine the relative
contributions of linguistic and cognitive control resources to LD
and HD categorization. As discussed before, brain damage leading
to aphasia is often comorbid with multiple demand network dam-
age: the language-selective regions and these domain-general
regions in left inferior frontal cortex lie in close proximity to each
other (Fedorenko et al. 2012; Blank et al. 2014; Fedorenko and
Blank 2020), with precise locations varying substantially across
individuals. Thus, impaired categorization performance of par-
ticipants with aphasia in Studies 1 and 2 could have potentially
arisen from damage to either or both networks. Study 3 allows
us to disambiguate between these possibilities. If, as suggested by
L&M, LD categorization indeed relies on language more than HD
categorization, we expect to see more activity within the language
system during LD trials compared with HD trials. Further, if LD
categorization is a more cognitively demanding task, we expect to
see higher responses within the multiple demand network during
LD trials compared with HD trials (in accordance with the fact
that multiple demand regions are sensitive to effort across diverse
tasks; Duncan and Owen 2000; Fedorenko et al. 2013; Hugdahl
et al. 2015). Finally, if a brain network does not respond to either
LD or HD categorization, we can conclude that this network is not
recruited for this task.

Method
Participants
Fourteen neurotypical participants (7 F, age M = 22.31, SD = 3.51)
were recruited from MIT and the surrounding community and
paid $60 for their participation. All were native speakers of
English. One participant was left-handed (see Willems et al. 2014,
for motivation to include left-handers in cognitive neuroscience
research) but showed typical left-lateralized language activation
as determined by the language localizer task (described below).
All participants gave informed consent in accordance with the
requirements of MIT’s Committee On the Use of Humans as
Experimental Subjects.

Design, materials, and procedure
Each participant completed a language localizer task aimed at
identifying language-responsive brain regions (Fedorenko et al.
2010), a spatial WM task aimed at identifying the multiple demand
network (Fedorenko et al. 2013) and the critical categorization
task. Some participants completed one or more additional tasks
for unrelated studies. The entire scanning session lasted two
hours.
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Language network localizer

Participants read sentences (e.g. NOBODY COULD HAVE PRE-
DICTED THE EARTHQUAKE IN THIS PART OF THE COUNTRY)
and lists of unconnected, pronounceable nonwords (e.g. U BIZBY
ACWORRILY MIDARAL MAPE LAS POME U TRINT WEPS WIBRON
PUZ) in a blocked design. Each stimulus consisted of twelve word-
s/nonwords. The sentences > nonword-lists contrast has been
previously shown to reliably activate high-level language process-
ing regions and to be robust to changes in the materials, task,
and modality of presentation (Fedorenko et al. 2010; Mahowald
and Fedorenko 2016; Scott et al. 2017). For details of how the
language materials were constructed, see Fedorenko et al. (2010).
The materials are available at http://evlab.mit.edu/funcloc. Stim-
uli were presented in the center of the screen, one word/nonword
at a time, at the rate of 450 ms per word/nonword. Each stimulus
was preceded by a 100 ms blank screen and followed by a 400-
ms screen showing a picture of a finger pressing a button, and
a blank screen for another 100 ms, for a total trial duration of
6 s. Participants were asked to press a button whenever they saw
the picture of a finger pressing a button. This task was included
to help participants stay alert and awake. Condition order was
counterbalanced across runs. Experimental blocks lasted 18 s
(with theree trials per block), and fixation blocks lasted 14 s. Each
run (consisting of 5 fixation blocks and 16 experimental blocks)
lasted 358 s. Each participant completed two runs.

Multiple demand network localizer

Participants had to keep track of four (easy condition) or eight
(hard condition) sequentially presented locations in a 3 × 4 grid
(Fedorenko et al. 2013). The hard > easy contrast has been
previously shown to robustly activate multiple demand regions
(Fedorenko et al. 2013; Blank et al. 2014; Mineroff et al. 2018;
Assem et al. 2020a). Stimuli in both conditions were presented
in the center of the screen across four steps. Each of these steps
lasted for 1 s and presented one location on the grid in the easy
condition, and two locations in the hard condition. Each stimulus
was followed by a choice-selection step, which showed two grids
side by side. One grid contained the locations shown on the
previous four steps, whereas the other contained an incorrect set
of locations. Participants were asked to press one of two buttons to
choose the grid that showed the correct locations. Condition order
was counterbalanced across runs and participants. Experimental
blocks lasted 32 s (with 4 trials per block), and fixation blocks
lasted 16 s. Each run lasted 448 s, consisting of 12 experimental
blocks (6 per condition) and 4 fixation blocks. Twelve participants
completed two runs and two participants completed one run.

Critical categorization task

The categorization materials were the same as those used in
Study 2 (see Fig. 1, bottom). The timing differed in the following
way. In order to make blocks uniform in duration, each category
block started with a category label presented for 2 s, and then
the 12 images were presented sequentially at the fixed speed of
2 s per image. As in Study 2, any given category block contained
between four and six target images. Participants were asked to
press a button if the picture belonged to the target category and
not to press anything if it did not. As before, the category label
was displayed at the top of the screen for the duration of the
trial to minimize memory demands. Category blocks lasted 26 s
(2 s category label presentation +2 s × 12 images), and fixation
blocks lasted 14 s. Each run, consisting of 12 category blocks (6
LD and 6 HD) and 4 fixation blocks, lasted 368 s. Each participant

completed three runs. Across the three runs, any given participant
saw a random subset of the 32 categories, with some categories
repeating (but never repeating within a run; see Appendix S1,
Table 1 for details). Condition order was counterbalanced across
runs and participants.

fMRI data acquisition
Structural and functional data were collected on the whole-
body, 3 Tesla, Siemens Trio scanner with a 32-channel head coil,
at the Athinoula A. Martinos Imaging Center at the McGovern
Institute for Brain Research at MIT. T1-weighted structural images
were collected in 176 sagittal slices with 1-mm isotropic voxels
(TR = 2,530 ms, TE = 3.48 ms). Functional, blood oxygenation level
dependent (BOLD), data were acquired using an EPI sequence
(with a 90 ◦ flip angle and using GRAPPA with an acceleration
factor of 2), with the following acquisition parameters: 31 4-mm
thick near-axial slices acquired in the interleaved order (with 10%
distance factor), 2.1 mm × 2.1 mm in-plane resolution, FoV in
the phase encoding (A>> P) direction 200 mm and matrix size
96 mm × 96 mm, TR = 2000 ms and TE = 30 ms. The first 10s of
each run were excluded to allow for steady state magnetization.

fMRI data preprocessing
fMRI data were analyzed using SPM12 (release 7487), CONN EvLab
module (release 19b), and other custom MATLAB scripts. Each
participant’s functional and structural data were converted from
DICOM to NIFTI format. All functional scans were coregistered
and resampled using B-spline interpolation to the first scan of the
first session (Friston Karl et al. 1995). Potential outlier scans were
identified from the resulting subject-motion estimates, as well as
from BOLD signal indicators, using default thresholds in CONN
preprocessing pipeline (5 standard deviations above the mean
in global BOLD signal change, or framewise displacement values
above 0.9 mm; Nieto 2020), and used as regressors of no interest
in first-level analyses (see below). Functional and structural data
were independently normalized into a common space [the Mon-
treal Neurological Institute (MNI) template; IXI549Space[ using
SPM12 unified segmentation and normalization procedure (Ash-
burner and Friston 2005) with a reference functional image com-
puted as the mean functional data after realignment across all
timepoints omitting outlier scans. The output data were resam-
pled to a common bounding box between MNI-space coordinates
(−90, −126, −72) and (90, 90, 108), using 2-mm isotropic voxels and
fourth-order spline interpolation for the functional data, and 1-
mm isotropic voxels and trilinear interpolation for the structural
data. Last, the functional data were smoothed spatially using
spatial convolution with a 4-mm FWHM Gaussian kernel.

First-level analysis
Responses in individual voxels were estimated using a General
Linear Model (GLM) in which each experimental condition was
modeled with a boxcar function convolved with the canonical
hemodynamic response function (HRF) (fixation was modeled
implicitly, such that all timepoints that did not correspond to
one of the conditions were assumed to correspond to a fixa-
tion period). Temporal autocorrelations in the BOLD signal time-
series were accounted for by a combination of high-pass filter-
ing with a 128-s cutoff and whitening using an AR(0.2) model
(first-order autoregressive model linearized around the coeffi-
cient a = 0.2) to approximate the observed covariance of the func-
tional data in the context of Restricted Maximum Likelihood
estimation (ReML). In addition to experimental condition effects,
the GLM design included first-order temporal derivatives for each
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condition (included to model variability in the HRF delays), as
well as nuisance regressors to control for the effect of slow linear
drifts, subject-motion parameters, and potential outlier scans on
the BOLD signal.

Defining individual functional regions of interest
Responses to the critical categorization experiment were extracted
from regions of interest that were defined functionally in each
individual participant (Saxe et al. 2006; Nieto-Castañón and
Fedorenko 2012). Three sets of functional regions of interest
(fROIs) were defined—one for the language network, one for
the multiple demand network, and one for the putative LD > HD
categorization regions. To do so, we used the Group-constrained
Subject-Specific (GSS) approach (Fedorenko et al. 2010; Julian
et al. 2012). In particular, fROIs were constrained to fall within
a set of “parcels,” which marked the expected gross locations
of activations for the relevant contrast. For the language
network, the parcels were generated based on a group-level
representation of language localizer data from 220 participants.
For the multiple demand network, the parcels were generated
based on a group-level representation of spatial WM task data
from 197 participants. For the putative LD categorization regions,
we generated the parcels based on the data collected in this study.
The parcels are available on OSF (https://osf.io/guwh8/).

To create each set of parcels, individual activation maps for the
relevant localizer contrast were binarized (by turning all voxels
significant at the P < 0.001 whole-brain threshold (uncorrected)
into 1 s, and the rest into 0 s) and overlaid in the MNI space to
create a probabilistic overlap map. The map was then smoothed
(FWHM = 6 mm), and voxels with fewer than 10% of participants
overlapping were excluded. The resulting map was divided into
regions using a watershed algorithm. Finally, we excluded parcels
that did not show significant effects for the relevant localizer
contrast in a left-out run or did not contain supra-threshold
voxels in at least 60% of the participants (for language and mul-
tiple demand networks) or in at least 50% of the participants
(for putative LD categorization regions). For the multiple demand
network, we also (i) excluded parcels in the visual cortex (the
hard condition includes more visual information than the easy
condition and thus yields more activation in the visual cortex),
and (ii) divided a parcel that encompassed parts of both the
precentral gyrus and the opercular portion of the inferior frontal
gyrus according to the macroanatomical boundary.

For each participant, each set of masks was intersected
with the participant’s activation map for the relevant contrast
(sentences>nonwords for the language network, hard>easy
spatial WM for the multiple demand network, and LD > HD for
putative LD categorization regions). Within each mask, the voxels
were sorted based on their t-values for the relevant contrast, and
the top 10% of voxels were selected as that participant’s fROI.
This top n% approach ensures that the fROIs can be defined in
every participant, thus enabling us to generalize the results to the
entire population (Nieto-Castañón and Fedorenko 2012).

Examining the functional response profiles of fROIs
After defining fROIs in individual participants, we evaluated their
responses to the conditions of interest by averaging the responses
across voxels to get a single value per condition per fROI. This
fROI-level estimate of the BOLD response magnitude is our main
effect of interest in this study (and the response magnitude
averaged across participants constitutes a measure of the effect
size).

The responses to the localizer conditions (sentences and non-
words for language fROIs, hard and easy WM conditions for mul-
tiple demand fROIs, and LD and HD categorization for categoriza-
tion fROIs) were estimated using an across-runs cross-validation
procedure, where one run was used to define the fROI and the
other to estimate the response magnitudes, then the procedure
was repeated switching the runs used for fROI definition versus
response estimation, and finally the estimates were averaged to
derive a single value per condition per fROI per participant. This
cross-validation procedure allows one to use all of the data for
defining the fROIs as well as for estimating their responses (see
Nieto-Castañón and Fedorenko 2012, for discussion), while ensur-
ing the independence of the data used for fROI definition and
response estimation (Kriegeskorte et al. 2009). Two participants
completed only one run of the multiple demand localizer task;
therefore, we did not estimate the strength of their responses
to the hard and easy multiple demand localizer conditions but
ensured that the whole-brain activation maps for the hard>easy
contrast showed the expected topography.

Statistical analyses
Similar to Studies 1 and 2, we analyzed our data using mixed
effect regression models (Baayen et al. 2008). For accuracy, we
use logistic regression (Jaeger 2008). For RT and fROIs response
magnitudes, we use linear regression. In all models, condition
was a fixed effect and participant was a random intercept. The
model for the multiple demand network included hemisphere
as an additional fixed effect. For language and multiple demand
network analyses, we also included fROI as a random intercept
and then ran follow-up analyses on individual fROIs using false
discovery rate (FDR) correction (Benjamini and Hochberg 1995) for
the number of fROIs in each network. Behavioral analyses used
sum coding for condition (LD vs. HD in the categorization task
and Hard vs. Easy in the multiple demand localizer task). Neu-
roimaging analyses used custom contrasts (see Appendix 3 for
detailed contrast specification). The mixed effect analyses were
run using the lmer function from the lme4 R package (Bates et al.
2015); statistical significance of the effects was evaluated using
the lmerTest package (Kuznetsova et al. 2017). The hypotheses-
specific contrasts were defined using the hypr package (Rabe et al.
2020).

In sum, if linguistic resources are engaged during categoriza-
tion, we would expect an overall high response of the language
network to categorization conditions. Further, if, as L&M have
argued, LD categorization taxes linguistic resources to a greater
extent, we would expect to see stronger response of this network
to the LD compared with the HD condition. Lastly, if LD catego-
rization is generally more taxing, we would expect to see greater
responses to the LD condition in the domain-general multiple
demand regions that are sensitive to effort across diverse tasks
(Duncan 2010; Duncan 2013; Fedorenko et al. 2013; Hugdahl et al.
2015).

Results
Behavioral data
Multiple demand network localizer
Due to a technical error, behavioral data for one participant
got overwritten. For the remaining thirteen participants, perfor-
mance on the spatial WM task was as expected: participants
were more accurate and faster in the easy condition (accuracy
M = 93.91%, SD = 3.00%; reaction time (RT) = 1.18 s, SD = 0.16 s)
than the hard condition (accuracy M = 79.65%, SD = 12.03%; RT
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Fig. 4. Categorization responses within the language brain network. (A) Parcels used to define fROIs in individual participants. (B) Average responses
within the language network to four conditions of interest (sentence reading and nonword reading vs. LD and HD categorization). (C) fROI responses to
the four conditions of interest.

M = 1.52 s, SD = 0.25 s). Mixed effect models with condition as a
fixed effect and participant as a random intercept showed that
both accuracy and RT effects were significant (accuracy: β = −1.41,
SE = 0.202, P < 0.001; RT: β = 0.33, SE = 0.027, P < 0.001).

Critical categorization task

The accuracies for the two categorization conditions did not
significantly differ (LD M = 95.73%, SD = 4.20%; HD M = 95.44%,
SD = 4.11%; LD > HD β = 0.14, SE = 0.20, P = 0.454). Similarly, there
was no significant difference between response times in the LD
condition (RT = 0.81 s, SD = 0.1 s) and the HD condition (RT = 0.84 s,
SD = 0.1 s; LD > HD β = −0.03, SE = 0.02, P = 0.156).

Functional response profile of the language network
There was no significant difference between language network
responses to LD and HD categorization (β = −0.02, SE = 0.10,
P = 0.848). Overall, responses to the categorization task were
barely above 0 (β = 0.42, SE = 0.19, P = 0.054; see Fig. 4), not
significantly different from responses to nonword reading, the
control condition in the language localizer task (β = 0.13, SE = 0.09,
P = 0.144), and significantly weaker than responses to sentences
(β = −1.49, SE = 0.09, P < 0.001).

Follow-up analyses in individual language fROIs (Appendix 2,
Table 1) showed that responses to categorization were signifi-
cantly above 0 in frontal fROIs (MFG, IFG, and IFGorb). However,
none of the responses were significantly higher than responses
during the control task, nonword reading, indicating that these
responses are not language-specific. Thus, our results suggest
that the language network does not support either LD or HD
categorization in neurotypical participants.

Functional response profile of the multiple demand network
Multiple demand network response to LD categorization was
higher than to HD categorization (β = 0.19, SE = 0.09, P = 0.025),
indicating that, as predicted, LD categorization is more effortful.
In general, multiple demand network responses to categorization
were significantly above 0 (β = 1.07, SE = 0.21, P < 0.001; see Fig. 5)
and stronger than responses to control conditions from the lan-
guage localizer task (categorization > sentences: β = 0.73, SE = 0.08,
P < 0.001; categorization > nonwords: β = 0.41, SE = 0.08, P < 0.001).
However, they were weaker than responses to the spatial WM
task (β = −1.43, SE = 0.07, P < 0.001), indicating that the WM task
was more effortful. Responses to the categorization task were
stronger in the left hemisphere (β = 0.24, SE = 0.09, P = 0.005). We
also observed an interaction between the WM > categorization
contrast and hemisphere (β = 0.29, SE = 0.13, P = 0.024), showing
that the WM task engages the right hemisphere to a greater

extent. There was also an interaction between the Hard>Easy WM
task and hemisphere, such that the effect was greater in right
hemisphere (β = 0.38, SE = 0.19, P = 0.040).

Follow-up analyses on individual fROIs (Appendix 2, Table 2)
showed that responses to categorization were significantly above
0 in all fROIs. However, they were weaker than the overall
responses to the WM task in almost all fROIs (except left middle
frontal fROI). This result highlights the domain-general nature
of these responses. Further, none of the fROIs had significantly
different responses to LD and HD categories, despite the presence
of this effect in the network-level analysis.

Whole-brain analyses
We also conducted a whole-brain analysis to identify fROIs that
might respond more strongly to LD or HD categorization but lie
outside the language and multiple demand fROIs described above.
The GSS analysis (see Methods for details) revealed that no regions
exhibited consistent HD > LD responses across participants; how-
ever, the LD > HD contrast revealed two parcels, both located in
left parietal lobe (Fig. 6). Further analysis of fROIs defined within
these parcels showed that the LD > HD response only reached
significance in fROI 2 (β = 0.43, SE = 0.17, P = 0.013), but not in fROI
1 (β = 0.58, SE = 0.30, P = 0.060). The overall categorization response
was significantly above 0 in fROI 1 (β = 0.65, SE = 0.19, P = 0.001) but
not fROI 2 (β = −0.13, SE = 0.15, P = 0.389).

Importantly, both fROIs responded to the WM task more
strongly than to the categorization task (fROI 1: β = 1.66, SE = 0.21,
P < 0.001; fROI 2: β = 0.64, SE = 0.12, P < 0.001), indicating that these
regions likely respond to general cognitive effort rather than to LD
categorization (or feature selection) specifically, and thus likely
belong to the MD network. Neither of the two fROIs exhibited a
sentences>nonwords effect; in fact, both showed a trend in the
opposite direction (fROI 1: β = −0.51, SE = 0.30, P = 0.094; fROI 2:
β = −0.28, SE = 0.17, P = 0.098), which shows that these regions do
not respond to linguistic input.

The whole-brain analysis provides additional evidence against
the LD-specific language recruitment hypothesis and shows that
differences in LD versus HD categorization, if present, are likely
caused by domain-general mechanisms.

Interim discussion
In the fMRI Experiment, we examined neural responses to LD and
HD categorization. Our main goal was to evaluate the hypothesis
that LD categorization relies more heavily on linguistic resources
compared with HD categorization. For this purpose, we identi-
fied the language network individually in 14 healthy adults and
examined its responses during LD and HD categorization. The
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Fig. 5. Categorization responses within the multiple demand brain network. (A) Left hemisphere parcels used to define fROIs in individual participants.
(B) Average responses within the left hemisphere fROIs to four conditions of interest (hard and easy WM tasks vs. LD and HD categorization). (C) Left
hemisphere fROI responses to the four conditions of interest. (D–F) Parcels, average responses, and fROI-level responses in the right hemisphere.

Fig. 6. Results of the whole-brain analyses. (A) Parcels defined with the LD > HD categorization contrast. (B) Responses to conditions of interest within
the two fROIs (defined as the top 10% of voxels within each parcel, sorted by the magnitude of the LD > HD response). WM, working memory task.

language network exhibited low responses to both categorization
tasks, which did not differ from activations elicited by reading of
nonword sequences (a low-level control condition). There was no
difference between responses to LD and HD categories, contrary
to the prediction that the language network would be selec-
tively or preferentially engaged during LD categorization. Thus,
we conclude that (i) the neuroimaging results disconfirm the LD-
specific language recruitment hypothesis and (ii) the language
network is not at all engaged in object categorization, highlighting
a dissociation between linguistic processing and non-linguistic
semantic cognition.

Unlike the language network, the domain-general multiple
demand network (also defined individually in each participant)
was engaged during categorization, indicating that this task is
cognitively challenging. This network responded more strongly
to LD than HD categorization, but this effect was small. The
whole-brain analyses specifically aimed at identifying regions
with stronger responses to LD than HD categorization confirmed
that the two identified fROIs, responded more strongly to a
WM task than to a categorization task, and the LD > HD effect
was small and/or not statistically significant. We conclude that
categorization, and LD categorization in particular, relies on

domain-general multiple demand regions and not on language-
specific regions. Future work should examine whether the
small difference between LD and HD categories is driven by
a small subset of categories or whether it indeed reflects
greater domain-general cognitive demands associated with all LD
categorization.

Neuroimaging of healthy individuals provides a powerful
complement to patient studies. Given the strong and selective
engagement of the language network during all behaviors
requiring access to linguistic representations (Fedorenko et al.
2010; Fedorenko et al. 2011; Menenti et al. 2011; Scott et al.
2017; Giglio et al. 2022; Hu et al. 2021, among others), the lack
of activity in the language regions during categorization strongly
suggests that they do not contribute to categorization (Mather
et al. 2013). The response to categorization within the multiple
demand network, on the other hand, indicates its involvement in
categorization, even though we note that fMRI evidence described
here is correlational, not causal, and should be complemented
with patient studies or brain stimulation studies that specifically
target this hypothesis (that interfering with the activity in the
multiple demand network or damage to this network should lead
to impairments in categorization tasks). Neuroimaging evidence
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is particularly helpful when patient studies do not produce
conclusive results, as in our case.

Whereas some previous work suggested that a region within
left angular gyrus is involved in inhibiting irrelevant semantic
information (Lewis et al. 2019), as may be required for LD cat-
egorization, the results of our study suggest that activation of
the language-responsive portion of the left angular gyrus was
comparable during LD and HD categorization. If anything, this
language fROI showed numerically higher activation during HD
categorization, suggesting that it may be recruited for recognizing
and thinking about established sets more than for constructing
novel sets that may require inhibition of object-irrelevant char-
acteristics. We also did not find significant differences in the
engagement of the language fROIs in the left inferior frontal cor-
tex during LD and HD categorization. These results are in contrast
to findings from Lupyan et al. (2012), which suggested that tDCS
to the left inferior frontal cortex disrupted performance on LD but
not HD categorization. The latter result might be explained by the
fact that left inferior frontal cortex contains not only language-
responsive areas, but also multiple demand areas (Fedorenko et al.
2012; Fedorenko and Blank 2020), and interfering with the latter
areas’ activity may have a disproportionately higher effect on LD
categorization.

The response to categorization within the multiple demand
network was stronger in the left hemisphere, consistent with the
view that label-based categorization recruits the left hemisphere
more strongly (Gilbert et al. 2006; Franklin et al. 2008). This makes
the categorization task similar to logic and math, which also evoke
left-lateralized responses within the multiple demand network
(Monti et al. 2009; Pinel and Dehaene 2009; Monti et al. 2012;
Amalric and Dehaene 2016). Importantly, our result demonstrates
that, just because the function is left-lateralized, it is not necessar-
ily related to language, at least not in fully formed brains (contra,
e.g. Gilbert et al. 2006; see also Holmes and Wolff 2012).

All in all, results from the fMRI Experiment disconfirm the
hypothesis that LD categorization relies on linguistic resources.
Instead, they show that categorization recruits the multiple
demand brain regions and that LD categorization is, on average,
slightly more effortful that HD categorization.

Alternative account: semantic versus
perceptual categories
Throughout this paper, we have adopted the LD/HD distinction
proposed by L&M and tested their hypothesis using the same
categories as those in their study. However, the LD/HD distinction
might not be the only relevant distinction for testing the role of
language in object categorization (see Section 6.2 for potential
issues with this classification scheme). Therefore, we addition-
ally tested an alternative hypothesis: that the language network
would be selectively recruited for processing semantic categories
(e.g. DANGEROUS ANIMALS) but not perceptual categories (e.g.
THINGS THAT ARE BLUE). This classification does not fully align
with the HD/LD distinction and instead reflects the view that lan-
guage and semantic, or conceptual, processing are tightly linked
(see, e.g. Binder et al. 2009; Binder and Desai 2011; cf. Patterson
et al. 2007; Ivanova et al. 2021).

Method
We re-analyzed the data from the two aphasia studies and the
fMRI experiment by re-coding the categories as either semantic or
perceptual. The criterion we used was the following. For percep-
tual categorization, one does not need to know the identity of the

object because the information required for categorization (e.g.
color, length) is directly extractable from the image. For semantic
categorization (e.g. danger level or typical location), however, the
identity of the object is important. The result of this re-coding is
reported in Appendix 1. The rest of the analyses were the same as
those described for LD/HD category types.

Results and discussion
The results are shown in Appendices S2 and S3. In both aphasia
studies, category type had no effect on accuracy, nor did it interact
with participant group or BNT. However, semantic categorization
overall elicited longer response times compared with perceptual
categorization. This main effect of category type on response
times interacted with participant group for both studies, but
the interaction went in opposite directions across studies: in
Study 1, individuals with low BNT showed an increased difference
in response time between semantic and perceptual categories,
whereas in Study 2, this gap was reduced. The results of the
aphasia studies are therefore inconclusive but do not provide
support for a consistent relationship between naming ability and
categorization.

The neuroimaging results, however, are clear. The language
network is not significantly recruited for either semantic or per-
ceptual categories, reinforcing our conclusion that the cognitive
mechanisms responsible for core language processing are not
engaged in object categorization.

Given that the semantic nature of the category has an effect on
response times during categorization tasks, future works should
aim to disentangle category dimensionality and semantic content
when designing the stimuli.

General discussion
We reported three studies that evaluated the hypothesis that
linguistic resources are essential for performing feature-based,
or LD, categorization—what we refer to as the “LD-specific lan-
guage recruitment hypothesis” (Lupyan 2009; Lupyan et al. 2012;
Lupyan and Mirman 2013; Langland et al. 2021). In Study 1, we
aimed to replicate the results of Lupyan and Mirman (2013), who
showed a selective impairment in LD categorization in individuals
with aphasia. Our results failed to replicate this critical finding,
although they did show that naming ability, as measured by
BNT scores, was a significant predictor of overall categorization
performance.

In Study 2, we modified the design to reduce general task com-
plexity and examined the specific contribution of naming ability
to categorization by recruiting a group of participants with very
low naming scores. We found that, in accordance with the LD-
specific language recruitment hypothesis, individuals with apha-
sia were more impaired on LD compared with HD categorization.
However, a case-by-case analysis revealed that two individuals
with a severe naming impairment (with scores of 1 and 4 out
of 60 on the BNT) performed within the neurotypical range on
both HD and LD categorization. Evidence from patients with brain
lesions remains an important way to establish whether specific
cognitive capacities support performance on particular tasks (Ror-
den and Karnath 2004), and dissociations are more important
than associations in this kind of evidence (Caramazza and Colt-
heart 2006). Patient studies have previously demonstrated that
many high-order cognitive functions are not affected by even
severe linguistic deficits (e.g. Apperly et al. 2006; Bek et al. 2013;
Chen et al. 2020; Varley et al. 2001, 2005; Varley and Siegal 2000;
Willems et al. 2011; Ivanova et al. 2021). Based on Study 2, we
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therefore concluded that lexical retrieval is not necessary for suc-
cessful categorization, including categorization based on single
features.

In Study 3, we used a complementary approach and examined
the engagement of the language network and a domain-general
multiple demand network in HD and LD categorization using fMRI
in neurotypical adults. The language network was not engaged
during either LD or HD categorization: its responses did not
significantly differ from responses during the control, nonword
reading, task. This observation goes against the hypothesis that
categorization (either LD or HD) relies on linguistic resources.
In contrast, the multiple demand network was recruited dur-
ing the categorization task, consistent with prior evidence of
its involvement in diverse cognitively challenging tasks (Duncan
2010; Duncan 2013; Fedorenko et al. 2013; Assem et al. 2020b).
It also responded more strongly during LD than HD categoriza-
tion. Given extensive evidence that the multiple demand network
responds more strongly when the task is harder (e.g. Fedorenko
et al. 2011; Fedorenko et al. 2013; Hugdahl et al. 2015; Shashidhara
et al. 2019), the increased response during LD categorization is
consistent with the hypothesis that LD categorization is more
cognitively challenging. However, this effect was small and did
not come out as statistically significant in any of the individual
multiple demand regions in follow-up analyses. In sum, we find
little evidence in favor of the LD-specific language recruitment
hypothesis.

The cognitive control account of categorization
performance
The failure to replicate the results from L&M in Study 1 and an
only partial replication in Study 2 have several possible explana-
tions. The first explanation is that the effect described by L&M is
real, but we could not detect it due to low power (e.g. small sample
size). This explanation is unlikely because of our neuroimaging
results: if language was indeed required for LD categorization, the
language network would be active during the LD categorization
condition. The second explanation is that the result that was
reported by L&M is a false positive. The third explanation is that
the effect holds in a subset of individuals with aphasia, due to
comorbid cognitive control impairments. We cannot definitively
rule out either the second or the third explanation, although our
neuroimaging results provide some support for the latter: the
multiple demand network, implicated in cognitively demanding
tasks, was somewhat more active during LD than during HD
categorization.

The hypothesis that domain-general cognitive control deficits
underlie impaired categorization can also explain the link
between categorization and naming, which we observed in both
Studies 1 and 2, and which was also reported by L&M. Con-
frontation naming is a complex, multi-component behavior that
involves not only linguistic, but also visual, motor-articulatory,
and critically, executive resources. Indeed, a recent fMRI study (Hu
et al. 2021) reports strong responses within the multiple demand
network to an object naming condition. Furthermore, unlike syn-
tactic comprehension, both naming ability and fluid intelligence
(a trait linked to the multiple demand network; Gläscher et al.
2010; Woolgar et al. 2010; Woolgar et al. 2018) decline with age, and
this decline is linked to decreased activity in the multiple demand
brain regions during both of these tasks (Samu et al. 2017). Thus,
although both our work and L&M show a relationship between
naming and categorization, the underlying cognitive mechanism
of this relationship is likely related to cognitive control, not
language.

Yet another possibility is that both naming and categorization
performance rely not only on domain-general, but also on
semantic control resources. Semantic control is a cognitive
construct posited by several groups that investigate controlled
retrieval of conceptual information (e.g. Thompson-Schill et al.
1997; Badre and Wagner 2002; Jefferies 2013; Lambon Ralph et al.
2017). Although the location of the putative regions responsible
for semantic control (or, more neutrally, semantic demand)
resembles that of the language regions, precise localization
approaches in individual brains indicate that language, multiple
demand, and semantic demand regions are spatially distinct
(Ivanova et al. in prep). If semantic demand regions support
deliberate, controlled semantic tasks, damage to these regions
might explain both categorization and naming difficulties in
individuals with anomia. However, that would not constitute
evidence in favor of the LD-specific language recruitment hypoth-
esis: semantic demand regions get recruited both for verbal and
nonverbal inputs (Ivanova et al. in prep) and are therefore not
language-specific.

Future patient studies should explicitly test the cognitive con-
trol accounts of LD-selective categorization impairments. One
way to do so is to use lesion mapping along with probabilis-
tic maps of functional networks of interest (see, e.g. Woolgar
et al. 2018): this method allows explicitly determining which net-
work (language, multiple demand, or semantic control) underlies
observed behavior patterns. Another way is to measure domain-
general and semantic cognitive control in individuals with brain
damage and use them as predictors when evaluating the rela-
tionship between naming performance and categorization. Yet
another approach would be to explore these relationships in neu-
rotypical participants by examining the correlational structure of
these abilities across individuals. Such studies could provide addi-
tional evidence in favor or against the cognitive control accounts
of categorization impairments, complementing our neuroimaging
results and reconciling conflicting findings from individuals with
aphasia.

The relevance of LD versus HD distinction
Why did we find no, few, or inconsistent differences in perfor-
mance and neural responses between LD and HD categories? A
possible explanation is that “LD” and “HD” category types are not
“natural kinds.” In the interest of replicability, we here chose to
keep the categories used by L&M for most analyses, but future
research will possibly refine or even abandon this distinction. As
discussed in the introduction, different researchers have empha-
sized different distinctions among categories, such as natural/ad
hoc, taxonomic/thematic, dense/sparse, concrete/abstract, etc.
Many of these distinctions are not isomorphic with the LD/HD dis-
tinction. In particular, HD categories encompass both taxonomic
(e.g. “animals”) and thematic (e.g. “non-food things found in the
kitchen”) categories. Multiple studies show that the processing
of taxonomic and thematic relations relies on distinct cognitive
and neural mechanisms (e.g. Kalénine et al. 2009; Sass et al. 2009;
Schwartz et al. 2011; Lewis et al. 2015; Xu et al. 2018); collapsing
them into a single “HD” category type leads to substantial within-
HD heterogeneity and may therefore obscure potential HD/LD
differences.

In addition, there is currently no principled way of labeling
categories as LD versus HD. Different researchers might disagree
on whether items in a given category have few or many features in
common: for instance, Lupyan and Mirman (2013) classify “things
that fly” as an HD category, even though the majority of members
in this category can be identified using an LD label “have wings”;
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under other accounts (e.g. Langland et al. 2021), “flying” might
be a feature in and of itself, uniting objects that are otherwise
highly diverse. The lack of clarity on what exactly constitutes an
HD category makes it hard to generalize the results beyond the
specific categories used in the study.

Furthermore, not all LD categories as defined by Lupyan
and Mirman (2013) necessarily involve conceptual processing.
For instance, many are based on color: e.g. “THINGS THAT
ARE YELLOW”. Although color is often encoded as part of
the conceptual representation of an object, this conceptual
representation was not required for the task in question:
participants were simply asked to indicate whether the object
they were viewing was yellow, and decisions could be made on
the basis of surface perceptual features alone. Thus, even if “true”
(semantic) LD categories are indeed harder to process than HD
categories, inclusion of perception-based color categories could
have prevented us from reliably observing this difference.

Our results are somewhat inconsistent with recent work
by Langland et al. (2021), who observe that individuals with
aphasia were slower and less accurate (compared with healthy
adults) when processing abstract categories compared with
concrete categories. The authors argue that the abstract/concrete
distinction is similar to the LD/HD distinction because members
of abstract categories share fewer common features. However,
another important difference is the kind of features used for
categorization. For instance, their example of an abstract category
“predict” (which includes a weatherperson and a fortune-teller)
relies on an unobservable functional similarity rather than on an
observable visual similarity. Unobserved features play an impor-
tant role in the use of verbal category labels (Gelman and Roberts
2017), so it is possible that language mediates categorization
based on latent features rather than LD categorization per se.
In short, the LD/HD and the abstract/concrete distinction do not
cleanly map onto each other, which makes it difficult to compare
the results of our studies to those by Langland-Hassan et al.
More generally, the typology of category types remains vague and
inconsistent, and more careful work should be done to establish
meaningful category distinctions and thus facilitate comparisons
across studies.

Possible paradigm-specific effects of verbal labels
Even if we were able to successfully replicate L&M’s findings,
our conclusions about the language–categorization link would be
complicated by the fact that the paradigm introduced by L&M
is not language-free. In order to successfully sort objects into
categories, participants need to read (or hear) and encode the
category label, presented verbally. The importance of language
during the instruction encoding stage might account for the rela-
tionship between categorization performance and naming ability;
it might even explain the (putative) LD-specific categorization
impairments, given that category labels for LD categories are
often longer. In Studies 2 and 3, we simplified the visual processing
demands, and separated the category-label instruction from the
task, which allowed us to measure the behavioral and neural
responses to categorization more clearly. Another solution to this
issue would be to modify the paradigm to remove verbal labels
altogether, e.g. by providing several category exemplars instead.

In addition, linguistic labels might contribute to the task via
verbal rehearsal: participants might employ a phonological loop
to maintain an active representation of the labels in WM. Such
assistive role of language labels has been observed in condi-
tions of high cognitive demand (e.g. during mathematical cal-
culation; Benn et al. 2012; Klessinger et al. 2012). However, such

low-level verbal/phonological rehearsal appears to rely on lower-
level speech processing mechanisms (e.g. Scott and Perrachione
2019) and the domain-general multiple-demand network (e.g.
Fedorenko et al. 2011; Shashidhara et al. 2020), not on the lan-
guage network. In any case, the verbal rehearsal account is quite
different from L&M’s original LD-specific language recruitment
hypothesis.

Relationship to other work on language and
categorization
Other results from psycho- and neurolinguistics also support the
view that linguistic resources do not typically mediate catego-
rization in humans. If access to linguistic representations were
necessary for categorization, categorizing images would take
longer than categorizing words; instead, they take approximately
the same amount of time (Potter and Faulconer 1975). When
asked to match a picture with a label, participants do not
explicitly generate/rehearse verbal labels in advance unless
there is an additional memory demand (e.g. if images disappear
from the screen) (Pontillo et al. 2015). Previous work also
shows that language is not necessary for performing tasks that
require isolating a specific aspect (“feature”) of the semantic
representation, including theory of mind inferences (Varley and
Siegal 2000; Varley et al. 2001; Apperly et al. 2006) and thematic
role identification (Ivanova et al. 2021). Our work therefore adds to
the growing body of evidence for a separation between linguistic
and visual semantic processing.

That said, many studies have shown that linguistic labels influ-
ence categorization behavior in infants (e.g. Gershkoff-Stowe et al.
1997; Sloutsky and Fisher 2004; Plunkett et al. 2008; Waxman
and Gelman 2009; Ferguson and Waxman 2017) and adults (e.g.
Lupyan et al. 2007; Lupyan 2009; Brojde et al. 2011; Zettersten and
Lupyan 2020), so the relationship between words and categories
is clearly an important one. What we are showing here is that the
mechanisms responsible for language processing are not engaged
during object categorization, nor are they specifically recruited
for LD categorization. It is possible that linguistic labels, once
acquired, may influence categorization via other brain systems,
e.g. semantic, domain-general, or perceptual. The cognitive and
neural mechanisms underlying the influence of labels on cat-
egorization thus remain to be determined (for some modeling
proposals, see Gliozzi et al. 2009; Lupyan 2012; Ivanova and Hofer
2020; Luo et al. 2023).

Overall, our study shows that categorizing items is not a
language-dependent task in the adult brain, regardless of whether
the categorization is made on the basis of multiple features
(HD) or a single feature (LD). Instead, this task relies on the
domain-general multiple demand system, which supports diverse
goal-directed behaviors. Our work provides evidence against the
view of language as an aid for feature-based (LD) categorization
and highlights the value of complementing patient studies with
neuroimaging experiments.
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