
Performance Modelling For Scalable Deep Learning

T Kavarakuntla

PHD 2023

Performance Modelling For Scalable Deep Learning

Tulasi Kavarakuntla

A thesis submitted in partial fulfilment of the requirements of

Manchester Metropolitan University

for the degree of Doctor of Philosophy

Department of Computing and Mathematics

Manchester Metropolitan University

2023

Contents

Contents i

List of figures v

List of publications viii

Abstract x

Acknowledgements xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Aims and Objectives . 3
1.3 Contributions . 5
1.4 Thesis Structure . 6

2 Literature review 7
2.1 Deep Neural Networks . 7

2.1.1 Multilayer Perceptron . 9
2.1.2 Convolutional Neural Networks . 10
2.1.3 Autoencoder . 13

2.2 Parallel and Distributed Deep Learning 15
2.2.1 Data Parallelism . 16
2.2.2 Model Parallelism . 18
2.2.3 Pipeline Parallelism . 19
2.2.4 Hybrid Parallelism . 20

2.3 Deep Learning Frameworks . 20
2.3.1 TensorFlow . 20

i

2.3.2 MxNet . 21
2.3.3 Chainer . 22
2.3.4 Pytorch . 23

2.4 Performance Modelling in Deep Learning 24
2.4.1 Analytical Modelling of Deep Learning 25
2.4.2 Empirical Modelling of Deep Learning 27
2.4.3 Conclusions from Previous Studies and Introduction of Differential

Evolution . 29
2.5 Differential Evolution . 30
2.6 Regularization . 32
2.7 Summary . 33

3 Performance Analysis of Distributed Deep Learning Frameworks in a
Multi-GPU Environment 35
3.1 Background and Motivation . 35
3.2 The Proposed Performance Model . 36

3.2.1 Preliminaries . 36
3.2.2 Mini-batch stochastic gradient descent(SGD) 37
3.2.3 Synchronous stochastic gradient descent (S-SGD) using multiple

GPUs . 38
3.2.4 The Proposed Performance Model based on S-SGD 38

3.3 Experiments . 41
3.3.1 Experimental Setup . 41
3.3.2 Performance Metrics . 42

3.4 Results and Analysis . 42
3.4.1 Single GPU . 42
3.4.2 Multi-GPU . 46
3.4.3 Load Imbalance Factor . 52

3.5 Summary . 54

4 A Generic Performance Model for Deep Learning in a Distributed Envi-
ronment 55
4.1 The Proposed Generic Performance Model 56

4.1.1 Global Optimisation Using Differential Evolution 59
ii

4.1.2 Regularization . 60
4.2 Experimental Evaluation . 61

4.2.1 System Configuration . 61
4.2.2 Dataset and Model Selection . 61
4.2.3 Performance Metrics . 62
4.2.4 Experiments . 63

4.3 Results and Analysis . 64
4.3.1 Performance Evaluation of Deep Learning Frameworks using the

Proposed Performance Model without regularization 64
4.3.2 Performance Evaluation of Deep Learning Frameworks using the

Proposed Performance Model using regularisation 68
4.3.3 Comparison of the Proposed Performance Model with Machine

Learning Models . 71
4.3.4 Evaluation of Regularization . 76
4.3.5 Scalability Analysis for the Regularized model 80

4.4 Summary . 80

5 Case Study: Performance Analysis of a 3D-ResAttNet Model for Alzheimer’s
Diagnosis from 3D MRI Images 82
5.1 Performance Model . 83

5.1.1 System Configuration . 84
5.1.2 Dataset and Model . 84
5.1.3 Performance Metrics . 87
5.1.4 Experiments . 87

5.2 Results and Analysis . 88
5.2.1 Performance Evaluation of the Proposed Performance Model on

the 3D-ResAttNet Architecture Implemented with PyTorch Deep
Learning Framework . 88

5.2.2 Comparison of the Proposed Performance Model with Random Forest 90
5.3 Summary and Discussion . 92

6 Conclusion And Future Work 93
6.1 Future Works . 95

iii

Appendices 116

A Paper: Performance analysis of distributed deep learning frameworks in a
multi-gpu environment 116

B Paper: A Generic Performance Model for Deep Learning in a Distributed
Environment 125

C Paper: A Generic Performance Model for Deep Learning in a Distributed
Environment 128

iv

List of figures

2.1 Classification of deep learning techniques [26] 8
2.2 Multilayer Perceptron . 9
2.3 Architecture of LeNet-5 [34]. 10
2.4 ResNet Architecture. Image source [35] 12
2.5 Autoencoders Architecture. 14
2.6 Parallel computing approaches (a) Parameter server approach, and (b)

All reduce architecture . 17

3.1 Workflow of the model: (1) loss and gradient computation, (2) gradient
aggregation, and (3) parameter update 39

3.2 Iteration times on a single GPU for the CNN model 45
3.3 Iteration times on a single GPU for the MLP model 45
3.4 Iteration times on a single GPU for the Autoencoder model 46
3.5 Measured speedup for the three frameworks on different numbers of

GPUs for the CNN model . 47
3.6 Measured speedup for the three frameworks on different numbers of

GPUs for the MLP model. 48
3.7 Measured speedup for the three frameworks on different numbers of

GPUs for the Autoencoder model. 48
3.8 Iteration time on multiple GPUs. Results for two GPUs for the CNN model 49
3.9 Iteration time on multiple GPUs. Results for two GPUs for the MLP

model. 49
3.10 Iteration time on multiple GPUs. Results for two GPUs for the Autoen-

coder model. 50
3.11 Iteration time on multiple GPUs. Results for three GPUs for the CNN

model . 50
v

3.12 Iteration time on multiple GPUs. Results for three GPUs for the MLP
model. 51

3.13 Iteration time on multiple GPUs. Results for three GPUs for the Autoen-
coder model. 51

4.1 Internal processes involved in a convolutional neural network. 57
4.2 Functional diagram of proposed performance model. 58
4.3 The proposed performance model predicted and measured times in Ten-

sorFlow deep learning frameworks using differential evolution algorithm. 66
4.4 The proposed performance model predicted and measured times in MXNet

deep learning frameworks using differential evolution algorithm. 67
4.5 The proposed performance model predicted and measured times in Py-

Torch deep learning frameworks using differential evolution algorithm. . . 67
4.6 The proposed performance model predicted and measured times in Ten-

sorFlow deep learning frameworks using differential evolution algorithm
using regularization. 69

4.7 The proposed performance model predicted and measured times in MXnet
deep learning frameworks using differential evolution algorithm using
regularization. 70

4.8 The proposed performance model predicted and measured times in Py-
Torch deep learning frameworks using differential evolution algorithm
using regularization. 70

4.9 Random forest regressor predicted and measured times in TensorFlow
deep learning frameworks using differential evolution algorithm. 72

4.10 Random forest regressor predicted and measured times in MXNet deep
learning frameworks using differential evolution algorithm. 73

4.11 Random forest regressor predicted and measured times in PyTorch deep
learning frameworks using differential evolution algorithm. 73

4.12 Support vector regressor predicted and measured times in TensorFlow
deep learning framework. 74

4.13 Support vector regressor predicted and measured times in MXNet deep
learning framework. 74

vi

4.14 Support vector regressor predicted and measured times in PyTorch deep
learning framework. 75

4.15 Effect of regularization. (a) R2 values with different regularization val-
ues in three different frameworks using L1 regularization and (b) R2
values with different regularization values in three different frameworks
using L2 regularization. 77

4.16 Effect of regularization, with model coefficients plotted against regu-
larization parameter. Constant coefficients of intrinsic parameters are
plotted in (a), the power coefficients of intrinsic parameters are shown in
(b) . 78

4.17 Effect of regularization, with model coefficients plotted against regular-
ization parameter. coefficients of categorical intrinsic parameters in (a)
and with powers of extrinsic parameters in (b). 79

5.1 The architecture of 3D residual attention deep Neural Network. Image
source [37] . 85

5.2 The first image is normal control and second image has Alzheimer’s dis-
ease. 86

5.3 The proposed performance model predicted and measured times in Py-
Torch deep learning frameworks using differential evolution algorithm. . . 90

5.4 Random forest regressor predicted and measured times in PyTorch deep
learning frameworks using differential evolution algorithm. 91

vii

List of publications

1. T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, and S. B. Akintoye, “Performance
analysis of distributed deep learning frameworks in a multi-gpu environment,” in
2021 20th International Conference on Ubiquitous Computing and Communica-
tions (IUCC/CIT/DSCI/SmartCNS), IEEE, 2021, pp. 406–413, London.

2. T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, A. Kleerekoper, and S. B. Akintoye,
“A Generic Performance Model for Deep Learning in a Distributed Environment,
” in 2022 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2022, pp.191.

3. T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, A. Kleerekoper, and S. B. Akintoye,
“A generic performance model for deep learning in a distributed environment,”
submitted at IEEE access arXiv preprint arXiv:2305.11665, 2023 (under review).

viii

Abstract

Performance modelling for scalable deep learning is very important to quantify the
efficiency of large parallel workloads. Performance models are used to obtain run-time
estimates by modelling various aspects of an application on a target system. Designing
performance models requires comprehensive analysis in order to build accurate models.
Limitations of current performance models include poor explainability in the computa-
tion time of the internal processes of a neural network model and limited applicability to
particular architectures.

Existing performance models in deep learning have been proposed, which are broadly
categorized into two methodologies: analytical modelling and empirical modelling. An-
alytical modelling utilizes a transparent approach that involves converting the internal
mechanisms of the model or applications into a mathematical model that corresponds to
the goals of the system. Empirical modelling predicts outcomes based on observation and
experimentation, characterizes algorithm performance using sample data, and is a good al-
ternative to analytical modelling. However, both these approaches have limitations, such
as poor explainability in the computation time of the internal processes of a neural network
model and poor generalisation. To address these issues, hybridization of the analytical and
empirical approaches has been applied, leading to the development of a novel generic per-
formance model that provides a general expression of a deep neural network framework
in a distributed environment, allowing for accurate performance analysis and prediction.
The contributions can be summarized as follows:

In the initial study, a comprehensive literature review led to the development of a per-
formance model based on synchronous stochastic gradient descent (S-SGD) for analysing
the execution time performance of deep learning frameworks in a multi-GPU environ-
ment. This model’s evaluation involved three deep learning models (Convolutional Neural
Networks (CNN), Autoencoder (AE), and Multilayer Perceptron (MLP)), implemented in

ix

three popular deep learning frameworks (MXNet, Chainer, and TensorFlow) respectively,
with a focus on following an analytical approach. Additionally, a generic expression for the
performance model was formulated, considering intrinsic parameters and extrinsic scal-
ing factors that impact computing time in a distributed environment. This formulation
involved a global optimization problem with a cost function dependent on unknown con-
stants within the generic expression. Differential evolution was utilized to identify the best
fitting values, matching experimentally determined computation times. Furthermore, to
enhance the accuracy and stability of the performance model, regularization techniques
were applied. Lastly, the proposed generic performance model underwent experimental
evaluation in a real-world application. The results of this evaluation provided valuable
insights into the influence of hyperparameters on performance, demonstrating the robust-
ness and applicability of the performance model in understanding and optimizing model
behavior.

x

Acknowledgements

Firstly, I would like to sincerely thank my Director of Studies Prof. Liangxiu Han for the
extensive amount of assistance provided throughout the entire PhD, and her unwavering
support and guidance, this research would not have been possible. Her dedication and
commitment to my academic journey have been invaluable.

I would like to sincerely thank my supervisor, Dr. Huw Lloyd, for the extensive amount
of assistance provided throughout the entire PhD and without whom I probably would not
even be doing this PhD, as well as Dr. Annabel Latham, Dr. Samson Akintoye and Dr.
Anthony Kleerekoper for the extremely valuable assistance and feedback provided during
this process.

I would like to thank Dr. Sravanthi Sashikumar for her valuable support to get admis-
sion in MMU university. I would like to thank my Government for providing sponsorship
that has allowed me to pursue my studies at MMU University.

Finally, most important thanks go to my parents, family members, and especially my
husband Dr. Subramanyam Vasanthapalli, for his constant support, understanding, and
affectionate encouragement. Additionally, I extend my greatful thanks to my children,
Bhavagna and Kethan, for their unwavering love and support throughout my journey.

xi

Chapter 1

Introduction

This chapter presents an overview of the background and motivation of this research in-
troducing performance modelling in scalable deep learning in a distributed environment.

1.1 Background and Motivation

Deep learning [1], a branch of machine learning [2], has seen widespread adoption and
emerged as a fundamental technology across diverse domains such as computer vision,
natural language processing, speech recognition, autonomous driving, recommendation
systems, healthcare diagnostics, and financial forecasting. The use of deep neural network
architectures, such as Googlenet [3], ResNet [4], VGG net [5], and Deep CNN [6], has
propelled advancements in these domains. However, the training and deployment of these
architectures require substantial computational resources. Training with a large amount
of data requires a parallelised and distributed environments employing techniques such as
data parallelism, model parallelism, pipeline parallelism, and hybrid parallelism.

Performance modelling [7] [8] plays a critical role in optimizing the efficiency and per-
formance of these large-scale parallel workloads in deep learning. Performance models
are used to obtain run-time estimates by modelling various aspects of an application on a
target system. However, accurate performance modelling is a challenging task. Existing
performance models are broadly categorised into two methodologies: analytical modelling
and empirical modelling. Analytical performance modeling [9] offers a transparent and
systematic approach to unraveling the intricate workings of these models and their inter-
actions with the surrounding system components. In analytical modeling, a model’s or an

1

application’s internal mechanism is converted into a mathematical model corresponding to
the system’s goals, which can significantly expedite the creation of a performance model
for the intended system.

There are several significant existing works in the field of analytical performance mod-
eling for deep learning. Yan et al. [10] developed a performance model to evaluate the
impact of partitioning and resourcing decisions on the overall performance and scalabil-
ity of distributed system architectures using the Adam DL framework. Kim et al. [11]
conducted a comparative analysis of deep learning frameworks in single and multi-GPU
environments, exploring the performance implications of different convolution algorithms.
Qi et al. [12] proposed a performance model named Paleo, which considered communi-
cation schemes, network architecture, and parallelization strategies to predict deep neural
network performance. Castello et al. [13] developed an analytical model to evaluate the
scalability of data parallelism and model parallelism for distributed deep learning train-
ing of convolutional neural networks. Jia et al. [14] focused on analyzing the impact of
network topologies, communication patterns, and batch sizes on the performance and con-
sistency of distributed deep learning applications. However, despite the valuable insights
provided by these analytical models, they have limitations in terms of generalization and
explainability. The reliance on simplifications and assumptions can hinder their ability
to generalize well to diverse deep learning architectures, datasets, and hardware config-
urations. As a result, the analytical estimates may not accurately reflect the real-world
performance scenarios. Additionally, the lack of explainability in these models limits un-
derstanding of the underlying mechanisms and decision-making processes of deep learning
systems. Although they can predict performance, they often fall short in providing clear
explanations of the factors influencing the outcomes.

Empirical modelling [15] is a good alternative to analytical models. In this approach,
modelling predicts the outcome of an unknown set of system parameters based on obser-
vation and experimentation. It characterises an algorithm’s performance across problem
instances and parameter configurations based on sample data. Empirical models predict
the output of a new configuration on the target machine. Several empirical modeling stud-
ies have contributed to the field of performance modeling in deep learning. Yufei et al. [16]
developed a performance model for FPGA-based accelerators, achieving close predictions
to actual test results but lacking explainability. Z. Lin et al. [17] proposed a model con-

2

sidering network topology and communication patterns, demonstrating higher accuracy
in predicting training time but with limited generalizability. Andre Viebke [18] focused
on predicting execution time on Intel’s Many Integrated Core (IMIC) architectures with
high accuracy, although lacking generalizability and detailed explanation. Rakshith et al.
[19] evaluated the performance of the Horovod framework for image classification tasks,
providing optimization recommendations but using specific experimental configurations.
These studies have provided valuable insights into predicting and optimizing performance
in various deep learning scenarios. However, it is important to acknowledge the com-
mon limitations in these empirical modeling approaches. One limitation is the lack of
generalizability, as many of these models are evaluated on specific architectures, datasets,
or experimental configurations, which may not fully represent the diversity of real-world
scenarios. Additionally, the level of explainability in these models are limited, making it
challenging to gain a comprehensive understanding of the underlying mechanisms driving
performance.

To address the limitations of both analytical and empirical performance modeling in
deep learning performance estimation, it is critical to develop a comprehensive perfor-
mance model that can overcome these challenges.

1.2 Aims and Objectives

The main aim of this study is to develop a generic performance model for scalable
deep learning system in a distributed environment, achieving both generalizability and
explainability of internal processess of deep neural networks. The study will employ both
analytical and empirical approaches to model the impact of various internal and external
parameters, including filter size, pooling size, batch size, and number of GPUs, on the
performance of the system. The proposed performance model will be able to optimize the
performance of distributed deep learning systems and provide insights into the factors that
affect system performance in a distributed environment. Towards this aim, the following
objectives have been identified:

• Objective 1: Conduct a comprehensive review of the literature on neural network
models, with attention to distributed and parallelized algorithms run on different

3

frameworks. By critically evaluating the existing research, this objective aims to es-
tablish a comprehensive understanding of the current state-of-the-art in performance
models in deep learning and identify potential research gaps and areas for further
investigation.

• Objective 2: Develop a performance model based on synchronous stochastic gradient
descent (S-SGD) to analyze the execution time performance of deep learning frame-
works in a multi-GPU environment and evaluate the model using three deep learning
models (Convolutional Neural Networks, Autoencoder, and Multilayer Perceptron),
each implemented in three frameworks (MXNet, Chainer, and Tensorflow) respec-
tively. Additionally, consider load imbalance factors that may affect the scalability
of deep learning models.

• Objective 3: Develop a generic performance model considering the influence of in-
trinsic parameters and extrinsic scaling factors that affect computing time in a dis-
tributed environment and formulate the generic expression as a global optimization
problem using regularization on a cost function written in terms of the unknown
constants in the generic expression. The model has to be solved using differential
evolution to find the best-fitting values to match experimentally determined compu-
tation times. This type of generic performance model is a novel contribution in the
deep neural networks domain.

• Objective 4: Apply the developed performance model to a real world application
and analyze how far the performance model can be feasible in deep neural network
domain.

Each of these objectives contributes to the overall aim of this thesis, which is to develop
a performance model for scalable deep learning in a distributed environment using deep
learning frameworks. The performance model developed in this thesis can be used to
improve the speed and efficiency of deep learning in a distributed environment through
parallelization and distributed strategies. It is designed with generalizability in mind and
prioritizes explainability, making it a valuable tool for practitioners in the field of deep
learning.

4

1.3 Contributions

In the course of this work, a number of original contributions have been made to the
field of performance modelling of deep learning. These contributions are:

• Conducted a comprehensive review of the literature on neural network models, with
attention to distributed and parallelized algorithms run on different frameworks. Most
typical deep learning models such as Multi-layer Perceptron model, convolutional
neural network and Autoencoder were included in the study, along with related work
on performance modelling.

• Developed a performance model to analyze iteration time layerwise in a deep neu-
ral network in various frameworks using synchronous stochastic descent algorithm.
Built a performance model based on synchronous stochastic gradient descent (S-
SGD), to analyze the execution time performance of deep learning frameworks in
a multi-GPU environment. Considered load imbalance factor and mini-batch time
(time taken to divide mini-batches) and evaluated the model using three deep learning
models (Convolutional Neural Networks, Autoencoder, and Multilayer Perceptron),
each implemented in three frameworks (MXNet, Chainer, and Tensorflow) respec-
tively. Using experimental data, analyze the effect of load imbalance on the scalabil-
ity of deep learning models, concluding that it is an important contribution to parallel
inefficiency.

• Developed a generic expression for a performance model considering the influence
of intrinsic parameters and extrinsic scaling factors that affect computing time in a
distributed environment. Thereafter, formulated this as a global optimization prob-
lem using regularization on a cost function in terms of the unknown constants in the
generic expression, and formulated the problem as a global optimization task. Solved
the optimization problem using differential evolution to find the best-fitting values to
match experimentally determined computation times.

• Applied the developed performance model to a real-time application and analyzed
how far the performance model can be generalizable and explainable for a complex
and large dataset, demonstrating that the performance model has generalization and
explainability.

5

1.4 Thesis Structure

Chapter 2 provides a comprehensive literature review study in relation to deep learn-
ing architectures, distributed deep learning, deep learning frameworks, performance mod-
elling (focusing on deep learning in a distributed environment) and the differential evolu-
tion algorithm utilised to fulfil the aims of the thesis.

Chapter 3 introduces a performance model based on synchronous stochastic gradient
descent (S-SGD) to analyse the execution time performance of deep learning frameworks
in a multi-GPU environment and evaluated the model using three deep learning models
(Convolutional Neural Networks, Autoencoder and Multilayer Perceptron), each imple-
mented in three frameworks (MXNet, Chainer and Tensorflow) respectively.

Chapter 4 presents a generic expression for a performance model considering the in-
fluence of intrinsic parameters and extrinsic scaling factors that affect computing time in
a distributed environment. It formulates the generic expression as a global optimization
problem using a cost function written in terms of the unknown constants, and solves it us-
ing differential evolution to find the best fitting values to match experimentally determined
computation times. Compared differential evolution using with and without regularization
techniques, and the results found that differential evolution using regularization gives a
generalized model with improved performance. Also, the predictive performance is com-
parable to black box machine learning models.This type of generic performance model is
a novel contribution in the deep neural networks domain.

Chapter 5 discusses the performance of the proposed model training a 3D-ResAttNet
architecture, on a popular, complex and large dataset i.e., ADNI dataset using PyTorch
deep learning framework in a multi-GPU environment. The results shown that the perfor-
mance model can be generalizable and explainable for a complex and large dataset and
proved that the performance model has generalization and explainability.

Chapter 6 concludes the thesis with a general discussion of the results obtained in the
previous chapters, as well as discussing ideas for further work.

6

Chapter 2

Literature review

In this chapter, a survey is presented on research regarding deep learning, distributed
deep learning, performance modeling of deep learning, differential evolution, and regu-
larization techniques.

2.1 Deep Neural Networks

Deep learning refers to a subset of machine learning techniques that revolve around
training artificial neural networks with multiple layers [1]. In traditional machine learn-
ing, algorithms typically work with shallow architectures that have only a few layers. In
contrast, deep learning involves the use of neural networks with three or more layers, al-
lowing for a greater capacity to learn complex representations and patterns in data.

Artificial Neural Networks (ANNs) [20], also known as neural networks, are intercon-
nected networks of artificial neurons that process and learn from input data, inspired by
the structure and function of the human brain. It is comprised of interconnected artificial
neurons organized in layers, with weights and activation functions determining informa-
tion flow and computations. Neural networks are trained to acquire knowledge from data,
allowing them to generate predictions or make decisions by recognizing learned patterns
and relationships.

Deep learning encompasses both supervised and unsupervised learning techniques [21]
and finds applications in various tasks, including pattern analysis in data and classifica-
tion. Since industrial applications of deep learning started around 2010, deep learning has

7

Figure 2.1. Classification of deep learning techniques [26]

Figure Legend

Here, MLP-Multilayer Perceptron, CNN-Convolution Neural Network, RNN-Recurrent Neural Network,
LeNet-Simple Convolutional Neural Network, AlexNet-Name of a Convolutional Neural Network,

ResNet- Residual Network, GoogleNet- Deep Covolutional Neural Network, GAN- Generative
Advarsarial Networks, AE- Autoencoder, SOM- Self-Organising Map, RBM- Restricted Boltzman

Machine, SAE- Staked Autoencoder, VAE- Variational Autoencoder, AAE- Adversarial Autoencoder,
DAE- Denoising Autoencoders, LSTM- Long Short Term Memory, SVM- Support Vector Machine.

become an increasingly significant field of research within the machine learning commu-
nity. Over the past few years, numerous deep learning models have been developed and
explored. The deep learning techniques are classified into three types such as Discrimina-
tive (supervised), Generative (unsupervised), Hybrid learning and others. The classifica-
tion of the deep learning methods are shown in the Figure 2.1. The deep learning models
used in this research are Multilayer Perceptron (MLP) [22], Convolutional Neural Network
(CNN) [23] / ResNet [24], and Autoencoder (AE) [25].

8

2.1.1 Multilayer Perceptron

A feedforward neural network, also known as a Multilayer Perceptron (MLP) [22], is a
type of artificial neural network. It operates by allowing information to flow unidirection-
ally, progressing from the initial layer to the final layer without any loops or cycles. The
MLP is commonly used as a supervised learning algorithm and is applied to tasks such as
classification and regression [27]. The MLP architecture, as shown in the Figure 2.2, may
be broken down into three primary parts:

Figure 2.2. Multilayer Perceptron

1. Input Layer: The input layer acts as the initial component of the MLP, responsible
for receiving the input data and transmitting it to the subsequent layer. The dimen-
sionality of the input data determines the number of neurons in the input layer.

2. Hidden Layers: The intermediate layers of the MLP, known as hidden layers, play a
significant role in processing input data and extracting meaningful features. Multiple
neurons are present in each hidden layer, and they form connections with all the
neurons in the subsequent layer.

3. Output Layer: The output layer represents the final layer of the MLP, responsible for
9

producing the conclusive output. In the case of classification tasks, the total num-
ber of unique classes determines the number of neurons in the output layer. In a
regression task, it is determined by the dimensionality of the output data.

The neurons in each layer are connected using weighted connections, and each neuron
performs a weighted sum of its inputs succeeded by a non-linear activation function. This
function’s role is to introduce non-linearity into the network, which enables it to learn com-
plex non-linear relationships [28] in the input data. The weights of the MLP are learned us-
ing the backpropagation algorithm, which involves propagating the loss backwards through
the neural network. This allows for the identification of each node’s contribution to the
loss and subsequent adjustment of the weights to minimize it. During backpropagation,
the neural network’s weights are adjusted based on the loss function gradient, iteratively
optimizing performance by minimizing the loss. It’s important to note that the optimiza-
tion process doesn’t directly assign higher or lower weights based on error rates; instead, it
aims to find weight values that optimize the network’s overall performance. The loss func-
tion evaluates the variance between the expected and actual outputs and is often minimized
using optimization algorithms like Stochastic Gradient Descent (SGD) [29].

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [30][31][32][33] are highly popular and widely
employed as deep learning models for medical imaging, autonomous driving, bio-metric
authentication and large-scale image classification and recognition. Convolutional net-
works consist of convolution, max-pooling, and fully-connected layers stacked on top of
one another as shown in Figure 2.3.

Figure 2.3. Architecture of LeNet-5 [34].

10

1. Convolution Layer: Convolutional Neural Networks (CNNs) employ a primary layer
known as the convolutional layer that utilizes filters to create feature maps, indicating
the presence of specific features in the input image. To incorporate nonlinearity and
enhance the network’s capacity for learning complex patterns, nonlinear activation
functions like ReLU are commonly applied within the CNN architecture.

2. Pooling Layer: The pooling layers down sample the data, keeping feature maps to a
reasonable size as the number of features increases and allowing succeeding convo-
lution layers to view a broader spatial extent of the inputs.

3. Fully Connected Layer: The output is passed through fully connected layers that per-
form a linear transformation of feature maps, followed by another nonlinear activation
function. The final fully connected layer utilizes the softmax function to generate a
probability distribution over the possible classes.

The parameters of the network, including the filters and weights, are learned through
back propagation. The CNN architecture facilitates the extraction of a hierarchy of rep-
resentations from the input image. The lower layers of the network focus on detecting
elementary features, while the higher layers progressively capture more intricate and so-
phisticated features and relationships.

ResNet

The ResNet (Residual Network) [24] is a specific architectural design for deep neural net-
works that effectively addresses the problem of vanishing gradients. The vanishing gra-
dient problem occurs in very deep neural networks when the gradient signal diminishes
significantly during backpropagation, leading to slow convergence. To overcome this is-
sue, normalization techniques and residual connections are employed in the ResNet archi-
tecture. The Residual connections allow the network to skip over some layers during the
forward pass, ensuring that the gradient signal has a direct path to propagate through the
network. The ResNet architecture successfully addresses the vanishing gradient problem
through the utilization of residual connections, as depicted in Figure 2.4.

The ResNet architecture is constructed by integrating a series of convolutional layers,
pooling layers, batch normalization layers, and fully connected layers. The network re-

11

Figure 2.4. ResNet Architecture. Image source [35]

ceives an RGB image input with dimensions of 224x224 pixels. The network has the
following layers:

1. Input Layer: The input layer is a 7x7 convolutional layer with stride 2 that takes the
input image. Here, stride refers to the step size at which the convolution or pooling
operation is applied to the input data.

2. Max Pooling Layer: Following the initial layer, a 3x3 max pooling layer with a stride
of 2 is applied. This pooling layer downsamples the image, resulting in a reduction
in size by a factor of 4.

3. Residual Blocks: Within the network, there are multiple residual blocks that are com-
prised of two or more convolutional layers and a connection mechanism. The inclu-
sion of this connection mechanism, known as a shortcut connection, empowers the
network to learn residual functions that facilitate the bypassing of specific layers dur-
ing the training process.

4. Global Average Pooling Layer: Subsequent to the residual blocks, a global average
pooling layer is introduced. This layer computes the average value over the spatial
dimensions of the feature maps, resulting in a global representation of the input.

5. Fully Connected Layer: It is an extensively connected layer that employs the softmax
activation function to generate the ultimate probabilities for each class.

ResNet is a family of convolutional neural network architectures, with notable variants
including ResNet-50, ResNet-101, and ResNet-152. These variations are distinguished by
their depths, consisting of 50, 101, and 152 layers, respectively. Pre-training on extensive

12

datasets such as ImageNet has been conducted on these architectures. ResNet models
provide flexibility and can be customized or utilized as feature extractors for a wide range of
computer vision applications, including object detection, image classification, and image
segmentation.

For example, the ResNet architecture was used to train the performance model on the
Alzheimer’s dataset. While models like AlexNet [36], VGGNet [5], and GoogLeNet [3]
have demonstrated success in image classification tasks, they have comparatively fewer
layers than ResNet. Alzheimer’s disease classification [37] might benefit from the in-
creased depth and capacity to capture intricate patterns offered by ResNet’s architecture.
In addition, ResNet’s skip connections and residual blocks enable it to learn residual fea-
tures effectively, which is crucial when dealing with complex datasets. This can help in
capturing and representing intricate patterns in brain images that may be important for
Alzheimer’s disease classification. ResNet has established itself as a leading performer
across diverse computer vision benchmarks and challenges [38], indicating its effective-
ness in capturing complex patterns and achieving high classification accuracy. This suc-
cess might make it a preferred choice in the research community, especially when aiming
for top performance.

2.1.3 Autoencoder

Autoencoders [39] are a class of unsupervised learning techniques that leverage neural
networks to derive data representations. The architecture of the network comprises a com-
pression layer that induces a compressed version of the input. Compression and subsequent
reconstruction become difficult when input features are independent of each other. How-
ever, if there is any pattern or structure in the data, such as interdependence between input
features, the network can learn and utilize this structure while passing the input through
the compression layer.

The architecture of an autoencoder, as shown in the Figure 2.5, consists of two main
stages: encoding and decoding. The encoder is the first part of the autoencoder that takes
the input data and compresses it into a lower-dimensional representation. It consists of
several layers of neural networks, each with a set of learnable parameters that convert

13

the input information into a latent representation. The final layer of the encoder is the
bottleneck layer, which produces the latent representation or latent code.

Figure 2.5. Autoencoders Architecture.

The decoder is the second part of the autoencoder that takes the latent representation
and reconstructs the original input data. It consists of several layers of neural networks
that take the latent representation and convert the latent representation into its initial input
data format. The ultimate layer of the decoder produces the final output, which should
match the input data as closely as possible.

The autoencoder undergoes unsupervised learning, where it is trained on input data to
minimize the difference between the reconstructed output and the original input. Typically,
to compute the reconstruction error, a loss function is applied such as Mean Squared Error
(MSE) [40] or Binary Cross-Entropy (BCE) [41].

The architecture of an autoencoder can be modified to improve its performance or to
solve specific tasks such as anomaly detection, data compression, and image denoising.
Variants of autoencoders such as Convolutional Autoencoder (CAE) [42] and Recurrent
Autoencoder (RAE) [43] can be used for processing image and sequential data. A De-
noising Autoencoder (DAE) [44] can be used to remove noise from the input data, and a
Variational Autoencoder (VAE) [45] can be used for generative modeling and data gener-

14

ation, respectively.

2.2 Parallel and Distributed Deep Learning

The field of distributed deep learning [46] has been a significant area of research for
many years with wide variety of real-time and practical applications in every sector. Typ-
ically, deep learning applications have to deal with big data, parameter storage and com-
putation power.

• Big Data: In industry, the ImageNet dataset [47] is a prime example of large-scale
data, typically consists of 155 terabytes of data. For example, Instagram users upload
4.7 billion images per day, and deep learning models are used to analyze and process
these images to gain insights into user preferences, interests, and behaviors.

• Parameters Storage: Deep learning models are built with numerous layers which
contains a few hundreds to 2 billion parameters. It needs 0.1-8GiB merely to store
the model (which is stored in memory rather than on the hard drive when in use). In
this case, the model’s training phase typically uses more memory, this poses a great
challenge in terms of model fitting on a single conventional PC.

• Computation Power: Recognizing and categorizing objects in high-resolution im-
ages using a deep neural network requires a substantial amount of computational re-
sources. For instance, the ImageNet dataset is a prevalent standard for image recogni-
tion, and it encompasses 14,197,122 images with a 224x224 pixel resolution. Based
on factors such as the intricacy of the model and the accessible computing infrastruc-
ture, training a deep learning model on this dataset could take up to several weeks
or months. This poses a significant challenge to organizations or researchers with
restricted access to high-performance computing resources.

To conclude, the complex nature of deep learning requires high computational power,
efficient data processing and storage, and distributed infrastructure for training large mod-
els with significant amounts of data. Due to the extensive nature of this process, paral-
lelization is necessary to distribute the workload across multiple compute nodes equipped
with multiple GPUs. To ensure the effectiveness of parallelization, advanced distributed

15

optimization strategies must be implemented, leveraging parallelism approaches to har-
ness the full potential of computational power. Parallelization and distributed training are
vital for efficiently training large-scale deep learning models by dividing the workload
across multiple computing resources, enabling faster processing and scalability to handle
extensive datasets. Data parallelism, model parallelism, pipeline parallelism, and hybrid
parallelism are the different parallelization methods used to achieve parallelization in deep
learning tasks.

2.2.1 Data Parallelism

Data parallelism [48] refers to dividing the training data into non-overlapping subsets and
distributing them across multiple machines. Each machine performs computations locally
by utilizing a complete model, but communication is necessary between the computing
nodes to merge the gradients and update the model weights. Advantage of data paral-
lelism is speedup, better cost per performance in the long run and applicable to any DL
model architecture. To expedite deep learning, researchers usually utilize multiple graph-
ics processing units (GPUs) allocated per computing node for reducing training time. Deep
learning using data-parallel processing can be categorized as either synchronous or asyn-
chronous based on the timing of the aggregation process.

In the synchronous data parallelism approach, once the gradients are computed on each
GPUs, they are combined through averaging or summation, followed by an aggregation
operation to adjust the training parameters. For the exchange of data required for accumu-
lation within GPUs, Distributed TensorFlow [49] is a commonly adopted distributed deep
learning framework. It utilizes the parameter-server approach to collect the computed gra-
dients from each GPU’s memory or the CPU’s memory as depicted in Figure 2.6 (a). This
method ensures synchronous sharing of the same parameters among all GPUs, thereby
maintaining training accuracy. However, using this scheme in a heterogeneous computing
system where some GPUs may have lower processing performance than others can lead to
degraded system performance.

The Asynchronous approach [50] offers a viable solution to the aforementioned prob-
lem by allowing the GPU to bypass synchronization during each iteration, thus avoiding
the need to wait for slower GPUs. However, this approach may lead to reduced training

16

(a) (b)

Figure 2.6. Parallel computing approaches (a) Parameter server approach, and (b) All reduce architecture

accuracy as each GPU can use different parameters during each iteration. Furthermore,
this method has the potential to create network congestion by considering I/O activities on
individual devices, including parameter servers responsible for performing aggregations.

The All-reduce scheme, unlike the parameter-server approach [51], enables direct pa-
rameter and gradient exchange among GPUs for aggregation as illustrated in Figure 2.6 (b).
It relies on distributed I/O across devices, allowing decentralized communication with both
synchronous and asynchronous methods. Synchronous All-reduce ensures consistency by
waiting for completion, while asynchronous allows independent updates, reducing syn-
chronization overhead but risking inconsistency. All-reduce adoption mitigates potential
parameter-server bottlenecks, providing communication flexibility for distributed training.

The decentralized architecture [52], works without parameter server. Instead, the GPUs
establish direct communication to exchange parameter updates by means of an all-reduce
operation. The topology of the workers plays a critical in this operation. In a fully con-
nected network, the communication overhead can be significant since the gradients are
communicated to all other workers. To address this issue, a commonly utilized solution
is to implement a ring topology known as ring-all reduce. Horovod [52] is a distributed
framework utilized for the training of deep learning models in popular deep learning frame-
works such as TensorFlow, Keras, PyTorch, and Apache MXNet. The primary objective of

17

Horovod is to optimize the efficiency of distributed deep learning by utilizing inter-GPU
communication via ring reduction. The framework’s proficiency lies in its ability to han-
dle extensive datasets while retaining shorter training times, achieved through standardized
distributed TensorFlow techniques.

Baidu [53] presented their implementation of ring all-reduce and demonstrated a draft
implementation of it by creating a fork of TensorFlow. Uber also uses the ring-all re-
duce algorithm to improve inter GPU communication through NCCL (NVIDIA Collective
Communications Library) which allows for faster and more efficient distributed training
in TensorFlow. In contrast to the asynchronous methodology, which updates weights in-
dependently without synchronization among workers, ring-all reduce performs parallel
stochastic gradient descent (SGD) [54] [55] [56] [57]. To assess the effectiveness of data
parallelism on multi-GPU nodes, the widely recognized Alexnet architecture [58] was em-
ployed, resulting in a speedup of approximately 2.2x with 4 GPUs compared to a single
GPU.

2.2.2 Model Parallelism

Model parallelism [59] is another common parallelization strategy. This approach involves
dividing the model among multiple GPUs, with each worker responsible for computing a
subset of layers. By doing so, parameter synchronization between workers is eliminated,
but data transfers are necessary between adjacent layers assigned to different workers.
Model parallelism is particularly beneficial when dealing with models that are too large
to be accommodated on a single GPU or Tensor Processing Unit (TPU). However, if the
number of nodes is too high, communication overhead can significantly reduce network
performance.

Project adam [60] introduced a deep learning training system that supports model par-
allelism, enabling efficient and scalable training processes. The system places significant
emphasis on optimizing computation and communication to enhance overall efficiency and
scalability. To achieve this, adam utilized a parameter server architecture, Within high traf-
fic execution paths, the system adopts lock-free data structures for queues and hash tables
to ensure efficient operations. The purpose of this is to accelerate network processing,
update, and storage 𝐼/𝑂 operations. Model training on a machine involves multi-threaded

18

training, enabling the acceleration of training processes by accessing and updating shared
model weights locally without the use of locks. This optimization approach is similar to
the hog-wild system [61]. Hog-wild is a strategy for distributed computing utilized in the
training of deep learning models. The combination of centralized and distributed methods
in the DistBelief framework creates a hybrid parallel system that effectively capitalizes on
their respective advantages. Through the strategic use of hybrid parallelism, DistBelief
achieves improved scalability and accelerated deep network training, optimizing resource
utilization and enhancing performance on large-scale machine learning tasks. This inte-
gration enables efficient processing and coordination across multiple devices, contributing
to the framework’s efficacy in handling complex and computationally intensive tasks.

2.2.3 Pipeline Parallelism

Pipeline parallelism is an approach that integrates the concepts of data parallelism and
model parallelism. A model is divided into layers, and each node is assigned a specific
layer to work on. Additionally, the data is split into smaller subsets, which are then propa-
gated through the pipeline to subsequent workers for processing. Gpipe [62] is a pipeline
parallelism library designed to enable the scaling of any network expressed as a sequence
of layers. This library offers the necessary adaptability to effectively scale networks to ex-
tremely large sizes. Gpipe achieves this through the utilization of a batch splitting pipelin-
ing algorithm, resulting in nearly linear speedup when distributing a model across multiple
accelerators. An important advantage of Gpipe is its ability to train expansive neural net-
works for various tasks with distinct network architectures. For instance, Gpipe success-
fully trained an Amoeba Net model with 557 million parameters for Image Classification,
achieving an impressive top-1 accuracy of 84.4% on the ImageNet-2012 dataset. Fur-
thermore, in Multilingual Neural Machine Translation (MNMT), Gpipe trained a single
Transformer model with 6 billion parameters and 128 layers using an extensive multilin-
gual dataset encompassing over 100 languages. In terms of speed, Gpipe outperformed
all other NLP models. The successful application of Gpipe demonstrates its exceptional
capability in facilitating the training of massive neural networks across a diverse array of
domains.

19

2.2.4 Hybrid Parallelism

Hybrid parallelism refers to when the DL model are complex and composed of many differ-
ent layers then it mixes data, model and pipeline parallelism depending on the complexity
of a model. The DistBelief framework [63] is a hybrid parallel system that incorporates
two distinct optimization techniques: Downpour SGD and Sandblaster, for online and
batch optimizations. Downpour SGD adopts a centralized parameter server and employs
an asynchronous stochastic gradient descent method, ensuring efficient synchronization
and updates. In contrast, Sandblaster takes a different approach by utilizing distributed
batch optimization procedures in conjunction with a decentralized implementation of the
L-BFGS (Limited-Broyden–Fletcher–Goldfarb–Shanno) algorithm [64]. The combina-
tion of these approaches creates a hybrid parallel system within the DistBelief framework,
utilizing both centralized and distributed methods. By incorporating hybrid parallelism,
DistBelief achieves enhanced scalability and accelerated deep network training, leading to
efficient resource utilization and improved performance on large-scale machine learning
tasks.

2.3 Deep Learning Frameworks

Deep learning (DL) frameworks provide a high-level programming interface for con-
structing, training, and evaluating deep neural networks. In this thesis, the following deep
learning frameworks have been utilized: TensorFlow [65], MXNet [66], Chainer [67], and
PyTorch [68], to assess the performance of the models.

2.3.1 TensorFlow

Google introduced TensorFlow in November 2015 as a platform for building and con-
structing DL implementations. TensorFlow [65] is an opensource, scalable and versatile
software library for numeric and conventional mathematical computations using dataflow
graphs [69]. TensorFlow is capable of using many threads, enabling multi-core processors
to be utilised effectively. Moreover, it contains GPU implementations that use NVIDIA

20

CUDA-based Deep Neural Network (cuDNN) [70], enabling the effective use of one (or
more) GPUs on a single node.

Matrix multiplication serves as a fundamental operation upon which neural networks
and other machine learning models heavily rely. Its computational simplicity and inherent
suitability for parallelization make it an efficient choice for various computational tasks in
the field of machine learning. Alongside these computational benefits, distributed train-
ing plays a crucial role in training deep learning models across multiple machines. By
harnessing the power of distributed training, it becomes possible to achieve faster training
times and train larger models that go beyond the memory capacity restrictions of a single
machine.

Moreover, the TensorFlow API provides the tf.distribute.strategy, which offers a con-
venient solution for distributing training tasks and enables parallelization across multiple
GPUs. This approach significantly accelerates the training process while effectively uti-
lizing the combined memory resources of multiple GPUs, allowing for efficient utilization
of larger models. The TensorFlow.distribute.strategy API encompasses a range of dis-
tribution strategies to cater to different requirements. For instance, the tf.distribute.Mir-
roredStrategy creates replicas on each GPU, ensuring that all variables are mirrored across
all replicas. In contrast, the tf.distribute.experimental.CentralStorageStrategy places all
variables on the CPU while duplicating operations across all GPUs. Additionally, the
tf.distribute.experimental.ParameterServerStrategy designates machines as workers and
parameter servers, effectively distributing the workload accordingly.

2.3.2 MxNet

Apache introduced MXNet [66] in November 2015 as a platform for training and deploying
DL implementations. It’s a combination of declarative and imperative programming styles
[71], and it can derive gradients by using auto differentiation. MXnet is optimized for
memory and compute efficiency and runs on distinct heterogeneous systems like mobile
devices to distributed GPU clusters. MXNet facilitates distributed training, enabling the
utilization of multiple devices to accelerate model training. MXNet supports data, model
and hybrid parallelism.

21

For distributed training, MXNet provides several APIs. Gluon API is a high-level in-
terface for building neural networks. The gluon.data.DataLoader class provides a fast and
efficient method for loading and distributing data across several devices using a commu-
nication library such as MPI [72] or NCCL [73]. And also MXNet provides a kvstore
module [74] that enables easy synchronization of the parameters across the devices dur-
ing training.

The MXNet framework works efficiently with Parameter Server (PS) and all-reduce
architectures [75] for gradient synchronization, utilizing TCP (Transmission Control Pro-
tocol) or RDMA (Remote Direct Memory Access) [76], reduced job training time and
improved resource efficiency in resource performance modeling [77]. Additionally, the
developers of MXNet have created an open-source framework, called SOCKEYE [78],
which outperformed seven current NMT (neural machine translation toolkit) [78] based
on four deep learning backends on WMT (Workshop on Statistical Machine Translation)
[79] tasks with minimal setup or hyperparameter tuning.

2.3.3 Chainer

Chainer, an open-source deep learning framework, was developed at Preferred Networks,
Inc., and released to the public in 2015 [67]. Chainer provides several methods to perform
distributed training, together with data parallelism, model parallelism, and the parameter
server approach. Chainermn, a module within Chainer, enables both data parallelism and
model parallelism. Through the utilization of data parallelism, the input data is partitioned
across numerous devices or nodes, enabling each individual device or node to process a
specific portion of the data. Gradients are accumulated and synchronized across the de-
vices or nodes to update the model parameters effectively. Alternatively, model parallelism
entails the distribution of model parameters among devices or nodes, where each device
or node undertakes computations for a specific section of the model. Chainermn provides
convenient APIs to facilitate the implementation of both data parallelism and model par-
allelism.

Moreover, Chainer is equipped with the capability to support the parameter server ap-
proach through its integration with the chainercv module. In this approach, the parameters
of the model are centrally stored on a dedicated server. Each worker node participating in

22

the distributed training retrieves the necessary parameters from the server, performs gradi-
ent computations, and updates the parameters accordingly. The parameter server approach
offers notable advantages, particularly for models characterized by a substantial number of
parameters. By efficiently distributing the parameter updates and computations, Chainer
facilitates efficient training across distributed environments.

To perform distributed training in Chainer, you need to set up a distributed environment
with multiple nodes or GPUs. You can then use the APIs provided by the chainermn
or chainercv module to perform data parallelism, model parallelism, or parameter server
training.

2.3.4 Pytorch

PyTorch [80] is a deep learning framework known for its dynamic computational graph and
smooth integration with Python. It offers developers the flexibility to define and modify
computational graphs in real-time, enhancing the ease of model development and debug-
ging. At the heart of PyTorch lies the torch.Tensor class, which serves as the foundation for
constructing neural networks and represents multi-dimensional arrays. Through the uti-
lization of the torch.nn module, developers can easily create intricate network architectures
by employing predefined layers and activation functions.

The automatic differentiation [81] engine of PyTorch, torch.autograd, is responsible
for computing gradients automatically. This functionality simplifies model training by
enabling techniques like backpropagation. Additionally, PyTorch seamlessly integrates
with CUDA for GPU acceleration, resulting in faster training and inference for large-scale
models. The framework excels in parallelization, providing support for data parallelism,
model parallelism, and distributed training. This empowers developers to take advantage
of multiple GPUs or machines, facilitating parallel data processing and the distribution of
model components. As a consequence, PyTorch significantly enhances performance and
scalability.

PyTorch’s distributed training capabilities offer significant advantages when it comes
to scaling up deep learning tasks. The torch.nn.parallel.DistributedDataParallel (DDP)
module simplifies distributed training by incorporating features such as data partitioning,

23

gradient synchronization, and communication among nodes in the distributed system. This
streamlined approach allows developers to efficiently train models across multiple ma-
chines, effectively utilizing computational resources and managing larger datasets. With
PyTorch’s robust support for distributed training, models can be trained faster and scaled
to handle complex tasks through the utilization of both data and model parallelism.

2.4 Performance Modelling in Deep Learning

Performance modeling [7] is a fundamental technique used to create an abstract repre-
sentation or model of a system, enabling an in-depth understanding and prediction of its
behavior and performance characteristics. By carefully capturing crucial aspects of the
system, including its structure, components, and workload patterns, performance mod-
eling facilitates the simulation and analysis of system performance under diverse condi-
tions. It serves as a critical tool for making informed decisions pertaining to system de-
sign, optimization strategies, and resource allocation. Through the use of mathematical
or computational models, researchers and analysts can explore a multitude of scenarios,
accurately predict performance metrics, and effectively assess the impact of changes or en-
hancements. Performance modeling encompasses various forms, such as analytical mod-
els, simulations, queuing models, and statistical models, accommodating different system
types and complexities. Leveraging performance modeling techniques, it becomes possi-
ble to assess system scalability, identify performance bottlenecks, and guide optimization
efforts, leading to significant improvements in overall system performance and efficient
resource utilization.

Performance modelling involves prediction – estimating the performance of a new sys-
tem, the impact of change on an existing system, or the impact of a change in workload
on an existing system [82]. Existing performance modelling of deep learning frameworks
can be generally segmented into two categories:

1. Analytical Modelling (AM).

2. Empirical Modelling (EM).

24

2.4.1 Analytical Modelling of Deep Learning

This subsection provides the existing works developed in a distributed environment us-
ing analytical modelling. Analytical modelling uses a transparent approach to convert a
model’s or an application’s internal mechanism into a mathematical model correspond-
ing to the system’s goals, which can significantly expedite the creation of a performance
model for the intended system. The existing analytical modelling works investigated deep
learning performance modelling and scaling optimisation in distributed environment [10],
asynchronous GPU processing based on mini-batch SGD [83], efficient GPU utilisation in
deep learning [84], comprehensive analysis and comparison of the performance of deep
learning frameworks running on GPUs [85] [86].

Yan et al. [10] developed performance model to evaluate the impact of partitioning
and resourcing decisions on the overall performance and scalability of distributed system
architectures’ using a DL framework Adam [60]. In addition, the performance model
was also used to guide the development of a scalability optimizer that quickly selects the
optimal system configuration for reducing DNN training time. However, the model can
only be applied to specific DL systems, particularly when it has parameter servers and
synchronous weights between worker nodes dynamically.

Heehoon Kim et al. [11] evaluated five popular deep learning frameworks TensorFlow
[65], CNTK [87], Theano [88], Caffe-MPI [89] and Torch [90] in terms of their perfor-
mance in both single and multi-GPU environments. In this work, each framework incorpo-
rated and compared different convolution algorithms, such as Winograd, General Matrix
Multiplication (GEMM), Fast Fourier Transformation (FFT), and direct convolution al-
gorithms, in terms of layered-wise analysis and execution time. The results have shown
that FFT and Winograd algorithms surpass the GEMM and other convolution algorithms.
However, the convolution algorithms used by the frameworks provided poor explainability
regarding their internal operations.

Qi et al. [12] proposed an analytical performance model named Paleo, predicting the
deep neural network performance by considering communication schemes, network ar-
chitecture and parallelization strategies. The results demonstrated that hybrid parallelism
performed much better than data parallelism while training the Alexnet model. However,

25

the model did not consider other factors affecting the overall performance of a model, such
as memory usage, data transfer, or communication overhead in distributed environments.

Castello et al. [13] developed an analytical model to evaluate the scalability of data
parallelism and model parallelism for distributed deep learning training of deep convolu-
tional neural networks (CNNs). The analysis considers various factors, including batch
size, computational performance of processing units, memory bandwidth of processing
units, network link bandwidth, and cluster dimension. The analysis utilizes analytical per-
formance models that can simulate both the CNN model’s organization and the distributed
platform’s hardware configuration. How ever, the model does not discuss the practical im-
plications of the findings, such as how to optimize the performance of a real-world system
based on the model predictions.

Jia et al. [14] focused on analyzing the impact of various factors such as network topol-
ogy, communication patterns, and batch sizes on the performance and consistency of dis-
tributed deep learning applications. The exploration of different network topologies, in-
cluding ring, mesh, and star, revealed varying impacts on the performance and consistency
of distributed deep learning applications. Specifically, the ring topology demonstrated the
best performance, followed by the mesh and star topologies. Additionally, the analysis
of various communication patterns, such as all-to-all, random, and broadcast, indicated
that the all-to-all communication pattern exhibited the best performance, followed by ran-
dom and broadcast patterns. Moreover, employing larger batch sizes could effectively
enhance the performance of decentralized deep learning systems by mitigating commu-
nication overhead. They found that using techniques such as Batch-based Consistency
Control (BCC) and Model Parallelism with Weight Stashing (MP-WS) improved consis-
tency in the training process.However, the paper only considers synchronous training and
does not explore the performance or consistency of asynchronous training methods.

Sean Mahon et al. [91] provided a comprehensive analysis of the factors that influence
the performance of distributed and scalable deep learning, including the size of the model
and dataset, communication overhead, network bandwidth, and hardware configuration.
They presented two communication methods: parameter server and all-reduce. Compar-
ing the performance of these approaches on different deep learning models, they found
that the choice of communication method can significantly impact performance. In some

26

cases, the parameter server approach exhibits better performance with a large number of
unreliable and less powerful machines, while the AllReduce method works better with a
small number of fast devices in a controlled environment with strong connected links.

Shi et al. [86] developed a performance model to evaluate the performance of various
distributed deep learning frameworks (TensorFlow, CNTK, MXnet and Caffe) with deep
convolutional neural networks (Alexnet, ResNet and GoogleNet models) on the multi-
GPU environment. They measured training time, memory usage, and GPU utilization
and compared the frameworks in terms of training time and resource utilization. How-
ever, they did not provide a breakdown of the time to divide the mini-batch into smaller
batches or measure the load imbalance factor, which are critical factors that could signifi-
cantly affect the training efficiency and performance in a parallel computing environment.
Kavarakuntla et al. [92] extended the Shi analytical performance model to evaluate the run-
time performance of deep learning frameworks (TensorFlow, MXnet and Chainer) with the
CNN, MLP and AN models running in the multi-GPU environment. The extended model
considered the load imbalance factor and made a layer-wise analysis of a neural network,
providing a more comprehensive evaluation of the frameworks’ performance. The exper-
imental results showed that the load balance is an influential factor affecting the system
performance.

2.4.2 Empirical Modelling of Deep Learning

Empirical modeling presents a strong alternative to analytical models, offering advantages
such as greater flexibility, realism, accuracy, and the ability to derive data-driven insights
for complex real-world scenarios. Empirical modelling builds models through observa-
tion and experimentation, which is antithetic to analytical modelling. In this approach,
empirical modelling predicts the outcome of an unknown set of system parameters based
on observation and experimentation. It characterises an algorithm’s performance across
problem instances and/or parameter configurations based on sample data. Empirical mod-
els predict the output of a new configuration on the target machine. By using the empirical
modelling approach, the existing works investigated new collective communication tech-
niques in distributed environment.

Oyama et al. [83] proposed a performance model for asynchronous stochastic gradient
27

descent-based deep learning systems on GPU-based supercomputers. The model accu-
rately predicted time to sweep the dataset, mini-batch size, and staleness with average
errors of 5%, 9%, and 19%, respectively, for various CNN architectures on different GPU-
based supercomputers. It utilized small empirical models and provided precise probability
distributions of crucial performance metrics. However, the study’s limitations include a fo-
cus solely on weight synchronization among GPUs and data-parallelism, neglecting other
parallelization strategies such as parameter servers or model-parallel approaches. Addi-
tionally, the study did not explore potential communication overhead and network latency
challenges, which could significantly impact the performance of distributed deep learning
systems.

Yufei et al. [16] established a performance model for estimating resource consumption
and performance efficiency of field-programmable gate array (FPGA) based accelerators
for CNN inference. The model was applied to the design phase to find and explore optimal
design options for these accelerators. The model focused on several key performance met-
rics, including Dynamic Random Access Memory (DRAM) efficiency, response time, and
PE utilization. The evaluation results showed that the model’s predictions closely matched
the actual test results obtained on FPGAs for CNN inference, with predictions typically
within a factor of three of the actual results. However, the model has poor explainability,
that did not discuss the impact of the proposed methodology on the overall design process,
including design time and design complexity. The methodology may introduce additional
complexity or design constraints that could limit the potential benefits of FPGA-based
acceleration for CNN inference.

Z.Lin et al. [17] proposed a performance prediction model for distributed deep learn-
ing on GPU clusters that considering both the network topology and communication pat-
terns of the trained deep learning model. The communication and computation times for
each layer in a deep neural network were included in the model. The model was evalu-
ated on several deep learning benchmarks and showed that it achieved higher accuracy in
predicting training time than existing models. The model can also be used to optimize
the performance of distributed deep learning by finding the optimal configuration of GPU
nodes and reducing the training time. However, the assessment of the proposed model was
confined to three different GPU clusters, potentially limiting its generalizability to other
GPU clusters or distributed DL architectures.

28

Andre Viebke et al. [18] developed an empirical performance model for predicting the
execution time of deep learning models, specifically CNNs and RNNs, on Intel’s Many
Integrated Core (IMIC) architectures. The model considered various factors such as the
number of cores, memory bandwidth, and communication overhead, which are unique
features of the IMIC architecture. The proposed performance model was evaluated by
comparing its predictions with experimental data. The experimental data was obtained
from running several deep learning models on Intel’s Xeon Phi and Knights Landing plat-
forms [93]. The results demonstrated that the proposed model achieved high prediction
accuracy, with an average error of less than 5% for both training and inference phases.
However, the model’s generalizability is limited and there is a lack of explanation for its
high accuracy.

Rakshith et al. [19] presented an empirical study of the performance of Horovod, a
distributed deep learning framework, for image classification tasks. They evaluated the
performance of Horovod on two popular image datasets, CIFAR-10 and ImageNet, using
a cluster of machines with varying numbers of GPUs. They also compared the perfor-
mance of Horovod to other distributed deep learning frameworks, such as TensorFlow and
PyTorch, and found that Horovod achieved better performance in certain scenarios. They
provided recommendations for optimizing the performance of Horovod on large-scale im-
age datasets, such as using efficient data loading and preprocessing techniques, and op-
timizing the communication and synchronization between the machines. However, the
experimental configuration utilized in the research does not accurately reflect real-world
situations in which the underlying hardware and network setups may differ substantially.

Most recently, a new approach named the hybrid model has been proposed [94] by
combining the elements of analytical modeling and empirical modeling for better perfor-
mance prediction developed in other fields. Inspired by this idea, a model is proposed that
gives insights into the intrinsic parameters’ performance and scalability of the extrinsic
parameters.

2.4.3 Conclusions from Previous Studies and Introduction of Differential Evolution

In summary, the existing literature on performance modeling of deep learning frameworks
in distributed environments was explored. The studies presented a diverse range of ap-

29

proaches, including analytical modeling and empirical modeling, to predict and understand
the performance characteristics of distributed deep learning systems. These works have
significantly contributed to the understanding of the system behavior, scalability, commu-
nication patterns, and resource utilization in various distributed settings. However, the
existing studies do have certain limitations. For instance, some of the analytical models
are limited to specific distributed deep learning systems, and their generalizability to other
architectures or GPU clusters may be constrained. Additionally, empirical models may
not provide sufficient explainability for some of their predictions, limiting insights into
the internal mechanisms of deep learning models.

To address these limitations and to enhance our understanding of distributed deep neu-
ral networks, proposed a generic performance model of an application in a distributed
environment with a generic expression of the application execution time that considers the
influence of both intrinsic factors/operations (e.g., algorithmic parameters/internal oper-
ations) and extrinsic scaling factors (e.g., data chunks or batch size). Formulating it as a
global optimization problem with regularization, we solve it using the differential evolu-
tion algorithm—a robust optimization technique. This approach aims to find the best-fit
values of the constants in the generic expression, matching the experimentally determined
computation time.

2.5 Differential Evolution

Differential Evolution (DE) [95] is an evolutionary optimization algorithm widely used
in various fields for solving optimization problems such as motor fault diagnosis [96],
structure prediction of materials [97], automatic clustering techniques [98], community
detection [99], learning applications [100] and so on. It was introduced by Storn and
Price in 1997. The algorithm functions on a group of potential solutions referred to as
individuals or vectors, which form a population. Each individual represents a potential
optimization solution [101], and the algorithm strives to progressively refine these solu-
tions through iterative steps. The procedure of the Differential Evolution algorithm as
follows:

1. Initialization: A population of individuals is randomly generated, with each individ-
30

ual having a set of parameter values that represent a potential solution.

2. Mutation: DE introduces diversity into the population by generating new candidate
solutions through mutation. For each individual in the population, a mutation op-
eration is performed by combining the parameter values of three randomly selected
individuals (known as target, donor, and base vectors) using a mutation factor. This
generates a new trial vector.

3. Crossover: The trial vector undergoes the crossover operation, where its parameters
are merged with those of the target vector. The determination of parameter inheri-
tance from either vector is governed by a crossover probability [102].

4. Selection: The trial vector undergoes assessment using an objective function to quan-
tify its fitness or quality. If the trial vector demonstrates superior performance com-
pared to the target vector, it displaces the target vector in the subsequent generation.
Conversely, if the trial vector fails to outperform, the target vector retains its place
within the population.

5. Termination: The algorithm continues to iterate through the mutation, crossover, and
selection steps until a specific termination condition is satisfied [101]. This condition
may involve reaching a predetermined fitness level, achieving convergence within the
population, or exceeding a maximum number of iterations.

Differential Evolution is known for its simplicity, efficiency, and ability to handle op-
timization problems with non-linear, non-differentiable, and noisy objective functions. It
is similar to other evolutionary algorithms such as Genetic Algorithm (GA) [103] by ap-
plying mutation, crossover, and selection operators to determine the population toward
better solutions. In contrast to the Genetic Algorithm (GA), the Differential Evolution
(DE) algorithm imparts mutation to each individual while transferring them to the next
generation. In the mutation procedure of DE, for each solution, three more individuals are
picked from the population, and as a consequence, a mutated individual is produced. On
the other hand, GAs typically use mutation, crossover, and selection operators on pairs of
individuals to generate new offspring for the next generation. This means that in GAs, only
two individuals are involved in producing a new offspring, while in DE, three individuals
play a role in the mutation process. It is determined based on the fitness value whether or

31

not the first individual selected will be replaced. In differential evolution, the crossover is
not the primary operation, as it is in the genetic algorithm. In recent times, several works
have been proposed to use DE for neural network optimization [104] [105] [106].

2.6 Regularization

Regularization techniques are utilized in machine learning to address the issue of over-
fitting [107]. By preventing models from fitting the training data too closely, regulariza-
tion helps improve their generalization capability. Regularization achieves this by im-
posing additional constraints during training, promoting simplicity and reducing model
complexity [108]. It discourages the over-reliance on individual features [109] and han-
dles multicollinearity, a situation where features are highly correlated [110]. By tuning
a regularization parameter, such as 𝜆, the trade-off between fitting the training data and
model complexity can be optimized [111]. For L1 regularization, loss can be calulated as,

𝐿𝑜𝑠𝑠 = 𝐷𝑎𝑡𝑎𝐿𝑜𝑠𝑠 + 𝜆 ∗ ∑ |𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| (2.1)

here, λ (lambda) is the regularization parameter that controls the strength of the penalty
term. The higher the value of λ, the stronger the regularization, leading to a sparser model
with more coefficients close to zero. The absolute value function ensures that the penalty
is proportional to the magnitude of the coefficients, promoting sparsity in the model. For
L2 regularization, loss can be calculated as,

𝐿𝑜𝑠𝑠 = 𝐷𝑎𝑡𝑎𝐿𝑜𝑠𝑠 + 𝜆 ∗ ∑ ∣𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡2∣ (2.2)

here, λ (lambda) is the regularization parameter controlling the penalty term’s strength.
Higher λ leads to stronger regularization, resulting in smaller coefficients in the model.
The squared term in L2 regularization ensures a balanced shrinkage of coefficients, pre-
venting any single coefficient from dominating the model’s prediction.

Regularization techniques thus play a crucial role in enhancing the robustness, inter-
pretability, and performance of machine learning models by preventing overfitting and
improving generalization to unseen data [112].

32

There are two main regularization techniques that have emerged as pivotal tools for
enhancing performance models by mitigating overfitting issues and improving generaliza-
tion [113]. The first technique is L1 regularization, also known as Lasso regularization. It
is widely used to induce sparsity in model coefficients by adding a penalty term to the loss
function [114]. This encourages less influential features to shrink towards zero, reduc-
ing variance and enhancing model interpretability. L1 regularization has demonstrated
its effectiveness in various domains, such as image recognition [115], natural language
processing [116], and financial forecasting [117]. The second technique is L2 regulariza-
tion, commonly referred to as Ridge regularization. It is prominent for mitigating exces-
sive reliance on individual features. By incorporating a squared penalty term into the loss
function [118], L2 regularization maintains small yet non-zero coefficients for all features,
leading to more robust and less sensitive performance models [119].

The selection of the weight parameter, which governs the regularization strength, as-
sumes paramount importance in regularization techniques. Finding the optimal 𝜆 value
is crucial in striking the right balance between the model’s alignment with the training
data and its level of complexity. Common methodologies, such as cross-validation [120]
and grid search [121], are employed to identify the lambda value that maximizes model
generalization. These techniques involve the systematic evaluation of model performance
for various 𝜆 values, enabling the selection of an optimal value that facilitates superior
generalization capability.

In summary, regularization techniques, including L1 regularization (Lasso) and L2 reg-
ularization (Ridge), offer robust mechanisms for reducing variance, enhancing model in-
terpretability, and optimizing the lambda parameter in performance modeling tasks. The
extensive utilization and demonstrated effectiveness of these techniques across diverse do-
mains underscore their significance in elevating the performance of models and addressing
the challenges associated with overfitting.

2.7 Summary

The literature survey on deep learning architectures, distributed deep learning, deep
learning frameworks, performance modelling, regularization techniques, and the differ-

33

ential evolution algorithm has unveiled the crucial roles of these elements in scalable
deep learning in distributed environments. The survey highlighted the significance of dis-
tributed deep learning, which efficiently processes large datasets by leveraging the com-
putational power of distributed systems. Given the exponential growth of data, distributed
deep learning has become essential for handling the computational and memory require-
ments of modern AI models.

Additionally, various deep learning frameworks: TensorFlow, PyTorch, and MXNet,
offer robust tools for implementing deep learning models efficiently, contributing signifi-
cantly to their widespread adoption across industries and academia.

Moreover, the literature review emphasized the importance of performance modelling
for scalable deep learning in distributed environments. Optimizing deep learning models
for various parameters through performance modelling enables efficient resource utiliza-
tion, reduces training time, and enhances overall system performance. Previous studies
have demonstrated the value of analytical and empirical modelling techniques in predicting
system behaviour, identifying performance bottlenecks, and guiding optimization efforts.

Furthermore, the differential evolution algorithm was discussed as a powerful evolu-
tionary optimization technique used in various fields, including deep learning. By iter-
atively refining potential optimization solutions through mutation, crossover, and selec-
tion steps, the differential evolution algorithm effectively addresses complex optimization
problems with non-linear, non-differentiable, and noisy objective functions.

34

Chapter 3

Performance Analysis of Distributed

Deep Learning Frameworks in a

Multi-GPU Environment

The work presented in this chapter was summarized in a paper presented at IUCC-2021,
IEEE 20th International conference on ubiquitous computing and communications [122].

This chapter presents an experimental analysis and performance model for assessing
deep learning models, including Convolutional Neural Networks (CNNs), Multilayer Per-
ceptron (MLP), and Autoencoder, on the three frameworks: TensorFlow, MXNet, and
Chainer, in a multi-GPU environment. These frameworks provide the basic building blocks
for designing effective neural network models for various applications such as computer
vision, speech recognition, and natural language processing. Factors that influence the per-
formance of these frameworks were analyzed by computing their running time in the pro-
posed model while taking the load imbalance factor into account. The evaluation results
highlight significant differences in the scalability of the frameworks and the importance
of load balance in parallel distributed deep learning.

3.1 Background and Motivation

Existing works have investigated various aspects of deep learning performance mod-
eling on distributed systems [10], including predicting the performance of asynchronous

35

stochastic gradient descent [83], analytical models for estimating the optimal use of GPU
resources for deep learning [84], and evaluating and benchmarking the performance of
deep learning frameworks on GPUs [85] [86]. In this study, the work presented in [86]
is extended to analyze and refine some parts of the model by further dividing the tim-
ings for stages of the training. The study also considers the effect of load imbalance on
the performance of three distributed deep learning frameworks (TensorFlow, MXNet, and
Chainer) with Convolutional Neural Network (CNNs), Multilayer Perceptron (MLP), and
Autoencoder (AE) models. The evaluation is conducted in the context of a single node,
multi-GPU system. The contributions outlined in this chapter are:

• Different from the existing works, the performance model built based on synchronous
stochastic gradient descent (S-SGD) analyzes the execution time performance of deep
learning frameworks in a multi-GPU environment, taking into account the load im-
balance factor and mini-batch time (time taken to divide mini-batches). The model
evaluates three deep learning models (Convolutional Neural Networks, Autoencoder,
and Multilayer Perceptron), each implemented in three frameworks (MXNet, Chainer,
and Tensorflow) respectively.

• Using experimental data, the effect of load imbalance on the scalability of deep learn-
ing models was analyzed, concluding that it is an important contribution to parallel
inefficiency.

3.2 The Proposed Performance Model

3.2.1 Preliminaries

The notations used in the experiment are shown in Table 3.1.

36

Table 3.1. Notation used in this chapter are (after [86])

Symbol Description
𝑁𝑔 Number of total GPUs
𝑡𝑖𝑡𝑒𝑟 An Iteration time
𝑡𝑖𝑜 I/O time of an iteration
𝑡ℎ2𝑑 Communication time between CPU and GPU

of an Iteration
𝑡𝑚𝑑 Time for dividing batches into mini-batches
𝑡𝑓 Forward operation time of an iteration
𝑡𝑏 Backward operation time of an iteration
𝑡(𝑙)
𝑓𝑖

Time taken by 𝑖𝑡ℎ GPU for 𝑙𝑡ℎ layer in forward
operation

𝑡(𝑙)
𝑏𝑖

Time taken by 𝑖𝑡ℎ GPU for 𝑙𝑡ℎ layer in back-
ward operation

𝑡𝑐𝑖
Time taken by 𝑖𝑡ℎ GPU for computing gradi-
ents aggregation

𝑡𝑢 Model update time of an iteration
𝑡𝑐 Gradients aggregation time of an iteration

3.2.2 Mini-batch stochastic gradient descent(SGD)

Let’s consider an L-layered DNN model, which is trained iteratively on a GPU using mini-
batch SGD. Each iteration consists of five steps:

1. Fetch a training data mini batch from either internal or external disk 𝑡𝑖𝑜;

2. Transfer the training data from CPU memory to GPU memory through PCIe 𝑡ℎ2𝑑;

3. Perform feed-forward calculations layer by layer by using GPU kernels 𝑡(𝑙)
𝑓𝑖

;

4. Use backward propagation for gradients computation from Layer L to Layer 1 𝑡(𝑙)
𝑏𝑖

;

5. Calculate average gradients and update the model 𝑡𝑢.

An iteration time can be expressed as:

𝑡𝑖𝑡𝑒𝑟 = 𝑡𝑖𝑜 + 𝑡ℎ2𝑑 + 𝑡𝑓 + 𝑡𝑏 + 𝑡𝑢 = 𝑡𝑖𝑜 + 𝑡ℎ2𝑑 +
𝐿

∑
𝑙=1

𝑡(𝑙)
𝑓 +

𝐿

∑
𝑙=1

𝑡(𝑙)
𝑏 + 𝑡𝑢 (3.1)

37

3.2.3 Synchronous stochastic gradient descent (S-SGD) using multiple GPUs

In comparison with the SGD, S-SGD consists of six steps. The steps 1 to 4 are similar to
the SGD. The fifth step is gradient aggregation, and the sixth step is updating the model.
The iteration time of the S-SGD implementation can be represented as:

𝑡𝑖𝑡𝑒𝑟 = 𝑡𝑖𝑜 + 𝑡ℎ2𝑑 +
𝐿

∑
𝑙=1

𝑡(𝑙)
𝑓 +

𝐿

∑
𝑙=1

𝑡(𝑙)
𝑏 +

𝐿

∑
𝑙=1

𝑡(𝑙)
𝑐 + 𝑡𝑢 (3.2)

In the single GPU environment, ∑𝐿
𝑙=1 𝑡(𝑙)

𝑐 = 0.

3.2.4 The Proposed Performance Model based on S-SGD

In this chapter, different from the existing works [86], a performance model of S-SGD is
built with the inclusion of two new parameters: time taken to divide the batch into mini-
batches and maximum time taken by GPU, taking load imbalance factor into account. The
importance of the selection of these two parameters are to analyse and to refine the parts
of the model by further dividing the timings for stages of the training.

Assume that a machine contains 𝑁𝑔 GPUs. Given the model to be trained, each GPU
will individually keep a complete set of model parameters, although parameter values are
identical and synchronised across GPUs. For an example, Figure 3.1 describes the work-
flow of the performance model when 𝑁𝑔 = 4. In general, the model works as discussed
in section 3.2.3 using multiple GPUs. Thus, the proposed performance model of training
DNNs with S-SGD in the TensorFlow, MXNet, and Chainer frameworks is developed.

Here, S-SGD executes feed-forward and backward propagation simultaneously on each
GPU with the same model and distinct training datasets. The time taken for dividing each
batch into mini-batches and the maximum time taken by each GPU in forward process-
ing are considered. By substituting these two parameters in the modeling function, the
iteration time 𝑡𝑖𝑡𝑒𝑟 for the S-SGD implementation can be represented as follows:

𝑡𝑖𝑡𝑒𝑟 = 𝑡𝑖𝑜 + 𝑡ℎ2𝑑 + 𝑡𝑚𝑑 + 𝑚𝑎𝑥𝑖𝜖[1,𝑁𝑔](
𝐿

∑
𝑙=1

𝑡(𝑙)
𝑓𝑖

+
𝐿

∑
𝑙=1

𝑡(𝑙)
𝑏𝑖

+
𝐿

∑
𝑙=1

𝑡(𝑙)
𝑐𝑖) + 𝑡𝑢 (3.3)

38

In the single GPU environment, ∑𝐿
𝑖=1 𝑡𝑙

𝑐 = 0. The time of an iteration can be written as:

𝑡𝑖𝑡𝑒𝑟 = 𝑡𝑖𝑜 + 𝑡ℎ2𝑑 + 𝑡𝑚𝑑 +
𝐿

∑
𝑙=1

𝑡(𝑙)
𝑓 +

𝐿

∑
𝑙=1

𝑡(𝑙)
𝑏 + 𝑡𝑢 (3.4)

Figure 3.1. Workflow of the model: (1) loss and gradient computation, (2) gradient aggregation, and (3)
parameter update

Now consider the effects of optimization strategies [123], which make use of task paral-
lelism, which are found in the existing deep learning frameworks. Two possible optimiza-
tion opportunities can be noticed [123]. Initially, parallelizing data reading tasks with the
computing tasks effectively hides the time cost of disk I/O. Secondly, gradient commu-

39

nication tasks with the backpropagation computing tasks can be parallelized. In the case
of overlapping I/O with computation, the first step is frequently processed with multiple
threads, allowing the I/O time of a new iteration to overlap with the computing time of the
preceding iteration [124]. In such a manner, computing in the following iteration can begin
immediately after the model is completed. Thus, the average iteration time of pipelined
SGD is calculated as:

𝑡𝑖𝑡𝑒𝑟 = max(𝑡𝑓 + 𝑡𝑏 + 𝑡𝑢 , 𝑡𝑖𝑜 + 𝑡ℎ2𝑑) (3.5)

In a scenario where the gradient communication overlaps with the computation, the gradi-
ent communication could be re-programmed to run concurrently with the backpropagation
steps. Therefore, the overheads of I/O and gradient communications need to be reduced
to achieve good performance and scalability, Let 𝑡′

𝑖𝑡𝑒𝑟 and 𝑡′
𝑖𝑜 represent the iteration time

and I/O times respectively on 𝑁𝑔 GPUs. The speedup of using 𝑁𝑔 GPUs is the given by:

𝑆 = 𝑁𝑔
𝑡𝑖𝑡𝑒𝑟
𝑡′
𝑖𝑡𝑒𝑟

(3.6)

Accounting for the optimizations described above, the expression can now be written as:

𝑆 = 𝑁𝑔
max {𝑡𝑖𝑜 + 𝑡ℎ2𝑑 , 𝑡𝑓 + 𝑡𝑏 + 𝑡𝑢}

max {𝑡′
𝑖𝑜 + 𝑡ℎ2𝑑 + 𝑡𝑚𝑑 , 𝑡𝑓 + 𝑡𝑏 + 𝑡𝑐}

(3.7)

The speedup, denoted by 𝑆, is calculated as the ratio of the maximum time taken in the
single-GPU case to the maximum time taken in the multiple-GPU case. The numerator
represents the maximum time for a single GPU, considering the time for I/O and commu-
nication (represented by 𝑡𝑖𝑜 + 𝑡ℎ2𝑑) and the time for forward and backward computations
along with model updates (represented by 𝑡𝑓 + 𝑡𝑏 + 𝑡𝑢). The denominator represents the
maximum time for multiple GPUs, considering the time for I/O, communication, and di-
viding batches into mini batches (represented by 𝑡𝑖𝑜+𝑡ℎ2𝑑+𝑡𝑚𝑑), and the time for forward,
backward computations, and gradients aggregation (represented by 𝑡𝑓 + 𝑡𝑏 + 𝑡𝑐). To sum-
marize, this equation quantifies the speedup achieved by using multiple GPUs compared
to a single GPU, considering all the relevant factors in a multi-GPU environment.

40

3.3 Experiments

In this section, the experimental environment is described, and the results of exper-
iments are presented to investigate the running time performance of DNN models and
frameworks, and how communication tasks affect the scalability of S-SGD.

3.3.1 Experimental Setup

Initially, the hardware specifications conducted in the experiments are defined. A single
node with three GPUs was used. GPU@ GEFORCE RTX 2080, CPU@ 2.60 GHZ 2.81
GHZ, and Memory (RAM) - 16.0 GB. Software used for the experimentation are Tensor-
Flow version-2.1.0, MXNet version -1.6.0, Chainer version-7.4.0, python version-3.6.9,
CUDA version-10.2. and operating system- Linux. Nsight profiler [125] was used to find
the running time performance of GPU activity. The Nsight profiling tool collects and
views profiling data through the command-line. It provides valuable insights into various
CUDA-related activities on both the CPU and the GPU, such as kernel execution, memory
transfers, memory set, CUDA API calls, and performance measures for CUDA kernels.

Furthermore, the time duration of an iteration for processing a mini-batch of input data
is measured to evaluate the execution performance. Three Neural Network models, i.e., the
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Autoencoder
(AE) models, are chosen for evaluation. The models are trained on the MNIST dataset
on three frameworks, i.e., TensorFlow [65], MXNet [66], and Chainer [67], by applying
distributed and parallel training. The MNIST dataset contains 70,000 images of ten hand-
written digits and is divided into training and test datasets. The training dataset has 60,000
images, while the test dataset contains 10,000 images. All the two datasets have 10 classes,
the 10 numerical digits. In the experiment, two epochs are run, the result of the first epoch
is discarded since this will include some setup, which is not representative of the average
training load over a long run. Each iteration time is recorded and averaged over the second
epoch, calculating the mean and standard deviation of each time.

41

3.3.2 Performance Metrics

The speedup and load imbalance factor are selected as performance metrics for run time
evaluation on three different frameworks. The speedup is defined in Equation 3.7. The load
imbalance factor for a set of parallel process which execute in times 𝑡1 … 𝑡𝑁 is defined as

𝐿𝐼𝐹 = 𝑁 ⋅
𝑚𝑎𝑥𝑖𝜖[1…𝑁]𝑡𝑖

∑𝑁
𝑖=1 𝑡𝑖

(3.8)

𝐿𝐼𝐹 = 1 corresponds to a perfectly balanced load, whereas for imbalanced loads, 𝐿𝐼𝐹 >
1.

The experimental evaluation is focused on two goals below.

• The first experimental goal is to investigate running time performance of each model
using different frameworks in a multi-GPU environment.

• The second experimental goal is to investigate how load imbalance factor of each
model under different computing nodes/GPU affects the computing efficiency.

3.4 Results and Analysis

This section illustrates the running performance followed with analysis based on the
performance modelling of Chainer, MXNet and TensorFlow in training CNN, MLP and
Autoencoder models in a multiple GPU environment.

3.4.1 Single GPU

Initially, the performance results obtained on a single GPU are described. The average time
taken by a framework to complete one iteration during training evaluates the framework’s
performance. Consequently, a comparison of the time spent on each step of SGD becomes
possible. The timings are provided in Table 3.2 and illustrated in Figures 3.2, 3.3, and 3.4.
The results of each phase will be discussed in the following sections.

42

Table 3.2. Measured time of SGD phases on single GPU. All times are given in seconds, as the mean and
standard deviations over all iterations in a single epoch of training.

CNN Chainer MXNet TensorFlow
𝑡𝑖𝑜 0.0004±0.00002 0.0002±0.00005 0.0006±0.00008
𝑡ℎ2𝑑 0.0383±0.0054 0.0201±0.0027 0.0212±0.0023
𝑡𝑚𝑑 0.0006±0.00003 0.0003±0.00001 0.0005±0.00002
∑𝑙

𝑖=1 𝑡𝑙
𝑓𝑖

0.0663±0.0031 0.0307±0.0073 0.3489±0.0729
∑𝑙

𝑖=1 𝑡𝑙
𝑏𝑖

0.0594±0.0030 0.1347±0.0040 0.1151±0.0170
𝑡𝑢 0.2365±0.0194 0.1564± 0.0514 0.2636±0.0469
𝑡𝑖𝑡𝑒𝑟 0.4009±0.0240 0.3421±0.0354 0.7494 ±0.1391

MLP Chainer MXNet TensorFlow
𝑡𝑖𝑜 0.0001±0.000018 0.0005±0.00008 0.0003±0.000025
𝑡ℎ2𝑑 0.0331±0.0062 0.0182±0.00078 0.0199±0.0035
𝑡𝑚𝑑 0.0006±0.00001 0.0003±0.00003 0.0005±0.00008
∑𝑙

𝑖=1 𝑡𝑙
𝑓𝑖

0.0523±0.0067 0.1034 ±0.0082 0.0576±0.0045
∑𝑙

𝑖=1 𝑡𝑙
𝑏𝑖

0.0481±0.0280 0.1754±0.0187 0.1680 ±0.0134
𝑡𝑢 0.4533±0.0095 0.2054±0.00099 0.5985±0.0089
𝑡𝑖𝑡𝑒𝑟 0.5869±0.0575 0.3992±0.0591 1.4371±0.0597

AN Chainer MXNet Tensorflow
𝑡𝑖𝑜 0.0004±0.00005 0.0001±0.00003 0.0005±0.00008
𝑡ℎ2𝑑 0.0316±0.0026 0.0185±0.0090 0.0215±0.0030
𝑡𝑚𝑑 0.0006±0.00003 0.0003±0.00001 0.0005±0.00008
∑𝑙

𝑖=1 𝑡𝑙
𝑓𝑖

0.1388±0.0045 0.1322±0.0064 0.1595±0.0072
∑𝑙

𝑖=1 𝑡𝑙
𝑏𝑖

0.1421± 0.0056 0.2265± 0.0076 0.4274±0.0103
𝑡𝑢 0.3675±0.0201 0.3287±0.0307 0.3765 ±0.0215
𝑡𝑖𝑡𝑒𝑟 0.6804±0.0328 0.706±0.0258 0.9854±0.0320

In the initial phase of the performance model, all three frameworks have multiple
threads to read data from the CPU memory to the GPU. By observing the results in Ta-
ble 3.2, therefore, evident that for all frameworks, the I/O time remains small. In the
second phase, after reading of data from disk to memory, the data should be transmitted
to the GPU for training. The tested environment uses PCIe to connect the CPU and GPU,
which provides a total bandwidth of 11 GB/sec. From the results in Table 3.2, apparent that
Chainer typically exhibits a higher memory copy time than both TensorFlow and MXNet.

In the third phase (𝑡𝑚𝑑), the three frameworks differ in the data distribution to GPUs. In
the Chainer framework, the data batch divided into multiple batches on the GPU, whereas
in the MXNet and Tensorflow frameworks, batches divided into mini-batches on the CPU
and then transferred to the GPUs dynamically. As a result, the Chainer framework takes

43

Table 3.3. Gradient aggregation time in seconds in the multi-GPU experiments.

Network Framework 𝑡𝑐𝑜𝑚𝑚
2 GPUs 3 GPUs

CNN
Tensorflow 0.3945 0.4017

MXNet 0.3245 0.3415
Chainer 0.3106 0.3404

MLP
Tensorflow 0.3024 0.4145

MXNet 0.3156 0.2569
Chainer 0.2945 0.2345

Autoencoder
Tensorflow 0.7187 0.7199

MXNet 0.3565 0.3698
Chainer 0.4563 0.4583

0.3s longer compared to MXNet and TensorFlow.

n the forward phase, it can be seen that while the results are comparable in the case
of the Autoencoder and MLP models, in the CNN model, Tensorflow significantly slower
than both the MXNet and Chainer frameworks. MXNet’s performance good in the forward
phase due to its usage of auto symbolic differentiation and imperative programmimg [66].
In the case of the CNN, both Chainer and MXNet able to auto-tune to determine the op-
timal convolutional algorithms for convolutional layers, but TensorFlow does not allow
the convolution techniques to be customized. TensorFlow uses the Winograd algorithm,
which in some situations may be suboptimal. Considering the CNN model, MXNet makes
use of GEMM-based convolution, which results in 0.05s less in the forward phase and up
to 0.15s more in the backward phase. Chainer employs the FFT technique [11], which
results in a forward phase that 0.06s higher and 0.1s less in the backward phase.

Next, in the backward phase, MXNet is slower than the TensorFlow and Chainer frame-
works. The values of 𝑡𝑓 and 𝑡𝑏 differ in performance due to the differing use of the cuDNN
API. cuDNN may have different performance depending on the parameters used. Some
factors that affect performance are: data layout, implicit matrix multiplications, dimen-
sion quantization techniques, convolution parameters such as batch size, Height and width
filtersize, channels in and out (NHWC, NCWH), and strides. For example, in MXNet and
Chainer, the NCHW data layout is used, whereas TensorFlow has NHWC layout, which
acts as a performance factor.

44

Figure 3.2. Iteration times on a single GPU for the CNN model

Figure 3.3. Iteration times on a single GPU for the MLP model

45

Figure 3.4. Iteration times on a single GPU for the Autoencoder model

3.4.2 Multi-GPU

In multi-GPU testing, the mini-batch was scaled with the number of GPUs, with each GPU
having the same dataset. As the number of GPUs increases, data communication overhead
increases due to the data aggregation process between devices. Measurements of this time,
𝑡𝑐𝑜𝑚𝑚, are give in Table 3.3. Figures 3.5, 3.6 and, 3.7 shows the results for the speedup
when running on two and three GPUs, and the breakdown of the timings in terms of the
performance model are shown in Figures 3.8 to 3.13.

From Figures 3.5, 3.6, and 3.7 it can be observed that MXNet achieves linear scaling
from one to three GPUs, while Chainer achieves speeds 0.2X less than MXNet. From
Figures 3.8 to 3.13, it is evident that the data aggregation time 𝑡𝑎 in MXNet is less than in
the TensorFlow and Chainer frameworks. Here, MXNet parallelizes the gradient aggrega-
tion with back propagation i.e., after the gradients of the current layer(𝑙𝑖) are computed,
the preceding layer (𝑙𝑖−1) of backward propagation can be performed without latency. As
a result, gradient computation of (𝑙𝑖−1) is parallelized with gradient aggregation of 𝑙𝑖.
Thus, following computing layers can hide much of the synchronisation overhead of gra-

46

dients. As a result, MXNet has less aggregation time and good scalability compared to
other frameworks. TensorFlow implements S-SGD differently. It has no parameter server
and uses peer-to-peer memory access if it is compatible with the hardware topology. Each
GPU receives gradients from other GPUs, averages them, and updates the model when the
backward propagation completes, even from the decentralised method. In this process, the
model update 𝑡𝑢 and backward propagation has no computation overlap, which led to the
observed relatively poor scaling performance in TensorFlow.

Figure 3.5. Measured speedup for the three frameworks on different numbers of GPUs for the CNN model

47

Figure 3.6. Measured speedup for the three frameworks on different numbers of GPUs for the MLP model.

Figure 3.7. Measured speedup for the three frameworks on different numbers of GPUs for the
Autoencoder model.

48

Figure 3.8. Iteration time on multiple GPUs. Results for two GPUs for the CNN model

Figure 3.9. Iteration time on multiple GPUs. Results for two GPUs for the MLP model.

49

Figure 3.10. Iteration time on multiple GPUs. Results for two GPUs for the Autoencoder model.

Figure 3.11. Iteration time on multiple GPUs. Results for three GPUs for the CNN model

50

Figure 3.12. Iteration time on multiple GPUs. Results for three GPUs for the MLP model.

Figure 3.13. Iteration time on multiple GPUs. Results for three GPUs for the Autoencoder model.

51

3.4.3 Load Imbalance Factor

Load balancing [126] [127] in a parallel system plays a major role in determining scalabil-
ity. A load imbalance occurs when work is distributed unevenly among workers. Here, the
Load Imbalance Factor for each neural network model in each deep learning framework
has been calculated based on Equation 3.8.

From the results in Table 3.4, it is clear that all three frameworks are not well balanced,
since in all cases the load imbalance factor is greater than one. Qualitatively, the higher
values of load imbalance correspond to the lower speedups and degraded scalability, as
shown in Figures 3.6, 3.7, and 3.8. For example, in the case of Tensorflow, poor scalability
is accompanied by relatively high values of the load imbalance factor.

Table 3.4. Load Imbalance Factor

Network Framework Load Imbalance Factor
2 GPUs 3 GPUs

TensorFlow
CNN 1.15 1.23
MLP 1.189 1.20
AN 1.175 1.27

Chainer
CNN 1.025 1.052
MLP 1.032 1.043
AN 1.152 1.202

MXNet
CNN 1.013 1.030
MLP 1.015 1.079
AN 1.142 1.213

Here, further linear regression analysis is presented to understand how the load imbal-
ance factor contributes to parallel inefficiency, according to the equation below:

𝑡 = 𝛽0 + 𝛽1𝑁𝑔 + 𝛽2𝑙𝑓 + 𝜖 (3.9)

where 𝑁𝑔 and 𝑙𝑓 represent the number of GPUs and load imbalance factor respectively,
𝑡 is the total execution time of an epoch, 𝛽0, 𝛽1, 𝛽2 are the regression coefficients and 𝜖
represents a random value indicating the error in each observation of 𝑡. The values of 𝛽0,
𝛽1, 𝛽2 should be chosen to minimise the sum of squared prediction errors.

52

The following values for the coefficients in the nine cases are found and shown in Table
3.5.

Table 3.5. Regression Coefficients and 𝑅2 Values for Each Model and Framework.
Model Deep learningFramework 𝛽0 𝛽1 𝛽2 𝑅2

CNN Tensorflow 0.00001 40.5588 369.4848 0.9904
MLP Tensorflow 0.00001 16.1671 245.9177 0.9963
AN Tensorflow 0.00002 49.1037 398.6701 0.9960
CNN MXnet 0.00001 5.57483 287.4133 0.9901
MLP MXnet 0.00002 28.9346 326.7283 0.9987
AN MXnet 0.00002 33.1037 398.6701 0.9903
CNN Chainer 0.00001 9.00791 286.8447 0.99
MLP Chainer 0.00001 0.1584 292.1287 0.9963
AN Chainer 0.000068 25.584 260.263 0.9965

where 𝑡′ is the computed prediction execution time as a function of the number of
GPUs and the load imbalance factor. The coefficients of determination, 𝑅2, are computed
to further investigate the impact of the number of GPUs and load imbalance factor on
execution time. 𝑅2 represents the proportion of the variance in execution time that is
predicted from both number of GPUs and load imbalance factor. It is defined as follows:

𝑅2 = 1 − 𝑆𝑆𝑟𝑠𝑠
𝑆𝑆𝑡𝑠𝑠

(3.10)

where 𝑆𝑆𝑟𝑠𝑠 and 𝑆𝑆𝑡𝑠𝑠 are the residual sum of squares and the total sum of squares. They
are defined as:

𝑆𝑆𝑟𝑠𝑠 = ∑(𝑡 − 𝑡′)2 (3.11)

and,
𝑆𝑆𝑡𝑠𝑠 = ∑(𝑡 − ̄𝑡)2 (3.12)

𝑅2 values for (CNN, MLP, AE) TensorFlow are found to be (0.9904, 0.9963, 0.9960), for
MXNet (0.9901, 0.9987, 0.9903), and for Chainer (0.99, 0.9963, 0.9965). These results
imply that the regression forecasts are accurate in predicting the relationship between ex-
ecution time and load imbalance factor. As the value of 𝑅2 increases, the model’s fit to
the training data becomes more accurate and precise. The results confirm the importance
of load balancing to achieve scalability in distributed deep learning.

53

3.5 Summary

The performance of different deep learning frameworks over different deep learning
neural networks has been evaluated in terms of scalability in a multi-GPU environment,
taking into account a range of factors affecting performance, including load imbalance.
The existing performance model [86] has been further extended with the inclusion of two
new parameters: time taken to divide the batch into mini-batches and the maximum time
taken by GPU. The proposed performance model was built to measure the performance
of different deep learning framework implementations which include TensorFlow, MXNet
and Chainer frameworks on three models: Convolutional neural network, Multilayer per-
ceptron and Autoencoder models, in a multi-GPU environment. The experimental results
have shown that MXNet and Chainer have better scalability compared to TensorFlow for
all three models. Moreover, the analysis of the load imbalance factor has shown that load
balancing is a contributing factor to scalability in distributed deep learning, and high load
imbalance is strongly correlated with poor scalability in the experiments. However, the
performance model could not provide deeper insights into where the load imbalance arises.
This motivates the development of a more detailed performance model which is fit to the
performance data using a global optimization algorithm, and this will be covered in the
next chapter.

54

Chapter 4

A Generic Performance Model for Deep

Learning in a Distributed Environment

The work presented in this chapter was summarized in a paper presented at the IEEE
SSCI 2022 conference, held in Singapore.

To address the limitations mentioned in previous chapters, the objective in this chapter
is to build a performance model that quantifies the efficiency of large parallel workloads.
This motivates the development of a more detailed performance model, which fits exper-
imental performance data using a global optimization algorithm. Existing performance
models in deep learning are broadly categorised into two methodologies: analytical mod-
elling and empirical modelling as defined in Chapter 2 in sections 2.4.1 and 2.4.2. Analyt-
ical modelling uses a transparent approach to convert the model’s or applications’ internal
mechanisms into a mathematical model corresponding to the system’s goals, which can
significantly expedite the creation of a performance model for the intended system. Em-
pirical modelling predicts the outcome of an unknown set of system parameters based
on observation and experimentation. It characterises an algorithm’s performance across
problem instances and/or parameter configurations based on sample data. These models
predict the output of a new configuration on the target machine. In this chapter, the hy-
bridization of the analytical model and empirical modeling serves as an inspiration. Here,
a novel generic performance model is proposed that provides a general expression in terms
of intrinsic and extrinsic factors of a deep neural network framework in a distributed en-
vironment, which gives accurate performance predictions. The contributions outlined in
this chapter are:

55

• Developed a generic expression for a performance model considering the influence
of intrinsic parameters and extrinsic scaling factors that affect computing time in a
distributed environment.

• Formulated the generic expression as a global optimization problem using regulariza-
tion on a cost function in terms of the unknown constants in the generic expression,
which has been solved using differential evolution to find the best fitting values to
match experimentally determined computation times.

• Evaluated the proposed model in three deep learning frameworks, i.e., TensorFlow,
MXNet, and PyTorch, to demonstrate its performance efficiency.

4.1 The Proposed Generic Performance Model

Given an application consisting of a number of processes in a distributed environment,
the execution time of the application can be considered from two levels: 1) Execution time
of internal processes of the application (for example, intrinsic parameters of the applica-
tion); and 2) External scaling factors that affect the computing efficiency (such as a number
of machines/processors or data chunks or batch size). A generic performance model for
computing total computational time (𝑡) per iteration of an application can be described as
follows:

𝑡(𝐼, 𝐸) = 𝑡𝐼(𝐼)𝑓𝐸(𝐸) + 𝐶 (4.1)

Here, intrinsic parameters are represented as 𝐼, 𝐸 represents extrinsic parameters, 𝑡𝐼

represents the computation time of the processes affected by intrinsic parameters, 𝑓𝐸 repre-
sents extrinsic scaling factors that affect the computing performance, and 𝐶 is a constant.
In general, 𝐼 and 𝐸 are vectors in which each element is a hyperparameter of the deep
learning model such as a filter size (intrinsic) or batch size (extrinsic).

In the model, the internal time 𝑡𝐼 is represented as a sum of terms in powers of the

56

components of 𝐼:

𝑡𝐼 =
𝑛

∑
𝑖=1

𝑎𝑖𝐼
𝑝𝑖
𝑖 (4.2)

Basically, intrinsic parameters represent model parameters of the deep neural network,
as shown in Fig.4.1. In equation (4.2), the coefficients 𝑎𝑖 relate to the relative importance
of the processes, and the powers 𝑝𝑖 relate to the computational complexity.

Figure 4.1. Internal processes involved in a convolutional neural network.

The external factors are related to scaling, and these appear in the model as multiplica-
tive terms with different powers in the computation of the external scaling factor 𝑓𝐸, which
is given by:

𝑓𝐸 =
𝑚

∏
𝑗=1

𝐸𝑞𝑗
𝑗 (4.3)

Here, the powers 𝑞𝑗 give information about scalability. By substituting the 𝑡𝐼 and 𝑓𝐸 in
equation (4.1), the computational time (t) is given as follows:

𝑡(𝐼, 𝐸, 𝑥) = (
𝑛

∑
𝑖=1

𝑎𝑖𝐼
𝑝𝑖
𝑖)

𝑚

∏
𝑗=1

𝐸𝑞𝑗
𝑗 + 𝐶 (4.4)

which is now written as a function of 𝐼, 𝐸 and 𝑥, where

𝑥 = {𝑎1, ..., 𝑎𝑛𝐼
, 𝑝1, ... 𝑝𝑛𝐼

, 𝑞1, ... 𝑞𝑛𝐸
, 𝑐} ∈ ℝ𝑀 (4.5)

Here, 𝑥 is a vector formed by combining 𝑎, 𝑝, 𝑞 and constant coefficient 𝐶. In equa-
57

Figure 4.2. Functional diagram of proposed performance model.

tion (4.4), the intrinsic parameters 𝐼 and extrinsic parameters 𝐸 are the known input values.
𝑎, 𝑝, 𝑞 and coefficient 𝐶 are unknown constants. The functional diagram of the proposed
performance model is shown in Figure 4.2.

The optimal values of these unknown constants (total: 𝑀 = 2𝑛𝐼 + 𝑛𝐸 + 1) are com-
puted using the differential evolution algorithm. The aim is to find the best-fitting values
of these constants, by fitting the model to experimentally measured execution times ob-
tained with different values of the internal and external parameters 𝐼 and 𝐸. Before going
into the cost function formulation of the differential evolution algorithm [128], the general
methodology for obtaining the experimental data is described. For every possible combi-
nation of values of intrinsic and extrinsic parameters, there will be too many combinations
for an exhaustive grid search. Therefore, random sampling has been applied to ensure that
every hyperparameter in the population has an equal opportunity of being selected for
obtaining measured times. The methodology used for measured time is the time taken
for an iteration of an epoch. The iteration time is computed as the difference between an
iteration’s end time and starting time.

The experimental data for fitting the model comprises 𝑁 measurements with randomly
selected values of the parameters. The values of the intrinsic parameters are denoted by

𝐼𝑖,𝑘, 𝑖 ∈ [1, 𝑛𝐼], 𝑘 ∈ [1, 𝑁] (4.6)

where 𝑖 indexes the components of the vector of parameters, and 𝐾 refers to a given ob-

58

servation in the experiment. Similarly, the extrinsic parameters are denoted by

𝐸𝑗,𝑘, 𝑗 ∈ [1, 𝑛𝐸], 𝑘 ∈ [1, 𝑁] (4.7)

The measured time for observation 𝑘 is

𝑡𝑘, 𝑘 ∈ [1, 𝑁] (4.8)

Here, 𝑖, 𝑗 denote the input feature indices. 𝑘 ∈ [1, 𝑁] indicate the sample index in dataset
𝐷. N is the number of input samples in 𝐷.

4.1.1 Global Optimisation Using Differential Evolution

Given the generic expression as shown in equation (4.4), as mentioned in the earlier sub-
section, the best fit values of 𝑎, 𝑝, 𝑞, and 𝐶 are found by minimizing a cost function. The
cost function is formulated as the mean absolute difference between the predicted execu-
tion time and the actual measured times as follows:

𝑓(𝑥) = 1
𝑁

𝑁

∑
𝑘=1

∣𝑡𝑘 − ̂𝑡𝑘(𝐼𝐾, 𝐸𝑘, 𝑥)∣ (4.9)

where 𝑁 as number of data samples, 𝑡𝑘 is the measured time, ̂𝑡𝑘 is the predicted time
derived from equation (4.4).

To solve the above optimization problem, the differential evolution algorithm (DE) is
used with the cost function in equation (4.4). The mean absolute error between the pre-
dicted times of the model and the measured times is minimized, resulting in a value of the
vector 𝑥 which represents the best fitting model. Recall that this vector encodes the coeffi-
cients and powers of the terms in the model due to each of the hyperparameters; these can
then be used to make predictions of the execution time for any set of values of the intrinsic
and extrinsic parameters and furthermore, inspection of these coefficients can provide in-
sight into the relative importance and computational complexity of the internal processes,
as well as the scalability of the external processes. For this work, the DE implementation
from the scipy python package is used, with default values of the hyperparameters. Limits

59

of (0 … 1000) are enforced for constants and coefficients (𝑎, 𝐶) and −5 … 5 for powers
(𝑝, 𝑞).

4.1.2 Regularization

A globally optimized, unconstrained model may be prone to overfitting or producing unsta-
ble solutions with high parameter variance. To address these issues, a regularization term
is introduced to the cost function. Regularization achieves the best fit by incorporating a
penalizing term in the cost function, which assigns a higher penalty to complex curves.
Thus, the motivation to apply regularization to the performance model arises. Generally,
regularization can be defined as:

𝑓reg(𝑥) = 𝑓(𝑥) + 𝜆.𝐿 (4.10)

where 𝜆 controls the bias-variance trade-off, and L is some measure of the complexity
of the model. In this study two types of regularization techniques have been used. The
first one Lasso regression (L1) form, and the second Ridge regression (L2) form. Firstly,
L1 regularization, also called a lasso regression, adds the absolute value of the magnitude
of the coefficient as a penalty term to the loss function. The L1 regularization solution is
sparse. Secondly, L2 regularization, also called ridge regression, adds the squared magni-
tude of the coefficient as the penalty term to the loss function, and its solution is non-sparse.
In L1 regularization, L1 (Lasso) shrinks the less important features coefficient to zero, thus
removing some features altogether. L1 works well for feature selection in case there is a
huge number of features. In L2 regularization, it adds a penalty as model complexity in-
creases. The regularization parameter 𝜆 penalizes all the parameters except the intercept
to ensure the model generalizes the data and avoids overfitting. Ridge regression adds the
squared magnitude of the coefficient as a penalty term to the loss function. Both kinds
of regularization have been applied to the performance model. Now, the cost function for
optimization using both L1 and L2 regularizations is as follows:

𝑓𝐿1
(𝑥) = 1

𝑁

𝑁

∑
𝑘=1

∣𝑡𝑘 − ̂𝑡𝑘∣ + 𝜆.
𝑁

∑
𝑘=1

|𝑥| (4.11)

60

𝑓𝐿2
(𝑥) = 1

𝑁

𝑁

∑
𝑘=1

∣𝑡𝑘 − ̂𝑡𝑘∣ + 𝜆.
𝑁

∑
𝑘=1

𝑥2 (4.12)

Here, applying the regularization term 𝜆 controls the bias-variance trade-off in the internal
processes.

4.2 Experimental Evaluation

To evaluate the performance of the proposed model, the approach has been applied to
three deep learning frameworks (TensorFlow, PyTorch, and MXNet) and extensive exper-
iments have been conducted. The proposed performance evaluation approach is assessed
by modeling distributed training of a CNN architecture on a multi-GPU system. The main
goal is to investigate how well the predicted execution time fits the experimentally mea-
sured time.

4.2.1 System Configuration

The experiments are implemented on a single node containing three GEFORCE RTX 2080
GPUs, each with 2.60 GHz speed and 16 GB GPU RAM. The node also consists of a 2.81
GHz speed CPU machine, 25 Gbps network bandwidth and a CUDA-10.2 with a Linux
operating system. Furthermore, the node consists of various software configurations/in-
stallations, including PyTorch 1.2.0, Torchvision 0.4.0, Python 3.6, TensorFlow 2.1.0 and
MXNet 1.6.0.

4.2.2 Dataset and Model Selection

For three deep learning frameworks, a CNN architecture, LeNet-5, was selected, which
Yann LeCun proposed in 1998 as a general common neural network structure for hand-
written font recognition. It consists of two convolutional layers, two fully-connected layers,
pooled layers for cross-combination and an output layer that predicts values via the fully
connected layer. Besides, LeNet-5 works well with handwritten datasets [129], it also

61

reduces the number of parameters and can automatically learn features from raw pixels
[130].

LeNet-5 is trained on three popular datasets, MNIST, fashion-MNIST, and CIFAR-10,
using three popular deep learning frameworks: TensorFlow, PyTorch, and MXNet, in a
multi-GPU system. Fashion-MNIST [131] serves as a direct drop-in replacement for the
original MNIST dataset for benchmarking machine learning algorithms. Each example is
a 28x28 grayscale image associated with a label from 10 classes. The CIFAR-10 dataset
[132] contains 60,000 images with 32 × 32 pixels. The images are classified into ten
classes - aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck; each has
6,000 images.

4.2.3 Performance Metrics

The scalability and Mean Absolute Percentage Error (MAPE) are selected as performance
metrics for run-time evaluation on three different frameworks. The scalability is measured
in the powers of external parameters as shown in equation (4.3). The MAPE can be defined
as:

𝑀𝐴𝑃 𝐸 = 1
𝑛

𝑛

∑
𝑖=1

∣𝑦𝑖 − 𝑥𝑖
𝑥𝑖

∣ × 100 (4.13)

where 𝑦𝑖 = the measured value, 𝑥𝑖 = the predicted value, n = total number of data points.

The choice of using MAPE is motivated by its lower sensitivity to outliers. The pres-
ence of these outliers in the results justifies the selection of MAPE as the evaluation metric.
Additionally, minimizing the mean absolute error between the predicted times of the model
and the measured times results in a value of the vector 𝑥 which represents the best-fitting
model. The scaling parameters are used in the proposed evaluation model to evaluate the
performance of the deep learning frameworks.

62

4.2.4 Experiments

The experiment is designed to accomplish the following three goals:

1. The performance evaluation of deep learning frameworks were conducted using the
proposed performance model with and without regularization. Specifically, the pro-
posed performance model was applied to three deep learning frameworks: Tensor-
Flow, MXnet, and PyTorch, under two circumstances, with and without regulariza-
tion.

2. To investigate regularization to find the best value of lambda, and which of L1 and
L2 performs better.

3. Comparison of the proposed model with existing black-box machine learning mod-
els. The proposed model and the two widely used models, random forest regression,
and support vector regressor, were compared to demonstrate their performance and
interpretability.

In the experiment, the distributed training of LeNet-5 on MNIST, fashion-MNIST, and
CIFAR-10 datasets is performed using different deep learning frameworks such as Ten-
sorFlow, MXNet, and PyTorch. The values of the experimental training parameters are
created by applying random sampling on a set of intrinsic and extrinsic parameters and
its corresponding average training time taken by a deep CNN architecture per iteration.
Table 4.1 shows intrinsic and extrinsic parameters and their possible values. The intrinsic
parameters are the model’s hyperparameters, including kernel size, pooling size, activa-
tion function, etc. The number of GPUs and the batch size are extrinsic factors since these
affect the scaling over multiple processes.

The experiments involve repeated trials in which the time for a single training iteration
is measured using randomly selected intrinsic and extrinsic parameter values. 1500 trials
were conducted to prepare a dataset of 1500 data samples. For each sample, three iterations
are run with the same parameter values, and the median value of the measured time is
taken. The experimental data for 1000 trials are used to fit the performance model or train
the standard black-box models for comparison. The remaining 500 are used to evaluate
the trained and fitted models. Finally, the experimental parameters are used to build three

63

Table 4.1. Parameters of the performance model, with ranges of values sampled in the experiments.

Index Name Set of possible values considered
Intrinsic parameters

1 Kernel size {2,3,4,5}
2 Pooling size {2,3,4,5}
3 Activation function {Relu, Tanh, Sigmoid}
4 Optimizer {Adam, SGD}
5 Image_dataset_name {MNIST,Fashion-MNIST,CIFAR-10}
6 Number of filters {4,8,16,32,64}
7 Learning rate {0.1,0.01,0.001,10−4, 10−5, 10−6}
8 Padding_mode {valid, same}
9 Stride {1,2,3}
10 Dropout probability {0.2,0.5,0.8}

Extrinsic parameters
11 Number of GPUs {1,2,3}
12 Batch size {8,16,32,64,128}

performance evaluation models, such as the Differential evolution (DE) algorithm and two
standard black-box models. Each fit is run ten times with different random seeds to obtain
the mean and standard deviation for each of the fitted parameters. The performance of
these models and their corresponding results are explained in the subsequent subsections.

4.3 Results and Analysis

This section shows the results of the proposed performance model for three well-known
deep neural networks, i.e., TensorFlow, MXNet and PyTorch. The performance model is
evaluated and compared with two standard black-box regression models: Support vector
regressor [133] and random forest regressor [134]. Tables 4.2 and 4.3 compares internal
parameters and scalability in various frameworks, respectively.

4.3.1 Performance Evaluation of Deep Learning Frameworks using the Proposed

Performance Model without regularization

The differential evolution algorithm is applied to the proposed model and evaluated using
the three deep learning frameworks. The actual execution time for training the model

64

using the three frameworks is recorded and predicted execution times are also generated.
Figures 4.3, 4.4, and 4.5 shows the scatter graph of the predicted execution times from the
proposed model plotted against the actual execution time for the test dataset. The linear
fit to the straight line determines how well the model can predict unseen configurations.
Best fit constant coefficients for all frameworks are shown in Table 4.2.

Each fit is run ten times with different random seeds to obtain the mean and standard
deviation for each of the fitted parameters. The results show stable and consistent fits for
the extrinsic parameters and the additive constant 𝐶, suggesting that the scalability results
are accurate. There is a higher variance in the intrinsic parameters. Table 4.2 shows that the
model gives broadly consistent performance for the constant coefficients, representing the
relative importance of the process controlled by categorical parameters. For example, for
the activation function coefficients, Adam has a large constant and takes more time than
SGD in PyTorch and TensorFlow frameworks. In MXNet, SGD takes maximum time.
And also in terms of padding, same parameter will take more time than valid parameter.
However, comparisons of these parameters should only be made within a framework since
the absolute values will be affected by the scaling behaviour. However, the high variance in
some intrinsic parameters suggests that some work needs to be done in extracting insights
from these parameters, which will be addressed in the next section.

65

Table 4.2. Derived intrinsic and extrinsic parameters from the differential evolution-optimized
performance model for the three deep learning frameworks. Parameters are given as the mean and

standard deviation over ten fits. Here 𝑎 and 𝑝 represent coefficients and powers respectively of a term
representing an intrinsic parameter, where as 𝑞 is power in a multiplicative term representing an extrinsic

(scaling) parameter.

MXNet PyTorch TensorFlow
Intrinsic parameters 𝑎 𝑝 𝑎 𝑝 𝑎 𝑝
Filter size 554.87 ± 311.73 -4.06 ± 0.53 423.36 ± 256.88 -2.88 ± 1.04 346.73 ± 216.24 -3.22 ± 0.78
Kernel size 10.57 ± 7.05 -4.10 ± 0.70 168.54 ± 123.27 -2.34 ± 1.82 54.78 ± 32.91 -4.00 ± 1.41
Pool size 18.08 ± 5.17 -4.21 ± 0.46 209.14 ± 186.87 -3.31 ± 0.92 79.45 ± 53.53 -3.48 ± 1.33
Learning rate 459.50 ± 258.52 3.68 ± 0.62 489.52 ± 221.63 3.21 ± 0.70 458.34 ± 278.03 3.26 ± 0.91
Stride 17.29 ± 6.12 -0.83 ± 0.23 140.64 ± 138.62 -0.63 ± 0.58 29.00 ± 14.54 -1.85 ± 0.90
Dropout probability 1.79 ± 0.75 2.24 ± 1.62 437.06 ± 184.32 1.80 ± 1.66 10.23 ± 9.51 1.87 ± 1.62
Same 2.50 ± 0.97 - 11.02 ± 5.09 - 6.14 ± 1.54 -
Valid 1.56 ± 0.96 - 0.77 ± 1.81 - 1.61 ± 2.24 -
Sigmoid 23.25 ± 10.23 - 475.92 ± 139.65 - 251.57 ± 122.01 -
Relu 21.90 ± 10.40 - 475.56 ± 137.27 - 255.93 ± 122.35 -
Tanh 23.14 ± 10.30 - 444.48 ± 138.25 - 254.28 ± 121.27 -
MNIST 35.75 ± 12.81 - 815.62 ± 69.44 - 232.24 ± 108.77 -
Fashion-MNIST 35.94 ± 12.75 - 815.68 ± 68.39 - 231.33 ± 109.93 -
CIFAR-10 18.57 ± 12.68 - 308.73 ± 53.32 - 124.56 ± 108.01 -
SGD 16.68 ± 10.10 - 361.65 ± 130.64 - 158.74 ± 109.25 -
Adam 16.85 ± 10.32 - 720.15 ± 123.99 - 168.55 ± 108.67 -
Extrinsic parameters 𝑞 𝑞 𝑞
Batchsize -0.99 ± 0.003 -1.13 ± 0.01 -1.35 ± 0.08
No. of GPUs -0.99 ± 0.004 -1.029 ± 0.001 -0.74 ± 0.001
Constant term 𝐶 𝐶 𝐶

3.703 ± 0.017 12.677 ± 0.038 1.930 ± 0.122

Figure 4.3. The proposed performance model predicted and measured times in TensorFlow deep learning
frameworks using differential evolution algorithm.

66

Figure 4.4. The proposed performance model predicted and measured times in MXNet deep learning
frameworks using differential evolution algorithm.

Figure 4.5. The proposed performance model predicted and measured times in PyTorch deep learning
frameworks using differential evolution algorithm.

67

4.3.2 Performance Evaluation of Deep Learning Frameworks using the Proposed

Performance Model using regularisation

The proposed performance model was applied to three deep learning frameworks using
the differential evolution algorithm with regularization. Actual execution times for train-
ing the model using the three frameworks were recorded, and predicted execution times
were generated. Scatter graphs of the predicted execution times from the proposed model
plotted against the actual execution times are shown in Figures 4.6, 4.7, and 4.8. The linear
fit to the straight line assesses the model’s ability to predict unseen configurations. Best
fit constant coefficients for all frameworks are presented in Table 4.3.

The results demonstrate stable and consistent fits for the extrinsic parameters and the ad-
ditive constant 𝐶, suggesting accurate scalability results. The use of regularization reduces
the higher variance in the intrinsic parameters. The model yields consistent performance
for the constant coefficients, representing the relative importance of the process controlled
by categorical parameters. For example, in PyTorch and TensorFlow frameworks, the acti-
vation function coefficients show that Adam has a large constant and takes more time than
SGD, while in MXnet, SGD takes the most time. The categorical parameter padding with
two possible values valid and same shows better performance for the same mode. How-
ever, it is important to note that comparisons of these parameters should be made within a
framework, as absolute values may be influenced by the scaling behavior.

The constant term 𝐶, which were derived from the model fitting process. The intrinsic
parameters, represented by coefficients 𝑎 and powers 𝑝, signify the relationship between
various model attributes (e.g., filter size, kernel size, pool size) and the computation time.
On the other hand, the extrinsic parameters, denoted by the power 𝑞, describe the influ-
ence of external factors, such as batch size and the number of GPUs, on the computation
time. The standard deviations associated with the constant term 𝐶 are relatively small,
indicating consistent measurements of its effect and reducing the likelihood of random
variations. The constant term 𝐶 plays a fundamental role in the performance model, cap-
turing the baseline computation time that remains unaffected by changes in the model’s
parameters and input data. It accounts for aspects of computation that are independent
of the model architecture and hyperparameters. The negative values of the extrinsic pa-
rameters 𝑞 indicate that increasing the batch size and utilizing more GPUs lead to reduced

68

computation time, signifying improved scalability and computational efficiency.

However, the constant term’s values demonstrate variations across different deep learn-
ing frameworks, suggesting possible framework-specific effects on the baseline computa-
tion time. Larger 𝐶 values imply limited opportunities for further performance optimiza-
tion through parameter tuning. Consequently, such scenarios may lead to less efficient
scaling and diminished performance gains when utilizing larger batch sizes or additional
GPUs.

Figure 4.6. The proposed performance model predicted and measured times in TensorFlow deep learning
frameworks using differential evolution algorithm using regularization.

69

Figure 4.7. The proposed performance model predicted and measured times in MXnet deep learning
frameworks using differential evolution algorithm using regularization.

Figure 4.8. The proposed performance model predicted and measured times in PyTorch deep learning
frameworks using differential evolution algorithm using regularization.

70

Table 4.3. Derived intrinsic and extrinsic parameters from the differential evolution-optimized
performance model for the three deep learning frameworks. Parameters are given as the mean and

standard deviation over ten fits. Here 𝑎 and 𝑝 represent coefficients and powers respectively of a term
representing an intrinsic parameter, where as 𝑞 is power in a multiplicative term representing an extrinsic

(scaling) parameter.

Mxnet PyTorch TensorFlow
Intrinsic parameters 𝑎 𝑝 𝑎 𝑝 𝑎 𝑝
Filter size 6.27 ± 0.59 0.36 ± 0.01 6.07 ± 1.59 0.89 ± 0.05 8.39 ± 0.37 0.77 ± 0.01
Kernel size 4.44 ± 0.65 0.50 ± 0.04 4.84 ± 1.90 2.02 ± 0.24 6.59 ± 0.29 2.04 ± 0.03
Pool size 4.69 ± 0.33 0.52 ± 0.03 3.23 ± 0.83 1.55 ± 0.45 6.70 ± 0.67 1.98 ± 0.05
Learning rate 3.62 ± 0.41 -0.04 ± 0.003 3.75 ± 1.70 -0.27 ± 0.02 4.40 ± 0.60 -0.22 ± 0.007
Stride 4.51 ± 0.40 -0.99 ± 0.11 2.92 ± 1.54 -0.83 ± 1.42 4.13 ± 0.59 2.46 ± 0.10
Dropout probability 4.20 ± 0.67 -0.35 ± 0.05 35.92 ± 1.15 -5.00 ± 0.00 4.46 ± 0.43 -1.94 ± 0.07
Same 2.66 ± 0.51 - 2.08 ± 0.84 - 1.90 ± 0.58 -
Valid 1.50 ± 0.43 - -0.57 ± 1.56 - 0.49 ± 0.71 -
Sigmoid 2.18 ± 0.45 - 2.32 ± 1.15 - 1.41 ± 0.41 -
Relu 1.52 ± 0.33 - 3.21 ± 1.35 - 1.85 ± 0.64 -
Tanh 2.29 ± 0.39 - 2.93 ± 1.93 - 1.99 ± 0.71 -
MNIST 5.48 ± 0.52 - 3.37 ± 1.35 - 1.99 ± 0.72 -
Fashion-MNIST 7.73 ± 0.36 - 3.42 ± 1.56 - 2.28 ± 0.72 -
CIFAR-10 1.00 ± 0.02 - 1.89 ± 1.00 - 1.63 ± 0.69 -
SGD 2.31 ± 0.36 - 2.16 ± 1.00 - 1.73 ± 0.46 -
Adam 1.78 ± 0.41 - 3.42 ± 1.45 - 2.01 ± 0.85 -
Extrinsic parameters 𝑞 𝑞 𝑞
Batchsize -0.87 ± 0.005 -1.00 ± 0.007 -1.19 ± 0.01
No. of GPUs -1.07 ± 0.007 -1.01 ± 0.004 -0.74 ± 0.005
Constant term 𝐶 𝐶 𝐶

3.45± 0.024 1.03 ± 0.07 12.62 ± 0.05

4.3.3 Comparison of the Proposed Performance Model with Machine Learning Mod-

els

The proposed model has been compared with two standard black box models, i.e., ran-
dom forest regressor and support vector regressor. Generally, the random forest regressor
has better prediction accuracy due to its ensemble learning shown in Figures 4.9, 4.10,
and 4.11. The result shows a good linear fit compared to the differential evolution al-
gorithm. However, the drawback of the random forest regressor is that it cannot give any
insights into its internal working mechanism. Support vector regressor is a non-parametric
technique that uses kernel functionality to model complex relationships. It can be effec-
tive in high-dimensional spaces. Support vector regressor predicted and measured times
are shown in Figures 4.12, 4.13, and 4.14. Support vector regressor excels in handling
intricate and non-linear patterns in the data, leading to potentially complex models that

71

require longer computation times during prediction. Additionally, the use of kernel func-
tions in Support vector regressor, which maps the data to higher-dimensional spaces, can
contribute to increased computation time, especially in high-dimensional datasets. How-
ever, the result shows a poor fit for all the deep learning frameworks compared with the
random forest regressor and differential evolution algorithm. Furthermore, the sensitivity
of SVR to outliers in the data might cause it to adapt to these extreme instances, result-
ing in longer prediction times for certain data points. Note that the performance of the
proposed model is slightly inferior to random forest. However, the proposed model can
provide insights into the internal behaviour and scalability, which are impossible with a
black box model such as random forest.

Figure 4.9. Random forest regressor predicted and measured times in TensorFlow deep learning
frameworks using differential evolution algorithm.

72

Figure 4.10. Random forest regressor predicted and measured times in MXNet deep learning frameworks
using differential evolution algorithm.

Figure 4.11. Random forest regressor predicted and measured times in PyTorch deep learning frameworks
using differential evolution algorithm.

73

Figure 4.12. Support vector regressor predicted and measured times in TensorFlow deep learning
framework.

Figure 4.13. Support vector regressor predicted and measured times in MXNet deep learning framework.

74

Figure 4.14. Support vector regressor predicted and measured times in PyTorch deep learning framework.

75

4.3.4 Evaluation of Regularization

Regularization was applied to the cost function of the proposed performance model to op-
timize the vector constants and mitigate high variance in the intrinsic parameters of three
deep learning frameworks. Specifically, both L1 and L2 regularization were employed, and
their results were compared. The MAPE, MSE, and RMSE results favored L2 regulariza-
tion, as depicted in Table 4.4. Consequently, L2 regularization was considered appropriate
for the performance model. Various regularization parameter values were applied in loga-
rithmic scale for L1 and L2 to identify the optimal value of the 𝜆 parameter. Figures 4.15
(a) and 4.15 (b) indicated a decline in the R2 score when the 𝜆 value exceeded 0.001.
Notably, the model demonstrated robust fits at 𝜆 = 0.001 and offered consistent perfor-
mance for the constant coefficients, representing the relative importance of the processes
controlled by categorical parameters. Additionally, in Table 4.3, consistent performance
was observed for the constant coefficients. The model coefficients plotted against the reg-
ularization parameter are depicted in Figures 4.16 (a) and (b). Constant coefficients of
intrinsic parameters were plotted in Figure 4.16 (a), while power coefficients of intrinsic
parameters were plotted in Figure 4.16 (b). Furthermore, coefficients of categorical intrin-
sic parameters were presented in Figure 4.17 (a), and powers of extrinsic parameters were
shown in Figure 4.17 (b). Based on these findings, it was concluded that L2 regularization
with a lambda value of 0.001 proved to be the most effective regularization strategy for
the performance model.

Table 4.4. L1 and L2 regularization results in terms of Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE)

L1 Regularization L2 Regularization
MXnet PyTorch TF MXnet PyTorch TF

MAPE 8% 29% 13% 7% 27% 10%
MSE 105.74 450.93 220.16 103.37 443.35 201.81
RMSE 10.28 17.52 14.83 10.16 17.02 14.20

76

(a)

(b)

Figure 4.15. Effect of regularization. (a) R2 values with different regularization values in three different
frameworks using L1 regularization and (b) R2 values with different regularization values in three

different frameworks using L2 regularization.

77

(a)

(b)

Figure 4.16. Effect of regularization, with model coefficients plotted against regularization parameter.
Constant coefficients of intrinsic parameters are plotted in (a), the power coefficients of intrinsic

parameters are shown in (b)

78

(a)

(b)

Figure 4.17. Effect of regularization, with model coefficients plotted against regularization parameter.
coefficients of categorical intrinsic parameters in (a) and with powers of extrinsic parameters in (b).

79

4.3.5 Scalability Analysis for the Regularized model

The scaling power values in the table represent how the execution time changes with the
number of GPUs as shown in Table 4.3. Here, 𝑞 is power in a multiplicative term repre-
senting an extrinsic parameter. The extrinsic parameter coefficients are consistent in the
proposed performance model with and without regularization. As shown in Table 4.5, -
1 indicates ideal scaling, in which case the time is inversely proportional to the number
of GPUs. The coefficients in PyTorch and MXnet framework show better scaling perfor-
mance than TensorFlow. In TensorFlow, the value -0.73 is less than -1, which indicates
sub-optimal scaling.

Table 4.5. nGPUs scaling power in various frameworks. Here nGPUs represent number of GPUs.

Frameworks nGPUs scaling power
TensorFlow -0.73
MXnet -1.01
PyTorch -1.02

4.4 Summary

In this work, a generic performance model for deep learning applications in a distributed
environment was developed. The model takes into account both intrinsic and extrinsic fac-
tors that affect performance and scalability. It is formulated as a global optimization prob-
lem that utilizes regularization on a cost function and employs the differential evolution
algorithm to find the best-fit values of the constants in the generic expression.

The proposed model was evaluated on three popular deep learning frameworks, namely
TensorFlow, MXnet, and PyTorch, demonstrating accurate performance predictions and
interpretability. Additionally, experimental results indicated that MXnet and PyTorch ex-
hibited better scalability performance than TensorFlow.

Moreover, the proposed method, when coupled with regularization, successfully op-
timized the vector constants and reduced high variance in intrinsic parameters. Notably,
the model can be applied to any distributed deep learning framework without requiring

80

changes to the code, and it provides insights into the factors influencing deep learning
application performance and scalability.

81

Chapter 5

Case Study: Performance Analysis of a

3D-ResAttNet Model for Alzheimer’s

Diagnosis from 3D MRI Images

Building upon the previous chapter, this section aims to apply the proposed perfor-
mance model to a realistic use case: a large 3D Explainable Residual Self-Attention Con-
volutional Neural Network (3D-ResAttNet) model trained on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (http://adni.loni.usc.edu). The primary objective
involves evaluating the effectiveness and accuracy of the model in predicting the execu-
tion time of deep learning frameworks. Additionally, this chapter expands the analysis to a
specific deep learning model, namely the 3D-ResAttNet architecture, implemented using
the PyTorch framework within a multi-GPU environment. By harnessing the strengths
of PyTorch, including its dynamic computation graph, user-friendly syntax, and robust
community support, this study endeavors to provide a comprehensive assessment of the
performance model’s suitability for analysing a large production model in the realm of
medical imaging.

Alzheimer’s disease is a prevalent neurodegenerative disorder that presents significant
challenges in accurate diagnosis. Early detection is crucial for timely intervention and ef-
fective management. However, the current diagnostic process lacks definitive tests, result-
ing in interpretation variability and delays. Therefore, there is a pressing need for reliable
and efficient methods to improve early detection and accurate diagnosis of Alzheimer’s
disease.

82

Structural magnetic resonance imaging (MRI) has emerged as a valuable tool for ana-
lyzing brain structure and detecting atrophy patterns associated with Alzheimer’s disease.
By examining changes in brain morphology and volume, structural MRI enables the lo-
calization of regions of atrophy and improves diagnostic accuracy. This imaging modality
offers insights into the underlying pathological changes in Alzheimer’s disease, aiding in
the understanding of disease progression.

However, traditional methods for atrophy localization and Alzheimer’s disease diagno-
sis have limitations in terms of accuracy and interpretability. To address these limitations,
advanced computational techniques are required. Xin Zhang et al. [37] proposed a novel
3D residual self-attention deep neural network architecture specifically designed for joint
atrophy localization and Alzheimer’s disease diagnosis using structural MRI data in their
study. The paper introduces a model that overcomes the limitations of existing approaches
and offers the potential for accurate localization of atrophy regions and interpretable diag-
nostic outcomes.

The proposed model by Xin Zhang is of significant importance as it addresses the lim-
itations of existing approaches in Alzheimer’s disease diagnosis. It offers the potential for
accurate localization of atrophy regions and provides interpretable results, thereby aiding
in the diagnosis and understanding of the disease. By implementing this model on the
Alzheimer’s disease dataset, the objective of the research is to evaluate the performance
model’s effectiveness on a modern research issue of representative size and complexity.

5.1 Performance Model

The formulation of performance model has been explained in the previous chapter 4 in
the section 4.1.

The proposed performance model is as follows:

𝑡(𝐼, 𝐸, 𝑥) = (∑𝑛
𝑖=1 𝑎𝑖𝐼

𝑝𝑖
𝑖) ∏𝑚

𝑗=1 𝐸𝑞𝑗
𝑗 + 𝐶

Here 𝑥 = {𝑎1, ..., 𝑎𝑛𝐼
, 𝑝1, ... 𝑝𝑛𝐼

, 𝑞1, ... 𝑞𝑛𝐸
, 𝑐} ∈ ℝ𝑀 is a vector formed by combining

𝑎, 𝑝, 𝑞 and coefficient 𝐶.

83

5.1.1 System Configuration

Implemented the experiments on a single node containing three GEFORCE RTX 2080
GPUs, each with 2.60 GHz speed and 16 GB GPU RAM, to study the performance of
the generic model using PyTorch framework. The node also consists of a 2.81GHz speed
CPU machine, 25Gbps network bandwidth and a CUDA-10.2 with Linux operating sys-
tem. Furthermore, the node consists of various software configuration/ installation include
PyTorch 1.2.0, Torchvision 0.4.0, Python 3.6.

5.1.2 Dataset and Model

Evaluate the proposed performance model using the 3D-ResAttNet-18 model trained on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset in a multi-GPU system.
The dataset includes MRI scans from 1407 subjects across ADNI-1, ADNI-2, and ADNI-3
datasets. These subjects were categorized into three groups - Alzheimer’s Disease (AD),
Mild Cognitive Impairment (MCI), and Normal Control (NC) - based on standard clinical
criteria, such as Mini-Mental State Examination (MMSE) scores and Clinical Dementia
Rating (CDR). MCI subjects were further divided into two subgroups, progressive MCI
(pMCI) and stable MCI (sMCI), for the prediction of MCI conversion. pMCI represents
subjects who progressed to AD within 36 months of their baseline visit, while sMCI com-
prises subjects who remained diagnosed with MCI. The 3D-ResAttNet model was trained
using the ADNI-1 dataset, which contains 431 scans and served as the primary data source
for training in this study.

Additionally, Figure 5.1 illustrates the architecture of the 3D-ResAttNet-18 model used
in the evaluation [37]. A 3D explainable residual attention network (3D ResAttNet), a
deep convolutional neural network incorporating self-attention residual mechanism and
explainable gradient-based localization class activation mapping (GradCAM) for AD diag-
nosis (see Figure 5.1). The design rationale includes: 1) Efficient training and performance
enhancement with the residual mechanism, addressing gradient-related challenges and
preserving global features; 2) Learning long-range dependencies with the self-attention
mechanism to capture crucial information effectively; 3) Utilizing gradient-based localiza-
tion class activation mapping (GradCAM) to provide visual explanations of Alzheimer’s

84

disease predictions.

Figure 5.1. The architecture of 3D residual attention deep Neural Network. Image source [37]

85

To train the 3D-ResAttNet-18 model, utilize the ADNI-1 dataset as the primary source
of data, which includes 431 scans . The ADNI-1 dataset comprises T1-weighted MR im-
ages acquired using both 1.5T and 3T scanners. The dataset used in the study includes
magnetic resonance (MR) images acquired using 1.5 Tesla (1.5T) and 3 Tesla (3T) scan-
ners. T1-weighted imaging is a specific imaging technique that provides high-resolution
anatomical information of the brain. The 1.5T and 3T refer to the magnetic field strengths
of the scanners used to acquire the images. The original dataset is in Neuroimaging Infor-
matics Technology Initiative (NIfTI) format, undergoes preprocessing to correct spatial
distortions caused by gradient nonlinearity and B1 field inhomogeneity. This involves
AC-PC (Anterior Commissure - Posterior Commissure) correction, intensity correction
[135], and skull stripping [136]. MIPAV(Medical Image Processing, Analysis, and Vi-
sualization) is used for AC-PC correction, while FSL (FMRIB Software Library v6.0) is
employed for skull stripping. The sMRIs are aligned with the Colin27 template using a
line align registration strategy in FSL, eliminating global linear differences and achieving
consistent spatial resolution. These preprocessing steps ensure accurate analysis of the
brain images as shown in Figure 5.2.

Figure 5.2. The first image is normal control and second image has Alzheimer’s disease.

The overall utilization of the 3D-ResAttNet-18 architecture trained on the ADNI dataset
provides a robust framework for the evaluation, allowing us to assess the performance
model’s effectiveness in predicting execution time for deep learning frameworks on com-
plex medical image data.

86

http://adni.loni.usc.edu

5.1.3 Performance Metrics

The scalability and Mean Absolute Percentage Error (MAPE) are selected as performance
metrics for run-time evaluation on PyTorch deep learning framework. The scalability is
measured in the powers of external parameters as shown in chapter 4, section 4.1, equa-
tion (4.3). The MAPE metric employed to evaluate the accuracy of this fit and the overall
quality of the performance model as shown in equation (4.13).

5.1.4 Experiments

The experiment is designed to accomplish the following two goals:

1. Performance evaluation of the proposed performance model on the 3D-ResAttNet
architecture implemented with PyTorch deep learning framework.

2. Comparison between the proposed model and black box machine learning model.

For the first evaluation, performed the distributed training of 3D-ResAttNet on Alzheimer’s
dataset using PyTorch deep learning framework. The experimental training parameters are
created by applying random sampling on a set of intrinsic and extrinsic parameters and its
corresponding average training time taken by a 3D-ResAttNet architecture per iteration.
Table 5.1 shows intrinsic and extrinsic parameters and their possible values. The intrinsic
parameters are the model’s hyperparameters, including kernel size, pooling size, activa-
tion function, etc. The number of GPUs and the batch size are extrinsic factors since these
affect the scaling over multiple processes. The experiments involve several trials where
the time for a single training iteration measured using randomly selected values of the in-
trinsic and extrinsic parameters. 1500 trials were conducted to prepare a dataset of 1500
data samples. The experimental data for 900 trials are used to fit the performance model or
train the standard black box models for comparison. The remaining 600 are used to evalu-
ate the test and validation models. For the second evaluation, the experimental parameters
are used to build performance evaluation model, random forest regressor algorithm model.
The performance of these models and their corresponding results are explained in the sub-
sequent subsections.

87

Table 5.1. Parameters of the performance model, with ranges of values sampled in the experiments.

Index Name Set of possible values considered
Intrinsic parameters

1 Kernel size {2,3,4,5}
2 Pooling size {1}
3 Activation function {Relu, Tanh, Sigmoid}
4 Optimizer {Adam, SGD}
5 Image_dataset_name {Alzheimers dataset}
6 Number of filters {16,32,64}
7 Learning rate {0.1,0.01,0.001,10−4, 10−5, 10−6}
8 Padding_mode {valid, same}
9 Stride {2}

Extrinsic parameters
11 Number of GPUs {1,2,3}
12 Batch size {1,2,3,4}

5.2 Results and Analysis

This section shows the results of the proposed performance model using PyTorch frame-
work and compared with standard machine learning algorithm, random forest regressor.
Table 5.2 shows internal parameters and scalability in PyTorch framework. Table 5.3
shows mean absolute error values on predictions of the performance models, respectively.

5.2.1 Performance Evaluation of the Proposed Performance Model on the 3D-ResAttNet

Architecture Implemented with PyTorch Deep Learning Framework

Applied the proposed performance model using regularization to the 3D-ResAttNet archi-
tecture implemented with PyTorch deep learning framework. The actual execution times
for training the model using the deep learning framework were recorded and predicted ex-
ecution times also generated. Figure 5.3 shows the scatter graph of the predicted execution
times from the proposed model plotted against the actual execution time. The linear fit to
the straight line determines how well the model can predict unseen configurations. The
best fit constant coefficients for all frameworks are shown in Table 5.2.

88

Table 5.2. Derived intrinsic and extrinsic parameters from the differential evolution-optimized
performance models for the three deep learning frameworks. Parameters are given as the mean and
standard deviation over ten fits. 𝑎 and 𝑝 represent coefficients and powers, respectively, of a term

representing an intrinsic parameter, whereas 𝑞 is power in a multiplicative term representing an extrinsic
(scaling) parameter.

PyTorch
Intrinsic parameters 𝑎 𝑝
Filter size 75.65 ± 7.38 0.21 ± 0.01
Kernel size 68.24 ± 4.32 0.32 ± 0.02
Learning rate 60.69 ± 5.40 -0.04 ± 0.002
Sigmoid 27.74 ± 5.00 -
Relu 15.56 ± 3.61 -
Tanh 19.96 ± 3.66 -
SGD 30.92 ± 4.12 -
Adam 36.30 ± 3.73 -
Extrinsic parameters 𝑞
Batchsize -0.03 ± 0.002
No. of GPUs -0.94 ± 0.02
Constant term 𝐶

75.87± 6.35

The results show stable and consistent fits for the extrinsic parameters and the additive
constant 𝐶, suggesting that the scalability results are accurate. The higher variance in the
intrinsic parameters are reduced by using regularization. From Table 5.2, it becomes ap-
parent that the model consistently demonstrates internal consistency, with relatively small
variances. Because the differences between the categorical parameters are of the order of
(or) greater than the standard deviation. For example, for the activation function coeffi-
cients, which is categorical with three possible values Relu and Tanh and Sigmoid param-
eters. Sigmoid takes more time than Relu and Tanh mode. In terms of optimizers, Adam
has a large constant and takes more time than SGD. Insights about the time complexity
of the internal processes can be gained by considering the powers in the generic expres-
sion. Notably, the learning rate exhibits a power value that is remarkably close to zero,
indicating that the learning rate does not significantly impact the overall performance.

Additionally, the extrinsic parameter considered is batch size. In terms of batch size,
the power is close to zero, indicating that batch size has a minimal effect on performance.
This finding contradicts the previous chapters where batch size was considered important.
Consequently, smaller batch sizes can be utilized, which typically enhance classification

89

accuracy, without compromising training time performance. The consistent and stable fits
observed for the extrinsic parameters and the additive constant 𝐶 validate the accuracy of
the scalability results obtained from the differential evolution optimization process.

Figure 5.3. The proposed performance model predicted and measured times in PyTorch deep learning
frameworks using differential evolution algorithm.

5.2.2 Comparison of the Proposed Performance Model with Random Forest

Compared the proposed model with the standard algorithm in machine learning, random
forest regressor. Generally, the random forest regressor has better prediction accuracy due
to its ensemble learning shown in Figure 5.4. The result shows a good linear fit compared to
the differential evolution algorithm. However, the drawback of the random forest regressor
is that it cannot give any insights into its internal working mechanism. Evaluate the fits
using the mean absolute percentage error between predicted execution time and actual
times, as shown in Table 5.3. Note that the performance of the proposed model is exactly
the same as that of random forest regressor. However, the proposed model can provide
insights into the internal behaviour and scalability, which are impossible with a black box
model such as random forest.

90

Table 5.3. Mean absolute percentage error on predictions of the performance models on the 300 instances
in the evaluation dataset in seconds.

PyTorch
Differential
evolution 0.07

Random
forest 0.07

Table 5.4. nGPUs scaling power in various frameworks. Here nGPUs represent number of GPUs.

Framework nGPUs scaling power
PyTorch -0.94 ± 0.02

By observing the coefficients, the PyTorch framework show better scaling performance.
As shown in Table 5.4, -0.94 indicates close to ideal scaling, in which case the time is
inversely proportional to the number of GPUs.

Figure 5.4. Random forest regressor predicted and measured times in PyTorch deep learning frameworks
using differential evolution algorithm.

91

5.3 Summary and Discussion

Evaluated the proposed work by analyzing the intrinsic parameters’ performance and
scalability of the popular deep learning framework PyTorch, by training a 3D-ResAttNet
architecture on the popular Alzheimer’s dataset in a multi-GPU environment. The experi-
mental results show that the proposed method can be applied to a distributed deep learning
framework without instrumenting the code. Argue that the proposed performance model
shows promise as a generic tool which balances the accuracy of prediction with insight
into the underlying system. The scalability behavior is well captured by the model; how-
ever, there is good stability in the fits to the internal parameters, which describes insights
of the internal processes.

In the study, the performance model was applied to a realistic use case involving a large
dataset of 3D images. These 3D images pose a challenge for deep learning models due
to their memory-intensive nature. However, the performance model proved valuable in
gaining insights into the model’s performance characteristics. One significant finding is
the accurate determination of scalability in relation to GPU count, which exhibited good
scalability in the case. Additionally, discovered that batch size has minimal impact on
scalability, providing practitioners with an important insight for optimizing predictive ac-
curacy and runtime performance.

It is worth noting that both the proposed model and the random forest regressor model
showed higher errors compared to the models in previous chapters. This suggests the
presence of increased noise and variance in the data, possibly resulting from the influ-
ence of large images on performance. Factors like cache performance may become more
critical with such large datasets, leading to unpredictable variations in training time that
cannot be solely attributed to hyperparameters. Despite these challenges, predictions were
achieved with a mean absolute percentage error of 7%, highlighting the effectiveness of the
approach. Furthermore, the analysis yielded valuable insights into the impact of hyperpa-
rameters on performance, reinforcing the robustness and applicability of the performance
model in understanding and optimizing model behavior.

92

Chapter 6

Conclusion And Future Work

Performance modelling for scalable deep learning is very important to quantify the
efficiency of large parallel workloads. Performance models are used to obtain run-time
estimates by modelling various aspects of an application on a target system. Designing
performance models requires comprehensive analysis in order to build accurate models.
Limitations of current performance models include poor explainability and limited appli-
cability to particular architectures. Existing performance models in deep learning have
been proposed, which are broadly categorised into two methodologies: analytical mod-
elling and empirical modelling. Analytical modelling utilizes a transparent approach that
involves converting the internal mechanisms of the model or applications into a mathe-
matical model that corresponds to the goals of the system. Empirical modelling predicts
outcomes based on observation and experimentation, characterizes algorithm performance
using sample data, and is a good alternative to analytical modelling. However, both these
approaches have limitations such as poor explainability and poor generalisation.

In this work, applied hybridization of the analytical and empirical approaches devel-
oped a novel generic performance model that provides a general expression in terms of a
deep neural network framework in a distributed environment that gives accurate perfor-
mance. The contributions can be summarized as follows:

1. A comprehensive literature review was conducted using a systematic methodology,
and a performance model was built based on synchronous stochastic gradient descent
(S-SGD) to analyze the execution time performance of deep learning frameworks in
a multi-GPU environment. The model was evaluated using three deep learning mod-
els (Convolutional Neural Networks, Autoencoder, and Multilayer Perceptron), each

93

implemented in three frameworks (MXNet, Chainer, and TensorFlow) respectively.
This initial study follows more closely the analytical approach. Factors influenc-
ing the performance of deep learning frameworks were analyzed by computing the
running time of each framework in the proposed model, considering the load imbal-
ance factor. The results have shown that MXNet and Chainer have better scalability
compared to TensorFlow for all three models. Moreover, the analysis of the load im-
balance factor has shown that load imbalancing is a contributing factor to scalability
in distributed deep learning, and high load imbalance is strongly correlated with poor
scalability in the experiments. However, the performance model could not provide
deeper insights into where the load imbalance arises. This motivates the development
of a more detailed performance model fitted to the performance data using a global
optimization algorithm. The findings and methodology were subsequently published
in [122].

2. A performance model was developed to quantify the efficiency of large parallel work-
loads. In this work, a generic performance model of an application in a distributed
environment was proposed, with a generic expression of the application execution
time that considers the influence of both intrinsic factors/operations (e.g. algorith-
mic parameters/internal operations) and extrinsic scaling factors (e.g. the number
of processors, data chunks and batch size). The problem was framed as a global
optimization task with and without using regularization, and a cost function and dif-
ferential evolution algorithm were employed to determine the optimal values of the
constants in the generic expression. The proposed model was evaluated on three deep
learning frameworks (i.e., TensorFlow, MXnet, and PyTorch). The experimental re-
sults show that the proposed model can provide accurate performance predictions and
interpretability. In addition, the proposed work could be applied to any distributed
deep neural network without instrumenting the code and provides insight into the
factors affecting performance and scalability.

Applied the regularisation on the cost function to the proposed performance model
to optimise the vector constants and reduce high variance in intrinsic parameters in
three deep learning frameworks. Both kinds of regularizations were applied to the
model, and the results of L1 and L2 regularizations were compared. It was found that
L2 regularization is more appropriate for the performance model. L2 regularization

94

was considered appropriate for the performance model. Various regularization pa-
rameter values were applied in logarithmic scale to find a better value for 𝜆. The
R2 score was used for evaluation, and it was observed that the R2 score deteriorates
when the 𝜆 value exceeds 0.001. When 𝜆 = 0.001, the model fits well, and it provides
consistent performance for the constant coefficients, representing the relative impor-
tance of the process controlled by categorical parameters. Furthermore, the model
gives consistent performance for the constant coefficients in all the frameworks. The
performance model using regularization is a generalized model with optimized good
fits in all the frameworks. Overall, the proposed performance model using regular-
ization provides accurate and stable fits and represents the relative importance of
different process parameters in distributed environments. Additionally, this work has
been submitted to IEEE Access [137] (under review).

3. An experimental evaluation was conducted for the proposed generic performance
model applied to a real-world application. The evaluation involved applying the per-
formance model to a realistic use case that utilized a large dataset of 3D images,
specifically the ADNI dataset. These 3D images present a challenge for deep learn-
ing models due to their memory-intensive nature. Nevertheless, the performance
model proved to be valuable in gaining insights into the performance characteristics
of the model. One significant finding from the evaluation is the accurate determina-
tion of scalability in relation to GPU count. The model exhibited good scalability
as the number of GPUs was increased. Additionally, it was observed that batch size
had minimal impact on scalability. This finding provides practitioners with an im-
portant insight for optimizing both predictive accuracy and runtime performance.
Overall, the experimental evaluation of the proposed generic performance model in
a real-world scenario involving 3D images has yielded valuable insights, particularly
in terms of scalability and the impact of batch size.

6.1 Future Works

For future work, there are several avenues to explore based on the findings and limita-
tions of the current research:

95

Further investigation of load imbalance: Although the initial study identified load im-
balance as a contributing factor to scalability in distributed deep learning, the specific
sources of load imbalance were not deeply explored. Future work can focus on analyzing
and addressing load imbalance issues in more detail to gain deeper insights and improve
scalability.

Refinement of the performance model: While the proposed performance model showed
promise in predicting performance and providing interpretability, there is still a room for
improvement. Future work can focus on refining the model by modifying the generic ex-
pression to allow for more complex interactions between the terms or exploring alternative
optimization algorithms to enhance stability and accuracy of the fits. The regularization
term added to the cost function treats all parameters in the same way, however, there are
two types of parameters: powers and coefficients. In the future, investigate treating these
terms differently could be worthwhile, as in some cases, such as the Alzheimer’s model
in which training times are of the order of hundreds of seconds, one would expect these
parameters to have widely differing magnitudes. The powers should always remain of or-
der unity, while the coefficients may be orders of magnitude larger. A more sophisticated
scheme would allocate different values of the regularization constant to the two classes of
parameters.

Extending the model to other applications and frameworks: The current research evalu-
ated the performance model on three deep learning frameworks (TensorFlow, MXnet, and
PyTorch). Future work can expand the scope by applying the model to other distributed
deep neural network frameworks to assess its generalizability and effectiveness across dif-
ferent applications.

Integration of the performance model into practical systems: The developed perfor-
mance model can be integrated into real-world systems to guide decision-making pro-
cesses and optimize the performance of large parallel workloads. Future work can explore
the practical implementation of the model in distributed deep learning environments and
evaluate its impact on system performance and efficiency.

Exploring Symbolic Regression for Improved Generic Expressions: Investigating the
use of symbolic regression to attempt to discover better generic expressions for use in the
model. Symbolic regression is an emerging area of machine learning in which genetic

96

programming techniques are used to find the algebraic expressions which can accurately
model a dataset. Observing the results of symbolic regression on performance data may
lead to the design of expressions which better capture the underlying processes.

By addressing these areas in future research, it is possible to advance the field of perfor-
mance modeling for scalable deep learning and contribute to the development of efficient
and effective systems for large-scale parallel workloads.

97

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and

prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[3] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep learning algo-

rithm for autonomous driving using googlenet,” in 2017 IEEE intelligent vehicles

symposium (IV), IEEE, 2017, pp. 89–96.

[4] F. He, T. Liu, and D. Tao, “Why resnet works? residuals generalize,” IEEE trans-

actions on neural networks and learning systems, vol. 31, no. 12, pp. 5349–5362,

2020.

[5] U. Muhammad, W. Wang, S. P. Chattha, and S. Ali, “Pre-trained vggnet archi-

tecture for remote-sensing image scene classification,” in 2018 24th International

Conference on Pattern Recognition (ICPR), IEEE, 2018, pp. 1622–1627.

[6] N. Aloysius and M. Geetha, “A review on deep convolutional neural networks,” in

2017 international conference on communication and signal processing (ICCSP),

IEEE, 2017, pp. 0588–0592.

[7] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, “Hybrid performance modeling and

prediction of large-scale computing systems,” in 2008 International Conference on

Complex, Intelligent and Software Intensive Systems, IEEE, 2008, pp. 132–138.

98

[8] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on heterogeneous

multicore and multi-gpu systems using functional performance models of data-

parallel applications,” in 2012 IEEE international conference on cluster comput-

ing, IEEE, 2012, pp. 191–199.

[9] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,”

Electronic Markets, vol. 31, no. 3, pp. 685–695, 2021.

[10] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and scalability

optimization of distributed deep learning systems,” in Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

2015, pp. 1355–1364.

[11] H. Kim, H. Nam, W. Jung, and J. Lee, “Performance analysis of cnn frameworks for

gpus,” in 2017 IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), IEEE, 2017, pp. 55–64.

[12] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model for deep

neural networks,” 2016.

[13] A. Castelló, M. Catalán, M. F. Dolz, J. I. Mestre, E. S. Quintana-Ortı́, and J. Du-

ato, “Performance modeling for distributed training of convolutional neural net-

works,” in 2021 29th Euromicro international conference on parallel, distributed

and network-based processing (PDP), IEEE, 2021, pp. 99–108.

[14] D. Jia, M. P. Saha, J. Bhimani, and N. Mi, “Performance and consistency anal-

ysis for distributed deep learning applications,” in 2020 IEEE 39th International

Performance Computing and Communications Conference (IPCCC), IEEE, 2020,

pp. 1–8.

[15] M. Dungey*, R. Fry, B. González-Hermosillo, and V. L. Martin, “Empirical mod-

elling of contagion: A review of methodologies,” Quantitative finance, vol. 5, no. 1,

pp. 9–24, 2005.

99

[16] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Performance modeling for cnn in-

ference accelerators on fpga,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 39, no. 4, pp. 843–856, 2019.

[17] Z. Lin, X. Chen, H. Zhao, Y. Luan, Z. Yang, and Y. Dai, “A topology-aware per-

formance prediction model for distributed deep learning on gpu clusters,” in 2020

IEEE International Conference on Big Data (Big Data), IEEE, 2020, pp. 2795–

2801.

[18] A. Viebke, S. Pllana, S. Memeti, and J. Kolodziej, “Performance modelling of

deep learning on intel many integrated core architectures,” in 2019 International

Conference on High Performance Computing & Simulation (HPCS), IEEE, 2019,

pp. 724–731.

[19] R. Rakshith, V. Lokur, P. Hongal, V. Janamatti, and S. Chickerur, “Performance

analysis of distributed deep learning using horovod for image classification,” in

2022 6th International Conference on Intelligent Computing and Control Systems

(ICICCS), IEEE, 2022, pp. 1393–1398.

[20] J. J. Hopfield, “Artificial neural networks,” IEEE Circuits and Devices Magazine,

vol. 4, no. 5, pp. 3–10, 1988.

[21] J. Sresakoolchai and S. Kaewunruen, “Railway defect detection based on track

geometry using supervised and unsupervised machine learning,” Structural health

monitoring, vol. 21, no. 4, pp. 1757–1767, 2022.

[22] Y. Huang, “Advances in artificial neural networks–methodological development

and application,” Algorithms, vol. 2, no. 3, pp. 973–1007, 2009.

[23] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J.

Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning:

Concepts, cnn architectures, challenges, applications, future directions,” Journal

of big Data, vol. 8, pp. 1–74, 2021.

100

[24] Z. Wu, C. Shen, and A. Van Den Hengel, “Wider or deeper: Revisiting the resnet

model for visual recognition,” Pattern Recognition, vol. 90, pp. 119–133, 2019.

[25] P. Vincent, “A connection between score matching and denoising autoencoders,”

Neural computation, vol. 23, no. 7, pp. 1661–1674, 2011.

[26] I. H. Sarker, “Deep learning: A comprehensive overview on techniques, taxonomy,

applications and research directions,” SN Computer Science, vol. 2, no. 6, p. 420,

2021.

[27] M. Rocha, P. Cortez, and J. Neves, “Evolution of neural networks for classification

and regression,” Neurocomputing, vol. 70, no. 16-18, pp. 2809–2816, 2007.

[28] M. Gardner and S. Dorling, “Statistical surface ozone models: An improved method-

ology to account for non-linear behaviour,” Atmospheric Environment, vol. 34,

no. 1, pp. 21–34, 2000.

[29] B. Barak, B. Edelman, S. Goel, S. Kakade, E. Malach, and C. Zhang, “Hidden

progress in deep learning: Sgd learns parities near the computational limit,” Ad-

vances in Neural Information Processing Systems, vol. 35, pp. 21 750–21 764, 2022.

[30] L. O. Chua and T. Roska, “The cnn paradigm,” IEEE Transactions on Circuits

and Systems I: Fundamental Theory and Applications, vol. 40, no. 3, pp. 147–156,

1993.

[31] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural net-

works for large-scale remote-sensing image classification,” IEEE Transactions on

geoscience and remote sensing, vol. 55, no. 2, pp. 645–657, 2016.

[32] Y. Han, J. Kim, and K. Lee, “Deep convolutional neural networks for predominant

instrument recognition in polyphonic music,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 25, no. 1, pp. 208–221, 2016.

[33] S. Shao, R. Yan, Y. Lu, P. Wang, and R. X. Gao, “Dcnn-based multi-signal induc-

tion motor fault diagnosis,” IEEE Transactions on Instrumentation and Measure-

ment, vol. 69, no. 6, pp. 2658–2669, 2019.
101

[34] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classifi-

cation: A comprehensive review,” Neural computation, vol. 29, no. 9, pp. 2352–

2449, 2017.

[35] F. Ramzan, M. U. G. Khan, A. Rehmat, S. Iqbal, T. Saba, A. Rehman, and Z.

Mehmood, “A deep learning approach for automated diagnosis and multi-class

classification of alzheimer’s disease stages using resting-state fmri and residual

neural networks,” Journal of medical systems, vol. 44, pp. 1–16, 2020.

[36] T. Shanthi and R. Sabeenian, “Modified alexnet architecture for classification of di-

abetic retinopathy images,” Computers & Electrical Engineering, vol. 76, pp. 56–

64, 2019.

[37] X. Zhang, L. Han, W. Zhu, L. Sun, and D. Zhang, “An explainable 3d residual

self-attention deep neural network for joint atrophy localization and alzheimer’s

disease diagnosis using structural mri,” IEEE journal of biomedical and health

informatics, vol. 26, no. 11, pp. 5289–5297, 2021.

[38] S. Alyamkin, M. Ardi, A. C. Berg, A. Brighton, B. Chen, Y. Chen, H.-P. Cheng, Z.

Fan, C. Feng, B. Fu, et al., “Low-power computer vision: Status, challenges, and

opportunities,” IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 9, no. 2, pp. 411–421, 2019.

[39] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”

Neurocomputing, vol. 184, pp. 232–242, 2016. [Online]. Available: https : / /

api.semanticscholar.org/CorpusID:207111259.

[40] H. Marmolin, “Subjective mse measures,” IEEE transactions on systems, man, and

cybernetics, vol. 16, no. 3, pp. 486–489, 1986.

[41] U. Ruby and V. Yendapalli, “Binary cross entropy with deep learning technique for

image classification,” Int. J. Adv. Trends Comput. Sci. Eng, vol. 9, no. 10, 2020.

102

https://api.semanticscholar.org/CorpusID:207111259
https://api.semanticscholar.org/CorpusID:207111259

[42] D. Holden, J. Saito, T. Komura, and T. Joyce, “Learning motion manifolds with

convolutional autoencoders,” in SIGGRAPH Asia 2015 technical briefs, 2015, pp. 1–

4.

[43] S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks for learning

dynamics,” SIAM Journal on Applied Dynamical Systems, vol. 18, no. 1, pp. 558–

593, 2019.

[44] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-

posing robust features with denoising autoencoders,” in Proceedings of the 25th

international conference on Machine learning, 2008, pp. 1096–1103.

[45] J. An and S. Cho, “Variational autoencoder based anomaly detection using recon-

struction probability,” Special lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[46] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning:

An in-depth concurrency analysis,” ACM Computing Surveys (CSUR), vol. 52,

no. 4, pp. 1–43, 2019.

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in 2009 IEEE conference on computer vision

and pattern recognition, Ieee, 2009, pp. 248–255.

[48] H. Zhang, Y. Li, Z. Deng, X. Liang, L. Carin, and E. Xing, “Autosync: Learn-

ing to synchronize for data-parallel distributed deep learning,” Advances in Neural

Information Processing Systems, vol. 33, pp. 906–917, 2020.

[49] C. Jia, J. Liu, X. Jin, H. Lin, H. An, W. Han, Z. Wu, and M. Chi, “Improving

the performance of distributed tensorflow with rdma,” International Journal of

Parallel Programming, vol. 46, pp. 674–685, 2018.

[50] K. A. Alnowibet, I. Khan, K. M. Sallam, and A. W. Mohamed, “An efficient al-

gorithm for data parallelism based on stochastic optimization,” Alexandria Engi-

neering Journal, vol. 61, no. 12, pp. 12 005–12 017, 2022.

103

[51] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “Geeps: Scal-

able deep learning on distributed gpus with a gpu-specialized parameter server,”

in Proceedings of the Eleventh European Conference on Computer Systems, 2016,

pp. 1–16.

[52] A. Balu, Z. Jiang, S. Y. Tan, C. Hedge, Y. M. Lee, and S. Sarkar, “Decentral-

ized deep learning using momentum-accelerated consensus,” in ICASSP 2021-

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), IEEE, 2021, pp. 3675–3679.

[53] S. Shi, Q. Wang, X. Chu, B. Li, Y. Qin, R. Liu, and X. Zhao, “Communication-

efficient distributed deep learning with merged gradient sparsification on gpus,” in

IEEE INFOCOM 2020-IEEE Conference on Computer Communications, IEEE,

2020, pp. 406–415.

[54] X. Luo, W. Qin, A. Dong, K. Sedraoui, and M. Zhou, “Efficient and high-quality

recommendations via momentum-incorporated parallel stochastic gradient descent-

based learning,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 402–

411, 2020.

[55] D. Lee, N. He, P. Kamalaruban, and V. Cevher, “Optimization for reinforcement

learning: From a single agent to cooperative agents,” IEEE Signal Processing Mag-

azine, vol. 37, no. 3, pp. 123–135, 2020.

[56] P. Yang, “Prls-inves: A general experimental investigation strategy for high ac-

curacy and precision in passive rfid location systems,” IEEE Internet of Things

Journal, vol. 2, no. 2, pp. 159–167, 2014.

[57] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce scheduling for ex-

pediting distributed dnn training,” in IEEE INFOCOM 2020-IEEE Conference on

Computer Communications, IEEE, 2020, pp. 626–635.

104

[58] Q. Wang, J. Zhao, D. Gong, Y. Shen, M. Li, and Y. Lei, “Parallelizing convolutional

neural networks for action event recognition in surveillance videos,” International

Journal of Parallel Programming, vol. 45, pp. 734–759, 2017.

[59] M. S. Patil and S. Chickerur, “Study of data and model parallelism in distributed

deep learning for diabetic retinopathy classification,” Procedia Computer Science,

vol. 218, pp. 2253–2263, 2023.

[60] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam: Build-

ing an efficient and scalable deep learning training system,” in 11th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 14), 2014,

pp. 571–582.

[61] C. Noel and S. Osindero, “Dogwild!-distributed hogwild for cpu & gpu,” in NIPS

Workshop on Distributed Machine Learning and Matrix Computations, 2014, pp. 693–

701.

[62] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger,

P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized pipeline parallelism for

dnn training,” in Proceedings of the 27th ACM Symposium on Operating Systems

Principles, 2019, pp. 1–15.

[63] G. Heigold, E. McDermott, V. Vanhoucke, A. Senior, and M. Bacchiani, “Asyn-

chronous stochastic optimization for sequence training of deep neural networks,” in

2014 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), IEEE, 2014, pp. 5587–5591.

[64] J. Jiang, X. Feng, Z. Hu, X. Hu, F. Liu, and H. Huang, “Medical image fusion

using transfer learning and l-bfgs optimization algorithm,” International Journal

of Imaging Systems and Technology, vol. 31, no. 4, pp. 2003–2013, 2021.

[65] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with tensorflow: A review,”

Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248, 2020.

105

[66] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z.

Zhang, “Mxnet: A flexible and efficient machine learning library for heterogeneous

distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[67] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uen-

ishi, B. Vogel, and H. Yamazaki Vincent, “Chainer: A deep learning framework

for accelerating the research cycle,” in Proceedings of the 25th ACM SIGKDD In-

ternational Conference on Knowledge Discovery & Data Mining, 2019, pp. 2002–

2011.

[68] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith,

B. Vaughan, P. Damania, et al., “Pytorch distributed: Experiences on accelerating

data parallel training,” arXiv preprint arXiv:2006.15704, 2020.

[69] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane, D. Fritz, D. Kr-

ishnan, F. B. Viégas, and M. Wattenberg, “Visualizing dataflow graphs of deep

learning models in tensorflow,” IEEE transactions on visualization and computer

graphics, vol. 24, no. 1, pp. 1–12, 2017.

[70] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability of gpu-based

convolutional neural networks,” in 2010 18th Euromicro conference on parallel,

distributed and network-based processing, IEEE, 2010, pp. 317–324.

[71] D. K. Gifford and J. M. Lucassen, “Integrating functional and imperative program-

ming,” in Proceedings of the 1986 ACM Conference on LISP and Functional Pro-

gramming, 1986, pp. 28–38.

[72] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable im-

plementation of the mpi message passing interface standard,” Parallel computing,

vol. 22, no. 6, pp. 789–828, 1996.

[73] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda, “Optimized broadcast

for deep learning workloads on dense-gpu infiniband clusters: Mpi or nccl?” In

Proceedings of the 25th European MPI Users’ Group Meeting, 2018, pp. 1–9.
106

[74] B. Lv, B. Liu, F. Liu, N. Xiao, and Z. Chen, “Rm-kvstore: New mxnet kvstore to ac-

celerate transfer performancewith rdma,” in 2018 IEEE Symposium on Computers

and Communications (ISCC), IEEE, 2018, pp. 00 236–00 242.

[75] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo, “A generic

communication scheduler for distributed dnn training acceleration,” in Proceed-

ings of the 27th ACM Symposium on Operating Systems Principles, 2019, pp. 16–

29.

[76] P. W. Frey and G. Alonso, “Minimizing the hidden cost of rdma,” in 2009 29th

IEEE International Conference on Distributed Computing Systems, IEEE, 2009,

pp. 553–560.

[77] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient dynamic

resource scheduler for deep learning clusters,” in Proceedings of the Thirteenth

EuroSys Conference, 2018, pp. 1–14.

[78] S. A. Mohamed, A. A. Elsayed, Y. Hassan, and M. A. Abdou, “Neural machine

translation: Past, present, and future,” Neural Computing and Applications, vol. 33,

pp. 15 919–15 931, 2021.

[79] A. Lopez, “Statistical machine translation,” ACM Computing Surveys (CSUR),

vol. 40, no. 3, pp. 1–49, 2008.

[80] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance

deep learning library,” Advances in neural information processing systems, vol. 32,

2019.

[81] C. Guo, Y. Qiu, J. Leng, C. Zhang, Y. Cao, Q. Zhang, Y. Liu, F. Yang, and M. Guo,

“Nesting forward automatic differentiation for memory-efficient deep neural net-

work training,” in 2022 IEEE 40th International Conference on Computer Design

(ICCD), IEEE, 2022, pp. 738–745.

107

[82] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, “Hybrid performance modeling and

prediction of large-scale computing systems,” in 2008 International Conference

on Complex, Intelligent and Software Intensive Systems, 2008, pp. 132–138. doi:

10.1109/CISIS.2008.20.

[83] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and S. Matsuoka, “Pre-

dicting statistics of asynchronous sgd parameters for a large-scale distributed deep

learning system on gpu supercomputers,” in 2016 IEEE International Conference

on Big Data (Big Data), IEEE, 2016, pp. 66–75.

[84] M. Song, Y. Hu, H. Chen, and T. Li, “Towards pervasive and user satisfactory cnn

across gpu microarchitectures,” in 2017 IEEE International Symposium on High

Performance Computer Architecture (HPCA), IEEE, 2017, pp. 1–12.

[85] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep learning

software tools,” in 2016 7th International Conference on Cloud Computing and

Big Data (CCBD), IEEE, 2016, pp. 99–104.

[86] S. Shi, Q. Wang, and X. Chu, “Performance modeling and evaluation of distributed

deep learning frameworks on gpus,” in 2018 IEEE 16th Intl Conf on Dependable,

Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and

Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber

Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), IEEE,

2018, pp. 949–957.

[87] D. S. Banerjee, K. Hamidouche, and D. K. Panda, “Re-designing cntk deep learn-

ing framework on modern gpu enabled clusters,” in 2016 IEEE international con-

ference on cloud computing technology and science (CloudCom), IEEE, 2016,

pp. 144–151.

[88] C. Boufenar and M. Batouche, “Investigation on deep learning for off-line hand-

written arabic character recognition using theano research platform,” in 2017 In-

telligent Systems and Computer Vision (ISCV), IEEE, 2017, pp. 1–6.
108

https://doi.org/10.1109/CISIS.2008.20

[89] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-caffe: Co-designing

mpi runtimes and caffe for scalable deep learning on modern gpu clusters,” in Pro-

ceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2017, pp. 193–205.

[90] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: A modular machine learning

software library,” Idiap, Tech. Rep., 2002.

[91] S. Mahon, S. Varrette, V. Plugaru, F. Pinel, and P. Bouvry, “Performance analysis

of distributed and scalable deep learning,” in 2020 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 760–

766. doi: 10.1109/CCGrid49817.2020.00-13.

[92] T. Kavarakuntla, L. Han, H. L. MIEEE, A. L. SMIEEE, and S. B. Akintoye, “Per-

formance analysis of distributed deep learning frameworks in a multi-gpu envi-

ronment,” in 2021 IEEE 20th Intl Conf on Ubiquitous computing and communica-

tions(IUCC-2021), The 4th Intl Conf on Data science and Computational Intelli-

gence(DSCI-2021), 2021.

[93] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level energy

model of intel’s xeon phi processor,” in International Symposium on Low Power

Electronics and Design (ISLPED), IEEE, 2013, pp. 389–394.

[94] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing performance pre-

diction robustness by combining analytical modeling and machine learning,” in

Proceedings of the 6th ACM/SPEC international conference on performance en-

gineering, 2015, pp. 145–156.

[95] R. Storn, “On the usage of differential evolution for function optimization,” in Pro-

ceedings of North American Fuzzy Information Processing, 1996, pp. 519–523.

doi: 10.1109/NAFIPS.1996.534789.

[96] C.-Y. Lee and C.-H. Hung, “Feature ranking and differential evolution for feature

selection in brushless dc motor fault diagnosis,” Symmetry, vol. 13, no. 7, 2021.
109

https://doi.org/10.1109/CCGrid49817.2020.00-13
https://doi.org/10.1109/NAFIPS.1996.534789

doi: 10.3390/sym13071291. [Online]. Available: https://www.mdpi.com/

2073-8994/13/7/1291.

[97] X. Chen, S. Song, J. Ji, Z. Tang, and Y. Todo, “Incorporating a multiobjective

knowledge-based energy function into differential evolution for protein structure

prediction,” Information Sciences, vol. 540, pp. 69–88, 2020.

[98] S. Saha and R. Das, “Exploring differential evolution and particle swarm optimiza-

tion to develop some symmetry-based automatic clustering techniques: Applica-

tion to gene clustering,” Neural Comput. Appl., vol. 30, no. 3, pp. 735–757, Aug.

2018, issn: 0941-0643. doi: 10.1007/s00521-016-2710-0. [Online]. Available:

https://doi.org/10.1007/s00521-016-2710-0.

[99] Y.-H. Li, J.-Q. Wang, X.-J. Wang, Y.-L. Zhao, X.-H. Lu, and D.-L. Liu, “Com-

munity detection based on differential evolution using social spider optimization,”

Symmetry, vol. 9, no. 9, 2017. doi: 10.3390/sym9090183. [Online]. Available:

https://www.mdpi.com/2073-8994/9/9/183.

[100] M. Baioletti, A. Milani, and V. Santucci, “Learning bayesian networks with alge-

braic differential evolution,” in Parallel Problem Solving from Nature – PPSN XV,

Cham: Springer International Publishing, 2018, pp. 436–448.

[101] M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M. Ang, “Differential evolution: A

recent review based on state-of-the-art works,” Alexandria Engineering Journal,

vol. 61, no. 5, pp. 3831–3872, 2022. doi: https://doi.org/10.1016/j.

aej.2021.09.013. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S111001682100613X.

[102] A. Qi, D. Zhao, F. Yu, A. A. Heidari, H. Chen, and L. Xiao, “Directional muta-

tion and crossover for immature performance of whale algorithm with application

to engineering optimization,” Journal of Computational Design and Engineering,

vol. 9, no. 2, pp. 519–563, 2022.

110

https://doi.org/10.3390/sym13071291
https://www.mdpi.com/2073-8994/13/7/1291
https://www.mdpi.com/2073-8994/13/7/1291
https://doi.org/10.1007/s00521-016-2710-0
https://doi.org/10.1007/s00521-016-2710-0
https://doi.org/10.3390/sym9090183
https://www.mdpi.com/2073-8994/9/9/183
https://doi.org/https://doi.org/10.1016/j.aej.2021.09.013
https://doi.org/https://doi.org/10.1016/j.aej.2021.09.013
https://www.sciencedirect.com/science/article/pii/S111001682100613X
https://www.sciencedirect.com/science/article/pii/S111001682100613X

[103] A. Anwaar, A. Ashraf, W. H. K. Bangyal, and M. Iqbal, “Genetic algorithms: Brief

review on genetic algorithms for global optimization problems,” 2022 Human-

Centered Cognitive Systems (HCCS), pp. 1–6, 2022.

[104] M. S. AbouOmar, Y. Su, H. Zhang, B. Shi, and L. Wan, “Observer-based interval

type-2 fuzzy pid controller for pemfc air feeding system using novel hybrid neu-

ral network algorithm-differential evolution optimizer,” Alexandria Engineering

Journal, vol. 61, no. 9, pp. 7353–7375, 2022.

[105] N. Ikushima, K. Ono, Y. Maeda, E. Makihara, and Y. Hanada, “Differential evolu-

tion neural network optimization with individual dependent mechanism,” in 2021

IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021, pp. 2523–2530.

[106] R. A. Venkat, Z. Oussalem, and A. K. Bhattacharya, “Training convolutional neu-

ral networks with differential evolution using concurrent task apportioning on hy-

brid cpu-gpu architectures,” in 2021 IEEE Congress on Evolutionary Computation

(CEC), IEEE, 2021, pp. 2567–2576.

[107] T. Tušar, K. Gantar, V. Koblar, B. Ženko, and B. Filipič, “A study of overfitting in

optimization of a manufacturing quality control procedure,” Applied Soft Comput-

ing, vol. 59, pp. 77–87, 2017.

[108] B. Reineking et al., “Constrain to perform: Regularization of habitat models,” Eco-

logical Modelling, vol. 193, no. 3-4, pp. 675–690, 2006.

[109] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generalization: A

survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[110] J. Y.-L. Chan, S. M. H. Leow, K. T. Bea, W. K. Cheng, S. W. Phoong, Z.-W. Hong,

and Y.-L. Chen, “Mitigating the multicollinearity problem and its machine learning

approach: A review,” Mathematics, vol. 10, no. 8, p. 1283, 2022.

[111] C. Ou, H. Zhu, Y. A. Shardt, L. Ye, X. Yuan, Y. Wang, and C. Yang, “Quality-

driven regularization for deep learning networks and its application to industrial

soft sensors,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
111

[112] L. Zhang, X. Wang, D. Yang, T. Sanford, S. Harmon, B. Turkbey, B. J. Wood,

H. Roth, A. Myronenko, D. Xu, et al., “Generalizing deep learning for medical

image segmentation to unseen domains via deep stacked transformation,” IEEE

transactions on medical imaging, vol. 39, no. 7, pp. 2531–2540, 2020.

[113] R. de Albuquerque Teixeira, A. P. Braga, R. H. Takahashi, and R. R. Saldanha,

“Improving generalization of mlps with multi-objective optimization,” Neurocom-

puting, vol. 35, no. 1-4, pp. 189–194, 2000.

[114] L. Tian, Z. Wang, W. Liu, Y. Cheng, F. E. Alsaadi, and X. Liu, “An improved

generative adversarial network with modified loss function for crack detection in

electromagnetic nondestructive testing,” Complex & Intelligent Systems, pp. 1–10,

2022.

[115] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative represen-

tation: Which helps face recognition?” In 2011 International conference on com-

puter vision, IEEE, 2011, pp. 471–478.

[116] N. Bacanin, M. Zivkovic, F. Al-Turjman, K. Venkatachalam, P. Trojovskỳ, I. Strum-

berger, and T. Bezdan, “Hybridized sine cosine algorithm with convolutional neu-

ral networks dropout regularization application,” Scientific Reports, vol. 12, no. 1,

p. 6302, 2022.

[117] Y. Chen, J. Guo, J. Huang, and B. Lin, “A novel method for financial distress pre-

diction based on sparse neural networks with l 1/2 regularization,” International

Journal of Machine Learning and Cybernetics, vol. 13, no. 7, pp. 2089–2103,

2022.

[118] Y. Tian, D. Su, S. Lauria, and X. Liu, “Recent advances on loss functions in deep

learning for computer vision,” Neurocomputing, vol. 497, pp. 129–158, 2022.

[119] A. Pandey and A. Kumar, “Deep features based automated multimodel system for

classification of non-small cell lung cancer,” in 2022 IEEE Delhi Section Confer-

ence (DELCON), IEEE, 2022, pp. 1–7.
112

[120] Y. Kono and M. Koizumi, “Model life extension for continuous process: Non-

invasive correction of model-plant mismatch with regularization,” in 2023 Euro-

pean Control Conference (ECC), IEEE, 2023, pp. 1–8.

[121] K. Zhou, Q. Zhang, and J. Li, “Tsvmpath: Fast regularization parameter tuning

algorithm for twin support vector machine,” Neural Processing Letters, vol. 54,

no. 6, pp. 5457–5482, 2022.

[122] T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, and S. B. Akintoye, “Performance

analysis of distributed deep learning frameworks in a multi-gpu environment,” in

2021 20th International Conference on Ubiquitous Computing and Communica-

tions (IUCC/CIT/DSCI/SmartCNS), IEEE, 2021, pp. 406–413.

[123] G. Niu, X. Li, X. Wan, X. He, Y. Zhao, X. Yi, C. Chen, L. Xujun, G. Ying, and M.

Huang, “Dynamic optimization of wastewater treatment process based on novel

multi-objective ant lion optimization and deep learning algorithm,” Journal of

Cleaner Production, vol. 345, p. 131 140, 2022.

[124] S. Hooshmand, P. Abedin, M. O. Külekci, and S. V. Thankachan, “I/o-efficient data

structures for non-overlapping indexing,” Theoretical Computer Science, vol. 857,

pp. 1–7, 2021.

[125] Nsight systems, https : / / developer . nvidia . com / nsight - systems, Ac-

cessed: 2021.

[126] F. M. Talaat, H. A. Ali, M. S. Saraya, and A. I. Saleh, “Effective scheduling algo-

rithm for load balancing in fog environment using cnn and mpso,” Knowledge and

Information Systems, vol. 64, no. 3, pp. 773–797, 2022.

[127] E. Gures, I. Shayea, M. Ergen, M. H. Azmi, and A. A. El-Saleh, “Machine learn-

ing based load balancing algorithms in future heterogeneous networks: A survey,”

IEEE Access, 2022.

113

https://developer.nvidia.com/nsight-systems

[128] K. Fleetwood, “An introduction to differential evolution,” in Proceedings of Math-

ematics and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th

November, Brisbane, Australia, 2004, pp. 785–791.

[129] S. Park, J. Lee, and H. Kim, “Hardware resource analysis in distributed training

with edge devices,” Electronics, vol. 9, no. 1, p. 28, 2020.

[130] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent ar-

chitectures of deep convolutional neural networks,” ArXiv, vol. abs/1901.06032,

2019. [Online]. Available: http://arxiv.org/abs/1901.06032.

[131] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for

benchmarking machine learning algorithms,” ArXiv, vol. abs/1708.07747, 2017.

[132] F. O. Giuste and J. C. Vizcarra, “Cifar-10 image classification using feature ensem-

bles,” ArXiv, vol. abs/2002.03846, 2020.

[133] Y. Essam, Y. F. Huang, J. L. Ng, A. H. Birima, A. N. Ahmed, and A. El-Shafie,

“Predicting streamflow in peninsular malaysia using support vector machine and

deep learning algorithms,” Scientific Reports, vol. 12, no. 1, p. 3883, 2022.

[134] W. Lin, Z. Wu, L. Lin, A. Wen, and J. Li, “An ensemble random forest algorithm

for insurance big data analysis,” Ieee access, vol. 5, pp. 16 568–16 575, 2017.

[135] J. G. Sled, A. P. Zijdenbos, and A. C. Evans, “A nonparametric method for au-

tomatic correction of intensity nonuniformity in mri data,” IEEE transactions on

medical imaging, vol. 17, no. 1, pp. 87–97, 1998.

[136] Y. Wang, J. Nie, P.-T. Yap, F. Shi, L. Guo, and D. Shen, “Robust deformable-

surface-based skull-stripping for large-scale studies,” in Medical Image Computing

and Computer-Assisted Intervention–MICCAI 2011: 14th International Confer-

ence, Toronto, Canada, September 18-22, 2011, Proceedings, Part III 14, Springer,

2011, pp. 635–642.

114

http://arxiv.org/abs/1901.06032

[137] T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, A. Kleerekoper, and S. B. Akintoye,

“A generic performance model for deep learning in a distributed environment,”

arXiv preprint arXiv:2305.11665, 2023.

115

Appendix A

Paper: Performance analysis of

distributed deep learning frameworks in

a multi-gpu environment

116

Performance Analysis of Distributed Deep Learning
Frameworks in a Multi-GPU Environment

Tulasi Kavarakuntla, Liangxiu Han, Huw Lloyd, MIEEE, Annabel Latham, SMIEEE, Samson B. Akintoye
Dept. of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK
Tulasi.Kavarakuntla@stu.mmu.ac.uk, {L.Han, Huw.Lloyd, A.Latham, S.Akintoye}@mmu.ac.uk

Abstract—Deep Learning frameworks, such as TensorFlow,
MXNet, Chainer, provide many basic building blocks for de-
signing effective neural network models for various applications
(e.g. computer vision, speech recognition, natural language pro-
cessing). However, run-time performance of these deep learning
frameworks varies significantly even when training identical deep
network models on the same GPUs. This study presents an
experimental analysis and performance model for assessing deep
learning models (Convolutional Neural Networks (CNNs), Mul-
tilayer Perceptrons (MLP), Autoencoder) on three frameworks:
TensorFlow, MXNet, and Chainer, in a multi-GPU environment.
We analyse factors that influence these frameworks’ performance
by computing the running time of each framework in our
proposed model, taking load imbalance factor into account.
The evaluation results highlight significiant differences in the
scalability of the frameworks, and the importance of load balance
in parallel distributed deep learning.

Index Terms—Deep Learning; GPUs; SGD and synchronous
SGD; Deep Learning Frameworks, Load imbalance factor.

I. INTRODUCTION

With the available computational power such as GPU, Deep

learning (DL) [1], as a subset of machine learning based

on artificial neural networks, has attracted much attention

due to its nature in discovering correlation structure in data

in an unsupervised fashion, which has led to its popularity

among the many domains such as image classification, speech

recognition, computer vision and natural language processing.

However, training a deep learning model is a challenging

task due to many constraints such as large data instances and

high dimensionality, model complexity and inference time, and

model selections. For instance, there are a million parameters

defining a deep learning model, which requires large amounts

of data to learn from it and is a computationally intensive

process. Especially, when the data size and the deep learning

models become larger and more complicated, training a model

within a considerate period usually demands more hardware

memory and computing power such as parallel and distributed

computing [2] [3] [4] including data parallelism [5], model

parallelism [6], pipeline parallelism [7] and hybrid parallelism

[8]. Recently, various distributed deep learning frameworks

such as Caffe-MPI [9], TensorFlow [10], MXNet [11], Chainer

[12], CNTK [13]) have been proposed, which provide basic

building blocks for designing effective neural network models

for targeted applications. However, run-time performance of

these deep learning frameworks varies significantly even when

training identical deep network models on the same GPUs.

Existing works have investigated deep learning performance

modelling on distributed systems [14], asynchronous stochas-

tic gradient descent performance prediction [15], and analyt-

ical models for estimating the optimum utilisation of GPU

resources [16] for deep learning, and performance evaluation

and benchmarking of deep learning frameworks on GPUs [17]

[18]. In this study, we extend the work presented in [18]

to analyse the performance of three distributed deep learn-

ing frameworks(TensorFlow, MXNet and Chainer) with Con-

volutional Neural Networks (CNNs), Multilayer perceptrons

(MLP) and Autoencoder within a multi-GPU environment.

Our contributions include:

• Different from the existing works, by taking account of

load imbalance factor and mini-batch time (time taken

to divide mini-batches), we build a performance model

based on synchronous stochastic gradient descent (S-

SGD) to analyse the execution time performance of deep

learning frameworks in a multi-GPU environment, and

evaluate the model using three deep learning models

(Convolutional Neural Networks, Autoencoder and Multi-

layer Perceptron), each implemented in three frameworks

(MXNet, Chainer and Tensorflow) respectively.

• Using our experimental data, we analyze the effect of

load imbalance on the scalability of deep learning models,

concluding that it is in important contribution to parallel

inefficiency.

The remainder of the paper is organised as follows. Section

II reviews relevant related work. In section III we develop

our performance model based on S-SGD. Section IV presents

experiments and analysis on a range of DNN frameworks

and models. In Section V, we summarize our conclusions and

discuss future work.

II. RELATED WORK

This section presents an overview of the existing perfor-

mance models used in distributed systems. A performance

model [19] [20] provides insight into an implementation’s

behaviour in future execution contexts and is used to eval-

uate development-stage design and infrastructure investment

decisions.

Yan et al. [14] developed performance modelling for ex-

ploring the design space and to identify effective system

configurations that reduces elapsed time between iterations on

the training data. The results shown that error rates of less than

406

2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS)

978-1-6654-6667-7/21/$31.00 ©2021 IEEE
DOI 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00071

20
21

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 U
bi

qu
ito

us
 C

om
pu

tin
g

an
d

Co
m

m
un

ic
at

io
ns

 (I
U

CC
/C

IT
/D

SC
I/

Sm
ar

tC
N

S)
 |

 9
78

-1
-6

65
4-

66
67

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IU

CC
-C

IT
-D

SC
I-S

M
AR

TC
N

S5
51

81
.2

02
1.

00
07

1

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

25% enable them to define and differentiate between desirable

and undesirable system parameter combinations.

Oyama et al. [15] developed a performance model for

SPRINT, an Asychronous SGD based deep learning system

based on mini-batch SGD, running on GPU. The model

included the key parameters in asynchronous SGD training

are mini-batch size and gradient staleness. There were no other

parallelism types in the performance model, as weights were

directly synchronised between GPUs. The findings showed

that the ASGD deep learning system SPRINT’s performance

model effectively predicted sweeping time, mini-batch size,

staleness, and probability distributions of the fundamental

parameters on two GPU-based supercomputers. The prediction

model was then used to assess deep learning’s scalability for

future hardware architectures.

Lee et al. [21] used CNN models to perform image recog-

nition, implementing AlexNet on five different frameworks,

which include CNTK [13], Caffe-MPI [9], Theano [22], Torch

[23], and TensorFlow [10], and assessed the GPU performance

characteristics. Each framework includes a variety of con-

volution algorithms. They performed a comparison based on

the performance of some convolution algorithms such as the

Winograd method, GEMM, FFT and direct convolution. Scal-

ing DNNs in a single node with multiple GPUs is essential.

As a result, they examined the factors that contributed to their

overhead when parallelizing the data. The results indicated that

by simply altering the framework’s options, the training speed

could be increased by a factor of two without modifying any

source code.

Qi et al. [24] proposed a performance model known as Pa-
leo, which combine parallelization strategies, communication

schemes, and network architecture to forecast the deep neural

networks training performance. In training the AlexNet model,

the results showed that hybrid parallelism outperformed data

parallelism. Paleo has been compared in several communi-

cation schemes, including OneToAll, Tree AllReduce, and

Butterfly AllReduce.

Yufei et al. [25] established a performance model for

estimating resource consumption and performance efficiency

on FPGAs, that was applied to the design phase to find and

explore optimal design options. The authors mainly focused

on DRAM efficiency, response time, and PE utilization. The

evaluation results showed that the model’s predictions are quite

closely match (within a factor of three) the actual test results

obtained on field programmable gate arrays.

Andre Viebke [26] investigated performance prediction ac-

curacy using three alternative CNN models on an Intel Xeon

Phi Processor. These two parameterized performance models

estimated training convolutional neural networks’ execution

time. The first performance model used minimal parameter

estimate approaches. The second model estimated sequential

work by measuring forward and backward propagation. The

results showed that the first model’s average performance

prediction accuracy was 4% higher than the second model.

Shi et al. [18] created performance models to assess the per-
formance of a variety of distributed deep learning frameworks

TABLE I: Notation used in this paper (after [18])

Symbol Description
Ng Number of total GPUs
titer An Iteration time
tio I/O time of an iteration
th2d Communication time between CPU and GPU of an Itera-

tion
tmd Time for dividing batches into mini-batches
tf Forward operation time of an iteration
tb Backward operation time of an iteration

t
(l)
fi

Time taken by ith GPU for lth layer in forward operation

t
(l)
bi

Time taken by ith GPU for lth layer in backward oper-
ation

tci Time taken by ith GPU for computing gradients aggre-
gation

tu Model update time of an iteration
tc Gradients aggregation time of an iteration

(such as CNTK or MXnet) with Alexnet, GoogleNet and

ResNet models on GPU computing platforms. They developed

models for SGD in single-GPU, multi-GPU, and distributed

cluster systems. Through experimental analysis, identified

overheads and limitations that could be further optimized in

terms of system configuration.

In this work, we develop a performance model based on

that of [18], and evaluate it in the context of a single node,

multi-GPU system. Different from the existing works, we

refine some parts of the model by further dividing the timings

for stages of the training, and also consider the effect of

load imbalance on the performance. We analyse the running

performance of Convolutional Neural Network, Multilayer

Perceptron and Autoencoder models on three different frame-

works respectively.

III. THE PROPOSED PERFORMANCE MODEL

A. Preliminaries

For convenience and easy reference, the notations used here

follow the notations in [18].

1) Mini-batch SGD: Let consider an L-layered DNN

model, which is trained iteratively on a GPU using mini-batch

SGD. Each iteration consists of five steps: 1) Fetch a training

data mini batch from either internal or external disk; 2)Transfer

the training data from CPU memory to GPU memory through

PCIe ; 3) Perform feed-forward calculations layer by layer by

using GPU kernels; 4) Use backward propagation for gradients

computation from Layer L to Layer 1; 5) Calculate average

gradients and update the model.

An iteration time can be expressed as:

titer = tio+th2d+tf+tb+tu = tio+th2d+

l∑

i=1

tlf+

l∑

i=1

tlb+tu

(1)

2) S-SGD using multiple GPUs: In comparison with the

SGD, S-SGD consists of six steps. The 1st - 4th steps are

similar to the SGD. The 5th step is gradient aggregation, and

407

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

the sixth step is updating the model. The iteration time of the

S-SGD implementation can be represented as:

titer = tio + th2d +

l∑

i=1

tlf +

l∑

i=1

tlb +

l∑

i=1

tlc + tu (2)

In the single GPU environment,
∑l

i=1 t
l
c = 0.

B. The Proposed Performance Model based on S-SGD

In this work, different from the existing works [18], we

build a performance model of S-SGD by inclusion of two new

parameters: time taken to divide the batch into mini-batches

and maximum time taken by GPU, taking load imbalance

factor into account.

Assume that a machine contains k GPUs. Given the model

to be trained, each GPU will individually keep a complete set

of model parameters, although parameter values are identical

and synchronised across GPUs. For an example, Figure 1 de-

scribes the workflow of the performance model when k = 4. In
general, the model works as discussed in section III-A2 using

multiple GPUs. Thus, we develop our proposed performance

model of training DNNs with S-SGD in the TensorFlow,

MXNet and Chainer frameworks.

Here, S-SGD executes feed-forward and backward prop-

agation simultaneously on each GPU with the same model

and distinct training datasets. We consider the time taken for

dividing each batch into mini-batches and we also consider the

maximum time taken by each GPU in forward processing. By

substituting these two parameters in our modelling function,

the iteration time titer for the S-SGD implementation can be

represented as follows:

titer = tio+th2d+tmd+maxiε(1,n)(
l∑

i=1

tlf+
l∑

i=1

tlb+
l∑

i=1

tlc)+tu

(3)

In the single GPU environment,
∑l

i=1 t
l
ci = 0. The time of

an iteration can be written as:

titer = tio + th2d + tmd +

l∑

i=1

tlf +

1∑

i=L

tlb + tu (4)

We now consider the effects of optimization strategies,

which make use of task parallelism, which are found in the

existing deep learning frameworks. We can notice two possible

optimization opportunities. Initially, we can parallelize data

reading tasks with the computing tasks, which effectively hide

the time cost of disk I/O. Secondly, gradient communication

tasks with the back propagation computing tasks can be

parallelized. In the case of overlapping I/O with computation,

the first step is frequently processed with multiple threads,

allowing the I/O time of a new iteration to overlap with the

computing time of the preceding iteration. In such a manner,

computing in the following iteration can begin immediately

after the model is completed. Thus, the average iteration time

of pipelined SGD is calculated as;

titer = max(tf + tb + tu, tio + th2d + tmd) (5)

Fig. 1: Workflow of the model: (1) loss and gradient compu-

tation, (2) gradient aggregation, (3) parameter update

In a scenario where the gradient communication overlaps

with the computation, the gradient communication could be

re-programmed to run concurrently with the backpropagation

steps. Therefore, the overheads of I/O and gradient communi-

cations need to be reduced to achieve good performance and

scalability, Let t′iter and t′io represent the iteration time and

I/O times respectively on Ng GPUs. The speedup of using Ng

GPUs is the given by

S = Ng
titer
t′iter

(6)

Accounting for the optimizations described above, we can now

write this as:

S = Ng
max {tio + th2d, tf + tb}

max {t′io + th2d, tf + tb + tc} (7)

IV. EXPERIMENTS

In this section, we describe our experimental environment

and present the results of experiments to investigate the

running time performance of DNN models and frameworks,

and how communication tasks affect the scalability of S-SGD.

A. Experimental Setup

Initially, we define the hardware specification conducted in

our experiments. We used a single node with three GPUs.

GPU@ GEFORCE RTX 2080, CPU@ 2.60 GHZ 2.81GHZ

and Memory (RAM)- 16.0GB. Software used for the experi-

mentation are TensorFlow version-2.1.0, MXnet version -1.6.0,

Chainer version-7.4.0, python version-3.6.9, CUDA version-

10.2. and operating system- Linux. We used Nsight profiler

[27] to find the running time performance of GPU activity.

Furthermore, we measure the time duration of an iteration

for processing a mini-batch of input data to evaluate the

408

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

execution performance. Here we choose three Neural Net-

work models i.e., the Multilayer Perceptron model (MLP),

Convolutional Neural Network model (CNN) and Autoencoder

model. The models are trained on the MNIST dataset on three

frameworks i.e., TensorFlow [10], MXNet [11] and Chainer

[12] by applying distributed and parallel training. The MNIST

dataset contains 70,000 images of ten handwritten digits and is

divided into training and test datasets. The training dataset has

60,000 images, while the test dataset contains 10,000 images.

All the two datasets have 10 classes, the 10 numerical digits.

In our experiment, we run two epochs and discard the result

of the first epoch, since this will include some setup which

is not representative of the average training load over a long

run. We recorded each iteration time and average these over

the second epoch, calculating the mean and standard deviation

of each time.

B. Performance Metrics

The speedup and load imbalance factor are selected as

performance metrics for run time evaluation on three different

frameworks. The speedup is defined in Equation 7. The load

imbalance factor for a set of parallel process which execute in

times t1 . . . tN is defined as

LIF =
maxi∈[1...N] ti

(1/N)
∑N

i=1 ti
. (8)

LIF = 1 corresponds to a perfectly balanced load, whereas

for imbalanced loads, LIF > 1.
The experimental evaluation is focused on two goals below.

• The first experimental goal is to investigate running time

performance of each model using different frameworks

in a multi-GPU environment.

• The second experimental goal is to investigate how load

imbalance factor of each model under different computing

nodes/GPU affects the computing efficiency.

C. Results and Analysis

This section illustrates the running performance followed

with analysis based on the performance modelling of Ten-

sorFlow, MXNet and Chainer in training CNN, MLP and

Autoencoder models in a multiple GPU environment.

1) Single GPU: Initially, we describe the performance

results obtained on a single GPU. The average time taken by

a framework to complete one iteration during training is used

to evaluate the framework’s performance. As a result, we can

compare the time spent on each step of SGD. The timings are

given in Table II and shown graphically in Figure 2. The results

of each phase will be discussed in the following sections.

In the initial phase of the performance model, all three

frameworks have multiple threads to read data from the CPU

memory to the GPU. By observing the results in Table II we

see that for all frameworks the I/O time is small. In the second

phase, after the reading of data from disk to memory, the data

should be transmitted to the GPU for training purpose. Our

tested environment uses PCIe to connect the CPU and GPU,

which provides a total bandwidth of 11 GB/sec. From the

TABLE II: Measured time of SGD phases on single GPU.

All times are given in seconds, as the mean and standard

deviations over all iterations in a single epoch of training.

CNN Chainer MXNet TensorFlow
tio 0.0004±0.00002 0.0002±0.00005 0.0006±0.00008
th2d 0.0383±0.0054 0.0201±0.0027 0.0212±0.0023
tmd 0.0006±0.00003 0.0003±0.00001 0.0005±0.00002
∑l

i=1 t
l
fi

0.0663±0.0031 0.0307±0.0073 0.3489±0.0729
∑l

i=1 t
l
bi

0.0594±0.0030 0.1347±0.0040 0.1151±0.0170

tu 0.2365±0.0194 0.1564± 0.0514 0.2636±0.0469
titer 0.4009±0.0240 0.3421±0.0354 0.7494 ±0.1391

MLP Chainer MXNet TensorFlow
tio 0.0001±0.000018 0.0005±0.00008 0.0003±0.000025
th2d 0.0331±0.0062 0.0182±0.00078 0.0199±0.0035
tmd 0.0006±0.00001 0.0003±0.00003 0.0005±0.00008
∑l

i=1 t
l
fi

0.0523±0.0067 0.1034 ±0.0082 0.0576±0.0045
∑l

i=1 t
l
bi

0.0481±0.0280 0.1754±0.0187 0.1680 ±0.0134

tu 0.4533±0.0095 0.2054±0.00099 0.5985±0.0089
titer 0.5869±0.0575 0.3992±0.0591 1.4371±0.0597

AN Chainer MXNet Tensorflow
tio 0.0004±0.00005 0.0001±0.00003 0.0005±0.00008
th2d 0.0316±0.0026 0.0185±0.0090 0.0215±0.0030
tmd 0.0006±0.00003 0.0003±0.00001 0.0005±0.00008
∑l

i=1 t
l
fi

0.1388±0.0045 0.1322±0.0064 0.1595±0.0072
∑l

i=1 t
l
bi

0.1421± 0.0056 0.2265± 0.0076 0.4274±0.0103

tu 0.3675±0.0201 0.3287±0.0307 0.3765 ±0.0215
titer 0.6804±0.0328 0.706±0.0258 0.9854±0.0320

TABLE III: Gradient aggregation time in the multi-GPU

experiments

Network Framework tcomm

2 GPUs 3 GPUs

CNN
Tensorflow 0.3945 0.4017
MXNet 0.3245 0.3415
Chainer 0.3106 0.3404

MLP
Tensorflow 0.3024 0.4145
MXNet 0.3156 0.2569
Chainer 0.2945 0.2345

Autoencoder
Tensorflow 0.7187 0.7199
MXNet 0.3565 0.3698
Chainer 0.4563 0.4583

results in Table II, we see that Chainer typically has higher

memory copy time than both TensorFlow and MXNet.

In the third phase (tmd), the three frameworks differ in the

data distribution to GPUs. In the Chainer framework, the data

batch is divided into multiple batches in the GPU whereas

in the MXNet and Tensorflow framework, batches are divided

into mini-batches on the CPU and then transferred to the GPUs

dynamically. As a result the Chainer framework takes 0.3s

higher compared to MXNet and TensorFlow.

In the forward phase, we can see that while the results

are comparable in the case of the Autoencoder and MLP

models, in the CNN model, Tensorflow is significantly slower

than both the MXNet and Chainer frameworks. MXNet’s

performance is good in the forward phase due to its usage

of auto symbolic differentiation and imperative programmimg

[11]. In the case of the CNN, both Chainer and MXNet are able

to autotune to determine the optimal convolutional algorithms

for convolutional layers, but TensorFlow does not allow the

409

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

convolution techniques to be customized. TensorFlow uses

the Winograd algorithm, which in some situations may be

suboptimal. Considering the CNN model, MXNet makes use

of GEMM-based convolution, which results in 0.05s less

forward phase and up to 0.15s more backward phase. Chainer

employs the FFT technique [21], which results in a forward

phase that is 0.06s higher and 0.1s less in the backward phase.

Next in the backward phase, MXNet is slower than the

TensorFlow and Chainer frameworks. The values tf and tb are
different in performance due to differing use of the cuDNN

API. cuDNN may have different performance depending on

the parameters that are used. Some factors that affect per-

formance are: Data Layout, Implicit matrix multiplications,

Dimension quantization techniques, Convolution parameters

such as Batch size, Height and width filtersize, channels in and

out (NHWC, NCWH) and strides. For example, in MXNet and

Chainer, the NCHW data layout are used whereas TensorFlow

has NHWC layout which acts as a performance factor.

2) Multi-GPU: In a multi-GPU per node testing, we scaled

the mini-batch with the number of GPUs. Each GPU has

the same dataset. As the number of GPUs increases, data

communication overhead increases due to the data aggregation

process between devices. Our measurements of this time

tcomm are give in Table III. Figure 3 shows the results for

the speedup when running on two and three GPUs, and the

breakdown of the timings in terms of the performance model

are shown in Figure 4.

From Figure 3, we see that MXNet achieves linear scaling

on one to three GPUs, while Chainer achieves speeds 0.2X

less than MXNet. From Figure 4, we see that the data aggre-

gation time ta in MXNet is less than in the TensorFlow and

Chainer frameworks. Here, MXNet parallelizes the gradient

aggregation with back propagation i.e., after the gradients of

the current layer(li) are computed, the preceding layer (li−1)
of backward propagation can be performed without latency.

As a result, gradient computation of (li−1) is parallelized

with gradient aggregation of li. Thus, following computing

layers can hide much of the synchronisation overhead of

gradients. As a result, MXNet has less aggregation time and

good scalability compared to other frameworks. TensorFlow

implements S-SGD differently. It has no parameter server

and uses peer-to-peer memory access if it is compatible with

the hardware topology. Each GPU receives gradients from

other GPUs, averages them, and updates the model when the

backward propagation completes, even from the decentralised

method. In this process, the model update tu and backward

propagation has no computation overlap, which led to the

observed relatively poor scaling performance in TensorFlow.

3) Load Imbalance Factor: Load balancing in a parallel

system plays a major role in determining scalability. A load

imbalance occurs when work is distributed unevenly among

workers. Here we have calculated the Load Imbalance Factor
for each neural network model in each deep learning frame-

work based on Equation 8.

From the results in Table IV, it is clear that all three

frameworks are not well balanced, since in all cases the

load imbalance factor is greater than one, and in some cases

significantly greater. Qualitatively, we see that the higher

values of load imbalance correspond to the lower speedups,

and degraded scalability, see Figure 3. For example, in the case

of Tensorflow, we see that poor scalability is accompanied by

relatively high values of the load imbalance factor.

TABLE IV: Load Imbalance Factor

Network Framework Load Imbalance Factor
2 GPUs 3 GPUs

TensorFlow
CNN 1.15 1.23
MLP 1.189 1.20
AN 1.175 1.27

Chainer
CNN 1.025 1.052
MLP 1.032 1.043
AN 1.152 1.202

MXNet
CNN 1.013 1.030
MLP 1.015 1.079
AN 1.142 1.213

Here we also present further linear regression analysis to

understand how load imbalance factor contributes to parallel

inefficiency, according to the equation below:

y = β0 + β1x1 + β2x2 + ε (9)

where x1 and x2 represent the number of GPUs and load

imbalance factor respectively, y is the total execution time

of an epoch, β0, β1, β2 are the regression coefficients and

ε represents a random value indicating the error in each

observation of y. The values of β0,β1, and β2 should be chosen

to minimise the sum of squared prediction errors.

We find the following values for the coefficients in the nine

cases. For CNN model using TensorFlow,

y
′
= 0.00001− 40.5588X̄1 + 369.4848X̄2 (10)

For MLP model using TensorFlow,

y
′
= 0.00001− 16.1671X̄1 + 245.9177X̄2 (11)

For AN model using TensorFlow,

y
′
= 0.00002− 49.1037X̄1 + 398.6701X̄2 (12)

For CNN model using MXNet,

y
′
= 0.000011− 5.57483X̄1 + 287.4133X̄2 (13)

For MLP model using MXNet,

y
′
= 0.00002− 28.9346X̄1 + 326.7283X̄2 (14)

For AN model using MXNet,

y
′
= 0.00002− 33.1037X̄1 + 398.6701X̄2 (15)

For CNN model using chainer,

y
′
= 0.00001− 9.00791X̄1 + 286.8447X̄2 (16)

For MLP model using chainer,

y
′
= 0.000016− 10.1584X̄1 + 292.1287X̄2 (17)

410

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 2: Iteration times on a single GPU for (a) CNN (b) MLP and (c) Autoencoder models

(a) (b) (c)

Fig. 3: Measured speedup for the three frameworks on different numbers of GPUs for the three DNN models (a) CNN, (b)

MLP and (c) Autoencoder.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Iteration time on multiple GPUs. Results for two GPUs are shown in (a), (b), (c) for CNN, MLP and Autoencoder.

Results for three GPUs are in (d), (e) and (f).

For AN model using chainer,

y
′
= 0.000068− 25.584X̄1 + 260.263X̄2 (18)

where y
′
is the computed prediction execution time as a

function of the number of GPUs and the load imbalance factor.

411

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

We compute their coefficients of determination, R2, to further

investigate the impact of number of GPUs and load imbalance

factor on execution time. R2 represents the proportion of the

variance in execution time that is predicted from both number

of GPUs and load imbalance factor. It is defined as follows:

R2 = 1− SSrss

SStss
(19)

where SSrss and SStss are the residual sum of squares and

the total sum of squares. They are defined as:

SSrss =
∑

(y − y
′
)2 (20)

and,

SStss =
∑

(y − ȳ)2 (21)

We find R2 values for (CNN, MLP, AN) TensorFlow of

(0.9904, 0.9963, 0.9960), for MXNet of (0.9901, 0.9987,

0.9903) and for Chainer of (0.99, 0.9963,0.9965). These results

imply that the regression forecasts are accurate in predicting

the relationship between execution time and load imbalance

factor. As the value of R2 increases, the model’s fit to the

training data becomes more accurate and precise. The results

confirm the importance of load balancing to achieve scalability

in distributed deep learning.

V. CONCLUSION AND FUTURE WORK

We have evaluated the performance of different deep learn-

ing frameworks over different deep learning neural networks in

terms of scalability in a multi-GPU environment, taking into

account a range of factors affecting performance, including

load imbalance. We have further extended an existing per-

formance model [18] based on synchronous-S-SGD with the

inclusion of two new parameters: time taken to divide the

batch into mini-batches and maximum time taken by GPU. The

proposed performance model was built to measure the perfor-

mance of different deep learning framework implementations

which include TensorFlow, MXNet and Chainer frameworks

on three models: Convolutional neural network, Multilayer

perceptron and Autoencoder models, in a multi-GPU environ-

ment. The experimental results have shown that MXNet and

Chainer have better scalability compared to TensorFlow for all

three models. Moreover, our analysis of the load imbalance

factor has shown that load balancing is a contributing factor

to scalability in distributed deep learning, and high load

imbalance is strongly correlated with poor scalability in our

experiments. Future work will probe the reason for the load

imbalance in these cases, with the aim of discovering optimal

parameters to keep the load balanced.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] Y. Ko, K. Choi, J. Seo, and S.-W. Kim, “An in-depth analysis of
distributed training of deep neural networks,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021, pp. 994–
1003.

[3] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous sgd algorithm with global top-k sparsification
for low bandwidth networks,” in 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), 2019, pp. 2238–2247.

[4] Y. Kim, H. Choi, J. Lee, J.-S. Kim, H. Jei, and H. Roh, “Efficient large-
scale deep learning framework for heterogeneous multi-gpu cluster,” in
2019 IEEE 4th International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), 2019, pp. 176–181.

[5] B. Shinde and S. T. Singh, “Data parallelism for distributed streaming
applications,” in 2016 International Conference on Computing Commu-
nication Control and automation (ICCUBEA), 2016, pp. 1–4.

[6] M. H. Mofrad, R. Melhem, Y. Ahmad, and M. Hammoud, “Studying
the effects of hashing of sparse deep neural networks on data and model
parallelisms,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–7.

[7] N. Takisawa, S. Yazaki, and H. Ishihata, “Distributed deep learning
of resnet50 and vgg16 with pipeline parallelism,” in 2020 Eighth
International Symposium on Computing and Networking Workshops
(CANDARW), 2020, pp. 130–136.

[8] K.-N. Joo and C.-H. Youn, “Accelerating distributed sgd with group
hybrid parallelism,” IEEE Access, vol. 9, pp. 52 601–52 618, 2021.

[9] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
caffe: Co-designing mpi runtimes and caffe for scalable deep learning
on modern gpu clusters,” in Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2017,
pp. 193–205.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[12] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. Yamazaki Vincent, “Chainer: A deep
learning framework for accelerating the research cycle,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 2002–2011.

[13] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, “Efficient
large message broadcast using nccl and cuda-aware mpi for deep
learning,” in Proceedings of the 23rd European MPI Users’ Group
Meeting, 2016, pp. 15–22.

[14] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling
and scalability optimization of distributed deep learning systems,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015, pp. 1355–1364.

[15] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and S. Mat-
suoka, “Predicting statistics of asynchronous sgd parameters for a large-
scale distributed deep learning system on gpu supercomputers,” in 2016
IEEE International Conference on Big Data (Big Data). IEEE, 2016,
pp. 66–75.

[16] M. Song, Y. Hu, H. Chen, and T. Li, “Towards pervasive and user
satisfactory cnn across gpu microarchitectures,” in 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2017, pp. 1–12.

[17] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” in 2016 7th International Conference on
Cloud Computing and Big Data (CCBD). IEEE, 2016, pp. 99–104.

[18] S. Shi, Q. Wang, and X. Chu, “Performance modeling and evaluation
of distributed deep learning frameworks on gpus,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
949–957.

[19] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, “Hybrid performance
modeling and prediction of large-scale computing systems,” in 2008
International Conference on Complex, Intelligent and Software Intensive
Systems. IEEE, 2008, pp. 132–138.

[20] T. Fahringer, S. Pllana, and J. Testori, “Teuta: Tool support for per-
formance modeling of distributed and parallel applications,” in Inter-
national Conference on Computational Science. Springer, 2004, pp.
456–463.

412

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

[21] H. Kim, H. Nam, W. Jung, and J. Lee, “Performance analysis of
cnn frameworks for gpus,” in 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2017,
pp. 55–64.

[22] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,
N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky et al.,
“Theano: A python framework for fast computation of mathematical
expressions,” arXiv e-prints, pp. arXiv–1605, 2016.

[23] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Idiap, Tech. Rep., 2002.

[24] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks.” in ICLR (Poster), 2017.

[25] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Performance modeling for
cnn inference accelerators on fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 4, pp.
843–856, 2019.

[26] A. Viebke, S. Pllana, S. Memeti, and J. Kolodziej, “Performance
modelling of deep learning on intel many integrated core architectures,”
in 2019 International Conference on High Performance Computing &
Simulation (HPCS). IEEE, 2019, pp. 724–731.

[27] “Nsight systems,” https://developer.nvidia.com/nsight-systems,
accessed: 2021.

413

Authorized licensed use limited to: Manchester Metropolitan University. Downloaded on May 25,2023 at 11:58:15 UTC from IEEE Xplore. Restrictions apply.

Appendix B

Paper: A Generic Performance Model

for Deep Learning in a Distributed

Environment

125

A Generic Performance Model for Deep Learning
in a Distributed Environment

Tulasi Kavarakuntla, Liangxiu Han, Huw Lloyd, MIEEE, Annabel Latham, SMIEEE, Anthony Kleerekoper,
Samson B. Akintoye

Dept. of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK
Tulasi.Kavarakuntla@stu.mmu.ac.uk, {L.Han, Huw.Lloyd, A.Latham, Akleerekoper, S.Akintoye}@mmu.ac.uk

Abstract—Performance modelling of a deep learning appli-
cation is essential to improve and quantify the efficiency of
the model framework. However, existing performance models
are mostly case-specific with limited capability of applying to
new deep learning frameworks/applications. In this paper, we
propose a generic performance model of an application in
a distributed environment with a generic expression of the
application execution time that considers the influence of both
intrinsic factors/operations (e.g. algorithmic parameters/internal
operations) and extrinsic scaling factors (e.g. data chunks or
batch size). We formulate it as a global optimisation problem
and solve it based on a cost function and differential evolution
algorithm to find the best fit values of the constants in the generic
expression to match the experimentally determined computation
time. We have evaluated the proposed model on three deep
learning frameworks (i.e., TensorFlow, MXnet, and Pytorch). The
experimental results show that the proposed model can provide
accurate performance predictions and interpretability. In addi-
tion, the proposed work can be applied to any distributed deep
neural network without instrumenting the code and has better
functionalities like explaining internal parameters performance
and scalability.

I. INTRODUCTION

Deep neural networks are effective tools for unsupervised
data exploration to discover correlation structures. Deep neural
network architectures necessitate the use of high computa-
tional resources for training a large amount of data requires a
parallelised and distributed environment. Performance models
are used to obtain run-time estimates by modelling various
aspects of an application on a target system. However, ac-
curate performance modelling is a challenging task. Existing
performance models in deep learning have been proposed,
which are broadly categorised into two methodologies: analyt-
ical modelling and empirical modelling. Analytical modelling
relies on the white-box approach. Empirical modelling is a
good alternative to analytical models and predicts the outcome
of an unknown set of system parameters based on observa-
tion and experimentation. However, the current methods in
analytical modelling and empirical modelling are the poor
presentation of the underlying internal operations and lack of
providing an unbiased experimental study in the distributed
environment. We are inspired by the hybridisation of the
analytical model and empirical modelling. We developed a
novel generic performance model in a distributed environment
that gives accurate performance predictions and applicable to
any distributed deep neural network without instrumenting the

code and having better functionalities like explaining intrinsic
parameters performance and scalability that provides added
value in the field.

II. RELATED WORK

Performance modelling involves prediction – estimating the
performance of a new system or the impact of a change
in workload on an existing system. Existing performance
modelling of deep learning frameworks can be broadly divided
into two categories: 1) Analytical modelling, 2) Empirical
modelling.

1) Analytical Performance Modelling: This subsection pro-
vides the existing works developed in a distributed environ-
ment using analytical modelling. Yan et al. [1] evaluated the
effects of partitioning and resourcing decisions on distributed
system architectures. Qi et al. [2] proposed an analytical
performance model named Paleo, predicting the deep neural
network performance by considering communication schemes,
network architecture and parallelization strategies. Shi et al.
[3] developed an analytical performance model to evaluate
various distributed deep learning framework performance.

2) Empirical Modelling: Empirical modelling builds mod-
els through observation and experimentation, which is anti-
thetic to analytical modelling. Woo et al. [4] developed a data-
driven model to evaluate collective communication techniques
in a distributed environment. A new approach named hybrid
model has been proposed [5] by combining the elements
of analytical modelling and empirical modelling for better
performance prediction developed in other fields. Unlike the
existing works, we developed a generic expression applicable
to any distributed deep neural network without instrumenting
the code and having better functionalities like explaining
internal parameters performance and scalability.

III. METHODOLOGY

A. The Proposed Generic Performance Model

Given an application consisting of a number of processes
in a distributed environment, the computing efficiency, which
is also known as the execution time of the application, can
be considered from two levels: 1) Execution time of internal
processes of the application; and 2) External scaling factors
that affect the computing efficiency. A generic performance

model for computing total computational time(t) per iteration
of an application can be described as follows:

t(I, E, x) = (tI) fE + C (1)

We represent internal time as tI and can be represented as:

tI =
n∑

i=1

aiI
pi

i (2)

In (1), tI represents the time affected by intrinsic parameters,
fE represents extrinsic scaling factors that affect the com-
puting performance, and C is a constant. We represent the
individual processes as a polynomial in terms of the internal
parameters. In (2), the coefficients ai relate to the relative
importance of the processes, and the powers pi relate to the
computational complexity.
The external scaling factor fE , which can be represented as:

fE =

m∏
j=1

E
qj
j (3)

Here, the powers qj gives information about scalability. By
substituting the tI and fE in (1), the computational time (t)
is given as follows:

t(I, E, x) =

(
n∑

i=1

aiI
pi

i

)
m∏
j=1

E
qj
j + C (4)

Here x = {a1, ..., anI
, p1, ... pnI

, q1, ... qnE
, c} ∈ RM is a

vector formed by combining a,p, q and coefficient C. In (4),
a,p, q and coefficient C are unknown constants. We compute
the optimal values of these unknown constants (total: M =
2nI + nE + 1) using the differential evolution algorithm [6],
on the basis of experiments which measure training time for
different values of the intrinsic and extrinsic parameters. We
have:

Intrinsic parameters: Ii,k, i ∈ [1, nI], k ∈ [1, N] (5)

Extrinsic parameters: Ej,k, j ∈ [1, nE], k ∈ [1, N] (6)

measured time-per-iteration : tk, k ∈ [1, N]. (7)

Here, i, j are denoting the input feature indices. k ∈ [1, N]
indicate the sample index in dataset D. N is the number of
input samples in D. Given the generic expression as shown
in (4), we formulate the cost function as the mean absolute
difference between predicted execution time and the actual
measured times. We solve this optimization problem by using
the Differential Evolution algorithm (DE) [6], a population-
based evolutionary algorithm for continuous optimization.

TABLE I: Mean absolute error on predictions of the perfor-
mance models on the 500 instances in the evaluation dataset
in seconds.

TensorFlow MXnet Pytorch
DE 0.90 0.55 3.55
RF 0.15 0.39 6.42
SVM 4.92 3.17 15.44

B. Results and Analysis

This section shows the results of the proposed performance
model for three well-known deep neural networks, i.e., Tensor-
Flow, MXnet and Pytorch and compared with the two standard
machine learning algorithms, which include support vector
machine and random forest regressor. We recorded the training
performance of a convolutional neural network on image
classification problems using the MNIST, MNIST-fashion and
CIFAR-10 datasets. We took 1500 samples with randomly
chosen values of the parameters, using 1000 samples to fit
the performance models, retaining 500 for evaluation. Table I
shows mean absolute error values in seconds on predictions of
the performance models. Table II shows scalability in various
frameworks, respectively.

TABLE II: nGPUs scaling power in various frameworks. Here
nGPUs represent number of GPUs.

Frameworks nGPUs scaling power
TensorFlow -0.74
MXnet -0.99
Pytorch -1.02

By observing the coefficients, the Pytorch and MXnet
framework show better scaling performance than TensorFlow.
As shown in Table II, -1 indicates ideal scaling, in which case
the time is inversely proportional to the number of GPUs. In
TensorFlow, the value -0.73 indicates sub-optimal scaling.

IV. CONCLUSION

In this work, we have developed a generic performance
model for global optimisation problem using a differential
evolution algorithm that gives insights into internal processes’
performance and scaling factors and evaluated on three deep
learning frameworks i.e., TensorFlow, MXnet and Chainer.
The experimental results show that the proposed method can
be applied to any distributed deep learning framework without
instrumenting the code.

REFERENCES

[1] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling
and scalability optimization of distributed deep learning systems,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015, pp. 1355–1364.

[2] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model for
deep neural networks,” 2016.

[3] S. Shi, Q. Wang, and X. Chu, “Performance modeling and evaluation
of distributed deep learning frameworks on gpus,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp. 949–957.

[4] J. Woo, H. Choi, and J. Lee, “Empirical performance analysis of col-
lective communication for distributed deep learning in a many-core cpu
environment,” Applied Sciences, vol. 10, no. 19, p. 6717, 2020.

[5] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing performance
prediction robustness by combining analytical modeling and machine
learning,” in Proceedings of the 6th ACM/SPEC international conference
on performance engineering, 2015, pp. 145–156.

[6] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” J. of Global
Optimization, vol. 11, no. 4, pp. 341–359, dec 1997. [Online]. Available:
https://doi.org/10.1023/A:1008202821328

Appendix C

Paper: A Generic Performance Model

for Deep Learning in a Distributed

Environment

128

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Generic Performance Model for Deep
Learning in a Distributed Environment
TULASI KAVARAKUNTLA1, LIANGXIU HAN1*, HUW LLOYD, MIEEE1, ANNABEL LATHAM,
SMIEEE1, ANTHONY KLEEREKOPER1, AND SAMSON B. AKINTOYE1
1Department of Computing and Mathematics, Manchester Metropolitan University, UK (e-mail: Tulasi.Kavarakuntla@stu.mmu.ac.uk; l.han@mmu.ac.uk;
Huw.Lloyd@mmu.ac.uk; A.Latham@mmu.ac.uk; Akleerekoper@mmu.ac.uk; s.akintoye@mmu.ac.uk)

* Corresponding author: L. Han (e-mail: l.han@mmu.ac.uk).

ABSTRACT Performance modelling of a deep learning application is essential to improve and quantify
the efficiency of the model framework. However, existing performance models are mostly case-specific,
with limited capability for the new deep learning frameworks/applications. In this paper, we propose a
generic performance model of an application in a distributed environment with a generic expression of the
application execution time that considers the influence of both intrinsic factors/operations (e.g. algorithmic
parameters/internal operations) and extrinsic scaling factors (e.g. the number of processors, data chunks
and batch size). We formulate it as a global optimization problem and solve it using regularization on a
cost function and differential evolution algorithm to find the best-fit values of the constants in the generic
expression to match the experimentally determined computation time. We have evaluated the proposed
model on three deep learning frameworks (i.e., TensorFlow, MXnet, and Pytorch). The experimental results
show that the proposed model can provide accurate performance predictions and interpretability. In addition,
the proposed work can be applied to any distributed deep neural network without instrumenting the code
and provides insight into the factors affecting performance and scalability.

INDEX TERMS Deep Learning, Performance modelling, Optimization, Differential evolution.

I. INTRODUCTION

Deep neural networks are effective tools for unsupervised
data exploration to discover correlation structures. As a re-
sult, they are widely used in computer vision, self-driving
cars, medical image analysis, video games, and online self-
service applications. However, deep neural network architec-
tures such as GoogLeNet [1], ResNet [2], VGG Net [3], and
Deep Convolutional Neural Networks (CNN) [4] necessitate
the use of high computational resources. Training with a
large amount of data requires a parallelised and distributed
environment, primarily data parallelism, model parallelism,
pipeline parallelism, and hybrid parallelism. Performance
modelling is essential in quantifying the efficiency of large
parallel workloads. Performance models are used to obtain
run-time estimates by modelling various aspects of an ap-
plication on a target system. However, accurate performance
modelling is a challenging task. Existing performance mod-
els are broadly categorised into two catergories: analytical
modelling and empirical modelling. Analytical modelling
uses a transparent approach to convert a model’s or an
application’s internal mechanism into a mathematical model

corresponding to the system’s goals, which can significantly
expedite the creation of a performance model for the in-
tended system. The existing analytical modelling works in-
vestigated deep learning performance modelling and scaling
optimization in distributed environments [5], asynchronous
GPU processing based on mini-batch SGD [6], efficient GPU
utilisation in deep learning [7], comprehensive analysis and
comparison of the performance of deep learning frameworks
running on GPUs [8], [9]. However, the major limitation of
these works is the poor presentation of the underlying inter-
nal operations (i.e., areas of the features’ space or specific
workload conditions) in the distributed environment.
Empirical modelling is a good alternative to analytical mod-
els, which predicts the outcome of an unknown set of sys-
tem parameters based on observation and experimentation.
It characterises an algorithm’s performance across problem
instances and parameter configurations based on sample
data. Existing works investigated deep convolutional neural
networks using asynchronous stochastic gradient descent
techniques in a distributed environment [6]. Nevertheless,
the existing empirical modelling methods are still facing a

VOLUME 4, 2016 1

ar
X

iv
:2

30
5.

11
66

5v
1

 [
cs

.D
C

]
 1

9
M

ay
 2

02
3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

challenge on how to provide an unbiased experimental study
in a distributed environment using GPUs.

Thus, inspired by the hybridisation of the analytical and
empirical approaches, this paper proposes a novel generic
performance model that provides a general expression of
intrinsic and extrinsic factors of a deep neural network
framework in a distributed environment for accurate perfor-
mance prediction and interpretability. Especially, the pro-
posed model is applicable to any to any distributed deep
neural network without instrumenting the code, which fur-
thermore allows for explaining intrinsic parameters’ perfor-
mance and scalability, providing added value in the field. Our
contributions include the following:

• We have developed a generic expression for a per-
formance model considering the influence of intrinsic
parameters and extrinsic scaling factors that affect com-
puting time in a distributed environment.

• We have formulated the generic expression as a global
optimization problem using regularization on a cost
function in terms of the unknown constants in the
generic expression, which we have solved using differ-
ential evolution to find the best fitting values to match
experimentally determined computation times.

• We have evaluated the proposed model in three deep
learning frameworks, i.e., TensorFlow, MXnet, and Py-
torch, to demonstrate its performance efficiency.

The remainder of the paper is organised as follows. Section
II discusses related work of the existing performance models
in a distributed environment. In section III, we discuss re-
search methodology, e.g., problem description, the proposed
performance model. Section IV discusses an experimental
evaluation of the effectiveness of our proposals. Finally, sec-
tion V concludes the paper and highlights the future works.

II. RELATED WORKS
This section provides an overview of the existing perfor-
mance models in a distributed computing environment and
differential evolution as a solution to the optimization prob-
lem.

A. EXISTING PERFORMANCE MODELS
Performance modelling involves prediction of the perfor-
mance of a system, the impact of change on an existing
system, or the impact of a change in workload on an existing
system [10], [11]. Existing performance modelling of Deep
Learning (DL) frameworks can be broadly divided into two
categories: 1) Analytical modelling and 2) Empirical mod-
elling.

1) Analytical Performance Modelling of DL frameworks
Yan et al. [5] developed a performance model to evaluate
the effect of the partitioning and resourcing decisions on
the distributed system architectures’ overall performance and
scalability using a DL framework Adam [12]. In addition, the
performance model was also used to guide the development

of a scalability optimizer that quickly selects the optimal
system configuration for reducing DNN training time. How-
ever, the model can only be applied to specific DL systems,
particularly when it has parameter servers and synchronous
weights between worker nodes dynamically.

Qi et al. [13] developed an analytical performance model
named Paleo, predicting the deep neural network perfor-
mance by considering communication schemes, network ar-
chitecture and parallelization strategies. The results demon-
strated that hybrid parallelism performed much better than
data parallelism while training the Alexnet model. However,
the model did not consider other factors affecting the overall
performance of a model, such as memory usage, data transfer,
or communication overhead in distributed environments.

Heehoon Kim et al. [14] evaluated five popular deep
learning frameworks TensorFlow [15], CNTK [16], Theano
[17], Caffe-MPI [18] and Torch [19] in terms of their perfor-
mance in both single and multi-GPU environments. In this
work, each framework incorporated and compared different
convolution algorithms, such as Winograd, General Matrix
Multiplication (GEMM), Fast Fourier Transformation (FFT),
and direct convolution algorithms, in terms of layered-wise
analysis and execution time. The results have shown that
FFT and Winograd algorithms surpass the GEMM and other
convolution algorithms. However, the convolution algorithms
used by the frameworks provided poor explainability regard-
ing their internal operations.

Shi et al. [9] proposed a performance model to evaluate
various distributed deep learning frameworks’ performance
with different convolutional neural networks in the multi-
GPU environment. They measured training time, memory
usage, and GPU utilization and compared the frameworks
in terms of training time and resource utilization. However,
they did not provide a breakdown of the time to divide
the mini-batch into smaller batches or measure the load
imbalance factor, which are critical factors that could sig-
nificantly affect the training efficiency and performance in
a parallel computing environment. Kavarakuntla et al. [20]
extended Shi’s analytical performance model to evaluate the
deep learning frameworks’ run-time performance with the
autoencoder, multilayer perceptron and convolutional neural
network models in the GPU cluster environment. The ex-
tended model considered the load imbalance factor and made
a layer-wise analysis of a neural network, providing a more
comprehensive evaluation of the frameworks’ performance.
The experimental results showed that the load balance is an
influential factors affecting the system performance.

However, the models mentioned above have poor explain-
ability and were developed for specific architectures, which
were not generic and couldn’t be applied to a wide range of
neural networks.

2) Empirical Modelling of DL frameworks
Empirical modelling builds models through observation and
experimentation, which is antithetical to analytical mod-
elling.

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Oyama et al. [6] proposed a performance model for pre-
dicting the statistics of an asynchronous stochastic gradient
descent-based deep learning system, potentially improving
the model’s performance by optimizing the hyperparameters,
such as gradient staleness and mini-batch size. They did not
consider parallelization methods and applied direct weights
synchronized among GPUs. The study results showed that
the proposed method could predict the statistics of asyn-
chronous SGD parameters, including mini-batch size, sweep-
ing dataset time, staleness, and probability distributions of
these essential parameters. However, the work did not ad-
dress the issue of communication overhead and network
latency, which could significantly affect the performance of
distributed deep learning systems.

Rakshith et al. [21] presented an empirical study of the
performance of Horovod, a distributed deep learning frame-
work, for image classification tasks. They evaluated the per-
formance of Horovod on two popular image datasets, CIFAR-
10 and ImageNet, using a cluster of machines with varying
numbers of GPUs. They also compared the performance of
Horovod with other distributed deep learning frameworks,
such as PyTorch and TensorFlow, and found that Horovod
achieved better performance in certain scenarios. They pro-
vided recommendations for optimizing the performance of
Horovod on large-scale image datasets, such as using effi-
cient data loading and preprocessing techniques, and opti-
mizing the communication and synchronization between the
machines. However, the experimental configuration utilized
in the research might not accurately reflect real-world situa-
tions in which the underlying hardware and network setups
may differ substantially.

Lin et al. [22] considered the network topology and com-
munication patterns to train deep learning models on GPU
clusters. The model included the communication and com-
putation times for each layer in a deep neural network and
used a prediction model that is more sophisticated than a
simple linear regression approach to predict the total training
time. The model was evaluated on several deep learning
benchmarks and showed that it achieved higher accuracy
in predicting training time than existing models. The model
could also be used to optimize the performance of distributed
deep learning by finding the optimal configuration of GPU
nodes and reducing the training time. However, the assess-
ment of the proposed model was confined to three distinct
GPU clusters, potentially limiting its generalizability to other
GPU clusters or distributed DL architectures.

Most recently, inspired by the concept of combining ele-
ments of analytical modelling and empirical modelling for
better performance prediction developed in other fields [23],
we [24] developed a generic performance model for deep
learning applications in distributed environments, which of-
fers the advantage of applicability to various deep learning
frameworks. However, its performance is sub-optimal and
lacks comprehensive analysis and experimental evaluation.

To address the above limitations, in this paper, we have
implemented the model that gives insights into the intrin-

sic parameters’ performance and scalability of the extrinsic
parameters for more accurate performance prediction. Our
proposed model in this paper provides a generic expression
applicable to any distributed deep neural network without
instrumenting the code and enabling functionality such as
explaining internal parameters’ performance and scalability.
The detailed method is described in section III below.

B. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) was developed by Storn et al.
[25] as an algorithm to solve various complex optimization
problems such as motor fault diagnosis [26], structure predic-
tion of materials [27], automatic clustering techniques [28],
community detection [29], learning applications [30] and so
on. The algorithm achieves optimal solutions by maintaining
a population of individual solutions and employing a distinct
process to generate new offspring through the combination of
existing solutions. Those offspring exhibiting superior objec-
tive values are retained in subsequent iterations of the algo-
rithm, thereby enhancing the individual’s new objective value
and subsequently assimilating them into the population. Con-
versely, if the newly acquired objective value fails to surpass
existing solutions, it is promptly disregarded. This iterative
process continues until a specific termination condition is
met, ensuring the algorithm’s convergence [31]. It shares
similarities with other evolutionary algorithms, such as the
Genetic Algorithm (GA) [32], wherein mutation, crossover,
and selection operators are employed to steer the popula-
tion towards increasingly favourable solutions. In contrast
to the genetic algorithm, the differential evolution algorithm
imparts mutation to each individual while transferring them
to the next generation. In its mutation procedure, for each
solution, three more individuals are picked from the popula-
tion, and as a consequence, a mutated individual is produced.
It is determined based on the fitness value whether or not
the first individual selected will be replaced. In differential
evolution, the crossover is not the primary operation, as it is
in the genetic algorithm. In recent times, several works have
been proposed to use DE for neural network optimization
[33], [34], [35].

However, none of the works mentioned above used DE
to analyse and evaluate the performance of deep neural
networks with many processes in a distributed environment
with the goal of finding the best-fit values by minimising the
regularised cost function.

III. METHODOLOGY
A. THE GENERIC PERFORMANCE MODEL

Given an application consisting of a number of processes in a
distributed environment, the execution time of the application
can be considered from two levels: 1) Execution time of
internal processes of the application (for example, intrinsic
parameters of the application); and 2) External scaling factors
that affect the computing efficiency (such as a number of
machines/processors or data chunks or batch size). A generic

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

performance model for computing total computational time
(t) per iteration of an application can be described as follows:

t(I, E) = tI(I)fE(E) + C (1)

Here, we represent intrinsic parameters as I ,E represents the
extrinsic parameters, tI represents the computation time of
the processes affected by intrinsic parameters, fE represents
extrinsic scaling factors that affect the computing perfor-
mance, and C is a constant. In general, I andE are vectors in
which each element is a hyperparameter of the deep learning
model such as a filter size (intrinsic) or batch size (extrinsic).

In our model, we represent the internal time tI as a sum of
terms in powers of the components of I:

tI =
n∑

i=1

aiI
pi

i (2)

Basically, intrinsic parameters represent model parameters
of the deep neural network, as shown in Fig.1. In equation
(2), the coefficients ai relate to the relative importance of
the processes, and the powers pi relate to the computational
complexity. The external factors are related to scaling, and
these appear in the model as multiplicative terms with differ-
ent powers in the computation of the external scaling factor
fE , which is given by:

fE =

m∏
j=1

E
qj
j (3)

Here, the powers qj give information about scalability. By
substituting the tI and fE in equation (1), the computational
time (t) is given as follows:

t(I, E, x) =

(
n∑

i=1

aiI
pi

i

)
m∏
j=1

E
qj
j + C (4)

which we now write as a function of I , E and x where
x = {a1, ..., anI

, p1, ... pnI
, q1, ... qnE

, c} ∈ RM is a vector
formed by combining a,p, q and the constant coefficient C.
In (4), the intrinsic parameters I and extrinsic parameters
E are the known input values. a,p, q and coefficient C are
unknown constants. The functional diagram of the proposed
performance model is shown in Fig. 2.

We compute the optimal values of these unknown con-
stants (total: M = 2nI + nE + 1) using the differential
evolution algorithm. The aim is to find the best-fitting values
of these constants, by fitting the model to experimentally
measured execution times obtained with different values of
the internal and external parameters I and E. Before going
to the cost function formulation of the differential evolution
algorithm [36], we describe the general methodology for
obtaining the experimental data. For every possible combi-
nation of values of intrinsic and extrinsic parameter there
will, in general, be too many combinations for an exhaustive
grid search. Therefore, we have applied random sampling to
ensure that every hyperparameter in the population has an
equal opportunity of being selected for obtaining measured

times. Here, the methodology used for measured time is the
time taken for an iteration of an epoch. We compute the
iteration time as the difference between an iteration’s end
time and starting time.

The experimental data for fitting the model comprises N
measurements with randomly selected values of the parame-
ters. We denote the values of the intrinsic parameters by

Ii,k, i ∈ [1, nI], k ∈ [1, N] (5)

where i indexes the components of the vector of parameters,
and k refers to a given observation in the experiment. Simi-
larly, the extrinsic parameters are denoted by

Ej,k, j ∈ [1, nE], k ∈ [1, N] (6)

The measured time for obervation k is

tk, k ∈ [1, N]. (7)

Here, i, j denote the input feature indices. k ∈ [1, N] indicate
the sample index in dataset D. N is the number of input
samples in D.

B. GLOBAL OPTIMIZATION USING DIFFERENTIAL
EVOLUTION
Given the generic expression as shown in equation (4), as
mentioned in earlier sub section, we find the best fit values of
a,p, q and C by minimizing a cost function. We formulate
the cost function as the mean absolute difference between
the predicted execution time and the actual measured times
as follows:

f(x) =
1

N

N∑
k=1

∣∣tk − t̂k(Ik, Ek, x)
∣∣ (8)

whereN as number of data samples, tk is the measured time,
t̂k is the predicted time derived from equation 4.

To solve the above optimization problem, we have used the
differential evolution algorithm (DE) using the cost function
in equation 4. The mean absolute error between the predicted
times of the model and the measured times is minimized,
resulting in a value of the vector x which represents the best-
fitting model. Recall that this vector encodes the coefficients
and powers of the terms in the model due to each of the
hyperparamters; these can then be used to make predictions
of the execution time for any set of values of the intrinsic
and extrinsic paramters and furthermore, inspection of these
coefficients can provide insight into the relative importance
and computational complexity of the internal processes, as
well as the scalability of the external processes. For this
work, we use the DE implementation from the scipy python
package, with default values of the hyperparameters. We
enforce limits of (0 . . . 1000) for constants and coefficients
(a,C) and −5 . . . 5 for powers (p, q).

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: Internal processes involved in a convolutional neural network.

FIGURE 2: Functional diagram of proposed performance
model.

C. REGULARIZATION
A globally optimized, unconstrained model may be prone to
overfitting or producing unstable solutions with high param-
eter variance. To address these issues, we introduce a regular-
ization term to the cost function. Regularization achieves the
best fit by introducing a penalizing term in the cost function,
which assigns a higher penalty to complex curves. So, we are
motivated to apply regularization to our performance model.
Generally, regularization can be defined as:

freg(x) = f(x) + λ.L (9)

The parameter λ controls the balance between bias and
variance in the model, where L represents the model’s com-
plexity. There are two regularization techniques: (a) Lasso
regression (L1) and (b) Ridge regression (L2). L1 regular-
ization, also known as lasso regression, includes the absolute
value of the coefficient magnitude as a penalty in the loss
function. The resulting solution from L1 regularization is
sparse, meaning it tends to eliminate less important features
by setting their coefficients to zero. This is useful for feature
selection when dealing with a large number of features.
On the other hand, L2 regularization, or ridge regression,
incorporates the squared magnitude of the coefficient as a
penalty in the loss function. The solution obtained from
L2 regularization is non-sparse and penalizes the model’s
complexity. The regularization parameter λ penalizes all
parameters except the intercept, ensuring that the model
generalizes the data and avoids overfitting. Ridge regression

uses the squared magnitude of the coefficient as the penalty
term. We have applied both L1 and L2 regularizations to the
performance model. The cost function for optimization with
both L1 and L2 regularizations is as follows:

f(x) =
1

N

N∑
k=1

∣∣tk − t̂k(Ik, Ek, x)
∣∣+ λ.

N∑
k=1

|x| (10)

f(x) =
1

N

N∑
k=1

∣∣tk − t̂k(Ik, Ek, x)
∣∣+ λ.

N∑
k=1

|x|2 (11)

Here, applying the regularization term λ reduces the bias-
variance trade-off in the internal processes.

IV. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed model, we have
applied our approach to three popular deep learning frame-
works (TensorFlow, PyTorch and MxNet) and conducted
extensive experiments. We assess the proposed performance
evaluation approach by modelling distributed training of a
CNN architecture on a multi-GPU system. The main goal is
to investigate how well the predicted execution time fits the
experimentally measured time.

A. SYSTEM CONFIGURATION
We implement the experiments on a single node containing
three GEFORCE RTX 2080 GPUs, each with 2.60 GHz
speed and 16 GB GPU RAM. The node also consists of
a 2.81 GHz speed CPU machine, 25 Gbps network band-
width and a CUDA-10.2 with a Linux operating system.
Furthermore, the node consists of various software config-
urations/installations, including PyTorch 1.2.0, Torchvision
0.4.0, Python 3.6, TensorFlow 2.1.0 and MXnet 1.6.0.

B. DATASET AND MODEL SELECTION
For three deep learning frameworks, we selected a CNN ar-
chitecture, LeNet-5, which Yann LeCun proposed in 1998 as
a general common neural network structure for handwritten
font recognition. It consists of two convolutional layers, two
fully-connected layers, pooled layers for cross-combination
and an output layer that predicts values via the fully con-
nected layer. Besides, LeNet-5 works well with handwritten

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

datasets [37], it also reduces the number of parameters and
can automatically learn features from raw pixels [38].

We train LeNet-5 on three popular datasets, MNIST,
fashion-MNIST and CIFAR-10, using TensorFlow, PyTorch
and MxNet, in a multi-GPU system. MNIST [39], [40] is
a database of handwritten digits derived by the National
Institute of Standards and Technology (NIST) for learning
techniques and pattern recognition methods with a little effort
on pre-processing and formatting. It contains 60,000 training
and 10,000 testing images, divided into four files: training
set images, testing set images, training set labels and testing
set labels. Each image has 28 x 28 pixels. Fashion-MNIST
[41] replaces the MNIST, where each image has a 28x28
grayscale and is associated with a label from 10 classes. The
CIFAR-10 dataset [42] comprises 60,000 images, classified
into ten classes - aeroplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. Each image has 32 × 32 pixels,
and each classification has 6,000 images.

C. PERFORMANCE METRICS
The scalability and the mean absolute percentage error
(MAPE) are selected as performance metrics for run-time
evaluation on three different frameworks. Scalability is mea-
sured in the powers of external parameters as shown in (3).
The MAPE can be defined as:

MAPE =
1

N

N∑
k=1

∣∣tk − t̂k∣∣
tk

(12)

where tk = the measured value, t̂k = the predicted value, n =
the total number of data points.

The experimental evaluation aims to evaluate the proposed
performance model and find the best-fit values using the dif-
ferential evolution algorithm. The MAPE is used to evaluate
the closeness of this fit and the quality of the performance
model. The scaling parameters are used in our proposed
model to evaluate the performance of the deep learning
frameworks.

D. EXPERIMENTS
We have conducted a set of experiments to evaluate the
proposed model from the following aspects:

1) Performance evaluation of deep learning frameworks
using the proposed performance model with and with-
out regularization. Specifically, we have applied the
proposed performance model to three deep learning
frameworks: TensorFlow, MXnet, and PyTorch, under
two circumstances, with and without regularization.

2) Comparison of the proposed model with the existing
black-box machine learning models. We have also com-
pared our proposed model with two widely used models
including Random Forest Regression [43] and Support
Vector Machine [44], and demonstrated its performance
and interpretability.

In our experiment, we have performed the distributed
training of LeNet-5 on MNIST, fashion-MNIST and CIFAR-

TABLE 1: Parameters of the performance model, with ranges
of values sampled in the experiments.

Index Name Set of possible values considered
Intrinsic parameters

1 Kernel size {2,3,4,5}
2 Pooling size {2,3,4,5}
3 Activation function {Relu, Tanh, Sigmoid}
4 Optimizer {Adam, SGD}
5 Image_dataset_name {MNIST,Fashion-MNIST,CIFAR-10}
6 Number of filters {4,8,16,32,64}
7 Learning rate {0.1,0.01,0.001,10−4, 10−5, 10−6}
8 Padding_mode {valid, same}
9 Stride {1,2,3}
10 Dropout probability {0.2,0.5,0.8}

Extrinsic parameters
11 Number of GPUs {1,2,3}
12 Batchsize {8,16,32,64,128}

10 datasets using the three deep learning frameworks. The
values of the experimental training parameters are created by
applying random sampling on a set of intrinsic and extrinsic
parameters and its corresponding average training time taken
by a deep CNN architecture per iteration. Table 1 shows
intrinsic and extrinsic parameters and their possible values.
The intrinsic parameters are the model’s hyperparameters,
including kernel size, pooling size, activation function, etc.
The number of GPUs and the batch size are extrinsic factors
since these affect the scaling over multiple processes.

The experiments involve several trials in which we mea-
sure the time for a single training iteration using randomly
selected intrinsic and extrinsic parameter values. We conduct
1500 trials to prepare a dataset of 1500 data samples. For
each sample, we run three iterations with the same parameter
values, and take the median value of the measured time.
The experimental data for 900 trials are used to fit our
performance model or train the standard black-box models
for comparison. The remaining 600 are used to test and
validate models. Finally, the experimental parameters are
used to build three performance evaluation models, such as
the Differential evolution (DE) algorithm with and with-
out using regularization models and two standard black-box
models. We run each fit ten times with different random
seeds to obtain the mean and standard deviation for each of
our fitted parameters. The performance of these models and
their corresponding results are explained in the subsequent
subsections.

E. RESULTS AND ANALYSIS
This section shows the results of our proposed performance
model for three popular deep neural networks, i.e., Tensor-
Flow, MXnet, and PyTorch. We evaluate the performance
model with and without regularization and compare it with
standard black-box regression models such as Support Vector
Machine and Random Forest Regressor (RF). Tables 2 and
3 compare intrinsic parameters and scalability in various
frameworks with and without using regularization. Table 4
shows mean absolute percentage error values on predictions
of the performance models using L1 and L2 regularization.

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Derived intrinsic and extrinsic parameters from the differential evolution-optimized performance models for the
three deep learning frameworks. Parameters are given as the mean and standard deviation over ten fits. a and p represent
coefficients and powers, respectively, of a term representing an intrinsic parameter, whereas q is power in a multiplicative term
representing an extrinsic (scaling) parameter.

Mxnet Pytorch TensorFlow
Intrinsic parameters a p a p a p
Filter size 554.87 ± 311.73 -4.06 ± 0.53 423.36 ± 256.88 -2.88 ± 1.04 346.73 ± 216.24 -3.22 ± 0.78
Kernel size 10.57 ± 7.05 -4.10 ± 0.70 168.54 ± 123.27 -2.34 ± 1.82 54.78 ± 32.91 -4.00 ± 1.41
Pool size 18.08 ± 5.17 -4.21 ± 0.46 209.14 ± 186.87 -3.31 ± 0.92 79.45 ± 53.53 -3.48 ± 1.33
Learning rate 459.50 ± 258.52 3.68 ± 0.62 489.52 ± 221.63 3.21 ± 0.70 458.34 ± 278.03 3.26 ± 0.91
Stride 17.29 ± 6.12 -0.83 ± 0.23 140.64 ± 138.62 -0.63 ± 0.58 29.00 ± 14.54 -1.85 ± 0.90
Dropout probability 1.79 ± 0.75 2.24 ± 1.62 437.06 ± 184.32 1.80 ± 1.66 10.23 ± 9.51 1.87 ± 1.62
Same 2.50 ± 0.97 - 11.02 ± 5.09 - 6.14 ± 1.54 -
Valid 1.56 ± 0.96 - 0.77 ± 1.81 - 1.61 ± 2.24 -
Sigmoid 23.25 ± 10.23 - 475.92 ± 139.65 - 251.57 ± 122.01 -
Relu 21.90 ± 10.40 - 475.56 ± 137.27 - 255.93 ± 122.35 -
Tanh 23.14 ± 10.30 - 444.48 ± 138.25 - 254.28 ± 121.27 -
MNIST 35.75 ± 12.81 - 815.62 ± 69.44 - 232.24 ± 108.77 -
Fashion-MNIST 35.94 ± 12.75 - 815.68 ± 68.39 - 231.33 ± 109.93 -
CIFAR-10 18.57 ± 12.68 - 308.73 ± 53.32 - 124.56 ± 108.01 -
SGD 16.68 ± 10.10 - 361.65 ± 130.64 - 158.74 ± 109.25 -
Adam 16.85 ± 10.32 - 720.15 ± 123.99 - 168.55 ± 108.67 -
Extrinsic parameters q q q
Batchsize -0.99 ± 0.003 -1.13 ± 0.01 -1.35 ± 0.08
No. of GPUs -0.99 ± 0.004 -1.029 ± 0.001 -0.74 ± 0.001
Constant term C C C

3.703 ± 0.017 12.677 ± 0.038 1.930 ± 0.122

TABLE 3: Derived intrinsic and extrinsic parameters from the differential evolution-optimized performance models for the
three deep learning frameworks using L2 regularization. Parameters are given as the mean and standard deviation over ten fits.
a and p represent coefficients and powers, respectively, of a term representing an intrinsic parameter, whereas q is power in a
multiplicative term representing an extrinsic (scaling) parameter.

Mxnet Pytorch TensorFlow
Intrinsic parameters a p a p a p
Filter size 6.27± 0.59 0.36 ± 0.01 6.07 ± 1.59 0.89 ± 0.05 8.39 ± 0.37 0.77 ± 0.01
Kernel size 4.44 ± 0.65 0.50 ± 0.04 4.84 ± 1.90 2.02 ± 0.24 6.59 ± 0.29 2.04 ± 0.03
Pool size 4.69 ± 0.33 0.52 ± 0.03 3.23 ± 0.83 1.55 ± 0.45 6.70 ± 0.67 1.98 ± 0.05
Learning rate 3.62 ± 0.41 -0.04 ± 0.003 3.75 ± 1.70 -0.27 ± 0.02 4.40 ± 0.60 -0.22 ± 0.007
Stride 4.51 ± 0.40 -0.99 ± 0.11 2.92 ± 1.54 -0.83 ± 1.42 4.13 ± 0.59 2.46 ± 0.10
Dropout probability 4.20 ± 0.67 -0.35 ± 0.05 35.92 ± 1.15 -5.00 ± 0.00 4.46 ± 0.43 -1.94 ± 0.07
Same 2.66 ± 0.51 - 2.08 ± 0.84 - 1.90 ± 0.58 -
Valid 1.50 ± 0.43 - -0.57 ± 1.56 - 0.49 ± 0.71 -
Sigmoid 2.18 ± 0.45 - 2.32 ± 1.15 - 1.41 ± 0.41 -
Relu 1.52 ± 0.33 - 3.21 ± 1.35 - 1.85 ± 0.64 -
Tanh 2.29 ± 0.39 - 2.93 ± 1.93 - 1.99 ± 0.71 -
MNIST 5.48 ± 0.52 - 3.37 ± 1.35 - 1.99 ± 0.72 -
Fashion-MNIST 7.73 ± 0.36 - 3.42 ± 1.56 - 2.28 ± 0.72 -
CIFAR-10 1.00 ± 0.02 - 1.89 ± 1.00 - 1.63 ± 0.69 -
SGD 2.31 ± 0.36 - 2.16 ± 1.00 - 1.73 ± 0.46 -
Adam 1.78 ± 0.41 - 3.42 ± 1.45 - 2.01 ± 0.85 -
Extrinsic parameters q q q
Batchsize -0.87 ± 0.005 -1.00 ± 0.007 -1.19 ± 0.01
No. of GPUs -1.07 ± 0.007 -1.01 ± 0.004 -0.74 ± 0.005
Constant term C C C

3.45± 0.024 1.03 ± 0.07 12.62 ± 0.05

TABLE 4: L1 and L2 regularization results in terms of
the mean absolute percentage error (MAPE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE)

L1 Regularization L2 Regularization
MXnet PYtorch TF MXnet PYtorch TF

MAPE 8% 29% 13% 7% 27% 10%
MSE 105.74 450.93 220.16 103.37 443.35 201.81
RMSE 10.28 17.52 14.83 10.16 17.02 14.20

1) Performance Evaluation of Deep Learning Frameworks
using the Proposed Performance Model without
regularization

We have applied the differential evolution algorithm to our
proposed model and evaluated it using the three deep learn-
ing frameworks. The actual execution time for training the
model using the three frameworks is recorded, and predicted

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) TensorFlow (b) MXnet (c) Pytorch

FIGURE 3: The proposed performance model prediction and the actual measured times in three deep learning frameworks
without regularization

(a) TensorFlow (b) MXnet (c) Pytorch

FIGURE 4: The proposed performance model prediction and the actual measured time in three deep learning frameworks with
regularization

(a) TensorFlow (b) MXnet (c) Pytorch

FIGURE 5: Random forest regressor prediction and the actual measured time in three deep learning frameworks

(a) TensorFlow (b) MXnet (c) Pytorch

FIGURE 6: Support vector machine prediction and the actual measured times in three deep learning frameworks

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) R2 values with different regularization values in three
different frameworks using L1 regularization

(b) R2 values with different regularization values in three
different frameworks using L2 regularization.

FIGURE 7: Effect of regularization.

(a) TensorFlow (b) MXnet

(c) Pytorch (d) Pytorch

FIGURE 8: Effect of regularization, with model coefficients plotted against regularization parameter. Constant coefficients of
intrinsic parameters are plotted in (a), the power coefficients of intrinsic parameters are shown in (b), coefficients of categorical
intrinsic parameters in (c), with powers of extrinsic parameters in (d).

execution times are also generated. Fig.3 shows the scatter
graph of the predicted execution times from the proposed
model plotted against the actual execution time for the test
dataset. The linear fit to the straight line determines how well

the model can predict unseen configurations. We find the best
fit constant coefficients for all frameworks are shown in Table
2.

The results show stable and consistent fits for the extrinsic

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

parameters and the additive constant C, indicating that the
scalability results are accurate. The higher variances in the in-
trinsic parameters are reduced by using regularization. Table
2 shows that the model gives broadly consistent performance
for the constant coefficients, representing the relative impor-
tance of the process controlled by categorical parameters.
For instance, Adam has a large constant for the activation
function coefficients and takes more training time than SGD
in Pytorch and TensorFlow frameworks, while SGD has
the highest training time with the MXnet framework. The
padding parameter, which is categorical with two possible
values valid and same. same shows better performance for
the valid mode.

2) Performance Evaluation of Deep Learning Frameworks
using the Proposed Performance Model with regularization
We have applied regularization to the cost function to the
proposed performance model to optimize the vector constants
and reduce high variance in intrinsic parameters in three deep
learning frameworks. We applied both regularizations to our
model and compared the results of L1 and L2. The MAPE,
MSE, and RMSE results are better with L2 regularization, as
shown in Table 4. We therefore consider L2 regularization
appropriate for our performance model and applied various
regularization parameter values in logarithmic scale in L1
and L2 to find the best value of the λ parameter. In Figures
7(a) and 7(b), we see that the R2 score deteriorates when the
λ value is higher than 0.001. For instance, when λ = 0.001,
the model fits well, and the model gives broadly consistent
performance for the constant coefficients and represents the
relative importance of the process controlled by categorical
parameters. Furthermore, in Table 3, we can see that the
model gives consistent performance for the constant coeffi-
cients, representing the relative importance of the processes
controlled by categorical parameters. The results show that
the performance model using regularization is a generalised
model with optimized good fits in all the frameworks. For
example, for padding coefficients, same parameter takes
more training time than valid parameter in all frameworks.
For activation function coefficients, Tanh takes more training
time than Relu and Sigmoid in MXnet and TensorFlow
frameworks, while Relu takes maximum time with Pytorch.
Also, in terms of dataset coefficients, the Fashion-MNIST
dataset takes more training time than MNIST and CIFAR-10
datasets in all three frameworks.

3) Comparison of the Proposed Performance Model with
Black Box Models
We have compared the proposed model with two standard
black box models, i.e., Random Forest Regressor and Support
Vector Machine. Generally, the random forest regressor has
better prediction accuracy due to its ensemble learning shown
in Fig.5. The result shows a good linear fit compared to the
differential evolution algorithm with and without regulariza-
tion. However, the drawback of the random forest regressor
is that it cannot give any insights into its internal working

mechanism. Support vector machine regression is a non-
parametric technique because it depends on kernel function-
ality. It is more productive in high-dimensional spaces. Fig.6
shows the predicted and measured times of the support vector
machine. The result shows a poor fit for all the deep learning
frameworks compared with the random forest regressor and
differential evolution algorithm with and without regulariza-
tion. We evaluate the fits using the mean absolute percentage
error between predicted execution time and actual times, as
shown in Table 5. Note that the performance of our proposed
model is slightly inferior to the random forest. However,
the proposed model can provide insights into the internal
behaviour and scalability, which are impossible with a black
box model such as a random forest.

TABLE 5: Mean Absolute Percentage Error (MAPE) on
predictions of the performance models on the 300 instances
in the evaluation dataset in seconds.

TensorFlow MXnet Pytorch
Differential
evolution 5% 5% 12%

Differential
evolution
with regularization

10% 7% 14%

Random
forest 0.7% 3% 23%

Support
vector
machine

16% 21% 54%

TABLE 6: nGPUs scaling power in various frameworks,
nGPUs represent number of GPUs.

Frameworks nGPUs scaling power
TensorFlow -0.74
MXnet -0.99
Pytorch -1.02

4) Scalability Analysis
Observing the coefficients q from Table 2 and Table 3, where
q is power in a multiplicative term representing an extrinsic
parameter, we see that the extrinsic parameter coefficients
are consistent in the proposed performance model with and
without regularization. As shown in Table 6, -1 indicates
ideal scaling, in which case the time is inversely proportional
to the number of GPUs. The coefficients in Pytorch and
MXnet frameworks show better scaling performance than
TensorFlow. In TensorFlow, the value -0.73 is less than -1,
indicating sub-optimal scaling.

V. CONCLUSION AND FUTURE WORKS
In this work, we have developed a generic performance
model for deep learning applications in a distributed envi-
ronment with a generic expression of the application execu-
tion time that considers the influence of both intrinsic and
extrinsic factors. We also formulated the proposed model as
a global optimization problem and solved it using regulariza-
tion on a cost function and differential evolution algorithm

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to find the best-fit values of the constants in the generic
expression. The proposed model has been evaluated on three
popular deep learning frameworks: TensorFlow, MXnet, and
Pytorch, and shown to provide accurate performance predic-
tions and interpretability. Also, the experimental results show
that MXnet and Pytorch exhibit better scalability perfor-
mance than TensorFlow. Furthermore, the proposed method
with regularization has been found to optimize the vector
constants and reduce high variance in intrinsic parameters.
The model can be applied to any distributed deep learning
framework without requiring any changes to the code and
can offer insight into the factors affecting deep learning
application performance and scalability. Future work may
include evaluating the model’s performance on various deep
learning frameworks to assess its generalisation capability.

REFERENCES
[1] P. Ballester and R. M. Araujo, “On the performance of googlenet and

alexnet applied to sketches,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[2] S. Targ, D. Almeida, and K. Lyman, “Resnet in resnet: Generalizing
residual architectures,” arXiv preprint arXiv:1603.08029, 2016.

[3] L. Wang, S. Guo, W. Huang, and Y. Qiao, “Places205-vggnet models for
scene recognition,” arXiv preprint arXiv:1508.01667, 2015.

[4] N. Aloysius and M. Geetha, “A review on deep convolutional neural
networks,” in 2017 international conference on communication and signal
processing (ICCSP). IEEE, 2017, pp. 0588–0592.

[5] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and
scalability optimization of distributed deep learning systems,” in Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 1355–1364.

[6] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and S. Mat-
suoka, “Predicting statistics of asynchronous sgd parameters for a large-
scale distributed deep learning system on gpu supercomputers,” in 2016
IEEE International Conference on Big Data (Big Data). IEEE, 2016, pp.
66–75.

[7] M. Song, Y. Hu, H. Chen, and T. Li, “Towards pervasive and user sat-
isfactory cnn across gpu microarchitectures,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
2017, pp. 1–12.

[8] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep
learning software tools,” in 2016 7th International Conference on Cloud
Computing and Big Data (CCBD). IEEE, 2016, pp. 99–104.

[9] S. Shi, Q. Wang, and X. Chu, “Performance modeling and evaluation
of distributed deep learning frameworks on gpus,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp. 949–957.

[10] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, “Hybrid performance
modeling and prediction of large-scale computing systems,” in 2008
International Conference on Complex, Intelligent and Software Intensive
Systems, 2008, pp. 132–138.

[11] T. Fahringer, S. Pllana, and J. Testori, “Teuta: Tool support for perfor-
mance modeling of distributed and parallel applications,” in International
Conference on Computational Science. Springer, 2004, pp. 456–463.

[12] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), 2014, pp. 571–582.

[13] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model for
deep neural networks,” 2016.

[14] H. Kim, H. Nam, W. Jung, and J. Lee, “Performance analysis of cnn frame-
works for gpus,” in 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2017, pp. 55–64.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: A system
for {Large-Scale} machine learning,” in 12th USENIX symposium on

operating systems design and implementation (OSDI 16), 2016, pp. 265–
283.

[16] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, 2016, pp. 2135–2135.

[17] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,
N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky et al., “Theano:
A python framework for fast computation of mathematical expressions,”
arXiv e-prints, pp. arXiv–1605, 2016.

[18] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-caffe:
Co-designing mpi runtimes and caffe for scalable deep learning on modern
gpu clusters,” in Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2017, pp. 193–205.

[19] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Idiap, Tech. Rep., 2002.

[20] T. Kavarakuntla, L. Han, M. Huw Lloyd, S. Annabel Latham, and S. B.
Akintoye, “Performance analysis of distributed deep learning frameworks
in a multi-gpu environment,” in 2021 IEEE 20th Intl Conf on Ubiquitous
computing and communications(IUCC-2021), The 4th Intl Conf on Data
science and Computational Intelligence(DSCI-2021), 2021.

[21] R. Rakshith, V. Lokur, P. Hongal, V. Janamatti, and S. Chickerur, “Perfor-
mance analysis of distributed deep learning using horovod for image clas-
sification,” in 2022 6th International Conference on Intelligent Computing
and Control Systems (ICICCS). IEEE, 2022, pp. 1393–1398.

[22] Z. Lin, X. Chen, H. Zhao, Y. Luan, Z. Yang, and Y. Dai, “A topology-
aware performance prediction model for distributed deep learning on gpu
clusters,” in 2020 IEEE International Conference on Big Data (Big Data).
IEEE, 2020, pp. 2795–2801.

[23] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing performance
prediction robustness by combining analytical modeling and machine
learning,” in Proceedings of the 6th ACM/SPEC international conference
on performance engineering, 2015, pp. 145–156.

[24] T. Kavarakuntla, L. Han, H. Lloyd, A. Latham, A. Kleerekoper, and
S. B. Akintoye, “A Generic Performance Model for Deep Learning in a
Distributed Environment, ” in 2022 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). IEEE, 2022, pp. 191.

[25] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” J. of Global
Optimization, vol. 11, no. 4, pp. 341–359, dec 1997. [Online]. Available:
https://doi.org/10.1023/A:1008202821328

[26] C.-Y. Lee and C.-H. Hung, “Feature ranking and differential evolution for
feature selection in brushless dc motor fault diagnosis,” Symmetry, vol. 13,
no. 7, 2021. [Online]. Available: https://www.mdpi.com/2073-8994/13/7/
1291

[27] W. Yang, E. M. D. Siriwardane, R. Dong, Y. Li, and J. Hu, “Crystal
structure prediction of materials with high symmetry using differential
evolution,” Journal of Physics: Condensed Matter, vol. 33, 2021.

[28] S. Saha and R. Das, “Exploring differential evolution and particle swarm
optimization to develop some symmetry-based automatic clustering
techniques: Application to gene clustering,” Neural Comput. Appl.,
vol. 30, no. 3, pp. 735–757, aug 2018. [Online]. Available: https:
//doi.org/10.1007/s00521-016-2710-0

[29] Y.-H. Li, J.-Q. Wang, X.-J. Wang, Y.-L. Zhao, X.-H. Lu, and D.-L.
Liu, “Community detection based on differential evolution using social
spider optimization,” Symmetry, vol. 9, no. 9, 2017. [Online]. Available:
https://www.mdpi.com/2073-8994/9/9/183

[30] M. Baioletti, A. Milani, and V. Santucci, “Learning bayesian networks
with algebraic differential evolution,” in Parallel Problem Solving from
Nature – PPSN XV. Cham: Springer International Publishing, 2018, pp.
436–448.

[31] M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M. Ang,
“Differential evolution: A recent review based on state-of-the-art works,”
Alexandria Engineering Journal, vol. 61, no. 5, pp. 3831–3872,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S111001682100613X

[32] D. Liu, D. Hong, S. Wang, and Y. Chen, “Genetic algorithm-
based optimization for color point cloud registration,” Frontiers in
Bioengineering and Biotechnology, vol. 10, 2022. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fbioe.2022.923736

[33] M. Baioletti, G. Di Bari, A. Milani, and V. Poggioni, “Differential
evolution for neural networks optimization,” Mathematics, vol. 8, no. 1,
2020. [Online]. Available: https://www.mdpi.com/2227-7390/8/1/69

[34] N. Ikushima, K. Ono, Y. Maeda, E. Makihara, and Y. Hanada, “Differential
evolution neural network optimization with individual dependent mecha-

VOLUME 4, 2016 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

nism,” in 2021 IEEE Congress on Evolutionary Computation (CEC), 2021,
pp. 2523–2530.

[35] R. A. Venkat, Z. Oussalem, and A. K. Bhattacharya, “Training convolu-
tional neural networks with differential evolution using concurrent task
apportioning on hybrid cpu-gpu architectures,” in 2021 IEEE Congress on
Evolutionary Computation (CEC), 2021, pp. 2567–2576.

[36] K. Fleetwood, “An introduction to differential evolution,” in Proceedings
of Mathematics and Statistics of Complex Systems (MASCOS) One Day
Symposium, 26th November, Brisbane, Australia, 2004, pp. 785–791.

[37] S. Park, J. Lee, and H. Kim, “Hardware resource analysis in distributed
training with edge devices,” Electronics, vol. 9, no. 1, p. 28, 2020.

[38] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of
the recent architectures of deep convolutional neural networks,” ArXiv,
vol. abs/1901.06032, 2019. [Online]. Available: http://arxiv.org/abs/1901.
06032

[39] Y. LeCun, C. Cortes, and Christopher, “The mnist database of handwritten
digits,” 2020. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[40] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, pp. 141–142, 2012.

[41] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” ArXiv, vol.
abs/1708.07747, 2017.

[42] F. O. Giuste and J. C. Vizcarra, “Cifar-10 image classification using feature
ensembles,” ArXiv, vol. abs/2002.03846, 2020.

[43] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

[44] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

12 VOLUME 4, 2016

	Front matter
	Title page
	Contents
	List of figures
	List of publications
	Abstract
	Acknowledgements

	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Objectives
	1.3 Contributions
	1.4 Thesis Structure

	2 Literature review
	2.1 Deep Neural Networks
	2.1.1 Multilayer Perceptron
	2.1.2 Convolutional Neural Networks
	2.1.3 Autoencoder

	2.2 Parallel and Distributed Deep Learning
	2.2.1 Data Parallelism
	2.2.2 Model Parallelism
	2.2.3 Pipeline Parallelism
	2.2.4 Hybrid Parallelism

	2.3 Deep Learning Frameworks
	2.3.1 TensorFlow
	2.3.2 MxNet
	2.3.3 Chainer
	2.3.4 Pytorch

	2.4 Performance Modelling in Deep Learning
	2.4.1 Analytical Modelling of Deep Learning
	2.4.2 Empirical Modelling of Deep Learning
	2.4.3 Conclusions from Previous Studies and Introduction of Differential Evolution

	2.5 Differential Evolution
	2.6 Regularization
	2.7 Summary

	3 Performance Analysis of Distributed Deep Learning Frameworks in a Multi-GPU Environment
	3.1 Background and Motivation
	3.2 The Proposed Performance Model
	3.2.1 Preliminaries
	3.2.2 Mini-batch stochastic gradient descent(SGD)
	3.2.3 Synchronous stochastic gradient descent (S-SGD) using multiple GPUs
	3.2.4 The Proposed Performance Model based on S-SGD

	3.3 Experiments
	3.3.1 Experimental Setup
	3.3.2 Performance Metrics

	3.4 Results and Analysis
	3.4.1 Single GPU
	3.4.2 Multi-GPU
	3.4.3 Load Imbalance Factor

	3.5 Summary

	4 A Generic Performance Model for Deep Learning in a Distributed Environment
	4.1 The Proposed Generic Performance Model
	4.1.1 Global Optimisation Using Differential Evolution
	4.1.2 Regularization

	4.2 Experimental Evaluation
	4.2.1 System Configuration
	4.2.2 Dataset and Model Selection
	4.2.3 Performance Metrics
	4.2.4 Experiments

	4.3 Results and Analysis
	4.3.1 Performance Evaluation of Deep Learning Frameworks using the Proposed Performance Model without regularization
	4.3.2 Performance Evaluation of Deep Learning Frameworks using the Proposed Performance Model using regularisation
	4.3.3 Comparison of the Proposed Performance Model with Machine Learning Models
	4.3.4 Evaluation of Regularization
	4.3.5 Scalability Analysis for the Regularized model

	4.4 Summary

	5 Case Study: Performance Analysis of a 3D-ResAttNet Model for Alzheimer's Diagnosis from 3D MRI Images
	5.1 Performance Model
	5.1.1 System Configuration
	5.1.2 Dataset and Model
	5.1.3 Performance Metrics
	5.1.4 Experiments

	5.2 Results and Analysis
	5.2.1 Performance Evaluation of the Proposed Performance Model on the 3D-ResAttNet Architecture Implemented with PyTorch Deep Learning Framework
	5.2.2 Comparison of the Proposed Performance Model with Random Forest

	5.3 Summary and Discussion

	6 Conclusion And Future Work
	6.1 Future Works

	Appendices
	A Paper: Performance analysis of distributed deep learning frameworks in a multi-gpu environment
	B Paper: A Generic Performance Model for Deep Learning in a Distributed Environment
	C Paper: A Generic Performance Model for Deep Learning in a Distributed Environment

