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Abstract: The aim of the study was to investigate the application of photocatalytic advanced oxidation
(PAO) for the treatment of water contaminated with dark humic material from fynbos biome plants,
which cannot be treated by conventional methods. The study used a fynbos species (Aspalathus
linearis) to create a model wastewater that was compared with a brew made from black tea (Camellia
sinensis). Two photocatalysts (TiO2 and ZnO) and three light sources (natural, halogen light, and
UV light) were tested, with and without hydrogen peroxide. The treatment of the two teas by only
photolysis was observed to be minimal. The study found that natural sunlight was not effective, but
a combination of ZnO and halogen lamp exhibited the best performance, with a 60% degradation
in 20 min under solar irradiation. The optimum catalyst concentration was identified as 10 g/L for
both photocatalysts. The influence of some process parameters showed that a combination of an
optimum dose of 5 mM H2O2 and solar radiation improved the performance of TiO2 from 16 to 47%.
The photocatalytic reaction data were fitted to the pseudo first and second-order kinetic models in
order to exploit the kinetic process of the photo-destruction reaction. The kinetic fits showed that
the degradation reaction better adhered to the second-order kinetic model when only ZnO and solar
radiation were applied, regardless of the tea type employed. The application of PAO in this novel and
cost-effective way has potential for the abatement of contaminated water to potable water. The use of
heterojunction photocatalysts could be explored in future research to further improve the process.

Keywords: photocatalytic advanced oxidation; humic water treatment; hydrogen peroxide;
sustainable treatment; photocatalytic destruction

1. Introduction

Raw water in the south-western Cape of South Africa is amongst some of the most
darkly coloured humic water in the world. This is largely due to the character of the
surrounding vegetation of the fynbos biome [1]. Organic matter in raw water is not
toxic in itself, but it can have a serious impact on drinking water quality [2]. It can act
as a carrier for toxic metals and can lead to unpleasant properties with regards to taste,
colour, and odour [3]. Furthermore, it can lead to the formation of harmful disinfection
by-products during chemical water treatment processes. It can also inhibit other treatment
processes, as it contributes to membrane fouling and reduces the efficiency of adsorption
processes [2,4–7]. Due to the low rainfall and lack of reservoirs in South Africa, there is
the need to improve the quality of raw water supplies and, hence, increase the amount of
potable water by developing sustainable advanced processing methods [8].
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Advanced Oxidation Processes (AOPs) have been demonstrated to be highly effective
for the removal of organic pollutants in water [3,9]. These work through the use of ozone
(O3), Fenton’s reagent (H2O2 with ferrous ions), UV light, hydrogen peroxide, or a catalyst
for in situ generation of strong chemical oxidants; the main oxidative species would be
hydroxyl radicals [10–12]. Often, these AOPs are used in combination with biological
treatment to provide a more effective and economical treatment of the contaminated
water [13–15]. The main challenge this method faces is that, to reach full mineralisation
of organics, large quantities of oxidants and/or long irradiation times are needed, which
reduce economic feasibility [3].

In order to simulate the humic water, this study used brews produced from domes-
ticated versions of the species responsible. Aspalathus linearis, cultivated to produce
rooibos herbal tea, and Camellia sinensis, the Black tea plant, were used to reproduce the
organic matter found in raw water supplies in these regions. In teas, phenolic substances
make up a significant weight proportion, which contribute to a large amount of colour
and character [16]. To date, fifteen main phenolic compounds have been identified in
rooibos tea, most of which have molecular weights greater than 400 and can hence be
considered relatively large [17,18]; it is anticipated that more will be identified as analytical
techniques improve. It has been suggested that Photo-Fenton processes are most effective
for the removal of lower molecular weight compounds, while UV/H2O2 or photocatalytic
treatment is more effective for removal of higher molecular weight compounds [19,20].
This study will examine how photocatalysts and light sources affect the decomposition of
brews made from the two teas.

Titanium dioxide (TiO2) is the most commonly used photocatalyst, but it is restricted
by its low quantum efficiency and large band gap (3.2 eV) [21–23]. Zinc oxide (ZnO)
possesses the same band gap energy, but it exhibits a higher adsorption efficiency, and so it
is a proposed alternative [9,15]. It is also significantly cheaper than other photocatalysts
(including TiO2) and is extensively found in nature [24]. The material is also considered to
be environmentally friendly [25,26]. Recent studies have shown that both ZnO and TiO2 at
a concentration of 1 g/L are effective at degrading caffeine in wastewater [27].

This study aims to compare the performance of zinc oxide and titanium oxide as
photocatalysts for the decomposition of the tea brews’ contaminated water over a range
of concentrations under natural light, a halogen light, and a UV light, combined with
hydrogen peroxide (Scheme 1). ZnO and TiO2 are traditional photocatalysts, and their
photocatalytic performances have been evaluated in this study. Previous studies, such as
the work by Tum et al. [28] reported the destruction of black tea by ZnO application. Zhang
et al. [29] degraded black tea by applying gut microbiota; Maghanga et al. [30] decolourized
black tea by electrocoagulation, while Sabaikai et al. [31] reported the decolourization
of oolong tea species by the photo-Fenton process. To the best of the knowledge of the
authors, the comparative application of both ZnO and TiO2 under varying light sources
for the abatement of rooibos and black tea have not been previously reported. Successful
destruction of the phenolic compounds, stemming from the teas used, can prove that this is
a viable route to explore in the treatment of dark humic waters found in the Western Cape
area of South Africa. This will provide the initial steps towards using water sources that are
currently unusable because of the humic material content. It is intended that the method
will be environmentally friendly and applicable on a realistic scale.
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Scheme 1. Schematic diagram of the study [9]. 
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ionised water and (B) 0.1% formic acid in acetonitrile. Analysis was performed on a 
Thermo Scientific UltiMate 3000 UHPLC (Brucker, Johannesburg, South Africa) that used 
negative ionisation-mode ESI interface. This was performed using a C18 rapid resolution 
column. The chromatographic gradient was set at initial conditions of 98% eluent A fol-
lowed by multiple subsequent gradients to 5% A at 24 min. A 0.3 mL/min flow rate was 
maintained throughout. Chromatographic separation was monitored using a Diode Array 
Detector (DAD) set to scan 200–500 nm coupled in Quadrupole time-of-flight mass spec-
trometry to an electrospray ionisation mass spectrometer (ESI-MS). Bruker Compass Data 
Analysis Software was used to identify key compounds, based on formulas, fragmenta-
tion profiles, retention times, area, tandem mass spectrometry data, and the literature val-
ues. 

2.3. Photocatalytic Procedures 
Experiments were conducted over the spring months, March to May, at the Univer-

sity of Witwatersrand in Johannesburg, South Africa. All experiments were performed in 
a glass batch beaker of 500 mL volume, using a magnetic stirrer. The light sources used 
were natural sunlight, an ASUMA (Pietermaritzburg, South Africa) 150 W Halogen Flood-
light (solar radiation), and a UV strip light within an ESCO (Johannesburg, South Africa) 
laminar flow cabinet, wavelength 254 nm. The artificial light (UV and halogen light) 
sources were illuminated 20 cm above the free surface of the solution. Natural sunlight 
was provided in Johannesburg, South Africa, at approximately 2000 m above sea level 
during the autumn period from March to May. A catalyst concentration range of 1 to 10 
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2. Materials and Methods
2.1. Materials

Zinc oxide (ZnO, 99.9% purity) and anatase titanium dioxide (TiO2, 99% purity)
powders were purchased from Sigma Aldrich (Kempton Park, South Africa). The ZnO
test powder was of particle size >5 µm and energy gap of 3.3 eV. The TiO2 powder had a
particle dimension of 21 nm, a BET surface of 35–65 m2/g, and a 3.2 eV band gap. Hydrogen
peroxide (H2O2) of minimum 30% assay was purchased from MERCK (Lethabong, South
Africa). Black tea was of the brand JokoTM (Pietermaritzburg, South Africa), and Rooibos
was the brand Laager® (Pinetown, South Africa). The tea solutions were prepared using
water at 85 ◦C and one teabag (2 g of tea) per 500 mL of water, soaked for 5 min. These
solutions were left to cool to room temperature overnight before use.

2.2. HPLC-MS Analysis of the Teas

HPLC analysis was performed using two mobile phases: (A) 0.1% formic acid in
deionised water and (B) 0.1% formic acid in acetonitrile. Analysis was performed on
a Thermo Scientific UltiMate 3000 UHPLC (Brucker, Johannesburg, South Africa) that
used negative ionisation-mode ESI interface. This was performed using a C18 rapid
resolution column. The chromatographic gradient was set at initial conditions of 98%
eluent A followed by multiple subsequent gradients to 5% A at 24 min. A 0.3 mL/min
flow rate was maintained throughout. Chromatographic separation was monitored using
a Diode Array Detector (DAD) set to scan 200–500 nm coupled in Quadrupole time-of-
flight mass spectrometry to an electrospray ionisation mass spectrometer (ESI-MS). Bruker
Compass Data Analysis Software was used to identify key compounds, based on formulas,
fragmentation profiles, retention times, area, tandem mass spectrometry data, and the
literature values.

2.3. Photocatalytic Procedures

Experiments were conducted over the spring months, March to May, at the University
of Witwatersrand in Johannesburg, South Africa. All experiments were performed in a
glass batch beaker of 500 mL volume, using a magnetic stirrer. The light sources used were
natural sunlight, an ASUMA (Pietermaritzburg, South Africa) 150 W Halogen Floodlight
(solar radiation), and a UV strip light within an ESCO (Johannesburg, South Africa) laminar
flow cabinet, wavelength 254 nm. The artificial light (UV and halogen light) sources
were illuminated 20 cm above the free surface of the solution. Natural sunlight was
provided in Johannesburg, South Africa, at approximately 2000 m above sea level during
the autumn period from March to May. A catalyst concentration range of 1 to 10 g/L and
H2O2 dose, was added to the tea solutions, with hydrogen peroxide when required, and
allowed to equilibrate in the dark for 30 min prior to photodegradation experiments. After
this, the solutions were exposed to the selected irradiation source to initiate the reaction.
Constant agitation at 100 × G was maintained throughout in order to keep the suspension
homogeneous. Catalyst concentrations of 1, 2, and 10 g/L and H2O2 doses of 5, 10, and
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100 mM were tested. The pH was monitored and remained between 6.5 and 8.5 in all cases,
ensuring that the photodecomposition of ZnO, which occurs around a pH of 4, did not
happen. Samples were taken at 0, 30, 60, and 120 min and analysed using a SHIMADZU
(Roodepoort, South Africa) UV-1800 UV-Vis Spectrophotometer and quartz cuvettes. The
spectrum of tea within the range 190 to 400 nm exhibited a main band with a maximum
at 200 nm for Rooibos tea and 204 nm for Black tea. Using the absorbance at this λmax
indicates the degree of photodegradation X at a function of time, as shown in Equation (1):

X =

(
1− At

A0

)
(1)

where; A0 is the initial absorbance of the sample, and At is the absorbance at time t [32].

3. Results and Discussion
3.1. Characterization of Rooibos and Black Tea

Figure 1a,b are HPLC-MS chromatograms of Black tea and Rooibos tea, respectively,
showing a clear difference in the composition and explaining the different behaviours
between them. Despite both teas being brewed using the same dry weight of tea, temper-
ature, and brew time, a higher rate of extraction occurred in black tea, as shown by the
much greater chromatographic intensity. The relative difference in concentration of the
eight main components of tea is shown in Figure 1c, which is based on the area under the
chromatographic peaks. The main differences are a greater level of theaflavin-3-gallate
in Rooibos tea, but lower levels of all other compounds found. There is a significantly
higher level of quercetin-rhamnosylgalactoside, gallic acid, quercetin-3-galactoside, and
epicatechin-3-gallate in Black tea. It was also found that caffeine is present in Black tea, but
not in Rooibos. These findings are consistent with the literature, as Rooibos is known to be
caffeine free and have a lower polyphenolic content than black tea [18,33,34]. In addition to
the verified compounds, the HPLC chromatograms in Figure 1a,b show further evidence
of differences in composition between the brews. An example of this is that Rooibos tea
contains compounds, which have a retention time of 17.5 min. These do not exist in black
tea, and one of these is suggested to be vanillic acid [35].
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Figure 1. (a) HPLC-MS chromatogram of Black tea; (b) HPLC-MS chromatogram of Rooibos
tea; (c) Comparison of area under peaks of chromatographically identified compounds. In all
cases, the compounds are 1: epigallocatechin-3-gallate, 2: gallic acid, 3: Epicatechin, 4: quercetin-
rhamnosylgalactoside, 5: quercetin-3-galactoside, 6: epicatechin-3-gallate, 7: theaflavin, and 8:
theaflavin-3-gallate.

3.2. Photocatalytic Degradation with Sunlight

Clearly, a valid process using natural sunlight would significantly lower the costs
of the process and would also provide extra flexibility for the location of any treatment
system. However, poor degradation (<5%) was achieved in all cases in this study, even at
a high catalyst concentration, showing the level of light intensity to be inadequate. It is
also likely that the high catalyst concentrations provided a high optical thickness of the
solution, further reducing the photocatalytic effect.

3.3. Photolysis with Halogen and UV Light without Catalysts

Figure 2 shows the degradation of Black and Rooibos teas when only the halogen (solar
radiation) and UV light sources were used for photolysis, showing little difference. The
difference in degradation, based on the tea type, was also demonstrated to be insignificant,
and a maximum of 9% degradation was achieved in Black tea and 11% in Rooibos tea from
UV photolysis.
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3.4. Impact of Catalyst Concentration under Artificial UV and Solar Irradiation

It has been reported that the amount of catalyst used directly influences the overall
photocatalytic reaction rate up until the saturation stage. After this, the light photon
adsorption coefficient decreases (the light cannot penetrate as far into the solution), and
a light-screening effect can be created by any excess photocatalyst, reducing the surface
exposed to irradiation and, hence, the efficiency [9]. Therefore, it is essential that the
optimal catalyst dosage is determined for greatest efficiency. Figure 3 shows the maximum
level of degradation achieved at three catalyst loads for the treatment of Rooibos and
Black teas, using ZnO and TiO2 under the halogen lamp (solar radiation), with 10 g/L
giving the best results. Adsorption onto the photocatalyst probably plays a role here, as the
concentration of TiO2 is unrealistically high for photocatalysis, which takes place only on a
thin layer near the interface. TiO2 shows better performance for the degradation of Rooibos
tea, while ZnO shows better performance for the degradation of Black tea, demonstrating
how the composition of the wastewater is an important factor in catalyst selection. It is
likely that the ability to degrade polyphenols is significant.
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Figure 3. Impact of catalyst concentration on maximum degradation within 120 min under halogen
light (solar radiation).

Figure 4 shows the level of degradation of the teas using the catalysts with a UV light
source. As with halogen light (solar radiation), the optimal catalyst load in all cases is
10 g/L. However, the difference in degradation between the systems is less significant than
with halogen light. TiO2 under UV irradiation is the preferred choice for both teas.
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When comparing the results from solar radiation (halogen) and UV photocatalytic
degradation (Figures 3 and 4), the halogen light (solar radiation), using either catalyst,
at the optimal loading of 10 g/L, is most effective for treatment of Rooibos tea. A 62%
degradation using both TiO2 and ZnO is achievable under solar irradiation compared with
45% and 50% with ZnO and TiO2, respectively, for UV irradiation. When considering the
treatment of Black tea, the use of UV light is preferable, whilst the use of halogen light from
a halogen lamp is not appropriate if the photocatalyst TiO2 is used, but ZnO achieves the
same level of degradation (45%), regardless of the light source selected.

3.5. Impact of Hydrogen Peroxide Addition on Photocatalytic Degradation

The addition of H2O2 in photocatalytic advanced oxidation processes has been shown
to improve the degradation of organic pollutants due to the formation of OH. radi-
cals [36,37]. The role of H2O2 in this study is to ascertain its effect on the efficiency of
the applied semiconductor photocatalysts in addition to the photodecolourization process.
However, at too high a dose, H2O2 becomes a powerful hydroxyl scavenger [38]. As a
result, it is important to investigate the optimal dosing. Using the halogen light the optimal
hydrogen peroxide dose was found to be 5 mM for both catalysts and teas tested (Figure 5).
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Figure 5. The impact of hydrogen peroxide addition on the maximum photocatalytic degradations at
a 10 g/L catalyst concentration within 120 min under halogen light.

Degradation was achieved to a greater level in Rooibos tea compared with Black tea,
which is consistent with Figure 2. The addition of hydrogen peroxide does not improve
the level of degradation in Rooibos tea, and this is also the case when ZnO is used to
treat Black tea. However, dosing with hydrogen peroxide is significant when a halogen
lamp and titanium dioxide are used to degrade Black tea. The level of degradation was
improved from 16% to 47%, making the TiO2/halogen treatment method a viable option
when hydrogen peroxide is added to the solution in small quantities. This suggests that
the interaction between TiO2 and H2O2 causes dissociation of hydrogen peroxide to form
hydroxyl radicals or, alternatively, it could reduce the recombination of the valence band
hole and conduction band electron. The work by Li et al. [39] is in agreement with this, and
it was found that H2O2 extended the photo-response of TiO2. It is unlikely that the visible
light alone caused significant dissociation of H2O2 due to the negligible improvements
seen in the other cases.

An amount of 5 mM of H2O2 is the preferred dose for Rooibos tea, but a higher
dose of 10 mM is favoured for the treatment of black tea for both catalysts tested when
UV irradiation is the light source, as shown in Figure 6. This is explained by the higher
polyphenolic content of the black tea, which negates the hydroxyl scavenger nature of
H2O2, as there is a significantly higher quantity of organic matter compared to the quantity
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of hydrogen peroxide. This increases the likelihood of the hydroxyl radicals’ consumption
by interaction with organic matter over interaction with H2O2 [40].
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Figure 6. The impact of hydrogen peroxide addition on the maximum photocatalytic degradations at
a 10 g/L catalyst concentration within 120 min under UV light.

Unlike the systems degraded by halogen light, the addition of hydrogen peroxide to
systems under UV light leads to significant improvements in performance. ZnO/UV/H2O260
treatment of rooibos tea improved degradation by 12% from 45 to 57% compared with
ZnO/UV, while the addition of 5 mM H2O2 to 10 g/L TiO2 increased Rooibos tea degrada-
tion from 50% to 59%. Black tea degradation by ZnO under UV light was improved from
45% to 52% when 10 mM H2O2 was added. Degradation with TiO2 and H2O2 improves
from 48% to 53%. This result is in agreement with Li et al. [39], who found that H2O2
directly dissociates under UV light, but not to a significant degree under visible light.

3.6. Comparison of Degradation with Time for Optimised Treatment of Rooibos Tea

The degradation with time of the optimised ZnO photocatalysis processes is shown
in Figure 7. Solar-based photocatalysis of Rooibos tea, using ZnO, is clearly preferential.
UV-based photocatalysis, without any hydrogen peroxide added, is the least effective. Lee
and An [41] found similar results, but with less significant differences seen. There is little
variation between the other optimised methods. Therefore, from an environmental and
economic perspective, Solar/ZnO photocatalysis would be the best option in this case.

The optimised processes of TiO2 photocatalytic degradation of rooibos tea are shown
in Figure 8. It is clear that UV/TiO2 photolysis is the least effective method, with little
difference seen between the other combinations examined. Regardless of the light source,
the majority of degradation occurs within the first 30 min of treatment. This is beneficial
as short treatment times could prove sufficient for less heavily polluted waters. The short
degradation times can possibly be attributed to the short lifetime of the generated radicals
destroying the organic material, which implies a limited destruction capability in the
presence of an excess of natural organic matter and colour.

Using TiO2 and ZnO without hydrogen peroxide with the halogen lamp, both achieved
the same level of degradation (62%), and, so, either photocatalyst can be selected. Using
ZnO would be preferable, as it is comparatively inexpensive and is widely available, as
well as being easier to handle in bulk and having a high particle surface area. For this
specific application, the pH remained neutral, and, so, there is no concern about ZnO’s
relatively high solubility in acidic conditions.
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3.7. Comparison of Degradation with Time for Optimised Treatment of Black Tea

Figure 9 shows that ZnO was a suitable catalyst in all systems for the degradation of
Black tea, but Figure 10 shows that hydrogen peroxide is required if using a halogen lamp
with TiO2. Degradation is improved further by using UV light. These results clearly show
that ZnO is more suitable for degrading Black tea.
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Figure 9. (a) The ZnO photocatalytic degradation efficiency of Black tea with time under halogen
light (solar radiation) at a catalyst concentration of 10 g/L and 5 mM H2O2 when in the solar process
and 10 mM H2O2 when with UV. (b) A normalized plot of the ZnO photodegradation of Black tea.
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3.8. Kinetic Study

The photodecolourization data were fitted into pseudo-first order and second-order
reaction kinetic models in order to exploit the kinetic study of the photodestruction process.
The pseudo-first-order equation is given in Equation (2):

ln
(

A
A0

)
= −kt (2)

where Ao is the initial concentration of the reference contaminated water, A is the final
concentration of the contaminated water at different treatment time, t is the time in minutes,
and k is the apparent kinetic rate constant for different photocatalysts. Plotting a graph
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of ln (A/A0) against t yields a slope equivalent to the apparent kinetic rate constants. The
integrated rate law for the second-order reaction is shown below:

A→ P is 1/[A]_t = kt + 1/[A]_0 (3)

Because this equation has the form y = mx + b, a plot of the inverse of [A] as a function
of time yields a straight line.

Kinetic fits of the photocatalytic degradation of the two tea solutions with ZnO and
TiO2 photocatalysts under various conditions indicate that, when only light radiation
is employed in conjunction with ZnO, the degradation reaction follows second order
kinetics, regardless of the tea type employed. In the case of using light radiation (UV
and sunlight) together with the TiO2 photocatalyst, there is no clear indication whether
first- or second-order kinetics prevail during the degradation reaction of both tea types.
When the oxidant hydrogen peroxide is utilised together with light radiation, and ZnO is
the photocatalyst employed, the degradation reaction of both teas tend towards obeying
first-order kinetics. Under similar conditions, but employing TiO2 as the photocatalyst, one
could once again not discern any definite tendency towards either first or second order
kinetics in the degradation of both black and Rooibos teas. Therefore, while clear kinetic
patterns could be discerned in the degradation reactions of the two teas with ZnO as the
photocatalyst, this was not the case when TiO2 was employed as the photocatalyst. The
corresponding 1st and 2nd order values are presented in Table 1.

Table 1. Table showing the tea type, treatment type, 1st-order kinetics, and 2nd-order kinetic fits.

Tea Type Treatment Type R2 (ln(A/Ao) K (min−1) R2 (1/A-1/Ao) K2 (L mg−1 min−1)

Black ZnO + UV 0.349 0.107 0.931 0.0009
Black ZnO + Solar 0.934 0.008 0.939 0.0016
Black ZnO + UV + H2O2 0.859 0.0017 0.235 0.0028
Black ZnO + SOLAR + H2O2 0.723 0.0018 0.499 0.0030
Rooibos ZnO + UV 0.853 0.0070 0.841 0.0014
Rooibos ZnO + Solar 0.899 0.0102 0.997 0.0068
Rooibos ZnO + UV + H2O2 0.849 0.0098 0.651 0.0024
Rooibos ZnO + SOLAR + H2O2 0.849 0.0116 0.659 0.0031
Black TiO2 + UV 0.918 0.0016 0.929 0.0032
Black TiO2 + Solar 0.915 0.0012 0.907 0.0013
Black TiO2 + UV + H2O2 0.929 0.0007 0.934 0.0015
Black TiO2 + SOLAR + H2O2 0.897 0.0041 0.885 0.0064
Rooibos TiO2 + UV 0.948 0.0040 0.968 0.0069
Rooibos TiO2 + Solar 0.988 0.0041 0.996 0.0092
Rooibos TiO2 + UV + H2O2 0.534 0.0025 0.629 0.0054
Rooibos TiO2 + SOLAR + H2O2 0.975 0.0024 0.984 0.0068

4. Conclusions

The study investigated the effectiveness of the application of photocatalytic advanced
oxidation (PAO) for the treatment of raw water contaminated with humic material from
fynbos biome plants, using Black and Rooibos teas as the model solutions. The study tested
ZnO and TiO2 and three light sources (natural sunlight, halogen light, and UV light). The
treatment of the two teas by only photolysis was observed to be minimal. Results obtained
from the study showed that over 50% degradation was achieved when a dose of 10 mM
H2O2 was used in the degradation of black tea. However, a combination of solar and H2O2
showed a 47% efficiency for both photocatalysts. When only solar radiation (halogen light)
was applied, TiO2 showed a poor performance in the decolourization of black tea. The
study suggests that TiO2 is efficient under specific solar radiation conditions. The kinetic
study found that, when ZnO was used with solar radiation alone, the degradation reaction
followed second-order kinetics for both tea types. However, there was no clear indication of
whether the pseudo first- or second-order kinetics prevail during the degradation reaction
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of both types under UV and sunlight when TiO2 was applied. The photodegradation
reaction of both teas were observed to conform to the pseudo first-order kinetics when ZnO
was applied in combination with H2O2 and solar radiation.

The results obtained from the study suggest that ZnO is a more effective photocatalyst
than TiO2 in the treatment of dark humic matter under solar radiation, without the need
for H2O2 to enhance its performance. Despite being more extensively used because of a
greater knowledge of its photocatalytic properties, TiO2 was shown in this study to be a
less suitable catalyst choice.

The stability and reusability of the photocatalysts in the tea solutions are recommended
for future studies. Heterojunction photocatalysts should be explored in the future to
improve the process further.
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