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Introduction: Through the production of prostacyclin, cyclooxygenase (COX)-2 protects the cardiorenal

system. Asymmetric dimethylarginine (ADMA), is a biomarker of cardiovascular and renal disease. Here

we determined the relationship between COX-2/prostacyclin, ADMA, and renal function in mouse and

human models.

Methods: We used plasma from COX-2 or prostacyclin synthase knockout mice and from a unique indi-

vidual lacking COX-derived prostaglandins (PGs) because of a loss of function mutation in cytosolic phos-

pholipase A2 (cPLA2), before and after receiving a cPLA2-replete transplanted donor kidney. ADMA, arginine,

and citrulline were measured using ultra-high performance liquid-chromatography tandem mass

spectrometry. ADMA and arginine were also measured by enzyme-linked immunosorbent assay (ELISA).

Renal function was assessed by measuring cystatin C by ELISA. ADMA and prostacyclin release from

organotypic kidney slices were also measured by ELISA.

Results: Loss of COX-2 or prostacyclin synthase in mice increased plasma levels of ADMA, citrulline,

arginine, and cystatin C. ADMA, citrulline, and arginine positively correlated with cystatin C. Plasma

ADMA, citrulline, and cystatin C, but not arginine, were elevated in samples from the patient lacking COX/

prostacyclin capacity compared to levels in healthy volunteers. Renal function, ADMA, and citrulline were

returned toward normal range when the patient received a genetically normal kidney, capable of COX/

prostacyclin activity; and cystatin C positively correlated with ADMA and citrulline. Levels of ADMA and

prostacyclin in conditioned media of kidney slices were not altered in tissue from COX-2 knockout mice

compared to wildtype controls.

Conclusion: In human and mouse models, where renal function is compromised because of loss of COX-2/

PGI2 signaling, ADMA levels are increased.
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N
onsteroidal anti-inflammatory drugs (NSAIDs)
work by blocking prostanoids produced by the

inducible enzyme COX-2. COX-2 is also expressed
constitutively in various anatomic locations1 where,
among other functions, it protects the cardiovascular
system.2 Although the location(s) of cardioprotective
COX-2 and the associated mechanisms remain unclear,3

the kidney2,4,5 and areas of the vasculature6 have been
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suggested as important. In the kidney, COX-2 is local-
ized to the medulla region1,4 within interstitial cells
(fibroblast-like),7,8 where its activity regulates salt
and water homeostasis, salt sensitive hypertension,
papillary integrity, and apoptosis.7 In addition, in a
systematic analysis of regional blood flow, we found
that of the regions where COX-2 is expressed constitu-
tively, blood flow was only reduced by acute COX-2 in-
hibition in the kidney.9 In line with this, of the COX-
products, prostacyclin serves as a local vasodilator
and protects against ischemia and fibrosis.10 PGE2 can
also serve as a vasodilator in the kidney although its
pharmacology is more complex,11 and PGE2 can
contribute to renal dysfunction in some settings.11

As a consequence of the protective role of COX-2 in
the kidney, NSAIDs increase the risk of renal compro-
mise and hypertension particularly in those with un-
derlying renal stress.12 NSAIDs also increase the risk of
heart attacks and strokes,13 which may (in part) be
directly or indirectly explained by the proatherogenic
and prothrombotic environment associated with renal
dysfunction.14 These features can be recapitulated in
mice in as much as pharmacologic blockade and/or ge-
netic deletion of COX-2 reduces renal function,15-17 el-
evates blood pressure,18 increases atherosclerosis,19 and
exacerbates thrombosis18,20; although some of these ef-
fects are dependent on dose or type of NSAID, duration
of treatment, and/or genetic background.21

Our work has suggested a link between inhibition of
COX-2-derived prostacyclin in the kidney and in-
creases in the methylarginine, ADMA.17,22 ADMA is
formed when arginine residues in proteins are meth-
ylated by protein arginine methyltransferase enzymes
and proteins are subsequently broken down.22,23

Although ADMA may be formed in all cells, the kid-
ney is a prime site for generation, metabolism, and
excretion of methylarginines. ADMA is a natural in-
hibitor of the cardioprotective enzyme endothelial ni-
tric oxide synthase (eNOS)24 and therefore, events in
the kidney resulting in increased ADMA levels may
reduce renal and systemic endothelial function at the
level of eNOS.25,26 In line with this, ADMA is a
biomarker of renal dysfunction27 and of cardiovascular
risk and all-cause mortality.28,29 Furthermore, Ricciotti
et al.30 showed that in rodent models where COX-2 was
inhibited or knocked out postnatally, renal function,
blood pressure, and plasma ADMA levels remained
normal but that ADMA increased in line with blood
pressure and creatinine in mice treated with angio-
tensin II; and that reduced renal function correlated
with ADMA in normotensive and hypertensive mice
treated with or without the NSAID naproxen.

It is therefore likely that the link between COX-2
and ADMA is in whole30 or in part17,22 driven by

reciprocal effects on renal function and that, increases
in ADMA associated with loss of COX-2 would be
directly related to renal dysfunction.

To further our understanding in this area, in the
current study we have used samples from COX-217,31

and prostacyclin synthase (PGIS) knockout mice17

to compare plasma levels of ADMA with the renal
function marker cystatin C. To understand the rela-
tionship between renal function and ADMA in a
human model and the kidney specifically, we have
used samples from a patient with inherited human
group IV A (cytosolic phospholipase A2) cPLA2a

deficiency.32 Because cPLA2a is responsible for the
liberation of arachidonic acid (substrate) for COX-2,
this patient displayed an almost complete lack of
prostanoid synthetic capacity.32,33 The patient sub-
sequently underwent a kidney transplant receiving a
normal (cPLA2 sufficient) organ, which restored the
patient’s ability to produce prostanoids in the kidney
but not elsewhere in the body.34 Using samples from
this patient before and after the kidney transplant,
we have been able to determine directly the contri-
bution of kidney COX activity to renal function and
circulating levels of ADMA. Because ADMA is
derived from arginine and arginine cycles with
citrulline, we have also reported levels of arginine
and citrulline in plasma samples analyzed in this
study. Finally, to delineate the effects of COX-2
deletion on synthetic capacity in vitro from renal
function in vivo, we also measured ADMA from
mouse organotypic kidney slices in culture.

METHODS

Human Samples

This study utilizes samples from a patient with a ho-
mozygous 4 bp deletion (g.155574_77delGTAA) in the
PLA2G4A gene resulting in a complete loss of cPLA2a

protein expression and a profound inability of whole
blood, isolated platelets, peripheral blood monocytes,
or blood outgrowth endothelial cells to release eicosa-
noids and reduced levels of urinary markers of pros-
tacyclin and thromboxane.34 The clinical, genetic, and
phenotypic details of the patient are published else-
where.32-34 The patient had a lifetime history of
gastrointestinal disease with a diagnosis of cryptogenic
multifocal ulcerous stenosing enteritis and was found
to carry homozygous 4 bp deletion (g.155574_77delG-
TAA) in the PLA2G4A gene resulting in a frameshift of
10 amino acids before a premature stop codon
(p.V707fsX10) and the loss of 43 amino acids (residues
707–749) at the C terminus of group IV A cPLA2a.

32

Renal function declined because of tubulointerstitial
nephritis (identified as xanthogranulomatous

TRANSLATIONAL RESEARCH P Ferreira et al.: Renal Function COX-2 and ADMA

1232 Kidney International Reports (2023) 8, 1231–1238



pyelonephritis on renal biopsy), leading to end-stage
renal failure requiring dialysis.

Blood was collected into heparinized tubes by
venipuncture, and plasma was separated by centrifu-
gation from 9 healthy volunteers and the patient
bearing the homozygous mutation in the PLA2G4A
gene (8 samples pretransplant and 5 samples post-
transplant). The pretransplant samples were taken from
between 27 months, 24 days, and 1 month, and 19 days
before the transplant. After the kidney transplant had
stabilized, blood samples were collected for analysis at
1 to 6 months posttransplant. Studies were conducted
in accordance with the principles of the Declaration of
Helsinki after local ethical approval (healthy volun-
teers: St Thomas’s Hospital Research Ethics Committee,
reference 07/Q0702/24; individual lacking cPLA2a:
South East NHS Research Ethics Committee).

Mouse Samples

Male and female, 6 to 8-week-old mice lacking COX-
217,31 or PGIS22 were used and compared to age-matched,
sex-matched, and strain-matched wildtype controls. All
animal experiments were conducted in line with the
Animals (Scientific Procedures) Act 1986 (2013 revision)
and EU directive 2010/63/EU. Procedures were reviewed
and approved by the Shantou University Institutional
Animal Research and Use Committee, the Animal Wel-
fare Committee of the State Agency Darmstadt (Ger-
many) and/or the Imperial College London Ethical
Review Panel (PP1576048). Mice were euthanized by
carbon dioxide narcosis delivered by inhalation, blood
collected from the inferior vena cava into heparin (10 U/
ml final; Leo Laboratories, UK) and plasma separated by
centrifugation.

Organotypic Kidney Slices

Mice were euthanized as above, exsanguinated, the
vasculature flushed with sterile phosphate buffered
saline, and both right and left kidneys collected into
sterile phosphate buffered saline. For slice preparation
(within 6 hours of tissue collection), whole kidneys
were immobilized in agarose (2%) and 150 mm slices
cut in the sagittal plane using a Compresstome VF-300-
0Z vibrating microtome (Precisionary Instruments,
USA). Slices were inspected to check their integrity and
composition and any adherent agarose carefully
removed. COX-2 expression is enriched in the medulla
region of the kidney, although COX-2 is also expressed
within the cortex.5,35 To capture as closely as possible
key cellular locations of renal COX-2, only slices con-
taining both medulla and cortex regions were used
(Supplementary Figure S1). Each slice was placed into
individual wells of a 48-well plate with 200ml of Dul-
becco’s Modified Eagle’s Medium (Sigma, UK)

supplemented with nonessential amino acids (Gibco,
UK), Pen-strip (Sigma, UK) and L-glutamine (Sigma,
UK) and slices incubated at 37�C in an atmosphere of
5% carbon dioxide. After 1 hour equilibration period,
the media were discarded and replaced, and slices
incubated for a further 24 or 72 hours before collection
of conditioned media for analysis. For each condition,
duplicate kidney slices were studied, and measure-
ments averaged. In these studies, individual (left and
right) kidneys were considered as separate n values.

Measurement of Analytes

ADMA, arginine, and citrulline were measured, within
a panel of amines, in human and mouse plasma by
ultra-high performance liquid-chromatography tandem
mass spectrometry following derivatization with
AccQTag as described previously.36 ADMA was below
the limit of detection in 2 of 55 samples and inputted at
the assay limit of quantification. ADMA was also
measured in the same samples using enzyme-linked
immunosorbent assay (ELISA). from DLD Diagnostika
(Germany) according to manufacturer’s instructions.
Mouse cystatin C was measured using a DuoSet ELISA
from R&D Systems (Abingdon, UK) according to man-
ufacturer’s instructions (1/2000 dilution). Human cys-
tatin C was measured using a LEGENDplex bead
capture immunoassay (Biolegend, UK) according to
manufacturer’s instructions (1/50 dilution) with data
acquired on a LSRFortessa II flow cytometer (BD Bio-
sciences, UK).

Statistics

Unless otherwise indicated data are presented as indi-
vidual points relating to samples from separate animals
or separate healthy donors or repeat collections, on
separate days, from the patient carrying a mutation in
the PLA2G4A gene. Analysis was performed using
Prism V9 software (GraphPad Software, Boston, MA).
Statistical tests are described in the figure legends and a
P-value < 0.05 is considered statistically significant.

RESULTS

In agreement with our previous work, germline, global
loss of COX-2,17 or PGIS22 resulted in significant in-
creases in plasma ADMA measured using ultra-high
performance liquid-chromatography tandem mass
spectrometry (Figure 1). Changes in ADMA levels
were validated using ELISA for samples from COX-2
knockout mice (wildtype, 0.60 � 0.101 mM: COX-2
knockout 0.88�0.09 mM) and PGIS knockout mice.22

Our group17 and others have shown that genetic
deletion of COX-215,16 or PGIS37 in mice results in
compromised renal morphology and/or function,
corroborating the critical role that COX-2 derived
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prostacyclin has in kidney homeostasis. Similarly, in
the current study where renal function was assessed by
plasma levels of cystatin C, we found compromise in
genetically modified mice lacking either COX-2 or PGIS.
Moreover, ADMA showed significant positive correla-
tions with cystatin C in mouse model samples (r ¼ 0.39,
P ¼ 0.03; Table 1).

Next, we measured ADMA and cystatin C in plasma
samples from healthy volunteers and from a patient
carrying a loss of function mutation in cPLA2 resulting
in global loss of COX activity. Samples were measured
before and after the patient received a genetically
normal kidney. After the transplant, the patient
retained an inability to produce prostanoids systemi-
cally but gained renal COX function.34 Further details
describing the clinical characteristics of this patient32-34

and levels of prostanoids34 from the samples used in
this study are described elsewhere. Similar to results in
mice lacking COX-2 or PGIS, we found significant in-
creases in plasma ADMA in samples from the patient
pretransplant compared to levels in healthy volunteers.
Renal function, assessed by cystatin C levels, was
decreased in the patient pretransplant compared to

healthy volunteers and restored after their kidney
transplant (Figure 2). This agrees with the clinical sce-
nario and our previous reported levels of plasma urea
and creatinine in this individual.34 In line with this, we
found that in samples from human subjects, levels of
ADMA directly correlated with cystatin C (Table 1).
Similar levels of ADMA were reported by Claes et al.38

who analyzed samples from incident renal transplant
recipients at the time of transplant and at 3 and 12
months after transplant. In their study, ADMA declined
from 0.63mM before transplant to 0.55 mM at 12 months
posttransplant, although in their study levels did not
normalize entirely (i.e. compared to control values).

Figure 1. Plasma ADMA (a), cystatin C (b), arginine (c), and citrulline (d) in mice lacking COX-2/prostacyclin (PGIS) synthase. Data are mean �
SEM for n ¼ 8/9 (COX-2 KO/WT); n ¼ 7/8 (PGIS KO/WT) analyzed by unpaired t-tests. *P < 0.05. ADMA, asymmetric dimethylarginine.

Table 1. Pearson correlation parameters r (Pearson Correlation
Coefficient) and P-values for analysis between cystatin C and amino
acids (ADMA, Arginine and Citrulline)

Analyte

Mice Human

r P r P

ADMA 0.3941 0.0282 0.4996 0.0179

Arginine 0.5809 0.0005 �0.1745 0.4373

Citrulline 0.7363 <0.0001 0.9304 <0.0001

ADMA, asymmetric dimethylarginine.
All mice samples were analyzed together and derived from data in Figures 1 and 2.
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The modest magnitude of correlation between ADMA
and renal function may be explained by the degree of
complexity in the biological pathways involved in the
synthesis, metabolism, and excretion of ADMA. ADMA
is metabolized by intracellular DDAH and a component
is excreted in urine. DDAH levels are reduced in
germline COX-2 knockout mice17 but not in conditional
knockout models,30 possibly because of renal dysfunc-
tion and oxidative stress, whereas in chronic kidney
disease, DDAH levels are reduced because of loss of renal
mass.39 To further understand metabolic contribution of
COX-2 derived prostacyclin and methylarginines, we
performed ex vivo studies using organotypic kidney
slices incubated in culture for 24 to 72 hours. Condi-
tioned media from kidney slices released ADMA and
prostacyclin at 24 hours, which was increased at 72
hours (Figure 3). No difference was seen in levels of
ADMA or prostacyclin released in vitro from kidney

slices from COX-2 knockout mice compared to wildtype
controls. On the face of it, these results suggest that
increases in ADMA seen in plasma are primarily a result
of renal clearance. However, it should be noted that
although using intact kidney slices has the advantage of
including gross renal tissue and therefore capture all cell
types, it has the disadvantage of potentially missing
events in specific regions and a loss of signaling
compartmentalization. This limitation explains the lack
of effect of COX-2 deletion on prostacyclin release. As
detailed above, COX-2 in the kidney is critically
important, but it is expressed in highly localized regions
whereas COX-1 predominates throughout.40,41 It should
also be noted that metabolic processes may be influenced
as a direct result of tissue culture.

ADMA is a competitive inhibitor of eNOS. In addi-
tion to prostacyclin, endothelial derived nitric oxide
protects the kidney as a well-established vasodilator.42

Figure 2. Plasma ADMA (a), cystatin C (b), arginine (c), and citrulline (d) in samples from human subjects with or without renal prostanoid
synthetic capacity. Data from plasma samples of healthy volunteers (HV) or from a patient carrying a homozygous 4 bp deletion
(g.155574_77delGTAA) in the PLA2G4A gene resulting in a complete loss of cPLA2a protein expression and profound reductions in the gen-
eration of eicosanoids before (Pretransplant) and after (Posttransplant) receiving a genetically normal kidney which restored renal prostanoid
production.34 Data are mean � SEM for n ¼ 9 (HV); n ¼ 8 (Pretransplant); n ¼ 5 (Posttransplant) analyzed by 1-way ANOVA followed by
Dunnett’s multiple comparisons test. *P < 0.05. ADMA, asymmetric dimethylarginine.
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Through increased levels of inhibitory ADMA, it is
therefore conceivable that loss of renal COX-2/
prostacyclin drives renal dysfunction by a combina-
tion of reduced prostacyclin and reduced eNOS activ-
ity. As a competitive inhibitor, the potency of ADMA
against eNOS is directly proportionate to the levels of
the available substrate, arginine. Arginine is a semi-
essential amino acid and can be generated within
endothelial cells43-48 from citrulline via the urea cycle.
In our study, plasma concentrations of arginine and
citrulline were increased in both COX-2 and PGIS
knockout mice (Figure 1), whereas citrulline (but not
arginine) was increased in plasma samples from the
patient before their kidney transplant (Figure 2).
Nevertheless, it is not possible to conclude from
measuring plasma levels alone, that either (i) increased
ADMA is functionally important on the eNOS system
in our study or that (ii) any effects of increased meth-
ylarginine on eNOS activity are mitigated by elevated
substrate. This is because it is the concentration of free
ADMA and other endogenous inhibitors versus the
concentration of free arginine within cells that dictates
eNOS activity. Levels of intracellular methylarginines
and arginine are influenced not only by circulating
levels of the amine but also by intracellular metabolism
and uptake mechanisms.49

DISCUSSION

COX-2 protects the cardiorenal system and though the
mechanisms remain to be fully established, restraining
ADMA is a plausible contributory pathway. Here, we
confirm previous observations using mouse samples
and report novel findings about an individual lacking
COX-2 activity secondary to a loss of function mutation
in cPLA2, before and after receiving a donor kidney.

Our findings corroborate the idea that COX-2 and
prostacyclin are critical regulators of renal function
and that elevations in ADMA are directly linked to
renal impairment. These findings are in line with the
recognized role that the kidney COX-2 plays in car-
diorenal protection and highlights the potential
importance of the kidney dysfunction in cardiovascu-
lar side effects of NSAIDs.
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