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ABSTRACT Cardiotocography (CTG) is a clinical procedure that is used to track and gauge the severity
of fetal distress. Although CTG is the most often used equipment to monitor and assess the health of the
fetus, the high rate of false positive results due to visual interpretation significantly contributes to needless
surgical delivery or delayed intervention. In this study, a novel approach is introduced where both printing
CTG paper is digitized and a machine learning approach is employed to detect the abnormality in the digitized
CTG signal. Image processing-based preprocessing steps are employed to make the printing of CTG paper
more convenient to extract the CTG signal. Various signal-processing techniques are used to calibrate the
extracted CTG signal. Then, Empirical Mode Decomposition (EMD) is used to decompose the CTG signal
into its frequency components and instantaneous frequency and spectral entropy features are extracted. After
feature normalization and feature selection with ReliefF algorithm, support vector machines (SVM) is used
for the classification of the normal and abnormal classes. A novel dataset is used in the experimental works
and various performance evaluation metrics are used for the evaluation of the achievement of the proposed
method. 10-fold cross-validation-based experiments show that the proposed method is quite efficient in
abnormality detection in printing CTG papers where an average accuracy score of around 90.0% is produced.

INDEX TERMS EMD, feature selection, image enhancement, printing CTG paper, signal reconstruction,
SVM classifier.

I. INTRODUCTION

Cardiotocography (CTG) is a widely used technique for
monitoring fetal well-being during pregnancy and labor. The
primary aim of CTG is to assess fetal heart rate (FHR)
and uterine contractions (UC) to detect potential complica-
tions and ensure the optimal health of the fetus [1], [2].
The traditional method of CTG involves the use of paper
strips to record FHR and UC, which are manually interpreted
by healthcare professionals [3]. This approach, however,
has several limitations, including inter- and intra-observer
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variability in interpretation, lack of standardization, and lim-
ited ability to detect subtle changes in fetal well-being.
The development of signal digitalization of CTG paper has
emerged as a promising solution to overcome these chal-
lenges. Digitalization of CTG paper involves converting ana-
log signals recorded on paper into digital format, which can
be analyzed by computer algorithms [4].

The resulting digital signal can be visualized on a
computer screen and analyzed using various quantitative
parameters. This approach offers several benefits, including
increased accuracy and reproducibility, standardized inter-
pretation, and the ability to detect subtle changes in fetal
well-being.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. Block diagram of the proposed method.

The objective of this study is to develop an accurate and
robust artificial intelligence-based system to read, evaluate
and classify CTG print images as normal or abnormal. Thus,
a novel approach is developed for both CTG paper digiti-
zation and classification of the digitized CTG signal into
normal and abnormal classes, respectively. Fig. 1 shows the
block diagram of the proposed method. While the CTG paper
digitization stage is based on image processing, the classifi-
cation of the CTG signals is rely on machine learning. The
input to the developed system is the scanned CTG paper and
the output is its class label. It is worth mentioning that only
the FHR signal is used in our developed system, so manual
cropping is carried out to acquire the FHR signal part of
the scanned CTG paper. The RGB color image space is
initially converted to Lab color space as the Lab color space is
designed to be perceptually uniform, meaning that a change
of the same amount in any direction in the color space will
result in a perceived color difference of approximately the
same magnitude.

This makes it easier to make adjustments to the color
and brightness of an image more intuitively. Then, median
filtering is applied to each Lab color channel separately.
And L channel is weighted (multiplied by a constant value)
to increase the lightness of the input image. Then the Lab
color space is converted to RGB color space again. After
these preprocessing operations, only the red channel is used
to extract the signal from the red grid background. Some
morphological operations are used to remove some unwanted
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binary noise and the signal amplitude calibration is carried
out to determine the amplitude of the signal in beats per
minute (BPM) scale. After signal extraction, an interpolation
operation is employed to fill the missing points of the signal
accordingly [15].

And all signals are resampled to fix their lengths to a
constant duration. A multiresolution signal analysis approach
namely Empirical Mode Decomposition (EMD) is employed
to the extracted FHR signals to decompose them into their
frequency components and for each decomposed signal two
feature extraction methods namely instantaneous frequency
and spectral entropy are used to extract features from the nor-
mal and abnormal FHR signals. A feature selection procedure
is employed for determining the most efficient feature set.
The well-known ReliefF approach is used for feature selec-
tion. Finally, the SVM classification approach is used in the
detection of abnormalities. Accuracy, sensitivity, specificity,
and F1-score metrics are used for the performance evaluation
of the proposed method. The main contributions of this study
are;

1-) An accurate Machine Learning (ML) system is pro-
posed for CTG printing image-based fetus abnormality
detection.

2-) Windowing-based data augmentation and multi-
resolution-based approach are used for increasing the
efficiency of CTG-based abnormality detection.

In the next section, the related works, the proposed method
and the related theories will be introduced. The experimental
works and results are given in Section IV. Discussions and
conclusions are given in Sections V and VI, respectively.

Il. RELATED WORKS

In recent years, several studies have investigated the potential
benefits of signal digitalization of CTG paper in clinical
practice.

One study conducted by Verburg et al. [5] compared
the performance of digitalized CTG with traditional CTG
in detecting fetal distress. The study found that digitalized
CTG was significantly more accurate than traditional CTG in
detecting fetal distress, with a sensitivity of 94.9% compared
to 73.0% for traditional CTG.

Austin et al. [6] used machine learning algorithms to
analyze digitalized CTG traces to predict adverse neonatal
outcomes. The study found that machine learning algorithms
were able to accurately predict adverse neonatal outcomes,
including low Apgar scores and neonatal intensive care unit
admission. These results suggest that signal digitalization of
CTG paper has the potential to improve fetal outcomes by
enabling earlier detection of fetal distress and appropriate
interventions.

Cifuentes et al. [7] used artificial intelligence (AI) algo-
rithm to analyze digitalized CTG traces to predict fetal
acidemia. The study found that the AI algorithms had a high
accuracy in predicting fetal acidemia, with a sensitivity of
87.5% and specificity of 86.2%. These findings suggest that
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FIGURE 2. A sample scanned CTG printing paper.

Al algorithms could be a valuable tool in clinical practice for
predicting adverse fetal outcomes.

Ayres-de-Campos et al. [8] developed a signal-processing
algorithm to analyze digitalized CTG traces and predict fetal
acidemia. The study found that the algorithm had a sen-
sitivity of 88.2% and a specificity of 85.9% in predicting
fetal acidemia. These results suggest that signal processing
algorithms could be a valuable tool for predicting adverse
fetal outcomes.

Ge et al. [9] used a deep learning model to classify CTG
signals as normal or abnormal based on FHR and UC patterns.
The model achieved a classification accuracy of 92.15%,
demonstrating the potential of deep learning techniques for
CTG interpretation.

Rana et al. [10] used an ensemble of machine learning
classifiers to classify CTG signals as normal, suspicious,
or pathological. The ensemble achieved a classification accu-
racy of 98.4%, indicating the potential of machine learning
methods for automated CTG interpretation.

Chudacek et al. [11] developed an algorithm to classify
CTG signals as normal, suspicious, or pathological based on
FHR and UC patterns. The algorithm achieved a classification
accuracy of 87.3%, indicating its potential for clinical use.

Another study by Chudacek et al. [12] developed an
algorithm to classify CTG signals as normal, suspicious,
or pathological based on FHR variability and acceleration.
The algorithm achieved a classification accuracy of 88.8%,
demonstrating the potential of more specific CTG signal
analysis for improving classification accuracy.

Amer-Wahlin et al. [13] found that automated CTG
interpretation had a higher false-positive rate compared to
visual interpretation by experienced clinicians. Therefore,
the development of automated CTG interpretation systems
should be accompanied by rigorous validation and testing to
ensure their accuracy and reliability in clinical practice. The
hybrid approach for digitizing CTG signals was proposed by
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Comert et al. [14]. The proposed method comprises two basic
steps, one based on image processing and the other on signal
processing. In the image processing stage, image filtering
and image segmentation techniques were utilized, while sig-
nal calibration was used in the signal processing step. The
average correlation coefficients for the FHR and UC sig-
nals were 0.9715+0.0168 and 0.9717+0.0465, respectively,
according to the authors’ analysis of 552 CTG recordings.

From the reviewed literature, it was seen that the accuracies
of the proposed methods were stacked mostly within the 80%
and 90% bands. So, more accurate methods are required for
producing reliable CTG-based abnormality detection systems
for early warning of both patients and clinicians.

lll. RESEARCH METHODOLOGY
As mentioned earlier, in this study, a two-staged approach

was proposed for abnormality detection in CTG printing
papers. These stages were signal extraction from the printed
CTG papers and classification of the extracted signal into
normal and abnormal classes, respectively. The input to the
signal extraction stage was the printed CTG papers, more
specifically, the FHR part [16]. And the input to the signal
classification part was the extracted FHR signal. As the first
part contains various image processing algorithms, the sec-
ond part was based on machine learning (feature extraction
and feature classification). Fig. 2 shows a sample of printed
CTG paper that was used as an input to the first part. As seen
in Fig. 1, the CTG printing papers contain both FHR (up) and
UC (down) signals.

While the FHR signal was scaled on the 30-240 BPM,
the UC signal was scaled on 0-100 mmHg. Fig. 3 shows the
output image after applying the image-based preprocessing
routines. As observed from Fig. 3, the colors were now more
enhanced and the background noise was eliminated. The sig-
nal trace was also more distinguishable from the background
grid. As the FHR signal was used for abnormality detection,
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FIGURE 4. The cropped FHR region from the printing CTG paper.

manual cropping was employed to acquire the FHR region
from the CTG printing paper. Fig. 4 shows the cropped FHR
region from the CTG printing paper. As seen in Fig. 4, the
30-240 BPM scale was cropped and further used in abnor-
mality detection.

A. PREPROCESSING

The input printing CTG paper image was initially converted
to the Lab color space and the L channel is weighted and
the other channels (a and b) are preserved. By doing so, the
lightness of the input image was enhanced. Then each L, a,
and b channel are filtered separately by using a symmetric
2D median filtering where the window size is selected as
5 x 5. After filtering, the Lab color space was reconverted
to the Red, Green, and Blue (RGB) color space for further
processes. In RGB color space, a contrast enhancement oper-
ation was applied to the R, G, and B channels. While the
red channel contrast was limited to the 0.15 and 0.22 range,
the green and blue channels’ contrasts are limited to the 0-1
range.

B. LAB COLOR SPACE
Lab color space was a color model used in digital image
processing and computer graphics. It is a device-independent
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color model, which means that it was not tied to any specific
device, such as a particular camera, printer, or display. Lab
stands for Luminance, a, and b, which are the three com-
ponents that make up the color space. The Luminance (L)
component represents the brightness of the color, with values
ranging from O to 100, where O is black and 100 is white.
The a and b components represent the color channels, with a
ranging from green to red and b ranging from blue to yellow.
The Lab color space is often used in color management
systems to help maintain consistent color reproduction across
different devices. It allows for a wider gamut of colors to be
represented than other color models such as RGB or CMYK
and is particularly useful for color correction and adjustment
in digital images.

C. OTSU THRESHOLDING

After preprocessing, the red channel of the enhanced FHR
image was considered for further processes. The red channel
is considered because the printing CTG paper has a red grid
background and the red channel only contains the signal
in a white background as shown in Fig. 5. And a simple
thresholding method can be used to extract the signal from the
background. To this end, the well-known Otsu thresholding is
used [17], [18].

VOLUME 11, 2023
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FIGURE 5. The red channel of the preprocessed FHR part.
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FIGURE 6. The thresholded image by the Otsu method.

Otsu thresholding is a method for determining the thresh-
old value automatically based on the intensity histogram of
the image. It assumes that the image has two classes of pixels:
foreground and background. The basic idea was to find the
threshold that maximizes the between-class variance, which
is a measure of the separability of the two classes.

The algorithm works as follows:

1) Compute the histogram of the input image.

2) Normalize the histogram to obtain a probability density
function.

3) Compute the cumulative sum and the cumulative mean
of the normalized histogram.

4) Compute the global mean of the image.

5) Compute the between-class variance for all possible
threshold values, using the formula:

2
o2 (1) = (ur.Pr — 1) )

(Pr.(1 = Pr))
where w7 is the global mean, u; is the mean of the fore-
ground class up to the threshold ¢, Pr is the probability of
the foreground class up to the threshold ¢, and (1 — Pr) is
the probability of the background class up to the threshold
t. The optimal threshold value is the one that maximizes
the between-class variance. Once the optimal threshold value
is found, it can be used to segment the input image into
foreground and background regions. Pixels with intensity
values above the threshold are considered foreground pixels,
while pixels with intensity values below the threshold are
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considered background pixels. After thresholding of Fig. 5,
Fig. 6 is obtained. As seen in Fig. 5, the signal is shown with
the white pixels in the dark background.

D. FINAL SIGNAL CONSTRUCTION

For obtaining the final FHR signal, for each column of the
image as shown in Fig. 6, the row numbers of the white pixels
are determined and the median of the row numbers was set
as the signal value for the considered column. The obtained
final FHR signal and its superimposed illustration in Fig. 4
are given in Fig. 7. As seen in Fig. 7, some parts of the
signal are missing and a sliding window of size 300 sample
length is used to complete the missing part of a signal by
employing the median operation. Besides, a spline interpola-
tion approach is used further tune the completed data accord-
ingly. In Fig. 8 (a) and (b), the completion of the missing
data points with moving median and the spline interpolation
approaches are given.

As observed in Fig. 8 (a), while the moving median
approach completes the missing data coarsely, the spline
interpolation approach produces more tuned samples as
shown in Fig. 8 (b).

After completion of the missing signal samples, all sig-
nals were resampled to 5120 sample length for making the
length of the signals constant. Thus, the final signal of y(¢)
is the amplitude of the signal in beats per minute (BPM)
scale.
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FIGURE 7. The obtained final FHR signal.
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E. EMPIRICAL MODE DECOMPOSITION

Empirical Mode Decomposition (EMD) is a signal process-
ing technique that decomposes a non-stationary signal into
a set of Intrinsic Mode Functions (IMFs). The method was
developed by Huang et al. [19] in 1998 and has since been
widely used in various fields such as signal processing,
finance, and neuroscience. The EMD method works by itera-
tively decomposing a signal into a set of. An IMF is extracted
by identifying all the local extrema (maxima and minima) in
the signal and interpolating between them using cubic splines.
The interpolated extrema form the upper and lower envelopes
of the IMF, which are then subtracted from the signal to obtain
the first IMF. The process was then repeated on the residual
signal until a stopping criterion is met. Let’s consider a signal
x(t), the EMD algorithm works as follows:

1) Identify all the local maxima and minima in the
signal x(t). Let these be denoted as maxima =
{my,my, ...,my} and minima = {ny,ny,...,nN},
respectively.

2) Interpolate between the maxima and minima using
cubic splines to obtain the upper and lower envelopes,
respectively:

o Upper envelope: u(t) = spline(maxima)
« Lower envelope: [(t) = spline(minima)

3) Compute the mean of the envelopes:

o Mean envelope: m(t) = (u(t) + 1(¢))/2

4) Subtract the mean envelope from the original signal to
obtain the first IMF:

IMF1(t) = x(t) — m(t) 2)

5) Repeat steps 1-4 on the residue signal (/MF 1(¢)) until
a stopping criterion is met (e.g., a preset number of
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IMFs are extracted, or the residue becomes a mono-
tonic function).
6) The final decomposition of the signal x(¢) is given by:

x (t) = IMF1(t) + IMF2 (t) + ... + IMFk (t) 4+ R(t)
3

where k is the total number of IMFs extracted and R(?)
is the residue signal. The EMD algorithm satisfies two
criteria for each IMF:
1. The IMF is a mono-component signal with a
well-defined instantaneous frequency.
2. The difference between the number of extrema
and zero crossings is at most one.
The EMD algorithm is iterative, and the number of IMFs
extracted depends on the complexity of the signal. The result-
ing IMFs can be used for further analysis, such as trend anal-
ysis or noise reduction. However, it should be noted that the
EMD algorithm has some limitations, such as the possibility
of mode mixing and the sensitivity to noise.

F. INSTANTANEOUS FREQUENCY AND SPECTRAL
ENTROPY

Instantaneous frequency (IF) is a measure of the frequency of
a signal at a specific point in time [20]. It can be calculated
from the time-varying phase of the signal as follows:

o Letx(t) be a signal with complex analytic representation
z(t) = x(t) +j * y(t), where j is the imaginary unit.

o The analytic signal can be written in polar form as z(t) =
A(t) % e¥¢®) where A(t) is the instantaneous amplitude
and ¢(¢) is the instantaneous phase of the signal.

« The instantaneous frequency of the signal is given by the
time derivative of the phase: IF (t) = (dp(t))/0t

VOLUME 11, 2023
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Spectral entropy (SE) is a measure of the complexity of a
signal’s frequency spectrum [21]. Spectral entropy is a mea-
sure of the distribution of power in the frequency domain and
does not provide any information about the temporal dynam-
ics of the signal. To capture the temporal dynamics, one can
compute the spectral entropy over short time intervals using
a sliding window approach. In this case, the spectral entropy
was computed for each window, resulting in a time-varying
measure of the complexity of the frequency spectrum. It is
related to the entropy of the power spectral density (PSD) of
the signal and is given by:

o Let X(f) be the Fourier transform of a signal x(¢) with
power spectral density P(f) = |X(f)|>.
o The spectral entropy H(f) is defined as: H(f) =
—1 [P (f) *log2 (P (f)) df
where the integral is taken over the frequency range of inter-
est. The spectral entropy ranges from 0 to log2(N), where
N is the number of frequency bins in the PSD. A value
of 0 indicates a completely flat spectrum, while a value of
log2(N) indicates a maximally complex spectrum with equal
energy distributed across all frequency bins.

G. RELIEFF FEATURE SELECTION

The definition of the feature selection process is the removal
of unnecessary, redundant, and noisy features from the origi-
nal data set and the selection of the most significant features
or optimum subset [22]. The Relief algorithm [22], a feature
weighting technique, has been enhanced with ReliefF [23],
[24]. Noisy and incomplete data cannot be handled by the
original Relief method. Moreover, this approach can only
be used to resolve binary classification issues. These issues
can be dealt with and multi-class problems can be resolved
using the ReliefF technique. While calculating the weights
of the features, the ReliefF method substitutes the Manhattan
distance for the Euclidean distance used in the original Relief
algorithm. The Manhattan distance is used by the ReliefF
method to first determine the k nearest hits H; and k near-
est misses M;(C) for the randomly chosen instance R;. The
weight vector W[A;] is then updated depending on the values
of R;, hitting H; and missing M;(C) for all features A.

w [Al] =W [Al] - DA,',R;,H/' + PA,',R,',H] (4)

where Dy, g, H; and Py; g, H; are defined as follows;

DR H;
_Z diff (Ai, Ri, H;) /m.k (5)
Pa, R H;
5 | riSamy i diff (i R, M; (©))]
C#Class(R;) m.k

(6)

where W [A;] represents is the weight value for the iy, feature
A.P (C) is the prior probability of class C, m is the process
cycle, and diff defines the Manhattan distance.
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H. DATA DESCRIPTION

The dataset was constructed by the authors and all ethical
issues were approved. The CTG dataset consists of 78 mea-
surements (39 normal and 39 abnormal), each consisting of a
series of 20-minute FHR and UC recordings, as well as the
classification of the fetal state as either normal or abnormal.
The measurements were obtained from 78 pregnant women
who were admitted to the Department of Obstetrics and
Gynecology at the Erzurum Regional Training and Research
Hospital in Erzurum, Turkiye between December 2022 and
January 2023. The recordings were obtained using a device
called the Sonicaid System 8002, which was connected to
the pregnant woman’s abdomen using two transducers. Fig. 9
shows sample FHR signals for normal and abnormal classes,
respectively. While the up row shows the normal FHR signals,
the down row depicts the abnormal FHR signals.

IV. EXPERIMENTAL ANALYSIS
Experiments were conducted on a computer having an Intel i7

microprocessor and 64 GB Ram. All coding was carried out
on MATLAB software. The experimental works were con-
ducted based on 10-fold cross-validation criteria and average
accuracy, sensitivity, specificity, and F1-score metrics were
used for performance evaluation metrics [25]. The confusion
matrix is a table used to evaluate the performance of a classifi-
cation model. It consists of four elements: true positives (TP),
false positives (FP), true negatives (TN), and false negatives
(FN). TP is the model that correctly predicted a positive
instance. FP is the model that predicted a positive instance
when it was negative. TN is the model that correctly predicted
a negative instance. And, FN is the model that predicted a
negative instance when it was positive. Thus, accuracy is
formulated as (TP + TN) / (TP + TN + FP + FN) the
proportion of all correct predictions. Sensitivity is defined as
TP / (TP 4 FN) the proportion of actual positive instances
that were correctly identified by the model. Specificity is
defined as TN / (TN + FP) the proportion of actual negative
instances that were correctly identified by the model. Lastly,
Fl-score is defined as 2 * (precision * recall) / (precision +
recall) - the harmonic mean of precision and recall, where
precision = TP / (TP + FP) and recall = TP / (TP + FN).
As mentioned earlier SVM classifier was used. For finding
the optimal parameters of the SVM classifier, a hyperparam-
eter tuning procedure was adopted for the SVM classifier.
As the number of samples in normal and abnormal classes
was low, each signal was divided into 512 samples length for
data augmentation. Thus, a total of 780 signals were obtained
for the classification part of the proposed study. A five-level
EMD was employed and in Fig. 10, the decomposition levels
were given for a normal and abnormal class. Columns a and
b show the normal and abnormal classes respectively. The
first row shows the input FHR signals and the other rows
show the decomposition levels 1 to 5, respectively. For each
decomposition level, the IF and SE features were extracted.
Thus for each FHR signal, a 1290-length feature vector was
obtained.
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FIGURE 9. The sample FHR signals for normal and abnormal classes.

TABLE 1. The performance evaluation metrics for the proposed method.

TABLE 3. The performance evaluation metrics for the CTU-UHB dataset.

Accuracy Sensitivity | Specificity F1-Score
(%) (%) (%) (%)
SVM 99.62 99.74 99.48 99.62

TABLE 2. The performance evaluation metrics for the other classifiers.

Accuracy | Sensitivity | Specificity F1-Score
(%) (%) (%) (%)
DT 97.94 97.69 98.21 97.94
KNN 98.71 98.71 98.71 98.71
BC 98.33 98.46 98.20 98.33
NN 99.1 99.23 98.97 99.10

For ReliefF-based feature selection, the number of nearest
neighbors value was set to 50 and the selected number of
features was set to 500 [26]. These values were determined
during the experimental works. In Fig. 11, the deviation of
the average accuracy against the number of selected features
was given. As seen in Fig. 11, the highest accuracy score was
obtained around the number of features 500. Fig. 12 shows
the minimum classification error plot of the optimized SVM
classifier.
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Accuracy | Sensitivity Specificity F1-Score
(%) (%) (%) (%)
Proposed
99.70 96.42 100 98.18
method

The training was completed after 30 iterations. The best
hyperparameters were obtained in the first iteration. The
expected minimum classification errors were around zero
except for the 4th iteration. The selected features were nor-
malized to zero mean and unit variance procedure. The SVM
training was run with a linear kernel and the training time was
206.48 seconds. The box constraint level was 0.0331. The
hyperparameters were optimized with Bayesian optimization.

The obtained cumulative confusion matrix was given in
Fig. 11. As seen in Fig. 13, only 3 samples were misclassified
and a total of 777 samples were correctly classified. The
Average accuracy was 99.62%.

The mentioned performance evaluation metrics were given
in Table 1. As seen in Table 1, the sensitivity, specificity,
and the F1-Score values were 99.74 %, 99.48%, and 99.62%,
respectively.

Other classifiers namely decision tree (DT), k-nearest
neighbor (KNN), Bayesian classifier (BC), and Neural net-
works (NN) also applied to the same task and the obtained
results were given in Table 2 [27], [28], [29].Various clas-
sifiers were used to show the capability of the extracted
and selected features in discrimination of the normal and
abnormal fetus based on the CTG signals.
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The hyper-parameters of these classifiers were also deter-
mined with Bayesian optimizations. As seen in Table 2, the
accuracy scores were in the range of 97.94% and 99.1%.
The NN classifier produced the highest accuracy score among
the other determined classifiers. Similarly, the sensitivity
scores were in the range of 97.69% and 99.23%. The speci-
ficity and F1-score values were also in the range of 98.21%
and 98.97%, and 97.94% and 99.10%, respectively. From
Table 2, it can be inferred that the NN classifier yielded
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better classification performance than the DT, KNN, and BC
classifiers. Besides, it is worth mentioning that the SVM
classifier outperformed the determined other classifiers.
Besides, the well-known CTU-UHB [11] dataset was also
used for performance validation of the proposed method. The
dataset contains 552 of the CTG samples and the length of
the signal samples is 7200. The experiments were conducted
based on the 10-fold-cross-validation test and obtained aver-
age results were given in Table 3. As seen in Table 3,2 99.70%
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TABLE 4. Summary of comparison with state-of-art models.

Authors Year Dataset Classifier Validation Method Accuracy
Ge et al. [9] 2019 CTU-UHB [11] Deep learning Hold out (75:25) 92.15%
Rana et al. [10] 2020 CTU-UHB [11] Ensemble of ML Hold out (80: 20) 98.40 %
Chudacek et al. [11] 2014 CTU-UHB [11] SVM Hold out (75:25) 87.30%
Chudacek et al. [12] 2017 CTU-UHB [11] ML Hold out (75:25) 88.80%
Ajirak et al. [30] 2022 CTU-UHB [11] Ensemble of classifiers bzﬁgzﬁot;vo out Cross- ¢370.9
Bursa et al. [31] 2017 CTU-UHB [11] CNN Hold out (80: 20) 94.10 %
Comert et al. [32] 2019 CTU-UHB [11] CNN Hold out (75:25) 93.32%
Zhao et al. [33] 2019 CTU-UHB [11] CNN Hold out (80:20) 98.34 %
Daydulo et al. [34] 2022 CTU-UHB [11] CNN Hold out (80: 20) 98.70 %
Parvathavarthine et al. [35] 2020 CTU-UHB [11] CNN Cross-validation (5-fold) 94.63 %
Frasch et al. [36] 2021 Own dataset CNN Hold out (80:20) 93.60 %
Proposed method 2023 Own dataset SVM Cross-validation(10 fold) ~ 99.62 %
Proposed method 2023 CTU-UHB [11] SVM Cross-validation(10 fold)  99.70%

True Class

Abnormal

Abnormal

Normal
Predicted Class

FIGURE 13. Cumulative confusion matrix for SVM classifier.

average accuracy score, 96.42% sensitivity, 100% speci-
ficity and 98.18% F1 score were produced by the proposed
method.
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V. RESULTS AND DISCUSSIONS
In this paper, a novel approach was presented for printing

CTG paper digitization and abnormality detection based on
digitized FHR signals. For printing CTG paper digitiza-
tion, an image processing-based approach was used and for
abnormality detection, machine learning was considered. The
proposed method was quite efficient for both printing CTG
paper digitization and the detection of abnormalities. A novel
printing CTG dataset was used in this study and satisfied
performance was obtained.

Table 4 shows a comparison of the proposed method with
various studies that have been conducted so far. Ge et al. [9]
used deep learning for CTG signal classification and obtained
a 92.5% accuracy score. Rana et al. [10] used an ensemble of
ML classifiers for normal and abnormal CTG signal classifi-
cation and obtained a 98.40% accuracy score. In the works of
Chudacek et al. [11], [12], authors used ML approaches for
the classification of the CTG signals and obtained 87.3% and
88.8% accuracy scores, respectively. Ajirak et al. [30] used
an ensemble of various classifiers with a publically available
dataset for the detection of the abnormalities in CTG signals
Authors used to leave two of our cross-validation approaches
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in their experiments and obtained an 83.7% accuracy
score.

Bursa et al. [31], Comert et al. [32], and Zhao et al. [33]
used quite similar approaches for CTG signal classifica-
tions. All authors used the Continuous wavelet transform and
short-time Fourier transform to convert the CTG signal into
a CTG image and pre-trained convolutional neural networks
(CNN) models were fine-tuned for classification purposes.
These authors used the CTU-UHB dataset and obtained
94.1%, 93.32%, and 98.34%, respectively. Duydulo et al. [34]
also used a CNN approach for CTG signal classification and
obtained a 98.7% accuracy score. Parvathavarthine et al. [35]
and Frasch et al. [36] also used CNN approach in their exper-
iments with CTG signal classification and obtained 94.63%
and 93.60 % accuracy scores respectively. Finally, in the last
row of Table 4, the achievement of the proposed method
on CTU-UHB dataset was given. As seen, a 99.7% average
accuracy score was obtained with the proposed method which
was the highest one that has been produced so far.

VI. CONCLUSION
This paper demonstrates the effectiveness of using image

processing and machine learning techniques for the automatic
digitization and classification of CTG recordings as normal
or abnormal. A novel approach is developed where image
processing algorithms were used for signal digitization and
a set of features was extracted from the CTG recordings
to achieve high levels of sensitivity and specificity in the
abnormality diagnosis of fetal distress. The results of the
study suggest that computerized systems for fetal distress
diagnosis have the potential to improve the accuracy and
consistency of fetal monitoring, which could lead to better
outcomes for both the mother and the baby. Furthermore, the
use of machine learning algorithms for fetal distress diagnosis
can reduce the workload of obstetricians, allowing them to
focus on more cases that are complex.

By the developed system, the CTG data may be diagnosed,
increasing the likelihood of early intervention for the preg-
nant woman and potentially lowering the risk of difficulties
for both mother and fetus. The diagnosis of this application
will also help medical practitioners save time. It can assist
midwives and their doctors in monitoring expectant patients
while they are doing their internship training (clinical prac-
tices). It will eliminate any potential delays in the interpreta-
tion of the CTG for young midwives and doctors who have
just entered the field. Hence, it aims to lower rates of sickness
and death in both mothers and infants.

The main limitation of the proposed study is the form of the
input CTG printing images. A well-designed scanning proce-
dure should be carried out to standardize the CTG printing
images. Besides, the manual cropping procedure can be seen
as another limitation of the proposed method.
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