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Abstract: Starting in late 2019, the coronavirus SARS-CoV-2 began spreading around the world and

causing disruption in both daily life and healthcare systems. The disease is estimated to have caused

more than 6 million deaths worldwide [WHO]. The pandemic and the global reaction to it severely

affected the world economy, causing a significant increase in global inflation rates, unemployment,

and the cost of energy commodities. To stop the spread of the virus and dampen its global effect,

it is imperative to detect infected patients early on. Convolutional neural networks (CNNs) can

effectively diagnose a patient’s chest X-ray (CXR) to assess whether they have been infected. Previous

medical image classification studies have shown exceptional accuracies, and the trained algorithms

can be shared and deployed using a computer or a mobile device. CNN-based COVID-19 detection

can be employed as a supplement to reverse transcription-polymerase chain reaction (RT-PCR). In

this research work, 11 ensemble networks consisting of 6 CNN architectures and a classifier layer

are evaluated on their ability to differentiate the CXRs of patients with COVID-19 from those of

patients that have not been infected. The performance of ensemble models is then compared to

the performance of individual CNN architectures. The best ensemble model COVID-19 detection

accuracy was achieved using the logistic regression ensemble model, with an accuracy of 96.29%,

which is 1.13% higher than the top-performing individual model. The highest F1-score was achieved

by the standard vector classifier ensemble model, with a value of 88.6%, which was 2.06% better than

the score achieved by the best-performing individual model. This work demonstrates that combining

a set of top-performing COVID-19 detection models could lead to better results if the models are

integrated together into an ensemble. The model can be deployed in overworked or remote health

centers as an accurate and rapid supplement or back-up method for detecting COVID-19.

Keywords: COVID-19; convolutional neural networks (CNNs); logistic regression ensemble; classification

1. Introduction

COVID-19 is a disease caused by the SARS-CoV-2 virus that infects cells in human
airways and leads to critical respiratory infections [1]. The virus mainly spreads from
infected people through droplets of different sizes when speaking, coughing or growling [2].
This allows the virus to be ejected and become airborne. Risk of infection increases in
crowded spaces and indoor environments with inadequate ventilation [3]. In the early
stages of the infection, COVID-19 quickly invades the cells of the respiratory system.
People who become infected may be asymptomatic or experience symptoms such as
coughing and fever. However, severe illness from the virus could lead to complications
such as pneumonia, cardiac disease, and organ failure in extreme cases [4]. Since it started
spreading in December 2019, the containment of COVID-19 has proved to be a challenge
for national healthcare systems worldwide [5]. As of November 2022, more than 6.5 million
confirmed deaths and 628 million confirmed cases of the disease have been diagnosed by
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the World Health Organization (WHO) with most confirmed deaths coming from America
and Europe. Several countries have developed vaccines, with the Oxford-AstraZeneca
and Pfizer-BioNTech being the most widespread worldwide, with 185 and 165 countries
using the vaccines, respectively [6]. Nevertheless, mass vaccination worldwide remains a
challenge, with some countries still having vaccination rates in the single digits, such as
Burundi, Papua New Guinea, and Haiti, or in the low double digits, such as Niger, Syria,
and Mali [7].

A key tool in containing the virus is early detection, as this allows for the containment
of the disease by putting sick individuals in quarantine and beginning treatment [8]. This
would also stem the further spread of the disease by limiting interaction between sick and
healthy individuals. The need for early detection has led to the mass adoption of reverse
transcriptase-polymerase chain reactions (RT-PCR) as a tool for identifying the pathogen.
Nevertheless, this method has drawbacks, such as lengthy test times [9] and up to 54% false
negatives [10]. An alternative proposal to RT-PCR is analyzing a radiologist’s chest X-rays
(CXRs) to determine whether a patient has been infected [11]. This method benefits from the
wide availability of radiography equipment which can cheaply and rapidly produce CXRs.
However, a bottleneck could be created where there is a lack of experienced radiologists
and radiology equipment [12].

Convolutional neural networks (CNNs) have proved to be effective in a variety of
medical image classification tasks such as the detection of diabetic retinopathy [13], the
detection of tumors [14] and the diagnosis of Alzheimer’s disease [15]. Medical image
classification has benefited from the growing availability of medical image datasets from
medical facilities worldwide. This has allowed researchers to develop innovative and more
accurate detection methods [16]. As CNNs proved themselves proficient in pathology
classification from radiographs [17,18], there has been a growth in studies evaluating the
use of CNN models to detect COVID-19-positive patients from CXRs [19–24]. These models
could be used to further verify the results of RT-PCR COVID-19 detection, or be used as a
viable alternative in heavily congested or remote health facilities. These models can then
potentially provide healthcare workers with a wider toolkit of possible COVID-19 detection
solutions in the face of environmental constraints.

Ensemble CNN models combine multiple CNN architectures to yield better results
than individual methods [25]. Ensemble models reduce the susceptibility to overfitting
that individual models suffer from, as multiple models override the results of a single
biased model. While there have been recent papers covering the performance of ensemble
models on CNNs [26], there are numerous ways to configure ensemble CNN models. A
comparison of the performance of different configurations has not been well covered in the
literature.

In this work, 6 CNN models were compared on their ability to differentiate between
X-rays of patients with COVID-19, healthy patients, and patients with pneumonia. The
models used for comparison include models that have performed well on the ImageNet
dataset, a well-known dataset used to benchmark image comparison [27]. The architectures
used in this study are VGG16, Inception, ResNet, MobileNet, EfficientNet, and DenseNet.
All model weights were pre-trained on the ImageNet dataset and then trained on the same
training chest X-ray dataset. The dataset has been aggregated from X-rays provided by
the Valencian Region Medical Image Bank (BIMCV) [28]. The CNN models were then
employed to construct ensemble models that used the models’ predictions as output. To
build the ensemble models, the models’ training predictions were passed as inputs to train
11 different classification models. The individual CNNs and the ensemble models were
then evaluated on accuracy and F1-score.

The paper provides a comparison of different ensemble deep learning CNN architec-
tures, drawing from a variety of classification and deep learning algorithms on the tasks of
COVID-19 detection and differentiation between COVID-19, pneumonia, and non-infected
lungs. Furthermore, it provides a comparison of the accuracy of deep learning ensemble
models, with different cadences and permutations to CNN-based models. The proposed
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research work introduces an SVC and logistic regression deep learning ensemble model
that is easy to deploy and achieves accuracy on par with other work in the field. The
study demonstrates that using an ensemble model will achieve more accurate results in
diagnosing patient CXRs for COVID-19 when compared to the performance of individual
CNN models, when these models are integrated into the ensemble. Finally, the paper
demonstrates the limitation of this strategy; it is dependent on the quality and number of
CNNs used in the ensemble.

The rest of the sections are organized as follows. Section 2 covers related work on
COVID-19 detection from CXRs using CNNs. Section 3 describes the methodology, the
dataset, the pre-processing and labeling, and the individual CNN and CNN ensemble
architectures. The performances of the individual CNN models are compared with each
other, the performances of the CNN ensemble models are compared with each other and
the base models, and comparisons of the results to previous work are depicted in Section 4.
Finally, conclusions are drawn in Section 5.

2. Literature Review

CNNs have proven to be highly effective models for image classification and pattern
recognition tasks. Their success in image recognition has led to investigations into using
CNNs for disease classification from medical images [17,18]. There has been an increase
in investigations into using deep learning to detect COVID-19. Research has focused pri-
marily on detection from CXR images and computer tomography (CT) scans [29]. Deep
bidirectional classification models have been used to detect COVID-19 from CT scans,
achieving an accuracy of 96.19% [30]. Fuzzy ensemble-based CNNs were able to achieve an
accuracy of 98% on publicly available CT-Scans [31]. Deep CT-Net, a pixel-wise attention
model, achieved an accuracy of 81% and an area under the curve of 92% [32]. Pulmonary
parenchyma has been automatically extracted from CT scans to assist a proposed SP-V-
Net architecture to diagnose COVID-19. The model achieved a sensitivity of 0.98, and a
specificity of 0.99 [33]. A two-stage framework was proposed which used CNNs to extract
features from CT scans, followed by feature selection using a meta-heuristic optimization
algorithm, Harmony Search [34]. The final model yielded an accuracy of 98.7%. Further-
more, approaches that did not rely on deep learning have also been proposed, such as
a texture-based approach using XGboost that yielded 99.93% on a dataset composed of
three different sources [35]. Nevertheless, using CT scans for COVID-19 detection has its
challenges, due to the limited number of available datasets and the expensive nature of CT
equipment, making it less likely to be available for diagnosis in remote or impoverished
areas [32].

Research papers have proposed using a wide range of CNN architectures to detect
COVID-19 from X-ray images. These papers primarily focused on comparing the proposed
architectures to other CNNs. A capsule network that used 20 times fewer trainable pa-
rameters than other networks achieved an accuracy of 91% and an area under the curve
(AUC) of 90% [36]. Custom filter learning was applied to CNNs to better differentiate
between COVID-19 and different pneumonia classes [37]. The proposed model achieved a
near-perfect accuracy of 99.8%. Narin et al. [38] achieved an accuracy of 99.4% on COVID-
19 binary classification using pre-trained ResNet-50 and ResNet-100 models. The dataset
contained CVRs of 341 COVID-19 patients, 2800 healthy patients, and 4265 patients with
pneumonia. The models relied on deep transfer learning using ImageNet to compensate
for the limited dataset and to cut down training time. Ozturk et al. [24] used a DarkNet
model to provide an automatic detection system to diagnose COVID-19, pneumonia, and
healthy patients. The model achieved 98.08% accuracy in the binary classification of pa-
tients with COVID-19, and 87.02% accuracy for multi-class classification. Hira et al. [39]
used ResNet, DenseNet, AlexNet, Inception, and GoogleNet architectures. Se-ResNeXt, a
variation of the ResNet model, achieved an accuracy of 99.23% on a dataset of 8830 images.
Haidari et al. [40] focused on preprocessing algorithms to yield better results using the
VGG16 architecture. They yielded an accuracy of 94.5% on a dataset consisting of 8474 CXR
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images. Jain et al. [41] trained an Xception model using 5467 X-rays and achieved an
accuracy of 97.97% on a validation set of 965 X-rays. The Xception model performed better
than ResNeXt or Inception V3 in the task. Gouda et al. [42] proposed an architecture based
on the ResNet model and trained it on two well-known Kaggle datasets, COVID-19 Image
Data Collection (IDC) and CXR Images (Pneumonia). The model yielded a perfect AUC
and 99.63% accuracy. Finally, Elhanashi et al. [43] explored using multiple CNN models
(ResNet50, ResNet101, VGG-19, and U-Net architectures) to yield an accuracy of 99.42% in
COVID-19 classification.

Recently, models were developed using multi-step processes that created high-performing
pipelines. Bhattacharyya et al. [44] proposed a model that uses conditional generational
adversarial networks and VGG-19s to create a pipeline that yields an accuracy of 96.6%. A
two-step model using CNNs to extract features and a Bayesian-based optimizer was used
to yield an accuracy of 96% on a dataset with 3616 COVID-19 patients, and an equal number
of normal and pneumonia patients [45]. The model yielded a 96% accuracy on the balanced
dataset. Ieracitano et al. [46] proposed CovNNet, which extracted relevant features and
combined them with fuzzy images using an accompanying algorithm. The model achieved
an accuracy of 81%. A Gabor filter was used to extract features from 4560 X-rays, and a
DenseNet was then applied to the dataset to yield an accuracy of 98.5% [47]. Additional
data outside of X-rays were also integrated into deep learning models. Clinical data and
X-ray features passed through an EfficientNet were combined into a joint-fusion deep
learning model, yielding an accuracy of 97% [48].

As more X-ray datasets have surfaced, even larger datasets have been produced.
Chhikara et al. [49] trained an InceptionV3 model and applied it to three different datasets
with 14,486, 11,244, and 8246 CXR images, respectively. The model achieved 97.03%,
97.7%, and 84.95% accuracy, respectively. Khan et al. [50] used EfficientNet combined
with regularization techniques were able to yield an accuracy of 96.13% on a dataset of
21,165 images. Wang et al. [12] developed a CNN architecture called COVID-Net on
a dataset of 13,975 CXR images, and yielded an accuracy of 92.4%. The architecture
utilized selected long-range connectivity and a projection–expansion–projection design.
The model was trained on a dataset consisting of 13975 CXR images from 13,870 patients.
Muralidharan et al. [51] proposed a multiscale deep convolutional neural network, and
the model yielded an accuracy of 96% on two datasets containing 10,225 X-ray images in
total. The CheXNet model, a pneumonia detection CNN, was retrained on a dataset with
11,000 CXRs, producing the COVID-19-detecting COVID-CXNet [52]. The model achieved
87.88% accuracy on three-class classification.

There have been a handful of papers that have compared the performance of ensemble
models to individual CNN models. Fabricio Aprecido Breve reached an accuracy of 98.75%
using ensemble CNN models including DenseNet, ResNet, and Exception on a dataset
of 16,352 CXR images [53]. EDL-COVID combined AlexNet, GoogleNet, and ResNet
and used majority voting to differentiate CT images of COVID-19 patients from healthy
patients [54]. The model achieved an F1 score of 98.59% on a dataset of 7500 images that
included COVID-19 patient lungs, lungs with tumors, and normal lungs. Jin et al. [55]
proposed a hybrid ensemble model consisting of feature extractors, feature selectors, and
two AlexNets. The ensemble model obtained an accuracy of 98.64% on a dataset containing
1220 images of patients with COVID-19, patients with viral pneumonia, and healthy
patients. Dey et al. [56] proposed CovidConvLSTM, which relied on a Sugeno fuzzy
integral-based ensemble method and a long short-term memory layer for spatial encoding.
The model achieved 98.63% accuracy and a 98.67% F1-score. A DenseNet169 was used to
extract features of chest X-rays which were then passed on to an XGBoost algorithm for
classification [57]. The model yielded an accuracy of 89.7% on 1125 images. Most of the
surveyed papers on COVID-19 classification either focused on comparing the performance
of individual CNN models against each other [12,24,39,40] or comparing the performance
of individual models against ensemble models [53–55]. However, no papers have compared
how the different permutations of ensemble models would perform against each other
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in classifying COVID-19 CXRs, and what combination would produce the best results.
While the above research has provided evidence that ensemble models are less likely to
produce unbalanced models that outperform on one metric while sacrificing another, they
are yet to explore how the number of models or the selection of a particular stacking model
could maximize accuracy. Furthermore, the extent of model performance improvement
that is achievable through maximizing the number of models or the exemption or addition
of weak learners for COVID-19 detection has yet to be explored. This paper attempts to
address this gap.

3. Methodology

Both machine learning and deep learning methods have been applied to effectively
classify COVID-19, pneumonia, and other diseases using medical images. This study
attempts to correctly differentiate the CXRs of healthy patients from those infected with
COVID-19 and those that have pneumonia by incorporating both machine learning and
deep learning algorithms. First, the images were collected and resized to 512 × 512. They
were then converted to grayscale and enhanced using CLAHE. Images were then rescaled
between the 0 and 256 range. Six deep learning architectures were then selected and trained
on a subset of the data. The outputs of the trained models were then used as input to train
nine machine learning model architectures. The ensemble models, consisting of the deep
learning models as the first layer and the machine learning models as the second layer,
were then evaluated on a withheld test set to evaluate the overall performance of different
permutations of the models. Figure 1 exhibits a flowchart of the proposed methodology.
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evaluating their results.

3.1. Data Description

Chest X-rays were collected for COVID-19-positive patients and COVID-19-negative
patients. The negative patients included patients with non-COVID-19 pneumonia and
healthy patients. Differentiating between non-COVID-19 pneumonia patients and pneu-
monia caused by COVID-19 patients poses a bigger challenge for CNNs than healthy and
COVID-19-infected patients [53]. The pneumonia data were added to build more robust
models that were likely to be exposed to pneumonia-infected patients. The data were
collected from two datasets published by the Medical Imaging Databank of the Valencia
Region (BIMCV) [28]. The BIMCV COVID-19+ was used to collect CXRs of patients with
COVID-19 and healthy patients, while Padchest-pneumonia was used for patients with
pneumonia and healthy patients. The COVID-19+ dataset consisted of CXR and CT scans
taken from 11 hospitals in the Valencia region of Spain. Clinical reports for patients at
the time of diagnosis were used to assign labels to the CXRs and to differentiate between
COVID-19 and pneumonia patients. The patient records used in the dataset had diagnostic
tests (including PCRs and IgG antibody tests conducted on the patients) as well as the
results of these tests. The chest X-rays of patients that had a COVID-19 positive diagnosis
at the time of the chest X-ray were labelled as COVID-19 patients. In addition to the
X-ray images, the records contained associated radiological reports. The labels included
findings such as various thoracic diseases including pneumonia. Chest X-rays that were
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labelled with pneumonia and did not include a positive COVID-19 test were then labelled
as patients with pneumonia.

A total of 3330 CXRs were used to train and test the CNN models. Each CXR cor-
responded to a unique patient. The training and testing dataset contains 632 images of
COVID-19+ patients, 1592 images of healthy patients, and 1106 images of patients with non-
COVID-19 pneumonia. Considering that normal images significantly outnumbered both
pneumonia and COVID-19 images, the 1592 normal images were chosen at random from all
images that could have been included. An additional 836 images were kept for validating
the ensemble model, of which 160 were COVID-19 images, 406 were of healthy patients
and 269 belonged to patients with pneumonia. The count of CXRs is shown in Table 1.
The three classes of images will be referred to as COVID-19, normal, and pneumonia,
respectively for the rest of the paper. Example CXRs are shown in Figure 2.

Table 1. Details of the dataset used for training and testing.

Type No. of X-ray Images

COVID-19 632
Normal 1592

Pneumonia 1106

Total 3330
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3.2. Pre-Processing

All CT scans in the two datasets were excluded from the final datasets due to the
difference between CT and X-rays. X-rays and CT scans have different image properties and
appearances, since X-rays are two-dimensional and CT scans provide three-dimensional
structures. By excluding CT scans, the model can focus on learning the difference between
the three labels for one image modality and yield more accurate results. Since all COVID-19
patients were over 20 years old, all children’s X-ray images were removed so that the
model would not over-perform by learning to detect children’s images. The three classes
then had an average patient age of 62 for pneumonia patients, 58 for COVID-19 patients,
and 53 for healthy patients. Figure 3 displays the age distribution of patients used in the
study. Some 42% of patients in the COVID-19 database were women, while the other
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two classes had gender more evenly split. However, it is unlikely that the model would
learn gender-related anatomical particularities and associate them with a class, given such
splits [58]. Posterior-anterior (frontal) X-rays were used, while anterior–posterior X-rays
were removed, since the former is more likely to be used if a patient is not in a severe
state [59]. This is desirable, since the models are expected to detect the early onset of
COVID-19. Finally, all images were manually inspected to remove blurry, mislabeled, or
cropped images.
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severe state [59]. This is desirable, since the models are expected to detect the early onset 
of COVID-19. Finally, all images were manually inspected to remove blurry, mislabeled, 
or cropped images.
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3.3. CNN and CNN Ensemble Models

The proposed ensemble model consisted of two layers. The first layer was composed
of a set of CNNs that were used to output a score corresponding to each class. The scores
would then be used as input for the second layer, which would consist of a classifier
model that would output the final class of each image. Figure 5 shows the architecture
of the proposed ensemble model with three deep-learning models. To understand which
permutation of CNNs and classifiers would perform best, the models were first trained on
a training set, and the training set predictions were used to train the second layer classifiers,
thus creating two layers of trained models. The training set consisted of 70% CXRs, and
10% was used to validate the CNN’s performance to determine early stoppage. The output
of the models on the training and validation set was used to train the ML algorithms that
made up the top layer of the ensemble models. The remaining 20% of the data were used
to evaluate the performance of both the base models and the ensembles.
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There were six CNN architectures explored in this paper for the first layer. CNN
models were selected due to their ability to automatically extract features from the X-
ray images. This allows models to discover complex features and representations that
would have been difficult to identify using traditional hand-crafted methods. Furthermore,
CNN models have shown state-of-the-art performance in COVID-19 detection from CXRs
previously, and deep learning can be incrementally improved upon in the future as more
CXR datasets become available [53,55]. For the architectures of the six models, the final
layer was replaced by a drop-out layer, with a 50% dropout rate and a linear layer. Table 2
lists the architectures, the number of trainable parameters, and references to the papers in
which they were introduced. In addition to their performance on ImageNet, the models
were chosen due to their wide range of depths and variance of parameters. InceptionV3
had the largest number of parameters at 22.29 million, while MobileNetV3 had the smallest
architecturem with 5 million parameters. All models were loaded from the PyTorch
library and were pre-trained on ImageNet. The models were also selected due to the
diversity of their architectures. MobileNet uses a lightweight streamlined architecture with
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depth-wise separable convolutions [63]. Inception V3 has a deep architecture consisting
of 42 layers that makes use of an auxiliary classifier to move class label information lower
down the network [64]. VGG16 consists of 16 layers and has a uniform architecture that
utilizes 3 × 3 filters throughout the entire architecture [65]. EfficientNet was designed using
compound model scaling which balances the scaling depth, width, and image resolution
of CNNs [66]. DenseNet allows for a deeper architecture by having each layer connect to
layers deeper in the network [67]. ResNeXt uses a homogenous architecture consisting of
repeated blocks with transformation functions [68].

Table 2. CNN architectures, their trainable parameters and their references.

Model Trainable Parameters References

MobileNet V3 Large 5.5 M [60]
Inception V3 27.2 M [61]
VGG16 BN 138.4 M [62]

EfficientNet B2 9.1 M [63]
Densenet 121 8.0 M [64]

ResNeXT50 32X4D 25.0 M [65]

The models were trained with early stoppage built-in to stop training if there were
no improvements in the cross-entropy loss for 100 epochs after the best-performing epoch.
This allowed for a shorter training time, but also provided the opportunity for the model to
try to improve if no improvement was observed for a few epochs. Figure 6 demonstrates
when model training is stopped. The configuration with the lowest cross-entropy loss on
the validation set for each model was then selected as a part of the ensemble model. The
models’ other hyperparameters include a learning rate of 0.000001, gradient clipping with
a maximum value of 1, a weight decay of 0.01 for L2 regularization, and the use of the
Adam optimization algorithm for weight updates. The learning rate was selected to be
10−6 after trying different learning rates to train the model. Values at lower magnitudes
than 10−6 did not converge after 100 epochs, while learning rates of higher magnitudes
were prone to overshooting, which led to validation accuracy oscillation after every epoch.
L2 regularization, which adds the sum of squares of the model’s weight vector to the loss
function, was used to incentivize the model to use smaller weights, which in turn helped to
prevent overfitting and assisted the model in generalizing to unseen data.
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In the second layer of the ensemble model, nine classical and tree-based classification
algorithms were explored, such as standard vector classifier (SVC), random forest, logistic
regression, K-nearest neighbors, extra tree classifier, Gaussian naive Bayes, AdaBoost
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classifier, bagging classifier, and decision trees. In addition, majority voting and unweighted
average were also explored. In majority voting, the CNN base models ‘vote’ using their
highest valued classification output as the preferred class. In unweighted average, the
average of all CNN outputs was taken, and the highest scoring class was selected as the
final output.

4. Results and Discussion

4.1. CNN Model Training and Results

A learning rate of 10−6 was appropriate in training all CNN models, since larger
learning rates did not converge to a minimum cross-entropy loss and would vary widely
between different epochs. Figure 7 shows the difference between a 10 × 10−4 and a
10 × 10−6 learning rate. The number of epochs to reach the best performance varied
between models. VGG16 only ran for 40 epochs, while MobileNet and EfficientNet took
250 epochs to converge to the best validation set loss.
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The accuracy and F1-scores of the models on COVID-19, normal, and pneumonia
detection are presented in Table 3. The models were evaluated on three-class classification,
the ability to differentiate between COVID-19, normal, and pneumonia, and on two-class
classification, the ability to classify a CXR as either belonging or not belonging to one of the
three classes. MobileNetV3 and InceptionV3 yielded the highest accuracy in differentiating
COVID-19 CXRs from non-COVID-19 CXRs, at 95.2%. This was in line with other studies
including individual models [53]. While they had similar accuracies, MobileNetV3 had
a higher F1-score when compared to InceptionV3, due to having higher a recall score
(97.5% vs. 96.2%), indicating that the model was less likely to falsely misidentify COVID-19
patients as not being infected with the virus. ResNeXT was the poorest performing model
in COVID-19 classification, yielding a 94.37% accuracy (vs. MobileNet and Inception’s
95.21%) and an F1-score of 85.17%, which was 4% lower than MobileNet. ResNeXT had the
lowest recall from the CNN models, indicating that it was highly susceptible to mislabeling
COVID-19 CXRs as non-COVID-19.

Table 3. Performance of CNN architectures on three-class and two-class classification.

Model
3-Class

Accuracy
COVID-19
Accuracy

COVID-19
F1-Score

Normal
Accuracy

Normal
F1-Score

Pneumonia
Accuracy

Pneumonia
F1-Score

MobileNet V3 Large 83.11% 95.21% 88.64% 85.15% 84.50% 85.87% 77.22%
Inception V3 82.16% 95.21% 88.51% 84.79% 84.14% 84.31% 74.86%
VGG16 BN 80.84% 94.85% 87.32% 83.11% 82.83% 83.71% 73.33%

EfficientNet B2 82.04% 94.49% 87.15% 84.43% 83.20% 85.15% 76.95%
DenseNet 121 82.04% 94.73% 86.67% 84.67% 83.51% 84.67% 77.31%

ResNeXT50 32X4D 80.60% 94.37% 85.17% 83.11% 83.27% 83.71% 73.33%

All CNN models performed worse at the pneumonia two-class classification when
compared to the COVID-19 two-class classification. MobileNet’s pneumonia F1-score
was 77.22%, while maintaining a COVID-19 F1-score of 88.64%. In the case of Mo-
bileNet it was observed that while precision for pneumonia was slightly lower than
COVID-19 (80.32% vs. 81.25%), the model had a significantly lower recall for pneumo-
nia vs. COVID-19 (74.34% vs. 97.5%). Similar trends could be seen in the rest of the models.
DenseNet had the highest pneumonia F1-score, at 77.31%. The CNN models had better
F1-scores compared to pneumonia when classifying normal. The mean F1-score for the
normal classification was 83.57% vs. a mean F1-score of 75.5% for pneumonia. However,
the average F1-Score for the normal classification was lower than the 87.24% F1-score for
COVID-19 classification, with the mean recall being lower for normal vs. COVID-19, which
meant the models were more likely to misclassify a normal image than a COVID-19 image.

MobileNetV3 yielded the highest overall accuracy at three-class classification, at
83.11%, which was reflected in its ability in two-class classification for all the labels. This
also aligns with previous studies in which multi-class and two-class CXR classification
were compared [24]. The poorest performer on the three-class classification was ResNext,
yielding an 80.6% accuracy versus MobileNet’s 83.11%. All models performed better at
differentiating between two classes (COVID-19 and non-COVID-19) than differentiating
between three. This indicates that models found it more challenging to differentiate
between pneumonia and normal patients than between COVID-19 and non-COVID-19
patients. MobileNetV3, despite being a top performer, mislabeled 46 of 406 normal CXRs
as pneumonia, while only mislabeling 3 out of 160 as COVID-19 CXRs as pneumonia.
MobileNetV3 had the smallest number of parameters, while InceptionV3 had the highest,
indicating that increasing the number of parameters did not necessarily yield better results.

4.2. Ensemble Model Results

The prediction results of the CNN models of all classes in the training CXR test
were used to train the second layer of classification models. Once the second layer was
trained, the predictions of the CNN model base layer were passed into the second layer,
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and the outputs were assessed. Table 4 shows the results of the 11 ensemble models
on each of the following: accuracy in differentiating between COVID-19, normal, and
pneumonia, accuracy in differentiating between COVID-19 and non-COVID-19, accuracy
in differentiating between normal and non-normal X-rays, and accuracy differentiating
between pneumonia and non-pneumonia X-rays. The table also presents the F1-scores
for classifying COVID-19, normal, or pneumonia X-rays in two-class classification to
indicate the balance between the precision and recall of the models. Models that performed
well in three-class accuracy were not necessarily better than other models in two-class
classification. While Gaussian naive Bayes yielded the highest three-class accuracy score,
it underperformed the other models in all two-class classification tests. In fact, there was
no model that showed superiority in all classification metrics. The models had a higher
COVID-19 accuracy on average (95.81%), when compared to three model accuracy (83.28%),
normal accuracy (85.04%), or pneumonia (82.7%). For F1-scores, the models were able to
achieve a better score on average for COVID-19 classification (89.33%), when compared
to normal (84.92%) and pneumonia (76.8%). The F1-score standard deviation was 0.0126
for COVID-19, 0.0172 for normal classification, and 0.025 for pneumonia. This shows that
not only were the models more accurate at COVID-19 classification than the other classes,
but their results were also more homogenous with respect to the other classes. Pneumonia
classification, in contrast, saw its accuracy reach as high as 79.84% with the unweighted
prediction model, and as low as 71% with the AdaBoost classifier.

Table 4. Performance of ensemble models on three-class and two-class classification.

Ensemble Model
3-Class

Accuracy
COVID-19
Accuracy

COVID-19
F1-Score

Normal
Accuracy

Normal
F1-Score

Pneumonia
Accuracy

Pneumonia
F1-Score

SVC 84.07% 96.29% 90.46% 85.63% 85.65% 86.23% 77.41%
Random Forest Classifier 84.07% 96.29% 90.46% 85.63% 85.54% 86.23% 77.67%

Logistic Regression 83.59% 96.29% 90.34% 84.91% 85.00% 85.99% 77.01%
K-Neighbors Classifier 84.07% 96.17% 90.30% 85.51% 85.37% 86.47% 77.97%
Extra Trees Classifier 83.47% 96.29% 90.28% 85.27% 85.34% 85.39% 76.17%

Gaussian Naive Bayes 84.91% 95.81% 89.80% 86.71% 86.28% 87.31% 79.54%
Majority Voting 84.43% 95.33% 88.83% 86.59% 86.37% 86.95% 78.16%

AdaBoost Classifier 79.16% 95.81% 88.82% 81.20% 80.83% 81.32% 71.00%
Unweighted Average

Predictions
84.91% 95.33% 88.70% 86.83% 86.49% 87.66% 79.84%

Bagging Classifier 82.63% 95.45% 88.13% 84.43% 84.60% 85.39% 75.89%
Decision Tree Classifier 80.72% 94.85% 86.52% 82.75% 82.65% 83.83% 74.09%

Table 5 shows the top-performing ensemble models for each class and compares their
results to the top-performing base model. The table indicates the percentage improvement
over the base model; if no improvement was noted, the ensemble model was omitted.
While the ensemble models performed better in accuracy and F1-scores at all classes
compared to the base models, there were cases in which some models had higher recall
or precision. However, the base models that tended to excel at either recall or precision
would perform relatively poorly in the other metrics. DenseNet 121 yielded the highest
normal precision; however, this came at the cost of yielding the second-lowest normal
recall. The ensemble models were 1.73% more accurate on average than the top-performing
base model at two-class classification, with accuracy seeing the biggest improvement for
pneumonia classification (+2.09%). Three-class classification saw a 2.16% increase from
the top-performing MobileNet V3 algorithm. F1-scores saw a higher gain of 2.56% on
average, with the highest gain for the pneumonia F1-score improving by 3.28% over the
top-performing DenseNet model.
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Table 5. Comparison between the top-performing ensemble model and the top-performing CNN

architecture.

Metric Top Ensemble Model
Ensemble

Model
Performance

Top CNN Model
CNN Model
Performance

Ensemble
Improvement over

CNN Model

3-Class Accuracy Gaussian Naive Bayes 84.91% MobileNet V3 Large 83.07% 2.16%
COVID-19 Accuracy Logistic Regression 96.29% MobileNet V3 Large 95.20% 1.13%
COVID-19 Precision AdaBoost Classifier 90.85% ResNeXT50 32X4D 85.71% 5.65%

COVID-19 Recall - - MobileNet V3 Large 97.50% 0.00%
COVID-19 F1-Score SVC 90.46% MobileNet V3 Large 88.60% 2.06%
Normal Accuracy Unweighted Average Predictor 86.83% MobileNet V3 Large 85.12% 1.97%
Normal Precision - - Densenet 121 87.57% 0.00%

Normal Recall SVC 88.18% ResNeXT50 32X4D 86.42% 1.99%
Normal F1-Score Unweighted Average Predictor 86.49% MobileNet V3 Large 84.45% 2.35%

Pneumonia Accuracy Unweighted Average Predictor 87.66% MobileNet V3 Large 85.83% 2.09%
Pneumonia Precision Majority Voting Predictor 84.78% MobileNet V3 Large 80.07% 5.55%

Pneumonia Recall DenseNet 121 81.04% Densenet 121 81.04% 0.00%
Pneumonia F1-Score Unweighted Average Predictor 79.84% Densenet 121 77.22% 3.28%

The confusion matrices for the top-performing ensemble models Logistic Regression,
SVC and Gaussian SVC and a top-performing individual CNN, MobileNet V3 are shown
in Figure 9. The confusion matrices show the overall performance of the models on the
validation set. The logistic regression ensemble identified 145 COVID-19 X-rays correctly,
while mislabeling 12 as normal and 3 as pneumonia. MobileNet V3 correctly labeled
156 COVID-19 images and mislabeled 4. However, MobileNet wrongly classified 36 images
as COVID-19, while logistic regression mislabeled only 16 images as COVID-19, half of
which were really pneumonia images, and the other half were normal. SVC behaved
similarly to logistic regression, and mislabeled 18 images as COVID-19.

Table 5. Comparison between the top-performing ensemble model and the top-performing CNN 
architecture.

Metric
Top Ensemble 

Model
Ensemble Model 

Performance
Top CNN Model

CNN Model Perfor-
mance

Ensemble Improve-
ment over CNN 

Model

3-Class Accuracy
Gaussian Naive 

Bayes
84.91% MobileNet V3 Large 83.07% 2.16%

COVID-19 Accuracy Logistic Regression 96.29% MobileNet V3 Large 95.20% 1.13%

COVID-19 Precision AdaBoost Classifier 90.85% ResNeXT50 32X4D 85.71% 5.65%

COVID-19 Recall - - MobileNet V3 Large 97.50% 0.00%

COVID-19 F1-Score SVC 90.46% MobileNet V3 Large 88.60% 2.06%

Normal Accuracy
Unweighted Aver-

age Predictor
86.83% MobileNet V3 Large 85.12% 1.97%

Normal Precision - - Densenet 121 87.57% 0.00%

Normal Recall SVC 88.18% ResNeXT50 32X4D 86.42% 1.99%

Normal F1-Score
Unweighted Aver-

age Predictor
86.49% MobileNet V3 Large 84.45% 2.35%

Pneumonia Accu-
racy

Unweighted Aver-
age Predictor

87.66% MobileNet V3 Large 85.83% 2.09%

Pneumonia Preci-
sion

Majority Voting Pre-
dictor

84.78% MobileNet V3 Large 80.07% 5.55%

Pneumonia Recall DenseNet 121 81.04% Densenet 121 81.04% 0.00%

Pneumonia F1-Score
Unweighted Aver-

age Predictor
79.84% Densenet 121 77.22% 3.28%
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It can be seen in all the model confusion matrices that significant numbers of pneu-
monia X-rays were being mislabeled primarily as normal X-rays. Looking at MobileNet 
V3 gives an indication of how mislabeling pneumonia as normal was a trait inherited by 
the ensemble models from the base models. MobileNet v3 mislabeled 69 pneumonia X-
rays as either COVID-19 or normal, while SVC mislabeled 72 and logistic regression mis-
labeled 73. However, Gaussian naive Bayes improved over MobileNet and mislabeled 63, 
i.e., 6 less than the latter. Normal X-rays were also more likely to be mislabeled as pneu-
monia than COVID-19. With logistic regression, it could be seen that 41 normal images 
(10.1%) of the total were mislabeled as pneumonia, while only 8 normal images were mis-
labeled as COVID-19. A similar trend can be seen for SVC, with which 40 normal images 
were mislabeled as pneumonia, while only 8 were mislabeled as COVID-19. Nevertheless, 
all three models outperformed MobileNet V3 at normal classification. Logistic regression 
correctly labeled 357, SVC correctly labeled 358 and Gaussian naive Bayes correctly la-
beled 349, while MobileNetV3 only managed 338 normal true positives.

Since the base CNNs did not yield similar results in the classification tasks, the en-
semble models assigned different weights to each base model in order to yield the best 
possible results. Figure 10 exhibits the weights that the top-performing logistic regression 
model assigned to the outputs of each CNN base model for the three classes. The logistic 
regression model uses these weights to predict the COVID-19 class. The ResNext CNN 
model, which had the highest COVID-19 precision out of all models, was given the biggest 
weight for its COVID-19 prediction. Conversely, VGG16 had the highest negative value 
for COVID-19 prediction, meaning that an increase in the VGG16 prediction would lead 
to a decrease in the predicted probability of COVID-19 by the ensemble model.
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It can be seen in all the model confusion matrices that significant numbers of pneumo-
nia X-rays were being mislabeled primarily as normal X-rays. Looking at MobileNet V3
gives an indication of how mislabeling pneumonia as normal was a trait inherited by the
ensemble models from the base models. MobileNet v3 mislabeled 69 pneumonia X-rays as
either COVID-19 or normal, while SVC mislabeled 72 and logistic regression mislabeled 73.
However, Gaussian naive Bayes improved over MobileNet and mislabeled 63, i.e., 6 less
than the latter. Normal X-rays were also more likely to be mislabeled as pneumonia than
COVID-19. With logistic regression, it could be seen that 41 normal images (10.1%) of
the total were mislabeled as pneumonia, while only 8 normal images were mislabeled as
COVID-19. A similar trend can be seen for SVC, with which 40 normal images were misla-
beled as pneumonia, while only 8 were mislabeled as COVID-19. Nevertheless, all three
models outperformed MobileNet V3 at normal classification. Logistic regression correctly
labeled 357, SVC correctly labeled 358 and Gaussian naive Bayes correctly labeled 349,
while MobileNetV3 only managed 338 normal true positives.

Since the base CNNs did not yield similar results in the classification tasks, the
ensemble models assigned different weights to each base model in order to yield the best
possible results. Figure 10 exhibits the weights that the top-performing logistic regression
model assigned to the outputs of each CNN base model for the three classes. The logistic
regression model uses these weights to predict the COVID-19 class. The ResNext CNN
model, which had the highest COVID-19 precision out of all models, was given the biggest
weight for its COVID-19 prediction. Conversely, VGG16 had the highest negative value for
COVID-19 prediction, meaning that an increase in the VGG16 prediction would lead to a
decrease in the predicted probability of COVID-19 by the ensemble model.

 

Figure 10. Logistic regression ensemble model’s weights for the outputs of the CNN models for each 
of the image classes. The weights are used for predicting the COVID-19 class.
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9 out of 11 ensemble models obtained better accuracy in detecting COVID-19 than 

any of the individual models. The logistic regression ensemble model yielded the highest 
accuracy in COVID-19 detection, at 96.29%, outperforming MobileNetV3 by 1.13%. The 
logistic regression ensemble model was less likely to mislabel normal and pneumonia 
CXRs as COVID-19, yielding a higher precision of 90% vs. MobileNetV3’s precision of 
81%. While MobileNetV3 had the highest recall of any model, at 97.5%, it did so by having 
the second lowest precision of 81.2%, indicating that the model was willing to allow a 
higher number of false positives. Logistic regression brought a significant gain of 10.8% 
to precision and produced a higher F1-score of 90.3% vs. MobileNetV3’s 88.6%, at the cost 
of reducing recall by −7%. This suggests that ensemble models are better at balancing out 
the results of models with varying precision and recall, which allows the production of 
models that do not sacrifice one for the other and yield overall higher F1-scores than base 
models. If the main priority of healthcare workers is to minimize false negatives, then the 
MobileNet V3 or Gaussian naive Bayes ensemble model would be a better choice than the 
logistic regression ensemble model. However, if resource constraints are an issue and false 
positives will create additional pressure on the facility, the logistic regression ensemble 
model provides the best balance between lowering false positives without adding too 
many false negatives. The ROC curve for COVID-19 classification is shown in Figure 11 
with logistic regression, SVC, Gaussian naive Bayes, and AdaBoost classifier reaching a 
ROC curve of 0.99.

Figure 10. Logistic regression ensemble model’s weights for the outputs of the CNN models for each

of the image classes. The weights are used for predicting the COVID-19 class.

4.3. Performance Comparison Analysis

9 out of 11 ensemble models obtained better accuracy in detecting COVID-19 than
any of the individual models. The logistic regression ensemble model yielded the highest
accuracy in COVID-19 detection, at 96.29%, outperforming MobileNetV3 by 1.13%. The
logistic regression ensemble model was less likely to mislabel normal and pneumonia
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CXRs as COVID-19, yielding a higher precision of 90% vs. MobileNetV3’s precision of
81%. While MobileNetV3 had the highest recall of any model, at 97.5%, it did so by having
the second lowest precision of 81.2%, indicating that the model was willing to allow a
higher number of false positives. Logistic regression brought a significant gain of 10.8% to
precision and produced a higher F1-score of 90.3% vs. MobileNetV3’s 88.6%, at the cost of
reducing recall by −7%. This suggests that ensemble models are better at balancing out
the results of models with varying precision and recall, which allows the production of
models that do not sacrifice one for the other and yield overall higher F1-scores than base
models. If the main priority of healthcare workers is to minimize false negatives, then the
MobileNet V3 or Gaussian naive Bayes ensemble model would be a better choice than the
logistic regression ensemble model. However, if resource constraints are an issue and false
positives will create additional pressure on the facility, the logistic regression ensemble
model provides the best balance between lowering false positives without adding too many
false negatives. The ROC curve for COVID-19 classification is shown in Figure 11 with
logistic regression, SVC, Gaussian naive Bayes, and AdaBoost classifier reaching a ROC
curve of 0.99.

 

Figure 11. ROC for COVID-19 binary classification by the ensemble models.

Gaussian naive Bayes yielded the highest overall three-class accuracy of 84.91%, 
which was 2.16% higher than MobileNet V3. Gaussian naive Bayes was better at differen-
tiating between normal and pneumonia CXRs when compared to MobileNet V3, while 
slightly underperforming in differentiating between COVID-19 and non-COVID-19 CXRs. 
Gaussian naive Bayes’s COVID-19 recall was 96.2%, while MobileNet V3’s COVID-19 re-
call was 97.5%. Unweighted average voting had the highest normal and pneumonia label 
accuracies at 86.83% and 87.66%, respectively. It outperformed MobileNet V3 in the two 
classes by 1.97% and 2.09%. Unweighted average voting’s superior performance in these 
two classes exhibits how ensembles can smooth over the poor performance of individual 
models. Since it takes the votes of all the models, it diminished the effects of low normal 
precision and high normal recall of the ResNext base model, and contrasted the high nor-
mal precision and low normal recall models such as EfficientNet and DenseNet, and 
yielded F1-scores 3pp higher than those models.

All ensemble models had lower F1-scores in pneumonia classification when com-
pared to COVID-19 and normal classification. For logistic regression, the F1-score for 
pneumonia was 0.77, while COVID-19 and normal classifications were 0.9 and 0.85, re-
spectively. All models performed poorly on pneumonia recall, with normal CXRs fre-
quently being mislabeled as pneumonia. While the top ensemble model outperformed the 
top base model in pneumonia classification, the low-performance ensemble models indi-
cate that they cannot substantially improve the performance of a class if the base models 
performed poorly in its identification.

Unweighted average and majority voting, while maintaining simple policies and not 
learning from previous data, performed well on overall accuracy. The unweighted aver-
age ensemble model reached 84.91% accuracy, similar to the Gaussian naive Bayes model, 
while majority voting had an accuracy of 84.43%. The models excelled in pneumonia clas-
sification accuracy, maintaining the highest precision for the class amongst ensemble 
models, while not sacrificing as much recall. The top-performing unweighted average 
model had a pneumonia accuracy of 87.66% vs. an average performance of 85.22%. Nev-
ertheless, majority voting and unweighted average performed below average for COVID-
19 accuracy, due to lower-than-average precision in COVID-19 classification.

Figure 11. ROC for COVID-19 binary classification by the ensemble models.

Gaussian naive Bayes yielded the highest overall three-class accuracy of 84.91%, which
was 2.16% higher than MobileNet V3. Gaussian naive Bayes was better at differentiating
between normal and pneumonia CXRs when compared to MobileNet V3, while slightly
underperforming in differentiating between COVID-19 and non-COVID-19 CXRs. Gaussian
naive Bayes’s COVID-19 recall was 96.2%, while MobileNet V3’s COVID-19 recall was
97.5%. Unweighted average voting had the highest normal and pneumonia label accuracies
at 86.83% and 87.66%, respectively. It outperformed MobileNet V3 in the two classes by
1.97% and 2.09%. Unweighted average voting’s superior performance in these two classes
exhibits how ensembles can smooth over the poor performance of individual models. Since
it takes the votes of all the models, it diminished the effects of low normal precision and
high normal recall of the ResNext base model, and contrasted the high normal precision
and low normal recall models such as EfficientNet and DenseNet, and yielded F1-scores
3pp higher than those models.
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All ensemble models had lower F1-scores in pneumonia classification when compared
to COVID-19 and normal classification. For logistic regression, the F1-score for pneumonia
was 0.77, while COVID-19 and normal classifications were 0.9 and 0.85, respectively. All
models performed poorly on pneumonia recall, with normal CXRs frequently being misla-
beled as pneumonia. While the top ensemble model outperformed the top base model in
pneumonia classification, the low-performance ensemble models indicate that they cannot
substantially improve the performance of a class if the base models performed poorly in its
identification.

Unweighted average and majority voting, while maintaining simple policies and not
learning from previous data, performed well on overall accuracy. The unweighted average
ensemble model reached 84.91% accuracy, similar to the Gaussian naive Bayes model, while
majority voting had an accuracy of 84.43%. The models excelled in pneumonia classification
accuracy, maintaining the highest precision for the class amongst ensemble models, while
not sacrificing as much recall. The top-performing unweighted average model had a
pneumonia accuracy of 87.66% vs. an average performance of 85.22%. Nevertheless,
majority voting and unweighted average performed below average for COVID-19 accuracy,
due to lower-than-average precision in COVID-19 classification.

Table 6 shows the performance of ensemble models based on different numbers of
CNN models as base models. Models were ranked from best to worst performers at
COVID-19 accuracy, and each set would use the highest-performing models. Using two
base models and a classifier yielded a higher accuracy and F1-score than using the top-
performing base model individually. The highest accuracy and F1-score are achieved with
four models and a support vector classifier, which yields an accuracy of 96.53%, 1.3% higher
than MobileNetV3. After four models, performance improvement plateaus and starts to
decrease at six models, indicating that adding additional models with poorer performance
starts to drag down the ensemble model performance.

Table 6. Comparison between the top-performing ensemble model and the top-performing CNN

architecture.

Number of CNN
Models

Top
Ensemble

COVID-19
Accuracy

F1-Score

Top CNN Model - 95.20% 88.60%
Top 2 CNN Models K Neighbors Classifier 96.53% 91.19%
Top 3 CNN Models Random Forest Classifier 96.41% 90.80%
Top 4 CNN Models Support Vector Classifier 96.53% 91.34%
Top 5 CNN Models Logistic Regression 96.53% 91.24%

Top 6 Models Support Vector Classifier 96.29% 90.46%

4.4. Performance Comparison with Previous Works

The performance comparisons between the proposed logistic regression ensemble
model in COVID-19 detection accuracy and the similar works presented by other re-
searchers in the state of the art have been shown in Table 7. Hira et al.’s [39] Se-ResNeXt
achieved 99.23% accuracy using a dataset consisting of 6674 images. Ozturk [24] used
DarkNet to achieve a 98.08% two-class accuracy with 127 COVID-19 CXRs, 500 normal
CXRs, and 500 pneumonia CXRs. Narin et al. [38] achieved 98% accuracy using ResNet-50
and a dataset containing 341 COVID-19 CXRs, 2800 normal CXRs, and 4265 pneumonia
CXRs. Chhikara et al. [49] used a dataset containing 2245 COVID-19 CXRs, 2313 normal
CXRs, and 2313 pneumonia CXRs. Their proposed Inception V3 included additional node
dropping, normalization, and dense layers, achieving an accuracy of 97.7%. The proposed
ensemble model accuracy was 2.7% lower than the top-performing model, but the perfor-
mance was still in the top ten of those listed in Table 7. The study reinforces the notion that
CNN models are effective in differentiating COVID-19 CXRs from the CXRs of patients
with pneumonia and healthy patients. The presence of a variety of architectures in the
list including ResNets, VGG, and Inception indicates that these models are effective in
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COVID-19 detection and reinforces the importance of their inclusion in the ensemble model.
Furthermore, the success of these models encourages the usage of different architectures of
these models as the basis for future ensemble models.

Table 7. Comparison between the proposed model and other models applied to a variety of COVID-19

datasets.

References Architecture COVID-19 Accuracy

Hira et al. [39] Se-ResNeXt 99.23%
Jin et al. [55] AlexNet 98.64%

S. Dey et al. [56] CovidConvLSTM 98.63%
A. Barshooi & A. Amirkhani [47] DenseNet 98.50%

Ozturk [24] DarkNet 98.08%
Narin et al. [38] ResNet-50 98.00%

Chhikara et al. [49] InceptionV3 97.70%
Khan et al. [48] EfficientNet 97.00%

Bhattacharyya [44] VGG-19 96.60%
Proposed Model Support Vector Classifier 96.53%
Khan et al. [50] EfficientNet 96.13%

P. Sethy & E. Behara [22] ResNet-50 95.38%
Haidari et al. [40] VGG16 94.50%
Wang et al. [12] COVID-Net 92.40%

E. Hemdan et al. [23] VGG19 90.00%
H. Nasiri & E. Nasiri [57] DenseNet + XGBoost 89.70%

I.D. Apostolopoulos et al. [21] Xception 85.57%

Table 8 compares the model to other models that have used the BIMCV COVID-
19+ dataset for training and evaluation. P. de Sousa et al. [69] proposed a custom deep
learning architecture and used the BIMCV COVID-19+ dataset. Their model achieved
an accuracy of 98.84%. Arias-Garzon et al. [70] used a pre-processing technique on the
BIMCV dataset for lung segmentation and to remove lung backgrounds. They then used
VGG-19 with lung segmentation to yield an accuracy of 96.30%. The usage of VGG19 to
yield slightly lower results on the same dataset reinforces the usefulness of integrating
VGG architecture into the proposed ensemble. Mizuho et al. [71] used EfficientNet on
the same dataset to achieve 94.60%. VGG’s outperformance of EfficientNet reflects the
results seen in the proposed model’s individual model evaluation stage prior to the en-
semble stage. Duran-Lopez et al. [61] proposed a novel model, COVID-XNet, trained and
evaluated using the BIMCV and PadChest datasets. The model yielded an accuracy of
94.43%. The proposed SVC model outperformed all models except the custom model by de
Sousa et al. [69].

Table 8. Comparison between the proposed model and other models on the BIMCV+ dataset.

References Architecture COVID-19 Accuracy

P. de Sousa et al. [69] Custom CNN 98.84%
Proposed Model Support Vector Classifier 96.53%
Arias-Garzon [70] VGG-19 96.30%
Mizuho et al. [71] EfficientNet 94.60%

Duran-Lopez et al. [61] COVID-XNet 94.43%

4.5. Strengths

The proposed ensemble model demonstrates how a group of deep learning models
can outperform individual models in COVID-19 classification by harnessing their strengths,
smoothing over their biases, and producing higher overall accuracies. In addition, the
ensemble model had higher F1-scores than individual models, indicating that it was able to
balance the requirements of precision and recall and not decrease COVID-19 false positives
at the expense of increasing COVID-19 false negatives. The model can be modified by



Computers 2023, 12, 105 18 of 22

adding or replacing one of the base ensemble models with a high-performing CNN or a
CNN with a different architecture in the future. This could possibly allow for even more
accurate models by leveraging more accurate models and triangulating the results with the
other CNNs that make up the ensemble. Furthermore, the model can be easily deployed
in the field once trained, and only requires a computer on which the X-ray images can be
uploaded. This would allow quick analysis after the X-ray has been taken, and allows
immediate action if the algorithm finds the X-ray COVID-19+. Finally, even in environments
in which PCR tests are available, the algorithm allows a secondary complementary analysis
that could assist doctors. The only additional resources to factor in are access to X-rays and
a computer.

4.6. Limitations

From the comparisons to other models, it can be stated that the ensemble model
is a robust method for COVID-19 classification; however, the model has yet to reach
the state of the art, and could be improved upon. The proposed ensemble model was
trained on an imbalanced dataset, with normal and pneumonia CXRs outnumbering
COVID-19 CXRs by 2.52:1 and 1.73:1 respectively. While models trained on balanced
datasets have been presented [72,73], there were many examples of models that were built
using imbalance datasets that were able to achieve high accuracies [24,38,39]. Nevertheless,
better performance could have been achieved if the dataset had a higher ratio of COVID-19
X-rays, and this can be considered in future work by aggregating different vetted open-
source datasets together.

Another factor that can be considered is the distribution of the dataset, with patients
coming from the region of Valencia in Spain, which means there is a high likelihood that
the ethnicity of patients is skewed towards the ethnic makeup of Valencia. Future work
could include datasets from different countries to be more representative of the distribution
of COVID-19 cases worldwide. Integrating datasets aggregated from multiple sources
such as the COVID-QU-Ex dataset [74], which is an aggregated dataset in itself, could
be considered; however, care should be taken to ensure consistent selection criteria are
applied across all the datasets, avoiding patient duplication, ensuring adherence to patient
privacy and excluding X-rays of different distributions from the ones that will be used for
evaluation (e.g., X-rays taken from different angles).

5. Conclusions

In this paper, an ensemble model of six CNN architectures was assembled to detect
COVID-19 from CXR images. A dataset of COVID-19, normal, and pneumonia class images
was assembled and used to train the CNN architectures. Some 11 ensemble models were
then evaluated. The ensemble models used the CNN architectures’ predictions as inputs
for a classification algorithm. Most of the ensemble models were able to produce more
accurate COVID-19 detection than individual architectures. The ensemble models also
produced higher F1-score classification, suggesting they were better at balancing precision
and recall than individual models that excelled at one metric or another. The paper also
demonstrates that there is a limit to performance improvement, as the number of base
CNN models in the ensemble model increases as poor-performing CNN models start to
drag down the performance of the ensemble.

The logistic regression, support vector classifier, and random forest classifier ensemble
models produced the highest accuracies of 96.28% in COVID-19 detection, while the sup-
port vector classifier model yielded the highest F1-score of 90.46%. The results were further
improved by only using the top four performing CNNs and a support vector classifier, with
accuracy increasing to 96.53% and F1-score improving to 91.34%. These results are on par
with other studies in COVID-19 detection from CXRs. The results of the paper add more ev-
idence that CNNs are adept at detecting COVID-19 from CXRs, and CNNs could be used to
assist in the quick diagnosis of patients to determine if they have been infected. COVID-19
diagnostics using X-rays and CNNs would allow cheap and fast detection of COVID-19
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in rural areas equipped with radiology equipment. Furthermore, the proposed ensemble
model has shown that combining multiple CNN models into an ensemble yields better
results than individual models, and this concept can be integrated into future COVID-19
detection model designs by leveraging different sets of top-performing models. This would
allow for the design of models that are more accurate, as the individual weaknesses of any
set of models would be smoothed over to produce a more resilient overall performance.

Future directions for improving the model and addressing the current study’s limita-
tions will include adding more pneumonia images to improve performance in the class,
and adding more CXRs of patients from other geographic regions to include a wider
demographic variety of patients. Future work may also include integrating successful
pre-processing methods and CNN models from other studies into the ensemble model, and
using GRAD-CAM to make the model more explainable.
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