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Abstract: This paper presents a systematic approach for solving complex prediction problems with
a focus on energy efficiency. The approach involves using neural networks, specifically recurrent
and sequential networks, as the main tool for prediction. In order to test the methodology, a case
study was conducted in the telecommunications industry to address the problem of energy efficiency
in data centers. The case study involved comparing four recurrent and sequential neural networks,
including recurrent neural networks (RNNs), long short-term memory (LSTM), gated recurrent units
(GRUs), and online sequential extreme learning machine (OS-ELM), to determine the best network in
terms of prediction accuracy and computational time. The results show that OS-ELM outperformed
the other networks in both accuracy and computational efficiency. The simulation was applied to
real traffic data and showed potential energy savings of up to 12.2% in a single day. This highlights
the importance of energy efficiency and the potential for the methodology to be applied to other
industries. The methodology can be further developed as technology and data continue to advance,
making it a promising solution for a wide range of prediction problems.

Keywords: energy efficiency; machine learning; telecom services operator; traffic prediction

1. Introduction

The increasing demand for energy in contemporary industry, global warming, and the
development of new communication technologies such as the Internet of Things (IOT), 5G,
and B5G have necessitated research into energy-saving strategies in the telecommunications
sector, especially among telecommunications service operators (TSOs). From 2010 to 2018,
the global energy demand for data centers increased from 194 TWh to 205 TWh, according
to research [1]. According to [2], by the year 2030, telecommunications networks will
consume up to 51% of the world’s electricity if their energy efficiency is not significantly
improved. Consequently, energy efficiency is becoming essential for existing and future 5G
and beyond networks.

Some TSOs have designed networks with redundant links to avoid congestion in
high-availability schemes (active/passive configuration) and load balancing (active/active
configuration) [3]. From the perspective of energy efficiency, these designs can be consid-
ered as inefficient energy expenditure, because these links are always active [4]. The studies
in [5,6] show that links are underutilized by only 40% in the central network, commonly
called core network (CN), and that during off-peak hours, it is much lower. Moreover, there
is not much difference in energy consumption between equipment at full load and standby
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mode [5]. To increase bandwidth capacity, TSOs connect the routers through multiple
physical cables that form a single grouped logical link. The grouped logical links are also
called link aggregation groups (LAG) or bundle Ethernet (BE). Link aggregation in the
Ethernet was standardized in the IEEE 802.3ad standard and later renamed as IEEE 802.1ax
to maintain consistency with other 802.3 standards [7].

The current CN of a TSO is composed of multiple networks, and trunk lines are
often formed by many grouped optical fibers to increase capacity and add resilience.
Connections with the number of sublinks within a BE or LAG range from 2 to approximately
20 in a typical TSO [6]. Additionally, there is the problem of the energy consumption of
these links, which is even more when they are grouped. In recent years, several works
have been published and proposed to reduce the energy consumption of simple links
(unaggregated) [8]. One of the standards that helps solve this problem is IEEE 802.3az,
which specifies Ethernet energy efficiency (EEE), which is a method for reducing the energy
used by an Ethernet device during low link utilization periods [9]. The premise of EEE
is that Ethernet links have idle time and therefore the opportunity to save energy during
that period of time. The method is called low power idle (LPI), but it is only for copper
interfaces [10]. Regarding LAGs, several energy efficiency studies have been carried out
using different optimization methods [6]. Additionally, there are works that propose
threshold point algorithms, as in [11], and others [12] that work with software-defined
network (SDN) controllers. Moreover, [13] has used predictive techniques to reduce LAG
energy, using a simple moving average (SMA).

On the other hand, neural networks have begun to be used to predict time series,
because time series are the optimal method to describe network traffic behavior, in particular
regarding recurrent neural networks (RNNs) and their variants, long short-term memory
(LSTM) and gated recurrent unit (GRU) [14–17]. There is also a neural network that
stands out for its speed called online sequential extreme learning machine (OS-ELM),
which has been shown to be efficient and especially fast compared with gradient-based
networks [18–20]. This paper’s primary objective is to predict traffic in a short period of time
to activate and deactivate the ports of the link aggregation (LAG or BE) between two nodes
within a TSO network in order to save energy on fiber optic links while maintaining a high
quality of service (QoS) for clients; the main contributions of this work are presented below:

1. A novel method is proposed and developed to compare different types of neural
networks in terms of their ability to process time series data, specifically in real-time
traffic analysis. This methodology aimed to evaluate the performance of various
neural network models and identify the most suitable option for the task.

2. A novel bundle Ethernet energy efficiency methodology was designed. This algorithm
was based on the expected traffic and used the best-performing neural network,
selected by the methodology outlined in point 1.

3. The proposed traffic prediction method and energy-saving Ethernet bundle method-
ology were evaluated. The performance of the traffic prediction methodology was
compared between neural networks. The energy-saving Ethernet bundle was evalu-
ated in terms of energy savings by comparing the performance algorithms proposed
in point 2. The results were analyzed to determine the feasibility and effectiveness of
the proposed solution.

The remainder of this paper is structured as follows: Section 2 presents related works
in LAG or BE energy efficiency, as well as the most popular machine learning models and
neural networks for traffic prediction. Section 3 details the methodology involved in the
selection of a neural network. Section 4 outlines the stages used in the methodology for the
development of two energy-efficient algorithms. Section 5 describes the use case, including
network topology, traffic description, and network equipment specifications. In Section 6,
the results of training a neural network using training and testing data, along with various
evaluation metrics, are presented for the use case. In Section 7, the performance of the
proposed energy efficiency optimization algorithms is compared with the base case, and
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the results are presented for the use case. Finally, relevant conclusions and future works
are presented in Section 8.

2. Related Works

In this Section, we review the related works on traffic prediction based on neural
networks and energy efficiency in grouped links (LAG or BE).

2.1. Works Related to Methods of Traffic Prediction Based on Machine Learning and
Neural Networks

Analyzing historical traffic is a critical challenge for generating an accurate model
that reflects the structure of the series in order to allow for prediction and classification
of future events [21]. Time series consist of a succession of ordered numerical data points.
The problem of time series prediction is the forecast of future activity from past values and
the related patterns [21,22].

For traffic prediction, several time series forecasting techniques can be used, grouped
into two types of linear and nonlinear methods. Nonlinear methods are more suitable for
predicting traffic due to the existing noise and the complex nature that traffic presents [23].
Neural networks are being widely used to predict time series [24].

According to the study in [25], convolutional neural networks (CNNs) and RNNs are
the most widely used deep learning models for short-term traffic prediction. CNNs are
good at capturing spatial characteristics, and RNNs are good at capturing the temporal
characteristics of traffic data. Within deep learning and recurrent networks, there are varia-
tions such as the LSTM and GRU neural networks. Currently, predicting traffic with neural
networks has made the analysis of time series an essential part of data modeling in a wide
range of industries, including finance, health, transportation, and the environment [26–31].

In [22], the authors used a GRU neural network, a variant of LSTM, to predict the
traffic flow of ships within an area of wind parks. The results of GRU were compared with
the autoregressive integrated moving average (ARIMA) model, as well as support vector
machine (SVM) and LSTM deep learning models, with GRU being the winner.

In the logistics sector, the prediction of passenger flow in metro stations has been
carried out by [32], as well as the use of parking modeling in [33] and urbanization planning
based on vehicle traffic prediction [34]. In the health field, the prediction of driver stress
and drowsiness for accident prevention [35] and the prediction of the monthly progression
of Alzheimer’s disease [36] have also been demonstrated. With regard to the telecommuni-
cations sector, the prediction of TSO network traffic load has been used to avoid overloads,
minimize response time, and optimize resource use [15,19,37,38].

With the arrival of the 5G standard, traffic prediction will be more difficult due to its
heterogeneous nature. The coexistence of different networks and significantly different
characteristics make traffic prediction, management, and optimization a difficult task.
Therefore, the use and adaptation of neural networks will increasingly be used to analyze
and manage network traffic based on data [39]. The diverse use of machine learning models
in telecommunications operators and neural network research have led to more and more
comparisons between them.

In [40], the use of cellular network traffic prediction for dynamic resource optimization
in wireless backhaul networks is discussed. In [14], the authors state that the LSTM neural
network is a type of recurrent neural network architecture, which is trained with a gradient-
based learning algorithm. The framework proposed by the authors utilizes real traces
from a TIER-1 TSO. With these traces, predictions were made at different time spans and
compared with a combination of the classic method, such as ARIMA, and RNN. The
results obtained in comparison with the ARIMA and RNN models show that the LSTM
model performs well with a low normalized RMSE for the entire dataset and also generates
predictions at very short time scales (less than thirty seconds). In the work in [41], the RNN,
LSTM, GRU, deep neural network (DNN), and bidirectional LSTM (BLSTM) networks
were compared, and the result was that LSTM was one of the networks that performed the
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best in terms of traffic prediction, due to having lower error metrics. In [42], the authors
show the prediction of internet traffic in Telecom Italia, comparing deep learning models
to conventional machine learning models. The performance of LSTM, GRU, and two
conventional machine learning architectures, random forest (RF) and decision tree (DT),
was compared for the prediction of mobile Internet traffic. The predictive quality of the
models was evaluated using the root mean squared error (RMSE) and mean absolute error
(MAE). Both deep learning algorithms were effective in modeling Internet activity and
seasonality, both within days and over 2 months. The deep learning models outperformed
the conventional machine learning models, placing the LSTM network as the winner over
the GRU network in the experiments.

In the study in [15], it is shown that 5G networks can face network traffic peaks due
to their numerous connections, so they focus on predicting these traffic peaks through
deep learning techniques such as RNN, LSTM, and GRU from a real network. In terms
of prediction, LSTM and GRU outperform RNN by 4.98% and 4.56%, respectively, and in
terms of computational complexity, GRU is the worst compared with RNN and LSTM by
12.16% and 0.13%, respectively. Finally, since the times between GRU and LSTM are similar,
when seeking greater precision for traffic peaks, the LSTM model performed the best.
In [43], the prediction performance of the recurrent models RNN, LSTM, and GRU was
compared with nonrecurrent models, such as XGBoost and RF, LASSO linear regression,
and prediction models based on moving averages. The results indicate that RNN and its
variants outperformed the other methods. The best nonrecurrent model was XGBoost. In
comparison with XGBoost, GRU and RNN reduced 15% in the RMSE metric and 8% in
MAPE. In another study, by [44], recurrent neural networks and their variants are compared
with traditional statistical methods, such as ARIMA, seasonal ARIMA (SARIMA), and
CNN. Three different congestion scenarios are tested: full day, morning peak hour, and
afternoon peak hour. The results indicate that for the RMSE metric, the LSTM neural
network had performances of 5.8, 7.9, and 10.2 and LSTM of 6.7, 8.6, and 10.9, depending
on the scenario tested.

As previously mentioned, RNN, LSTM, and GRU have gained ground in traffic predic-
tion compared with machine learning models (XGBoost, RF, SVM, and DT), conventional
methods such as LASSO linear regression, ARIMA, and SARIMA, and other CNNs. One of
the factors that hinders the RNN, LSTM, and GRU deep learning networks from being faster
in prediction is the factor of seeking their optimization based on minimizing the gradient;
thus, alternatives to this, without losing predictive performance, have been sought.

One of the neural networks that has attracted interest in recent times is the extreme
learning machine (ELM) network, due to its good results in prediction and extremely fast
training algorithm [45]. ELM is a particular type of feed-forward neural network. The
learning mechanism allows for significantly faster training speed compared with classic
neural networks in a variety of scenarios. A variation of this neural network is called
online sequential extreme learning machine (OS-ELM). The advantage of OS-ELM over
ELM is that it allows the algorithm to learn sequential data online, part by part, using the
recursive least squares method [46]. In the study by [19], the authors compare the LSTM
recurrent neural network with the OS-ELM neural network. The results show that OS-ELM
outperforms LSTM in terms of computational cost by a factor of 2300, which is extremely
high, and in terms of network prediction, OS-ELM was similar to LSTM. The OS-ELM
neural network is simpler in architecture than LSTM, which makes it faster in terms of
complexity than recurrent RNNs and their variants. The latter neural networks may have
better accuracy in certain cases, but it depends on the input data, the architecture of the
time series, and the hyperparameters that are configured.

For prediction models, the goal of evaluation metrics is to minimize error. For regres-
sion and prediction models, MAE and RMSE metrics are most commonly used to evaluate
the performance of the model. For example, in studies such as [15,19,37,47–50], the RMSE
metric has been used, and in others such as [36,37,47,51], the MAE metric has been used.
The mean absolute percentage error (MAPE) is also used in some cases to evaluate regres-
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sion and prediction [52,53]. RMSE and MAE are metrics that are dependent on the scale.
MAPE is a percentage error metric. The RMSE metric is very sensitive to outliers, while the
impact of these is reduced with MAE. On the other hand, MAE cannot indicate the bias of
predictions in terms of overfitting or underfitting. MAPE can differentiate this type of bias
and imposes a penalty on predicted values above the real ones.

In this study, the highest possible accuracy in prediction is required, with the process-
ing time being relaxed to the maximum extent possible to the time of obtaining system data.
As this depends on the data of the time series, this work makes a comparison between
OS-ELM and recurrent neural networks and their variants (RNN, LSTM, and GRU) to
determine which of these networks is better in terms of accuracy (RMSE, MAE, and MAPE)
and computational time.

2.2. Works Related to Energy Efficiency in Link Aggregation Groups or Bundle Ethernet

In the field of energy-efficient link aggregation, several methods and techniques have
been proposed to reduce the energy consumption of LAGs or BEs in telecommunications
networks, which can be divided into four categories: optimization methods, threshold
points, SDN controllers, and predictive techniques.

In [6], an integer linear programming (ILP) formulation was proposed to optimize the
energy of LAGs. The energy savings were significant, reducing energy consumption by 79%
compared with a normal network. Another study, in [54], investigated energy reduction
in clustered links using a mixed-integer linear programming (MILP) model, showing a
50% reduction compared with shortest-path routing. In [55], the use of link aggregation
activation and deactivation was studied using linear programming (LP) optimization, and
it was shown how to find the most energy-efficient link configuration for all links of a
BE. Energy savings ranged between 10% and 30% depending on the chosen configuration.
In [56], convex optimization was used with the water-filling algorithm, reducing energy
consumption by up to 50% in EEE links, an IEEE 802.3az standard that reduces the energy
consumption of physical layer (PHY) devices during periods of low link utilization. EEE
saves energy by switching part of the transmission circuit to low-power mode when the
link is inactive.

An Ethernet link consumes energy even when the link is inactive. EEE provides a
method for using energy so that Ethernet links only use it during data transmission. EEE
uses a signaling LPI protocol to achieve energy savings when an Ethernet link is inactive.
EEE allows PHYs to exchange LPI indications to signal the transition to low-power mode
when there is no traffic. LPI indicates when a link can be inactive and when it should resume
after a predefined delay, without affecting data transmission. The following copper PHYs
are standardized by IEEE 802.3az: 100BASE-T, 1000BASE-T, and 10GBASE-T. However, the
optical fiber standards are not.

In other works by [11], algorithms such as the fixed local heuristic threshold (FLHT)
and the dynamic local heuristic threshold (DLHT), which are two locally optimized dis-
tributed algorithms, can dynamically adjust the number of active sublinks to save energy
consumption by approximately 80% in the CN, for both bin packing and load balancing
cases. In telecommunications networks with a higher intelligence using SDN controllers,
the sleep port algorithm (SPA) and the two-queue algorithm (TQA) are applied, achieving
an energy efficiency of up to 50% for grouped links [12,57]. In [13], the algorithm proposed
by the author was able to reduce the average number of active links to 25.4%, using a
mechanism based on the SMA prediction technique.

Although researchers have proposed many schemes to improve the energy efficiency
of the BEs or LAGs, there are still issues with the scalability of the solution, because
they are primarily based on a snapshot of the network, without taking into account the
scalability and dynamic nature of a TSO network, and most of them are associated with
copper standards.



Sensors 2023, 23, 4997 6 of 33

3. Traffic Prediction Methodology

The methodology for traffic prediction involves several steps to obtain the best predic-
tion based on the configuration and the model used. The process is illustrated in Figure 1.
The diagram starts with raw data input, obtained from an online monitoring platform. The
data are then processed for cleaning and adjustments to be used in simulations. Next, the
data are divided for validation processes. Then, simulations are run using different neural
networks, and their performance is evaluated using metrics such as prediction performance
in terms of RMSE, MAE, MAPE, and computational time. Finally, the best prediction model
is chosen.

The following section provides more detail on each of these steps.

Figure 1. Traffic prediction methodology. * This output will be the input for Bundle Ethernet energy
efficiency methodology shown in Section 4.

3.1. Data Collection

The utilization of a network monitoring platform is necessary in order to continuously
monitor the traffic on routers and provide real-time statistics on various time scales, includ-
ing but not limited to minutes, hours, days, and months. This results in the accumulation
of a significant amount of data, which can be categorized as big data and is structured in
the form of a time series. The platform stores this information for a minimum duration of
1 year, and the monitoring system updates the data every 5 min, with the precise time span
being contingent on the system in use. The collected data serve as inputs for prediction
models. It is imperative to note that for this particular use case, the effective monitoring of
the traffic on TSO network routers can only be achieved through the utilization of the net-
work performance monitor platform in conjunction with the simple network management
protocol (SNMP).

3.2. Structure of RNN, LSTM, GRU, and OS-ELM

The basic architectures used by neural networks have been extensively studied and
discussed in the literature; for example, ref. [58] discusses RNNs, ref. [23] discusses LSTM,
ref. [59] discusses GRU, and refs. [60,61] discuss OS-ELM.

3.3. Data Processing for RNN, LSTM, GRU, and OS-ELM

In this stage, the network performance monitor has provided a database that will
serve as the data source for training. However, it is crucial to ensure that this database is
suitable for the purpose it is intended for, which is searching. To achieve this, the data will
be preprocessed and transformed to align with the specifications of the neural network
that will be utilized. The neural network model will play a crucial role in determining
the final form of the data and shaping it to meet the necessary criteria for successful
searching. In essence, the database will be tailored to the requirements of the neural
network, ensuring that it can effectively extract meaningful information from the data and
deliver accurate results.

3.3.1. Data Processing for RNN, LSTM, and GRU

The transformation of these three steps will be necessary to better process the data in
the implementation of RNN, LSTM, and GRU.

1. Transform the data into a supervised learning problem. In the time series problem,
the data are modified as follows: The observation at the last time step (t− 1) as the
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input and the observation at the current time step (t) as the output. This represents
the single-step sliding window. It is mainly the only variable to compare, so it is a
univariate problem [41].

2. Time-dependent time series data. The trend can be removed from the observations
and then returned to the original prediction scale. A standard way to remove a trend
is to differentiate the data.

3. Normalize the observations. The default activation function of the RNN, LSTM, and
GRU models is the hyperbolic tangent (tanh), which has values between −1 and 1.
The observations will be normalized in the same way, that is, between −1 and 1. This
regularization helps to avoid corrupting the experimental set with information from
the test dataset.

3.3.2. Data Processing for OS-ELM

The transformation of these three steps is necessary to better process the data in the
implementation of OS-ELM.

1. Transform the data into a supervised learning problem. In preparing the data, the
model is instructed in the same way as recurrent neural networks, that is, the sliding
window or prediction step will be one step.

2. Activation function. The activation function of the OS-ELM neural network is the
sigmoid function [62]. The rectified linear unit (RELU) activation function, also
known as ramp function, is tested in [19], with poor results compared with the
sigmoid function.

3. Normalize the observations. In the OS-ELM model, the recommended scale is to
normalize the data by subtracting the mean and dividing by the standard deviation.

3.4. Training and Testing Data

Training and testing datasets make up the two sections of the data collection. The
model is constructed and validated using the training and testing datasets, respectively. The
forward-chaining method is generally used to compare and validate the models. Forward
chaining is a technique used in machine learning to evaluate the performance of a predictive
model. In this method, the training data are divided into two parts: a training set and a
validation set. The model is trained on the training set and then tested on the validation set.
The testing is performed in a forward direction, meaning that the model is tested on data
that comes after the training data. Forward chaining is particularly useful when working
with time series data, where the goal is to predict future values based on past observations.
It is a form of cross-validation that ensures the model is not overfitted on the training data
and can generalize well to new data [63,64]. Traditional cross-validation is not suitable for
time series data due to temporal dependencies and the arbitrary nature of test set selection,
among other factors. It is essential to prevent data leakage when partitioning time series
data [65]. In conventional cross-validation, the test set selection is often arbitrary, which
may result in the test set error being an unreliable estimator of the error in an independent
test set. This problem can be addressed using a technique called stacked cross-validation,
as described by [66].

For this case, we applied the same testing set for all simulations, so it will be possible
to draw conclusions based on variations of the four neural networks and different hyperpa-
rameters. In the case of the training set, data will be added to verify if adding more training
data improves the error metrics. As the time series data are seasonal, previous days will
be added (t-xdays), as shown in Figure 2. The amount of data to be added depends on the
time interval of the monitoring system.
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Figure 2. Training and testing dataset.

Thus, three sets of data in different portions for the simulations are obtained, which
are Training : Testing. Therefore, the first set = 50.0%:50.0%, the second set = 66.7%:33.3%,
and the third set = 75.0%:25.0%.

3.5. Hyperparameters of RNN, LSTM, GRU, and OS-ELM

Hyperparameters in neural networks are the parameters that are set before training
a model, unlike the model parameters, which are learned during the training process.
These hyperparameters control various aspects of the model’s training, such as the number
of neurons in each layer, the learning rate, the type of activation function, the type of
optimization algorithm, epochs, and time steps. The optimal values of hyperparameters
greatly affect the performance of the neural network, such as its ability to learn from the
data and generalize well to new examples. Finding the best hyperparameters for a specific
problem is usually done through a process called hyperparameter tuning, where different
values are tried and the performance of each set of hyperparameters is evaluated.

3.5.1. RNN, LSTM, and GRU Hyperparameters

These steps explain the fundamental hyperparameters of the RNN, LSTM, and GRU
model that will be implemented.

1. Number of neurons: It is the number of hidden layers added to the RNN, LSTM, and
GRU cell.

2. Epochs: It is the number of times each training dataset will pass through the neural
network.

3. Time steps: The number of time steps specified determines the number of input
variables x used to predict the next time step h, as shown in Figure 3. In recurrent
neural networks, time steps (also known as lags) refer to the number of previous time
steps that are used as input to predict the next time step. For example, if the time
steps are set to 3, the network will use the previous 3 time steps of the data as input to
predict the next time step. The number of time steps can have a significant impact
on the performance of the network, as it determines the amount of context that the
network has access to when making predictions.

4. Adam optimizer: The Adam algorithm [67] is one that combines RMSProp with
momentum. To date, there is no algorithm that has superior performance over others
in different scenarios [68], so it is recommended to use the optimization algorithm with
which the user feels the most comfortable when adjusting the hyperparameters. For
running the simulations, the Adam-based optimization algorithm will be configured
for RNN, LSTM, and GRU. Ref. [69] indicates that the Adam optimization algorithm
has been a very popular optimizer in deep learning networks in recent years.
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Figure 3. Time steps (lags) in recurrent neural networks.

3.5.2. OS-ELM Hyperparameters

These steps explain the fundamental hyperparameters of the OS-ELM model that will
be implemented.

1. Number of neurons: It is the number of hidden layers added to the OS-ELM cell.
2. Forgetting factor: The forgetting factor allows the OS-ELM neural network to con-

tinuously forget obsolete input data in the training process, in order to reduce its
negative effect on subsequent learning. If the forgetting factor equals 1, it means that
the OS-ELM neural network does not forget anything. If the forgetting factor is less
than 1, it starts to forget data.

3.6. Metrics

The root mean square error (RSME), the mean absolute error (MAE), and the mean
absolute percentage error (MAPE) metrics are used to evaluate the performance of predic-
tion models. These metrics provide a systematic approach for evaluating the accuracy of a
model’s predictions and facilitate the comparison of the performance of different models.
Furthermore, it is important to consider computational time, namely how long it will take
to process the prediction.

3.6.1. Root Mean Squared Error (RMSE)

RMSE is a commonly used measure of the difference between the predicted and actual
values of a model. It is calculated by taking the square root of the mean of the squared
differences between the predicted and actual values and is given by Equation (1):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (1)

where yi is the actual value, ŷi is the predicted value produced by the model, and n is the
total number of samples.

3.6.2. Mean Absolute Error (MAE)

MAE is a measure of the difference between the predicted and actual values of a model.
It is calculated as the average of the absolute differences between the predicted and actual
values. Similar to RMSE, the lower the MAE, the better the fit of the model to the data.
MAE is commonly used in time series forecasting; it is less sensitive to outliers than RMSE,
and it is defined by Equation (2):

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (2)

where yi is the actual value, ŷi is the predicted value produced by the model, and n is the
total number of samples.

3.6.3. Mean Absolute Percentage Error (MAPE)

MAPE is a measure of the difference between the predicted and actual values of a
model. It is calculated as the average of the absolute percentage differences between the
predicted and actual values. It expresses the error as a percentage of the actual value, which
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can be useful for comparing the error of models that make predictions for different scales
of values, and it is defined by Equation (3):

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
max(ε, |yi|)

, (3)

where yi is the actual value, ŷi is the predicted value produced by the model, n is the
total number of samples, and ε is an arbitrary small but strictly positive number to avoid
undefined results when y is zero. It is important to note that when the actual value is zero,
MAPE is not defined, which could be a limitation of this measure.

For all neural networks, 100 runs are performed and the mean for each metric is
obtained, as in the study by [70], which indicated that in optimization problems, which
are heuristic, more than 100 tests should be carried out to find a true or optimal value of
the solution.

3.6.4. Computational Time

Computational time or lapsed time refers to the amount of time required to perform a
specific computation or task on a computer. It can include the time required to input data,
process it, and output the results. It is measured in seconds (s). In the context of neural
networks, computational time includes the time required to train and test the network, as
well as any other computations that are necessary as part of the model’s implementation.

The hardware and software that will be used in the simulations regarding the neural
networks are specified in Table 1.

Table 1. System specifications.

Hardware

CPU Intel(R) Core(TM) 8600 K at 5.1 Ghz

RAM 32 Gb

Graphics card NVIDIA GeForce(R) RTX 2080.

Software

Python 3.7.10

Tensorflow 2.2.0

Keras 2.3.0

Pandas 1.2.4

Scikit-Learn 0.24.1

4. Bundle Ethernet Energy Efficiency Methodology

To understand the methodology for energy efficiency in bundle Ethernet, Figure 4
shows how the three cases will be compared. The first case corresponds to the base (without
energy efficiency), which will be when the system is in current conditions, that is, how
the system is currently functioning. The second and third case will be the development of
algorithms that will be responsible for turning on or turning off the corresponding ports on
the side that provides services to the router, in order to reduce the energy consumption of
the network while meeting traffic demand.

The first algorithm will be based on the past time of the raw values (rv at t− 1) of
the network performance monitor, in which a threshold or safety factor of 100% will be
added, that is, if the traffic at time t− 1 was 100 Gbps, a capacity of at least 200 Gbps will
be applied to time t, and based on that capacity, the required BE will be arranged. This
algorithm is called the “threshold-based algorithm”.

The second algorithm will have as input the prediction model that will be selected
in the traffic prediction methodology, seen in Figure 1. With this prediction model, the
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predicted values (pv at t) will be obtained for each point in time t, with this, the capacity in
the BE will be activated. This algorithm is called the prediction-based algorithm.

Figure 4. Bundle Ethernet energy efficiency methodology. * This input for Bundle Ethernet energy
efficiency methodology is the neural network selected in traffic prediction methodology, according to
Figure 1.

4.1. Threshold-Based and Prediction-Based Algorithms

The logic of both algorithms written in pseudocode are presented below.

4.1.1. Threshold-Based Algorithm

The threshold-based algorithm, which is shown in Algorithm 1, requires the following
inputs in order to be executed:

• rvt−1: Raw value of the link speed in Gbps at a previous timestamp, i.e., (rv at t− 1).
This value is obtained from the Network Performance Monitor platform and is a
continuous variable.

• nl: Number of links initially possessed by the LAG or BE; it is a discrete integer
variable and dimensionless.

• pb: Port bandwidth measured in Gbps, and it is a continuous variable.

Algorithm 1 Threshold-based Algorithm with raw value in t− 1

Require: raw value in t-1: rvt−1; numbers of links in LAG: nl; port bandwidth: pb
x ← rvt−1/pb . x is defined as a ratio variable
pa← 0 . pa is defined as ports active
pd← nl − pa . pd is defined as ports deactivate
if x > 0 then

pau = (integer(x) + 1) ∗ 2 . pau is defined as ports active update
if pau > nl then

pa = nl
pd = nl − pa
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

else
pd = nl − pau
pa = pau
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

end if
end if

As variables that initialize the algorithm, x is defined as a ratio between the variables
rvt−1 and pb. In addition, pa represents the active ports of the link, which is initialized at
0, and it is a discrete-integer variable. pd is defined as the difference between nl and pa.
This last variable is obtained from the ports that are deactivated at the time of executing
the algorithm.
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During the execution of the algorithm, while the variable x is greater than 0, meaning
the router is present with traffic, the variable pau is executed, which corresponds to giving
a threshold of 100% more than the value obtained from the previous traffic, because the
past values are being used for this action. In other words, pau corresponds to the ports that
should be active, according to the previous traffic plus the safety factor defined as double,
due to the uncertainty of the future traffic.

After this, if the number of active ports exceeds the number of links of the LAG or BE,
defined as nl, it must be limited to the maximum defined by this port channel. Otherwise, it
calculates the difference between ports to be activated and deactivated. In both conditions,
the number of ports to be activated and deactivated on the router for the next timestamp
is executed.

4.1.2. Prediction-Based Algorithm

For this algorithm, the same logic as the previous one (threshold-based) is used; the
only and important difference is that it has as input the future traffic value obtained in the
prediction. As shown in Algorithm 2, the required inputs are the prediction value pv, the
number of links in the LAG nl, and the port bandwidth pb.

Algorithm 2 Prediction-based algorithm

Require: prediction value: pv; numbers of links in LAG: nl; port bandwidth: pb
x ← pv/pb . x is defined as a ratio variable
pa← 0 . pa is defined as ports active
pd← nl − pa . pd is defined as ports deactivate
if x > 0 then

pau = integer(x) + 1 . pau is defined as ports active update
if pau > nl then

pa = nl
pd = nl − pa
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

else
pd = nl − pau
pa = pau
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

end if
end if

For both algorithms to work correctly, the units of measure of the variables pv and pb
must be the same.

4.2. Metrics

In order to compare both algorithms in addition to the base case, the unit of measure
of energy watt-hour (Wh) will be utilized. Watt-hour serves as a means of measuring the
amount of generated or performed work. The savings will be reflected in the difference in
consumption from the base case per day in relation to each algorithm. It stands to reason
that the chosen algorithm will be the one that produces the most savings in comparison
with the base case.

The methodology being referred to is a general solution for prediction problems and
can be adapted for use in various industries and fields. It involves the use of statistical
and machine learning techniques to make accurate predictions about future events. For
example, in the energy sector, this methodology can be used to forecast energy demand,
anticipate disconnections in power generation centers, and make other predictions that are
relevant to the energy industry. Having this information helps energy providers to better
manage the supply and demand of energy, which is essential for the efficient operation
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of their businesses. The use of this methodology in the energy sector can improve the
overall reliability of energy services and help to reduce the likelihood of blackouts or
other disruptions.

5. Case Study

This section describes the network topology to be used in this case study, the traffic
description to choose the best neural network in terms of prediction and computational
time, and the characteristics of the equipment to be used in order to model the required
energy savings as a target.

5.1. Network Topology

As previously mentioned, the LAG or BE allow for the logical grouping of multiple
Ethernet physical links; this aggregation is treated as a single link and allows for the sum
of the nominal speed of each Ethernet physical port used to obtain a high-speed trunk link.
In a TSO, different routers can be found connecting to each other. As shown in Figure 5,
it can be seen that the LAG connects to n optical fiber interfaces generating a LAG of n
links. Over time, the interfaces of the optical transport network (OTN) and the interfaces of
the routers have been growing in the optical IP Core networks of a TSO, reaching up to
400 GE interfaces in other operators [71], thus increasing as traffic demand grows and in
accordance with the development of this technology.

Figure 5. Link aggregation in a TSO.

In addition, many of the implementations in TSOs are geographically redundant as
part of design of reliable communication networks (DRCN) [72], which in this case, as
shown in Figure 5, means that Site A is equal to Site B; this means that if the router of Site
A goes down (fails), the network traffic will switch to Site B via the interplane link (which
connects both sites). The same applies vice versa.

In Figure 6, the architecture of a content distribution network (CDN) is shown. The
CDN router aggregates different content providers, such as Google, Netflix, Facebook,
Microsoft, and Akamai, among others. The CDN is a group of servers that are distributed
geographically and interconnected. They provide cached Internet content from the closest
network location to the user to accelerate information delivery.

The Internet output is provided by the router, commonly called the Internet gateway
router (IGR). The IGR is the node that aggregates all the traffic of a TSO network and
communicates with the Internet. Both the IGR and the CDN router are connected to 8
optical fiber with 100GE interfaces that generate a LAG or BE of 8 links, which is 800 Gbps
of capacity. The actual traffic between both routers is approximately 400 Gbps, leaving the
same capacity for backup to switch to another site (mirror) in case of failure.
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Figure 6. CDN architecture in a TSO.

As for the protocol that regulates the hardware providers and provides guidance on
the practice of link aggregation for data connections, the IEEE defined the link aggregation
control protocol (LACP) within IEEE 802.3ad [73], which is a standard-based method for
controlling the aggregation of physical network links. Active LACP mode is the protocol
generally configured on equipment to manage aggregated links. This means that the
interface is in a permanently active negotiation state. LACP runs on any link that is
configured to be in active state. The active port also automatically initiates negotiations
with other ports by initiating LACP packets. Static LACP is configured, which increases the
interface’s bandwidth and provides reliability. When an Eth-Trunk or BE member link fails
or is not active, traffic is automatically distributed to other available links, thereby avoiding
traffic interruption. In addition, Eth-Trunk interfaces operating in LACP static mode can
implement load balancing. When a BE or LAG is present, all links are active. As a result,
energy consumption occurs on all optical links, as the LAG mechanism constantly sends
test packets to check if the link or member is active or inactive. On an energy level, it is a
waste of energy, because the link capacity should be projected to the network’s peak traffic
demand and in other cases to geographically established redundancy.

To model the energy consumption of a router, one must first know the power. In
Figure 7, the service side considered in the present study is shown.

Figure 7. Router side to be considered.

According to the study in [5], calculating the equipment consumption mainly consists
of a chassis, a number of line cards, and a number of ports. The energy consumption of the
chassis and line cards is fixed, regardless of the traffic load, because they will always be
active, so the power of a router Pr can be expressed by Equation (4):

Pr = Pch + NcPc +
n

∑
i=0

Npi Ppi ∗ f ui, (4)
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where Pch is the power of the chassis, which is the base power of the equipment. Nc is the
number of line cards, and Pc is the power of the line card. Np is the number of ports, Pp is
the power of the ports, and f u is the port utilization factor. The port utilization factor is the
percentage between the used traffic and the port capacity.

When talking about 100GE interfaces, there are standards that establish different
technical norms for different purposes. When referring to connections within the CN,
the 100GBASE-LR4 standard is the most commonly used [74], as it corresponds to the
IEEE 802.3 physical layer specification for 100 Gb/s with 100GBASE-R encoding over four
wavelength division multiplexing (WDM) lanes on single-mode fiber, with a reach of at
least 10 km [75]. In the 100GBASE-LR4, 100GBASE-SR10, 100GBASE-SR4, and 100GBASE-
ER4 standards, energy efficiency is not available [76]. In all of these standards, the common
medium through which data are transmitted is optical fiber. In the IEEE 802.3 bm standard,
it is indicated that EEE in 100GBASE-LR4 is optional. Additionally, many providers have
not yet integrated this norm into their manufacturing. When EEE is not active, Ethernet
standards operate at full power all the time, consuming 100% of the energy, regardless of
the traffic load [77]. Therefore, for our case, we can assume that the utilization factor will
always be equal to 1.

5.2. Traffic Description

For the purpose of the study, real traffic of the architecture shown in Figure 6 is
used. The dataset represents the activity from 13 November 2021 to 16 November 2021
(4 days), consisting of traffic from the CDN router located in Santiago, Metropolitan Region,
Chile (−33.444285499124504, −70.65611679943314). Historical data were captured from
the monitoring system, with raw data that contained the time, average incoming traffic,
average outgoing traffic, maximum incoming traffic, maximum outgoing traffic, etc. In the
dataset, the output traffic peak is the variable used, as it is the maximum traffic that the
network can have. In the monitoring system, the minimum data collection time is every
5 min. As a result, the dataset will consist of a traffic variable measured in Gbps every
five minutes.

For the purpose of training, and as shown in the methodology, three groups will
be divided according to the number of days to train the neural network. As shown in
Figure 8, each day corresponds to 288 observations, and each point represents five minutes,
with its respective value in Gbps, because this dataset works as a univariate time series.
Therefore, the division of training groups is as follows, maintaining the proportion indicated
in Figure 2.

Figure 8. CDN traffic—final dataset.
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• First set: 576 observations:

– Training observations: 288;
– Testing observations: 288.

• Second set: 864 observations:

– Training observations: 576;
– Testing observations: 288.

• Third set: 1152 observations:

– Training observations: 864;
– Testing observations: 288.

As the CN architecture adds traffic and delivers it to various clients through the CDN
router, the traffic type is seasonal due to the nighttime usage feature of major CDNs such
as Netflix, Facebook, and Google. Seasonal fluctuations in telecommunications traffic are
due to changes in consumer behavior, such as increased usage during holidays and winter
months. The adoption of 5G and B5G technologies may lead to increased usage and traffic,
but it is still unclear how much impact they will have, as they are in their early stages of
development and other factors such as infrastructure, regulations, and competition may
also influence their adoption and usage. Ultimately, the impact of these technologies on
seasonal traffic will depend on consumer behavior and market demand. Other factors such
as the availability of infrastructure, government regulations, and competition from other
technologies may also play a role.

5.3. Equipment Characteristics

In the network architecture shown in Figure 6, there is a configured BE or LAG of
8 links with 100GE interface, typically indicated as 8 × 100GE. According to the LACP
protocol, these are configured with the same weight. This means that the load distribution
is equal for all links when traffic is assigned, and therefore, in terms of energy consumption,
all links are active. The studied equipment is a Huawei brand NE40E-X8A model, with a
base configuration that consumes 784 W (typical power at 25 °C), without adding service
cards or uplink links. If only the consumption of the BE on one side of the NE40E-x8A
equipment is analyzed, as shown in Figure 7, the following configuration and consumption
are shown in Table 2.

Table 2. Line card power of CDN router.

Slot Board Info Typical Power at 25 °C (W)

Slot1 LPUF-480-E 290

Slot1-PIC0 PIC-2*100GBase-QSFP28 73

Slot1-PIC1 PIC-2*100GBase-QSFP28 73

Slot2 LPUF-480-E 290

Slot2-PIC0 PIC-2*100GBase-QSFP28 73

Slot2-PIC1 PIC-2*100GBase-QSFP28 73

The base configuration data, as well as the details of each of the cards that make up
the equipment, were obtained by the current configuration of the router in the network.
Therefore, as all ports being active, the utilization factor ( f ui) will be equal to 1. The base
power is calculated with Equation (4), as follows:

Pr = 784 + 2290 +
8

∑
i=1

36.51 = 1656W, (5)

Therefore, the total base power is 1656 W when all ports are active.
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6. Traffic Forecasting Results in Case Study

The results of both simulations are presented for RNN, LSTM, GRU, and OS-ELM.

6.1. Simulation Results of RNN, LSTM, and GRU

Simulations are performed by varying three hyper-parameters: Time-steps (number
of inputs) or more commonly known as lags, number of neurons in the hidden layer and
epochs. The variations of each hyper-parameter will be as follows:

- Time steps (lags): 1, 4, 8, 16, and 32.
- Number of neurons: 1, 10, and 50.
- Epochs: 1, 10, and 100.

Once each hyperparameter is varied, the results of the RMSE, MAE, MAPE, and
computational time metrics will be obtained. Note that the RMSE, MAE, and MAPE
metrics are errors, so they should be close to zero. For a better understanding of these
results, graphs are made for each metric, showing each neural network in the different
training sets or days. Remember that the training days are 1, 2, and 3 days, with 1 day of
testing, which is already explained in the previous point.

The tabulation of the results is presented in Appendix A. The best performance values
are shown in bold. The criterion was to have at least two metrics with a lower value in the
configuration of the hyperparameters lags, number of neurons, and epochs for each group
and deep learning neural network. To better interpret the graphs, Table 3 shows the number
of hyperparameter configuration indicated on the x-axis. Each hyperparameter has the
following description: lags, number of neurons, and epochs). That is, the hyperparameter
number 1 has the configuration of lags: 1, number of neurons: 1, epochs: 1, and so on.

Table 3. Hyperparameters configuration.

Number Hyperparameters
Setting Number Hyperparameters

Setting Number Hyperparameters
Setting

1 1,1,1 16 1,1,10 31 1,1,100

2 4,1,1 17 4,1,10 32 4,1,100

3 8,1,1 18 8,1,10 33 8,1,100

4 16,1,1 19 16,1,10 34 16,1,100

5 32,1,1 20 32,1,10 35 32,1,100

6 1,10,1 21 1,10,10 36 1,10,100

7 4,10,1 22 4,10,10 37 4,10,100

8 8,10,1 23 8,10,10 38 8,10,100

9 16,10,1 24 16,10,10 39 16,10,100

10 32,10,1 25 32,10,10 40 32,10,100

11 1,50,1 26 1,50,10 41 1,50,100

12 4,50,1 27 4,50,10 42 4,50,100

13 8,50,1 28 8,50,10 43 8,50,100

14 16,50,1 29 16,50,10 44 16,50,100

15 32,50,1 30 32,50,10 45 32,50,100

The results of the RMSE metric are shown in Figure 9. The x-axis represents the number
of hyperparameter configurations, indicated in Table 3. From number 16, the number of
epochs changes to 10, and at number 31, to 100. On the y-axis, RMSE is represented. The
data are in Mbps, so the range of these errors is from 5.5 to 9.0 Gbps.
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Figure 9. RMSE metrics for RNN, LSTM, and GRU.

It can be observed that in general, the RNN for the epochs at 1 and 10 behaves with
a high degree of error compared with the LSTM and GRU neural networks for 1, 2, and
3 days of training. This is because they have a lower number of epochs. That is why, at
100 epochs, the RNN improves, and it is even better than other networks in some cases.
Remember that each cycle of backpropagation and forward correction to reduce loss is
called an epoch. Backpropagation consists of determining the best input weights and biases
to obtain a more accurate result or minimize losses.

Another conclusion from this Figure 9 is that because the RNN neural network does
not have a memory effect, and that in 1 day of training it has a lower amount of data,
it has worse performance than in 2 and 3 days of training. This is minimized in other
neural networks such as LSTM and GRU by having a greater effect on memory than RNN.
Furthermore, we can observe that from hyperparameter 40 to 45, in which the number of
neurons is set to 50 and the epochs to 100, varying the number of lags makes the LSTM and
GRU networks worse compared with the RNN. It can be inferred that many epochs and
inputs may be influencing in some way the memory effect of these two networks, which
would lead to the impoverishment of these two neural networks due to an excess of data.

Finally, in the RMSE metric, as can be seen, the lowest point is the hyperparameter
33 of the LSTM neural network for 1, 2, and 3 days of training. Within this network, the
configuration of the hyperparameter number 33 is 8,1,100, whose value of RMSE closest to
zero is on 1 day of training (first group), which can be found in Appendix A.

The MAE error metric is calculated as an average of absolute differences between the
target values and the predictions. MAE is a linear score, which means that all individual
differences are weighted equally in the average. From the point of view of interpretation,
the MAE metric is preferable, since RMSE has the advantage of penalizing larger errors
(outlier values) more, so focusing on the upper limit, which means that the RMSE number
tends to be increasingly larger than that of MAE as the test sample size increases. In other
words, since the data being analyzed represent a time series, it usually does not show
outlier values, so it is preferred to plot this metric.

Figure 10 shows the results of the MAE metric for the RNN, LSTM, and GRU neural
networks in their 1, 2, and 3 days of training. On the x-axis, the number of hyperparameter
configurations is represented, which is already known from the previous graph, and on the
y-axis, MAE is represented.
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Figure 10. MAE metrics for RNN, LSTM, and GRU.

Note that the curves in Figure 10 are similar to the result of the RMSE metric with
some small differences. It is emphasized that the RNN after 3 days of training does not
have good performance, as evidenced by the RMSE metric. Finally, the closest RMSE error
to zero is achieved by the LSTM neural network after 2 days of training (second group)
with a hyperparameter configuration (8,1,100) that can be found in Appendix A.

Since MAPE is a further development of the MAE calculation, there is similarity be-
tween both metrics. Both are not sensitive to outliers since they use the absolute difference.
MAPE is more understandable than MAE for the final user, because the error value is in
terms of percentage.

In Figure 11, the results of the MAPE metric for RNN, LSTM, and GRU in their 1, 2, and
3 days of training are shown. On the x-axis, the number of hyperparameter configurations
is represented, and on the y-axis, MAPE is represented.

Here, the error is represented in percentage terms, which leads us to believe that we
are working with minimal errors close to 1.9%, which translates to the prediction of the
three neural networks having good performances. Now, in Figure 11, it can be seen that at
100 epochs is where the three networks make predictions with the least error and that the
neural network with the best results continues to be LSTM.

In Figure 12, the results of the computational metric or lapsed time for RNN, LSTM,
and GRU in their 1, 2, and 3 days of training are shown. The x-axis represents the configu-
ration number of the hyperparameters, and the y-axis represents the elapsed time.

One of the predominant factors is the amount of time it takes for the neural network to
predict the next value. This time must be less than the input time of the monitoring system,
which was established at 5 min (300 s). In Figure 12, it can be clearly seen that as the number
of epochs increases, they are determinant in terms of computational calculation. Note that
these values vary depending on the computer system. Table 1 shows the equipment used.
In this case, a GPU is used to accelerate the vectorial calculations of the gradient of each of
the neural networks.

In addition to the number of epochs, the number of days of training increases the
elapsed time. This is clearly visible where the results of the RMSE, MAE, and MAPE metrics
are closer to zero, that is, centered on the value of 100 epochs.
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Another point to note is the stability in terms of computational time possessed by the
LSTM and GRU neural networks, which does not vary significantly if the number of lags is
increased as the RNN does, which increases the time exponentially.

Figure 11. MAPE metrics for RNN, LSTM, and GRU.

Finally, in the computational time metric, it would be incorrect to choose the value
closest to zero, as it must be accompanied by the metrics seen earlier. Now, it is known that
computational times greater than 300 s cannot be selected.

Figure 12. Computational time or lapsed time metric for RNN, LSTM, and GRU.

Table 4 shows a summary of the results containing the best metrics of the selected
neural networks.
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Table 4. Summary of results for RNN, LSTM, and GRU.

Type Group Training Time Step
(Lags)

Number
Neurons Epochs RMSE MAE MAPE Lapsed

Time [s]

RNN First 1 day 4 10 10 5711.161 4054.292 0.02137 7.177

RNN Second 2 days 16 1 100 5728.889 4126.839 0.02184 172.208

RNN Third 3 days 16 1 100 5679.286 4070.981 0.02126 257.146

LSTM First 1 day 8 1 100 5573.399 3961.516 0.01959 35.745

LSTM Second 2 days 8 1 100 5581.399 3947.681 0.01998 66.765

LSTM Third 3 days 8 1 100 5585.884 3950.845 0.01958 103.195

GRU First 1 day 4 1 100 5612.749 3953.799 0.01970 34.093

GRU Second 2 days 8 1 100 5600.504 3972.234 0.01962 66.179

GRU Third 3 days 8 1 100 5600.595 3971.039 0.01962 89.822

The results indicate that the predictions of the LSTM neural network are considerably
more accurate than RNN and GRU. If the number of training days that is being given to
each neural network is visualized, in RNN, when these days are increased, the computation
time increases considerably. In the case of LSTM, there is a deterioration of the RMSE, MAE,
and MAPE metrics, and at the same time, an increase in computational time. For GRU, it
behaves similarly to LSTM.

On the other hand, it can be observed that the results of the RMSE, MAE, and
MAPE metrics in LSTM are more consistent than in the RNN and GRU networks, be-
cause they present the same configuration of hyperparameters (8 inputs, 1 hidden layer,
and 100 epochs) in different training days. The LSTM and GRU neural networks are surpris-
ing, because even with a complex structure on the RNN, they present low computational
times when adjusting the hyperparameters to high values. The best combination of the
neural network and training days to choose is the LSTM network with 1 day of training
with a configuration of 8 lags, 1 neuron, and 100 epochs, as shown in Table 4.

6.2. Simulation Results of the OS-ELM Neural Network

For the OS-ELM network, the same method as for RNN, LSTM, and GRU is used,
which consists of varying the value of the hyperparameters. Simulations are carried out by
varying two parameters: the number of neurons in the hidden layer and forgetting factor.
The value that each hyperparameter will take is as follows:

- Number of neurons: 10, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 1110, 1210,
1310, 1410, 1510, 1610, 1710, 1810, and 1910.

- Forgetting factor: 0.9, 0.95, 0.99, and 1.00.

Once each hyperparameter is varied, the results of the RMSE, MAE, and MAPE metrics
and computational time will be obtained. In Figure 13, the results of four graphs of the
RMSE metric are shown, varying the forgetting factor. On the x-axis, the number of neurons
is represented. On the y-axis, RMSE is represented.

It can be seen that for different training days of the OS-ELM neural network, the
RMSE metric can vary between values of 50,000 to 2700, indicating that the behavior of
this network is more sensitive to the variation of its hyperparameters compared with RNN,
LSTM, and GRU. The tabulation of the results is presented in Appendix A. Remember that
if the forgetting factor is 1.00, it means that the OS-ELM network does not forget anything.
The forgetting factor allows for continuously forgetting obsolete input data during the
training process in order to reduce its negative effect on future learning.

When the forgetting factor is 0.90, the RMSE is highest when 110 neurons are config-
ured. If the forgetting factor is 0.95, the error decreases as the number of hidden nodes
increases and converges after 410 neurons. When the forgetting factors are 0.99 and 1.00,
the neural network presents a huge error with 10 neurons, which rapidly decreases as the
number of neurons increases. Additionally, it can be seen that as the forgetting factor and
number of neurons increase, the OS-ELM network does not show much difference for the
different days (1, 2, and 3) that are used as input for training data.
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Figure 13. RMSE metric for the OS-ELM network with forgetting factors at (a) 0.90, (b) 0.95, (c) 0.99,
and (d) 1.00.

In Figure 14, the results of the MAE metric with varying the forgetting factor are
shown. The x-axis represents the number of neurons and the y-axis represents MAE.

Figure 14. MAE metric for the OS-ELM network with forgetting factors at (a) 0.90, (b) 0.95, (c) 0.99,
and (d) 1.00

These results show the same behavior already indicated in the RMSE metric. Remem-
ber that MAE is more robust to outliers and does not penalize errors as severely as RMSE.
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This is why the OS-ELM network trained for 3 days (green bar) is visualized in Figure 14
with a lower error than in Figure 13. This behavior is due to the presence of extreme values.

Figure 15 shows the MAPE metric by varying the forgetting factor. The x-axis repre-
sents the number of neurons and the y-axis represents MAPE.

Figure 15 shows the influence of the data input to the OS-ELM network in percentage
terms, with the training of 1 day standing out compared with the other days, as it presents
the lowest error. Moreover, the convergence of this network is highlighted after 410 neurons
with a forgetting factor of 0.95. However, in the OS-ELM network, overfitting can be
observed when the number of neurons is increased and the forgetting factor is greater than
0.95. Overfitting is an undesired behavior of neural networks that occurs when the machine
learning model provides accurate predictions for the training data but not for new data. If
the forgetting factor is close to 1.00, the network may not forget the previous data, and this
can cause the network to provide inaccurate predictions when there is a new behavior.

In Figure 16, the results of the computational time metric for the OS-ELM neural
network in its 1, 2, and 3 days of training are shown. The x-axis represents the number of
neurons and the y-axis represents the lapsed time or computational time.

It is very clear that the computational times at the forgetting factors of 0.90, 0.95,
0.99, and 1.00 increase considerably with a greater number of neurons. This is why the
criterion for choosing the best hyperparameter configuration and training days for the
OS-ELM network will be based on time and take into account a forgetting factor of 0.95
that allows for possible traffic variations in the network, in order to avoid overfitting, as
seen in Figure 15.

Figure 15. MAPE metric for the OS-ELM network with forgetting factors at (a) 0.90, (b) 0.95, (c) 0.99,
and (d) 1.00.

Table 5 presents a summary of the best results for each day of OS-ELM network
training with a forgetting factor of 0.95 and 410 as the number of neurons in terms of
computational time and convergence for that number of neurons.
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Figure 16. Computational time metric for the OS-ELM network with forgetting factors at (a) 0.90,
(b) 0.95, (c) 0.99, and (d) 1.00.

Table 5. Summary of results for OS-ELM.

Type Group Training Forgetting
Factor

Number
Neurons RMSE MAE MAPE

Lapsed
Time [s]

OS-ELM First 1 day 0.95 410 4336.068 3273.084 0.01761 1.128

OS-ELM Second 2 days 0.95 410 4221.912 3037.816 0.01642 1.182

OS-ELM Third 3 days 0.95 410 4384.103 3276.136 0.01778 1.113

When comparing the RMSE, MAE, and MAPE metrics, it can be seen that the network
with 2 days of training performs the best. With regard to computational times, they are all
around 1.2 s, so the final choice is the OS-ELM neural network with 2 days of input.

6.3. Final Neural Network Selection

Table 6 shows a comparison of the four best-rated neural networks according to the
RMSE, MAE, and MAPE metrics in each of the training groups. For comparative purposes,
the worst of the corresponding RNNs is used as a reference. The results are decisive in
terms of prediction. Starting with the RMSE metric, the OS-ELM, LSTM, and GRU neural
networks surpass the RNN by 26%, 2%, and 1%, respectively. For the MAE metric, the
OS-ELM, LSTM, and GRU networks surpass the RNN by 25%, 3%, and 2%, respectively,
and for the MAPE measure, the OS-ELM, LSTM, and GRU networks surpass the RNN by
23%, 6%, and 8%, respectively.

Finally, in terms of computational time, the OS-ELM, LSTM, and GRU networks
surpass the RNN by factors of 217.6, 7.2, and 3.9 times, respectively.

For the purpose of reviewing the comparison of the two best networks and differentiat-
ing their optimization technique, Table 7 shows LSTM, which is based on the best gradient
descent optimization network, and OS-ELM, which uses the Moore–Penrose pseudoinverse.
It shows the percentages of the RMSE, MAE, and MAPE metrics, using the worst of them
as a reference. In terms of prediction, OS-ELM outperforms LSTM by 24% in RMSE, 23%
in MAE, and 16% in MAPE. In terms of computational time, OS-ELM is 30.2 times faster
than LSTM.
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Table 6. Traffic comparison of prediction of neural networks.

Type Training RMSE %
RMSE MAE % MAE MAPE %

MAPE
Lapsed
Time [s] Times

OS-ELM 2 days 4221.912 26% 3037.816 25% 0.01642 23% 1.182 217.6x

LSTM 1 day 5573.399 2% 3961.516 3% 0.01999 6% 35.745 7.2x

GRU 2 days 5600.504 1% 3972.234 2% 0.01962 8% 66.179 3.9x

RNN 3 days 5679.286 - 4070.981 - 0.02126 - 257.146 -

Table 7. Traffic prediction metrics for the best LSTM and OS-ELM networks.

Type Training RMSE %
RMSE MAE % MAE MAPE %

MAPE
Lapsed
Time [s] Times

OS-ELM 2 days 4221.912 24% 3037.816 23% 0.01642 18% 1.182 30.2x

LSTM 1 day 5573.399 - 3961.516 - 0.01999 - 35.745 -

In Figure 17, the two neural networks (OS-ELM and LSTM) indicated in Table 7 are
shown. These present the prediction of the traffic load of the CDN router every five minutes
in one day. On the x-axis, the bit rate is represented in Gbps, and on the y-axis, the time is
indicated in hours, with each point representing 5 min (300 s).

Figure 17. Traffic prediction comparison of the best networks: LSTM and OS-ELM.

The final choice of the sequential neural network OS-ELM is clear given the results
obtained.

7. Results of Energy Efficiency Algorithms in the Case Study

The performance of the proposed energy efficiency optimization algorithms are shown
below and indicated in Figure 4. These algorithms are compared with the base case, that
is, the system operating under current conditions. Remember that the algorithms are
responsible for turning on or off the corresponding ports on one side of the CDN router
and the link connection to reduce the energy consumption of the network, while satisfying
the traffic demand. The first algorithm is based on past traffic with a threshold value
of 100%, called the threshold-based algorithm. The second algorithm is based on traffic
prediction performed by the neural network selected in the previous chapter, called the
prediction-based algorithm.

The results of the simulations are presented in Figures 18–21, which were carried out
for the test day presented in Figure 8.
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In Figure 18, the results of the accumulated savings on the test day are shown for the
base case, threshold-based, and prediction-based algorithms. On the x-axis, the time is
represented in hours. On the y-axis, the accumulated savings are represented, measured
in W/h.

As can be observed in Figure 18, the savings achieved by the prediction-based algo-
rithm is 4829.58 W/h per day, or 4.83 kW/h per day. On the other hand, when considering
the threshold-based algorithm, the savings amount to 2.68 kW/h per day. Clearly, there
are no energy savings in the base case. The power of the router is 1656 W, as calculated
by Equation (5); thus, the energy consumed is 39.6 kW/h per day. Consequently, the daily
savings are 12.2%, only taking into account one side of the equipment (that pertaining to
services), the consumption of the chassis, and that of the cards.

Furthermore, the maximum savings that can be achieved by not utilizing any port of
the router is 7 kW/h per day, considering 36.5 W of power per port, multiplied by the 8
ports present in the BE. If we compare the savings of prediction (4.83 kW/h per day) to the
total consumption of the ports (7 kW/h per day), the savings are almost 70%.

In Figure 19, the number of active ports based on turning on or off during the testing
day is shown for the base case, threshold-based algorithm, and prediction-based algorithm.
The x-axis represents time in hours, while the y-axis represents the number of active ports.

Figure 18. Cumulative one-day savings for base, threshold, and forecast cases.

Regarding the available capacity of the BE, Figure 20 shows that in the base case, there
is a high availability of capacity or, in other words, a low utilization; this is due to the
network being configured in such a way that it can absorb a site with similar characteristics
in case of failure for backup purposes. In the case of the threshold-based algorithm, there
is still available capacity in any situation or event. However, in the prediction-based
algorithm, this backup capacity is lost to some extent in exchange for the benefit of the
energy savings presented in this study.

In this simulation, the prediction-based algorithm exhibits points where traffic is lost
due to less accurate predictions, specifically −0.3 Gbps at 12:05 a.m. and −0.79 Gbps at
10:10 PM, as shown in Figure 21.

It can be seen in Figure 19 that for the base case, all ports are active at all times, and
for both algorithms, the use of ports begins to decrease in a stepped manner starting at
2:00 a.m., until reaching the lowest point within the range of 3:00 a.m. to 7:00 a.m.; this
is due to low traffic usage during nighttime hours. We should note that in the case of the
threshold-based algorithm, there is a high variation at one point in the morning not present
in the prediction algorithm, which is observed to be more stable.
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Figure 19. Active number of ports in a day for the base case, threshold, and prediction.

Figure 20. Capacity available in the BE or LAG in a day for base case, threshold, and prediction.

Figure 21. Capacity loss in BE or LAG in one day for base case, threshold, and prediction.

For the purposes of proportionality, it is considered low, given that it represents
approximately 0.2% of total traffic (400 Gbps); however, for a TSO this is critical, as it would
result in packet loss at a specific moment on the network, with subsequent attempts at
reconnection. A solution to this would be to consider a safety factor in the prediction.
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8. Conclusions and Future Works

This paper outlines a systematic method for resolving complex problems requiring
precise predictions. Utilizing a neural network as the primary tool for prediction enables
high accuracy and adaptability to different data types. In addition, the emphasis on energy
efficiency emphasizes the significance of reducing energy consumption and discovering
ways to optimize resource utilization.

In the case study, a solution was implemented to address the issue of energy efficiency
in the data centers of telecommunications service providers. In order to accomplish this,
four recurrent and sequential neural networks were compared, allowing predictions to be
made every 5 min using sliding windows and hyperparameters of varying values. OS-ELM
is the best high-precision network. In terms of prediction, the OS-ELM, LSTM, and GRU
networks outperform the RNN by 26%, 2%, and 1% on the RMSE metric; 25%, 3%, and
2% on the MAE metric; and 23%, 6%, and 8% on the MAPE metric, respectively OS-ELM,
LSTM, and GRU outperform RNN in terms of computational time by factors of 217.5, 7.2,
and 3.9, respectively. For each one, prediction execution times are shorter than the time
required for the system to collect data (less than 300 s). The OS execution of ELM’s time
for this effect is approximately 1.2 s due to its simple structure and absence of gradient
minimization in its search for the optimal solution.

The simulations were applied to real traffic from a telecommunications service provider,
which offers a real solution for energy efficiency and energy savings that can be applied not
only to the core part but also to the aggregation networks, where there are a large number
of BEs or LAGs and significant energy savings can be achieved. Regarding the base case
(current conditions), the threshold-based algorithm yielded 6.8% and the prediction-based
algorithm yielded 12.2% energy savings per day. It should be noted that only one side of the
equipment was considered for energy savings in this simulation (customer or service side).
If extrapolated to a large quantity of equipment, it would represent substantial cost savings.

As mentioned previously, the methodology presented in this paper can be expanded
and applied to other industries in future research. The approach’s versatility and adaptabil-
ity make it a promising solution for a wide variety of prediction issues. As technology and
data continue to advance, this methodology can be further developed and improved to
provide even more accurate predictions and drive innovation across numerous industries.
The potential for future applications and its impact in a variety of fields highlight the
significance of this methodology and the need for additional research in this field.

The proposed online sequential extreme learning machine (OS-ELM) scheme holds
great potential for addressing energy efficiency in telecoms networks as a whole system
challenge. For instance, the deterministic, causal, and universality dimensions of the
OS-ELM consider the impact of creating inefficiencies elsewhere in the telecoms and/or
other systems while driving networks more efficiently. The prediction scheme can provide
near-real-time trade-offs to enhance the flexibility of telecoms networks and demands that
are susceptible to efficiency measures. This capability of the proposed scheme serves to
augment the energy efficiency networks (EENs) enhancements occasioned with architec-
ture and technologies. Consequently, the current OS-ELM approach will be advanced
to enable integrated system-level energy efficiency prediction and optimization across
communications and energy systems.

The future direction of research will also explore telecoms equivalents of energy ideas
around self-generation, storage, flexibility, and demand reduction. For the considered data
centers’ case study, our proposed scheme can enable the segmentation of use/users to
predict uses that are wasteful, normal, important, and critical. This four-level classifica-
tion of data centers will consider the temporally and the spatially complex system-level
constraints of the EEN of the telecoms system. Holistic, system-level OS-ELM prediction
can provide a ubiquitous, seamless, and deeper understanding of the embedded carbon
footprints of telecoms network equipment in data centers. This has the potential to predict
and utilize feasible EEN solutions via edge computing and Open-RAN equipment. The
proposed scheme will be extended by incorporating the EEN trade-offs to encompass end-
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to-end costs of energy, centralized cloud, end-to-end shared infrastructure, and radio access
technologies (5G/6G). This will enable consumer behavior, end-to-end power consumption
budget, and user equipment energy use challenges to be predicted for near-real-time EEN
optimization for cost-effective data center operation.
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Abbreviations
The following abbreviations are used in this manuscript:

ARIMA Autoregressive Integrated Moving Average
BE Bundle Ethernet
BLSTM Bidirectional Long Short-Term Memory
CDN Content Delivery Network
CNN Convolutional Neural Networks
DLHT Dynamic Local Heuristic Threshold
DNN Deep Neural Network
DRCN Design of Reliable Communication Networks
DT Decision Tree
EEE Energy Efficient Ethernet
ELM Extreme Learning Machine
EPC Evolved Packet Core
FLHT Fixed Local Heuristic Threshold
GPU Graphics Processing Unit
GRU Gated Recurrent Units
IEEE Institute of Electrical and Electronics Engineers
IGR Internet Gateway Router
ILP Integer Linear Programming
IOT Internet of Things
IP Internet Protocol
LACP Link Aggregation Control Protocol
LAG Link Aggregation Groups
LP Linear Programming
LPI Low Power Idle
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPD Mean Absolute Percentage Deviation
MAPE Mean Absolute Percentage Error
MILP Mixed-Integer Linear Problem
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OS-ELM Online Sequential Extreme Learning Machine
OTN Optical Transport Network
PHY Physical Layer
RF Random Forest
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
SDN Software-Defined Network
SMA Simple Moving Average
SNMP Simple Network Management Protocol
SPA Standby Port Algorithm
SVM Support Vector Machine
TQA Two-Queuing Algorithm
TSO Telecom Service Operator
WDM Wavelength Division Multiplexing

Appendix A

The link mentions a table that displays the results obtained from for RNN, LSTM,
GRU, and OS-ELM in the applied use case. The table shows different performance met-
rics, such as RMSE, MAE, MAPE, and computational time. Link: simulation results of
neural networks RNN, LSTM, GRU, and OS-ELM. https://github.com/frzrau/database_
energyefficiencypaper/blob/5a7b8859c5c6275924da31320fd646019f11fd1a/Simulation%20
Results.pdf (accessed on 17 May 2023).

References
1. Ahmed, K.M.U.; Bollen, M.H.J.; Alvarez, M. A Review of Data Centers Energy Consumption and Reliability Modeling. IEEE

Access 2021, 9, 152536–152563. [CrossRef]
2. Andrae, A.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157.

[CrossRef]
3. Junior, R.R.R.; Vieira, M.A.M.; Vieira, L.F.M.; Loureiro, A.A.F. Intra and inter-flow link aggregation in SDN. Telecommun. Syst.

2022, 79, 95–107. [CrossRef]
4. Addis, B.; Capone, A.; Carello, G.; Gianoli, L.G.; Sanso, B. Energy Management Through Optimized Routing and Device Powering

for Greener Communication Networks. IEEE/ACM Trans. Netw. 2014, 22, 313–325. [CrossRef]
5. Mahadevan, P.; Sharma, P.; Banerjee, S.; Ranganathan, P. A power benchmarking framework for network devices. In Lecture

Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of
the 8th International IFIP-TC 6 Networking Conference, Aachen, Germany, 11–15 May 2009; Springer: Berlin/Heidelberg, Germany,
2009; pp. 795–808. [CrossRef]

6. Fisher, W.; Suchara, M.; Rexford, J. Greening backbone networks. In Proceedings of the first ACM SIGCOMM Workshop on Green
Networking; ACM: New York, NY, USA, 2010; pp. 29–34. [CrossRef]

7. IEEE Standards Association. IEEE Std 802.1AX-2020 (Revision of IEEE Std 802.1AS-2014); IEEE Std 802.1AX™-2020, IEEE
Standard for Local and Metropolitan Area Networks—Link Aggregation. IEEE Standards Association: Piscataway, NJ, USA,
2020; Volume 2020, pp. 1–421.

8. Bianzino, A.P.; Chaudet, C.; Rossi, D.; Rougier, J.L. A Survey of Green Networking Research. IEEE Commun. Surv. Tutor. 2012,
14, 3–20. [CrossRef]

9. IEEE 802.3az-2010; Energy Efficient Ethernet. IEEE: Piscataway, NJ, USA, 2010.
10. Reviriego, P.; Christensen, K.; Bennett, M.; Nordman, B.; Maestro, J.A. Energy Efficiency in Ethernet. In Green Communications;

John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 277–290. [CrossRef]
11. Liu, L.; Ramamurthy, B. A dynamic local method for bandwidth adaptation in bundle links to conserve energy in core networks.

Opt. Switch. Netw. 2013, 10, 481–490. [CrossRef]
12. Fondo-Ferreiro, P.; Rodríguez-Pérez, M.; Fernández-Veiga, M.; Herrería-Alonso, S. Matching SDN and Legacy Networking

Hardware for Energy Efficiency and Bounded Delay. Sensors 2018, 18, 3915. [CrossRef]
13. Imaizumi, H.; Nagata, T.; Kunito, G.; Yamazaki, K.; Morikawa, H. Power Saving Mechanism Based on Simple Moving Average

for 802.3ad Link Aggregation. In Proceedings of the 2009 IEEE Globecom Workshops, Honolulu, HI, USA, 30 November–4
December 2009 ; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6. [CrossRef]

https://github.com/frzrau/database_energyefficiencypaper/blob/5a7b8859c5c6275924da31320fd646019f11fd1a/Simulation%20Results.pdf
https://github.com/frzrau/database_energyefficiencypaper/blob/5a7b8859c5c6275924da31320fd646019f11fd1a/Simulation%20Results.pdf
https://github.com/frzrau/database_energyefficiencypaper/blob/5a7b8859c5c6275924da31320fd646019f11fd1a/Simulation%20Results.pdf
http://doi.org/10.1109/ACCESS.2021.3125092
http://dx.doi.org/10.3390/challe6010117
http://dx.doi.org/10.1007/s11235-021-00841-7
http://dx.doi.org/10.1109/TNET.2013.2249667
http://dx.doi.org/10.1007/978-3-642-01399-7_62
http://dx.doi.org/10.1145/1851290.1851297
http://dx.doi.org/10.1109/SURV.2011.113010.00106
http://dx.doi.org/10.1002/9781118759257.ch14
http://dx.doi.org/10.1016/j.osn.2013.01.003
http://dx.doi.org/10.3390/s18113915
http://dx.doi.org/10.1109/GLOCOMW.2009.5360735


Sensors 2023, 23, 4997 31 of 33

14. Nihale, S.; Sharma, S.; Parashar, L.; Singh, U. Network Traffic Prediction Using Long Short-Term Memory. In Proceedings of the
2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 338–343. [CrossRef]

15. Rau, F.; Soto, I.; Zabala-Blanco, D. Forescating Mobile Network Traffic based on Deep Learning Networks. In Proceedings
of the 2021 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 17–19
November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [CrossRef]

16. Andreoletti, D.; Troia, S.; Musumeci, F.; Giordano, S.; Maier, G.; Tornatore, M. Network Traffic Prediction based on Diffusion
Convolutional recurrent neural networks. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 246–251. [CrossRef]

17. Wang, W.; Zhou, C.; He, H.; Wu, W.; Zhuang, W.; Shen, X. Cellular Traffic Load Prediction with LSTM and Gaussian Process
Regression. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11
June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

18. Liang, N.-Y.; Huang, G.-B.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for
Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [CrossRef]

19. Rau, F.; Soto, I.; Adasme, P.; Zabala-Blanco, D.; Azurdia-Meza, C.A. Network Traffic Prediction Using Online-Sequential Extreme
Learning Machine. In Proceedings of the 2021 Third South American Colloquium on Visible Light Communications (SACVLC),
Toledo, Brazil, 11–12 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [CrossRef]

20. Singh, R.; Kumar, H.; Singla, R. An intrusion detection system using network traffic profiling and online sequential extreme
learning machine. Expert Syst. Appl. 2015, 42, 8609–8624. [CrossRef]

21. Liu, Z.; Zhu, Z.; Gao, J.; Xu, C. Forecast Methods for Time Series Data: A Survey. IEEE Access 2021, 9, 91896–91912. [CrossRef]
22. Wu, J.; He, Y. Prediction of GDP in Time Series Data Based on Neural Network Model. In Proceedings of the 2021 IEEE

International Conference on Artificial Intelligence and Industrial Design (AIID), Guangzhou, China, 28–30 May 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 20–23. [CrossRef]

23. Do, Q.H.; Doan, T.T.H.; Nguyen, T.V.A.; Duong, N.T.; Linh, V.V. Prediction of Data Traffic in Telecom Networks based on Deep
Neural Networks. J. Comput. Sci. 2020, 16, 1268–1277. [CrossRef]

24. Mao, Q.; Hu, F.; Hao, Q. Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor.
2018, 20, 2595–2621. [CrossRef]

25. Hou, Y.; Zheng, X.; Han, C.; Wei, W.; Scherer, R.; Połap, D. Deep Learning Methods in Short-Term Traffic Prediction: A Survey.
Inf. Technol. Control 2022, 51, 139–157. [CrossRef]

26. Huang, S.C.; Wu, C.F. Energy Commodity Price Forecasting with Deep Multiple Kernel Learning. Energies 2018, 11, 3029.
[CrossRef]

27. Xiao, C.; Choi, E.; Sun, J. Opportunities and challenges in developing deep learning models using electronic health records data:
A systematic review. J. Am. Med. Inform. Assoc. 2018, 25, 1419–1428. [CrossRef] [PubMed]

28. Lepot, M.; Aubin, J.B.; Clemens, F. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance
Criteria and Uncertainty Assessment. Water 2017, 9, 796. [CrossRef]

29. Zhang, X.; Kuehnelt, H.; De Roeck, W. Traffic Noise Prediction Applying Multivariate Bi-Directional Recurrent Neural Network.
Appl. Sci. 2021, 11, 2714. [CrossRef]

30. Shin, J.; Yeon, K.; Kim, S.; Sunwoo, M.; Han, M. Comparative Study of Markov Chain With Recurrent Neural Network for Short
Term Velocity Prediction Implemented on an Embedded System. IEEE Access 2021, 9, 24755–24767. [CrossRef]

31. Impedovo, D.; Dentamaro, V.; Pirlo, G.; Sarcinella, L. TrafficWave: Generative Deep Learning Architecture for Vehicular Traffic
Flow Prediction. Appl. Sci. 2019, 9, 5504. [CrossRef]

32. Sha, S.; Li, J.; Zhang, K.; Yang, Z.; Wei, Z.; Li, X.; Zhu, X. RNN-Based Subway Passenger Flow Rolling Prediction. IEEE Access
2020, 8, 15232–15240. [CrossRef]

33. Zeng, C.; Ma, C.; Wang, K.; Cui, Z. Parking Occupancy Prediction Method Based on Multi Factors and Stacked GRU-LSTM. IEEE
Access 2022, 10, 47361–47370. [CrossRef]

34. Khan, Z.; Khan, S.M.; Dey, K.; Chowdhury, M. Development and Evaluation of Recurrent Neural Network-Based Models for
Hourly Traffic Volume and Annual Average Daily Traffic Prediction. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 489–503.
[CrossRef]

35. Chui, K.T.; Gupta, B.B.; Liu, R.W.; Zhang, X.; Vasant, P.; Thomas, J.J. Extended-Range Prediction Model Using NSGA-III
Optimized RNN-GRU-LSTM for Driver Stress and Drowsiness. Sensors 2021, 21, 6412. [CrossRef] [PubMed]

36. Nguyen, M.; Sun, N.; Alexander, D.C.; Feng, J.; Yeo, B.T. Modeling Alzheimer’s disease progression using deep recurrent neural
networks. In Proceedings of the 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore, 12–14
June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [CrossRef]

37. Li, P.; Shi, Y.; Xing, Y.; Liao, C.; Yu, M.; Guo, C.; Feng, L. Intra-Cluster Federated Learning-Based Model Transfer Framework for
Traffic Prediction in Core Network. Electronics 2022, 11, 3793. [CrossRef]

38. Zhang, C.; Zhang, H.; Yuan, D.; Zhang, M. Citywide Cellular Traffic Prediction Based on Densely Connected Convolutional
Neural Networks. IEEE Commun. Lett. 2018, 22, 1656–1659. [CrossRef]

http://dx.doi.org/10.1109/ICESC48915.2020.9156045
http://dx.doi.org/10.1109/LATINCOM53176.2021.9647788
http://dx.doi.org/10.1109/INFCOMW.2019.8845132
http://dx.doi.org/10.1109/ICC40277.2020.9148738
http://dx.doi.org/10.1109/TNN.2006.880583
http://dx.doi.org/10.1109/SACVLC53127.2021.9652247
http://dx.doi.org/10.1016/j.eswa.2015.07.015
http://dx.doi.org/10.1109/ACCESS.2021.3091162
http://dx.doi.org/10.1109/AIID51893.2021.9456509
http://dx.doi.org/10.3844/jcssp.2020.1268.1277
http://dx.doi.org/10.1109/COMST.2018.2846401
http://dx.doi.org/10.5755/j01.itc.51.1.29947
http://dx.doi.org/10.3390/en11113029
http://dx.doi.org/10.1093/jamia/ocy068
http://www.ncbi.nlm.nih.gov/pubmed/29893864
http://dx.doi.org/10.3390/w9100796
http://dx.doi.org/10.3390/app11062714
http://dx.doi.org/10.1109/ACCESS.2021.3056882
http://dx.doi.org/10.3390/app9245504
http://dx.doi.org/10.1109/ACCESS.2020.2964680
http://dx.doi.org/10.1109/ACCESS.2022.3171330
http://dx.doi.org/10.1177/0361198119849059
http://dx.doi.org/10.3390/s21196412
http://www.ncbi.nlm.nih.gov/pubmed/34640732
http://dx.doi.org/10.1109/PRNI.2018.8423955
http://dx.doi.org/10.3390/electronics11223793
http://dx.doi.org/10.1109/LCOMM.2018.2841832


Sensors 2023, 23, 4997 32 of 33

39. Fu, Y.; Wang, S.; Wang, C.X.; Hong, X.; McLaughlin, S. Artificial Intelligence to Manage Network Traffic of 5G Wireless Networks.
IEEE Netw. 2018, 32, 58–64. [CrossRef]

40. Zhang, D.; Liu, L.; Xie, C.; Yang, B.; Liu, Q. Citywide Cellular Traffic Prediction Based on a Hybrid Spatiotemporal Network.
Algorithms 2020, 13, 20. [CrossRef]

41. Kao, C.C.; Chang, C.W.; Cho, C.P.; Shun, J.Y. Deep Learning and Ensemble Learning for Traffic Load Prediction in Real Network.
In Proceedings of the 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 23–25
October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 36–39. [CrossRef]

42. Santos, G.L.; Rosati, P.; Lynn, T.; Kelner, J.; Sadok, D.; Endo, P.T. Predicting short-term mobile Internet traffic from Internet activity
using recurrent neural networks. Int. J. Netw. Manag. 2022, 32, e2191. [CrossRef]

43. Nejadettehad, A.; Mahini, H.; Bahrak, B. Short-term Demand Forecasting for Online Car-hailing Services Using recurrent neural
networks. Appl. Artif. Intell. 2020, 34, 674–689. [CrossRef]

44. Kumar, B.P.; Hariharan, K.; Shanmugam, R.; Shriram, S.; Sridhar, J. Enabling internet of things in road traffic forecasting with
deep learning models. J. Intell. Fuzzy Syst. 2022, 43, 6265–6276. [CrossRef]

45. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

46. Park, J.M.; Kim, J.H. Online recurrent extreme learning machine and its application to time-series prediction. In Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway,
NJ, USA, 2017; Volume 2017-May; pp. 1983–1990. [CrossRef]

47. Tian, Y.; Zhang, K.; Li, J.; Lin, X.; Yang, B. LSTM-based traffic flow prediction with missing data. Neurocomputing 2018,
318, 297–305. [CrossRef]

48. Baytas, I.M.; Xiao, C.; Zhang, X.; Wang, F.; Jain, A.K.; Zhou, J. Patient Subtyping via Time-Aware LSTM Networks. In KDD ’17,
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17
August 2017; ACM: New York, NY, USA, 2017; pp. 65–74. [CrossRef]

49. Rubanova, Y.; Chen, R.T.; Duvenaud, D. Latent odes for irregularly-sampled time series. arXiv 2019, arXiv:1907.03907.
50. Vecoven, N.; Ernst, D.; Drion, G. A bio-inspired bistable recurrent cell allows for long-lasting memory. PLoS ONE 2021,

16, e0252676. [CrossRef]
51. Zhou, J.; Huang, Z. Recover missing sensor data with iterative imputing network. In Proceedings of the Workshops at the

Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [CrossRef]
52. Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural

networks. Neurocomputing 2021, 441, 161–178. [CrossRef]
53. Mahmood, A.; Mat Kiah, M.L.; Reza Z’Aba, M.; Qureshi, A.N.; Kassim, M.S.S.; Azizul Hasan, Z.H.; Kakarla, J.; Sadegh Amiri, I.;

Azzuhri, S.R. Capacity and Frequency Optimization of Wireless Backhaul Network Using Traffic Forecasting. IEEE Access 2020,
8, 23264–23276. [CrossRef]

54. Ba, S.; Ouédraogo, I.A.; Oki, E. A power consumption reduction scheme in hose-model networks with bundled links. In
Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, Beijing, China, 20–23 August 2013; pp. 40–45.
[CrossRef]

55. Galán-Jiménez, J.; Gazo-Cervero, A. Designing energy-efficient link aggregation groups. Ad. Hoc. Netw. 2015, 25, 595–605.
[CrossRef]

56. Rodriguez-Perez, M.; Fernandez-Veiga, M.; Herreria-Alonso, S.; Hmila, M.; Lopez-Garcia, C. Optimum Traffic Allocation in
Bundled Energy-Efficient Ethernet Links. IEEE Syst. J. 2018, 12, 593–603. [CrossRef]

57. Fondo-Ferreiro, P.; Rodriguez-Perez, M.; Fernandez-Veiga, M. Implementing energy saving algorithms for ethernet link aggregates
with ONOS. In Proceedings of the 2018 5th International Conference on Software Defined Systems, SDS 2018, Barcelona, Spain,
23–26 April 2018; pp. 118–125. [CrossRef]

58. Ramakrishnan, N.; Soni, T. Network Traffic Prediction Using recurrent neural networks. In Proceedings of the 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 187–193. [CrossRef]

59. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated recurrent neural networks on Sequence Modeling. In
Proceedings of the NIPS 2014 Deep Learning and Representation Learning Workshop, Montreal, QC, Canada, 12 December 2014.
[CrossRef]

60. Zhang, J.; Xiao, W.; Li, Y.; Zhang, S. Residual compensation extreme learning machine for regression. Neurocomputing 2018,
311, 126–136. [CrossRef]

61. seok Lim, J.; Lee, S.; Pang, H.S. Low complexity adaptive forgetting factor for online sequential extreme learning machine
(OS-ELM) for application to nonstationary system estimations. Neural Comput. Appl. 2013, 22, 569–576. [CrossRef]

62. Jian, L.; Gao, F.; Ren, P.; Song, Y.; Luo, S. A Noise-Resilient Online Learning Algorithm for Scene Classification. Remote Sens. 2018,
10, 1836. [CrossRef]

63. Shrivastava, S. Cross Validation in Time Series, 2020.
64. Bergmeir, C.; Benítez, J.M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. 2012, 191, 192–213.

[CrossRef]

http://dx.doi.org/10.1109/MNET.2018.1800115
http://dx.doi.org/10.3390/a13010020
http://dx.doi.org/10.1109/ECICE50847.2020.9302005
http://dx.doi.org/10.1002/nem.2191
http://dx.doi.org/10.1080/08839514.2020.1771522
http://dx.doi.org/10.3233/JIFS-220230
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/IJCNN.2017.7966094
http://dx.doi.org/10.1016/j.neucom.2018.08.067
http://dx.doi.org/10.1145/3097983.3097997
http://dx.doi.org/10.1371/journal.pone.0252676
http://dx.doi.org/doi.org/10.48550/arXiv.1711.07878
http://dx.doi.org/10.1016/j.neucom.2021.02.046
http://dx.doi.org/10.1109/ACCESS.2020.2970224
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.32
http://dx.doi.org/10.1016/j.adhoc.2014.11.005
http://dx.doi.org/10.1109/JSYST.2015.2466086
http://dx.doi.org/10.1109/SDS.2018.8370432
http://dx.doi.org/10.1109/ICMLA.2018.00035
http://dx.doi.org/10.48550/arXiv.1412.3555
http://dx.doi.org/10.1016/j.neucom.2018.05.057
http://dx.doi.org/10.1007/s00521-012-0873-x
http://dx.doi.org/10.3390/rs10111836
http://dx.doi.org/10.1016/j.ins.2011.12.028


Sensors 2023, 23, 4997 33 of 33

65. Tashman, L.J. Out of Sample Tests of Forecasting Accuracy: An Analysis and Review. Int. J. Forecast. 2000, 16, 437–450. [CrossRef]
66. Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91.

[CrossRef] [PubMed]
67. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
68. Schaul, T.; Antonoglou, I.; Silver, D. Unit Tests for Stochastic Optimization. In Proceedings of the 2nd International Conference

on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.
69. Bock, S.; Goppold, J.; Weiß, M. An improvement of the convergence proof of the ADAM-Optimizer. In Proceedings of the OTH

CLUSTERKONFERENZ, Weiden, Germany, 13 April 2018.
70. Carling, K.; Meng, X. Confidence in Heuristic Solutions. J. Glob. Optim. 2015, 63, 381–399. [CrossRef]
71. Yue, Y.; Wang, Q.; Yao, J.; O’Neil, J.; Pudvay, D.; Anderson, J. 400GbE Technology Demonstration Using CFP8 Pluggable Modules.

Appl. Sci. 2018, 8, 2055. [CrossRef]
72. Zhang, W.; Bathula, B.G.; Sinha, R.K.; Doverspike, R.; Magill, P.; Raghuram, A.; Choudhury, G. Cost Comparison of Alternative

Architectures for IP-over-Optical Core Networks. J. Netw. Syst. Manag. 2016, 24, 607–628. [CrossRef]
73. IEEE Standards Association. IEEE Std 802.3ad-2000; IEEE Standard for Information Technology—Local and Metropolitan Area

Networks—Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications-Aggregation of Multiple Link Segments. IEEE Standards Association: Piscataway, NJ, USA, 2000; pp. 1–184.
[CrossRef]

74. Braun, R.P. 100Gbit/s IP-Router and DWDM Transmission Interoperability Field Tests. In Proceedings of the Photonic Networks,
12. ITG Symposium, Leipzig, Germany, 2–3 May 2011 ; pp. 1–3.

75. IEEE. IEEE Std 802.3-2015; IEEE Std 802.3-2015 (Revision of IEEE Std 802.3-2012). IEEE Standards Association: Piscataway, NJ,
USA, 2016; pp. 1–4017. [CrossRef]

76. IEEE Standards Association. IEEE Std 802.3bm-2015; IEEE Standard for Ethernet Amendment 3: Physical Layer Specifications
and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables. IEEE: Piscataway, NJ, USA, 2015.

77. Reviriego, P.; Hernadez, J.A.; Larrabeiti, D.; Maestro, J.A. Burst Transmission in Energy Efficient Ethernet. IEEE Internet Comput.
2010, 14, 50–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0169-2070(00)00065-0
http://dx.doi.org/10.1186/1471-2105-7-91
http://www.ncbi.nlm.nih.gov/pubmed/16504092
http://dx.doi.org/10.1007/s10898-015-0293-4
http://dx.doi.org/10.3390/app8112055
http://dx.doi.org/10.1007/s10922-016-9374-z
http://dx.doi.org/10.1109/IEEESTD.2000.91610
http://dx.doi.org/10.1109/IEEESTD.2016.7428776
http://dx.doi.org/10.1109/MIC.2010.52

	Introduction
	Related Works
	Works Related to Methods of Traffic Prediction Based on Machine Learning and Neural Networks
	Works Related to Energy Efficiency in Link Aggregation Groups or Bundle Ethernet

	Traffic Prediction Methodology
	Data Collection
	Structure of RNN, LSTM, GRU, and OS-ELM 
	Data Processing for RNN, LSTM, GRU, and OS-ELM 
	Data Processing for RNN, LSTM, and GRU 
	Data Processing for OS-ELM 

	Training and Testing Data
	Hyperparameters of RNN, LSTM, GRU, and OS-ELM 
	RNN, LSTM, and GRU Hyperparameters
	OS-ELM Hyperparameters

	Metrics
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)
	Computational Time


	Bundle Ethernet Energy Efficiency Methodology
	Threshold-Based and Prediction-Based Algorithms
	Threshold-Based Algorithm
	Prediction-Based Algorithm

	Metrics

	Case Study
	Network Topology
	Traffic Description
	Equipment Characteristics

	Traffic Forecasting Results in Case Study
	Simulation Results of RNN, LSTM, and GRU
	Simulation Results of the OS-ELM Neural Network
	Final Neural Network Selection

	Results of Energy Efficiency Algorithms in the Case Study
	Conclusions and Future Works
	Appendix A
	References

