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A B S T R A C T   

Outdoor mobility of individuals with visual impairment is challenging particularly where collision with obstacles 
can have significant impact on both physical and mental health. A variety of technological mobility aids for 
visually impaired people (VIP) have been studied and proposed in the literature which mainly utilise machine 
intelligence and deep learning (DL) approaches for object detection. However, object detection via the existing 
approaches suffers from reliability challenge due to real-time dynamics or the lack of available domain 
knowledge for specific obstacles identified by the VIP as potential hazards. In the present study, an object 
detection model (ObDtM) based on deep transfer learning techniques was developed for a custom-built dataset 
comprising of specific obstacles identified by the VIP as potential hazards. A custom dataset was compiled and 
manually annotated from various publicly available sources to train the ObDtM. Experiments were conducted to 
evaluate the proposed ObDtM for unseen obstacles kept as the test set. Results showed that ObDtM outperformed 
the state-of-the-art with 97% mean Average Precision (mAP), indicating a robust and generalizable DL approach. 
The compiled dataset and the ObDtM is useful for several potential use cases, particularly highlighting the use of 
DL in IoT and smart city applications. Additionally, a smart synergetic outdoor mobility framework was proposed 
for VIP (SOMAVIP) allowing comprehensive and accurate semantic representation of the surroundings by uti
lising the proposed ObDtM, cloud services, internet of things (IoT), and digital environment in the context of 
emerging smart city infrastructure. The proposed SOMAVIP can be highly impactful for improving VIPs’ quality 
of life mainly for safer, cost-effective, and reliable independent outdoor mobility enriched with real-time 
perception and interpretations of the surroundings.   

1. Introduction 

The World Health Organisation (WHO) reported over 2.2 billion 
individuals with a vision impairment of some description across the 
globe (WHO, 2021) where, approximately 285 million are living with 
complete blindness or moderate to severe distance vision impairment 
(Ackland, Resnikoff, & Bourne, 2017). Visual impairment is the 
decreased ability to see, which poses a significant impact on the quality 
of life in a variety of aspects. Outdoor mobility (ODM) is of a major 
concern for VIP with a multitude of impacts including physical, social, 
and mental health. Independent mobility around local neighbourhood 

can be useful for social interactions and performing other daily activities 
(Wilson, 2015). However, various challenges are associated, particularly 
the unavailability of reliable assistive technology and mobility aids with 
their excessive cost. For instance, a service guide dog has an associated 
annual cost of approximately $48000, which is unaffordable for most of 
the VIP across the globe (Khan, Hussain, Khan, Nawaz, & Baker, 2019). 
Likewise, highly dynamic material and environmental factors (e.g., 
moving objects, image size, orientations, and varying backgrounds) pose 
a significant challenge to the reliability of existing autonomous assistive 
technologies for outdoor mobility of VIP (ODOMOVIP) (Khan, Hussain, 
Khan, Nawaz, & Baker, 2019). 
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In 2015, a survey was conducted by the Royal National Institute of 
Blind People (RNIB) (Wilson, 2015) including approximately 500 VIP 
for whom a collision with an obstacle over a three-month period was 
reported. Among the participants, over 90% reported collisions were 
with street obstacles while walking in local surroundings and 33% re
ported injuries were reported to be (directly or indirectly) leading to 
increased costs such as medications, injury claims, and treatments. 
Majority of the VIP reported collisions were with parked cars (70%), 
recycling bins (64%), fixed street furniture (e.g., benches (60%), and 
advertising boards (49%)). Road crossings in local areas was also iden
tified ‘unsafe’ (67%) by the VIP during ODM. Compared with fixed 
obstacles (e.g., street furniture), dynamic and temporary objects pose 
further challenges for VIPs’ mobility in local streets. Around 50% of VIPs 
identified local roadworks to be seriously problematic for their outdoor 
mobility. Furthermore, cyclists using footpaths and temporary objects 
such as advertisement boards were reported as a “nightmare” for the 
ODOMOVIP and therefore, significantly affecting the VIPs quality of life 
in many aspects. 

Recent digital transformation has led to an increased utilisation of 
smart data driven technologies in various aspects of human lives, 
including healthcare systems and assistive technologies. In addition to 
the traditional methods of VIPs’ mobility support (e.g., guide dogs, 
human assistance), research and development have proposed various 
tools and techniques for both indoor and outdoor mobility of VIP within 
unfamiliar environments. For instance, various recent examples of 
related tools have been introduced that include the use of an infrared 
cane (Al-Fahoum, Al-Hmoud, & Al-Fraihat, 2013), voice and audio 
navigation (Nada, Fakhr, & Seddik, July 2015) (Simoes. & Lucena, 
2016) (Kunta, C. Tuniki, & Sairam, 2020), laser (Wachaja & Agarwal, 
2014, pp. 13–14) and ultrasonic sensors (Froneman & Heever, 2017), 
Microsoft Kinect and optical marker tracking (Zöllner, Huber, Jetter, & 
Reiterer, 2011), robot assistance (Capi & Toda, 2012), GPS navigation 
system with inertial measurement unit (IMU) (Zegarra & Farcy, 2012), 
RFID guiding cane (Liao, et al., 2013), LED lights and geomagnetic 
correction method (Nakajima & S. h, 2013), wearable RGBD camera 
(Lee. & Medioni, 2015), tactile perception with ultrasonic sensors (Ni, D, 
Song, A, Tian, L, Xu, X, & Chen, D, 2015), sonification of U-depth map of 
the surroundings (Skulimowski., P., Owczarek., M., Radecki., A., 
Bujacz., M., Rzeszotarski., D., & Strumillo, P., 2019), and Kinect depth 
camera (Ali, 2017). Furthermore, several methods have also been pro
posed based on data processing for the ODOMOVIP such as (Hoang, 
Nguyen, & Le, 2017) (Duarte, 2014) (Kumar., Y., & al., e., 2010) with 
limited application for indoor or simulated environments. 

Despite the advancement for the available tools for the ODOMOVIP, 
generalisation, reliability, and intelligibility require are still in need of 
noticeable improvement. Additionally, increased deployments of the 
Internet Of Things (IoT) and responsive devices within smart applica
tions and their integration with smart city concepts, are considered to be 
of significant influence for the reliability and performance of existing 
assistive technologies. For instance, e-Scooters can be considered a 
raising issue for VIP mobility independence mainly due to their noiseless 
features. Several news articles (Aspirot, 2021) including RNIB (Rnib, 
2020) have highlighted e-Scooters as a ‘nightmare’ for VIP mobility 
independence. The RNIB recently reported (Rnib, 2020) that 81% of the 
VIP respondents preferred independent street walking, with e-Scooters 
viewed to be a major challenge to their mobility due to noiseless fea
tures. Even the latest assistive technologies are impractical for this kind 
of smart technological developments (Rnib, 2020) which indicates a dire 
need for a smart data driven technological solution that would fill the 
gap of existing tools in relation to the utilisation of IoT within the 
evolving digital environments and smart city applications. 

Considering the limitations of existing mobility aids and assistive 
tools for ODOMOVIP, a smart data driven mobility aid was proposed for 
VIP (SOMAVIP), enabling real-time scene perception. The ODOMOVIP 
comprises of responsive devices and IoT embedded smart city environ
ments, deep machine learning, computer vision, and data processing 

methods. Additionally, the present study proposed a real-time ObDtM 
for specific obstacles identified by the VIP within the RNIB survey 
(Wilson, 2015). The contributions of this work are as follows:  

a) Annotated dataset (~60,000 images) for 8 objects of interest (with 
dynamic backgrounds) compiled from various publicly available 
sources. The dataset comprises diverse properties such as varying 
backgrounds, image size, resolution, orientation, and number of 
objects, which can be useful for generalising the proposed ObDtM as 
well as validating the object detection models used in this study in 
similar domains. 

b) Multiple custom-trained ObDtM models were built for the ODO
MOVIP utilising state-of-the art object detection techniques based on 
deep transfer learning. Custom trained ObDtM were then validated 
for diverse datasets which have also been made available to use for 
transfer learning in similar application domains.  

c) A novel algorithm was developed for the proposed SOMAVIP 
framework for real-time scene interpretation for improving the 
perception of the surroundings based on the locality of VIP and 
detected objects. The proposed framework is aimed at supporting 
independent outdoor mobility for VIP by providing an enriched 
interaction with responsive IoT devices specifically, within the smart 
city environments. 

The remainder of this manuscript is organised as follows. Section 2 
addresses related works for the ODOMOVIP. Section 3 presents the 
proposed methodology for object detection using data annotations and 
deep transfer learning algorithms. Detailed statistical results from mul
tiple models and discussion on the outcomes are provided in Section 4. 
Proposed SOMAVIP is presented in Section 5. Finally, the conclusion 
drawn from the proposed study are summarised in Section 6. 

2. Related works 

Assistive technologies for a VIPs’ mobility can typically be cat
egorised into outdoor (Jaime Sanchez, 2011) (Sanchez, 2008), indoor 
(Hub, Hartter, & Ertl, 2006) (Pinedo & Villanueva., F., Santofimia., M., 
& Lopez, J., 2011), and hybrid (Sanchez. & Saenz, 2008) (Sylvie 
Treuillet, 2010) systems. A comprehensive survey of the existing tech
nologies for VIPs mobility was carried out in (Khan., S., Nazir., S., & 
Khan, H. U., 2021). Tools surveyed from this literature can further be 
divided in terms of their functionalities that mainly include VIPs’ nav
igation, orientation, pathfinding, obstacle detection, object recognition, 
and scene interpretation. For these applications focusing on obstacle 
detection and object recognition in both indoor and outdoor environ
ments, various hardware and software tools and devices have been 
utilised including digital cameras, electronic/traditional canes, radar, 
ultrasonic sensors, LiDAR, infrared, and thermal cameras (Khan., S., 
Nazir., S., & Khan, H. U., 2021). Recent works has been reviewed in this 
study specific to ODOMOVIP which propose various combinations of the 
aforementioned tools to assist VIP in mobility within their local 
surroundings. 

A recent study (Parikh., Shah., & Vahora, 2018) presented a deep 
learning (DL) approach for object recognition for ODOMOVIP utilising a 
smart phone camera for capturing real-time images, which were 
streamed to a cloud-based server for processing to trained convolutional 
neural networks (CNN). The output of the proposed system provides a 
response to the user (via the internet) classifying the recognised objects 
by their names (11 objects in total). Similarly, (Shao., Han., Kohli., & 
Zhang, 2014) proposed stairs and person crosswalk detection using 
depth camera. The above methods used conventional image processing 
algorithms which can potentially be impacted by the real-time envi
ronmental dynamics (e.g., varying backgrounds and noisy images). To 
this end, more advanced generic pre-trained models such as YOLO 
(Redmon, Divvala, Girshick, & Farhadi, 2016), or Mask RCNN (He, 
Gkioxari, Dollar, & Girshick, 2017) could be considered with the ability 
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to reliably and efficiently detect objects of multiple classes. 
Work presented in (Bauer et al., 2020) utilises DL for object detection 

in an outdoor environment. Authors in this study proposed a hardware 
system based on wearable lightweight devices (e.g., camera, a smart 
watch used for triggering an alarm, coupled with a smartphone for 
connectivity) and developed a detection scheme for several objects 
including traffic lights, buses, cars, people, bicycles, and motorbikes 
with estimated depth map of the identified objects. Inference for the 
detected objects with respect to their distance and relative position is 
then forwarded to the user via spoken or haptic feedback. Another study 
(AtikurRahman & M. s., 2021) developed a tool for indoor and outdoor 
mobility of VIP using multiple laser sensors and a video camera for the 
detection and recognition of the objects of interest, respectively. Pre- 
trained models (MobileNet (Howard, 2017)) were used for object 
recognition where real-time data were streamed and stored on a remote 
server. While the object recognition outcomes from both studies indicate 
high accuracy, reported results for object identification were limited. 
Consequently, although indoor mobility assistance in the above studies 
is useful, consideration of outdoor objects specifically identified as po
tential hazards within the RNIB report (Wilson, 2015) can be a signifi
cant advantage for the above studies as part of the future work. 
Furthermore, detailed interpretation of a scene would be useful in 
describing the highest possible estimation of the depth, location, and 
distance of (a) specified objects within a smart city environment, and (b) 
challenging objects (e.g., e-Scooters, advertising boards) which have 
been placed dynamically and other static street objects for VIP. 

In (Mattoccia, 2016), a DL based outdoor mobility assistance for VIP 
was proposed utilising an RGBD sensor and mobile device for semantic 
categorization of detected obstacles. Similarly, (Lin., B.-S., Lee., C.-C., & 
P-Y, C., 2017) proposed an outdoor mobility assistive technology for 
both online and offline scenarios. Pre-trained models including YOLO 
(Redmon, Divvala, Girshick, & Farhadi, 2016) were developed to detect 
objects which appear in front of the user walking trajectory. Despite the 
above advancements, conventional approaches for the estimation of 
distance (e.g., focal distance, pixel density, and height of camera device) 
are susceptible to false measurements due to the dynamics of real time 
environment which could lead to false alarm generation. In another 
study (Lin., Y., Wang., K., Yi., W., & Lian, S., 2019), a wearable system 
was proposed for the indoor and outdoor environment perception of 
VIP. The system used depth camera, processing unit, mobile based 
interface, and earphones to receive useful mobility information in real 
time. A DL model in the above study was developed for obstacle 
detection while using multiple secondary datasets for model training. 
After the detection of obstacles in the current frame/scene, the associ
ated feedback is played back to user with varying sound volume pro
portional to the distance from the object (i.e., the higher the sound, the 
shorter the distance from the obstacle and vice versa). While the system 
indicated reasonable accuracy in varying lighting conditions, the 
outcome for VIP mobility is limited to only volume-based indications 
about the existence of identified obstacles rather than specified distance 
measures or identity of an obstacle. 

Similar work presented in (Giarre., C. L., & al., e., 2019) uses a 
camera and inertial sensors embedded within a smart phone for indoor 
and outdoor navigation of VIP. Predefined paths were used with specific 
landmarks for real-time user navigation assistance. For tracking and 
localisation estimation, a Kalman filter was employed, producing reli
able tracking performance. However, utilising specific markers such as 
corners or visual markers can potentially be affected in dynamic con
ditions such as occlusion and noisy backgrounds. Another wearable VIP 
mobility aid was proposed in (S. & P., 2015) comprising of 3D sensors 
mounted on glass frames (to capture depth map of the scene), a pro
cessing unit (for object detection), vibrotactile actuators, and bone 
conductive speakers (for delivering audio feedback to the user) gener
ated by the system. Vibrations were generated for left, centre, and right- 
side locations of the detected object along with audio feedback of esti
mated distance from the obstacle. It should be noted that conventional 

image processing and computer vision algorithms might suffer from 
lower accuracy and reliability in the presence of real-time dynamics. 
Likewise, feedback generated could be comprehensive in addressing 
detailed scene information such as the name and size of the identified 
object, and geometry to be better perceived by a VIP. 

The above literature indicates the use of sensor-based technologies 
with higher confidence in relation to VIP mobility assistance with a 
variety of possible approaches to support them in various aspects. 
However, several limitations can be faced including: a) lack of the 
detection and recognition of specific obstacles in outdoor environment 
that are identified by VIPs in RNIB report (Wilson, 2015); b) unavail
ability of the sufficient annotated data for corresponding objects; c) 
unreliable performance from the ObDtM specifically with real-time 
dynamics; d) limited perception and feedback for the identified scene 
and surroundings; and e) lack of the use of advanced tools and tech
nologies specifically the synergetic behaviour of available technologies 
while considering the emergence of responsive IoT devices and smart 
city environments. Accordingly, a DTL approach was proposed in this 
study utilising multiple ObDtM models which were trained for a custom 
dataset compiled from various publicly available resources. The 
compiled dataset comprises of the objects of 8 different classes as 
identified within the RNIB report (Wilson, 2015) and considered as 
potential obstacles for the VIP during their outdoor mobility. Weights 
from two pre-trained models, namely YOLO (Redmon, Divvala, Gir
shick, & Farhadi, 2016) and Mask R-CNN (He, Gkioxari, Dollar, & Gir
shick, 2017) were used and tuned by using the above dataset. An 
interactive smart data driven mobility aid was the developed for the VIP 
(SOMAVIP) that utilises advanced tools and technologies enabling the 
interaction and mobility support for the ODOMOVIP by providing real- 
time comprehensive perception of the surroundings. 

3. Methodology 

A transfer learning approach was developed utilising well- 
established deep convolutional neural network structures of YOLOv5 
and Mask R-CNNs based on a custom target dataset for real-time iden
tification of 8 classes of objects (advertisement board, e-Scooter, wheel 
bin, trash bag, car, person, bollard, and bench). Development and vali
dation of the proposed ObDtM model followed the workflow as 
described in Fig. 1 and explained in Section 3.1. Data for the objects of 
above classes were first acquired from various sources which was an
notated and augmented to increase the size of target dataset size. 
Structures of pretrained DL models (i.e., body of the pretrained CNNs 
without the head and tail for identifying objects of new classes) were 
used for tuning and update of existing model hyperparameters to eval
uate their performance on unseen instances of the above new domain. 
Model performance was then evaluated using various standard perfor
mance metrics as recommended by the original sources (He, Gkioxari, 
Dollar, & Girshick, 2017) (Jocher et al., 2020) which include: a) inter
section over union (IOU - the intersection over the union for the ground 
truth and predicted bounding boxes), b) confidence score (CS) repre
senting the probability that an anchor box contains a desired object, c) 
precision, d) recall, e) mean average precision and recall (mAP, mAR) 
for varying IoU and CS, f) F1 curve, and g) precision-recall curve. 
Detailed description with mathematical formulation of the selected 
performance metrics can be found elsewhere (Nick, 2018). 

3.1. Data collection and preparation 

There exist several commonly used datasets in relation to object 
detection such as COCO (Lin et al., 2014) (with multiple versions) and 
ImageNet (Russakovsky., O., & al., e., 2015) comprising of a large 
collection of annotated classes for 80 and 1000 objects, respectively. 
Although, these datasets possess a wide domain for object detection, 
they lack the objects of interest considered in the present study (i.e., 
objects identified by VIP in (Wilson, 2015)) such as wheel-bins, trash- 
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Bags, e-Scooters, advertising boards, and bollards (i.e., roadside pillars; 
hereinafter termed ‘pole’). Additionally, sources with the annotations for 
these objects do not exist thus posing a challenge for implementing a 
transfer learning approach for the domain adopted in the present study. 
Accordingly, a publicly available 3D-scan dataset (without annotations) 
was acquired comprising of a variety of the required objects including 
benches, advertisement boards, poles, and wheel-bins (Choi, Zhou, 
Miller, & Koltun, 2016). 3D-scans in this dataset were captured via an R- 
GBD camera from varying orientations, distances, and angles producing 
detailed natural representations of data covering significantly high 
granularity as compared to typical augmented data generation schemes 
(e.g., zoom in/out, translation, rotation, and shear). 3D-scans of the 
required objects (bins, advert-Boards, poles, and benches) from this 
dataset were extracted and transformed to the corresponding image 
frames that were used for the custom training of the proposed ObDtM. 
For trash-Bags and e-Scooters, publicly available images (with NY-CC 
license) from Google image search engine were utilized comprising of 
a total of 520 {e-Scooter: 250, trash-Bag: 270} images without annota
tions. The annotated datasets for cars and persons were acquired from 
public sources (Krause., Stark., Deng., & Fei-Fei, 2013) and (DENG, Luo, 
Loy, & Tang, 2014), respectively. Images for the selected object classes 
were then annotated using a public annotation tool (DarkLabel: htt 
ps://darkpgmr.tistory.com/16) producing the required data formats 
(bounding boxes, class label) to be used for ObDtM model. A summary of 
the final dataset used in the present study, including the selected object 
classes (identified by the VIP in the RNIB report (Wilson, 2015) and 
(Rnib, 2020)), sources, annotation statuses, and total number of 
compiled images is provided in Table 1. 

Data annotations were manually generated via DarkLabel in the 
present study since they were not available from the original sources to 

train the custom ObDtM. Furthermore, relatively higher variations 
existed in the datasets with different image dimensions, backgrounds, 
and levels of resolution and orientation, reflecting the need for robust 
data management and processing techniques for the object detection in 
an ODOMOVIP. Data samples for e-Scooters and trash-Bags (i.e., 250 
and 270 respectively) were significantly augmented and increased to a 
total of 2,594 images (e-Scooter: 1,152, trash-Bag: 1,442) after applying 
traditional data augmentation schemes. 

It is noted that ill-defined or unordered data augmentation steps 
during model development process can cause model under or over 
training (i.e., model bias) by leaking critical information from test/ 
validation to training sets when augmentation is performed inappro
priately or prior to data splits. Accordingly, data annotation and parti
tioning (train/test/validation splits) were performed prior to the 
augmentation and transformation steps as illustrated in Fig. 1. Data 
partitions for training, validation, and test sets for both custom models 
(YOLOv5s and Mask R-CNN) were constructed with the ratios of 60%, 
20%, and 20%, respectively as shown in Fig. 2. A randomly selected 
batch of annotated training samples for multiple object classes repre
senting diverse properties (i.e., varying resolution, dimensions, trans
lations, shear ranges, and backgrounds) and demonstrating ObtDtM 
model propensity for higher accuracy is presented in Fig. 3. The final 
dataset along with annotations is made publicly available (https://dx. 
https://doi.org/10.21227/sm6r-nb95) as described in supplementary 
information (S1). 

3.2. Proposed object detection (ObDtM) using transfer learning over 
custom data 

Object detection for a given task of ODOMOVIP with good accuracy 

Fig. 1. Workflow of custom YOLOv5s and Mask R-CNN model development for object detection identified by the VIP.  

Table 1 
Data distribution (ObDtM training and validation) and sources used in this study.  

Object Data source Publicly 
Available 

Annotated 
Originally 

Total Instances 
(original) 

No. of. Instances used for the ObDtM training & 
validation 

Car (Krause., Stark., Deng., & Fei-Fei, 
2013) 

Y Yes 16,185 (196 types of cars) 2464 

person 
(pedestrian) 

PETA (DENG, Luo, Loy, & Tang, 2014) Y Yes 19,000 2544 

e-Scooter Google Y No 250 1152 (with augmentation) 
trash-Bag Google Y No 270 1442 (with augmentation) 
advert-Board (Choi, Zhou, Miller, & Koltun, 2016) Y No 112 3D-scans (videos) 2496 
Bench (Choi, Zhou, Miller, & Koltun, 2016) Y No 211 3D-scans (videos) 1984 
Pole (Choi, Zhou, Miller, & Koltun, 2016) Y No 70 3D-scans (videos) 2640 
Bin (Choi, Zhou, Miller, & Koltun, 2016) Y No 263 3D-scans (videos) 2432  
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can be accomplished via a) training a DL model from scratch, or b) using 
deep transfer learning (DTL). Constructing and training a custom new 
DL model requires excessive resources including large datasets, higher 

processing power (GPU for computer vision tasks), and thus longer 
training time. In DTL, pretrained CNN models constructed based on 
large existing datasets can be used to transfer the knowledge learned 
(model parameters) from one domain to another, even with lower data 
availability for the new domain, thus accelerating model learning pro
cesses (Pan & Yang, 2009). More specifically, DTL utilizes pre-trained 
models for application across contexts, thereby improving model 
generalization, and reducing the set of observations for the new domain 
and the training time required by conventional static machine learning 
approaches. To date, various pre-trained models have been proposed 
and made publicly available that can be utilised for the object detection, 
including noticeably YOLO (Redmon, Divvala, Girshick, & Farhadi, 
2016), Faster-RCNN (Ren, He, Girshick, & Sum, 2015), Mask R-CNN 
(He, Gkioxari, Dollar, & Girshick, 2017) which extends Faster R-CNN, 
Single shot multi-box detector (W. & al., 2016), and Residual Network 
(ResNet) with various upgrades (from 20 to 101 convolutional layers) 
(He, Zhang, Ren, & Sun, 2015). Mask R-CNN is an instance segmentation 
DL model that aims to separate multiple objects in an image frame. In 
addition to bounding boxes and class names, it provides masks for a 
resulting image. Mask R-CNN first generates region proposals (RPN) for 
each object within the input image followed by its generation of the class 
level information and corresponding bounding box along with the pixel 
level mask for identified objects based on RPN from the first step. Mask 
R-CNN relies on its fundamental Feature Pyramids Network (FPN) (Lin., 
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Fig. 2. Custom data distribution used for the training, validation, and testing of 
YOLOv5s and Mask R-CNN models. 

Fig. 3. A randomly selected batch of training samples from custom annotated data comprising objects presenting diverse perspectives and geometric properties.  
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T.-Y., Dollar., P., Girshick., R., He., K., Hariharan., B., & Belongie, S., 
2017) approach that is used for the object detection in images of varying 
scales. Varying scale in FPN is beneficial over single CNN which has 
demonstrated to maintains robust semantic features. Mask R-CNN was 
originally trained over COCO dataset (Lin et al., 2014) comprising 80 
object classes, with 2.5 million labelled instances in 328,000 images and 
has extensively been adopted in various areas focusing on object 
detection and scene recognition. Detailed description of Mask R-CNN 
implementation, configuration, and mathematical formulation can be 
found in the original work (He, Gkioxari, Dollar, & Girshick, 2017). 

The family of R-CNN models has been shown to perform with lower 
efficiency for real-time object detection tasks when compared with 
YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) due to their multi- 
stage processing mechanism. In contrast, YOLO contains a single CNN to 
detect the position and class of a desired object due to the parallel 
embedding of the classification operation at each layer of the network 
convolution operation at each layer. YOLO therefore considers object 
detection as a single regression task directly from the input image to the 
predicted objects’ locations (i.e., bounding boxes) with associated class 
probabilities. Similar to other modeling approaches for object detection 
and recognition tasks, YOLO has been upgraded with several sequential 
improvements in the form of versions and made publicly available as 
open-source models (Redmon & Farhadi, 2018). YOLOv5, the latest 
version (Jocher et al., 2020), was trained based on COCO dataset (Lin 
et al., 2014) and is available with three variants of small, medium, and 
large network structures. Although reported with performance degra
dation issues for detection/recognition of objects of smaller sizes or the 
objects located in closed proximities with the image (Cao, Liao, Song, 
Chen, & Li, 2021), YOLO model family has shown to be among the most 
efficient detection models for real-time scene interpretation. Addition
ally, recent literature has reported upgraded YOLO models (DarkNet-53 
where 53 is the number of convolutional layers) to be faster than the 
family of ResNet models (Srivastava et al., 2021). Furthermore, 
YOLOv5s models were compared with Mask R-CNN with respect to 
several statistical measures where Mask R-CNN models are an extension 
of the Faster R-CNNs which utilize ResNet (ResNet-50/101) as their 
backbone structure. Irrespective of the better YOLOv5s model perfor
mance presented in this study, the proposed YOLOv5s can also be easily 
extended to incorporate residual layers (ResNet methodology) for 
further performance improvement by: (i) increasing batch input size, 
and (ii) reducing the spatial resolution of image sizes and maintenance 
of gradient information (computed within the network), thus effectively 
handling the flow of gradient and avoiding vanishing/exploding 
gradient issue (Tan, Huangfu, Wu, & Chen, 2021). 

In the present study for object detection tasks targeted for VIP and a 
proof of concept for SOMAVIP, the ObDtM was developed using pre
trained mask R-CNN and YOLOv5s models and tuned (model hyper
parameter update) based on a custom dataset comprising of eight objects 
presented in Table 1. As shown in Fig. 1, weights of these pre-trained 
model were used which were initially learned based on large datasets 
(COCO and ImageNet) to utilise prior knowledge. For training and 
testing of custom object detection, a computational machine with GPU 

(AMD Ryzen Threadripper 2990WX 32-Core Processor 3.00 GHz, 
128 GB RAM) was used. Further details of the configurations of these 
models along with the proposed ObDtM are presented in supplementary 
information (S2). Model performance was evaluated for varying training 
and validation epochs with a maximum allowed number of 120 epochs. 

4. Results and discussions 

Performance of the custom YOLOv5 model for the selected domain of 
8 object classes with respect to the final epoch over validation data and 
purely unseen test dataset is presented in Table 2. It can be seen that the 
developed DTL model achieved higher performance for training data 
(mAP@0.5: 97%) with the exception of moderate performance of 87% 
mAP@0.5 for trash-Bag. This may be partly due to: a) a potential YOLO 
tendency for the person, car, and bench classes given that a larger pro
portion of the samples for these classes were available in COCO dataset, 
or b) treatment of the trash-Bag as a relative minority class due to the 
limited availability of the data for this class, therefore, requiring more 
training of the custom model over trash-Bag instances. 

Performance of the ObDtM model with respect to the selected sta
tistical measures, particularly the mAP@0.5 and mAP@0.5-0.95 (i.e., 
IoU = 0.5–0.95), based on training and validation sets demonstrated 
continuous improvement for increasing number of epochs (120 epochs 
in total) reaching a plateau approximately after 60 epochs (Appendix in 
S1). It is however noted that a possible bias (section 3.1) may have 
caused higher relative model validation performance of the model for 
the objects {bench, sign board, bollard, wheel bin} due to the likeliness 
of higher number of similar instances of these objects in the custom 
dataset that were extracted from the 3D-scan videos for both training 
and validation sets. 

This can be observed in class level mAP generated during model 
training phase as given in Fig. 4. Nearly all the object classes were 
classified with a mAP > 0.95 with an exception of trash-Bag that was 
87% which can potentially be due to a lower number of samples for 
trash-Bags (minority class). Despite the lower relative performance in
dicator for the trash-Bag class, an average mAP@0.5 of 97% for the 
overall dataset was accomplished demonstrating good model perfor
mance. Higher overall model performance is evident of the robustness of 
YOLOv5s model due to the fact that the weights initially trained on a 
large COCO dataset of a multitude of object classes with similar features 
(Lin et al., 2014) were adopted for relatively lower domain area of 8 
object classes, thus indicating successful transfer of the learned param
eters with adequate size of the target dataset. For example, weights for 
the object classes {car, person, bench} were already trained within the 
original YOLO model, thus demonstrating 99% mAP over unseen in
stances for the new samples of the objects of these classes. 

Performance of the developed custom YOLOv5s final model (i.e., 
trained and evaluated based on training and validation sets, respec
tively) was evaluated for the test set where individual images as well as 
the frames extracted from objects’ videos, kept unseen in model training 
and validation phases, were used (See Fig. 1). An average of 95% and 
96% precision and recall were reported for all object classes in the test 

Table 2 
Performance of custom-trained yolov5s for validation (during Training) and purely unseen test data for 8 objects.  

Object Precision Recall mAP(0.5) mAP(0.5–0.95) 
Train Test Train Test Train Test Train Test 

car  0.98  0.95 0.99  0.99  0.99  0.99  0.87  0.84 
person  0.99  0.98 0.99  0.95  0.99  0.99  0.99  0.99 
e-Scooter  0.99  0.93 0.97  0.89  0.98  0.93  0.73  0.65 
trash-Bag  0.75  0.89 0.87  0.91  0.88  0.94  0.64  0.71 
advert-Board  0.99  0.98 1  0.99  0.99  0.99  0.98  0.99 
bench  0.98  0.99 1  0.95  0.99  0.98  0.97  0.97 
pole  0.98  0.93 0.99  0.97  0.98  0.95  0.97  0.94 
bin  0.98  0.99 1  0.98  0.99  0.99  0.99  0.99 
Overall  0.96  0.95 0.97  0.96  0.97  0.97  0.89  0.89  
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dataset, with the lowest of 89% and 93% precision and recall observed 
for trash-Bag and e-Scooter, as given in Table 2. This is congruent to the 
outcomes observed for the training dataset (in Table 2) which also 
indicated a somewhat lower mAP for these two classes. The mAP@0.5 
indicates overall 97% mAP for all classes while<95% for e-Scooter 
(93%) and trash-Bag (94%) and over 95% for remainder of the indi
vidual classes. Furthermore, mAP@0.5–0.95 also showed 89% mAP, 
with e-Scooters and trash-Bag as least performers (65% and 71% 
respectively). Overall, the alignment of these outcomes with the training 
performance (Table 2) clearly indicated model generalisation and reli
ability when tested over unseen samples. 

F1 measures for all objects with varying confidence score is pre
sented in Fig. 5(a) indicating an optimal F1 score of 96% with confi
dence of 32% which remains stable until 80% confidence, indicating 
YOLOv5s model robustness with good accuracy. For objects of e-Scooter 
and trash-Bag classes, an improvement in the prediction performance 

can certainly be achieved by acquiring more training samples. Fig. 5(b) 
shows the trade-off between the precision and recall metrics indicating 
the best compromise overall for all objects listed in Table 1 producing 
97.5% mAP@0.5. These outcomes clearly indicate the reliability and 
generalisation of the custom trained ObDtM and hence its suitability to 
be embedded in the proposed SOMAVIP. 

The second set of experiments was based on the adoption and tuning 
of weights from pretrained Mask R-CNN model (originally trained for 
COCO dataset [50]) for custom dataset acquired in this study (Table 1). 
The predefined configuration of the Mask R-CNN model was used as 
recommended in the original study (He, Gkioxari, Dollar, & Girshick, 
2017) while training the fully connected layer over custom data listed in 
Table 1. Training, validation, and test sets of the same configuration 
(60%, 20%, 20% splits) as for the YOLOv5s were kept (Fig. 1). The 
model was retrained for 100 epochs for the training set (Table 1). Per
formance of the trained Mask R-CNN model reached a plateau at 70 
epochs without a noticeable improvement for training and validation 
sets (Appendix in S1). 

Statistical outcomes for the final epoch (epoch 100) for the Mark R- 
CNN model, recorded for both the validation and test sets are presented 
in Table 3. Overall mAP@0.5 for training set was of 92%, with the 
degradation of 5% when compared to 97% mAP@0.5 of YOLOv5s 
model. More specifically, mAP@0.5 was dropped for the objects of 
classes {bin, e-Scooter, pole, bench} whereas no noticeable change was 
observed for {trash-Bag, advert-Board, car, person}. Additionally, a 
significant reduction in the mAP(@0.75 to 85% was noticed as 
compared to YOLO based object detection which was of 90% even when 
evaluated at a higher threshold (@IOU:0.95). Performance of the final 
Mask R-CNN model (i.e., trained and validated/evaluated for training 
and validation sets, respectively) was then evaluated for unseen test set 
as described in Figs. 1 and 2. 

Results for the test data objects are also shown in Table 3 indicating 
the overall mAP@0.5 of 93% with the minimum mAPs of 80% and 81% 
recorded for the e-Scooter and trash-Bag, respectively, whereas a perfect 
score of 100% for {cars, person, bench} classes. Overall, the mAP@0.5 
was reduced from 97% (YOLO based model) to 93% for Mask R-CNN 
which may be significant when considering the reliability required in 
real time applications such as within the proposed SOMAVIP. Further
more, noticeable class-level performance differences can be seen be
tween the two selected modelling approaches, particularly for the trash- 
Bag (reduced from 94% in YOLOv5s to 81% in Mask R-CNN) and e- 
Scooters (reduced from 93% in YOLO to 80% in Mask R-CNN). This is 
evident of the reliability and generalisation of YOLOv5s custom-trained 

Fig. 4. Performance of the custom YOLOv5s model with respect to precision- 
recall curve for training dataset along with the retrieved mAP@0.5 (i. 
e., IoU = 0.5). 

Fig. 5. (a) F-1 Curve for YOLOv5s for the test dataset showing F1 measure profile with respect to the varying confidence score for each class in unseen test dataset, 
(b) YOLOv5s precision and recall curves for mAP (0.5) for unseen test data samples. 
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model for the present study. Finally, a slight performance degradation 
from 85% mAP for training set to 80% for test set (Table 3) for {trash- 
Bag, e-Scooter} was observed indicating the need for acquiring addi
tional domain knowledge for objects of these classes. 

Finally, YOLO based object detection model is advantageous over the 
family of Mask R-CNN models (Redmon, Divvala, Girshick, & Farhadi, 
2016), with respect to the efficiency due to its architectural simplicity 
which can particularly be useful for applications of real time mobility 
aid in a smart city environment. YOLOv5s and Mask R-CNN modes were 
also evaluated with respect to the processing times for test data where, 
on average, YOLO based custom-trained model required 2.8 ms to pre- 
process and perform inference on an image of the dimension 
(640 × 640 × 3) as compared to 0.002 s per image frame by Mask-R 
CNN. The difference is substantial for the problem in hand (i.e., ODO
MOVIP) with high throughput requirement for real-time scene percep
tion while processing live video streams. 

In summary, the selected custom-trained models showed merit in 
terms of generalisation for the targeted object detection when evaluated 
for unseen instances of the test sets with varying noise, backgrounds, 
resolution, image quality, and orientation. On average, YOLO based DTL 
outperformed Mask R-CNN with respect to the prediction accuracy 
(based on the selected statistical measures) and the required processing 
time. YOLOv5s for the custom dataset demonstrated a robust modeling 
approach with wider applicability domain where detection for several 
frames per second may be necessary with the feedback required in real 
time for the ODOMOVIP. 

Although several object detection techniques have been proposed in 
the literature in relation to ODOMOVIP, significant challenges still 
remain with respect to reliable and accurate real time object detection, 
and importantly the lack of availability of the specific domain knowl
edge (e.g., objects of 8 selected classes) as identified by the VIP in RNIB 
report and other sources (Wilson, 2015) (Rnib, 2020). A comparative 
analysis was also conducted in the present study, as shown in Table 4, 
summarizing the differences between the proposed ObDtM and recently 
introduced VIPs’ mobility aids for outdoor and indoor environments, 
corresponding methodologies, detected objects, sensors used for data 
capture, and the reported outcomes. Although several studies in Table 4 
emphasized on the use of computer vision and DL algorithms reporting 
mAP and classification accuracy up to 77% and above 90%, respectively 
for different object classes, majority of these studies are based on con
ventional object recognition approaches in contrast with object detec
tion methods that are most appropriate for the proposed study of 
ODOMOVIP. Additionally, image segmentation using the reported 
conventional methods may potentially suffer from reliable and robust 
outcomes in outdoor dynamic environment such as occlusions, poor 
lighting, and the effects of image distortion from weather conditions. 
Existing works may therefore lack the capability for objects detection 
with higher accuracy that are identified by the VIP (Wilson, 2015) (Rnib, 
2020). Furthermore, the present study is advantageous with the provi
sion of annotated datasets and custom trained object detection models 
for the advancement of studied area of research and development. 
Finally, existing tools are unable to provide comprehensive feedback to 

VIP that could entail a detailed scene information (such as name and size 
of identified object, distance from VIP, orientation, current state, and 
geometry) for smart perception to VIP. 

Finally, despite the robust performance of proposed custom-train 
ObDtM for the given classes of obstacles, there are some limitations in 
this study which can be considered in ongoing future works. For 
instance, image dataset can be enlarged with additional types of ob
stacles particularly, potholes, puddles, trash-Bags, e-Scooters, and scaf
folding that are identified in the literature, as potential obstacles for the 
ODOMOVIP. The custom-trained ObDtM can be then fine-tuned over the 
annotated instances of additional classes. Likewise, it can be noticed that 
the overall performance of ObDtM is comparatively lower in case of 
trash-Bags and e-Scooters. This is mainly because both of these classes 
comprise less number of image instances (i.e., minority classes). This 
clearly indicates the need of additional dataset for such classes that will 
further improve the reliability and generalisation of our custom-trained 
ObDtM. 

5. Proposed smart outdoor mobility framework for VIP 
(SOMAVIP) 

The components of a proposed smart SOMAVIP were outlined 
emphasizing the need for robust and efficient real-time object detection 
techniques to develop a comprehensive synergetic assistive framework 
as a critical tool to enrich VIPs perception of their surroundings. 
Accordingly, accomplishing in the proposed study with custom-trained 
YOLOv5s and Mark R-CNN (Tables 2-3) were pinpointed for specified 
objects, demonstrating a robust and interpretable approach of ObDtM 
when evaluated for a dataset of unseen instances with dynamic condi
tions. In this regard, an end-to-end framework is proposed in Fig. 6 for 
real-time scene interpretation and surrounding perception for ODO
MOVIP while considering the future data driven smart IoT and respon
sive environments. 

As described in Section 4, existing assistive technologies for ODO
MOVIP are in need of a significant technical and hardware advancement 
to cooperate with emerging future responsive devices specifically those 
concerning the VIPs mobility in a synergetic smart city environment 
(Khan & Kuru, 2021). Domain knowledge and decision support for the 
real time scene interpretation provided by existing tools (e.g., (Bauer 
et al., 2020), (Lin., B.-S., Lee., C.-C., & P-Y, C., 2017), (Giarre et al., 
2019)) require further enhancement by incorporation of synergetic 
behaviour and information from standalone tools to build next genera
tion ODOMOVIP as a harmonious part of future smart city environment. 
Accordingly, a detailed framework focusing on the critical building 
blocks of the proposed SOMAVIP are illustrated in Fig. 6, comprising of a 
set of mobile device and headphones as the required hardware compo
nents. General off-the-shelf components of the proposed SOMAVIP are 
described in the following sub-sections. 

5.1. Static text (labels) 

A collection of lightweight static text (static labels such as ‘there is’) 

Table 3 
Performance of custom trained Mask R-CNN over the unseen test set for 8 classes (objects).  

Objects mAP(IoU ¼ 0.5) mAP(IoU ¼ 0.75) mAR(IoU ¼ 0.5) mAR(IoU ¼ 0.75) 
Train Test Train Test Train Test Train Test 

car  0.99 1  0.95  0.93  0.99 1  0.98 0.97 
person  0.98 0.99  0.98  0.99  0.99 1  0.99 1 
e-Scooter  0.85 0.80  0.58  0.56  0.90 0.87  0.70 0.64 
trash-Bag  0.85 0.81  0.56  0.69  0.88 0.87  0.63 0.71 
advert-Board  0.98 0.98  0.96  0.89  0.97 0.98  0.96 0.93 
bench  0.78 1  0.75  0.99  0.83 1  0.77 1 
pole  0.88 0.95  0.85  0.91  0.91 0.97  0.86 0.92 
bin  0.92 0.89  0.91  0.85  0.94 0.89  0.91 0.87 
Overall  0.92 0.93  0.86  0.87  0.93 0.95  0.85 0.88  
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is required to be embedded within the outcomes generated from cloud- 
based object interpretation and obstacles’ geometric map construction 
services. For instance, cloud-based services may infer the class, orien
tation, dimensions (height, width, and depth), and distance of the ob
jects from the perceived location, which should be integrated with 
‘static’ labels to construct a complete sentence (commentary) for the 
surroundings environment of interest. Additionally, static labels for 
fixed obstacles such as street premises (e.g., phone booth, street 

benches) may be useful for scene interpretation with discrete level in
formation for the ODOMOVIP. 

5.2. Scene interpretation 

Scene interpretation may be accomplished within the local mobile 
device and will require the integration of useful information from all 
ODMOVIP components as shown in Fig. 6. Interpretations retrieved 

Table 4 
Comparison between state-of-the-art object detection frameworks for VIP outdoor mobility and proposed SOMAVIP comprising the custom-build ObDtM.  

Study Main objective and approach Sensors used Type Objects detected Objects from 
RNIB list 

Outcomes and limitations 

(Parikh., Shah., & 
Vahora, 2018) 

DL and image processing for 
image classification. No specified 
feedback about surrounding is 
presented. 

2D images from smart 
camera; cloud-based 
remote services for 
data processing. 

Outdoor bench, bicycle, car, 
dog, motorbikes, 
person, pole, stair, 
traffic signals, trees, 
walls. 

4 objects from 
RNIB list (pole, 
person, bench, 
car) 

Varying classification accuracy. 
81%(min) to 99%(max) for 
different objects. Object 
detection needs improvement. 
Dataset and annotations not 
provided. 

(AtikurRahman & 
M. s., 2021) 

SSD-based object recognition. 
Feedback about distance (near, 
intermediate, far) is provided to 
user 

Laser sensor and 
camera device; 
accelerometer, cloud 
based remote services 

Indoor 
& 
Outdoor 

Currency notes (8 
types), 
5 objects (person, 
stairs, chair, table, 
washroom) 

1 object from 
RNIB list (person) 

Indoor and outdoor object 
recognition accuracy 98.11% 
and 98.7% respectively. The 
mAP measure not reported. 

(Bauer., Z., & al., 
e., 2020) 

YOLOv2 for object detection. 
Information about positions of 
potential obstacles is fed to user as 
haptic or spoken feedback. 

Images from camera; 
remote server, smart 
watch 

Outdoor Bicycle, bus, car, 
motorbike, person, 
traffic light, traffic 
sign 

2 objects from 
RNIB list (person, 
car/bus) 

87.9% mean accuracy in 
obstacle presence detection. 
74% mAP for 7 objects that 
needs improvements for real 
application. Dataset and 
annotations not provided. 

(Shao., Han., 
Kohli., & Zhang, 
2014) 

Image processing-based detection 
and recognition of stairs and 
pedestrian crosswalks 

RGBD camera Outdoor Stair, pedestrian 
crosswalk 

0 93% detection accuracy, 95.8% 
classification accuracy 

(Mattoccia, 2016) DL and image processing based 
semantic segmentation of 
obstacles. Haptic and audio 
feedback to user 

RGBD camera, mobile 
device, processing unit 

Outdoor Bench, car, poles, 
person, steps, trash- 
can, trees, walls 

4 objects from 
RNIB list (pole, 
person, bench, 
car)  

98% obstacle detection 
accuracy, 72% classification 
accuracy that needs 
improvement. Also, object 
detection would be more 
appropriate as compared to 
object classification. Dataset and 
annotations not provided. 

(Lin., B.-S., Lee., 
C.-C., & P-Y, C., 
2017) 

DL for object detection in front of 
user when walking while 
providing object identity and 
distance as feedback to user. 
Propose online & offline mobility 
assistance. 

Mobile device, 
camera, remote server 
for data processing 

Outdoor Bike, bus, car, 
motorbike, person, 
pier, potted plant 

2 objects from 
RNIB list (person, 
car/bus)  

mAP 20% to 60% when tested 
over unseen data which require 
significant improvements. 
Dataset and annotations not 
provided. 

(Lin., Y., Wang., 
K., Yi., W., & 
Lian, S., 2019) 

DL for object detection. Feedback 
about semantic map via varying 
sound’s volume representing 
distance from object. 

RGBD camera, 
processing unit, 
mobile interface, 
earphone 

Indoor 
& 
outdoor 

Multiple low-laying 
indoor (wall, 
floor, cabinet, bed 
and chair, etc.) and 
outdoor (road, 
sidewalk, person, car 
and building) objects 

3 objects from 
RNIB list (person, 
car/bus, bench)  

96%-99% accuracy for collision 
instruction classification. Object 
detection results (such as mAP) 
not reported that is the major 
limitation. Dataset and 
annotations not provided. 

(Giarre et al., 
2019) 

Uses predefined paths with 
specific landmarks to be detected 
using image processing. Kalman 
filter is used for the user tracking. 

Camera, inertial 
sensors, smart phone 

Indoor 
& 
outdoor 

Special landmarks 
such as corners, 
visual markers 

0 User heading error: 5-degree, 
Object detection results not 
reported. Dataset and 
annotations not provided. 

(S. & P., 2015) Conventional image processing 
algorithm for obstacle detection. 
Generate vibrations for objects 
and audio for distance from 
object. 

3D sensor, glass frame, 
processing device, 
actuators, speakers. 

Indoor 
& 
outdoor 

No object detection 
is performed. 
Obstacle within 
specified region of 
interest 

0 Statistical results not reported. 
Dataset and annotations not 
provided. 

ObDtM 
(Our model) 

Custom-trained YOLOv5s and 
Mask R-CNN to recognise and 
localise objects 

2D images (camera) Outdoor 8 Objects reported 
by VIP (see Table 1) 

8 objects from 
RNIB list 
including e- 
Scooters (see  
Table 1) 

97% mAP (for overall 8 
objects). Dataset along-with 
annotations are provided. 

Proposed 
SOMAVIP 
Framework 

Comprehensive perception and 
commentary about 
surroundings within certain 
range (both offline & online). 
Advanced DL-based object and 
obstacle detection identified by 
the VIP as potential hazard for 
ODOMOVIP. 

Mobile device, 
LiDAR, cloud 
services, smart, IoT, 
static information, 
headphones, 

Outdoor Various objects and 
obstacles tar are 
potential hazard 
form ODOMOVIP 

Obstacle 
detection & 
recognition, 
object detection 

Similar to our ObDtM (97% 
mAP), because SOMAVIP 
components are established e. 
g., smart devices, IoT, cloud 
services, LiDAR, navigation  
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from cloud services (i.e., object and obstacle identification and geo
metric map), smart phone (e.g., location, orientation, navigation), static 
text and information (e.g., from local-authority databases, (through 
Google maps), as well as real-time IoT devices (specifically in smart city 
context), will be merged together to generate a real-time commentary 
(perception) for the surroundings within the given constraints (e.g., only 
front view, within certain distance, and specific sampling frequency) to 
be perceived by the VIP during their ODM. The information generated 
from the above will then be transmitted to VIP via wireless headphone 
device with an embedded third-party speech synthesis support (e.g., 
Google services in smart phones). Furthermore, by utilising third-party 
services (e.g., Google translation), commentary can be instantly tran
scribed and translated into multiple languages allowing usability across 
the globe for a wider linguistic audience. 

5.3. Smart mobile device 

Smart mobile devices can be useful to produce reliable orientation, 
location, and navigation information of the end user, as presented in 
(Shao., Han., Kohli., & Zhang, 2014) and (S. & P., 2015). In the proposed 
SOMAVIP, a smart mobile device will be used for (i) live video streaming 
at a specified frequency (to remote server) via wireless network, (ii) 
navigation services (in local neighbourhood), and (iii) communication 
of the device with the end user (via speech recognition and synthesis) as 
well as smart responsive devices and IoT (for a smart city environment). 
In case of a future smart city IoT infrastructure, real-time information 

captured through IoT devices may also be utilised for further processing 
and smart perception of the surroundings in addition to the scene 
interpretation for the VIP. 

5.4. Cloud based services 

As proposed in (Lin., B.-S., Lee., C.-C., & P-Y, C., 2017), information 
captured through sensor devices can be processed either on a local de
vice or through remote services. With the generation of voluminous data 
through the use of data driven technologies, IoT, and smart city envi
ronments, storage and efficient processing of the domain knowledge 
with higher response time and availability via cloud based services can 
be a significant undertaking for decision support in a variety of appli
cations. Recent advancements in cloud computing infrastructures have 
been proven useful for handling big data generated from digital envi
ronments and have been utilised in diverse application domains (Khan & 
Kuru, 2021) (Yang., C., Huang., Q., Li., Z., Liu., K., & Hu., F., 2017). 
Accordingly, the proposed SOMAVIP will rely either on an offline ser
vice (i.e., high specification mobile device) or cloud-based platforms for 
real-time processing of the data generated via multiple sensors and other 
IoT sources. As shown in Fig. 6, cloud-based infrastructure will mainly 
host the following two main components: 

5.4.1. Object detection model (ObDtM) 
A pre-trained ObDtM (e.g., YOLOv5s in Section 2) hosted over the 

cloud with high availability and efficiency will provide instantaneous 

Fig. 6. Building blocks of the proposed smart SOMAVIP framework for perception and interpretation of surroundings.  
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and automated object classification and localisation of objects identified 
within a specified field of view (e.g., front view as used in (Lin., B.-S., 
Lee., C.-C., & P-Y, C., 2017)). The outcomes from ObDtM as a sub- 
major SOMAVIP components will then be fed to the interpretation 
modules to transcribe and translate the results into desired semantic/ 
textual context (e.g., object name, location, size). The custom built 
ObDtM can robustly identify and localise objects of multiple classes in 
real-time video stream as the core component of the proposed SOMAVIP 
and therefore a critical element of the cloud services. Furthermore, in 
case of a newly identified object that can a potential hazard for the 
ODOMOVIP, the ObDtM can be fine-tuned offline over additional image 
instances (for new class) to update the online ObDtM hosted over cloud. 

5.4.2. Obstacle detection model 
Similar to ObDtM, the obstacle detection component will comprise a 

pre-trained DL model to process the LiDAR data stream and generate the 
geometric map and semantics of the obstacles and identified objects (by 
ObDtM). There have been several recent research advances in relation to 
scene interpretation. For instance, a deep stereo geometric network is 
proposed in (Chen, Liu, Shen, & Jia, 2020) which detects 3D objects on a 
differentiable volumetric representations. Alternatively, (Rist, Emmer
ichs, Enzweiler, & Gavrila, 2022) proposed semantic scene generation 
using DL and LiDAR data which shows comparatively reliable outcomes. 
Likewise, (Zhao, Pang, & Zhang, 2018) introduced objects’ shape 
extraction from LiDAR scans of outdoor scene. These works clearly 
indicate the usefulness of LiDAR based scans particularly for the auto
matic generation of objects’ semantics in the form of geometric maps. 
Such outcomes can be used in the proposed SOMAVIP as one of the 
major component along with the ObDtM to interpret the geometric 
properties of the detected obstacle (e.g., depth, distance, shape etc.). The 
combined information generated from the ObDtM and LiDAR based 
semantic representations will be useful for the ODMOVIP by producing 
detailed interpretations of the surrounding environment and particu
larly, the obstacles and objects that are the potential hazards in their 
mobility. 

Sequential procedure of the proposed SOMAVIP framework is pre
sented in the algorithm (Algorithm 1) which is expected to generate 
synthesised outcomes comprising comprehensive information and 
perception about the current temporal and spatial state of the 
surroundings.  

Algorithm 1. End to end procedure in proposed SOMAVIP 

Let C be the cloud-based pre-trained DL models for the object detection (D1) and 
obstacle detection (D2) 

Let T be a set of static text/information to be used for the commentary 
Let V to be the set of validation parameters for input sensors {e.g., sample rate, image 

resolution, view ranges etc.} 
Let O be the output perception & interpretation about the detected objects, obstacles, 

and surroundings 
Let L be the list of newly identified objects that can be hazardous for the ODOMOVIP  

Procedure: 
IF L is NOT empty:   

- Collect additional image samples for the object/s contained in the L  
- Perform the Offline fine-tuning of the D1 (i.e., ObDtM)  
- Replace the cloud-based D1 with the updated D1 
Else: 

For each video frame/s F and sensor input S for a given time interval t:   

- Stream F and S to C  
- Validate F and S using V  
- Let L1 = [ ] and L2 = [ ] are empty lists to store the identified objects and obstacles 

respectively  
- IF valid input from sensors:  

- Use the D1 and store the identified objects in list L1  
- Use the D2 and store the identified obstacles in L2  
- For each detected object and obstacle in L1 and L2  

- Measure the pre-defined features {e.g., location, colour, length}  
- Construct the geometric map {e.g., shape, depth, width, height, distance} 

(continued on next column)  

(continued ) 

Algorithm 1. End to end procedure in proposed SOMAVIP  

- Store the generated interpretation in a vector I  
- Return I to mobile device via wireless connection  

- End loop 
End IF   

- Check (if there exists) dynamic state information {e.g., smart IoT devices} at time t 
and validation set V  

- Get information (if there exists) about local outdoor premises {e.g., local authority 
database for roadside premises}for the current location L and within certain 
distance in VFor each item in I  
o Embed information from I into corresponding entry in T  
o Embed the dynamic state information into T 

End loop   

- Generate the perception & textual commentary O for current time t using T, I, and 
IoT & dynamic information  

- Transform the textual perception into spoken commentary via 3rd party speech 
synthesis  

- Feed the audio commentary to user via wireless headphones 
End loop  

Some examples of expected outcomes are briefly described below: 
“Warning! at < 10 > feet distance, a < red > car on your < top- 

left > is < parked > with estimated length of < 4 > meters”. 
“Warning! an < e-Scooter > is < laid > on < 30 > degrees on 

your < top-right > side in < 2.5 > meters range and there is a < green>
<wheel-bin > in < front > of you in < 1 > meter range with estimated 
height and width of < 1.2 > meters and < 0.7 > meters respectively”. 

The RNIB survey has reported over 90% collisions of VIP with ob
stacles over a short period of three months. There are over 50% iden
tified outdoor dynamics (e.g., new developments in local area) which 
pose significant challenges for ODM (Wilson, 2015). Additionally, over 
33% of the reported injuries of VIP may directly or indirectly increase 
the associated costs including medications, injury claims, and other 
related treatments. Furthermore, reduced ODM in VIP may affect their 
mental health, exacerbate the risk of dementia, and raise the need for 
additional social care, affecting the overall quality of life. Accordingly, a 
fully autonomous SOMAVIP framework will be of significant impact for 
VIP community contributing to the improvement in their quality of life 
providing safer, affordable, and reliable independent mobility in their 
local outdoor surroundings. It is expected that the smart and timely 
interactions of VIP with their surroundings through a direct live feed of 
interpretations of obstacles will significantly raise their level of 
confidence. 

Expenditure (direct, indirect) for visual impairment across the globe 
in 2020 is estimated to be $2.8 Trillian (Adam, Lynne, & Cutler, 2020) 
posing a significant challenge in terms of expensive healthcare and 
preventing a large number of VIPs from getting the appropriate treat
ment. Technological advancement in this context may therefore be of 
noticeable advantage reducing the associated costs by delivering quality 
and affordable services (Burton et al., 2021). To this end, it is evident 
that the economic effectiveness of the proposed low-cost SOMAVIP is 
substantial, particularly for the concerned authorities (e.g., National 
Health Service in UK) that allocate large proportions of public funds for 
the local mobility of VIP and other direct and indirect costs to support 
the ODOMOVIP. 

6. Conclusion and future directions 

A deep transfer learning approach is proposed in this study utilising 
two object detection models (YOLOv5s and Mark R-CNN), trained for a 
customized dataset specific to ODOMOVIP, enabling an assistive tech
nology for VIP. As per the RNIB report (Wilson, 2015) and other related 
literature identifying specific objects and obstacles as potential hazards 
to ODOMOVIP, a custom dataset from a variety of publicly available 
resources was constructed and made publicly available to the research 
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community. The dataset was carefully annotated and prepared for the 
training and validation of the selected object detection models. Models 
were then trained for the annotated datasets comprising the list of ob
jects (identified in RNIB reports (Wilson, 2015), (Aspirot, 2021) and 
other sources (Rnib, 2020)) and evaluated based on the test split con
sisting of random variations (e.g., rotations, translations, geometric 
features, background, image size, resolution) to measure the perfor
mance. ObDtM with high real-time object classification accuracy for 
purely unseen diverse dataset clearly demonstrated the robustness of the 
proposed approach as compared to existing object detection models. 
Statistical outcomes for the conducted experiments showed the devel
opment of reliable and efficient models (particularly with respect to the 
processing time) as required in the given context of ODOMOVIP. The 
ObDtM developed model along with the annotated dataset has been 
made publicly available and is accessible via (https://dx.https://doi. 
org/10.21227/sm6r-nb95) as described in the supplementary informa
tion. Although the ObDtM approach was developed for the objects of 8 
different classes, the proposed model can be easily generalised by 
expanding its identification capability for other object classes with 
considerably moderate tuning for newly acquired information, thus 
enhancing its applicability domain. Additionally, the annotated custom 
dataset can be useful for the research community for continuous 
improvement with respect to model fine tuning, validation and even the 
development of new approaches for similar domains. Finally, an end-to- 
end smart framework (SOMAVIP) was proposed to enable the ODO
MOVIP while utilising the developed object detection models along with 
other smart devices and digital services to transform the current VIP 
mobility aid into a fully autonomous data driven tool readily available 
for the next generation of responsive devices, IoT, and the emergence of 
smart city infrastructures. The proposed framework is expected to make 
significant contribution towards the improvement of VIP’s QoL, 
including safer and independent ODM, psychological & mental well
being, and improved emotional and social aspects. Future work for the 
proposed approach is expected with the inclusion of other objects of 
different classes which can considered as potential hazards to 
ODMOBVIP (e.g., scaffolding, potholes from various parts over the 
globe) and embedding of obstacle detection devices such as LiDAR to 
generate a real time comprehensive commentary and perception of the 
surroundings. 

7. Availability of data 

The annotated dataset used in this article along with the custom- 
trained models is publicly available (https://dx.https://doi. 
org/10.21227/sm6r-nb95) as described in the supplementary 
information. 
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