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On the robustness of machine learning models
for stress and anxiety recognition from heart

activity signals
John Henry, Huw Lloyd, Member, IEEE, Martin Turner, Connah Kendrick

Abstract— Many recent studies have addressed the detection of
negative affective states such as stress and anxiety from physio-
logical signals taken from body-worn sensors. Typically, machine
learning classifiers are applied to features derived from sensor
signals, and several authors have reported high accuracy results
from a range of signals including cardiac, skin conductance and
skin temperature. However, the issue of how robust these models
are for deployment in the field is rarely addressed. In this paper, we
use open data from two large experimental studies to evaluate the
generalizability of models derived from cardiac signals, focusing on
detection of stress and anxiety. We choose the cardiac signal since
the commonly used heart rate variability features can be derived
from multiple sensor modalities, allowing us to evaluate the robustness of models within, as well as between, experimental
settings. We show that consistent classification outside the original experimental setting relies on high-quality training
data with minimal artefacts, and that models may often train on proxies within the noise of lower quality data. Our results
also underline the importance of including a wide range of emotional states in the training data to minimize erroneous
classification from unseen regions of feature space.

Index Terms— Machine learning, emotion recognition, generalizability, physiological signals.

I. INTRODUCTION

MACHINE Learning for emotion recognition has gained
increasing interest from the scientific community, since

the early 2000s. Cowie et al [1] introduced their investigation
into the use of emotion recognition in human-centered com-
puting, outlining the potential for emotion recognition through
multiple sources of information, powered by artificial intelli-
gence. Since, several studies have produced machine learning
algorithms that classify positive and negative valence [2], [3].
Valence in relation to emotion describes an axis of emotion in
a circumplex model of affect. The scale plots emotions against
arousal as a means of depicting emotions in context with state.
[4]. While substantial improvements are made available in
classification accuracy of positive and negative valence [5]–
[7], no available research focuses on the generalizability of
machine learning models for negative valence, such as stress
and anxiety. Generalizability of the related machine learning
models improve impact and expand the potential application
area. Consider the use of such machine learning algorithms
in games-based solutions, where participants cannot stand
still during data collection or observe other strict lab setting
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conditions.
Our paper investigates the generalizability of machine learn-

ing models for emotion recognition with data sourced from
physiological signals, with rigid experiment processes, in
particular using Blood Volume Pulse (BVP) and Electrocardio-
gram (ECG) data for predicting negative affect from different
open emotion recognition datasets.

In this paper, we consider ‘rigid’ experiments to be those in
which the data collection protocols require participants follow
specific rules that would be unlikely to be replicated outside
the experimental setting without prior training or supervision.
For example, having to keep a hand steady, having to avoid
standing or sitting, or having to focus on a specific visual cue
during the experiment. Generalizability in this context of the
rigidity of experimental conditions questions how replicable
accuracies reported by literature would be in non-rigid settings,
such as using these models in applications where participants
can take part from home.

The use of rigid data collection techniques suits some
scenarios, but neglect settings where users may not be con-
stantly supervised to execute a strict protocol around the use
and configuration of physiological sensors. Furthermore, our
research explores the accuracy of pervasive sensors for a
satisfactory accurate prediction of emotion. Our paper presents
the following contributions:

• We propose a novel methodology based on testing rea-
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sonable hypotheses on open datasets, which can be used
to evaluate the generalizability of new machine learning
models outside of their original experimental environ-
ment.

• We evaluate the generalizability of BVP and ECG
sourced data, focusing on prediction accuracy, using open
datasets gathered under different laboratory conditions.

• We show that generalizability between sensor modalities
of cardiac signals (BVP and ECG) depends on high
quality data, and that for lower quality data models will
train on proxies within the noise.

• We identify no meaningful improvement in classification
between machine learning and deep learning algorithms
in context of generalizability.

Our paper is structured as follows: Section II presents
related background research, highlighting the motivation for
our research. Section III details the methodology undertaken
and explores the methods of testing prediction accuracy in
terms of generalizability across multiple datasets. Section
IV presents the results from several methods of evaluation.
Finally, Section V concludes on our research, highlighting
limitations and areas for future works.

II. MOTIVATION AND BACKGROUND

The generalizability of machine learning models is an
under researched field, with limited existing literature stating
generalizability as a consideration for future research [7], [8].
Generalizability for machine learning algorithms that consider
positive and negative valence is restricted by complicated
sensor setups that require rigid processes to be followed
by participants. We consider how pervasive technology for
data collection with proven prediction accuracy can support
the generalisation of machine learning models in real-world
settings. We focus on two data sources, widely regarded as
accurate indicators of positive and negative valence; ECG and
BVP sensors [9]–[11].

A recent investigation into stress, updated the definition to
consider the latest physiological understanding on the topic.
Stress, therefore, describes a condition in which an organ-
ism’s natural regulatory capacity cannot respond adequately
to external environmental factors [12]. Anxiety relates to a
negative emotion state, that differs from healthier states of
apprehension such as fear [13]. Though there are biological
similarities between fear, stress and anxiety, fear is an emotion
state that occurs usually through external factors, whereas
anxiety relates to the ability to cope with stress or fear inducing
circumstances [14] and depends on an uncertain threat that has
existential implications having to do with one’s identity [15].

Multiple investigations into stress recognition [3], [7], [16],
[17] and anxiety recognition [2], [5], [6], [9] show highly accu-
rate predictions using several machine learning techniques. A
recent review into wearable devices for stress, depression and
insomnia detection highlighted that low-cost devices coupled
with machine learning can aid in mental health monitoring
[18]. Our paper considers both stress and anxiety as examples
of negative affective emotion states, considered as negative
valence. A constant theme in this line of research, is a rigid

experiment setup that requires participants to remain in spe-
cific posture or conditions, varying greatly from circumstances
in the field.

Conventionally, anxiety recognition is performed through
questionnaires [19]. Over time, more research presented ma-
chine learning algorithms that recognise and classify anxiety.
Research into anxiety classification using Support Vector Ma-
chine (SVM) achieved high classification accuracy [2], [9],
[20] with recent work including deep learning approaches [21].

Similarly, stress recognition practices revolve around self-
reflective instruments [22]. The subjectivity of self-reported
questionnaires and the response bias that derives from their
use, generated research into machine learning stress recogni-
tion using physiological markers. An investigation into stress
recognition using wearable sensors achieved a prediction
accuracy of over 75% focusing on skin conductance, skin
temperature and accelerometer data [3]. Their research ac-
knowledged the requirement of richer data to increase the
robustness of their predictions in affective systems. Similar
research explored the use of sourcing multiple physiological
sources for affective stress detection [16]. Their research
achieved 90% accuracy using cardiac and skin conductance
features, predicted through SVM classifiers. Their findings,
however; are limited to controlled settings, leaving room for
further exploration on the robustness of such practices in the
field.

A subset area of research in the field of machine learn-
ing emotion recognition, is on-line or real-time recognition.
Though there are similarities, predictions are required at a
faster and more regular interval. Research into anxiety recog-
nition for Virtual Reality Exposure Therapy (VRET) achieved
a high accuracy of over 80% on four-point anxiety recognition
[5]. Their research provides advances the field of anxiety
and stress recognition, but the validity of the experiment in
field settings is not explored. Similarly, research into on-line
anxiety recognition achieved high prediction accuracy using
physiological data. A notable difference in their method was
a training period which can improve the robustness of their
results [6].

A review into the literature on machine learning emotion
recognition discovered multiple sensors and physiological data
can recognise a variety of emotion states, including stress
and anxiety [7]. Their review found that further research is
required in unconstrained settings to study validity, robustness
and generalizability. Our research aligns with their findings
and investigates the generalizability of machine learning tech-
niques across multiple open-source datasets. Research into the
robustness of machine learning stress recognition investigated
the impact of several hardware sources on prediction accuracy
[8]. Their research discovered that hardware and placement
are crucial factors to performance metrics, supporting further
research on the robustness of machine learning stress and
anxiety recognition.

Our paper explores the problem of robustness and reliability
and generalizability of existing machine learning algorithms,
including deep learning approaches for tabular data, for neg-
ative valence detection, focusing on stress and anxiety. We
investigate if the proposed models from previous authors can
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TABLE I
MODEL EVALUATION METHODS IN CITED THE LITERATURE.

Reference k-fold CV LOSO CV Subject hold-out
[5] ✓
[6] ✓
[7] ✓
[8] ✓

[10] ✓
[11] ✓ ✓
[12] ✓

return accurate predictions on similar datasets. No research
to our knowledge examines the claims of stress recognition
accuracy for generalizability. Recent research highlighted the
importance of new studies investigating existing claims of ma-
chine learning accuracy for emotion classification, including
effectiveness when the data collection methodology is general-
ized [7]. Furthermore, the evaluation methods in the literature
vary, with some using Leave One Subject Out (LOSO) cross-
validation (CV) or subject hold-out to evaluate the general-
ization of classification performance between subjects, and
others using k-fold CV across the entire dataset; the evaluation
of generalizability even within the same experimental setting
is therefore not universally followed. Table I illustrates the
distribution of validation techniques in the included back-
ground literature. Finally, we present a hypothesis testing
methodology on open datasets that evaluates the potential
for machine learning models to generalize outside of the
original experimental environment, differing from the cited
research which tests generalizability between subjects within
an experiment.

III. METHODOLOGY

Our novel method for testing generalizability of machine
learning techniques for stress recognition includes intra-
experiment evaluation and inter-experiment evaluation be-
tween two biosignal open datasets commonly used in related
research. We detail our process of data sanitisation and feature
extraction required to perform this evaluation below.

A. Datasets
The CASE (Continuously Annotated Signals of Emotion)

dataset [11] was gathered in an experiment on 30 participants,
15 each of male and female, with eight sensor modalities
capturing physiological signals. For this work, we use the
ECG and BVP signals, which are both captured using a 16-
bit analog-to-digital converter. The dataset includes annotation
data, gathered from a joystick device that the participants use
to continuously self-report their emotional state during the
experiment protocol. This two-axis joystick provides readings
of Arousal and Valence, and is captured at a low rate of
20Hz. The joystick device is annotated with symbols from the
Self Assessment Manikin (SAM) [23] to give the participants
non-verbal cues to identify emotions. During the experiment,
the participants watch emotion elicitation videos which are
categorized as amusing, boring, relaxing and scary.

The WESAD (Wearable Stress and Affect Detection) dataset
[10] provides physiological sensor data on 15 participants who

underwent an experimental protocol which includes baseline,
amusement, meditation and stress states. The stress state is
induced using the Trier Social Stress Test [24]. The dataset
also includes self-reported data from the participants based
on questionnaires and SAM. For this work, as in [10] we use
the experiment protocol itself to provide the ground truth. The
sensor modalities include ECG data from a chest-worn device,
which is sampled at 700Hz and a BVP signal from a wrist-
worn device which is sampled at 64Hz.

B. Signal Processing

The features used in this study all relate to heart rate
variability. The goal of the signal processing, therefore, is to
produce for each participant and sensor modality a list of beat
times. We first filter the signals to clean them as far as possible
before running a peak detection process to find the beat times.

1) BVP data: For both datasets, we find issues in the BVP
data which need to be addressed in the signal processing before
beat detection. For the CASE data, we find occasional large
spikes in the data, which are clearly unrelated to the underlying
cardiac signal. Since the data is captured at a very high rate,
we can effectively remove these using a median filter over 21
samples. We then apply a third-order Butterworth band-pass
filter with low- and high-frequency cutoffs of 0.5Hz and 5Hz
respectively to remove low frequency drift and high frequency
noise. Note that the Nyquist frequency corresponding to the
median filter interval is higher than the cutoff of the band-pass
filter. A typical sample of the unfiltered and filtered signals is
shown in Figure 1.

For the WESAD data, we find that the BVP signal is often
of low quality and appears to be dominated at times by large
amplitude variations apparently unrelated to the underlying
cardiac signal. This may be due to sensor movement in the
wrist-worn device; in the CASE protocol the participants
wore finger-mounted BVP sensors which would have limited
movement of the hand, whereas in WESAD, participants
would have more freedom of movement. This component is
difficult to remove as it typically occurs at frequencies of
interest in the cardiac data. For the WESAD data, a median
filter was not used as there is no evidence of ‘spike’ noise as
in the CASE data. A third-order Butterworth band-pass filter
with low- and high-frequency cutoffs of 0.32Hz and 3.2Hz
was used to de-noise the data. Example signals demonstrating
typical issues in the data are shown in Figure 1.

2) ECG data: In both cases, the ECG data is clean and free
of artefacts, and was treated with a third-order Butterworth
high-pass filter with a cutoff of 0.5Hz to remove the DC com-
ponent and low-frequency drift. Example signals are shown in
Figure 1.

3) Beat detection: We apply a simple beat detection algo-
rithm which is based on identification of peaks in the data
within a sliding window. We move a window of width 1.0s
over the signal, and take the time at which the maximum signal
value occurs within the window as a peak, providing it is
within the central 40% of the window. These peak time values
are recorded in a hashed set data structure (a Python set)
so that repeat detections are handled. The constraint on the
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Fig. 1. Samples of raw and processed ECG and BVP signals from the CASE (right) and WESAD (left) datasets. From top to bottom, the plots show
the raw BVP, filtered BVP, raw ECG and filtered ECG signals in a 15s interval. The CASE raw BVP signal shows the characteristic ‘spikes’ which
are removed by the median filtering. The effect of the filtering on the ECG signal is to remove the DC component and low-frequency drift. Detected
beats are shown as vertical lines on the filtered data plots. Note the artefacts in the WESAD BVP signal in the last 5 seconds of the sample, where
the signal varies at a large amplitude compared to the underlying cardiac signal. Detected beats are shown as vertical lines on the filtered data
plots.

maximum value occurring close to the center of the window
is effective at preventing false detections of subsidiary peaks,
such as the second wave following the dicrotic notch, which is
clearly visible in the CASE BVP data (see figure 1). The raw
peaks obtained using the windowing method are further filtered
using the following scheme. Let the measured beat times be
ti, i ∈ [1, N ] where N is the number of detected beats. Then,
for any beat time tj , j > 3, we predict the time of the next
beat, tj+1, from the average interval over the preceding three
beats, that is

tpredj+1 = tj +
1

3
(tj−1 − tj−4) (1)

We then compare this predicted time to the following two beat
detections tj+1 and tj+2. If |tj+2 − tpredj+1 | < |tj+1 − tpredj+1 |,
we remove tj+1 from the list as a spurious beat detection.
The detected beat times are shown as vertical lines overlaying
the plots of filtered BVP and ECG data in figures 1. Finally,
the lists of beat times are converted into a list of interbeat
intervals, given by ∆i = ti+1−ti, i ∈ [1, N ′−1] where N ′ is
the number of beat times remaining after removal of spurious
beats. Note that if any group of three peaks used for prediction
include one or more spurious peaks, the effect is produce
predicted peaks which occur early. Hence, the next ‘true’ peak
will always be accepted if there is not another intervening
spurious peak. In this way, the method will recover from any
accepted spurious beats as soon as it has been presented with
three consecutive true beats.

C. Feature Extraction
We selected eleven commonly used heart rate variability

features, and derived these from both ECG and BVP data,
for all participants in both experiments. The features are
calculated at 6 second intervals for each participant, over

a window covering the preceding 30 seconds of heart rate
interval measurements. The features used are presented in
detail in the following subsections.

1) Heart rate features: The two heart rate features, µHR and
σHR are the mean and standard deviation of the heart rate
derived from intervals which start in the 30s window. That is,
given a set of intervals ∆i which begin in the window, µHR
is the mean value of ∆−1

i and σHR is the standard deviation
of ∆−1

i in the interval.
2) Heart rate variability features: Heart rate variability

(HRV) features are based on the differences in measured
heart rate between successive intervals. The HRV in interval
i is therefore given by ∆−1

i − ∆−1
i−1. Three features are

calculated from these values, µHRV, σHRV and rmsHRV, which
are respectively the mean, standard deviation and root mean
square of the values of ∆−1

i −∆−1
i−1 for which ti lies within

the interval.
We also include two features derived from Poincaré plots

[25]; for these features, the interbeat intervals are plotted on
a scatter plot against the same data shifted by one or more
intervals. The principal axes of the data are then found using
principal component analysis, and the ratio of the standard
deviations of the data projected onto these axes (SD1/SD2)
is calculated. We derive two features using this method, for a
delay of one and two intervals, which we denote poincare 1
and poincare 2.

Finally, two additional features are calculated from the heart
rate variability, NN50 and pNN50. These are the number and
percentage of interbeat intervals within the window which
deviate by more than 50 milliseconds from the previous
interval.

3) Spectral features: The frequency components of heart
rate variability are commonly divided into four spectral bands;
ultra-low frequency (ULF, 0.01−0.04Hz), low frequency (LF,
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0.04− 0.15Hz), high frequency (HF, 0.15− 0.4Hz) and ultra-
high frequency (UHF, 0.4 − 1.0Hz) [26]. Note that these
frequency bands refer to the Fourier components of the secular
variation of the heart rate, not the BVP or ECG signals them-
selves. Here we calculate the power in the LF and HF bands.
Since the heart rate is unevenly sampled, Fourier analysis is
not straightforward, and these features can be better estimated
using the Lomb-Scargle periodogram [27]. We compute the
periodogram of the sampled heart rate in a 30s window (that
is, the values of ∆−1

i sampled at times ti) for 36 evenly spaced
frequencies between 0.04 and 0.4Hz, sum the values in the
relevant frequency ranges before normalizing with the total
power to derive two features, LFn and HFn (Low frequency
normalized power and high frequency normalized power).
These represent the normalized low- and high-frequency com-
ponents of the heart rate variability. Normalizing these features
to the total power has been shown to be important in reducing
the effect of variation of the overall power [28].

D. Ground Truth

The ground truth for the WESAD data is obtained directly
from the experiment protocol; that is, the annotations of each
data point as belonging to the baseline, amusement, meditation
or stress phases of the protocol are used to label the rows of
training data as stress or non-stress. For the CASE data, we
use the continuously annotated values of arousal and valence
to derive a composite measure of negative affect. We define
an anxiety index

α = A(1− V ) (2)

where A, V ∈ [0, 1] are the arousal and valence respectively.
We then choose a cut-off of 0.5 above which we categorize
a data point as belonging to the anxiety state. This cut-off
value is arrived at from an examination of the distributions of
α values recorded in the experiment (see Figure 2); although
values of less than 0.5 are recorded while participants are in
the ‘scary’ protocol, it is clear that this cutoff excludes the
vast majority of data from the other protocols (bar the outliers
for one participant). Note that this is a general measure of
strongly negative affect, which is labelled as ‘anxiety’ here
but could include many other related states. Our aim here is to
investigate the generalizability of emotion measures in general,
rather than to distinguish between a range of closely related
psychological states.

Figure 2 shows histograms of α values for all 30 participants
in the CASE study, categorized by the four phases of the
protocol, amusing, boring, relaxing and scary. Clearly, the
higher values of α predominantly occur during the scary
protocol, justifying the use of this measure as a classifier for
the ground truth.

E. Model Fitting and Evaluation

1) Training Data: The features for both ECG and BVP
sensor modalities, and the target class derived from the ground
truth, were sampled every 6 seconds during the active phases
of the experiment protocols. The smaller of the two classes
(stress and no stress for WESAD and α ≥ 0.5 and α <

0.5 for CASE) for each experiment were retained in their
entirety, and the other class randomly sampled to produce a
balanced dataset. This produced four datasets, the BVP and
ECG datasets for the CASE experiment, each comprising 1188
examples, and the BVP and ECG datasets for the WESAD
experiment, each comprising 3334 examples. Each feature
set was normalized by removing the mean and scaling to
unit variance. For each experiment and modality, the dataset
comprises 11 features and a binary classification target. In
summary, the dimensions of the data sets (features × time
points) are (11×1188) for CASE (ECG and BVP), (11×3334)
for WESAD (ECG and BVP). The time points are not evenly
distributed between participants.

2) Classifiers and Hyperparameter optimization: We used
three ‘classical’ machine learning classifiers; Kernel SVM
(support vector machine) with a radial basis function kernel,
random forests (RF), and extreme gradient boosting (XG-
Boost). For the two tree ensemble classifiers, XGBoost and
RF, we optimized the hyperparameters for each dataset using
a random grid search of 100 trials, with a nested 5-fold
cross-validation. For SVM, we used a grid search with nested
5-fold cross-validation over the two hyperparameters (the
regularization parameter C and the inverse square width of
the radial basis function kernel, γ). We selected these models
since these are typical of the models used in the literature cited
above.

We also include three neural network algorithms. Recent
work on using deep learning for tabular data has shown
promising results, including the use of transfer learning [29].
We train three deep learning networks developed for tabular
data [30]; Multi-layer preceptron (MLP), ResNet [31] and a
Feature-Tokenizer Transformer (FTT) [32]. For the training,
we used MLP and ResNet without pre-training, and FTT with
and without pre-trained weights. We denote the pre-trained
FTT model as FTTP (FTT pre-trained). We use a heart attack
classification dataset for our pre-training [33]. We train each
model using MSE loss optimized with Adam, and a batch size
of 128. We use patience of 10 epochs for early stopping, based
on a validation split of 10% of the training data. We used these
models as they represent the state-of-the-art tabular data with
deep learning. We train the networks as regressors, with a
target of 0 or 1 for the two classes, and then find the optimal
value of the regression target to split the two classes in the
training data. This same value is then used for the validation
data.

3) Evaluation: The models were evaluated using different
variations of cross-validation on the complete datasets, retrain-
ing at each fold using the best hyper parameters found in the
optimization exercise. For the evaluation of the models on a
given dataset, a 10-fold cross-validation was used. For evalu-
ating how a model trained on one sensor modality generalizes
to the other modality, we again used 10-fold cross-validation,
but this time at each fold we evaluated the model on the left-
out examples in the other sensor modality. For example, in
evaluating how a model trained on BVP data generalizes to
the ECG data gathered in the same experiment, at each fold we
train on the BVP data, but use the ECG data for the examples
omitted from the training fold to evaluate.
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Fig. 2. Boxplots of the ‘anxiety index’ α for each of the 30 participants in the CASE study, split by the current video category at the time of sampling
the emotional state. Each panel shows the distribution of anxiety index values recorded for each participant for one of the video categories. The
boxes show the interquartile range, with the whiskers showing the full range of values. The dotted line is drawn at an anxiety index of 0.5, which
was chosen as the threshold to distinguish the negative affect state.

For evaluating the generalization between participants, we
used a LOSO cross-validation. For n participants, we produce
n folds, in which each participant is left out of the training data
once and used to evaluate the models trained on the other n−1
participants. For inter-experiment evaluation, we train models
on the entire training data for one experiment and evaluate the
models on the training data for the other experiment.

IV. RESULTS

A. Intra-experiment Evaluation

In this section we present the results of evaluating machine
learning models within each of the two experimental datasets.
The models are evaluated using cross-validations; for each
sensor modality a 10-fold cross-validation over the whole
dataset to determine the overall classification performance,
a 10-fold cross-validation between sensor modalities in both
directions, and finally a LOSO cross-validation to assess the
generalizability to unseen subjects. The results are summarized
in Table II which show the accuracy and F1 score accumulated
over the folds in the cross-validations.

For the CASE experiment, we see that the classification
performance is roughly constant across the sensor modalities
and algorithms, with typical accuracies and F1 scores in the
low 70%’s. The generalization between sensor modalities is
good, with only slight reductions in the metrics. Typically,
the performance metrics shift from the low 70’s to the mid
60’s. The generalization between participants in the LOSO
evaluation is relatively poor, however, with a much greater
reduction in performance than observed in the inter-sensor

evaluation. We suggest that this may be due to the self-
reporting mechanism in this dataset. If the protocol induces
consistent responses in the participants, but the reporting of
the responses is inconsistent, we may expect the models to
generalize less well between the subjects. The distributions
of anxiety index (which are given in Figure 2) show that
the participants report quite different ranges; for example,
participant 29 reports a very narrow range of α values, with
none in the range > 0.5. Participants 17, 18 and 28 report
generally low values, while other participants such as 1 to 5
report a wide range of values.

For the WESAD data, we see a difference in performance
between the BVP and ECG modalities, with the ECG sensor
showing the best classification performance in either exper-
iment (around 80% accuracy and F1 score) whereas the
performance of the BVP data is below 70% on both metrics.
We have already noted in section III-B.1 that the WESAD
BVP data shows many more artefacts than are seen in the
CASE data. Comparing our results to those reported in [10]
we see that with random forest, the only common algorithm,
we obtain worse classification performance on the BVP data,
but very similar performance with the ECG data. This may
be due to differences in the beat detection algorithms, the size
and frequency of the data windows and the features chosen;
[10] include some HRV features not used here. The inter-
modality generalization in the WESAD data is considerably
worse than that seen in the CASE data. We suggest that
the BVP models are fitting features in the HRV data which
are related to the artefacts although these may still relate to
real signals which are significant for the classification. For
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TABLE II
RESULTS OF FITTING AND EVALUATING MACHINE LEARNING MODELS TO THE BVP AND ECG FEATURES ON THE CASE AND WESAD DATASETS.

THIS TABLE SUMMARIZES THE RESULTS OF THE intra-experiment EVALUATION. BEST-PERFORMING ALGORITHMS ON ACCURACY OR F1 SCORE ARE

INDICATED IN BOLD.

SVM RF XGBoost MLP ResNet FTT FTTP
Evaluation
(train/test) acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1

C
A

SE

BVP/BVP 0.733 0.740 0.752 0.759 0.735 0.736 0.704 0.713 0.704 0.729 0.659 0.620 0.455 0.453
ECG/ECG 0.763 0.770 0.756 0.753 0.730 0.729 0.667 0.704 0.707 0.730 0.677 0.632 0.533 0.536
BVP/ECG 0.668 0.673 0.637 0.618 0.646 0.633 0.601 0.583 0.624 0.626 0.606 0.581 0.522 0.463
ECG/BVP 0.635 0.618 0.641 0.591 0.653 0.636 0.607 0.643 0.614 0.628 0.623 0.591 0.461 0.519
BVP (LOSO) 0.560 0.517 0.580 0.533 0.584 0.541 0.600 0.569 0.583 0.599 0.543 0.510 0.455 0.453
ECG (LOSO) 0.590 0.569 0.582 0.533 0.582 0.537 0.566 0.547 0.580 0.582 0.572 0.511 0.530 0.533

W
E

SA
D

BVP/BVP 0.745 0.773 0.732 0.757 0.737 0.761 0.729 0.763 0.731 0.762 0.718 0.759 0.555 0.599
ECG/ECG 0.811 0.818 0.795 0.800 0.796 0.800 0.801 0.813 0.805 0.816 0.795 0.811 0.560 0.534
BVP/ECG 0.586 0.313 0.568 0.253 0.561 0.236 0.600 0.354 0.596 0.348 0.582 0.305 0.596 0.396
ECG/BVP 0.615 0.711 0.617 0.624 0.640 0.661 0.642 0.671 0.623 0.637 0.630 0.671 0.538 0.680
BVP (LOSO) 0.713 0.741 0.708 0.733 0.708 0.730 0.708 0.740 0.715 0.746 0.703 0.744 0.555 0.599
ECG (LOSO) 0.715 0.715 0.720 0.712 0.711 0.704 0.705 0.707 0.693 0.699 0.706 0.722 0.560 0.534

example, if the movement of the subjects is affecting the
BVP signal, and the nature of the movement is related to
the presence or absence of stress, the models trained on the
BVP data may make use of this. This would not only explain
the poor inter-modality generalization (since the features are
measuring different effects) but could also explain the low
performance of the BVP models here compared to [10]; our
peak detection algorithm may reject many of the peaks induced
by the artefacts, which may survive the signal processing in
[10]. The inter-participant generalizability in the WESAD data
is considerably better than for the CASE data. The ground
truth in WESAD is derived from the protocol, rather than self-
reporting; our comments in the previous paragraph relating
to self-reporting in the CASE data may be relevant here
to explain the greater consistency between subjects seen in
WESAD.

Performance across all algorithms is broadly similar, with
the exception of the pre-trained FTT model, which performs
less well than the non-pre-trained version. This is due to the
small pre-training dataset where it is well known that trans-
formers require large datasets to pre-train [34]. Additionally,
we used a heart-related dataset. However, due to the difference
in data structure, it could be similar to out-of-domain transfer
learning having a negative impact on the model, creating
locally inductive bias. Overall, we do not see an advantage to
using deep learning models on this data; the broadly similar
performance across a diverse range of algorithms suggests that
the choice of algorithm is relatively unimportant for this data.

B. Inter-experiment Evaluation
For the inter-experiment comparison, we evaluate trained

on data from one of the experiments on the data from the
other experiment. For example, we can train a model on the
CASE BVP data, and use the model to make predictions
from the WESAD BVP data. Since the experiment protocols
are different and the models are predicting different states,
metrics such as accuracy or F1 scores should be treated with
caution. The results of this evaluation are shown in Table III.
The models trained on the CASE ECG dataset generalize to
some extent, but otherwise the performance on these metrics
is relatively poor.

Although we would not expect models to predict different
protocols across experiment, we should expect the results to
show some consistency. For example, we do not expect to see a
higher prevalence of relaxed states in the set of CASE samples
for which the WESAD models predict stress than in the no
stress class. Similarly, we might expect the α > 0.5 class from
the CASE models to show a lower prevalence of meditation
and a higher prevalence of stress in the WESAD data. These
results of these hypotheses are not predetermined. It is possible
due to the nature of the generalizability experiments that
we observe results beyond the expected. Our comparison is
therefore largely qualititative, however it still enables us to
draw conclusions on the robustness or otherwise of the models
especially in cases where we see behaviour in the opposite
sense to our reasonable expectations.

To carry out this analysis, we first propose a number of
reasonable hypotheses which we would expect to be supported
if the models generalize between the experiments, and then
apply statistical tests to determine whether these are consistent
with the data. In particular, we test the following hypotheses,
labelled H1 to H5.

H1 : The mean value of the anxiety index α for subjects
predicting stress in models trained on the WESAD data is
greater than the mean for subjects predicting non-stress.

H2 : Subjects in the CASE experiment indicating stress in
models trained on the WESAD data are more likely to be in
the scary protocol than subjects indicating non-stress.

H3 : Subjects in the CASE experiment indicating stress in
models trained on the WESAD data are less likely to be in
the relaxing protocol than subjects indicating non-stress.

H4 : Subjects in the WESAD experiment indicating α >
0.5 from models trained on the CASE data are more likely to
be in the stress protocol than subjects indicating α < 0.5.

H5 : Subjects in the WESAD experiment indicating α >
0.5 from models trained on the CASE data are less likely to
be in the meditation protocol than subjects indicating α < 0.5.

We evaluate H1 using Welch’s t-test on the distributions
of α values, and the remaining hypotheses using Pearson’s
χ2 test on a 2 × 2 contingency table. The results of the
hypothesis testing are summarised in Table IV which gives
the p-values derived from the statistical tests. Where the
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TABLE III
RESULTS OF EVALUATING MODELS ON THE SAME SENSOR MODALITY IN THE OTHER EXPERIMENT. MODELS ARE TRAINED ON THE ENTIRE

TRAINING DATASET FOR ONE EXPERIMENT, AND EVALUATED ON THE ENTIRE TRAINING DATASET FOR THE OTHER EXPERIMENT. BEST-PERFORMING

ALGORITHMS ON ACCURACY OR F1 SCORE ARE INDICATED IN BOLD.

SVM RF XGBoost MLP ResNet FTT FTTP
Train/Test/Modality acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1

CASE/WESAD/BVP 0.564 0.694 0.458 0.278 0.516 0.494 0.587 0.686 0.577 0.650 0.500 0.586 0.536 0.682
CASE/WESAD/ECG 0.621 0.659 0.657 0.682 0.638 0.675 0.556 0.683 0.594 0.640 0.590 0.694 0.580 0.521
WESAD/CASE/BVP 0.501 0.003 0.501 0.003 0.501 0.003 0.501 0.003 0.501 0.003 0.500 0.007 0.480 0.107
WESAD/CASE/ECG 0.604 0.499 0.588 0.445 0.605 0.468 0.582 0.441 0.577 0.468 0.597 0.474 0.508 0.554

observation contradicts the hypothesis the p-value carries an
asterix superscript; for example, for H2 using the BVP data,
the subjects indicating stress in the WESAD model are less
likely to be in the scary protocol of the CASE experiment.

H1 is supported by the data at a statistically significant level
for the ECG data for all models apart from FTTP. For the same
hypothesis evaluated on BVP data, we see poorer performance,
with only the FTTP model giving a statistically significant
result, although in all cases the data agree with the hypothesis.
H2 is supported by all models, again apart from FTTP, for the
ECG data. For the BVP data we see mixed results including
some cases with a statistically significant result in the sense
opposite to the hypothesis; that is, participants indicating
stress in the WESAD BVP models are less likely to be in
the scary protocol of CASE than participants indicating non-
stress. H3 shows weak results, with only the RF and XGB
models trained on BVP data showing statistically significant
support for the hypothesis. Overall, the WESAD model shows
some generalizability to the CASE data; it is able to select the
scary protocol in the CASE experiment, which qualitatively
best matches the stress protocol in the original experiment,
although the results are mixed, with much weaker effects seen
for the second and third hypotheses.

Hypothesis H4 is strongly supported by the data in most
cases, suggesting that the models largely generalize well to the
WESAD data, and are able to select the stress protocol based
on the predicted values of α. However, there are exceptions
in the case of the RF and FTTP models trained on BVP data.
H5 gives a surprising result; in most cases, the CASE models
are more likely to select subjects in the WESAD meditation
protocol in its indications of high anxiety, with strong signals
in many cases, particularly the ECG models. We suggest that
this may be due to the absence of states in the CASE protocol
sufficiently similar to the meditation state in WESAD; the
models may therefore not have seen sufficient data similar to
this state in training. The unseen regions of feature space may
then give rise to counter-intuitive predictions. This underlines
the importance of using models in a context in which the
range of emotional states likely to be encountered are all well-
covered in the training data.

In summary, we see strong indications that the models are
able to produce consistent results in a different experimental
setting. The best generalizability is seen for the higher quality
data (ECG for both experiments, and BVP for CASE) in
cases where the experiment protocols are qualitatively similar.
Weaker or inconsistent results are seen in cases where the
training or evaluation data is of lower quality, or where the

emotions induced by the experiment protocols differ widely.

V. CONCLUSION

Our article presents an examination into the accuracy and
effectiveness of machine learning emotion recognition when
considering generalizability. It is crucial future works con-
tinue placing strong emphasis on generalizability to extend
applications and algorithms from fixed-experiment conditions
to widely adopted, multi-conditional settings. After extracting
standard features from cardiac signals, we evaluated ML clas-
sification algorithms using cross-validation within and between
sensor modalities and LOSO cross-validation between subjects
to determine how well ECG and BVP signals classify emotions
in multi-scenario settings and with unseen data. We show
that the signal quality is a crucial factor to the success of
generalizability. ECG data generally performed better than
BVP across all validation techniques. Weaker results were
found with signals showing significant noise and artefacts,
which we found to be more prevalent in the BVP data, partic-
ularly in the WESAD dataset. Our study proposes all future
research in the domain considers the quality of data before data
capture occurs, in order to maximise the generalizability of
the models. We also provide a methodology for assessing the
generalizability of models by testing reasonable hypotheses on
open datasets. Furthermore, we suggest future research consid-
ers multiple machine learning techniques to develop emotion
recognition that is generalizable and appropriate for particular
applications. For example, emotion trend calculations could
aid in the discovery of new predictions for on-line emotion
recognition.
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Engineering OnLine, vol. 8, no. 1, pp. 1–17, 2009.

[26] M. Malik, “Heart rate variability: Standards of measurement, physi-
ological interpretation, and clinical use: Task force of the european
society of cardiology and the north american society for pacing and
electrophysiology,” Annals of Noninvasive Electrocardiology, vol. 1,
no. 2, pp. 151–181, 1996.

[27] D. S. Fonseca, A. Netto, R. B. Ferreira, and A. M. De Sa, “Lomb-
scargle periodogram applied to heart rate variability study,” in 2013
ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics
for Better and Safer Living (BRC). IEEE, 2013, pp. 1–4.

[28] W. Saengmolee, D. Cheaha, N. Sa-Ih, and E. Kumarnsit, “Exploring of
cardiac autonomic activity with heart rate variability in long-term kratom
(mitragyna speciosa korth.) users: a preliminary study.” PeerJ, vol. 10,
p. e14280, 2022.

[29] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning in international conference on artificial neural
networks,” Springer, pp. 270–279, 2018.

[30] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting
deep learning models for tabular data,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 932–18 943, 2021.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[33] R. Detrano, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[34] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.


