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Abstract: The named data networking (NDN)-based microservice-centric in-network computation
poses various challenges in terms of interest aggregation and pending interest table (PIT) lifetime
management. A same-named microservice-centric interest packet may have a different number of
input parameters with nonidentical input values. In addition, the same-named interest packet with
the same number of parameters may have different corresponding parameter values. The vanilla
NDN request aggregation (based on the interest name, while ignoring the input parameters count
and/or their corresponding values) may result in false aggregation. Moreover, the microservice-
centric requested computations may fail to accomplish in the default 4s PIT timer due to the input size.
To address these challenges, this paper presents MIA-NDN: microservice-centric interest aggregation
in named data networking. We designed microservice-centric interest-naming to enable name-based
communication. MIA-NDN develops a robust interest aggregation mechanism that not only performs
the interest aggregation based on the interest name but also considers the input parameter counts
and their corresponding values in the interest aggregation process to avoid false packet aggregations.
A dynamic PIT timer mechanism based on input size was devised that avoids the PIT entry losses
if the execution time exceeds the default PIT timer value to avoid computation losses and uphold
the application quality of service (QoS). Extensive software-based simulations confirm that the
MIA-NDN outperforms the benchmark scheme in terms of microservice-centric interest aggregation,
microservice satisfaction rate, and communication overhead.

Keywords: microservice interest aggregation; information-centric networking; named data network-
ing; pending interest table; microservice-centric computations

1. Introduction and Motivation

The advancements in Internet of Things (IoT) technologies and communication, com-
putation, and sensing capabilities of smart devices have led to the foundation of several
intelligent and ubiquitous services [1,2]. These devices enable massive content gather-
ing and content dissemination through a variety of applications (i.e., delay tolerant and
delay-sensitive) such as autonomous driving, smart health monitoring, video downloading,
disaster monitoring, and social networking, to name a few [3]. IoT devices are usually
resource-constrained, performing specific computations over the acquired data [4]; most
of the conventional applications usually transfer their data to the central cloud station,
which is usually located far away from the consumer. Therefore, transferring the data to the
cloud may result in large latency, network congestion, and excessive bandwidth utilization.
Moreover, taking delay-intolerant applications into consideration, the aforementioned
consequences may severely affect the on-time decision capabilities of the application, which
may result in disastrous consequences [5].

To handle the cloud deficiencies, edge computing has emerged as a promising candi-
date with the precise motivation to bring the cloud facilities (such as computing, storage,
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and networking resources) closer to the consumer [6,7]. Edge computing provides large
computations at the network edge in the closed vicinity of the user with reduced bandwidth
consumption and fewer delays, minimizing the chances of congestion in the network [8,9].
Edge computing undeniably provides a resourceful platform for these applications to
accomplish their computations within the strict latency requirements, however, peak work-
load conditions (e.g., a burst of compute-intensive consumer requests) may over-utilize the
edge resources. To avoid computation loss, edge terminals offload the requested computa-
tion toward the cloud [10], which turns in performance degradation, bandwidth utilization,
excessive communication delays, location-less communications, content dissemination,
content security, and high consumer and producer mobility [11].

Currently, communication between IoT, edge, and cloud is carried out through con-
ventional address-centric communication mechanisms (i.e., TCP/IP) where an end-to-end
communication path is required to be established before initiating the communication [12].
With the evolution in technology and the development of data-centric applications, the
current internet operation is changing from a host-centric to a content-centric model [13],
meaning that current user applications mainly focus on the required content regardless of
the originator’s physical location [14]. Instead of reaching the actual content producer, any
networking device residing within the network with the requested content in its storage
must be able to respond with the data to uphold the QoS and optimize the networking
resources [15]. The current IP architecture lacks the aforementioned functionalities.

Modern applications, such as augmented reality (AR)/virtual reality (VR)-based sys-
tems, the metaverse, and the IoT mostly require content irrespective of the originator’s
location for efficient operation. However, conventional IP-based communication necessi-
tates the establishment of an end-to-end communication connection between the consumer
and producer to initiate communication, meaning that the consumer’s request must have
to reach the producer to fetch the content irrespective of the availability of the requested
content on the intermediate computing or networking devices, which results in high latency
and excessive bandwidth consumption. To handle the mismatch between the conventional
IP-based internet architecture and application requirements, information-centric network-
ing (ICN) [16] and flavor-named data networking (NDN) [17] have emerged as potential
candidates for the future internet architecture. Irrespective of host-centric centric IP net-
working, NDN breaks the connection-oriented communication philosophy and considers
the content as first-class citizens. The NDN consumers only specify what they require
irrespective of where the content is located. The data are self-authenticating and can be ac-
quired by the consumer via application-specific, location-oblivious, unique, and persistent
names. In addition, ICN’s enchanting features, such as request aggregation (using pending
interest table (PIT)), stateful forwarding (via FIB), and in-network caching (CS) promote
efficient content delivery and reduce data retrieval delays [18].

Taking the NDN-based microservice-centric in-network computations into account, the
vanilla NDN may face several performance issues in terms of request aggregation and PIT
lifetime management. The vanilla NDN performs the PIT interest aggregation based on the
interest name; the default lifetime (i.e., 4 s) is allocated to each PIT entry. With microservice-
based interest names, multiple interests may correspond to the same name; however, they
may have (1) the same number of the input parameters but different parameter values,
and (2) a different number of input parameters. Taking the aforementioned microservice
input parameters heterogeneity, the vanilla NDN may never perform accurate interest
aggregation. Moreover, the requested computations may never accomplish (i.e., in the
default, 4 s) the PIT timer due to the input size. These factors may result in false aggregation,
packet losses, long latencies, and excessive network resource utilization.

Researchers have focused on different state-of-the-art schemes [19–21] in the litera-
ture, mainly targeting effective in-network service computations. The scheme presented
in [19] sends a computing request to the producer and the producer estimates the request
execution time, generates the acknowledgment packet, and sends it back to the consumer
to adjust the PIT lifetime and maintain the entry of intermediate nodes. A similar scheme
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proposed in [20] first inquires about the potential function executor by forwarding com-
puting interests and generating a separate interest packet to carry the remote method
invocation parameters toward the potential forwarder, maintaining a 5 s static PIT lifetime
for computation request entries. Another service execution scheme named "serving at
the edge” presented in [21] forwards the interest toward the compute node. The com-
pute node informs the consumer about the execution via an acknowledgment packet and
pushes the results back toward the consumer after generating the results. These schemes
mainly focus on in-network computation-based PIT lifetime management; however, these
schemes ignore the input parameters and their corresponding values of microservice re-
quests. Therefore, these schemes lack efficient PIT lifetime management mechanisms based
on microservice input sizes (i.e., the small input may take lower computation times and
deliver the results in minimum times compared with large-sized input).

To address the above-mentioned challenges, this paper extends the current NDN ar-
chitecture and proposes a robust microservice-centric interest aggregation and PIT lifetime
management mechanism named MIA-NDN. MIA-NDN takes the input parameters as well
as their corresponding values into account in its interest aggregation process. MIA-NDN
devised tailored naming schemes comprised of microservice names and input parameters.
A dynamic PIT lifetime management mechanism is provided that considers microservice
computations and communication costs. In addition, MIA-NDN computes the hash value
of each interest packet to avoid false interest aggregation in the PIT table.

In summary, the following are our core contributions to the proposed scheme.

1. We extend the vanilla NDN architecture to support the microservice-based in-network
computations by proposing a state-of-the-art microservice-centric interest-naming
mechanism that incorporates the content name, microservice name, input parameters,
and delimiters for separating the multiple components.

2. MIA-NDN developed a dynamic PIT timer based on microservice input parameters
and their corresponding input values to avoid PIT entry losses in the event of long-
running microservice computation interests.

3. A hash-based PIT aggregation mechanism was developed to achieve efficient
microservice-centric PIT aggregation, taking into consideration the input parameters
and their corresponding values to make every entry unique in the PIT table.

4. MIA-NDN was evaluated based on extensive NDNSim-based simulations to reveal the
potential benefits in terms of efficient interest aggregation, microservice computation
satisfaction, and network overhead.

The remainder of the paper is organized as follows. Section 2 presents the background
and related work. Section 3 describes the proposed scheme. Paper evaluation and simula-
tion results are discussed in section 4. Finally, Section 5 concludes the paper and presents
future work.

2. Background and Related Work

In this section first, we present the overview of the microservices and NDN, and then
we provide the related work.

2.1. Background

1. Microservices in a nutshell: Microservices are gaining more attention from enter-
prises. Big tech companies, such as Netflix, Twitter, Amazon, and Spotify utilize
microservices in their businesses [22]. Microservices are proposed software devel-
opment architectures used to create applications as loosely coupled small compo-
nents [23]. Such small components are easy to develop, deploy, and test independently.
Each component performs its own task and communicates with other microservices
through well-defined communication interface. The small components feature enables
microservice scalability, allowing one to update and change a component without
affecting other components [24].
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2. Named data networking in a nutshell: NDN internet architecture is a shift from
host-centric to data-centric communication and provides named content-based com-
munication [17]. In NDN, two types of packets interests and data are used in com-
munications. NDN allows consumers to send content-named interests and retrieve
corresponding data packets at the network layer. A detailed process of the NDN
interests and data packets is illustrated in Figure 1. Each NDN router maintains
three tables. (1) Content store (CS): CS is transient storage space at the NDN router
that stores the copy of incoming data packets to satisfy future consumer-generated
requests for the same data. (2) Pending interest table (PIT): The PIT stores the entries
of forwarded interests that are waiting for the required data. Each PIT entry waits
for the data packet until its associated timer value. (3) Forwarding information base
(FIB): FIB keeps the information from the content producer or provider.

Pending Interest 
Table (PIT)

Content Store 
(CS)

Forwarding 
Information Base 

(FIB)

FarwardInterest

Add incoming 
interface

Return data

Drop interest

Create PIT entry

Pending Interest 
Table (PIT)

Content Store 
(CS)

Data

Purge PIT entry

Drop data

Forward data

Cache data

Downstream

Incoming Interest Pipeline

Incoming Data Pipeline

Upstream

No

Yes

No

Yes No

Yes

No

Yes

Figure 1. NDN Communication Process.

2.2. Related Work

NDN is recognized as an in-network computation enabler [25,26], where named
services [19,27] and named functions perform the consumers’ requested content compu-
tations. In the literature, several approaches are proposed that consider performing the
computations in the NDN network.

The pioneering work, named function as a network (NFN) [25], enables data process-
ing in the NDN network. In NFN, a name represents the mapping to the content and the
function to content processing; expressions represent the combination of both the content
name and function. The interest packet has named data as well as function information,
and the network is responsible for discovering an executing node and expression resolution
with name-based forwarding to execute a function. A general-purpose framework named
function service (NFaaS) is similar to NFN as it extends the NDN architecture to support
in-network function computations [28]. In NFaaS, the computation functions are provided
by utilizing virtual machines (VMs) instead of lambda expressions, as presented in [25].
The VM-hosted kernel stores the function codes and makes decisions on which functions to
download and execute locally. The functions can also migrate toward the edge according
to the function’s demands and the function demands can depend on delay-sensitive and
bandwidth-hungry applications. For delay-sensitive applications (AR/VR, autonomous
vehicles), the function migrates toward the data-generating source to meet strict delays,
and the bandwidth-hungry application runs close to the network core, remaining within
the edge boundaries.
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A similar work was proposed by the authors of [29], in which the authors designed a
computation service management (CS-Man) protocol by employing NFN, which enables the
IoT tasks in-network processing based on the device’s current workload status. The CS-Man
works in two modules; the first is the service discovery, which is used to obtain network
information about the capable nodes, which can provide services, and the second one is
service deployment, which deploys the interests to the appropriate candidate nodes for
execution. The CS-Man discovers the services and deploys tasks according to the workload
conditions; consequently, it lowers the network traffic and achieves the computations
efficiently. A dynamic computing environment for IoT data processing is proposed in [30],
which makes data retrieval possible as well as data processing at the edge of the network.
In this scheme, the authors defined naming and forwarding strategies, and these strategies
guide the requests for service toward edge computing nodes that are very close to data
sources in order to limit the raw data transmission in the network. The proposed scheme
achieves lower volumes of data communications and service delivery times.

A keyword-based naming scheme for IoT retrieval and local computation was pro-
posed in [31]. The proposed scheme comprises (i) a hierarchical name prefix that allows the
routing to locate the IoT processing, and (ii) a keyword as a suffix to indicate specific data
in the IoT domain. The hierarchical name prefix finds the route toward the IoT domain
and exploits available edge resources for computations. In this scheme, interest carries the
function name and information about how the processing should be done; the producer
only returns a single data item. The proposed scheme was evaluated on three different
strategies for locating and processing IoT data with the IoT edge domain; it was found that
the scheme outperforms in terms of latency and reduces network overhead. The authors
of [32] proposed Hydro—a hybrid function orchestration scheme for distributed computing
in information-centric networking. The Hydro scheme employs a logically centralized
coordinator that gathers the compute node’s computation information in order to reduce
the function execution time and balance resource utilization. It collects information on
function deployment and network resource utilization to push computations from the cloud
to underutilized edge nodes closer to users. The simulation results were compared with
NFN; the results revealed that Hydro outperforms and improves computation completion
times (to 51%).

Lia et al. [33] proposed an in-network task placement strategy that aims to minimize
network resource utilization. This strategy achieves task allocation to the proximal edge
nodes, minimizing the execution latency. The results of the proposed strategy are compared
against a cloud-only state-of-the-art solution and the results prove that the proposed
scheme outperforms. A unified remote method invocation (RICE) proposed by the authors
in [20] exploits ICN properties, such as name-based routing, receiver-based congestion con-
trol, flow balance, and object security. RICE is a network layer general-purpose framework
that can be applied to any named function networking. RICE employs the thunks [34], a
concept of a programming language to decouple the method invocation from the return
of long-running application results. The ultimate goal of RICE involves in-network func-
tion execution, consumer authentication, and non-trivial parameter passing. It supports
scenarios where computations take longer than the default PIT expiry times.

To discover the in-network compute nodes in the network, the authors of [35] pre-
sented DiCer: a distributed coordination for in-network computations strategy. DiCer
adopts the state vector synchronization (SVS) dataset protocol in ICN to increase the neigh-
borhood information of compute nodes in a distributed manner. DiCer assists in service
deployment by increasing the resolution of computing requests. The DiCer scheme was
evaluated against NFN and it was found that it increases resource utilization at the edge
and reduces the request completion time. A service executing at the edge architecture based
on ICN is presented by the authors of [25]. This architecture contains the edge computing
service session model, requesting forwarding strategies, and dynamic service deployment
mechanism. This scheme attempts to keep the overhead low by pushing the computation
results toward the consumer immediately upon the computation completion. The simula-
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tion results indicate that the proposed scheme lowers a state communication overhead, and
the forwarding strategies achieve service completion times with a low probing overhead.

In summary, the above-presented schemes do not consider microservice-centric interest-
input parameters with their corresponding values in PIT aggregation and allocate the static
PIT lifetime. Contrary to the existing solutions, in this paper, we propose a microservice-
centric interest aggregation, PIT dynamic timer calculation, which has not been fully
investigated yet. Specifically, we consider the same-named microservice-centric interests
with different input parameters and the same-named microservice interests with the same
number of input parameters but different corresponding values and dynamic PIT life-
time management based on interest parameter values to achieve true microservice-centric
interest aggregation and computations efficiently.

3. Proposed Scheme

In this section, we provide the details of the proposed MIA-NDN scheme. First, we
provide the overview of the MIA-NDN and then the technical details of the scheme.

3.1. Proposed Scheme Architecture

The overall architecture of the MIA-NDN scheme is presented in Figure 2. As shown
in the figure, the consumer sends a microservice computation request to the edge node
by generating and storing the hash value of a microservice interest in the interest packet
(detailed in Section 3.2). After receiving the interest, the edge node performs the computa-
tion and returns the result to the consumer. The edge nodes may become overloaded due
to multiple microservice requests; in that case, they eventually offload the computations
toward the cloud (as Edge-2 shows in Figure 2). The edge node, prior to interest offloading,
calculates the interest PIT lifetime (detailed in Section 3.3) and forwards interest toward
the cloud. When forwarding the interest packet toward the cloud, the edge node sends an
interest packet toward downstream routers and updates the PIT timers (e.g., nodes R1 and
consumer NFD). We provide the details of the microservice packet format, interest hashing,
and aggregation (Section 3.2), and the dynamic PIT timer calculations (Section 3.3).
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Figure 2. Proposed scheme architecture.
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3.2. Proposed Scheme

In this subsection, we provide the key details of the proposed scheme, such as the
interest packet format, interest aggregation, and microservice-centric interest hashing.

1. Interest Packet Format: In the proposed MIA-NDN scheme, the interest can request
a microservices computation or simple content. When requesting simple content, the
interest packet follows the conventional NDN content-naming structure. However,
when requesting the microservice-centric content, the interest packet pursues the
following microservice-centric interest-naming format as shown in Figure 3.
In the MIA-NDN scheme, each interest is composed of a content name followed by a
microservice name and input parameters. The microservice-centric interest packet
has four parts, (i) the content name, (ii) the microservice tag, (iii) the microservice
name, and (iv) input parameters. Figure 3 depicts the microservice-centric interest
packet structure where the /Sejong/HongikUniversity/MainGate/image represents the
content name or globally routable name, MS is used as a delimiter tag to separate
the microservice component from the content name, FeatureExtraction is the name
of a microservice, and image1, image2, image3 are the input parameters. Among the
aforementioned name components, the first component is mandatory, whereas the
last three components are optional.

2. Interest Aggregation: In the proposed MIA-NDN, the interest aggregation is com-
prised of two steps (i) the hashing and (ii) aggregation. At first, the microservice
interest packet’s hash is calculated, after that, the interest aggregation is performed in
the PIT table along with the hash value.
A detailed description of the hashing and aggregation process is given as follows.

(a) Microservice-centric interest hashing and aggregation: NDN’s core feature is
content-naming, and it has a profound impact on network performance (e.g.,
lookup and memory consumption). microservice-centric interests may have large-
sized interest packets, for example in the feature extraction scenario where input
parameters may contain large-sized images, and such packets may consume a
considerable amount of memory in the PIT table.
The NDN is a search-based internet architecture, where tables (CS, PIT, and
FIB) are consulted before interest and data packet forwarding; therefore, such
large-size interest aggregation in the PIT table is not an optimal solution.
The aggregation of such large-sized interests in the PIT table may exhaust the
NDN node’s memory.
In addition, the PIT table lookup is required for finding similar interests that
have already been forwarded and are waiting for results to perform the same
incoming request aggregation. Such large-sized interest-matching in the PIT table
requires a high search time, which ultimately degrades the network performance.
Therefore, in microservice-centric interest aggregation, the PIT table’s memory
consumption, searching time, and searching costs are required to be optimized.
To resolve the above-mentioned issues, the proposed MIA-NDN scheme com-
putes a hash value of microservice interests and stores it in the PIT table.
For hashing, the proposed scheme employs the SHA-256 hashing algorithm that
generates the hash value of the incoming interest packet’s name components (i.e.,
content name, microservice name, and input parameters) after concatenating
them together.
The SHA-256 algorithm generates a 32-bit hash value, which is efficient to store
in the PIT table instead of storing several megabytes of microservice parameter
interests. The hash value is computed as soon as the networking forwarding
daemon (NFD) of a consumer node receives an interest packet. The consumer
then creates a unique PIT entry by storing the hash value as a content name.
Finally, after updating the outgoing interface of a PIT entry and before forwarding
the packet toward the upstream node, the computed hash value is stored inside
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the [NameHash] field of an interest packet as depicted in Figure 4. The rationale
for storing the hash value is to avoid microservice interest false aggregation,
optimum PIT table memory consumption, PIT searching time, and searching cost
minimization. In the latter incoming interests, the stored hash value is compared
for interest aggregation purposes. In case a hash match is found, the aggregation
is performed, otherwise, a new PIT entry is created, and interest is forwarded to
the provider/producer by following the FIB entry.

Globally routable name

Delimiter Tag

Microservice Name

Input parameters

/Sejong/HongikUniversity/MainGate/image | MS FeatureExtraction (image1,image2,image3)

Figure 3. Microservice-centric interest packet structure.

[ApplicationParameters 

[InterestSignature]]

 Name

[CanBePrefix]

[MustBeFresh]

[ForwardingHint]

[Nonce]

[InterestLifetime]

[HopLimit]

[NameHash]

c1ee20ea015370e7ef725bc8e8729311c24b6494926

Figure 4. NameHash-based interest packet.

3.3. Dynamic PIT Timer

The microservice executions might be compute-intensive tasks, especially in the case of
image processing and feature extraction microservices; therefore, the vanilla NDN default
PIT timer (4 s) may not be adequate to complete microservice computations and yield the
results on time. Therefore, the objective is to develop a dynamic PIT timer that adjusts the
PIT entry lifetime according to the microservice parameter count and the respective size,
enabling the intermediate nodes to maintain the PIT entry for a sufficient time. In that way,
the proposed scheme avoids the computation results from losses and the over-utilization of
network resources that may occur due to default (static) PIT timer settings.

In the proposed scheme, the dynamic PIT timer on the intermediate nodes is calculated
by analyzing the (i) microservice interest packet and (ii) the communication cost between
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the edge node and the executing node. If the size of a microservice parameter is large (in
terms of bytes), the large PIT timer value is selected, otherwise, a short PIT timer is selected
in case the parameter value size is small. Employing such dynamicity in the PIT timer
setting by considering the interest parameter size enables network packet processing within
the pending lifetime as well as optimizes the PIT table size. In addition to the microservice
parameters, the PIT timer calculation is also based on the communication cost, i.e., the
time it takes to offload a microservice request from a consumer to reach the cloud server
and the results to receive back. The edge node consults the network orchestrator (detailed
in the next subsection), which keeps a record of the hops data between two ends and
the computation resource utilization status of the cloud server (Assumption. The interest
forwarding path is known; in Figure 5, R2 knows that it has to forward the interest packet
to R3; R3 to R4; and so on. It is based on the FIB, which is out of the scope of our work).
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Figure 5. Dynamic PIT timer calculation.

In the following, we provide a detailed description of the working mechanism of
the network orchestrator, explaining how it assists the dynamic PIT timer calculation in
microservice computational offloading.

1. The Role of the Network Orchestrator: A network orchestrator is a network man-
agement node that keeps network topology and cloud node computation load infor-
mation. As shown in Figure 5, consumers C1 and C2 send a microservice request
for the computations and it is received at R1 (e.g., in the figure, the yellow arrow
represents interests, and the green arrow represents data packets). Then, R1 forwards
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the request toward the edge node. The edge node may not have enough resources
to execute the microservice request. Therefore, the edge node offloads the request to
the cloud server. However, before offloading a request, the edge node consults the
network orchestrator by sending the consumer’s received microservice interest packet
to obtain the information about (i) the communication time required to take the data
packet from sending an interest packet and, (ii) the computation time required to
perform the microservice computation on a compute node.
The network orchestrator node calculates the computation time based on the cloud
server’s load status and the required resources of the requested microservice interest
packet (the network orchestrator forwards the request to the light-loaded cloud node).
After calculating the computation time, the network orchestrator node sends the
computation time and communication time (e.g, data of the intermediate nodes) by
storing them inside the interest packet back to the edge node. Therefore, the edge node
based on the communication time and computation time calculates and sets its PIT
timer and offloads the interest packet toward the cloud by storing intermediate nodes
and computation time information in the interest packet in step 2 (the intermediate
nodes and computation time information is shared with upstream nodes to avoid
contacting the network orchestrator node all of the time). R2, upon receiving the
interest, calculates its PIT timer based on the computation time and communication
time information obtained from the interest packet.
The computation time remains constant for all intermediate nodes while the communi-
cation time decreases gradually as interest approaches the cloud server. Therefore, the
intermediate nodes calculate the communication time based on the hop distance and
set their PIT timers accordingly (step 3). Finally, at the time of interest offloading, the
edge node sends an interest packet toward the downstream nodes as well as the PIT
timer update to avoid the pending entry earlier timeouts. Consequently, R1 and con-
sumers calculate and update their PIT timers of the microservices’ pending interests.

2. Dynamic PIT Timer Calculation: The edge and intermediate nodes calculate their
PIT timers dynamically based on the network orchestrator’s computation time and
communication time information. The computation and communication time calcula-
tions are described as follows.
Let TMSi

PIT be the total PIT lifetime, including the communication time and computation
time required to send an interest, performing the computation at the compute node,
and receiving results (data packet) of the microservice interests MSi [36]. The TMSi

PIT
can be calculated by using the following equation:

TMSi
PIT = TMSi

exec + a (1)

where TMSi
exec is the time required to execute an interest at a compute node and a is the

total time required to send an interest and receive a data packet (communication time).
The TMSi

PIT is calculated based on the load status of a compute node obtained from the
network orchestrator (Section 3.3). The microservice interest execution time can be
calculated by the following equation:

TMSi
exec =

{
MSi

sz
CPUi

avc
i f MSi

sz and CPUi
avc > 0

0 Otherwise
(2)

The MSi
sz is the total size of the ith microservice interest in bytes and CPUi

avc is the
available CPU cycles on the ith compute node where information is obtained from the
network orchestrator. The MSi

sz is comprised of the microservice input parameters
and their corresponding sizes. The computation time is calculated by adding all input
parameter sizes and dividing by the available CPU cycles of the compute node.
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In Equation (1), a is the communication time required to send a microservice interest
packet and receive a data packet. The a can be calculated (e.g., between the edge and
cloud server) by the following equation:

a = a − (a/h + 1) + cr (3)

where h represents the number of intermediate nodes from offloading the edge server
to the cloud server and cr is a congestion rate of a link between the intermediate nodes.
The FIB provides information about the congestion rate between nodes.
The PIT timer on the downstream node (the edge to the consumer) is updated by the
following equation.

a = a + (a/h − 1) + cr (4)

3. Interest processing pipeline of the proposed scheme: A detailed description of
microservice-centric interest processing in the MIA-NDN scheme is given below with
the help of a flow chart. In Figure 6, the microservice-centric interest processing steps
are summarized. A detailed description of the steps is given as follows.

(a) After receiving the interest packet, the edge node checks the packet type
to determine whether the received interest is conventional NDN content or
a microservice-centric request by searching the MS tag. In the presence of
an MS tag, the interest packet is processed according to the microservice
interest processing pipeline, otherwise, the interest packet is forwarded to the
conventional NDN processing pipeline.

(b) Once it is determined that the received interest packet contains a microservice
request tag, the edge node then checks whether the NameHash field contains
a value. In the presence of the NameHash value, the edge node searches the
PIT entry with the NameHash value. In the absence of the NameHash value,
the edge node performs the hash calculation according to step 4 and adds it to
the interest packet.

(c) In the presence of the NameHash value, the pending PIT entries are searched
by comparing the hash value. If a hash match is found, the edge node performs
the aggregation and drops the interest packet. In the absence of pending entry,
the new PIT entry is created, the CS searches for the matching data (results)
and is subsequently followed by the conventional interest processing steps.
The results stored in the CS also contain a hash value along with the content
name for the same future request fulfillment.

(d) In the absence of a NameHash value, the edge node calculates the hash value
after concatenating the content name, microservice name, and input parameter
values using the SHA-256 hashing algorithm and inserts the obtained hash to
the NameHash field before forwarding the interest packet.

(e) After calculating and inserting the hash value of interest, the PIT table is
consulted to check that the interest is pending. In case the interest is pending,
the aggregation is performed, otherwise, the new PIT entry is created.

(f) After the PIT, then CS lookup is performed to check the data availability in the
router’s cache; if data are available in the cache, the interest is finalized and
data are returned to the consumer, otherwise, the FIB is consulted, and interest
is forwarded to the producer, otherwise, the packet is dropped.
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Figure 6. The microservice-centric interest processing pipeline.

4. Implementation

In this section, we describe the experimental environment, implementation, and
evaluation of the proposed MIA-NDN scheme against the most recent existing solution [21].

4.1. Experimental Setup

To evaluate the effectiveness of MIA-NDN, we performed extensive simulations
in NDNSim (an ns3-based simulator on a computer equipped with Core i5, 16 GB of
RAM) and compared the results with the state-of-the-art scheme named Serving at the
Edge (SATE) [21]. In our simulation environment, we consider 10 nodes, with 2 edges,
2 consumers, 6 NDN routers, and a cloud equipped with computation, communica-
tion, and storage units. To mimic the microservices behavior, we adopted the ndnC-
SIM (https://github.com/atifrehman/ndn-compute-simulator) (accessed on 20 November
2022), [37] codebase, where the necessary operations and requirements regarding microser-
vice development and deployment were provided. For the extensive evaluation, we varied
the microservice-based computation requests with (1) the same name, same parameters,
and different parameter values, and (2) the same name and different input parameter
counts at both high (i.e., 10 to 50 req/s) and low request rates (i.e., 1 to 10 req/s). The
summary of our simulation setup is presented in Table 1.

https://github.com/atifrehman/ndn-compute-simulator
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Table 1. Simulation parameters.

Parameter Value

Simulator NS3 (NDNSim)
Communication Stack NDN
Environment 802.3
Total number of nodes 10
Edge nodes 2
Consumers 2
NDN Routers 6
PIT Time Dynamic
Topology (Figure 2)
Simulation time 300 s

The following performance metrics are considered for comparison evaluations.

1. Interest aggregation: Interest aggregation is defined as the total number of same-
named microservice-centric interest packets aggregated to the total number of mi-
croservice interest packets transmitted.

2. Microservices satisfaction rate: The microservice interest satisfaction rate is the ratio
of the total number of data packets received against the total number of microservice
interest packets sent.

3. Transmission overhead: Transmission overhead measures the total number of packet
transmissions (interest, acknowledgments, and data) in the network against the
number of microservice computations.

4. PIT density: The PIT density is the ratio of the total number of microservice interests
maintained in the PIT table to the total number of microservice interests generated in
the network.

4.2. Simulation Results

1. Interest aggregation: The microservice-centric interest aggregation as a function
of the microservice-based interest frequency is depicted in Figure 7a,b. We varied
the interest frequency to analyze the interest aggregation for both low (e.g., 1 to
10 interests/s) traffic scenarios as shown in Figure 7a and high traffic conditions (i.e.,
10 to 50 interests/s) shown in Figure 7b.
The results shown in the figures indicate that, in both traffic conditions, MIA-NDN
had less aggregation compared to the benchmark scheme. The rationale is that MIA-
NDN incorporates the microservice input parameters in addition to the microservice
name in the interest’s aggregation process. If both the microservice-centric interest
names and the number of input parameters are the same, MIA-NDN performs interest
aggregation. If microservices have the same interest names but a different number
of parameters or their corresponding values, MIA NDN considers those interests
as unique and avoids false interest aggregation. However, the benchmark scheme
ignores the microservice input parameters as well as their corresponding values
resulting in high packet aggregation (i.e., false aggregation). The false aggregated
microservice interests fail to return the computation results, which turn into network
resource wastage, increased latency, and congestion in the network.

2. Microservice satisfaction: MIA-NDN evaluated the performance in terms of microser-
vice satisfaction at different time intervals as well as against the microservice-centric
interest frequency, as shown in Figure 8a and Figure 8b respectively.
The simulation results in both scenarios revealed that MIA-NDN outperformed the
serving-at-edge schemes in satisfying the microservice-centric heterogeneous compu-
tation requests. The reason is that MIA-NDN includes the microservice parameters as
well as their corresponding values in the hash generation and process and inserts the
generated hash in the PIT table. The aggregated hash is utilized to check the already
existing same-named entry in the PIT upon a new interest packet reception. Interest
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aggregation is performed if the same hash value is found, otherwise the interest
packet is considered a unique packet and the corresponding forwarding is performed
to fetch the data. The whole procedure avoids false aggregation and increases the
microservices satisfaction ratio. It is clear from the results in both cases that MIA-NDN
highly reduces the false aggregation and enhances the microservices satisfaction ratio.
In contrast, the benchmark scheme performs false packet aggregation due to a lack of
consideration of microservice parameters and their corresponding values, resulting in
a low microservice satisfaction ratio.

(a) Interest aggregation with low traffic conditions.

(b) Interest aggregation with high traffic conditions.

Figure 7. Microservice interest aggregation as a function of microservice interest frequency.
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(a) Microservice satisfaction over time.

(b) Microservice satisfaction over interest frequency.

Figure 8. Microservice interest satisfaction as a function of microservice interest frequency.

3. Transmission overhead: Figure 9 shows the transmission overhead as a function of
microservice-centric interest frequency.
To analyze the transmission overhead, we vary the microservices request rate between
1 interest/s to 20 interests/s. From the figure, it can be observed that MIA-NDN
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has a lower transmission overhead compared to the benchmark scheme. The main
reason behind this is that the MIA-NDN scheme generates only two packets against
one microservice computation request, e.g., (i) a microservice computation interest
toward the compute node, and (ii) the computed result data packet from the compute
node. Contrarily, the benchmark scheme generates a higher number of packets to
perform a microservice computation, e.g., computing interest requests, acknowledg-
ment packet from the computing node, data packet, and acknowledgment packet
from the consumer node. The large number of packets generated by the benchmark
scheme to deliver the computed results produce high transmission overhead as de-
picted in Figure 9. However, MIA-NDN has low transmission overhead compared
with the benchmark scheme as only a single data packet is generated against the
consumer request.

Figure 9. Total number of packet transmissions against the number of microservices.

4. PIT density analysis: We analyze how densely the MIA-NDN populates the PIT table
at both high and low traffic conditions by varying the number of microservice-centric
computation interest packets, as shown in Figure 10a,b.
We also analyzed the PIT density at different time intervals as shown in Figure 10c.
The results clearly show that MIA-NDN maintains fewer entries in the PIT table
and enables more computation requests to be accommodated in the PIT table. The
rationale is that the MIA-NDN dynamic PIT lifetime calculation strategy evacuates the
PIT entry upon computation result retrieval and enables the incoming request to be
inserted in the PIT table. Therefore, in both high and low traffic conditions, the MIA-
NDN occupies less in PIT. Moreover, in Figure 10c, we analyze the number of entries in
the PIT table at different timer intervals (1 s to 30 s) with a request rate of 10 interests/s.
The results clearly show that MIA-NDN has a smaller number of entries in the PIT
table due to the provided dynamic PIT entry lifetime management mechanism.
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(a) PIT density over low traffic conditions.

(b) PIT density over high traffic conditions.

(c) PIT density percentage over time.

Figure 10. Microservice interest satisfaction as a function of microservice interest frequency.
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5. Conclusions and Future Work

In this paper, we propose an MIA-NDN scheme to enable microservice-centric com-
munication in the NDN architecture. In this regard, the proposed scheme designed (i) a
microservice-centric interest-naming structure, (ii) input parametric aware interest aggre-
gation based on the hashing mechanism, and (iii) a dynamic PIT timer calculation and
allocation to achieve efficient microservice computation and communication. The sim-
ulation results demonstrate the superiority of our scheme against the benchmark work.
MIA-NDN showed significant supremacy in terms of same-name microservice computa-
tion requests with input parameter level aggregations, a microservice computation request
satisfaction rate, and reduced network overhead. Further, to evaluate the scalability of the
proposed scheme, we analyzed the PIT table-maintained entries based on low and high
traffic as well as different time interval scenarios, and found that our scheme maintains a
low percentage of entries in the PIT table.

In future work, we will aim to analyze the computational complexity of the proposed
scheme and design microservice mapping and microservices migration to provide compu-
tation resources closer to the data source by employing artificial intelligence techniques to
achieve maximal node resource utilization and guarantee the QoS of delay-sensitive and
compute-intensive application tasks.
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