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Abstract

This paper describes the development of a
system for SemEval-2023 Shared Task 11
on Learning with Disagreements (Le-Wi-
Di) (Leonardellli et al., 2023). Labelled data
plays a vital role in the development of machine
learning systems. The human-annotated labels
are usually considered the truth for training or
validation. To obtain truth labels, a traditional
way is to hire domain experts to perform an ex-
pensive annotation process. Crowd-sourcing la-
belling is comparably cheap, whereas it raises a
question on the reliability of annotators. A com-
mon strategy in a mixed-annotator dataset with
various sets of annotators for each instance is
to aggregate the labels among multiple groups
of annotators to obtain the truth labels. How-
ever, these annotators might not reach an agree-
ment, and there is no guarantee of the reliability
of these labels either. With further problems
caused by human label variation, subjective
tasks usually suffer from the different opinions
provided by the annotators. In this paper, we
propose two simple heuristic functions to com-
pute the annotator ranking scores, namely An-
noHard and AnnoSoft, based on the hard labels
(i.e., aggregative labels) and soft labels (i.e.,
cross-entropy values). By introducing these
scores, we adjust the weights of the training
instances to improve the learning with disagree-
ments among the annotators.

1 Introduction

Annotated datasets are fundamental for any ma-
chine learning model. Traditional supervised ma-
chine learning models are heavily based on well-
labelled datasets. Fine-tuning and validation could
not exist without them either. The cost of manual
labelling using domain experts is generally high to
ensure the annotation quality. With the recent popu-
larity of crowd-sourcing, the cost has become lower.
However, the reliability of annotators remains a
question. Even with domain experts, disagreements
are commonly observed in the multiple annotations

for the same task due to several circumstances. For
example, the task is complex with many factors. It
may require annotators’ expertise, such as predict-
ing mental health issues (Thieme et al., 2020), or
subjective such as detecting emotions or other po-
larised opinions (Schuff et al., 2017; Akhtar et al.,
2020). The model trained with unreliable labels
can potentially increase the cost by human post-
validation.

In this paper, we focus on a specific sub-problem
of learning with disagreements in mixed sets of an-
notators from different backgrounds, and it could
be raised by crowd-sourcing or a mixture of the
crowd and expert labels. We propose a training
strategy to weigh the instance by computing the
ranking score of the annotator. More specifically,
our method is proposed to trust more instances with
higher annotator ranks during the training stage.
Hence, we propose two functions to compute anno-
tator ranking scores: AnnoHard and AnnoSoft. As
suggested in the naming, one is computed using the
hard labels, and the other uses the soft labels. This
paper follows the task definition to consider cross
entropy values as the soft labels and the majority
voting labels as the hard labels.

By participating in this shared task, we made
an initial attempt using heuristic methods and ex-
plored the performance of introducing AnnoHard
and AnnoSoft to various learning algorithms. A list
of main contributions is summarised as follows:

• We proposed and applied two functions of an-
notator ranks (i.e., AnnoHard and AnnoSoft)
to four binary classification tasks from the
Le-Wi-Di shared task. We conducted the ex-
periments using seven learning algorithms and
eight document representation methods.

• By introducing the annotator ranking scores,
the trained model could capture more patterns
from reliable training instances and slightly
improve both soft and hard evaluation.

• We found that using TF-IDF with Random
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Forest shows the best performance on the
three short text datasets, regardless of the lan-
guage used in the text and whether it coped
with the annotator ranking scores.

The source code for this paper is publicly avail-
able on GitHub1.

2 Background

In this section, we specifically focus on the prior
works driven by the dependent scores of annota-
tors. As the annotator is the origin of the disagree-
ments, these works have demonstrated the design
of training strategies to address this factor. Sub-
jective tasks (e.g., detecting hate speech or offen-
sive languages) generally have different definitions
among different communities (Akhtar et al., 2020;
Poletto et al., 2021). Developing an automatic sys-
tem based on the hard labels would substantially
impact a specific community. To overcome this
issue, Akhtar et al. (2020) proposed grouping the
annotators into two groups using the average Po-
larization index (P-index). However, polarity is a
task-specific factor. Plank et al. (2014) proposed
computing the two annotators’ agreements using F1
scores between them and label confusion probabili-
ties for Part-of-Speech (POS) tagging. The method
was extended to dependency parsing in Alonso et al.
(2015). We aim to propose a method to increase the
feature and task generality to the dedicated problem
of disagreements.

Machine learning models are trained by taking
the penalties for misclassifications into account.
A loss function is applied to map the distance be-
tween the current output and the ground truth. Each
training instance could possibly affect the predic-
tion result (Plank et al., 2014). Introducing in-
stance weights to cost-sensitive classifiers is a pop-
ular solution. It intends to increase or decrease
the weights of some instances in NLP tasks to en-
rich the model performance (Geibel and Wysotzki,
2003; Higashiyama et al., 2013; Plank et al., 2014;
Alonso et al., 2015). Incorporating the annotator
ranking scores, we propose AnnoHard to tackle the
annotator’s agreement with the aggregative labels
and AnnoSoft using the cross entropy values and
the probabilities of the aggregative labels over the
annotators.

In this shared task, we are given four datasets for
individual classification tasks in various scenarios:

1https://github.com/summer1278/
SemEval23-11-Diagreements

different languages (i.e., Arabic and English) and
text formats (i.e., short texts and dialogues). We
used only the provided datasets during the prac-
tice and evaluation phases and followed the official
splits. No additional training data was introduced
to boost the performance. The detail of the datasets
can be found in Section 4.

3 Methods

Subjective tasks rely heavily on the annotators’ per-
sonal opinions and their ability to perform a spe-
cific task. We focus on a particular case of a mixed
set of annotators without any pre-knowledge about
the annotator (e.g., background and expertise). In
this case, not all instances share the same set of
annotators. For example, instance #1 is annotated
by annotators 1, 2, and 3; instance #2 is anno-
tated by annotators 2, 3, and 4; and instance #3
is annotated by annotators 3, 6, 7, and 8 etc. For
simplicity, we represent each instance using the
term frequency-inverse document frequency (TF-
IDF) or pre-trained word embeddings. The detail
of the features we selected for the experiments can
be found in Section 4.3. To incorporate the per-
formance of the different sets of annotators, the
first step is to compute each annotator’s ranking
score on a specific task (Section 3.1). Second, we
combine the ranking scores of all annotators work-
ing on the same training instance. Then, we adjust
the training instance weights by the sum of the
annotator ranking scores (Section 3.2).

3.1 Annotator Ranking Scores

Considering a classification problem, we define
the problem as f(x) with an input x to predict
a label y. Given a dataset with n instances
D = {d1, d2, ..., dn}, assume that we have m
annotators hired for working on this task A =
{A1, A2, ..., Am}. For each instance d, a set of
h annotators Ad is assigned to label the instance
where Ad ⊆ A, h ∈ [2,m] and ¬∀Ad ̸= A′

d.
During the annotation process, a set of labels
Lhard = {l1, l2, ..., ln} is provided by aggregat-
ing the labels of the majority, and these labels are
referred to as hard labels. The probabilities of each
class being agreed by the h annotators are referred
to as soft labels. For example, if we have a clas-
sification task to predict a class either 0 or 1, 3
out of 5 annotators voted 0 and 2 out of 5 annota-
tors voted 1, then the hard label is 1, and the soft
label is [0.6, 0.4]. To incorporate the agreements
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among the annotators, two functions are proposed
to compute the rank of the annotators on a task
based on the hard and soft labels. The majority of
agreements among the annotators on the instances
drive hard labels. Assuming we trust the majority, a
straightforward way to compute the annotator rank-
ing score is to compare their agreement with the
majority. We refer to the ratio of matching majority
agreements as AnnoHard α,

α =
Nmatch

Np
, (1)

where Nmatch is the number of the annotator’s la-
bel matches to the hard label, and Np is the number
of instances the annotator participates in.

In contrast, soft labels P are driven by the proba-
bilities of obtaining a certain class for this instance.
Using binary classification as an example for its
simplicity, AnnoSoft β is defined by,

β =

∑
Nmatch

max(P+, P−)

Nmatch
, (2)

where P+ is the probability of getting a positive
label among the annotators, and P− is the probabil-
ity of getting a negative label among the annotators
when an annotator’s label matches the hard label.
As mentioned, Eq. 3.1 is based on the assump-
tion of binary classification, and it can be further
extended to P1, P2...Pz for z-class classification.
The idea behind this function is to map the level
of the majority who agreed to the reliability of the
annotator. Therefore, this function gives a higher
score when the annotator agrees with a label with
more other annotators.

3.2 Instance Weighting
In supervised learning, instance weights ensure
that each observation is given a weight to reflect its
importance to the training. Following the studies
in cost-sensitive classification (Plank et al., 2014;
Alonso et al., 2015), we update the weight of the
instance C using the sum of the ranking scores of
the participating annotators for each instance. For
example, to solve the primary problem of the Sup-
port Vector Machine (SVM) (Solon et al., 2015),
the cost-sensitive loss function is defined by,

min
w,b,ζ

1

2
wTw + C

n∑

i=1

ζi, (3)

where C is a cost variable. In this particular case,
C is computed by the sum of AnnoHard

∑h
j=1 αj

Table 1: Data splits in Le-Wi-Di dataset. #train and
#dev denotes the number of training and development
instances, respectively.

dataset #train #dev

ArMIS 657 141
ConvAbuse 2398 812
HS-Brexit 784 168
MD-Agreement 6592 1104

or AnnoSoft
∑h

j=1 βj for each instance. It can also
be applied to other cost-sensitive classifiers such as
Random Forest and Multi-layer Perceptron (MLP).

4 Experiments

The system was developed using the Le-Wi-
Di dataset (Leonardellli et al., 2023), which in-
cludes 4 sub datasets: ArMIS (Almanea and
Poesio, 2022), ConvAbuse (Cercas Curry et al.,
2021), HS-Brexit (Akhtar et al., 2021) and MD-
Agreement (Leonardelli et al., 2021). The statistics
of the train or development split for each dataset
can be found in Table 1. Individual models were
trained on each dataset. The same feature selection
and training strategies were applied to all datasets.
In this section, we state the details of the evaluation
metrics (Section 4.1), preprocessing (Section 4.2),
document representation and training strategy (Sec-
tion 4.3), and performance evaluation (Section 4.4).
We conducted a series of experiments during the
practice phase for the training step.

4.1 Evaluation Metrics
Following the description of the task, we use two
measures to evaluate the performance of the devel-
oped system. Micro F1 score F1 is used to evaluate
the performance on hard labels using the number of
True Positives (TP), False Positives (FP) and False
Negatives (FN):

F1 =
TP

TP + 1
2 · (FP + FN)

(4)

A model with a higher F1 indicates better perfor-
mance on hard evaluation. Rather than the hard
evaluation, we evaluate the model’s performance
on soft labels using cross entropy H computed by
the predicted probabilities of each label y∗ and the
expected target label y,

H = −
N∑

i=1

1

N
y log(y∗), (5)
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where N is the number of test instances. A model
that performs well on soft evaluation obtains a
lower H .

4.2 Preprocessing

Three datasets (ArMIS, HS-Brexit and MD-
Agreement) were collected from social media plat-
forms. Hence, we removed HTML markups, URLs,
hashtags, @names, punctuation, non-ASCII digits
and extra white spaces. For all datasets, we used
NLTK Toolkit2 to stem, tokenize the instances into
words and convert them into bi-grams. To develop
a method with generality in the task settings, we
did not consider any extra information about the
annotators or the datasets.

4.3 Training

Pre-trained word embeddings have shown promis-
ing performance on several classification tasks. We
use the Smoothed Inversed Frequency (SIF) (Arora
et al., 2017) to present each instance by the
weighted average of the word embeddings. We
used TF-IDF (tfidf) computed by 3,000 most fre-
quently occurring bi-grams as a baseline and com-
pared the results with a collection of pre-trained
word embeddings: FastText trained on Common
Crawl3 and Wikipedia News Corpus4 (crawl and
news) (Mikolov et al., 2018), Extended Depen-
dency Skipgram (extvec) (Komninos and Man-
andhar, 2016), GloVe (glove) (Pennington et al.,
2014), Skip-gram (twitter) (Mikolov et al., 2013)
and Turian (turian) (Turian et al., 2010). For the
ArMIS dataset, due to the availability of Arabic
word embedding models, we only compared the
FastText (ar) with TF-IDF. We use the implementa-
tion from flair (Akbik et al., 2019).

We conduct a comprehensive study on 56 pos-
sible feature and algorithm combinations on each
sub-task to find the best combination. We randomly
select 70% for training and 30% for validation
from the given train split. We validate the clas-
sification model using various learning algorithms:
Bernoulli Naïve Bayes (BernoulliNB), Gaussian
Naïve Bayes (GaussianNB), Multi-layer Percep-
tron (MLP), Logistic Regression (LR), Random
Forest (RF), Extra Trees, Linear Support Vector
Machine with Stochastic Gradient Descent (SVM)
and K-Nearest Neighbors (KNN). The hyperpa-

2https://www.nltk.org/
3https://commoncrawl.org/
4https://autonlp.ai/datasets/

wikipedia-news-corpus

Table 2: Top 10 models (feature and learning algorithm)
without instance weighting (baseline) on the ArMIS
dataset by F1 in descending order. b_acc denotes the
class-balanced accuracy and F1 denotes the Micro F1
score. train_dur and test_dur denote the train time and
test time in seconds, respectively.

model (feat-alg) b_acc F1 train_dur test_dur

tfidf-RandomForest 0.6652 0.7121 0.1829 0.0115
tfidf-BernoulliNB 0.6833 0.7020 0.0050 0.0024
tfidf-MLP 0.6686 0.6869 7.8901 0.0025
tfidf-LR 0.6605 0.6818 0.4438 0.0008
tfidf-ExtraTrees 0.6443 0.6717 0.1202 0.0117
tfidf-SVM 0.6462 0.6515 0.0399 0.0018
ar-MLP 0.6306 0.6465 2.3133 0.0006
ar-KNN 0.6211 0.6465 0.0004 0.0392
ar-RandomForest 0.5745 0.6364 0.1835 0.0105
ar-ExtraTrees 0.5726 0.6364 0.0804 0.0108

Table 3: Top 10 models without instance weighting
(baseline) on the MD-Agreement dataset by F1 in de-
scending order.

model (feat-alg) b_acc F1 train_dur test_dur

tfidf-RandomForest 0.6466 0.7695 1.5393 0.0341
tfidf-ExtraTrees 0.6640 0.7685 4.3721 0.0365
crawl-MLP 0.7062 0.7679 34.1913 0.0711
news-MLP 0.6690 0.7679 115.8468 0.0877
twitter-MLP 0.6395 0.7457 25.0194 0.0290
glove-MLP 0.6565 0.7422 21.0911 0.0278
tfidf-LR 0.7069 0.7401 2.0270 0.0110
crawl-RandomForest 0.5702 0.7376 0.6590 0.0197
tfidf-MLP 0.6823 0.7371 75.3164 0.0283
news-RandomForest 0.5647 0.7341 0.6646 0.0197

rameters are tuned by gird search. To reduce the
negative effects of imbalanced datasets, we apply
a simple oversampling technique that replicates
the instances from the minority class using scikit-
learn5.

Using MD-agreement as an example, Table 3
shows the top 10 combinations of features and
learning algorithms by F1. The model using TF-
IDF with Random Forest shows the best perfor-
mance. As a popular traditional learning algorithm,
Random Forest benefits the development from its
simplicity and relatively short time to train or test.
Similar results were also found in all short text
datasets and the methods using annotator rank func-
tions. One exception is the ConvAbuse dataset (see
Appendix Table 9), which contains conversation di-
alogues between two people. Table 9 shows that the
top 8 models use MLP or Random Forest. FastText
with MLP offers slightly better performance than

5https://scikit-learn.org/stable/
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TF-IDF when dealing with conversations. ArMIS
is the only dataset in this shared task that consists
of text from a low-resource language, Arabic. We
found the top 6 models using TF-IDF as the feature
vectors.

4.4 Results using Annotator Ranking Scores

In this section, we report the results using the of-
ficial train split to develop the model and validate
it on the development split. As we consider a sub-
problem of learning with disagreements, we focus
on evaluating the two datasets with mixed sets of
annotators: ConvAbuse (i.e., conversations) and
MD-Agreement (i.e., short texts). Table 4 shows
the evaluation results on the hard (F1) and soft la-
bels (H). In the ConvAbuse dataset, using annota-
tor rank weighting (both AnnoHard and AnnoSoft)
improves model performance on hard labels com-
pared to the baseline method. With AnnoSoft, the
model improves the performance on soft evalua-
tion while AnnoHard shows a performance drop.
AnnoSoft is computed by soft labels, which con-
tain the contributions from the other annotators
on each instance they worked on. In contrast, the
computation of AnnoHard only considers the in-
dividual agreements with the majority labels on
a specific task. This ranking function is indepen-
dent of the distribution of the other annotators. For
example, when some annotators work on a small
number of texts perfectly, they would obtain ex-
tremely high ranking scores using AnnoHard. This
case is undesirable and would cause further prob-
lems of human label variation (Plank, 2022). In the
MD-Agreement dataset, using AnnoSoft improves
the performance on soft and hard evaluation as in
the ConvAbuse dataset. However, we observe the
performance drop using AnnoHard. We suspect
it is caused by the same reason, and short texts
are more sensitive to the introduced costs during
training.

ArMIS and HS-Brexit were labelled by the same
annotators for all instances throughout the dataset,
which is not the main focus of the proposed method.
We find the proposed method suffers from the neg-
ative effects of over-fitting the datasets (see Ap-
pendix Section B).

5 Limitations and Future Directions

Due to the time limitation, this system was devel-
oped using traditional machine learning algorithms
or an MLP. The proposed solution is limited to a

Table 4: Micro F1 Score F1 and Cross Entropy H on
the ConvAbuse and MD-Agreement datasets using An-
noHard α and AnnoSoft β. w/ · denotes a particular
weighting function of the annotators’ rank.

dataset weighting F1 H

ConvAbuse baseline 0.8645 2.8369
w/ α 0.9581 2.9644
w/ β 0.9631 2.7634

MD-Agreement baseline 0.8324 6.5013
w/ α 0.8179 6.6696
w/ β 0.8397 6.4212

specific scenario of multiple annotators’ disagree-
ments: various sets of annotators for labelling each
instance in a dataset. The main contributions are
the proposed heuristic methods to compute the rank
of the annotator driven by the soft and hard labels.

AnnoHard is sensitive to the workload of the an-
notators, as stated in the previous section. It some-
times fails to reflect the annotator’s ability to per-
form a specific task with a light workload. Hence,
it is limited to a sizeable amount of data labelled
by an annotator. An alternative strategy might be
introducing a constraint about the workload of the
annotators to the ranking function. In this case, the
annotators labelling more instances following the
majority would be encouraged, whereas those with
fewer labelled instances would be downgraded.

On the other hand, model training was carried
out using hard labels, introducing a variable of
the sum of the annotator ranking scores for each
instance. The feature and algorithm selection was
based on the hard labels as well. We could train
the model and select the best candidate from these
combinations using the soft labels.

Given these limitations in the proposed method,
we hope to encourage the community to explore
further the idea of using the interpretability linking
to the heuristics.

6 Conclusions

In this paper, we proposed two heuristic functions
to compute the annotator ranking scores. We used
cost-sensitive learning algorithms and introduced
a cost variable for each instance into the training
step. The variable is computed by the sum of the
ranking scores of the participating annotators for
each instance. We discussed the advantages of us-
ing Random Forest as the learning algorithm for
the short text datasets and the limitations of the
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proposed methods. Compared to a typical classi-
fier, we observed slight improvements in the soft
and hard evaluation with the proposed function
AnnoSoft.
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A Discussion on Feature Selection and
Learning Algorithms

We present the top 10 models on the MD-
agreement dataset with AnnoHard and AnnoSoft
in Tables 5 and 6, respectively. We find that both
methods show the best performance on hard labels
using TF-IDF with Random Forest, which followed
the results without using instance weighting. Extra
Trees performs closely to Random Forest, due to
its complexity, it spends more than twice of train
time using Random Forest.

Furthermore, we present the results on the MD-
agreement (Table 8) and ConvAbuse (Table 9)
datasets using all 56 possible combinations of fea-
tures and algorithms. We observe Random Forest,
Extra Trees and MLP perform consistently well
in all given datasets. Tree-based classifiers (i.e.,
Random Forest and Extra Trees) use a series of
conditional statements to partition the train set into
subsets. Then, the successive branches contribute
to the model training. These classifiers are par-
ticularly good at handling complex relationships
among features. Whereas a Naïve Bayes (NB) clas-
sifier (either GaussianNB or BernoulliNB) uses
the Bayes’ Theorem (Lindley, 1958) and assumes
all extracted features are independent. The words
in subjective tasks are typically dependent on sur-
rounding words and sentences (i.e., context). It
explains the worse performance using an NB clas-
sifier for these tasks.

Table 5: Top 10 models with AnnoHard on the MD-
Agreement dataset by F1 in descending order.

model (feat-alg) b_acc F1 train_dur test_dur

tfidf-RandomForest 0.6469 0.7685 1.7174 0.0340
tfidf-ExtraTrees 0.6645 0.7685 4.5001 0.0486
crawl-RandomForest 0.5783 0.7422 0.5965 0.0174
tfidf-LR 0.7080 0.7396 1.4833 0.0046
news-RandomForest 0.5639 0.7336 0.6018 0.0168
crawl-LR 0.7098 0.7290 0.4116 0.0013
twitter-RandomForest 0.5575 0.7280 0.4226 0.0160
crawl-ExtraTrees 0.5459 0.7275 0.1774 0.0186
glove-RandomForest 0.5556 0.7240 0.4052 0.0162
extvec-RandomForest 0.5508 0.7235 0.6101 0.0163

B Evaluation on the ArMIS and
HS-Brexit Datasets

In this section, we discuss the results of hard
and soft evaluations on the ArMIS and HS-Brexit
datasets. These two datasets have the same set of
annotators (i.e., 3 and 6 annotators) for all instances
within them. Similar to the other two datasets, we

Table 6: Top 10 models with AnnoSoft on the MD-
Agreement dataset by F1 in descending order.

model (feat-alg) b_acc F1 train_dur test_dur

tfidf-RandomForest 0.6517 0.7725 1.6401 0.0362
tfidf-ExtraTrees 0.6618 0.7674 4.5740 0.0397
tfidf-LR 0.7093 0.7422 1.1357 0.0049
crawl-RandomForest 0.5722 0.7391 0.6181 0.0172
news-RandomForest 0.5664 0.7351 0.5920 0.0165
twitter-RandomForest 0.5628 0.7300 0.4342 0.0174
crawl-LR 0.7094 0.7285 0.6852 0.0030
glove-RandomForest 0.5572 0.7235 0.4114 0.0164
extvec-RandomForest 0.5493 0.7235 0.6398 0.0182
news-ExtraTrees 0.5336 0.7199 0.1825 0.0169

applied the weights by computing the two proposed
annotator rank functions. Given that the weights
were not normalised, we increased the scale of
weights for the instances. For example, in the
ArMIS dataset, the weights of instances in the base-
line method are [1, 1, 1, ..., 1]. However, they
have increased to [2.66, 2.66,...,2.66] and [2.75,
2.75,...,2.75] with α and β, respectively. In Table 7,
we observe a performance drop in hard and soft
scores using both functions. The developed mod-
els apparently suffer from the over-fitting problem.
They are not suitable to be used in this scenario.

Table 7: Micro F1 Score F1 and Cross Entropy H on
the ArMIS and HS-Brexit datasets using AnnoHard α
and AnnoSoft β.

dataset weighting F1 H

ArMIS baseline 0.7376 8.3240
w/ α 0.6454 7.5047
w/ β 0.7234 8.3239

HS-Brexit baseline 0.9464 1.9735
w/ α 0.9702 0.6167
w/ β 0.9702 0.6167
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Table 8: 56 tested combinations on the MD-Agreement
dataset by F1 in descending order.

model (feat-alg) b_acc F1 train_dur test_dur

tfidf-RandomForest 0.6466 0.7695 1.5393 0.0341
tfidf-ExtraTrees 0.6640 0.7685 4.3721 0.0365
crawl-MLP 0.7062 0.7679 34.1913 0.0711
news-MLP 0.6690 0.7679 115.8468 0.0877
twitter-MLP 0.6395 0.7457 25.0194 0.0290
glove-MLP 0.6565 0.7422 21.0911 0.0278
tfidf-LR 0.7069 0.7401 2.0270 0.0110
crawl-RandomForest 0.5702 0.7376 0.6590 0.0197
tfidf-MLP 0.6823 0.7371 75.3164 0.0283
news-RandomForest 0.5647 0.7341 0.6646 0.0197
extvec-MLP 0.6898 0.7326 38.9783 0.0822
crawl-LR 0.7115 0.7300 0.6917 0.0014
crawl-ExtraTrees 0.5502 0.7295 0.2084 0.0197
crawl-SVM 0.6455 0.7260 0.2245 0.0025
twitter-RandomForest 0.5567 0.7255 0.4611 0.0189
twitter-ExtraTrees 0.5392 0.7230 0.1689 0.0191
glove-RandomForest 0.5551 0.7219 0.4494 0.0196
extvec-RandomForest 0.5469 0.7214 0.6960 0.0192
news-ExtraTrees 0.5357 0.7214 0.2081 0.0194
news-LR 0.7082 0.7179 0.5862 0.0016
glove-ExtraTrees 0.5371 0.7179 0.1725 0.0189
tfidf-SVM 0.6129 0.7159 1.2825 0.0205
extvec-ExtraTrees 0.5239 0.7139 0.2067 0.0203
tfidf-BernoulliNB 0.6498 0.7128 0.0556 0.0295
tfidf-KNN 0.5232 0.7053 0.0072 0.4995
turian-RandomForest 0.5149 0.7032 0.3720 0.0197
turian-ExtraTrees 0.5052 0.7027 0.1559 0.0188
twitter-LR 0.6853 0.7022 0.7568 0.0006
extvec-SVM 0.6312 0.7017 0.3005 0.0026
crawl-BernoulliNB 0.6784 0.6946 0.0156 0.0085
extvec-LR 0.6879 0.6941 0.7202 0.0012
turian-MLP 0.5475 0.6886 40.8466 0.0193
turian-BernoulliNB 0.5410 0.6815 0.0031 0.0014
glove-SVM 0.6046 0.6795 0.0887 0.0090
news-SVM 0.5867 0.6749 0.3059 0.0028
glove-LR 0.6576 0.6653 0.7752 0.0013
news-BernoulliNB 0.6541 0.6653 0.0153 0.0085
twitter-BernoulliNB 0.6038 0.6633 0.0053 0.0027
crawl-KNN 0.5964 0.6557 0.0017 0.2758
news-KNN 0.5965 0.6517 0.0017 0.3063
glove-BernoulliNB 0.6053 0.6441 0.0090 0.0032
twitter-KNN 0.5782 0.6431 0.0010 0.2504
extvec-KNN 0.5882 0.6421 0.0012 0.2951
turian-SVM 0.5393 0.6365 0.0619 0.0007
glove-KNN 0.5635 0.6314 0.0010 0.2676
twitter-SVM 0.5284 0.6309 0.1056 0.0010
extvec-BernoulliNB 0.6254 0.6168 0.0143 0.0074
turian-KNN 0.5316 0.6148 0.0009 0.2168
twitter-GaussianNB 0.6343 0.5956 0.0025 0.0012
turian-LR 0.5844 0.5839 0.4493 0.0005
glove-GaussianNB 0.6210 0.5768 0.0026 0.0012
news-GaussianNB 0.6317 0.5748 0.0055 0.0036
crawl-GaussianNB 0.6278 0.5693 0.0056 0.0031
extvec-GaussianNB 0.6147 0.5536 0.0061 0.0039
turian-GaussianNB 0.5896 0.5293 0.0018 0.0007
tfidf-GaussianNB 0.5632 0.5061 0.0984 0.0424

Table 9: 56 tested combinations on the ConvAbuse
dataset by F1 in descending order.

model (feat-alg) b_acc F1 train_dur test_dur

crawl-MLP 0.7427 0.8806 35.2578 0.0328
tfidf-MLP 0.7246 0.8792 38.1889 0.0106
twitter-MLP 0.6748 0.8764 8.9885 0.0110
news-MLP 0.7600 0.8750 39.5826 0.0323
glove-MLP 0.6672 0.8694 1.4798 0.0009
crawl-RandomForest 0.6078 0.8681 0.2526 0.0160
extvec-MLP 0.7413 0.8667 36.4785 0.0322
news-RandomForest 0.6035 0.8667 0.2522 0.0164
tfidf-SVM 0.6570 0.8639 0.1506 0.0064
tfidf-RandomForest 0.6114 0.8625 0.2348 0.0182
tfidf-LR 0.7957 0.8597 0.8683 0.0028
glove-RandomForest 0.5744 0.8583 0.2137 0.0136
crawl-ExtraTrees 0.5702 0.8569 0.1070 0.0151
news-ExtraTrees 0.5659 0.8556 0.1098 0.0151
glove-ExtraTrees 0.5616 0.8542 0.0932 0.0127
tfidf-ExtraTrees 0.6021 0.8528 0.2886 0.0199
twitter-RandomForest 0.5573 0.8528 0.2087 0.0134
twitter-ExtraTrees 0.5505 0.8528 0.0931 0.0141
extvec-RandomForest 0.5531 0.8514 0.2539 0.0161
extvec-ExtraTrees 0.5462 0.8514 0.1098 0.0149
news-SVM 0.7159 0.8472 0.0632 0.0010
glove-SVM 0.6160 0.8472 0.0257 0.0005
twitter-SVM 0.6901 0.8444 0.0168 0.0050
extvec-KNN 0.6213 0.8444 0.0007 0.0759
crawl-LR 0.8297 0.8417 0.4708 0.0005
turian-RandomForest 0.5197 0.8417 0.2110 0.0145
crawl-SVM 0.7006 0.8389 0.0488 0.0011
turian-ExtraTrees 0.5077 0.8389 0.0953 0.0140
extvec-SVM 0.7342 0.8375 0.0815 0.0010
glove-KNN 0.5991 0.8361 0.0005 0.0638
news-KNN 0.5991 0.8361 0.0007 0.0753
turian-MLP 0.5198 0.8361 5.3387 0.0063
turian-BernoulliNB 0.4983 0.8347 0.0012 0.0003
tfidf-KNN 0.5595 0.8333 0.0028 0.1304
crawl-KNN 0.5985 0.8236 0.0007 0.0829
twitter-KNN 0.5985 0.8236 0.0005 0.0682
glove-BernoulliNB 0.5537 0.8236 0.0017 0.0008
twitter-BernoulliNB 0.6012 0.8167 0.0018 0.0008
twitter-LR 0.8166 0.8139 0.5157 0.0005
turian-SVM 0.5669 0.8111 0.0091 0.0003
extvec-LR 0.8022 0.8014 0.4472 0.0005
extvec-BernoulliNB 0.6980 0.8000 0.0042 0.0023
turian-KNN 0.5698 0.7986 0.0004 0.0707
glove-LR 0.8153 0.7944 0.2059 0.0003
news-LR 0.7888 0.7847 0.4394 0.0006
tfidf-GaussianNB 0.6118 0.7306 0.0350 0.0128
crawl-BernoulliNB 0.7428 0.7250 0.0049 0.0027
news-BernoulliNB 0.7242 0.7111 0.0048 0.0026
turian-GaussianNB 0.6270 0.6694 0.0010 0.0003
news-GaussianNB 0.7301 0.6403 0.0022 0.0011
turian-LR 0.6458 0.6375 0.3148 0.0002
crawl-GaussianNB 0.7329 0.6333 0.0022 0.0011
tfidf-BernoulliNB 0.7019 0.5931 0.0210 0.0096
glove-GaussianNB 0.6588 0.5611 0.0012 0.0005
extvec-GaussianNB 0.6693 0.5500 0.0021 0.0011
twitter-GaussianNB 0.6871 0.5278 0.0012 0.0005
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