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Abstract | If fingers and fiber elements make textiles through gestural hand movements and 

spatial techniques, and lines, space, and movement create geometry, then can making textiles 

be a form of mathematical understanding? This article considers this question through the 

studio research of the Forces in Translation (FiT) project, which explores the links between 

basketry and spatial and geometric cognition. Taking an anthropological approach to learning, 

the group has conducted research through studio trials, allowing understandings and insights 

to emerge through examining how specific basketry practices and techniques converge with 

mathematical and spatial forms of inquiry. This approach neither puts basketry (as an arts 

subject) at the service of mathematics, nor uses mathematics (as an abstraction of everyday 

forms and structures) as inspiration for making baskets. Instead, the project approaches the 

two disciplines by conducting them together in a nonhierarchical way. 

1 Parsons and Hughes 2022. 

2 Rossbach 1973; Rossbach 1976. 

3 Constantine and Larsen 1972. 

4 Emery 1966.

5 Arnold 2015. 

The article discusses, firstly, how basketry is a form of textile. Secondly, FiT’s approach 

to textiles and mathematics is expanded upon, along with its context within these disciplines. 

Finally, the dynamic between craft and textiles as forms of geometric cognition is discussed 

in relation to case studies from the FiT project, illustrating how a hands-on approach—a 

material, tactile, mathematical approach—can be of great significance for the development 

of creative geometric and spatial cognition. As the product of ethnographic research through 

studio trials, this article inevitably takes a reflexive approach to participants’ experience. In order 

to understand and share new and old expertise, there is also an auto-ethnographic element. 

Hence, participants’ reflections on the process will be cited.

There will always be a place for the handwork… 

Not as a sentimental relic…or as an escape from  

the present…but as a genuine factor in a fully  

contemporary life. 

 Alistair Morton, 19441

Basketry, the Textile 
Readers may already agree that basketry is a form of 

textile. Ed Rossbach’s The New Basketry of the 1970s 

did a great deal to show how basketry can be consid-

ered as a constructed textile or a form of textile art.2 

Even before this, weavers from the Bauhaus, artists 

such as Mariska Karasz, and tapestry weavers such 

as Lenore Tawney drew upon basketry’s common 

practices with twining, tatting, and looping to create 

beautiful textile forms.3 Irene Emery might have pre-

ferred the more etymologically precise term ”fabric” 

to be used, since the derivation of the European 

term ”textile” is from the Latin texere “to weave,” and 

basketry includes a range of techniques from twining, 

folding, and looping to plaiting.4 However, as Denise 

Arnold argues, to define world textile practices in 

terms of the Indo-European language group is both 

Eurocentric and restrictive.5 The Textile Museum 
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itself houses diverse nonwoven textiles, from felt and 

bark cloth to lace and patchwork, and following this 

more open approach, this article considers basketry 

among these textile forms (fig. 1). 

Across the world, regional basketry forms such as 

cycloid looped and twilled containers from Kalimantan 

in Borneo, twined baskets from the American 

Northwest Coast, or Indian kottan work—all of which 

may use diverse techniques in one basket—reveal 

significant overlap with other textile skills.6 Basketry’s 

deep history also reflects this convergence with 

many textile practices. As a form of interlacing or 

intertwining created without a loom, basketry may 

well have preceded practices such as loom weaving, 

nålbinding (knotless knitting), or tatting. Plant-fiber 

mat making would likely have encompassed both. 

Indeed, it is most likely that these interlacing prac-

tices developed through curiosity, experimentation, 

and play with diverse textile fibers and techniques, 

but put to different uses in different contexts in the 

past. Multiple historical examples, from the Danish 

Egtved girl’s string skirt (1370 bce),7 to the recent 

discoveries of the 10,500-year-old basket in the 

Qumran cave,8 to textile fragments from sites such as 

6 Bléhaut 1994; Farrand 1900. 

7 Barber 1994. 

8 Holmes 2021. 

9 Mellaart 1966. 

10 Mason 1895. 

Çatal Hüyük,9 all suggest a crossing over of basketry 

with other textile skills. 

Characteristic features of baskets include the 

use of techniques that employ tension or friction to 

hold the basket’s structure together. Such techniques 

are often common to other textile forms. Basketry 

materials are almost always plant based. In contrast 

with many other textiles, however, baskets are often 

semirigid in structure rather than soft and they are 

also three dimensional. One further characteristic 

of basketry, as claimed by Otis Mason more than 

a century ago, is that baskets cannot be made by 

machine.10 Indeed, even in the digital age, this is still 

the case. This is partly due to basketry’s three-di-

mensional form and because basket making is an 

emergent process, whereby the structure of the 

basket creates its own weaving frame as it develops. 

This, together with the use of plant fibers, which are 

often short, irregular, and varied, makes it particu-

larly difficult to develop an algorithm with which to 

develop a machine-made basket. It may be possible 

to reproduce a basket on a 3D printer, but this will 

not hold together using the same forces as created 

by the interlacing used in a basket. 

fig. 1  

Cycloid looped baskets from 

Kalimantan. Collection of J. 

Gathorne-Hardy. Photography 

by Stephanie Bunn.
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Research through Experience
The Forces in Translation (FiT) research project set 

out to explore how the manual dexterity used in 

textile-making practices such as basketry provide an 

embodied resonance with mathematical practices, 

especially geometric learning and spatial under-

standing. The project team wanted to discover how 

using hand skills may enable mathematical intuitions 

to emerge, leading to understanding, which is some-

thing often considered to take place exclusively in 

the mind. Given the continued phasing out of hand 

skills in contemporary education, along with the 

increasing amount of digitization in education, this 

11 Friedman 2018. 

12 Dewey 1934; Dewey 1997. 

13 Lipka et al. 2015. 

14 Harris 1997. 

approach is very timely. It is important to maintain 

diverse and flexible pathways to developing human 

cognition. This has become even more relevant, 

since more learning moved online as a result of 

the COVID-19 pandemic. 

Initial public responses to the FiT project sug-

gested that a connection between mathematics and 

basketry either seemed improbable or, alternatively, 

very appropriate. While the group considers there to 

be multiple convergences of practice, nevertheless, 

many learners may consider math to be somehow 

a more perfect, imperceptible, and sometimes inac-

cessible expression of the world. People experience 

their daily lives as if there is an everyday world and 

a mathematical one behind it, with most bodily skills, 

from basketry to dance to building, viewed separate 

from mathematics. 

The FiT approach parallels the work of the nine-

teenth-century German educationalist, Friedrich 

Fröbel,11 American philosopher John Dewey,12 ethno-

mathematician Jerry Lipka,13 and that of British edu-

cationalist Mary Harris who developed the Common 

Threads project in the late twentieth century.14

Fröbel’s aim was to give young learners a range of 

“gifts,” which enabled them to discover mathematical 

patterns and rules through playing with materials 

and three-dimensional forms. These gifts included 

paper weaving and paper folding. For example, he 

showed how a rough-edged, irregular piece of paper 

could be folded quite simply and exactly to create a 

perfect square (fig. 2). From this, he showed how by 

folding the square lengthways, a rectangle could be 

formed that was half of the square. He then showed 

how the same square could also be folded diagonally 

to create a triangle. Since the square could be folded 

in half, both horizontally and diagonally, he was ef-

fectively illustrating that both shapes—the rectangle 

and the triangle that he had created—were half of 

the square. and had the same area (fig. 2). One of 

his conclusions was that this practical activity shows 

that a “half is the same as a half.” In other words, he 

fig. 2  

Folding an irregular piece of 

paper or fabric into a square, 

after Fröbel. Drawings by 

Stephanie Bunn.
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illustrated that abstract mathematical notions such 

as “a half” could be applied in different contexts.15 

Furthermore, through folding, a person can develop 

a practical, valid intuition of equivalences. This also 

illustrates how mathematical forms can be transformed 

through dexterous manipulation and new mathematical 

ideas developed. The haptic folding activities enable 

a mathematical truth to be experienced visually, and 

the notion of a half to be abstracted without any need 

for counting.16

Lipka’s work with Yup’ik elders at the University of 

Alaska Fairbanks shows some parallels with Fröbel’s 

approach. In this case, symmetries were developed 

and equivalences measured by centering the crossed 

index fingers as “the beginning of everything.”17 The 

crossed fingers signify an “embodied abstraction,” 

which is the starting point for many practical activ-

ities. This could again be illustrated through folding 

irregular materials to make clothing or patterns, thus 

establishing a line of symmetry. For example, similar 

techniques could be used for everything from star 

navigation to making snow shoes. In this Yup’ik 

“culturally preferred way of perceiving,” everything 

has a center. This illustrates how scale, proportion, 

and balance are practiced in many everyday activities, 

not just among Indigenous peoples, but by many 

practitioners of hand skills worldwide.18

Mary Harris’s Common Threads project focused 

on how making cloth and weaving baskets has been 

women’s work for millennia, and yet the mathematical 

expertise in these practices has been rarely acknowl-

edged or given the status that has been given to 

formal mathematics.19 Woven, braided, and knotted 

textiles entail systematic thought, tallying, counting, 

and an understanding of geometric patterning and 

spatial relationships. The Common Threads exhibition 

toured internationally for six years, providing educa-

tional experience through the mathematical context 

15 Cited by Friedman 2018, p. 6.

16 Friedman 2018, p. 7. 

17 Lipka et al. 2015, p. 5. 

18 Ibid. 

19 Harris 1997. 

20 Dewey 1997, p. 39. 

21 Dewey 1997, pp. 205-7.   

22 Malinowski 1987. 

of practicing textile techniques and access to multiple 

examples from embroidery to twill basketwork.

All these thinkers have argued for the value of 

haptic experience in learning mathematics. In this 

sense, they are in accord with the American pragma-

tist John Dewey, who argues that education requires 

interaction with others and with the environment 

beyond the body. “Experience does not simply go on 

inside a person,” says Dewey.20 For a “real experience,” 

such as that which constitutes learning a skill, there 

is unity; each experience is marked by a quality, an 

emotion, a sense of purpose and care, a doing or 

a making, and a rhythm, much more than a simple 

train of ideas or logical sequence. This is because 

experience is “integral.”21 In other words, experience 

is a whole, a consummation, and it cannot be broken 

into constituents at the time of action. This can apply 

equally to learning a practical skill or developing a 

mathematical intuition.

Alongside experience and practice, for the FiT 

group, the anthropological investigative process 

is an important aspect of how people learn. That 

investigative process is qualitative and open, a kind of 

anthropological intuition that follows a Malinowskian 

“foreshadowed problem.”22 In this regard, anthro-

pology, like art, provides a particular approach to 

learning, which is emergent and follows experience. 

Anthropologists are not hard scientists; they do not 

conduct repeated, quantifiable, testable studies that 

are more associated with mathematical research. 

They do not try to prove things, although they are 

interested in patterns of life. Through participant 

observation, anthropologists take part in what goes 

on, learn through doing, and try to observe everyone 

in action together. 

This brings a qualitative, practical, and material 

approach to mathematical practices. The anthro-

pological approach is important, because while 
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mathematics may appear to be about abstract rules 

and patterns, it is also social and cultural—dealing 

with skill and memory, aesthetics, and feelings of 

enthusiasm and ignorance—and thus has a qualita-

tive experience, even when dealing with abstraction 

and numbers. 

Anthropology, Ethnomathematics, 
and Textiles
There is a history of anthropologists and 

ethnomathematicians working with textiles. 

Ethnomathematicians working in the Andes, such 

as Marcia Ascher, Carol Mackey and Gary Urton, 

have studied khipus—knotted, spun cords used 

by the Inca for counting and reckoning before and 

after the Spanish conquest of South America in 

1532; khipus are still in use in the Andes today.23 In 

Africa, Paulus Gerdes worked with basket makers 

in Mozambique, exploring the geometric knowledge 

in regional basketry practices,24 while Helen Verran 

worked with Yoruba children in a Nigerian primary 

school, revealing how Yoruba mathematics is not 

absolute, but relational.25 In the Pacific, Deacon 

and Westwood studied the mathematical potential 

of sand drawings in Vanuatu in 1934,26 while more 

recently Dinah Eastop, Robyn McKenzie, and Eric 

Vandendriessche all revealed different perspectives 

on Australian and New Guinean string figures.27 

All these studies indicate that people do multiple 

forms of mathematics during their daily activities, 

which until recently have included all manner of 

textile work. They count, calculate, measure, problem 

solve, and work out proportion, often in conjunction 

with singing, storytelling, communicating about family 

and kinship, and manipulating diverse forms of natural 

materials. Many ethnomathematical studies involve 

textiles, which themselves are made without using 

formal mathematical methods such as geometry, 

23 Ascher and Ascher 1981; Ascher and Ascher 1986; Urton 1997. For contemporary use, see Mackey 2002.  

24 Gerdes 1999; Gerdes 2010. 

25 Verran 2001. 

26 Deacon and Westwood 1934. 

27 Eastop 2007; McKenzie 2011; Vandendriessche 2014. 

28 Marchand 2018, p. 303. 

29 Mimica 1988; Verran 2001. 

30 Marchand 2018. 

algebra, or probability theories. In this regard, their 

work all reflects Trevor Marchand’s argument that 

“bodily practices generate distinct kinds of mathemat-

ical sensibilities that enable people to fluidly work 

things out and to problem solve in the flow of work, 

play, and everyday activity.”28

Several critiques have been levelled at ethno-

mathematics. A common one is that the focus in 

ethnomathematics is almost always on numbers 

and counting, which is often set up as concrete in 

contrast to Western abstraction. That is, people who 

practice these skills are viewed as not doing abstract 

calculations as numbers are always in relation to 

objects, a view which has been most prominently 

refuted by Jadrun Mimica and subsequently also by 

Helen Verran.29

A second, linked critique by Marchand is that 

ethnomathematics almost always references back 

to a Western notion of formal mathematics as the 

ultimate abstract and universal form in which all 

mathematics is considered to be grounded.30 In other 

words, the suggestion is that there is only one “real” 

mathematics. It is common to consider this as the 

mathematics that underlies measurable and spatial 

experiences in people’s daily work. This is sometimes 

linked to the way that many ethnomathematicians, 

such as Lipka, Gerdes, and Verran, have used diverse 

cultural mathematical practices for education in the 

regions where they work.

These are somewhat imprecise critiques, in that 

ethnomathematicians, such as those mentioned 

above, often make it very clear that there are other 

forms of, or perspectives on, mathematics distinct 

from Western forms, and that there is great value in 

learning from them. Indeed, they frequently critique 

the assumption that Western mathematics is the “one 

true math.” Lipka, for example, describes how Yup’ik 

measuring takes place in a “nonnumeric environment,” 
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relating more to comparison of quantities and ra-

tios.31 Perhaps because of this diversity, however, 

ethnomathematicians may use their background in 

Western mathematics to unpick what in the others’ 

practices counts as mathematical. In this way, they 

may rely on the canons of Western mathematics to 

“see” mathematics happening elsewhere. But, as 

Helen Verran says, such an approach tends to explain 

away difference rather than reveal new perspectives 

and possible significant insights raised by another 

form of mathematics.32 It is important to attend to 

the possibility that, as Marchand says, there may 

be “entirely different forms of mathematics that may 

not in any way resemble academic mathematics.”33

More theoretical anthropologists have drawn on 

mathematical systems to provide insights to social 

practices such as kinship, myth, and cosmology. 

These include Claude Lévi-Strauss, Jadran Mimica, 

and Susanne Kuchler. Lévi-Strauss’s structural an-

thropology could be characterized as mathematical, 

in that he argued that the human mind exhibits cer-

tain universal characteristics, drawing comparisons 

between how the human mind works and the way a 

computer processing system might work.34 But he 

was really applying theories from structural linguis-

tics and linguistic coding, rather than mathematical 

theories, to anthropological concerns such as kinship 

systems, myth, and art. 

Jadran Mimica took a more phenomenological, 

embodied approach to Iqwaye counting systems in 

Papua New Guinea.35 Exploring how the Iqwaye 

use the body, such as fingers and toes, to count, he 

argued that this is not because they lack the capacity 

for abstraction. Rather, he suggests that their number 

system reflects the parallels they perceive between 

human identity and the body, and the world and the 

cosmos at large.36

31 Lipka et al. 2015, p. 2. 

32 Verran 2001. 

33 Marchand 2018. 

34 See for example Lévi-Strauss 1966 and Lévi-Strauss 1963. 

35 Mimica 1988.  

36 Mimica 1988, p. 102. 

37 Küchler 2001. 

38 Küchler 2001, p. 5. 

Susanne Küchler’s work has, perhaps, the clear-

est links with textiles. Küchler applies topological 

geometry to knotting on the island of New Ireland 

in Papua New Guinea, and to binding across the 

Pacific region in general, in relation to kinship and 

ritual.37 She uses this to analyze a New Ireland ma-

langgan ceremony, in which malanggan carvings, 

hollowed out wooden knot-like forms, are destroyed 

following memorial rituals, acting to release the 

souls of the deceased. Küchler draws upon knot 

theory, an important branch of topology, because 

knots “both embody mathematical principles and 

have at the same time a tendency to evoke a range 

of emotional and personal sorts of thoughts.” Knots 

can “externalize non-spatial problems in a distinctly 

spatial manner,” all the more so because topologically 

the space between the knotted surfaces is of equal 

interest to the knot itself.38 For Küchler, however, 

topology is more a theoretical model than a concern 

with mathematical practice.

Interdisciplinarity in Mathematics 
and Textile Research
For the FiT group, interdisciplinary research is not 

a study of basketry and mathematical practitioners, 

nor does it consider that the different disciplines are 

part of a hierarchy where one is in the service of the 

other. FiT group members explore these concerns 

together. However, interdisciplinary study of mathe-

matics and basketry means that each participant has 

a different specialized knowledge, but also areas of 

ignorance. In investigating questions together, rather 

than one discipline working at the service of the 

other, the FiT group adapted Paul Klee’s approach 

where making and thinking have to go together, 

which he utilized while making art when writing 

his lectures at the Bauhaus. Thus, the FiT group 
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chose specific problems and explored these through 

multiple approaches of practice, discussion, reading, 

talks, and filming.

Sometimes group members with little mathemati-

cal background felt lost in the geometric complexities 

of what the group did; sometimes mathematicians 

found it difficult to grasp the dexterity of more 

complex basketry techniques. One group member, 

basket maker Geraldine Jones, claims never to have 

been good at math as a student. Yet her work is 

inspired by growth patterns in the Fibonacci series 

and hyperbolic forms, revealing that one may have 

mathematical aptitude without translating this into 

formal mathematics. Geraldine Jones’s work has 

shown that basketry techniques such as cycloid 

looping can stand alongside crochet in hyperbolic 

geometry (fig. 3).

A second group member, Mary Crabb, is both a 

textile artist and a STEM ambassador for mathemat-

ics, tutoring in math when she is not leading basketry 

courses. She is able to bridge both disciplines with 

ease. The precision of her notebooks would be the 

envy of many mathematicians. Other members bring 

39 Ingold 2007. 

different experiences, such as material processing, 

contextual cultural knowledge, or educational ex-

pertise, which may appear less directly linked, yet 

are essential for the way group members’ learning 

styles and skills complement each other to build a 

rich practice.

Learning the necessary math sometimes requires 

more information than can be digested over the short 

period of a studio, and subjects have to be revisited 

as homework. For example, the resident mathematical 

educationalist Professor Nemirovsky set exercises 

on mirror symmetry or curvature during sessions on 

looping or lines, the reasons for which came into focus 

several months down the line. This perhaps reflects 

Dewey’s notion of experience, which has to be com-

plete and resolved for it to become embedded. At other 

times, the group members focused on a technique or 

material, only to later learn that techniques overlap 

and materials work differently in each form.

Group members of each discipline also asked 

different questions of the same experience. Makers 

tended to ask how a piece was made and what 

it was made from. Mathematicians tended to re-

flect on what theorem, proof, or form a particular 

structure illustrated.

The case studies below illustrate key themes 

that have arisen again and again during the project. 

Critically, the materiality of basketry construction has 

meant that everything is in three dimensions, even 

when it appears to be flat surfaces or lines. This is 

in contrast to classical Euclidean geometry, where 

diagrams and drawings usually address problems 

through depicting them on a flat plane. Geometric 

marks and lines are usually abstract and not per-

ceived to take up space, acting as “ghost-lines” as 

Tim Ingold describes.39 In contrast, basketry lines, 

as Buckminster Fuller described in relation to his 

built structures, are energy actions that exist in the 

universe. Basket makers’ lines take up space and are 

held together by forces. They may be twisted ropes 

held together through tension, plaited bands held 

together by friction, or handles, edges, and borders. 

Basketry surfaces will also be double layered due to 

fig. 3  

Geraldine Jones, Looped 

Structure. 2021, stainless 

steel wire rope, 153 × 153 cm 

(60 × 60 in). Photography by 

Geraldine Jones.
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the use of weaving, twining, or plaiting techniques, 

which provide a quite different kind of structure 

than, for example, a model generated on a computer 

screen. So, three dimensionality is a core theme of 

the group’s investigations.

Running through every FiT studio has also been 

the notion of different kinds of space and surfaces. 

Classical Euclidean geometry, developed 2000 years 

ago, tends to work best in flat space, but there is 

also spherical space and hyperbolic space, all of 

which can be expressed through basketry. While 

Euclidean geometry provides a way to measure our 

physical, three-dimensional environment in abstract 

terms, aspects of it do not work so well on curved 

surfaces such as spheres or undulating forms. A 

sphere has constant positive curvature, in that at 

any point curves will extend away at a similar angle, 

creating a kind of dome. An undulating, hyperbolic 

form, such as the meeting point between the crown 

and the brim of a woven straw hat, has negative 

curvature because at that point, sideways curves 

from left to right will be convex, while the curve 

down from crown to brim will be concave. Different 

kinds of geometry are needed to work with these 

kinds of space. Gradually, through the different 

studios, questions about these different forms of 

space have been emerging and explored.

Case Study 1:  
Turning a Plait and Skew Cubes
Turning a corner from base to sides in a basket 

means definitively going into three dimensions, so 

corners and curves are very important. The group 

chose to try this in plaiting, a technique of interlacing 

fibers where both elements are active. Although 

plaiting may on occasion look like weaving, it is 

closer to hair braiding than to weaving on a loom 

or to standard British stake-and-strand basketry. 

Stake-and-strand basketry usually employs a strong, 

but fixed, warp; stakes, which are vertical and usually 

considered passive; and interlaced wefts or strands, 

40 Küchler 2001. 

41 Ayres et al. 2018. 

42 Tarnai n.d.; Wood 2007. 

which weave horizontally between the stakes. The 

structure holds together through tension. Willow, a 

filament, is the standard material. Plaited basketry, in 

contrast, uses flat materials such as pandanus, rush, 

or palm, rather than filaments like willow, bamboo, 

or rattan. All the elements are moved during the 

interlacing, and the object is held together by friction 

across the flat surfaces of the material rather than 

by tension. 

Because all strands are active in plaiting, this 

means that plaited basketry can be worked on the 

diagonal rather than just horizontally and vertically 

through its creation, such as with stake-and-strand 

baskets. This makes for an interesting change of 

perspective. Küchler has suggested that living in 

an environment where specific textile-making tech-

niques predominate, such as knotting or twining and 

plaiting or weaving, could parallel or reflect differ-

ent forms of social practices, such as kin relations 

or ritual practices.40 Lipka’s example of centering, 

mentioned above, also suggests this. The FiT group 

members were interested to explore whether this 

possible change in perspective reflected different 

ways of mathematically thinking through technique 

and the bodily gestures involved. 

Plaiting is one area of basketry that mathema-

ticians have explored in great depth, particularly 

computer modelers. However, they tend to treat the 

materials on screen as if they have no substance or 

qualities. Computer modeler Phil Ayres, for example, 

specifies to “Imagine this material is flat uniform 

steel”—in other words, neutral and smooth.41 The 

concern with computer modeling is thus that on-

screen diagrams may look three dimensional, but 

they have no substance or material qualities.

In preparation for plaiting round corners, the 

group had read papers by Tibor Tarnai and Felicity 

Wood on skew cubes.42 These are cubic forms 

made from graph paper, where the sides are folded 

obliquely across the vertical and horizontal axes 

of the squared paper to create diagonally skewed 
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boxes. The mathematical challenge was to imagine 

how many times one has to follow a graph-paper 

line around to reach the original starting point  

(figs. 4A and 4B). 

The skew was created by taking a ten-squared 

graph-paper cube, making it from strips, and skewing 

it diagonally from the vertical (figs. 4A and 4B, 5), to 

create, for example, a 7-square by 3-square triangle 

along the base to form the new edges of the cube. 

Having constructed these in graph paper, the group 

aimed to remake them using plaited paper strips. 

So, the plaiter had to configure the diagonals of the 

plaited cube in parallel to the graph-paper cube by 

skewing them at different points along the sides of 

the plaited square base. A true diagonally plaited 

43 Jones n.d., March.

cube would have the diagonals at 45 degrees at the 

corners, and the square base would consist of two 

right-angle 5-square by 5-square triangles. It would 

count as a 5:5 skew. The group’s aim was to plait 

cubes in ratios of 1:9, 2:8, 3:7, 4:6, and 5:5—the latter 

being a true diagonally plaited base (figs. 6A–6C). 

As Geraldine Jones explained:

Making a graph paper cube using a ratio of 1:9 to fold 

the sides proved impossible for me, scrunched it up 

as a bad job and wove the next one using phormium 

(plant) strips and a 4:6 ratio…I’m not quite sure what 

this exercise is achieving but will have another go 

at the paper version and the objective may become 

more apparent.43

figs. 4a and 4b  

(A) Graph paper cube,  

(B) skew cube created by 

Mary Crabb. Photography 

by Mary Crabb. 

A B
fig. 5  

10 × 10 base for woven paper 

cube created by Stephanie 

Bunn. Photography by 

Stephanie Bunn.

figs. 6a–6c  

A) 7 × 3 proportions for a 

7 × 3 skewed cube. B) 9 × 1 

proportions for a 9 × 1 skewed 

cube. C) 5 × 5 proportions for a 

5 × 5 skewed cube. All illustrate 

how this is on the diagonal. 

Drawings by Stephanie Bunn.

A B C
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Mary Crabb, working with red and black paper strips, 

added that:

I usually work small-scale and quickly found [the big 

paper] quite cumbersome to work with, but decided I 

should complete it and make some smaller samples 

afterwards. The big question I was wanting to answer, 

was…what happens to the pattern on the top face, 

when the cube is enclosed?…Would the [red and 

black] checkerboard base be reflected on the opposite 

face? The pattern that had started to form on the sides, 

had a reassuring sequence to it. Alternating rectangles 

7 × 3 squares in both plain and checkerboard. But…I 

discovered that some of the strands resolved, whilst 

others conflicted. Why? 44

Remarkably, on the top surface of the plaited cube, 

there was more than one possible outcome because 

the interlaced strands coming to meet each other 

were often in opposing colors (fig. 7).

While computer modelers had trialed skew cubes 

on screen or made them as printed cutouts, no one, 

it seemed, had actually plaited them and realized 

this possibility. Mary Crabb tried drawing her cubes 

on graph paper and explained:

44 Forces in Translation 2020a.  

45 Ibid. 

I very quickly came to realise that colouring individual 

squares on a diagram detaches from the process 

of weaving. The woven strands are dynamic, with 

movement and direction. The coloured squares are 

static and no longer relate to the strand, their sense 

of being part of something greater is lost. They are 

just squares.45

One learns differently by practically weaving a form 

than by imagining it. A plaited skew cube is double 

layered because it is interlaced, but imagined models 

rarely take this into account. Mary Crabb has since 

developed her investigation by weaving multiple 

forms of skew cubes in different colors and ratios, 

drawing, stitching, and, most recently, in knitting. 

A fuller publication of her research is still to come.

Case Study 2:  
Looking into Looping: The Trefoil Knot
The group’s studio trials, Looking into Looping, took 

place during COVID lockdown and were therefore 

online. This was a challenge but enabled people to 

explore both the benefits and limitations of online 

learning through experience. The two key themes 

explored were: 1) topology through cycloid weave and 

simple knotting, and 2) curvature through windmill 

loops. The former is the topic of case study number 2.

fig. 7  

Top view of graph paper and 

plaited skew cubes created by 

Mary Crabb. Photography by 

Mary Crabb.

fig. 8  

Details of cycloid weave 

created by Geraldine 

Jones. Photography by 

Geraldine Jones. 
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Initial interest grew out of Geraldine Jones’s 

passion for cycloid weave, which she works in steel 

wire rope (fig. 8). Cycloid weave, as explained by 

Geraldine Jones, does not fit quite into any of the 

main accepted basketry techniques of plaiting, 

coiling, and twining. It is almost, but not, a knot. It 

has an affinity with crochet and is a technique with 

strong geometrical patterning, which can be eased 

and squeezed into many forms.46 The technique is 

still practiced in Borneo where it is applied to long 

lengths of rattan to make back baskets.47

Cycloid weave also has great potential for under-

standing the mathematics of growth and hyperbolic 

surfaces if made using exponential increments, and 

it is well suited to Geraldine Jones’s interest in the 

Fibonacci Series. In this, as mentioned, it is also one 

of basketry’s answers to creating hyperbolic planes.48 

Cycloid weave also helps make translations between 

topological knots and cycloid loops, so it was a good 

way for those of the group who were struggling with 

topology to learn. 

The group’s introduction to topology began with 

an introduction to knot theory by working with the 

trefoil knot (fig. 9A). In topological terms, a trefoil is 

a knot with three crossings, that is, places where two 

strands cross each other, and is the simplest kind of 

nontrivial knot there is. The group members explored 

this knot in both classic topological form and through 

the cycloid weave (fig. 9B). In topology, knots have 

to be imagined as if projected in two dimensions 

46 Forces in Translation 2020b.  

47 Bléhaut 1994. 

48 See Taimiņa 2018; see also Knoll this volume. 

49 Ingold 2015. 

50 Bunn ms., November. 

where the trefoil clearly does have three crossings. 

In this case, it is “made” from a continuous strand 

of material with no tangible substance. Making a 

trefoil out of real-life material in three dimensions, 

however, is different. To begin with, material can 

have a twist. Twined or spun rope, for example, would 

not necessarily lie flat when twisted into a trefoil. 

As Ingold says, a whirl, such as in a spun thread, is 

a movement. The very act of winding or spinning  

changes the material—here the cord or string with 

incipient movement—and there is “no line that has 

not first been spun” or else braided.49 A braided cord 

would have less tendency to twist. So, lines them-

selves are generated with different qualities. What 

implications does this have for the more abstract 

topological form of the trefoil? 

This led to a second, more profound, kind of 

observation. If one tried to make a trefoil out of a 

twisted cord in three dimensions, it was not difficult 

to achieve this with only two crossings. In the online 

studio, Stephanie Bunn held up her trefoil variation. 

Where there should have been three crossings, there 

were only two, because the twist in the trefoil string 

and its existence in three dimensions led to contact 

in just two places (fig. 10). Bunn expressed this 

by saying: 

There is a way with the trefoil where you can get 

two crossings…it depends if you see it as…as two 

dimensional or three dimensional…for there to be 

three crossings, there needs to be [three points] where 

it touches… 

The others tried this. Mary Crabb, also making her 

trefoil variation with two crossings (fig. 11), mentioned: 

If I hold mine like that, I just get two crossings…My 

fingers are where the crossings are…If a crossing is 

a point of contact between two strands, then there’s 

one here and there’s one here.50

figs. 9a and 9b  

Trefoil knot created by Mary 

Crab (A). Cycloid weave 

version of a trefoil knot with 

multiple crossings created 

by Geraldine Jones (B). 

Photography by Mary Crabb 

and Geraldine Jones. 

A B
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Thus, by bringing in real-life dimensions, touch, and 

physical manipulation, the possibilities of creating a 

trefoil with varying numbers of crossings becomes 

evident. What implications could this have for topo-

logical theory?

In summary, the practice of working in three 

dimensions, as opposed to visualizing the material 

projected in two dimensions, can produce different 

outcomes. If the trefoil is visualized as a projection, 

there will always be three crossings. But unanticipat-

ed things can happen in the shadow of a projection. 

As a physical knot in a real-life environment, it is 

quite possible to make a trefoil variation from a knot 

with two crossings. In physically making the trefoil, 

the combined qualities of touch and movement have 

been added to a situation that relied upon vision. 

This consideration could have the potential to enrich 

our understanding of space and produce additional 

lines of inquiry.

The second point concerns practice. Working in 

a group with different learning styles (visual, verbal, 

tactile, kinesthetic, and so on) and with different 

expertise, there will always be a range of learners 

who may be of equal ability but contribute diverse 

perspectives. A kinesthetic or tactile learner may 

sense the potential for exceptions to an approach 

that relies on the visual for proof or insight, while a 

visual learner may imagine the greater potential for 

a problem through thinking in terms of diagrams or 

projections, for example. These factors and perspec-

tives need to be taken into account when exploring 

complex ideas and practices.

51 Fleming 1998. 

Case Study 3:  
Positive and Negative Curvature
The final FiT case study for this paper is an explo-

ration of positive and negative curvature through 

windmill looping. This was held through an online 

knowledge exchange event in which fifty people 

participated. The aim was to provide an accessible 

investigation that participants could relate to in a 

bodily kind of way. Mary Crabb had found a set 

of homemade instructions for a “cigarette packet 

dog,” which had formed a popular folk-art practice 

in the first half of the twentieth century in the United 

Kingdom.51 These dogs were made from a technique 

called “windmill looping.” They were reputedly made 

by sailors, prisoners of war, or tuberculosis sufferers 

from old Wills Woodbine cigarette packets in the 

1950s. Mary Crabb had bought her homemade pack 

with instructions, which had been put together by 

Colin Fleming. The group made them from drink car-

tons called Tetra Paks instead of cigarette packets.

As discussed above, in regard to the body, positive 

curvature could be, for example, the top of a person’s 

head. This is a curve that goes the same way in two 

directions to make a curved, dome form. A negative 

curve would be one that curves partly upward and 

partly downwards, such as under the chin or around 

the brim of a hat. To translate this for the Tetra Pak 

dog using the windmill loop, a positive curve could be 

the curve around the head, the end of the tail, or the 

base of the legs. A negative curve would be around the 

rise of the tail or where the legs join the body. Creating 

these curves reveals interesting linkages between 

curvature and different geometric planes (fig. 12). 

fig. 10  

Trefoil variation with two 

crossings in three dimensions 

created by Stephanie Bunn. 

Photo courtesy of FiT 

recordings, November 2020.

fig. 11  

Trefoil variation with two 

crossings in three dimensions 

created by Mary Crabb. Photo 

courtesy of FiT recordings, 

November 2020. 
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The usual woven element in windmill loops con-

sists of four linked loops with a central gap with four 

edges where they meet. This would be extended in 

a plane by adding four additional loop elements to 

create a typical plane surface. If, however, one wants 

to create a positive curve for the end of the legs, one 

would connect just three loops in such a way as to 

make a triangle between them. If one wanted to 

create a negative curve for the top of the legs, one 

would make a pentagon introducing an extra loop, 

making five (figs. 13A–13D).

One way of thinking about how this works is to 

imagine a surface made from flat paper. Draw a 

square in the center of the paper, then draw two 

lines from neighboring corners of this square to the 

edge of the paper. Cut along these lines, remove the 

section between them, then join the edges that are 

left to form a triangle in the center and effectively 

a cone with positive curvature created by removing 

some of the surface of the plane. Alternatively, one 

could add an extra section of paper to the square 

and create a pentagon in the center. This would 

create negative curvature by increasing the volume 

52 See Taimiņa (2018) for a summary of the history of these mathematical thinkers. 

53 Harris 1997. 

of material in the plane. The windmill loops are alter-

native ways of creating these surfaces by decreasing 

or increasing material.

The discussion this provoked between mathema-

ticians and basket makers was exhilarating. There 

is a pleasure in extending mutual understanding. 

Basket makers were, in general, intuitively testing 

and comparing ways and techniques to create curves 

and add or subtract to the surface of the dog’s body, 

while the mathematicians were debating which theo-

rem this activity illustrated. Was it Gauss-Bonnet, or 

was it Descartes?52 This in turn linked to questions 

around hyperbolic curves, and just how much one 

could insert before things became hyperbolic. Yet 

despite the range of discussion, all had participated 

in the same activity. This way of thinking about curves 

also appealed to textile pattern cutters.  Indeed, the 

aforementioned mathematical textile educationalist 

Mary Harris noted that mathematicians frequently 

enjoy the topology of pattern cutting.53 

The discussion revealed how finding meeting 

points between embodied skills and mathematical 

formula can be illuminating from multiple perspectives.  

fig. 12 (above left) 

Tedi the Tetra Pak Dog created 

by Mary Crabb. Photography 

by Mary Crabb. 

figs. 13a–13d (above right)  

Windmill loops showing  

A) single element,  

B) 4 connections,  

C) 3 connections, and  

D) 5 connections.  

Photography by 

Stephanie Bunn.

A B

C D
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A possible concern was the implicit assumption 

that the mathematical aspect, or the theorems were 

“the answer,” or the final, real solution to the activ-

ity. This raised the question about the ways these 

two communities—basket makers and mathema-

ticians—problem solve. For basket-makers, when 

confronted with a new basket or technique, the 

kinds of questions they asked frequently included 

“How is it made,” or “What would happen if I tried it 

this way?” For a mathematician, the questions might 

be “Does it always do that?” or “How can I prove it?” 

It is interesting to speculate that, in all cases in this 

study, participants were looking for patterns and 

rules, whether in terms of technique or formula. The 

mathematician might have resorted to drawing on 

theorems, or referring to diagrams, while the basket 

maker might say “If I can make it, then it must be true,” 

but all were producing kinds of evidence.

Conclusion
This article illustrates the great value of skilled 

textile-making practices, such as basketry, being 

conducted alongside and in collaboration with 

mathematics. It illustrates how the abstract and 

the concrete, as well as the theoretical and the 

practical, are best understood as aspects of one 

another, and how complex spatial ideas can be 

explored and inspired through one activity such 

as basketry.

Alongside this, the article argues how important 

practical textile-making skills such as basketry are 

for the development of innovative pathways in human 

cognition. Both textile practitioners and mathemati-

cians can use the same activity to explore patterns 

and exceptions as ways to help understand the 

similar, yet converging, processes of mathematics 

and textile making. These modes of inquiry are set 

within histories of practice and exploration, often 

using techniques in quite an ad hoc manner. What is 

important is that practitioners from these disciplines 

communicate so that dexterous hand skills continue 

to be valued as a significant feature of the generation 

of idea—as much as thinking and imagining are 

valued as aspects of practice.
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