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Abstract—In this paper, we propose Federated Deep Learning
(FDL) for intrusion detection in heterogeneous networks. Local
Deep Neural Network (DNN) models are used to learn the
hierarchical representations of the private network traffic data
in multiple edge nodes. A dedicated central server receives the
parameters of the local DNN models from the edge nodes, and it
aggregates them to produce an FDL model using the Fed+ fusion
algorithm. Simulation results show that the FDL model achieved
an accuracy of 99.27 ± 0.79%, a precision of 97.03 ± 4.22%,
a recall of 98.06 ± 1.72%, an F1 score of 97.50 ± 2.55%, and
a False Positive Rate (FPR) of 2.40 ± 2.47%. The classification
performance and the generalisation ability of the FDL model
are better than those of the local DNN models. The Fed+
algorithm outperformed two state-of-the-art fusion algorithms,
namely federated averaging (FedAvg) and Coordinate Median
(CM). Therefore, the DNN-Fed+ model is preferable for intrusion
detection in heterogeneous wireless networks.

Index Terms—intrusion detection, federated learning, deep
learning, smart city, heterogeneous wireless networks

I. INTRODUCTION

The communication system in a smart city comprises a
number of heterogeneous networks including mobile commu-
nication, wireless sensor, Internet of Things (IoT), Industrial
IoT (IIoT), and vehicular networks. The distributed and het-
erogeneous nature of the communication system has made
critical infrastructure and services vulnerable to cyber attacks
of different forms [1]. In previous works [2]–[6], we proposed
different Deep Learning (DL) methods, which can process a
large volume of network traffic data to protect communication
networks against cyber attacks. However, these centralised
DL approach does not preserve the privacy of the network
device owners. Also, the classification performance of local
DL approach is limited to the network traffic data within a
specific application.

Federated Learning (FL) is an advanced Artificial Intelli-
gence (AI) technique which seeks to protect the privacy of
participating nodes without a significant compromise in the
classification performance and the generalisation ability of
the DL models [7]–[10]. Basically, this concept involves the
training of local DL models with private data sets, and the
aggregation of their parameters in a central cloud server. In
recent literature, FL methods have been proposed for intrusion
detection in different application scenarios including large-
scale local area network [11], [12], vehicular edge network

[13], wireless edge network [14], [15], IoT network [16]–
[21], Wi-Fi network [22], satellite-terrestrial integrated net-
work [23], industrial cyber-physical system [24], Industrial IoT
(IIoT) [25], [26]. Most of these FL methods were developed
for homogeneous networks, and they used either federated
averaging (FedAvg) [7] or Coordinate Median (CM) [27]
fusion algorithm to aggregate the parameters of their local
models. However, these state-of-the-art fusion algorithms force
heterogeneous networks to find an average solution across all
the participating edge nodes, which has adverse effects on
the classification performance of the global DL model [28].
They are most suitable for scenarios where the data in the
participating nodes are independent and identically distributed
(IID). Meanwhile, the network traffic data in heterogeneous
networks are non-IID.

Fed+ algorithm can efficiently handle the non-IID network
traffic data in heterogeneous wireless networks because it does
not require all edge nodes to converge to a single central
point [28]. Therefore, in this paper, we propose Fed+ fusion
algorithm for Federated Deep Learning (FDL)-based intrusion
detection in heterogeneous networks. A Deep Neural Network
(DNN) architecture was used for local DL at the edge nodes
of the wireless networks. The parameters of the local DNN
models are transmitted to a cloud server for aggregation
based on Fed+ fusion algorithm. Then, a single global DNN
model is sent to all participating edge nodes, where it will be
deployed for intrusion detection. We investigated the classifi-
cation performance and the generalisation ability of the local
DNN models, and the global DNN models. Furthermore, we
compared the effectiveness of the Fed+ algorithms with two
state-of-the-art fusion algorithms, namely FedAvg and CM.

The remaining parts of this paper is organised as follows:
in Section II, we describe the system model; in Section III,
we provide the details of the proposed FDL model; in Section
IV, we present and discuss the simulation results; and finally
summarise our findings in Section V.

II. SYSTEM MODEL

In this section, we describe the system model of the het-
erogeneous wireless networks. Fig. 1 shows the architecture
of the heterogeneous wireless networks with edge nodes for
local DL, and a central cloud server for the aggregation of
local DNN models’ parameters.
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Fig. 1. FDL architecture for intrusion detection in heterogeneous wireless
networks.

Four distinct network intrusion detection data sets (NF-ToN-
IoT-v2, NF-UNSW-NB15-v2, NF-BoT-IoT-v2, and NF-CSE-
CIC-IDS2018-v2)1 were used to model a typical heteroge-
neous network in a smart city. These data sets were chosen
because they: (a) were derived from NetFlow features, which
can be easily extracted from the headers of the network traffic
packets; (b) have the same set of network traffic features; (c)
were collected from different network configurations; (d) have
varieties of complex and popular attack scenarios; and (e)
contain sufficient number of benign and malicious network
traffic samples. A detailed information about the datasets can
be found in [29].

TABLE I
NETWORK TRAFFIC SAMPLES IN WN1

Class Training Validation Testing
Benign 26500 11357 16167
Backdoor 187 80 85
DDoS 19572 8388 12040
DoS 6259 2682 3724
Injection 6726 2882 4078
MITM 58 25 41
Password 10982 4706 6869
Ransomware 33 14 18
Scanning 10508 4503 6324
XSS 23772 10188 14692
Total 104595 44827 64038

In this study, we assume that the network traffic data in
NF-ToN-IoT-v2, NF-UNSW-NB15-v2, NF-BoT-IoT-v2, and
NF-CSE-CIC-IDS2018-v2 were collected from four wireless
networks named WN1, WN2, WN3, and WN4, respectively.
WN1 contains nine attack scenarios, namely backdoor, Denial
of Service (DoS), Distributed DoS (DDoS), injection, Man-
in-the-Middle (MITM), password, ransomware, scanning, and
cross-site scripting (XSS). WN2 also contains nine attack
scenarios, namely analysis, backdoor, DoS, exploits, fuzzers,
generic, reconnaissance, shellcode, and worms. WN3 has four
attack classes, namely DoS, DDoS, reconnaissance, and data
theft. WN4 data set has six major attack types, namely bot,

1https://staff.itee.uq.edu.au/marius/NIDS_datasets/

TABLE II
NETWORK TRAFFIC SAMPLES IN WN2

Class Training Validation Testing
Analysis 36 15 20
Backdoor 32 14 19
Benign 223364 95727 136660
DoS 328 140 193
Exploits 2884 1236 1782
Fuzzers 1481 635 923
Generic 268 115 193
Reconnaissance 631 271 407
Shellcode 57 24 46
Worms 13 6 19
Total 229094 98183 140262

brute-force, DoS, DDoS, infiltration, and Structured Query
Language (SQL) injection. Each of the wireless networks has
a training set, a validation set, and a testing set. The number of
benign and malicious network traffic samples in the training
set, the validation set, and the testing set of WN1-WN4 are
presented in Tables I-IV, respectively.

TABLE III
NETWORK TRAFFIC SAMPLES IN WN3

Class Training Validation Testing
Benign 638 274 373
DDoS 41383 17736 25433
DoS 81876 35090 50038
Reconnaissance 12687 5437 7783
Theft 18 8 7
Total 136602 58544 83634

TABLE IV
NETWORK TRAFFIC SAMPLES IN WN4

Class Training Validation Testing
Benign 75765 32471 46413
Bot 750 321 439
Brute Force-Web 8 4 12
Brute Force-XSS 1 1 2
DDOS attack-HOIC 5347 2292 3298
DDoS attacks-LOIC-HTTP 1412 605 874
DoS attacks-GoldenEye 144 62 86
DoS attacks-Hulk 2120 909 1332
DoS attacks-SlowHTTPTest 59 25 49
DoS attacks-Slowloris 34 14 21
FTP-BruteForce 135 58 74
Infiltration 550 236 301
SQL Injection 5 2 1
SSH-Bruteforce 467 200 240
Total 86797 37199 53142

III. THE PROPOSED DNN-FED+ MODEL

In this section, we provide the details of the proposed DNN-
Fed+ model, which comprise of local DL at the edge and the
aggregation of the local DNN models’ parameters in the cloud.

1) Local Deep Learning in Edge Nodes: Each of the
wireless networks is equipped with an edge node for efficient
data storage and computation. Four local DNN models were
trained and validated with the private data sets in the edge
nodes to correctly distinguish between benign and malicious
network traffic. The model architecture comprised of an input
layer, two densely-connected hidden layers, and an output
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layer. The number of neurons at the input layer, d, is equal
to the number of features that faithfully represents a single
packet in the training data. Each of the two hidden layers has
u neurons. For the first hidden layer, each of the network traffic
samples in the training data, x, is transformed into h1 as:

h1 = σh(W1x+ b1), (1)

where σh is the activation function at the hidden layer, W1

is the weight matrix of the first hidden layer, and b1 is the
bias vector of the first hidden layer. For the successive hidden
layer, the output of the preceding hidden layer is transformed
as:

h2 = σh(W2h1 + b2), (2)

Finally, the predicted class label, ỹ, is obtained by transform-
ing the output of the last hidden layer:

ỹ = σy(h2), (3)

where σy is the activation function at the output layer. The
number of neurons at the output layer, m, is equal to the
number of classes, and m = 2 for binary classification. The
hyperparameters of the local DNN models are presented in
Table V.

TABLE V
HYPERPARAMETERS OF DNN MODELS

Hyperparameter
Input neurons 39
Hidden layers 2
Neurons in each hidden layer 128
Hidden layer activation function ReLU
Output neuron 1
Output layer activation function Sigmoid
Optimisation algorithm Adam
Learning rate 0.0001
Batch size 512
Epochs 10
Loss function Binary cross-entropy

2) Model Parameter Aggregation in Cloud Server: Fed+
algorithm [28] was used to aggregate the parameters of local
DNN models in a central cloud server, as presented in Algo-
rithm 1. The loss minimisation objective of the FDL model is
given as:

min
X

F (X,α) =
1

N

N∑
n=1

fn(xn) + αnB(xn, C(X)), (4)

where X = x1, x2, ..., xn is the local DNN models’ param-
eters, N is the number of participating edge nodes, fn is
the local loss function, B is a distance function, and C is
an aggregating function which finds the central point of X.
Each participating edge node performs mini-batch stochastic
gradient descent locally using Adam optimisation algorithm
[30]. The updates of the optimisation process is given as:

xk+1
n = xkn − γk[∇n(x

k
n) + αk

n∇B(xkn, C(X
k))], (5)

where γ is the learning rate, and k = 1, ...,K is the number of
communication rounds. The edge nodes initialise and transmit
the parameters of their local DNN models, x0n, to the central
cloud server, which calculates the central value x̃← C(X0).

Algorithm 1: Fed+ algorithm

Initialization: K,N,αk
n, γ

k
n, p1 ∈ (0, 1), p2 ∈ Z

1 function localDNNUpdate(n, k, x̃):
2 Start with xkn ← xk−1

n

3 for epoch = 1 to 10 do
4 for batch = 1 to total_samples

512 do
5 xkn ← xkn − γkn(∇fn(xkn) + αk

n∇B(xkn, x̃))
6 end
7 end
8 end function
9 for k = 2 to 10 do

10 for each edge node n ∈ N in parallel do
11 Cloud server transmits x̃k−1 to the edge node.
12 xkn ← localDNNUpdate(n, k, x̃k−1)
13 The edge nodes sends xkn to the cloud server.
14 end
15 x̃k ← C(Xk)
16 end

IV. RESULTS AND DISCUSSION

In this section, we present and analyse the classification
performance and the generalisation ability of the FDL models.
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Fig. 2. Cross-entropy loss of local DNN models in (a) WN1, (b) WN2, (c)
WN3, and (d) WN4 during training and validation.

First, four local DNN models were trained and validated
with the private training and validation data sets in WN1-
WN4, respectively. During the training and validation, the
cross-entropy loss of the local DNN models were monitored
to determine the suitability of the model hyperparameters in
Table V. Fig. 2 shows that the cross-entropy loss of local
DNN models reduced significantly as the number of epochs
increased from 1 to 10. At the end of the 10th iteration of
Adam optimisation algorithm, the cross-entropy loss reduced
by 83.01± 19.40% and 69.15± 15.94% when the local DNN
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models were evaluated with the network traffic samples in the
training sets and the validation sets, respectively. A significant
loss minimisation during training and validation implies that
the local DNN models neither under-fitted the samples in the
training sets nor over-fitted the samples in the validation sets.

TABLE VI
CLASSIFICATION PERFORMANCE OF LOCAL DNN MODELS

Training data Metric (%) Testing data
WN1 WN2 WN3 WN4

WN1

Accuracy 92.47 78.96 29.19 62.83
Precision 95.96 5.80 99.54 16.83
Recall 93.87 47.22 29.01 49.12
F1 score 94.91 10.34 44.92 25.07
FPR 11.69 20.20 30.03 35.18

WN2

Accuracy 25.23 99.25 0.45 71.04
Precision 0.00 92.62 - 25.95
Recall 0.00 77.01 0.00 69.43
F1 score 0.00 84.10 0.00 37.78
FPR 0.05 0.16 0.00 28.73

WN3

Accuracy 76.49 65.94 99.82 53.44
Precision 77.78 2.61 99.92 11.91
Recall 95.97 33.73 99.90 41.88
F1 score 85.92 4.84 99.91 18.55
FPR 81.20 33.21 17.43 44.89

WN4

Accuracy 44.58 97.39 35.92 98.52
Precision 96.79 16.84 99.38 98.99
Recall 26.76 0.44 35.86 89.23
F1 score 41.92 0.87 52.70 93.86
FPR 2.63 0.06 50.13 0.13

Also, the classification performance of each of the local
DNN models was evaluated with the testing data sets in
WN1-WN4. The accuracy, precision, recall, F1 score, and
FPR of the local DNN models were analysed to determine
their generalisation ability. Table VI shows that the local
DNN models had a good classification performance when the
training data and the testing data were taken from the same
network. In this scenario, the local DNN models achieved an
accuracy of 97.51 ± 3.41%, a precision of 96.88 ± 3.30%,
a recall of 90.00 ± 9.70%, a F1 score of 72.57 ± 6.61%,
and a FPR of 25.80 ± 8.64%. On the other hand, when the
training data and the testing data were taken from different
networks, the local DNN models had a poor classification
performance. In this case, the local DNN models achieved an
accuracy of 53.45± 27.38%, a precision of 37.79± 42.09%,
a recall of 35.78 ± 28.67%, a F1 score of 26.91 ± 26.59%,
and a FPR of 27.19±24.74%. Meanwhile, a significantly high
accuracy, precision, recall, and F1 score (the closer to 100%,
the better) implies that a larger percentage of the malicious
traffic samples were correctly classified. On the other hand,
a significantly low FPR (the closer to 0%, the better) means
that a larger percentage of the benign traffic samples were
correctly classified. We observed that the local DNN models
had poor generalisation ability. Therefore, they are not suitable
for intrusion detection in heterogeneous wireless networks.

On the other hand, four FDL models were collaboratively
developed with the private training data sets in WN1-WN4
using FedAvg, CM, FedAvg+, and CM+ fusion algorithms,
respectively. The classification performance of the FDL mod-
els was monitored as the number of communication rounds
increased from 2 to 10. Fig. 3 shows that the MCC values
of the DNN-FedAvg+ and DNN-CM+ models were higher
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Fig. 3. MCC of FDL models in (a) WN1, (b) WN2, (c) WN3, and (d) WN4.

MCC than those of the DNN-FedAvg and DNN-CM models.
Generally, the MCC values of the DNN-FedAvg and DNN-CM
models were less than 0.80 but those of the DNN-FedAvg+
and DNN-CM+ models were more than 0.92. Unlike the
DNN-FedAvg and DNN-CM models, the MCC of the DNN-
FedAvg+ and DNN-CM+ models was relatively stable as the
number of communication rounds increased from 2 to 10.
When the MCC of a binary classifier is greater than 0.9, it
means that there is a high correlation between the actual and
the predicted classes of network traffic samples in the hetero-
geneous wireless networks. Therefore, the FedAvg+ and CM+
fusion algorithms for more suitable for FDL-based intrusion
detection in heterogeneous wireless networks compared to the
FedAvg and CM fusion algorithms.

Furthermore, the classification performance of the FDL
models was evaluated with the testing data sets in WN1-
WN4. The accuracy, precision, recall, F1 score, and FPR of
the FDL models were analysed to assess their generalisation
ability. Table VII shows that the classification performance of
the DNN-FedAvg+ and DNN-CM+ models was consistently
better than that of the DNN-FedAvg and DNN-CM models
in WN1-WN4. DNN-FedAvg+ model achieved an accuracy
of 99.27 ± 0.79%, a precision of 97.03 ± 4.22%, a recall
of 98.06 ± 1.72%, a F1 score of 97.50 ± 2.55%, and a
FPR of 2.40 ± 2.47%. Also, DNN-CM+ model achieved an
accuracy of 99.28 ± 0.79%, a precision of 97.15 ± 3.97%, a
recall of 98.08± 1.78%, a F1 score of 97.57± 2.45%, and a
FPR of 2.27 ± 2.50%. Higher values of accuracy, precision,
recall, and F1 score as well as a lower FPR in WN1-WN4
implies that the DNN-FedAvg+ and DNN-CM+ models has a
better generalisation ability than the DNN-FedAvg and DNN-
CM models. This further confirmed that the FedAvg+ and
CM+ fusion algorithms are efficient for FDL-based intrusion
detection in heterogeneous wireless networks.
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TABLE VII
CLASSIFICATION PERFORMANCE OF FDL MODELS

Testing data Metric FDL models
DNN-FedAvg DNN-CM DNN-FedAvg+ DNN-CM+

WN1

Accuracy 68.49 73.16 97.98 97.99
Precision 88.03 78.64 98.20 98.09
Recall 67.67 87.96 99.11 99.24
F1 score 76.14 83.00 98.65 98.66
FPR 29.09 70.64 5.38 5.73

WN2

Accuracy 78.47 85.12 99.65 99.66
Precision 8.50 10.86 90.20 90.66
Recall 65.99 58.85 96.89 96.85
F1 score 14.92 17.96 93.40 93.63
FPR 21.20 14.19 0.28 0.26

WN3

Accuracy 74.03 98.11 99.96 99.96
Precision 99.97 99.98 99.98 99.99
Recall 73.93 98.12 99.98 99.98
F1 score 84.27 99.04 99.98 99.98
FPR 4.08 3.75 3.91 3.06

WN4

Accuracy 70.36 79.72 99.50 99.51
Precision 29.15 42.55 99.72 99.86
Recall 83.95 96.89 96.28 96.24
F1 score 43.02 57.74 97.97 98.02
FPR 31.61 22.77 0.04 0.02

V. CONCLUSION

In this paper, we proposed FDL for intrusion detection in
heterogeneous wireless networks. First, local DNN models
were trained and validated with private data sets in multi-
ple edge nodes to correctly distinguish between benign and
malicious network traffic. Then, the parameters of the local
DNN models were transmitted from the edge nodes to a central
server. Global DNN models, DNN-FedAvg+ and DNN-CM+,
were developed by aggregating the parameters of the local
DNN models using Fed+ fusion algorithms i.e., FedAvg+
and CM+, respectively. Also, we investigated the classifica-
tion performance and the generalisation ability of the local
DNN models, and the global DNN models. Furthermore, we
compared the effectiveness of the Fed+ algorithms with two
state-of-the-art fusion algorithms, namely FedAvg and CM.
Simulation results showed that the local DNN models had a
high attack detection rate. However, their false alarm rate was
high and their generalisation ability was poor. On the other
hand, the DNN-FedAvg+ and DNN-CM+ models achieved a
higher classification performance and a better generalisation
ability.
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