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ACOUSTIC MODELLING, DATA AUGMENTATION AND FEATURE

EXTRACTION FOR IN-PIPE MACHINE LEARNING APPLICATIONS

Dario Alfredo Chiantello

Abstract

Gathering measurements from infrastructure, private premises, and harsh envi-

ronments can be difficult and expensive. From this perspective, the development of

new machine learning algorithms is strongly affected by the availability of training

and test data. We focus on audio archives for in-pipe events. Although several

examples of pipe-related applications can be found in the literature, datasets of

audio/vibration recordings are much scarcer, and the only references found relate

to leakage detection and characterisation. Therefore, this work proposes a method-

ology to relieve the burden of data collection for acoustic events in deployed pipes.

The aim is to maximise the yield of small sets of real recordings and demonstrate

how to extract effective features for machine learning. The methodology developed

requires the preliminary creation of a soundbank of audio samples gathered with

simple weak annotations. For practical reasons, the case study is given by a range

of appliances, fittings, and fixtures connected to pipes in domestic environments.

The source recordings are low-reverberated audio signals enhanced through a

bespoke spectral filter and containing the desired audio fingerprints. The sound-

bank is then processed to create an arbitrary number of synthetic augmented

observations. The data augmentation improves the quality and the quantity of

the metadata and automatically creates strong and accurate annotations that

are both machine and human-readable. Besides, the implemented processing

chain allows precise control of properties such as signal-to-noise ratio, duration

of the events, and the number of overlapping events. The inter-class variability

is expanded by recombining source audio blocks and adding simulated artificial

reverberation obtained through an acoustic model developed for the purpose.

Finally, the dataset is synthesised to guarantee separability and balance. A few

signal representations are optimised to maximise the classification performance,

and the results are reported as a benchmark for future developments. The contri-

bution to the existing knowledge concerns several aspects of the processing chain
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implemented. A novel quasi-analytic acoustic model is introduced to simulate

in-pipe reverberations, adopting a three-layer architecture particularly convenient

for batch processing. The first layer includes two algorithms: one for the numerical

calculation of the axial wavenumbers and one for the separation of the modes. The

latter, in particular, provides a workaround for a problem not explicitly treated in the

literature and related to the modal non-orthogonality given by the solid-liquid inter-

face in the analysed domain. A set of results for different waveguides is reported

to compare the dispersive behaviour against different mechanical configurations.

Two more novel solutions are also included in the second layer of the model and

concern the integration of the acoustic sources. Specifically, the amplitudes of the

non-orthogonal modal potentials are obtained using either a distance minimisation

objective function or by solving an analytical decoupling problem. In both cases,

results show that sources sufficiently smooth can be approximated with a limited

number of modes keeping the error below 1%. The last layer proposes a bespoke

approach for the integration of the acoustic model into the synthesiser as a rever-

beration simulator. Additional elements of novelty relate to the other blocks of the

audio synthesiser. The statistical spectral filter, for instance, is a batch-processing

solution for the attenuation of the background noise of the source recordings. The

signal-to-noise ratio analysis for both moderate and high noise levels indicates

a clear improvement of several decibels against the closest filter example in the

literature. The recombination of the audio blocks and the system of fully tracked

annotations are also novel extensions of similar approaches recently adopted in

other contexts. Moreover, a bespoke synthesis strategy is proposed to guarantee

separable and balanced datasets. The last contribution concerns the extraction

of convenient sets of audio features. Elements of novelty are introduced for the

optimisation of the filter banks of the mel-frequency cepstral coefficients and the

scattering wavelet transform. In particular, compared to the respective standard

definitions, the average F-score performance of the optimised features is roughly

6% higher in the first case and 2.5% higher for the latter. Finally, the soundbank,

the synthetic dataset, and the fundamental blocks of the software library developed

are publicly available for further research.
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Chapter 1

Introduction

This chapter briefly overviews the thesis background, motivations, and objectives.

The most significant contributions are listed to point out the elements of novelty

developed. The last section briefly summarises the content of each chapter, the

connections between them and their role in respect of the objectives stated.

1.1 Background and motivations

Water infrastructures play a key role in modern society, and in a scenario of

growing water constraints, the quest for efficient management is more crucial

every day. This section briefly analyses some of the fundamental causes of water

scarcity, how they relate to our society, and the importance of the infrastructures

for mitigating future challenges.

1.1.1 Emergent constraints on water availability

In recent years, the need to account for climate change when managing natural

resources has become more relevant, and water is no exception [1]. The pattern

of precipitations has undoubtedly mutated, and there is a fear of more significant

alterations in the foreseeable future [2]. Although different regions worldwide have

been affected differently, changes in precipitation intensity, duration, and frequency

have often translated into reduced snow coverage [3],[4] and shorter and more
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violent rainfalls [5]. This shift has determined a soaring number of floods and

increased the pressure on water reservoirs, better preserved by regular, cold snow

seasons and prolonged, mild rainfalls [6]. Extreme weather conditions in arid

macro-areas, such as Mediterranean countries, are being exacerbated by drier

summers, more frequent flooding and an overall higher number of dry days [7].

At the same time, in regions traditionally immune, such as northern Europe, an

increased number of torrid periods have already caused unprecedented water

usage restrictions and other unusual environmental issues [8].

Apart from climate change, water resources are also affected directly by other

human activities. Agriculture and livestock farming are certainly the most relevant,

accounting for 85% of the total freshwater requirements [9, p. 15],[10]. They are also

frequently related to other serious issues, such as soil salinisation [11], increased

levels of pollutants in underground aquifers [12], and the depletion of non-renewable

fossil water [13]. Moreover, the demand from other industrial sectors, such as

renewable energy production, is growing fast [14].

Amid this extensive need in the context of scarcer availability, growing pop-

ulations in large urban clusters require access to vast natural resources in a

limited space [15]. In dry regions, there is already a tangible fear that a lack of

adequate access to fresh water might soon lead to political instability or even

conflicts [11],[16]. Where growing cities have failed to introduce new effective

water management policies, the consequences on the existing water reservoirs

are concerning, going from worsening water quality to pronounced level drops in

the underground aquifers [17]. Alternative solutions, such as desalination plants,

have been extensively adopted in countries affected by chronic water scarcity. Still,

management costs and controversial environmental issues introduce geographical

limitations and limit their applicability to a fraction of the required water [18].

Given the complex nature of the problem and the number of issues involved, a

strategy to guarantee efficient usage of the resources appears necessary. Such an

approach, however, requires information that cannot be gathered without enhanced

infrastructures.
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1.1.2 Water scarcity mitigation through enhanced infrastructures

The introduction of effective water management policies is fundamental to mit-

igating the impact of water scarcity; several examples of virtuous big cities are

reported in the literature [19].

Although it has been shown that soft strategies, such as tariff modulation or

raising user awareness, play a key role in inducing sensible behaviours [20],

adopting new technologies is fundamental to support the process. The solutions

employed span from simple plumbing improvements, such as more efficient shower

heads and low-flush toilets [20], to more sophisticated technologies, such as

leakage detectors [21] and satellite imagery [22]. For instance, installing smart

water meters at the household level provides monitoring capabilities with time and

space resolution that enable better characterisation and modelling of the water

demand [23].

In general, the convenience of a data-driven water management approach has

been recognised from different perspectives, from enhanced services to better

management policies [24],[25]. Improved maintenance scheduling, lower repairing

costs, and reduced unaccounted water consumption are a few examples. Data for

such a variety of tasks, however, needs to be detailed and heterogeneous. Unfor-

tunately, although monitoring is generally continuously performed at the source

and the main nodes of the network, the status of the peripheral regions is often

unknown or irregularly acquired [26]. Monitoring the terminal branches is usually

a manual process that requires a large amount of human labour. For instance,

water quality is continuously checked at the source but only periodically elsewhere.

Hundreds of thousands of water samples per year [27],[28] need to be manually

collected, gathered in chemical labs and analysed [29, p. 188]. The absence of

automatic acquisition of the network status determines the lack of effective means

for the proactive identification of potential danger and less efficient maintenance

procedures [30]. Inconveniences, such as leakages, chemical pollutants, and

discolouration, are likely related to detectable events along the pipelines, but often

suppliers are notified by their customers. [31].
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Unfortunately, enhancing the network through the deployment of sensors is gen-

erally difficult and expensive. The scale of the required operations is undoubtedly

a first barrier but not the only one. Indeed, water is an essential resource, and the

risk of potential disruption of the distribution service must be carefully accounted

for and mitigated. Furthermore, weak customer support, lack of expertise, and

slow policy advancements are among the main reasons for the slow adoption of

new solutions and technologies [32]. Because of these difficulties, even testing

new devices or collecting sample data from the field might be problematic, espe-

cially when the intervention to install the sensors is invasive or requires a service

interruption.

A comprehensive assessment of costs and benefits related to new monitoring

technologies must also account for non-technological constraints. Privacy con-

cerns, for example, have been investigated extensively for energy metering [33],[34]

and also need to be accounted for water [32]. Additional issues, such as accessing

private premises, should be considered. Generally, gathering data from fewer

sensors placed at accessible points might be beneficial.

Enhancing the water networks is, therefore, a process whose trade-off is driven

by the necessity to optimise the usage of an ever-increasingly valuable resource

and the difficulties related to the development and deployment of the required

new technologies. This work accounts for some of these barriers: it focuses on

a specific class of sensors for which the in-house development based on small

collections of on-field data samples is the only viable solution. It will be shown how

new devices can be developed by optimising the yield of minimum-size datasets.

1.2 Thesis aim and objectives

This work has been inspired by the need to detect hazardous manoeuvres on the

water network associated with the usage of standpipes [35]. Monitoring standpipe

sessions, for instance, by acquiring their position, time and other details, is crucial

to preventing and identifying potential costly damages, reducing water wastage,

and obtaining accurate billing [36]. Nevertheless, events in water infrastructures
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can stem from a variety of different sources, and automatic detectors/classifiers

are fundamental blocks of the smart networks described in the previous section1.

Therefore, this work generalises the original idea by investigating the process of

developing such devices for in-pipe applications.

Among all the possible strategies to detect/classify specific classes of events, we

focus on characteristic acoustic fingerprints as the means to discriminate among

different classes. Unfortunately, on-filed development is generally prohibitive, and

the in-house approach often remains the only possible option. Besides, acquiring

the audio samples required is typically a costly and time-consuming process, and

it is necessary to optimise the yield of small datasets [38, p. 159]. Finally, building

test rigs might be significantly expensive, and solutions to enable real tests at a

low cost are highly desirable.

***

This work focuses on machine learning applications for in-pipe acoustic events.

The main research aim is the definition of a methodology that makes the develop-

ment of such applications possible when the amount of data available is limited.

***

The achievement of the main research aim can be formulated as five comple-

mentary research objectives:

O1 The first objective is to define the research direction through a comprehensive

literature review in acoustics and machine learning, providing the theoretical

foundations required.

O2 The second objective is to provide a methodology that simplifies the acquisi-

tion of the real pipe audio samples required, and to create an example of

soundbank suitable for generating synthetic audio observations enhanced

with accurate annotations and containing specific time-localised events.

1Although the published literature references are poor, the need to monitor standpipe sessions is well
understood among water service providers. This project, for instance, has been inspired by the development
of an IoT device proposed by the funder for the purpose [37]. See also chapter 7.
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O3 The third objective is to provide a methodology to turn the recorded weakly-

labelled pipe audio files into datasets of augmented strongly-labelled syn-

thetic observations where the usage of the real source data is optimised,

and the properties of the events can be tuned as necessary.

O4 The fourth objective is to provide a software tool to simulate the reverberation

experienced in in-pipe propagation and to use such a tool for audio synthesis.

The audio model should also match simple, low-cost, in-house, real test rigs.

O5 The fifth objective is to define an optimised set of features (or the procedure to

extract them) capable of representing the acoustic events for the purpose of

feeding machine learning algorithms for event classification and detection.

A performance benchmark is also required for future developments on the

synthesised dataset.

By achieving the objectives above, it is possible to define a workflow where, from

a relatively small number of real data samples, it is possible to develop a working

device away from the actual infrastructures and reduce the tuning required after

deployment. Then, once the first set of working devices has been deployed, the

same workflow can be repeated using more accurate data for a further in-house

improvement loop.

Given the commercial constraints of the private funder and the need to provide

open access to the data, this work refers to a set of audio samples recorded in a

domestic environment for the purpose. The methodology adopted, however, can

be generalised to different classes of in-pipe audio events once a suitable sound

bank is acquired.

1.3 Literature gaps and major contributions

The contribution of the present research to the existing knowledge can be

analysed from different points of view and in relation to the objectives stated above.

The related data and the main blocks of the software library created are available

to download2.
2Soundbank and dataset: https://doi.org/10.5281/zenodo.7615371
Software library: https://github.com/pipesoundlibrary
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O1 - The literature on machine learning abounds with data archive examples for

specific applications [39],[40]. Indeed, different machine learning algorithms share

the need for training data as an indispensable prerequisite. Preparing appropriate

datasets, however, is a task that can be highly time-consuming and error-prone

[38, p. 154],[41]. In addition, acquiring and sorting data beyond common daily

experience generally requires special equipment and trained human personnel.

Services like Amazon Mechanical Turk [42] or Cloudfactory [43] aim to reduce

the development cost, but the result might be inaccurate and dependent on the

subjective experience of the operators [44]. For instance, to manually generate the

simplest form of strong annotations for unclassified audio files, it is necessary to

listen to the recordings, find the beginning and the end of the audio events, and

assign descriptive labels. This operation requires a time longer than the cumulative

duration of all the recordings, even when labelling is executed directly at the point

of collection. Besides, even basic metadata, such as start-time markers, end-time

markers, and class labels, are generally affected by human skills and attitudes [45].

To mitigate the issues above, the approach used in this work is articulated in two

phases, which relate to the objectives stated in the previous section: the creation

of the soundbank and the actual dataset synthesis.

O1, O2 - Although source data are often not directly accessible, several refer-

ences to datasets for pipe monitoring can be found in the literature and regard

various frameworks, such as ultrasonic-guided monitoring [46] and flow and pres-

sure data analysis [47]. However, archives of pipe audio/vibration recordings are

much scarcer, and the only references found relate to leakage analysis [48],[49],[50].

Indeed, within the goal of collecting sample signals, the work we believe is the

closest to the scope of the present research deals with audio data for leakage

characterisation (ROPP dataset) [51]. With regard to the latter, a few important

issues must be pointed out to understand the knowledge gaps and the reasons

behind objective O2 stated in the previous section. Apart from being specific to

leakage, in the perspective of the present work, the main issue with the ROPP

dataset is its unsuitability for synthesising dynamic and precisely time-localised

audio events. Indeed, for this purpose, the recorded audio should include the non-
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stationary part of the signals (i.e. on-set and off-set) and the means to separate

the background from the relevant audio foreground. The goal is to obtain a dataset

that should be suitable not only for classification but also for detecting single and

multiple overlapping events. Besides, the recording approach adopted in this work

gathers the signals directly from the pipe, a condition closer to the one that can be

realised in the final deployable sensors. For what concerns noise filtering, that is,

the process of separating the meaningful audio foreground from the background

noise, an improved algorithm is proposed with respect to the closest and most

recent example found in the literature [52]. Noise filtering, however, can be declined

in many flavours [53]. As explained in chapter 5, the algorithm proposed is meant

to be compared only against other spectral filters, which we believe is the class

of filters most suited for the scope of this research. It is further remarked that the

solution proposed for creating the soundbank requires only recording the desired

sounds and assigning weak labels, that is, saving audio files belonging to the

same class/instance under the same folder. No further relevant manual operation

is required. This solution simplifies the acquisition and limits human errors without

affecting the quality of the final synthesised dataset.

O1, O3 - Objective O3 concerns the synthesis of multiple audio observations

organised in datasets. In machine learning, artificial audio synthesis is a well-

established technique used in several fields of audio processing, such as sound

event detection (SED) for environmental monitoring [54] and automatic speech

recognition (ASR) [55]. Frequently, the reason behind the adoption of this approach

is the development of machine learning models that are more robust under different

conditions, for instance, variable signal-to-noise ratio [56] and reverberation [57].

Examples of artificial synthesis for pipe-related sound scenes are also reported in

the literature, being the most relevant work found related to the analysis of leakage

sound scenes under different conditions of noise and disturbances [51]. Regarding

the software tools, the open-source library Scaper [58] seems to be the example

of a synthesiser closest to the scope of this work. Scaper allows controlling audio

properties, such as signal-to-noise ratio, duration of the events, and the number

of overlapping events, all assigned according to probabilistic rules in predefined
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ranges. Moreover, the variability of the source events is extended by using a time-

invariant pitch shift and frequency-invariant time dilation. However, despite several

similarities, the solution here proposed for synthesising in-pipe audio scenes differs

under a few crucial aspects related to both the general approach for the synthesis

and the specific in-pipe scenario. For instance, with regard to the general approach

for the synthesis, the proposed software creates new events by combining chunks

of different source observations. This solution provides higher variability on top of

time-dilation and frequency shift without introducing any distortion. Checks are

performed to promote natural-like results. As for Scaper, labels are organised using

the .jams format, which allows storing complex metadata while maintaining human

and machine readability. However, in the proposed implementation, references

are strictly maintained to provide comprehensive traceability of the synthesis

and retrieve the corresponding source recordings in the soundbank. Finally,

synthetic observations are generated using the single instance foldable synthesis,

a procedure here introduced to guarantee balanced partitioning of the final dataset.

Further details are reported in chapters 3, 5 and 6.

O1, O4 - Another main difference and a feature that accounts for the specific

in-pipe scenario is certainly the integration of simulated reverberations, as stated

by objective O4. Simulating reverberations finds many applications in the litera-

ture, from video game audio rendering [59],[60] to understanding human sound

perception in closed environments [61]. In machine learning, common examples

of applications are the enhancement of indoor speech recognition [62],[63] and

the improvement of underwater acoustic detection performances [64]. In-pipe

propagation is also affected by reverberation phenomena induced by the pres-

ence of geometric boundaries and different materials [65, p. 246]. Assessing the

related distortions is a fundamental problem in applications such as in-pipe data

transmission [66],[67] and non-destructive health assessment of infrastructures [68].

In general, synthetic reverberations are usually obtained using three different

approaches: calculating the convolution between "dry" input signals and a set of

recorded impulse responses [38, pp. 161], using delay networks, and using fully

numeric/analytic physical models [69]. These techniques are sometimes used in
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combination. Despite potentially yielding more realistic results, recording impulse

responses can be a tedious task [67]. Indeed, a separate acquisition is required per

each configuration of the audio scene [70]. Therefore, accounting for the limitations,

alternative solutions based on fully analytic/numeric approaches can sometimes

be more effective. For instance, a numeric finite-difference time-domain wave

solver is adopted in [71] to calculate the required impulse responses, removing

the need for real environment-dependent audio acquisition. In this work, a simu-

lated approach based on a physical model has also been adopted for calculating

the impulse responses since, despite the limitations, significant results can be

obtained without additional hardware costs or human labour [69]. Generally, this

solution is preferred when access to the actual sound scene is difficult or when

alterations of the analysed set-up should be allowed (e.g. changing the relative

position between source and receiver). Although a perfect simulation of the real

environment is unfeasible even with fully numerical methods, a simplified repre-

sentation might be enough to account for the propagative distortions. Besides, a

simple set-up can be replicated in a simple test rig to verify the results. Modelling

in-pipe reverberation has long-tracked records [72], being the modal analysis and

the characterisation of the boundary conditions two central issues [73, p. 464].

The analyses are generally developed under the theory of linear elasticity [74],

sometimes in the thin-shell approximation [75]. Application of this framework for

creating a simulation tool for datasets of in-pipe audio events has, to the best of

our knowledge, no previous example in the literature. Therefore, we derive a novel

model based on the linear elasticity theory that, although less flexible than finite

element solutions, is much faster to calculate, easily integrable into the synthesiser,

and ready to be matched to a cheap test rig. With respect to other solutions using

a similar approach [67],[76], a novel algorithm is proposed to automatically extract,

sort and interpolate the roots of the characteristic elasticity equation. Moreover,

two novel solutions are proposed for calculating the modal amplitudes under the

non-orthogonality condition dictated by the solid-liquid boundary of the waveguide.

Finally, the main factors affecting the reverberation are analysed along with a set of

rules to perform the measurements in a real test rig. Further details are reported

in chapters 2 and 4, while the integration of the model for the synthesis of the
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dataset is reported in chapter 5.

O1, O5 - The release of new datasets, including those for SED, is generally com-

bined with the release of benchmarks used as references to assist the development

of new machine learning algorithms and assess the related performance [77],[78].

Therefore, as stated by objective O5, we also provide a set of reference results for

classification obtained using a processing chain with multiple configurations. The

development of new classification algorithms often focuses either on extracting a

better set of features or improving the classifier solution. However, in the latter

case, the choice of a specific set of features is rarely justified [38, p. 96]. Although

mainly dictated by the context of the research, this approach is potentially sub-

optimal since extracting features generally causes the loss of a certain amount of

information and the possible introduction of biased representations [79]. Therefore,

this work primarily focuses on obtaining an optimised set of features and leaves

a deeper analysis of the classifier problem for further research. We reviewed

the literature to select feature representations that provide better performance in

terms of loss of information, stability, invariance, and computational requirements;

then, we optimised such features in respect of the dataset developed. In particular,

optimised representations are proposed starting from short-time Fourier transform

(STFT) [80, pp. 101–102], mel frequency cepstral coefficients (MFCC) [81, pp. 87–91],

and wavelet scattering transform (WST) [82]. The STFT offers a baseline reference

with a fundamental signal representation. MFCC provide better performance while

maintaining low computational complexity. To improve the structure of the filter

bank, generally optimised to emulated bio-inspired characteristics [83], the role of

the windowing function is investigated and a novel algorithm (inspired to pattern

search [84] and simulated annealing [85]) is proposed to optimise the number of

filters and the mel-Hz conversion law. The WST is adopted because of its capability

to retain the information of the source signal at the price of higher computational

complexity [79]. An optimisation is proposed for the number of filters and for the

selection of the filters’ frequency boundaries in relation to the Nyquist frequency.

K-nearest neighbours (KNN) and support vector machine (SVM) classifiers are

used for classification. The former for its simplicity [38, p. 112] while the latter for
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the good performance with low computational complexity [86] and for the possi-

bility to exploit the separation margin to optimise the feature representation [87].

Results are provided for single and multi-folds partitions under a non-overlapping

hypothesis. Further details are reported in chapter 6.

1.4 Thesis outline

The structure of this work (figure 1.1) is dictated directly by the objectives

reported in section 1.2. It articulates in four main blocks: the definition of the

acoustic model (chapters 2 and 4), the creation of the soundbank (chapters 3

and 5), the synthesis of the datasets (chapters 3, 5, and 6), and the machine

learning features and benchmark (chapters 3 and 6). A final conclusion chapter is

further reported at the end. Chapters 2 and 3 provide the necessary theoretical

background and the technical details behind the motivations for the novel research

developed in chapters 4, 5 and 6.

More in detail, chapter 2 introduces the basic concepts of the linear elasticity

theory together with the related wave equations and the analysis of the relevant

boundary conditions. The main physical quantities generally used to describe

dispersion phenomena are also defined. Finally, the equations for acoustic prop-

agation inside a waveguide are derived for the rigid and the elastic boundary

case.

Chapter 3 provides fundamental notions of machine learning and introduces

the concepts required to build a minimal but complete processing chain: from

datasets to performance indicators. The motivation behind the adoption of certain

signal representations and the related transformations are given together with the

strengths and the weaknesses of the classification techniques used.

Chapter 4 introduces the novel acoustic model to simulate the acoustic propaga-

tion in a pipe. It provides a description of the algorithm created to extract and sort

the roots of the characteristic elasticity equation and the methodologies to deter-

mine the modal amplitudes in the case of a speaker-like source. Along with the

results of the simulations, a set of rules for implementing acoustic measurements
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in a real test rig is given. Finally, the obtained results are employed to calculate

the reverberation of an arbitrary signal inside a waveguide.

SOUNDBANK
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FEATURES
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SOUNDBANK
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OBSERVATIONS
SYNTHESIS
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Chapter 4 O4

Chapter 3 O1

Chapter 5 O2

Chapter 5 O3

Chapter 6 O3

Chapter 6 O5

Chapter 6 O5

Chapter 5 O2

Figure 1.1: Topic diagram. Related chapters and objectives are reported in the top boxes.

Chapter 5 describes the approach used to generate collections of strongly-

labelled synthetic observations starting from a relatively small set of pipe-related

audio recordings. The procedure to acquire the soundbank is illustrated along with

the audio filter to remove the background noise and the algorithms to recombine

the source signals. The methodology to calculate the simulated reverberations for

the generated synthetic observations is derived from the acoustic model. Finally,

the structure of the associated annotations is also described.

Chapter 6 defines the details of the dataset synthesis and implements a pro-

cessing chain for the automatic classification of the acoustic events. A comparison
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between several acoustic features is reported along with the techniques adopted

to optimise their performance in respect of the classifier used.

The last chapter summarises the results obtained and provides an overview of

feature possible developments based on this work.
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Chapter 2

Acoustics theory background

This chapter introduces the fundamental notions of acoustics required for this

research. The aim is to describe the framework under which the desired model for

acoustic propagation in elastic waveguides can be obtained. We focus on straight

elastic waveguides filled with an inviscid fluid where an acoustic source with a

certain pressure distribution is applied at a section. The choice of this particular

configuration is dictated by its similarity to commonly used pipes, the possibility

of being modelled using a quasi-analytic approach, and the reproducibility of the

simulated results using simple test rigs. As mentioned in section 1.3, the model

is a fundamental block of the synthesiser proposed in this work and provides

a tool to calculate the synthetic reverberation at a certain point along the pipe.

This chapter introduces the necessary theoretical foundations while the actual

model is described in chapter 4. The following section provides a brief overview

of pertinent literature references and points out this work peculiarities in their

respect. Then, the linear elasticity theory is introduced along with the related

fundamental wave equations and the analysis of a few relevant configurations for

the boundary conditions. Several essential acoustic quantities are also presented.

Finally, the characteristic equations for in-pipe propagation are derived for the rigid

and the elastic boundary cases. Some results for the rigid boundary case are also

generated and reported to better illustrate the effects of the elastic boundaries

described in chapter 4.
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2.1 Acoustic waveguides: a step beyond the existing literature

Propagation of waves in elastic waveguides has been studied for more than

150 years, and several influential authors, such as Pochhammer, Chree, and

Rayleigh, have given their contributions to many specific aspects of the theory [72].

Under the fundamental hypothesis of small mechanical deformations, the theory of

linear elasticity provides the framework necessary to describe how acoustic events

propagate [73]. Pipes are no exception. Acoustic quantities and related elasticity

equations are defined taking into account only macroscopic properties of infinites-

imal elements of volume containing a sufficiently large number of particles [65,

p. 113]. From these equations, from the boundary conditions, and for given sources

of acoustic energy, the propagation can be mathematically described. Boundary

conditions play a fundamental role: when an acoustic wave crosses a separation

boundary between two different mediums, its propagation path is usually altered

by reflection and refraction phenomena [88, pp. 1–62]. In waveguides, this process

is repeated along the whole domain, and the resulting wave is a combination of

rays coming from different paths [88, pp. 63–220].

The study of acoustic propagation in waveguides has found a large variety of

applications, from the characterisation of in-pipe communication channels [66],[67]

to indirect measurement techniques for the properties of inner medium [89],[76].

Among these, non-destructive health monitoring of infrastructures is certainly a

field where the characterisation of acoustic waveguides is a fundamental pillar.

Some interesting examples are reported by Kundu [68], while many others can be

easily found online [90],[91].

2.1.1 Obtaining the impulse response

This work requires calculating the acoustic transformation that a given signal

experiences when it propagates through a waveguide. Because of the linearity

hypothesis, the problem translates into obtaining the impulse response for the

acoustic set-up of interest. In general, determining the impulse response is a

common issue across many disciplines where linearity is assumed as fundamental
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prerequisite [92]. Although equations and measurement techniques depend on the

specific matter, the impulse response is usually obtained using one of the following

three approaches:

• empirical : performing real and specific on-field measurements;

• analytical : obtaining the analytical solution of the governing equations;

• numerical : using numerical methods to solve the governing equations.

To determine the best approach, it is fundamental to analyse the requirements

and focus on the intrinsic benefits and drawbacks of each methodology. Depending

on the specific scenario, however, a combination of different solutions can offer a

valuable strategy to overcome certain limitations [93].

2.1.1.1 Empirical approaches

The empirical measurement of the impulse response offers the advantage

of providing realistic results, but its main limitation is the need to perform the

measurements in the actual environment intended to characterise. Although it is

possible to find some examples related to in-pipe acoustics [67], this approach is

mainly adopted for audio characterisation in architecture [94]. Regardless of the

specific implementation, measuring the impulse response generally consists of

performing the deconvolution of a reverberated signal recorded in the inspected

environment while a certain reference signal is being diffused. Two commonly

used techniques are the maximum length sequence [95], which uses a pseudo-

random noise, and the exponential sine sweep [96], which uses a sine signal with

an exponential variation of frequency in time. The preferred approach depends

on issues such as background noise level, probability of impulsive disturbances,

and the maximum length of the recording [97]. Although a direct measurement

potentially returns an impulse response close to the real one, several factors

can affect the final result. Additive noise and clock mismatch in the acquisition

hardware are just two examples. Nevertheless, apart from the difficulties related

to the actual signal acquisition, the most relevant issue is generally the intrinsic

non-linearity of the measurement equipment [65, pp. 398–416], such as speakers

and microphones [98].
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2.1.1.2 Analytical approaches

Analytical models can provide the exact theoretical value of the physical quan-

tities under investigation and a fine description of the underlying phenomena,

but their applicability is limited to those cases where the geometrical constraints

can be matched to specific reference systems, such as cartesian, cylindrical,

and spherical. When such a match is possible, the boundary conditions can be

generally expressed by simple identities [65, pp.149–160]. For other geometries,

analytical models are seldom applicable, but a general analytic understanding of

the problem can still offer a tool for qualitative analysis [99].

The acoustic model required in this work concerns the propagation in waveguides

of waves generated by certain sources. In linear acoustics, this scenario is

mathematically described by inhomogeneous partial differential equations (PDE)

where the source term can be isolated on one side of the identity [100, p. 202].

A typical approach to solving this category of equations consists in separating

the source term from the homogeneous equation and focusing first on the latter.

Apart from the intrinsic simplification, solving the homogeneous equations offers

the extraordinary benefit of providing a general solution whose functions form a

complete set, meaning that any function in the same domain can be expressed as

a linear combination of the basis obtained from the solution to the homogeneous

equation [101, p. 67]. It is important to remark that, although linearly independent,

the functions of the basis are not always orthogonal, the latter property being

verified only under specific conditions, such as those given by the Sturm–Liouville

theory [102, pp. 363–366],[103, pp.112–118].

The homogeneous wave equation is a second-order linear PDE in time and

space, where, depending on the boundary conditions, some of the independent

variables can appear in a coupled form [73, pp. 464–480]. Exploiting the linearity,

time derivatives (but also space derivatives) can be avoided by Fourier trans-

formation. Indeed, the transformation of the equation in the frequency domain

eliminates the time derivative and turns the homogeneous wave equation into a

harmonic Helmholtz equation. Then, because of the superimposition principle, a
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set of solutions found in a specific range can be anti-transformed in time to cover

wideband signals [104, pp. 299–300]. An approach commonly used to solve the

Helmholtz equation is the separation of the variables [102, pp. 121–178]. The aim

is to turn the homogeneous PDE into a set of independent ordinary differential

equations by assuming that the solution can be found as the product of three

different functions (each depending on a single space variable). Solutions to the

homogeneous equations are either countably or uncountably infinite, the former

case being given by bounded domains [101, p.p. 56, 67]. In modal analysis, prop-

agation states corresponding to these solutions (the eigenfunctions) provide a

decomposition of the overall propagation in different modes, each with peculiar

propagation characteristics mainly described in terms of cut-on/off frequencies

and phase/group velocities [76].

Once the eigenfunctions have been determined, the modal amplitudes are

defined by the time and space characteristics of the driving acoustic source. For the

purpose of the impulse response, however, the only concern is the distribution in

space. Modal amplitudes are generally calculated by dividing a source distributed

in a certain volume into elementary point sources [102, p. 215],[105] and applying

the superimposition principle. The harmonic solution of a point source δ (⃗xxx− x⃗xx0)

placed in x⃗xx0 is generally referred as the Green’s function in x⃗xx0. Knowing the

Green’s function in each point of the source volume allows, through integration, the

inference of the harmonic solution for a given source or arbitrary shape [101, pp. 70–

76]. The determination of the Green’s function is generally not straightforward

[106],[107] and additional considerations are reported in the following sections.

For completeness, it is worth mentioning that the modal analysis described above

is not the only possible analytic approach and, under certain conditions, adopting

other techniques, such as the method of characteristics [104, pp. 331–350] and the

method of images [101, pp. 76–82], can offer more convenient representations of

the problem. The method of images, for instance, uses fictitious sources placed

outside the domain of interest to avoid the conditions imposed by the boundaries

when solving the equations.
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2.1.1.3 Numerical approaches

The numerical approach aims to overcome some of the limitations associated

with empirical measurements and analytical modelling by using numerical solvers

to obtain solutions to the governing equations. Several commercial and open-

source software are available for different physical problems [108],[109], some of

them sharing the same numerical solver across a variety of different fields [110].

The main benefit of this approach lies in the possibility of calculating the values

of the desired physical quantities when analytical representation might be difficult

to implement [111]. For instance, complex geometries, variable boundary condi-

tions, and irregular propagation velocities can be treated with numerical models,

whereas analytical representations may easily become impracticable [112]. On the

other hand, the main drawback is certainly the computational complexity arising

even for problems of modest extent at relatively low frequencies [113]. Moreover,

since solvers are often employed as black boxes, validating the results can be

challenging and errors, such as those caused by poor convergence, can be difficult

to discover [114, p. 166–168],[115].

Generally, the key objective of a numerical problem is to solve for a specific field

(e.g. displacement field). Other quantities, such as stress and strain, are then

derived from the former [114, p. 16]. As for analytical methods, numerical methods

can be implemented in the time or frequency domain. Analysis in the time domain

provides a direct insight into the transient phenomena regardless of their frequency

range but can be affected by several issues, such as stability restrictions on time

step, accumulation of error with time, and difficulty in implementing frequency-

dependent boundary conditions [112]. Alternatively, the impulse response can

be obtained from the inverse Fourier transform of the solutions in the frequency

domain. This approach, however, can yield non-causal effects linked to the

"wraparound" of the discrete Fourier transform and can suffer dispersion-related

phase error [112]. Although a range of different algorithms populates the family of

numeric solvers, two groups of implementations are particularly relevant in terms

of popularity [101],[116]: finite differences (FD) and finite elements (FE).

53



Finite difference method

The finite difference method aims to approximate the governing equations by

replacing the derivatives with difference quotients and calculating the numeric

values in a discrete lattice of points. The function describing the field of a certain

acoustic quantity is expanded in Taylor’s series around the point of the lattice

where the derivative is supposed to be calculated. Then, simple manipulations

return the value of the derivative, which is written as the sum of its approximation

plus an error depending on the step of the lattice [117, pp. 19–20]. Once the discrete

derivatives are obtained, the given problem turns into a matrix equation AAAXXX = BBB,

where XXX are the unknown field values, BBB the source components, and AAA a matrix

that accounts for the derivatives and the rest of the environmental parameters. All

the terms are evaluated at the points of the lattice [101, p. 177].

The simplest form of approximation for the first derivative can be obtained using

only one neighbouring point (forward difference or backward difference). When

solving the equations, however, it is fundamental to minimise the approximation

error and, apart from increasing the lattice density, a workaround consists in using

higher order schemes where derivatives are calculated using more neighbouring

points [118, pp. 18–21]. For instance, the simple central difference approxima-

tion calculates the first derivative by accounting for the two closest points (for a

function of a single variable). Unfortunately, this artifice also requires a grid of

points equally spaced, and since the lattice cannot be selectively refined where

geometries are more complex, this issue remains one of the main limitations of

FD methods. Besides, geometrical models with complex boundaries crossing the

lattice in oblique directions produce an unavoidable "staircase" effect and a coarse

approximation of the boundary conditions [116].

Although several improvements have been proposed (for example, the Local

Interaction Simulation Approach allows better characterisation of the boundary

conditions [117, pp. 33–36], while Finite Integration Technique discretises the inte-

gral rather than the differential equations [119]), the main limitation remains the

necessity to adopt an evenly spaced lattice. Indeed, the number of points in XXX

grows as n3, where n is the chosen number of points per wavelength [101, p.196].
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Finite element method

To overcome the issues above, software applications often adopt finite element

solvers. Commercial algorithms are generally protected by intellectual property,

but some solutions are reported in the literature [120] along with examples of

open-source software [121],[109].

In the FE paradigm, the domain is divided into a mesh of small geometric

elements such as hexahedra, wedges, and tetrahedra [122, pp.24–26] and the

solution inside the elements is approximated as a linear combination of a set of

shape functions in a predefined basis [101, pp. 216–218]. The main benefit of the

finite element approach is the flexibility achievable for the discretisation of the do-

main. Although different elements require different mathematical formulations [114,

pp. 187–241], there is no strict requirement on the geometrical lattice as for the FD

case. Indeed, the mesh can be refined using a higher number of elements only

where geometries are more intricate. Besides, since the position of the nodes can

be arbitrarily defined, the staircase problem on the boundaries is largely mitigated.

It is important to note, however, that the quality of the final solution depends on

the elements chosen. For instance, triangular or tetrahedral elements (especially

when stretched along a particular direction) generally yield worse results than

brick/hexahedral elements, but the former allow better discretisation of complex

geometries [114, pp. 180–181].

The implementation of the actual finite element solver generally follows one of

the two following methods: variational and weighted residuals [117, pp. 19–20].

The variational method exploits the energy balance between total internal energy

and external work [116]. Solutions correspond to the minimum mechanical energy

found from the relationship between internal parameters, such as stress, strain,

displacement, and externally applied inputs and constraints [114, pp. 187–241]. On

the other hand, the weighted residuals method imposes a trial function built from

the basis as a solution to the differential equation. Since this function is generally

not a true solution, the evaluation of the governing equations returns an error

called residual. The residual is then minimised to refine the trial function and find a

solution as close as possible to the real one [117]. Using the Galerkin’s method, for
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instance, the approximation is optimised by imposing the orthogonality between

the residual and the shape functions [101, pp. 216–218].

Despite the benefits, adopting FEM simulators hides several important issues.

For instance, the termination of the discretised region requires special elements [122,

pp. 26–30] whose choice and position must be carefully assessed. A numerical

phase shift can accumulate at each element and introduce a relevant phase error,

especially at higher frequencies (pollution effect) [112]. Higher space and time

resolution can be used for better approximations, but the computational complexity

can grow quickly beyond the available resources in common calculators [116].

Although the coarsest mesh that guarantees convergence can be used, such a

solution is not known in advance, and its determination might not be trivial [114,

p. 176]. Finally, the cost of commercial software can be a substantial barrier.

2.1.2 A model for the synthesiser

Several issues have been considered to identify the best approach for the

present work. Firstly, the lack of access to a variety of water infrastructures

and the impossibility of acquiring a sufficient number of real recordings makes

the empirical determination of the impulse response a poor option. Solving the

propagation problem using numerical techniques, such as frequency domain

FE, is certainly a better alternative; however, albeit FE allows the flexibility to

account for arbitrary geometries and sources, it also introduces a few significant

drawbacks. Even omitting the cost of specialised software (warranty-less open-

source alternatives are available), obtaining correct numerical solutions requires a

proper configuration of the model itself and a check of the coherence of the results.

For instance, as seen in the previous section, the mesh (the distribution of the

elements and their density) and the boundary conditions (both real and fictitious)

should be defined before running the model. Although some operations can be

automatically performed, other tasks require manual activities and supervision

with a clear understanding of the physical problem. Besides, the model needs

solving for the maximum size, and large 3D domains can be computationally

intensive, even beyond the limits of standard laptops. The last of the three options
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mentioned above, the analytical approach, is also very limited. Indeed, apart from

elementary geometries, it is generally challenging to obtain analytic solutions for

the governing equations. Finally, the model developed is intended to be used

in a synthesiser where, during the synthesis, calculations are repeated multiple

times. Ideally, the simulator adds only a little extra computational cost per iteration.

Moreover, although accounting for a large variety of geometries and sources could

be beneficial, the aim remains understanding how reverberation affects in-pipe

acoustic events. From this point of view, a simulator for the most common pipe

geometries and materials, possibly matched to simple real test rigs, is a sufficient

starting point.

2.1.2.1 Quasi-analytic calculation of the impulse response

Considering the constraints above, combining numerical and analytical tech-

niques can offer a better solution. This approach is generally referred to as

semi-analytic finite elements (SAFE) [116] and aims to use an analytic formulation

along those directions where a numeric approach is unnecessary. Along the

other directions, the domain is discretised with reduced dimensionality achieving a

substantial reduction of the computational complexity. In straight waveguides, for

instance, the numerical analysis can be limited to 2D cross-sections using fewer

and simpler elements. The FE eigenproblem yields the axial wavenumbers kz(ω),

and the solution in the propagation direction z can be obtained in the analytical

form [123].

SAFE applications have a few decades of records in the literature [124], and,

apart from the reduced computational complexity, their success in waveguide

analysis is also related to the possibility of accounting for arbitrary cross-section

geometries [125], combinations of different materials [126], and even viscoelastic

damping [127]. SAFE methods, however, retain part of the issues related to full

FE techniques. For instance, it is necessary to check for convergence, sometimes

using a finer mesh to compensate for the post-processing loss of accuracy [127].

In [126], the convergence is verified by solving the discrete domain multiple times

until an acceptable match between theoretical and approximated cut-on/cut-off
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frequency is found.

Although SAFE methods are a viable option for this work, the cylindrical geom-

etry of the pipes suggests that an analytical approach can further replace some

numerical aspects of the simulations. Indeed, it is possible to find analytic solutions

to the homogeneous equation for multilayered cylinders [76] (even accounting for

viscoelastic dumping [89]), but the integration of the source requires additional

considerations. Using the separation of variables mentioned in section 2.1.1.2, the

problem turns into a search for the eigenvalues on the waveguide cross-section.

Once the axial wavenumbers kz(ω) are obtained, to define a unique solution, it is

necessary to calculate the modal amplitudes from the source excitation.

This problem is generally tackled by decomposing the source as a sum of el-

ementary sources and using Green’s functions along with the superimposition

principle (section 2.1.1.2). Importantly, the orthogonality is the underlying fun-

damental assumption for a precise calculation of the amplitudes [101, pp. 70–76].

Indeed, Green’s functions relate to point sources, and their exact approximation

requires an infinite number of modes. If modes are orthogonal, it is possible to cal-

culate their exact amplitude independently from the others, and the approximation

error depends only on the truncation of the series. This property is no longer valid

if the modes are not orthogonal. In fact, since only a small number of modes can

be accounted for, the truncation of a series of non-orthogonal modes would also

introduce an error for the amplitude of the modes retained. Therefore, the deter-

mination of Green’s functions is not a viable option in the case of non-orthogonal

modes.

Orthogonality provides significant simplifications but cannot always be assumed

verified. In [128], the proof of orthogonality for a multilayered waveguide of an

arbitrary cross-section is given from real (or complex) reciprocity [88, pp. 151–155].

The demonstration, however, requires free or rigid boundary conditions, continuity

of the normal stress, and continuity of displacement across the separation bound-

aries [129]. Although free boundary conditions for the outermost surface can be

here accepted, the required liquid-solid interface imposes only continuity of normal

displacement, and this condition is not sufficient to guarantee the proof of orthog-
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onality reported in [128]. Therefore, as shown in chapter 4, two different novel

solutions are proposed to determine the modal amplitudes directly from the source

distribution. Moreover, since mode sorting algorithms exploiting orthogonality [123,

p. 140] cannot be applied, a different novel algorithm is also described.

The approach adopted in this work is defined as quasi-analytic because, apart

from the discretisation of the pressure source, no other numeric modelling is

involved. The main limitations are the need to place the source on the cross-

section of the waveguide and, as for any analytic approach, the possibility of

dealing with geometries that cannot be matched with the reference system. These

issues, however, can be partially overcome by mixing the proposed solution with

FE techniques. Sources of arbitrary geometries, for instance, could be virtualised

by obtaining the equivalent pressure or displacement on a 2D interface [130], while

obstacles or elements with complex shapes can be modelled with FE techniques

and interfaced with region solved using the analytical approach [131],[132]. In this

work, however, these aspects are not further developed.

In the following sections, some necessary concepts of linear elasticity are intro-

duced. The analysis of the boundary conditions is restricted to the cases required

for the model developed. The study of a simple cylindrical waveguide with rigid

boundary conditions is reported along with some simulated results to explain the

role of orthogonality in calculating the modal amplitudes. Finally, the governing

equations for an elastic waveguide filled with an inviscid liquid are introduced

and manipulated to obtain the characteristic equation for the calculation of the

wavenumbers. The novel model proposed is discussed in chapter 4.

2.2 Fundamental concepts of linear elasticity

The displacement of a particle in an elastic body around its equilibrium position

is usually referred to as vibration. The fundamental theory behind vibrations

describes the relations between forces and deformations in solid bodies and how

the effects of certain mechanical events propagate along the body itself. As shown

in the following sections, many considerations valid for propagation in fluids can

be regarded as a particular case of propagation in solids.
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2.2.1 Stress and strain

Two physical quantities are fundamental for the vibration theory: stress and

strain. An accurate description can be found in many books and lecture notes

of mechanics [74, pp. 31–48, 55–71],[133, pp. 29–112]. Here only the necessary

properties related to isotropic media are recalled.

2.2.1.1 Stress

The definition of stress is related to the definition of traction vector. Let Sz be

a flat surface centred in P, with P a point in a solid body. Let ⃗̄xxx, ⃗̄yyy, ⃗̄zzz be a set of

orthonormal versors centered in P with ⃗̄zzz normal to the surface Sz, and F⃗FFz the

force acting on the latter. The traction vector can be defined as:

t⃗tt (z) = lim
Sz→0

F⃗FFz

Sz
. (2.1)

A specific instance of the traction vector is identified when P, the direction of

normal unit vector ⃗̄zzz, and the force F⃗FFz are specified. In the reference system

identified by ⃗̄xxx, ⃗̄yyy and⃗̄zzz, the traction has a component normal to the surface (along

⃗̄zzz) and two others parallel to Sz (along ⃗̄xxx and ⃗̄yyy). With the same P and the same

reference system ⃗̄xxx⃗ȳyy⃗z̄zz, similar definitions can be given for surfaces normal to ⃗̄xxx

and⃗̄yyy. Therefore, given a point P and a reference system associated with it, it is

possible to define nine scalar quantities σi j from the components of the related

traction vectors. For i = j these quantities are called normal stress, while, in

the other cases, they are called shear stress and sometimes are indicated with

the Greek letter τ . The first index indicates the direction of the normal, while the

second index indicates the component of the stress. For instance, σxx indicates the

normal stress along the x direction. Since traction is the force per unit area exerted

by the material above the surface on the material below the surface, Newton’s third

law entails that an equal and opposite traction must be exerted in the opposite

direction. In particular, if an infinitesimal cube of material is considered around the

point P, the stresses on opposite sides of the cube tend to be equal and opposite.
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Figure 2.1: Stress components for an infinitesimal cube of material.

Figure 2.1 illustrates the definitions of the stress components σi j, which can also

be organised in a matrix form:

σσσ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 , (2.2)

where the matrix σσσ is called stress tensor. The specific form of the stress

tensor is related to the specific coordinate reference system, but named QQQ the

rotation matrix to transform the reference coordinate system ⃗̄xxx⃗̄yyy⃗̄zzz into ⃗̄xxx′ ⃗̄yyy′ ⃗̄zzz′1,

the relationship between the expression of the stress tensor in the first coordinate

system σ and the one in the second coordinate system σ ′ can be written as [74,

p. 60]:

σσσ = QQQσσσ
′′′QQQT

σσσ
′′′ = QQQT

σσσQQQ, (2.3)

where superscript T indicates the matrix transpose. Interestingly, for a given

stress tensor, there exists a specific reference system where the values of the

shear stresses are zero, and the normal stresses include both the maximum and

the minimum values. The directions of this particular reference system are called

principal directions, and the associated stresses are called principal stresses. It

can be proved that the principal stresses are the eigenvalues of the stress tensor,

1the rotation matrix is built with the director cosines of the related axis.
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while the principal directions are the related eigenvectors [134, pp. 209–211]. On

the other hand, the shear stresses reach the maximum value on planes oriented

45◦ from the principal directions, and they have magnitudes equal to half of the

difference between the related principal stresses. Regardless of the specific

representation, for isotropic materials, the stress tensor is always symmetric. That

is, σi j = σ ji and three invariants can be defined [74, p. 61]:

Iσ1 = σxx +σyy +σzz (2.4a)

Iσ2 = σxxσyy +σyyσzz +σzzσxx−σ
2
xy−σ

2
yz−σ

2
zx (2.4b)

Iσ3 = σxxσyyσzz−σxxσ
2
yz−σyyσ

2
zx−σzzσ

2
xy +2σxyσyzσzx (2.4c)

The stress tensor offers a useful property stated by Cauchy’s law [134, p. 203].

Specifically, given a surface whose normal unit vector is ⃗̄nnn, the related traction can

be calculated as:

t⃗tt =


tx

ty

tz

=


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




nx

ny

nz

= σσσ⃗̄nnn (2.5)

where the components of the traction, the tensor, and the normal surface vector

are all given in the same reference coordinate system. It is worth remarking that

when the stress tensor can be expressed as:

σσσ =


σ0 0 0

0 σ0 0

0 0 σ0

 (2.6)

the stress is referred as isotropic state of stress or hydrostatic state of stress [74,

p. 84], and the tensor is invariant. This condition is verified for a fluid at rest with

pressure σ0.
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2.2.1.2 Strain

When a set of forces acts upon a material, the shape of the latter changes.

Regardless of the causes, there exist several possible ways to measure the

deformation, and the best approach depends on the scope of the analysis. All

the different definitions [74, p. 113], however, exhibit negligible differences when

variations of the shape are small. In this case, a simple linear approach provides

good accuracy and simple calculations.

Intuitively, a solid body is subject to deformation in a point P when virtual

segments passing through P and connecting P to other points of the solid body

stretch, contract, or rotate. It can be proved that the deformation at a point P

(figure 2.2) can be completely characterised if the behaviour of a set of three

perpendicular segments passing through P is known [133, p. 91].

P

Figure 2.2: Deformation in a point P. Virtual segments passing through
P and connecting P to other points of the solid body give a
measure of the deformation.

In this work, the deformations are measured according to the concept of Engi-

neering or small strain [74, p. 34–38], which provides both linearity and accuracy

for small deformations. To introduce the concept, it is assumed a 3D coordinate

reference system ⃗̄xxx⃗ ȳyy⃗ z̄zz and the 3D deformation analysis is decomposed into three

2D analysis along the main planes of the reference system. From a point in

the solid body P≡ x,y,z (consider now its 2D representation P≡ x,y on a plane

z = constant), two segments can be drawn in the direction of ⃗̄xxx and⃗̄yyy: PA and PB

(figure ??). If the solid body changes its shape, these two segments move in space
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and the new positions of P, A and B are now P′, A′ and B′. For small deformations,

the segment P′A′ is almost the same length as P′A′x. The engineering normal

strain along ⃗̄xxx is defined as:

εxx =
P′A′x−PA

PA
(2.7)

P

Y

X

A

B

P'Δy

Δxy

y + Δy

x x + Δx

A'

A'x

B'y B'

φ

θ

ux(x,y+Δy)

uy(x + Δx,y)

ux(x,y)

uy(x,y+Δy)

uy(x,y)

ux(x+Δx,y)

Figure 2.3: Representation of the strain at a point P in two dimensions.

The position of P′ and A′x in respect of P and A can be expressed using the x

component of the displacement vector u⃗uu. Therefore, the normal strain can be

rewritten as:

εxx = lim
∆x→0

ux(x+∆x,y)−ux(x,y)
∆x

=
∂ux

∂x
. (2.8)

Repeating the same procedure in the⃗̄yyy direction:

εyy =
∂uy

∂y
. (2.9)

64



Hence, the normal engineering strain can be written in terms of the partial

derivative of the displacement u⃗uu. To include all the effects of the deformation, also

the angles θ and φ must be considered. For small deformations, it is possible to

approximate θ and φ with their respective tangents, thus:

θ ≈ A′xA′

P′A′x
φ ≈

B′yB′

P′B′y
, (2.10)

and it can be assumed P′A′x ≈ PA and P′B′y ≈ PB. The engineering shear

strain is then defined as:

εxy =
1
2

( A′xA′

PA
+

B′yB′

PB

)
(2.11)

and, using the displacement vector u⃗uu for small values of ∆x and ∆y:

εxy =
1
2

(
lim

∆x→0

uy(x+∆x,y)−uy(x,y)
∆x

+ lim
∆y→0

ux(x,y+∆y)−ux(x,y)
∆y

)
= (2.12)

1
2

(
∂uy

∂x
+

∂ux

∂y

)
.

The definitions above can be repeated for the planes xz and yz, and the strains

can be organised in a symmetric matrix form. The strain tensor in cartesian and

cylindrical coordinates is therefore defined as [74, p. 47]:

εεε =


∂ux
∂x

1
2

(
∂uy
∂x + ∂ux

∂y

)
1
2

(
∂uz
∂x + ∂ux

∂ z

)
1
2

(
∂uy
∂x + ∂ux

∂y

)
∂uy
∂y

1
2

(
∂uy
∂ z + ∂uz

∂y

)
1
2

(
∂uz
∂x + ∂ux

∂ z

)
1
2

(
∂uy
∂ z + ∂uz

∂y

)
∂uz
∂ z

 (2.13)

εεε =


∂ur
∂ r

1
2

(
1
r

∂ur
∂θ

+ ∂uθ

∂ r −
uθ

r

)
1
2

(
∂ur
∂ z + ∂uz

∂ r

)
1
2

(
1
r

∂ur
∂θ

+ ∂uθ

∂ r −
uθ

r

)
1
r

(
ur +

∂uθ

∂θ

)
1
2

(
∂uθ

∂ z + 1
r

∂uz
∂θ

)
1
2

(
∂ur
∂ z + ∂uz

∂ r

)
1
2

(
∂uθ

∂ z + 1
r

∂uz
∂θ

)
∂uz
∂ z

 (2.14)
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Many of the properties of the stress tensor have an equivalent for the strain. For

instance, with similar calculations, it is possible to find the principal strains (which

include both minimum and maximum) and the related principal directions, that

is, the spatial directions of the principal strains [74, p. 44]. As for the stress, the

shear strain is null along the principal directions and reaches its maximum value

on planes oriented 45◦ from the principal directions. The strain tensor admits three

invariants, and the definition can be obtained from (2.4) substituting σ with ε . In

this case, the first invariant Iε1 also has a geometric meaning since:

Iε1 = εxx + εyy + εzz ≈
∆V
V

, (2.15)

where V is the volume to which the strain is referred to, and ∆V is its variation.

2.2.2 Linear elasticity

Linear elastic models are based on the following assumptions [74, p. 77]:

• stress and strain are linked by a unique linear relationship;

• stress-strain relationship is time-independent;

• stress does not induce any permanent deformation.

Along with the conditions above, it is assumed that the material is isotropic, that

is, with the same mechanical properties along any space direction [133, p. 113].

The linear elastic behaviour of the materials is commonly characterised using the

parameters described below.

The Young’s modulus (Fig. 2.4-A) characterises the relationship between stress

and strain when a cylindrical specimen of material is stretched under a tensile test.

It measures the deformation ∆l in the linear region (before the elastic limit) in the

same direction of the applied stretching force:

E =
σl

∆l/l0
=

σl

εl
. (2.16)

Equation (2.16) is also called the one dimensional linear elastic constitutive
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equation. The unit of Young’s modulus is Pascal [Pa].

σl

Δl

l0

(A)

Δl

l0

(B)

w0

w0 -Δw

(C)

τ

γ

(D)

p

V

Figure 2.4: Representation of the elasticity constants. A) Young’s modu-
lus, B) Poisson’s ratio, C) Shear modulus, D) Bulk modulus

Under the same conditions described for Young’s modulus, the Poisson’s ratio

(figure 2.4-B) measures how the specimen changes its thickness with respect to

the deformation along the direction of the force:

ν =−∆w/w0

∆l/l0
=−εw

εl
, (2.17)

where w0 is the original diameter of the cylindrical specimen, and ∆w is its

variation. The Poisson’s ratio is dimensionless. The shear modulus (figure 2.4-C)

is the equivalent of Young’s modulus for the shear stress and the shear strain, and

it is defined as:

µ =
τ

γ
=

τ

2ε
. (2.18)

The unit of the shear modulus is [Pa]. The bulk modulus (figure 2.4-D) measures

the change of volume of a specimen undergoing an equal pressure on all its sides:

K =− p
∆V/V

. (2.19)

The unit of the bulk modulus is [Pa].
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The parameters introduced above can be combined to find the constitutive

equations, that is, the relationships between strain and stress in space. It is

important to note that the linearity hypothesis allows the use of the superimposition

principle, while restricting the analysis to isotropic materials allows the exploitation

of symmetries. From (2.16) and (2.17), the stress along ⃗̄xxx induced by the normal

stresses can be written as:

ε
x
xx =

1
E

σxx ε
y
xx =−

ν

E
σyy ε

z
xx =−

ν

E
σzz, (2.20)

where the isotropic assumption entails that E and ν are equal along all the

directions and that no shear stress along⃗̄xxx,⃗̄yyy,⃗̄zzz can arise from normal stress along

⃗̄xxx,⃗̄yyy,⃗̄zzz. Therefore:

εxx =
1
E

(
σxx−ν(σyy +σzz)

)
(2.21a)

εyy =
1
E

(
σyy−ν(σxx +σzz)

)
(2.21b)

εzz =
1
E

(
σzz−ν(σyy +σzz)

)
. (2.21c)

It can be proved [133, p. 147] that, for an isotropic linear elastic material, the

following relationship between E, ν , µ exists:

µ =
E

2(1+ν)
. (2.22)

Combining (2.22) with (2.18) yields:

εxy =
1+ν

E
σxy (2.23a)

εyz =
1+ν

E
σyz (2.23b)

εzx =
1+ν

E
σzx. (2.23c)

Equations (2.21) and (2.23) are usually known as Hooke’s law and are the
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constitutive equations for a linear isotropic material. For calculation purposes,

Hooke’s law is usually given in matrix form:

σσσ =



σxx

σyy

σzz

σxy

σyz

σzx


=



λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0

λ λ λ +2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





εxx

εyy

εzz

εxy

εyz

εzx


= HHHεεε, (2.24)

where:

λ =
Eν

(1+ν)(1−2ν)
µ =

E
2(1+ν)

(2.25)

are called Lamé constants. Hooke’s law in cylindrical coordinates can be written

as [74, p. 86]:

σσσ =



σrr

σθθ

σzz

σrθ

σθz

σzr


=



λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0

λ λ λ +2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





εrr

εθθ

εzz

εrθ

εθz

εzr


= HHHεεε. (2.26)

Combining (2.13) and (2.24) together, it is possible to write the stress as a

function of the displacement:

σxx = (λ +2µ)∂ux
∂x +λ

∂uy
∂y +λ

∂uz
∂ z σxy = µ(∂ux

∂y +
∂uy
∂x )

σyy = λ
∂ux
∂x +(λ +2µ)

∂uy
∂y +λ

∂uz
∂ z σyz = µ(

∂uy
∂ z + ∂uz

∂y )

σzz = λ
∂ux
∂x +λ

∂uy
∂y +(λ +2µ)∂uz

∂ z σzx = µ(∂uz
∂x + ∂ux

∂ z )

(2.27)
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and, equivalently, from (2.14) and (2.26) in cylindrical coordinates:

σrr = (λ +2µ)∂ur
∂ r + λ

r (
∂uθ

∂θ
+ur)+λ

∂uz
∂ z σrθ = µ(1

r
∂ur
∂θ

+ ∂uθ

∂ r −
uθ

r )

σθθ = λ
∂ur
∂ r + λ+2µ

r (∂uθ

∂θ
+ur)+λ

∂uz
∂ z σθz = µ(∂uθ

∂ z + 1
r

∂uz
∂θ

)

σzz = λ
∂ur
∂ r + λ

r (
∂uθ

∂θ
+ur)+(λ +2µ)∂uz

∂ z σzr = µ(∂ur
∂ z + ∂uz

∂ r ).

(2.28)

2.2.3 The Navier’s Equation

The definition of stress given in the previous section can be used in combination

with Newton’s second law to obtain the equation of motion. Given an infinitesimal

cube of material centred in P≡ (x̄, ȳ, z̄), of dimension ∆x∆y∆z and density ρ , the

forces acting on it can be divided in body forces (such as gravity) and stress

(such as pressure). Since the dimension is infinitesimal, the density ρ and the

body forces b⃗bb can be considered constant, while the stress can be considered

linearly variable from one face of the cube to the opposite. Along the⃗̄xxx direction, for

example, named σxx(x̄−∆x/2) the average normal stress on the face x= x̄−∆x/2,

the stress on the face x = x̄+∆x/2 can be obtained using Taylor’s series up to

the first derivative (since the cube is infinitesimal and the stress variation can be

assumed linear, the error is negligible). Thus, the net force associated with the

normal stress acting on the cube in the ⃗̄xxx direction is:

Fxx =
(

σxx(x̄−∆x/2)+
∂σxx

∂x
∆x−σxx(x̄−∆x/2)

)
∆y∆z =

∂σxx

∂x
∆x∆y∆z (2.29)

Since the stress variation is assumed linear, the derivative is constant along ⃗̄xxx

and it can be calculated in P. Similar steps can be repeated for the shear stress,

and Newton’s second law along ⃗̄xxx can be written as:

∂σxx

∂x

∣∣∣
P

∆x∆y∆z+
∂σxy

∂y

∣∣∣
P

∆y∆x∆z+
∂σxz

∂ z

∣∣∣
P

∆z∆x∆y+bx = ρ∆x∆y∆z ax. (2.30)

Repeating the same procedure along⃗̄yyy and⃗̄zzz yields the equations of motion:
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∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂ z
+bx = ρax (2.31a)

∂σyy

∂y
+

∂σyx

∂x
+

∂σyz

∂ z
+by = ρay (2.31b)

∂σzz

∂ z
+

∂σzx

∂x
+

∂σzy

∂y
+bz = ρaz. (2.31c)

Combining (2.31) with (2.24) and (2.13) the Navier’s equations are obtained:

ρ ax = (2.32a)

bx +(λ +2µ)
∂ 2ux

∂x2 +µ
∂ 2ux

∂y2 +µ
∂ 2ux

∂ z2 +(λ +µ)
∂ 2uy

∂x∂y
+(λ +µ)

∂ 2uz

∂x∂ z

ρ ay = (2.32b)

by +(λ +2µ)
∂ 2uy

∂y2 +µ
∂ 2uy

∂x2 +µ
∂ 2uy

∂ z2 +(λ +µ)
∂ 2ux

∂y∂x
+(λ +µ)

∂ 2uz

∂y∂ z

ρ az = (2.32c)

bz +(λ +2µ)
∂ 2uz

∂ z2 +µ
∂ 2uz

∂x2 +µ
∂ 2uz

∂y2 +(λ +µ)
∂ 2ux

∂ z∂x
+(λ +µ)

∂ 2uy

∂ z∂y

which can be written in vector form as:

ρ a⃗aa = b⃗bb+µ∇
2⃗uuu+(λ +µ)∇(∇ · u⃗uu), (2.33)

and where ∇2⃗uuu can also be written as ∇(∇ · u⃗uu)−∇× (∇× u⃗uu)

2.3 Lossless acoustic waves in solids and fluids

Apart from particular cases, it is generally difficult to solve Navier’s equations

directly. Stokes-Helmholtz decomposition of the displacement field, however,

offers an interesting workaround [68, p. 47]. Named u⃗uu the particle displacement

associated with an acoustic process and assuming it is twice differentiable in a

certain domain, Helmholtz’s theorem states that u⃗uu can be decomposed as:
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u⃗uu = ∇φ +∇× ψ⃗ψψ with ∇ · ψ⃗ψψ = 0, (2.34)

where the first term indicates the gradient of a scalar potential and the second

term is the rotor of a vector potential. In order to uniquely determine u⃗uu from φ and

ψ⃗ψψ , the additional condition ∇ · ψ⃗ψψ = 0 shall be included [73, p. 275]. Both terms φ

and ψ⃗ψψ can be part of the same solution, but it is easier to understand the physical

meaning by considering them separately.

The first term is usually referred as the irrotational term, since if it exists a

potential φ so that u⃗uu = ∇φ then ∇× u⃗uu = ∇×∇φ = 0. Since u⃗uu describes the

displacement of a particle, a null rotor entails that the particle cannot rotate as a

rigid body. Substituting u⃗uu = ∇φ into (2.33) and assuming the effect of the body

force negligible:

∇
2⃗uuu =

1
c2

L

∂ 2⃗uuu
∂ t2 , (2.35)

where:

cL =

√
λ +2µ

ρ
. (2.36)

Equation (2.35) is a linear lossless wave equation. Since it has been obtained

under the condition ∇× u⃗uu = 0, it describes waves that cause the medium to

strain but not to rotate, and they are called longitudinal or irrotational waves. An

important observation comes from the property of the Laplacian:

∇∇
2
φ = ∇

2
∇φ = ∇

2⃗uuu =
1
c2

L

∂ 2⃗uuu
∂ t2 =

1
c2

L

∂ 2∇φ

∂ t2 = ∇
1
c2

L

∂ 2φ

∂ t2 . (2.37)

Therefore, the same equation can be solved equivalently either for the particle

displacement or its scalar potential.

The second term is usually referred as the transverse term since if u⃗uu = ∇× ψ⃗ψψ

then ∇ · u⃗uu = 0. Indeed, recalling equation (2.15) and considering that:
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∇ · u⃗uu =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z
= εxx + εyy + εyy = Iε1 = 0, (2.38)

the field described by the transverse term cannot support variations of the

particles’ volume. Therefore, there can be normal strain only if it sums to zero with

the normal strain along the other directions in space. Using the previous equation,

substituting εxx, εyy, εzz into (2.32) and neglecting the effect of the body force it

yields:

∇
2⃗uuu =

1
c2

T

∂ 2⃗uuu
∂ t2 , (2.39)

where:

cT =

√
µ

ρ
. (2.40)

The (2.39) is again a linear lossless wave equation with propagation velocity cT .

Its solutions are equivoluminal waves also called transverse waves. As for the

scalar potential, the property of the Laplacian entails:

∇×∇
2
ψ⃗ψψ = ∇

2
∇× ψ⃗ψψ = ∇

2⃗uuu =
1

c2
T

∂ 2⃗uuu
∂ t2 =

1
c2

T

∂ 2∇× ψ⃗ψψ

∂ t2 = ∇× 1
c2

T

∂ 2ψ⃗ψψ

∂ t2 . (2.41)

Therefore, the same equation can be solved equivalently for the particle displace-

ment or for its vector potential. Transverse and longitudinal waves can coexist at

the same time (their displacement simply sum up) but they propagate at different

speeds depending on the value of ρ , µ and λ .

To yield equations (2.37) and (2.41), it has been tacitly assumed that the accel-

eration a⃗aa can be simply written as a⃗aa = ∂ 2⃗uuu/∂ t2. This identity, however, is valid

only if the spatial variations of displacement and velocity fields are negligible in

respect of the time variations. In case of not negligible variations, a more accurate

expression would be a⃗aa = ∂ 2⃗uuu/∂ t2 +(⃗vvv ·∇)⃗vvv.
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When the medium is an ideal inviscid liquid, the shear modulus µ is zero and

the (2.33) yields:

ρ
∂ 2⃗uuu
∂ t2 = b⃗bb+λ∇(∇ · u⃗uu), (2.42)

which does not allow transverse waves. Since the shear modulus is null, equation

(2.24) returns:

σxx = σyy = σzz = λ (εxx + εyy + εzz) =−p, (2.43)

where p is the acoustic pressure assumed opposite to the normal stress by

definition. From the previous equation and (2.13), the pressure in an inviscid liquid

can be written as:

p =−λ∇ · u⃗uu. (2.44)

Plugging (2.44) into (2.42) and using the definition of the scalar potential yields:

ρ
∂ 2∇φ

∂ t2 = b⃗bb−∇p, (2.45)

which, for negligible body force, can be rewritten as:

p =−ρ
∂ 2φ

∂ t2 , (2.46)

where the acoustic pressure for an inviscid liquid is given as a function of

the scalar potential. The particle velocity can be found from the definition of

displacement:

v⃗vv = ∇
∂φ

∂ t
. (2.47)

Combining the two previous equations, it is possible to relate pressure and

particle velocity:
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−∇p = ρ
∂ v⃗vv
∂ t

. (2.48)

Interestingly, from (2.46), (2.47) and (2.37), it is easily shown that both pressure

and particle velocity satisfy the same wave equation as for the scalar potential:

∇
2 p =

1
cL

∂ 2 p
∂ t2 (2.49a)

∇
2⃗vvv =

1
cL

∂ 2⃗vvv
∂ t2 . (2.49b)

To summarise, under the condition that:

• the equilibrium density ρ is constant in time,

• the amplitude of the physical quantities associated with the vibroacoustic

process (particle displacement, particle velocity, pressure) is small,

• the effect of the body forces is negligible,

it is possible to solve the lossless vibroacoustic problem by solving the same

wave equation for a number of different physical quantities. In particular, for

an inviscid liquid domain, scalar potential, pressure, particle displacement, and

particle velocity can be used. For a solid domain, instead, scalar potential and

particle displacement can be used for the irrotational term, while vector potential

and particle displacement can be used for the transverse term. For all the cases

above, the particular solution is defined only when a sufficient number of initial

and boundary conditions are defined.

2.4 Plane waves and wavenumber vector

An acoustic plane wave is a wave whose acoustic quantities have constant

amplitude and phase on any plane perpendicular to the propagation direction [65,

p. 122]. The lossless wave equation introduced in the previous section has the

general form:

∇
2
ξ =

1
c

∂ 2ξ

∂ t2 , (2.50)
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where ξ is some scalar or vector quantity and c is the related propagation velocity.

Harmonic planar waves are solutions to (2.50) and offer a simple introduction to a

very meaningful quantity that remains fundamental in other non-trivial cases: the

wavenumber vector. If we assume a plane wave travelling in a certain direction, a

solution to (2.50) as a function of the position P≡ x,y,z has the form:

ξ (P, t) = Aei(kxx+kyy+kzz−ωt), (2.51)

where A is the complex amplitude and

ω2

c2 = k2
x + k2

y + k2
z . (2.52)

For the case above, the wavenumber vector is defined as:

k⃗kk = kx⃗x̄xx+ ky⃗ȳyy+ kz⃗z̄zz, (2.53)

where ⃗̄xxx,⃗̄yyy, and⃗̄zzz are the unitary versors of the reference system. The position

vector can be written as:

r⃗rr = x⃗x̄xx+ y⃗ȳyy+ z⃗z̄zz. (2.54)

Therefore, (2.51) is equivalent to:

ξ (P, t) = Aei(⃗kkk·⃗rrr−ωt). (2.55)

Since, at a given time t, k⃗kk can be written as ∇(⃗kkk · r⃗rr), recalling the meaning

of the gradient, k⃗kk represents a vector perpendicular to the planes with constant

amplitude and phase. Hence, the wavenumber vector points to the direction of the

propagation and kx/|⃗kkk|, ky/|⃗kkk|, kz/|⃗kkk| are the cosines of the propagation direction

with respect to the given reference system. The modulus of the wavenumber

vector depends on wave frequency and medium properties and its SI unit is [m−1].
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As shown in sections 2.8.3 and 4.1, the wavenumber is fundamental to describing

the dispersive behaviour of the waveguides.

Plane waves offer a further simple geometrical representation for waves as-

sociated with the scalar potential φ and the vector potential ψ⃗ψψ as defined in

(2.34). Considering first the former and choosing the reference system so that the

propagation direction lies along x, the potential can be written as:

φ(x,y,z, t) = Φei(kxx−ωt). (2.56)

The associated displacement ∇φ is:

u⃗uuφ (x,y,z, t) =Uφ ei(kxx−ωt )⃗x̄xx (2.57)

and, therefore, the scalar potential displacement has components only in the

direction of the propagation. Similarly, the wave associated with the vector potential

can be written as:

ψ⃗ψψ(x,y,z, t) = Ψxei(kxx−ωt )⃗x̄xx+Ψyei(kxx−ωt )⃗ȳyy+Ψzei(kxx−ωt )⃗z̄zz. (2.58)

The associated displacement ∇× ψ⃗ψψ is:

u⃗uuψ(x,y,z, t) =Uψye
i(kxx−ωt )⃗ȳyy+Uψze

i(kxx−ωt )⃗z̄zz (2.59)

and, therefore, the direction of the displacement is orthogonal to the direction of

the propagation.

2.5 Acoustic intensity

The pressure of a harmonic plane wave of amplitude P along x can be written

as:

p(x, t) = Pei(kx−ωt) (2.60)
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and, from (2.48) and (2.52), the related particle velocity is:

v(x, t) =
P
ρc

ei(kx−ωt) =Vei(kx−ωt). (2.61)

An important quantity often used to characterise acoustic signals is the acoustic

intensity [135, p. 61], which is the time-averaged work per unit area done on an

element of fluid. It is defined as:

I =
1
T

∫ T

0
p(t)|⃗vvv(t)|dt. (2.62)

For the plane wave given by (2.60) and (2.61) the intensity is:

I =
P2

2ρc
, (2.63)

where a sign can be added to specify the propagation direction. Usually, the

intensity is given using logarithmic scales in decibels. The intensity level is defined

as:

IL = 10log(I/Ire f ). (2.64)

where Ire f is a reference intensity value.

Section 5.2.2 describes the procedure to acquire the soundbank using a hy-

drophone. The output quantities of microphones and hydrophones are usually

proportional to the input pressure. For this reason, measurements are frequently

given as pressure with respect to a reference pressure value Pre f . The sound

pressure level is defined as:

SPL = 20log(Pe/Pre f ) (2.65)

where Pe is the measured effective amplitude of the pressure. For the plane

wave given by (2.60) and (2.61) Pe = P/
√

2 and I = P2
e /ρc so the intensity level
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IL and the sound pressure level SPL return the same numeric value. Interestingly,

the same result is valid also for spherical waves but cannot be assumed true in

general [65, p. 127].

2.6 Boundary conditions and acoustic impedance

When a wave reaches the boundary of a medium, its propagation can be altered.

This section describes a few possible scenarios assuming simplified boundary

configurations. Boundary conditions can be assigned by imposing specific values

to some acoustic quantities or applying specific acoustic conditions at the sep-

aration surfaces. Acoustic quantities are generally imposed in terms of stress,

particle displacement or particle velocity, or a combination of them [73, p. 311]. Two

of the simplest cases are the solid boundary, where null displacement is assumed,

and pressure release boundary, where null pressure is assumed. Sometimes,

time-varying conditions can be imposed to account for acoustic sources.

When a boundary separates different materials, several scenarios are possible. It

is essential to understand which stress, displacement, or velocity component must

be assumed continuous according to material and interface properties. In general,

continuity of stress means that there is no net force acting on the separation

boundary, while continuity of displacement means that the mediums remain in

contact along a specific direction[74, pp. 92–97]. The application of these two

statements depends on the specific setup. For instance, when the boundary

separates a solid from a liquid domain, the continuity of shear stress entails a

null value at the interface, while displacement is continuous only in the normal

direction. On the other hand, for a bonded solid-solid setup, the boundary shear

stress is usually not null, and displacement is continuous also along the tangent

directions.

A plane wave that reaches the boundary can be reflected, generating new waves

that bounce back, or, in case of propagation into a second medium, refracted,

generating new waves beyond the separation surface with the same frequency but

different direction and velocity. Although other options are possible [68, p. 45], they

are unnecessary for our analysis.
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Material properties play a key role in understanding propagation behaviour. For

instance, in an inviscid liquid, a plane wave reaching the boundary generates no

more than a reflected wave and, in the case of propagation into a second liquid,

no more than one refracted. However, when one or both half-spaces are solid, the

simple scenario described above becomes more complicated. As shown in section

2.3, in a solid body, longitudinal and transverse waves can coexist and propagate

independently. When a longitudinal or transverse wave encounters a separation

boundary, it can experience mode conversion, meaning that a longitudinal wave

can generate a transverse wave and vice-versa. In other words, the separation

boundary introduces a coupling between transverse and longitudinal waves. As

one can imagine, the analytical complexity increases with the number of separation

boundaries and the complexity of the boundary shapes. In some cases, the waves

generated have peculiar propagation characteristics, and they are specifically

named. Rayleigh waves [73, p. 325], generated at the edge of a half-space, or Love

waves [73, p. 380], generated in a thin solid layer laying on top of a solid half-space,

are two examples.

For this research, two cases are significant: the first one is a solid half-space

with pressure release boundary conditions, and the second one is the analysis of

a liquid-solid interface. The liquid is assumed inviscid, and the solid is supposed

to be isotropic.

2.6.1 Plane wave in a solid half-space with pressure release boundary

This section focuses on a plane wave that propagates through a solid half-space

with pressure release boundaries [73, p. 312]. Without loss of generality, it is

possible to assume that the boundary matches with the plane y = 0 (the horizontal

plane2) and that the wavenumber vector lies on the plane xy (the vertical plane2).

Thus, longitudinal motion develops completely on the vertical plane, while the shear

motion has components in both the vertical plane and its orthogonal direction.

Given the reference system chosen, no wave quantity depends on z. Boundary

conditions can be written as:

2Terminology is borrowed from seismology
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σyy(x,0,z, t) = 0 (2.66a)

σyx(x,0,z, t) = 0 (2.66b)

σyz(x,0,z, t) = 0. (2.66c)

From the Helmholtz decomposition (2.34) and since ∂/∂ z = 0, the particle

displacement components can be written as:

ux =
∂φ

∂x
+

∂ψz

∂y
uy =

∂φ

∂y
− ∂ψz

∂x
uz =

∂ψy

∂x
− ∂ψx

∂y
. (2.67)

Combining previous equations with (2.27) yields:

σxx = λ

(
∂ 2φ

∂x2 +
∂ 2φ

∂y2

)
+2µ

(
∂ 2φ

∂x2 +
∂ 2ψz
∂x∂y

)
σxy = µ

(
2 ∂ 2φ

∂x∂y +
∂ 2ψz
∂y2 −

∂ 2ψz
∂x2

)
σyy = λ

(
∂ 2φ

∂x2 +
∂ 2φ

∂y2

)
+2µ

(
∂ 2φ

∂y2 −
∂ 2ψz
∂x∂y

)
σyz = µ

(
∂ 2ψy
∂x∂y −

∂ 2ψx
∂y2

)
σzz = λ

(
∂ 2φ

∂x2 +
∂ 2φ

∂y2

)
σzx = µ

(
∂ 2ψy
∂x2 −

∂ 2ψx
∂x∂y

)
.

(2.68)

Equations (2.66), (2.67) and (2.68) describe a problem of wave motion that

can be decoupled into two independent parts: a plane strain and a SH-wave

motion [73, p. 314]. Indeed, the displacement components ux and uy and the stress

components σyy and σyx depend only on φ and ψz; φ and ψz, in turn, are regulated

by the wave equation for scalar potential (2.37) and by the z component of the wave

equation for the vector potential (2.41). Similarly, the displacement component uz

and the stress component σyz depend only on ψx and ψy; ψx and ψy are regulated

by the x and y components of the wave equation for the vector potential (2.41). It

follows that plain strain and SH-wave can be investigated separately.

For what concerns the plain strain, solutions that include both incident and

reflected waves of the potentials φ and ψz for a harmonic plane wave can be

written as:
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φ = φi +φr = ΦieikP(xsinθP−ycosθP−cPt)+ΦreikP(xsinθP+ycosθP−cPt) (2.69)

ψz = ψzi +ψzr = ΨzieikS(xsinθS−ycosθS−cSt)+ΨzreikS(xsinθS+ycosθS−cSt), (2.70)

where:

k2
P =

ω2

c2
P
=

ρω2

λ +2µ
k2

S =
ω2

c2
S
=

ρω2

µ
. (2.71)

Recalling the meaning of the wavenumber vector given in 2.4, the direction

cosines are used to express the direction of the plane waves. The angles θP and

θS indicate the incidence and reflection angles of the waves for longitudinal and

transverse components, respectively. The amplitude of the incident scalar potential

is indicated with Φi, and the amplitude of the reflected scalar potential is indicated

with Φr. The same notations are adopted for ψz. Applying the boundary conditions

(2.66a) (2.66b) and dropping the term e−iωt yields:

σyy(x,0,z, t) = 0 : (2.72)

k2
P

(
2sin2

θP−
λ +2µ

µ

)
(Φi +Φr)eikPxsinθP− k2

S sin2θS(Ψzi−Ψzr)eikSxsinθS = 0

σxy(x,0,z, t) = 0 : (2.73)

k2
P sin2θP(Φi−Φr)eikPxsinθP− k2

S cos2θS(Ψzi +Ψzr)eikSxsinθS = 0.

The previous conditions are true for any value of x, hence the following condition,

which is the Snell’s law for elastic waves, applies:

kP sinθP = kS sinθS or
sinθP

sinθS
=

cP

cS
=

√
λ +2µ

µ
= κ (2.74)

Separating the reflection terms from the others, equations (2.72) and (2.73) can

be organised in the following form:

Φr

Ψzr

=

SPP SSP

SPS SSS

Φi

Ψzi

 (2.75)
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where the matrix of the terms Si j denotes the scattering matrix. Its coefficients

can be written as:

SPP =
sin2θP sin2θS−κ2 cos2 2θS

sin2θP sin2θS +κ2 cos2 2θS
(2.76a)

SSP =
−2κ2 sin2θS cos2θS

sin2θP sin2θS +κ2 cos2 2θS
(2.76b)

SPS =
2sin2θP cos2θS

sin2θP sin2θS +κ2 cos2 2θS
(2.76c)

SSS =
sin2θP sin2θS−κ2 cos2 2θS

sin2θP sin2θS +κ2 cos2 2θS
(2.76d)

The scattering matrix and Snell’s law establish a relationship between the inci-

dent and reflected potentials on the vertical plane. In particular, when a vertical

longitudinal wave (P-wave) hits the boundary, it can be reflected both as a P

longitudinal wave and as a vertical transverse wave (SV-wave). The direction of

the reflected waves is given by Snell’s law, while the amplitude by the scattering

matrix. A similar argument is valid for incident SV-waves.

A few cases are particularly interesting to analyse (figure 2.5). For example,

assuming a pure perpendicular incident P-wave (θP = 0), only SPP and SPS must

be considered. The value of the former is -1, while the latter is null. Hence, the

reflected wave has a reverse phase and opposite direction, while no SV-wave

is reflected. Besides, if sin2θP sin2θS = κ2 cos2 2θS (it can happen for up to two

values of θP depending on the Poisson ratio), no P-wave is reflected while an SV-

wave is reflected at an angle θS < θP. For other values of θP, both P and SV-waves

are reflected from a single P-wave. When the incident wave is an SV-wave, the

angle of the reflected P-wave θP is wider than the incidence angle θS. In order to

have θP in the admissible range [0,π/2], θS should fall in the range [0,arcsin1/κ].

The critical angle is θS = arcsin1/κ [73, p. 321]. To understand what happens

beyond the critical angle, the reflected P component can be rewritten as:

φr = ΦreikP(αx+βy)e−iωt , (2.77)

and from (2.74):
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β
2 = 1−α

2 = 1− sin2
θP = 1−

k2
T

k2
P

sin2
θT . (2.78)

For angles beyond the critical angle, β =± iξ and, taking the only solution with

physical meaning, the reflected P-wave can be written as:

φr = Φre−ξ yei(kLαx−ωt). (2.79)

Hence, the P-wave propagates in the x direction and attenuates exponentially

along y, a behaviour similar to the evanescent waves in waveguides (sections

2.8.3 and 4.1).

X

Y

θP θS

λ|| λ||

P P

SV

Figure 2.5: Reflection from the pressure release boundary of a solid half-
space. Boundary conditions: null stress at the boundary. A
P-wave can be reflected as a P-wave and as an SV-wave. The
wavenumber vector has a continuous parallel component
1/λ|| at the boundary.

Reflections of SH-waves can be analysed with similar steps. However, it can be

proved [73, p.316] that SH-waves simply reflect themselves with no mode conver-

sion or amplitude variation. Hence, if a shear wave with an arbitrary polarisation

strikes the boundary of a simple half-space, the SH component is simply reflected

with the same incident angle and the same amplitude. In contrast, the SV com-

ponent sees a change in its amplitude and part of its energy is converted into a

reflected P-wave.

It is remarked that when a wave impinges a separation boundary, both incident

and reflected wavefronts share the same acoustic quantities at the boundary and,

in particular, this observation is valid for the parallel component of the wavenumber
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vector 1/λ∥ = kP sinθP = kS sinθT . Snell’s law, thus, quantifies the discontinuity of

the orthogonal component of the wavenumber vector at the boundary. The simple

reflection of a plane wave at the boundary of a solid half-space and the related

P-SV conversion is shown in figure 2.5. In the next section, it is shown how waves

are also refracted in a second medium.

2.6.2 Plane wave through a liquid-solid interface

When a boundary surface separates two mediums, an incident wave generates

both reflected and refracted waves. This section describes the case of an inviscid

liquid half-space separated from a solid half-space by a flat boundary and a plane

wave propagating from the liquid to the solid domain.

X

Y

θL

P

L

SV

L

θL

θS θT

Figure 2.6: Propagation of a plane P-wave from a liquid half-space to
a solid half-space. Boundary conditions: null shear stress,
continuity of normal stress and normal displacement. The
incident P-wave is refracted as a P-wave and an SV-wave.

The reference system is again chosen with wavenumber vectors on the xy plane

and the boundary on y = 0 (figure 2.6). The subscripts (l) and (s) differentiate

between the liquid and solid domains where necessary. The analysis is similar

to the one in the previous section, but some energy is transferred through the

boundary in the form of refracted waves. It is remarked that the incident and the

reflected waves in the liquid domain can only be of type P. Since the shear stress

in the liquid domain is null, boundary conditions translate into null shear stress,

continuity of normal stress and continuity of normal displacement:
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σ(l)yy(x,0,z, t) = σ(s)yy(x,0,z, t) (2.80a)

σ(s)yx(x,0,z, t) = 0 (2.80b)

σ(s)yz(x,0,z, t) = 0 (2.80c)

u(l)y(x,0,z, t) = u(s)y(x,0,z, t). (2.80d)

As for the pressure release boundary, the problem can be decomposed into

two parts: a displacement in the vertical xy plane and a shear displacement in

the z direction. From equations (2.67), (2.68) and (2.80c), it follows that the shear

displacement in the z direction is null. The sum of the incident potential γi and the

reflected potential γr in the liquid domain is:

γ = γi + γr = ΓieikL(xsinθL−ycosθL−cLt)+ΓreikL(xsinθL+ycosθL−cLt), (2.81)

while for the solid domain the potentials are:

φ = ΦeikP(xsinθP−ycosθP−cPt) (2.82)

ψz = ΨzeikS(xsinθS−ycosθS−cSt). (2.83)

The related boundary conditions can be written as:

σ(l)yy(x,0,z, t) = σ(s)yy(x,0,z, t) : (2.84a)

λ(l)k
2
L(Γi +Γr)eikLxsinθL =

(λ(s)+2µ cos2
θP)Φk2

PeikPxsinθP +2µΨzk2
S sinθS cosθSeikSxsinθS

σ(s)yx(x,0,z, t) = 0 : (2.84b)

2Φk2
P sinθP cosθPeikPxsinθP +(1−2cos2

θS)Ψzk2
SeikSxsinθS = 0

u(l)y(x,0,z, t) = u(s)y(x,0,z, t) : (2.84c)

i(−Γi +Γr)kL cosθLeikLxsinθL =

− iΦkP cosθPeikPxsinθP + iΨzkS sinθSeikSxsinθS.
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Snell’s law is found again imposing the previous equations valid for any x:

kL sinθL = kPsinθP = kS sinθS. (2.85)

The three potential component amplitudes Γr, Φ, Ψz can be found from the

incident potential Γi:


Γr

Φ

Ψz

=


SL

SP

SS

Γi (2.86)

where SL, SP and SS can be found from equations (2.84) [68, p. 92].

2.6.3 Specific acoustic impedance

A meaningful acoustic quantity often used to characterise different materials is

the specific acoustic impedance [65, p. 126, 286]. For simplicity, only the case of

propagation in an inviscid liquid is considered. The specific acoustic impedance z

is defined as the ratio of the acoustic pressure to the value of the particle velocity

along its vector direction:

z = p/v. (2.87)

It is a measure of the opposition of the medium to wave propagation. Its unit

is [Pa s/m], sometimes called rayl. In the general case, the specific acoustic

impedance is a complex number (real "acoustic resistance" and imaginary "acous-

tic reactance"), but unless otherwise specified, its value is assumed to be the real

one given for plane waves. Assuming a plane pressure wave P and a reference

system so that P propagates along x, the pressure can be written as:

p(x, t) = Pei(kx−ωt), (2.88)

and from (2.48) and (2.52), the related particle velocity is:
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v(x, t) =
P
ρc

ei(kx−ωt). (2.89)

Hence, for a plane wave, the characteristic acoustic impedance is the real

quantity:

z = ρc. (2.90)

X

Y

θi θi

θt

Figure 2.7: Liquid-liquid boundary. Boundary conditions: continuity of
normal stress and continuity of normal displacement.

The concept of specific acoustic impedance is useful to analyse the transfer of

energy at the boundary. Considering two fluid half-spaces with a flat separation

surface (figure 2.7), the boundary conditions can be imposed as continuity of

pressure (or normal stress) and continuity of normal velocity (equivalent to normal

displacement). From (2.46) and (2.47) pressure and particle velocity can be written

as a function of the scalar potential as:

p =−ρ
∂ 2γ

∂ t2 v⃗vv = ∇
∂γ

∂ t
. (2.91)

Potentials in the two liquid half-spaces l1 and l2 are:

γ(l1) = Γie
ik(l1)(xsinθi−ycosθi−c(l1)t)+Γre

ik(l1)(xsinθi+ycosθi−c(l1)t) (2.92)

γ(l2) = Γte
ik(l2)(xsinθt−ycosθt−c(l2)t) (2.93)
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where the subscripts (l1), (l2) indicate the mediums and the subscripts i, r

and t are associated with the incident, the reflected and the transmitted wave,

respectively. Repeating similar steps as in the previous sections, continuity of

pressure and normal velocity can be written as:

p(l1)(x,0,z, t) =p(l2)(x,0,z, t) : (2.94a)

ρ(l1)(Γi +Γr) = ρ(l2)Γt

vy(l1)(x,0,z, t) =vy(l2)(x,0,z, t) : (2.94b)

1
c(l1)

(Γi−Γr)cosθi =
1

c(l2)
Γt cosθt

where ρ indicates the density and c the sound speeds. The ratio of the reflected

pressure amplitude Pr to the incident pressure amplitude Pi is called reflection

coefficient R, while the ratio of transmitted pressure amplitude Pt to the incident

pressure amplitude Pi is called transmission coefficient T . From the boundary

conditions:

R+T = 1, (2.95)

which, together with (2.94), yields:

R =
Pr

Pi
=

Γr

Γi
=

z2/z1− cosθt/cosθi

z2/z1 + cosθt/cosθi
T =

Pt

Pi
= 1−R, (2.96)

where from Snell’s law:

cosθt =

√√√√1−
c2
(l2)

c2
(l1)

sin2
θi. (2.97)

Hence, the reflection and transmission coefficients depend only on the incidence

angle and on the specific acoustic impedance z1 and z2. Along with R and T ,

sometimes the intensity reflection and transmission coefficients RI and TI are

given. Recalling identity (2.63), for a plane wave:
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RI =
Ir

Ii
= |R|2 TI =

It
Ii
=

z1

z2
|T |2. (2.98)

When the incidence angle is orthogonal to the surface and the two specific

acoustic impedances are similar, the reflection is minimum and most of the intensity

of the wave is transmitted through the surface. On the contrary, when the mismatch

between z1 and z2 increases, the intensity of the reflected wave increases and the

intensity of the transmitted wave decreases.

2.7 Phase velocity and group velocity

This section introduces two important concepts used to analyse reverberation

phenomena in waveguides: phase velocity and group velocity. Let ξ be a certain

physical quantity propagating in the x direction:

ξ (x, t) = ξ (x− ct). (2.99)

A value of ξ at point x1 and time t1 can be found at point x2 and time t2 if:

x1− ct1 = x2− ct2. (2.100)

Hence, a specific value of ξ moves a distance x2− x1 along x in a time t2− t1.

The quantity:

cp = c =
x2− x1

t2− t1
(2.101)

is called phase velocity and describes the velocity at which a point of the wave

with a constant phase moves along the propagation direction. For harmonic waves:

ξ (x, t) = Ξei(kx−ωt), (2.102)

and the phase velocity can be written as:
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cp = ω/k, (2.103)

where ω is the harmonic frequency and k is the wavenumber. When the modu-

lus of the wavenumber is linearly proportional to ω , the phase velocity remains

constant in frequency, and a medium is said to be non-dispersive. A signal whose

spectrum spreads across a certain frequency range sees its components travel

at the same speed, and no distortion is experienced. On the other hand, if k is a

non-linear function of the frequency, the ratio of ω to k does not remain constant,

and components of the same signal at different frequencies propagate with differ-

ent velocities. In this case, a medium is called dispersive. Analysis of the phase

velocity in dispersive mediums can be misleading. Indeed, waves can exhibit

phase velocity far beyond or below the speed at which their energy is actually

propagated (figure 2.8).

x

x
t2

t1

ΔgΔp

Figure 2.8: Phase and group velocity in a dispersive medium. ∆p indi-
cates the temporal shift associated with the phase velocity,
while ∆g indicates the one associated with the group velocity.

A more meaningful quantity is the group velocity [73, p. 59]. To introduce this

concept, let ξ (t) be a narrow band pulse with central frequency ω . Its Fourier

transform ξ̂ (ω) is defined as3:

3For the acoustic model developed in chapters 2 and 4, the Fourier transform is defined using the basis
eiωt/

√
2π, which is the prevalent definition adopted in our acoustics references. In the other chapters, the

basis is defined as e−iωt/
√

2π. As long as the anti-transform is defined accordingly, a different definition
makes no difference.
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ξ̂ (ω) =
1√
2π

∫ +∞

−∞

ξ (t)eiωtdt. (2.104)

and the associated propagating pulse can be written as:

ξ (t,x) =
1√
2π

∫ +∞

−∞

ξ̂ (ω)ei(k(ω)x−ωt)dω. (2.105)

If the band of the pulse is narrow enough, it is possible to assume that the range

of the wavenumber is also narrow. Hence, k(ω) can be expanded in Taylor’s series

truncated at the first derivative term:

k(ω)≃ k(ω)+
dk(ω)

dω

∣∣∣
ω
(ω−ω). (2.106)

Therefore, the propagating pulse in the time domain can be written as:

ξ (t,x) =
ei
(

k(ω)− ∂k(ω)
∂ω

∣∣
ω

ω

)
x

√
2π

∫ +∞

−∞

ξ̂ (ω)ei
(

∂k(ω)
∂ω

∣∣
ω

ωx−ωt
)
dω. (2.107)

where it is shown that, in the "propagation factor", all the frequency components

of the signal ξ̂ (ω) roughly move along x with the same velocity

vg =
∂ω

∂k
, (2.108)

where the derivative is calculated for ω = ω . vg is called group velocity, and a

visual comparison against phase velocity is reported in figure 2.8. In a dispersive

medium, the phase shift ∆p in an inteval ∆t = t2−t1 does not match the energy shift

∆g given by the group velocity. An identical definition holds when a wideband pulse

is considered [65, p. 257],[73, p. 65]. However, since the frequency components

spread across a wider frequency range, the propagation introduces a higher

degree of distortion. Thus, an averaged group velocity value can be found by

considering those components that carry most of the signal energy.
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2.8 Analysis of circular straight rigid lossless waveguides

When the acoustic energy is confined in an enclosure, standing waves can be

stimulated, and their characteristics depend on the shape and materials of the

enclosure, on the initial conditions and on the boundary conditions [65, p.246]. If

no energy is dissipated, the standing waves sustain the oscillations without any

energy source. The modes associated with the standing waves determine the

acoustic behaviour of the enclosure, and the values of the acoustic quantities can

be determined as the superimposition of different modes. The number of modes

stimulated and their amplitudes depend on the initial conditions [73, p. 37],[136].

If the enclosure is partially open, standing waves combine with propagation along

some specific directions, and the enclosure behaves as a waveguide [135, p. 75].

Since propagation transfers acoustic energy, an acoustic source is necessary to

sustain a continuous signal even when the domain is assumed to be lossless. The

number and the amplitude of the stimulated modes depend on the initial conditions

and the acoustic sources; their dispersive behaviour depends on the geometries,

the materials, and the boundary conditions. Propagation in partially open enclo-

sures can be simulated using finite element software [122, p. 321]. However, as

seen in section 2.1, full FE methods are generally computationally expensive,

and the results might be difficult to analyse and integrate. Large geometries, for

instance, are generally simplified in subsections to reduce the calculations required

[137],[116]. From this point of view, although analytical solutions suffer important

limitations, they offer a clearer explanation of the underlying acoustic phenomena

and are certainly faster to calculate and easier to integrate. This section provides

the analysis of a simple case study as an introduction to acoustic reverberation

and for comparison with the model developed in chapter 4.

2.8.1 Modelling propagation

The geometry analysed in this section is illustrated in figure 2.9. It consists of

an infinite inviscid fluid cylinder with a radius W . Clearly, it is convenient to adopt

a cylindrical reference system with the z axis matching the cylinder axis. The
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boundary is assumed perfectly rigid and, as seen in section 2.6, this assumption

entails that the normal component of displacement is null for r =W :

ur|W = 0. (2.109)

Using (2.48), the previous equation becomes:

∂ p
∂ r

∣∣∣
W
= 0. (2.110)

Solutions of equation (2.49a) can be a family of functions that are twice differ-

entiable with respect to r,θ ,z,t, but, for modal analysis, harmonic solutions are

considered:

p(r,θ ,z, t)
∣∣∣
ω̄
= p̂(r,θ ,z)

∣∣∣
ω̄

e−iω̄t (2.111)

x
z

y

r
z

θ

W

Figure 2.9: Straight lossless circular waveguide with rigid boundaries

It is worth noting that if p1 and p2 are solutions of (2.49a), their linear combination

is still a solution, and this is valid for any number of solutions at different frequencies.

Hence, for a continuous spectrum:
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p(r,θ ,z, t) =
1√
2π

∫ +∞

−∞

p̂(r,θ ,z,ω)e−iωtdω, (2.112)

where p̂(r,θ ,z,ω) is the Fourier transform of p(r,θ ,z, t). Substitution of (2.112)

into (2.49a) yields:

∇
2
∫ +∞

−∞

p̂(r,θ ,z,ω)e−iωtdω =
1
c2

∂ 2

∂ t2

∫ +∞

−∞

p̂(r,θ ,z,ω)e−iωtdω, (2.113)

which is equivalent to:

∫ +∞

−∞

(
∇

2 p̂(r,θ ,z,ω)+ k2 p̂(r,θ ,z,ω)
)
e−iωtdω = 0, (2.114)

with the wavenumber k defined as k = ω/c. The integral in (2.114) is certainly

null when null is its integrand. Thus, if a function p̂ satisfies the Helmholtz equation:

∇
2 p̂+ k2 p̂ = 0 (2.115)

for any frequency of interest, it can also be assumed solution for the (2.114). In

cylindrical coordinates, equation (2.115) can be written as:

∂ 2 p̂
∂ r2 +

1
r

∂ p̂
∂ r

+
1
r2

∂ 2 p̂
∂θ 2 +

∂ 2 p̂
∂ z2 + k2 p̂ = 0. (2.116)

The most common method to solve (2.116) is the spatial separation of variables

[65, p. 247],[102, p. 121]. The solution p̂ is assumed to be the product of three

functions, each of them dependent only on one of the three space variables:

p̂(r,θ ,z) = R(r)Θ(θ)Z(z), (2.117)

where in the previous equation ω has been omitted. Plugging (2.117) into

(2.116) and dividing by R(r)Θ(θ)Z(z) yields:
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∂ 2Z(z)
∂ z2 =−k2

z Z(z), (2.118)

and

1
R(r)

∂ 2R(r)
∂ r2 +

1
rR(r)

∂R(r)
∂ r

+
1

r2Θ(θ)

∂ 2Θ(θ)

∂θ 2 =−q2. (2.119)

with k2 = q2 + k2
z and either kz or q unknown. kz represents the magnitude of

the wavenumber vector along the propagation direction while q is its orthogonal

component. Equation (2.118) regulates the propagation along the z axis and a

harmonic propagative solution is:

Z(z) = Z̄+eikzz + Z̄−e−ikzz, (2.120)

where only the first term should be considered for propagation along the positive

direction of z. Since no boundary condition is specified along z, the value of kz

is determined by its relation with k, which depends on the driving frequency and

on the boundary conditions along the other directions. Equation (2.119) can be

further decomposed by multiplying for r2 and separating terms in r and θ . That is:

∂ 2Θ(θ)

∂θ 2 =−n2
Θ(θ), (2.121)

and

r2 ∂ 2R(r)
∂ r2 + r

∂R(r)
∂ r

+(q2r2−n2)R(r) = 0. (2.122)

Solutions of equation (2.121) describe the variation of the pressure as a function

of the angle θ and are of the form:

Θ(θ) = Θ̄einθ , (2.123)
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with θ in an arbitrary interval [θ̄ , θ̄ +2π]. Given the physical meaning, pressure

in θ̄ should be equal to the pressure in θ̄ +2π , and this particular kind of boundary

condition requires that the separation constant n must be an integer. Equation

(2.122) has the form of a Bessel equation [102, p. 466] of order n. With n integer,

solutions of (2.122) are of the form:

R(r) = R̄Jn(qr)+ ¯̄RYn(qr), (2.124)

where Jn(r) and Yn(r) indicate the Bessel function of the first kind and of the

second kind of order n, respectively. Since Yn(r) has a singularity in r = 0 (it would

mean infinite pressure in r = 0), ¯̄R must be assumed zero and the general solution

for R(r) is:

R(r) = R̄Jn(qr). (2.125)

To find the solution, the values of q must be determined, and its value, together

with k, also provides the values of kz, which regulates the propagation along z. q

clearly depends on the value of n as both are part of the equation (2.122). The

integer n can be used as an index to identify all the q that satisfy (2.122) for a

certain n. With n fixed, the set of allowable values of q can be determined from

(2.122) using the Sturm-Liouville theory [138],[102, p. 363, 374]. Equation (2.122)

can be turned in Sturm-Liouville form:

−(g(r)p′r)
′+q(r)pr = λw(r)pr (2.126)

dividing by r and using the following assumptions:

g(r) = r, q(r) =
n2

r
, w(r) = r, λ = q2, (2.127)

with r defined in [0,W ] and Newmann boundary conditions expressed by (2.110).

Since the Sturm-Liouville theory can be applied to the (2.122), it is possible to iden-

tify an infinite number of discrete nonnegative real values λ0 < λ1 < ... < λm < ...
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(the eigenvalues), each related to a particular solution R(r) (the eigenvectors).

Thus, from (2.126), per each index n, it is possible to extract a set of values of q

that can be sorted in ascending order and identified by an index m. In the following,

a particular value of q is indicated as qnm, the corresponding eigenfunction is

indicated as Rnm(r), and the related value of kz as kznm. The actual values of the

eigenvalues λm can be found from the boundary condition:

∂Rnm(W )

∂ r
= R̄nmJ′n(qnmW ) = 0, (2.128)

which means finding the zeros of the first derivative of the Bessel function of

order n. For n integer, Jn can be written in the integral form as [139, pp. 5.5.1–5.5.5]:

Jn(r) =
1
π

∫
π

0
cos(rcosφ −nφ)dφ , (2.129)

and, to find the first derivative, it is possible to use the following identity:

∂Jn(r)
∂ r

=
n
r

Jn(r)− Jn+1(r). (2.130)

The zeros for negative values of n can be found from the zeros for positive values

of n using the following formula:

J−n(r) = (−1)nJn(r). (2.131)

The only special case is for n = 0. Indeed, J′0(0) = 0 means q00 = 0 and

J0(q00r) = 1 in the whole interval [0,W ].

From (2.120), (2.123) and (2.125), equation (2.117) for a single modal solution

in the frequency domain can be written as:

p̂nm(r,θ ,z,ω) = Mnmeinθ Jn(qnmr)eikznmz, (2.132)
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where R̄nm, θ̄n, and Z̄+ have been merged in the complex term Mnm (with n ∈ Z
[...,−2,−1,0,1,2, ...], m ∈N [1,2, ...] ) and ω dependence is included in qnm, kznm

and, in general, also in Mnm.

2.8.2 Modelling a cross-sectional pressure source

A cross-sectional pressure source placed in z = 0 can be modelled by assuming

its pressure distribution as a special boundary condition on the circular cross-

section. The amplitude of the modes is then chosen in order to match the pressure

source given. Considering (2.132) in z = 0, each mode can be written as:

p̂0nm(r,θ) = Mnmeinθ Jn(qnmr), (2.133)

where Mnm are the modal amplitudes to be determined according to a certain

source. In the 2D domain of the section z = 0 (r ∈ [0,W ], θ ∈ [0,2π]), the set

of functions given by (2.133) with rigid or pressure release boundary conditions

form a complete and orthogonal basis in respect of the following definition of inner

product :

⟨ζ1(r,θ),ζ2(r,θ)⟩=
∫ 2π

0

∫ W

0
ζ1(r,θ)ζ ∗2 (r,θ)r drdθ , (2.134)

where ∗ indicates the complex conjugate [138]. The orthogonality statement

means that the basis functions:

ζnm = einθ Jn(qnmr) n ∈ Z m ∈ N (2.135)

satisfy the condition:

⟨ζnm(r,θ),ζn′m′(r,θ)⟩= (2.136)∫ 2π

0

∫ W

0
ζnm(r,θ)ζ ∗n′m′(r,θ)r dr dθ = Ann′mm′δnn′δmm′,
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with δnm being the Kronecker delta and Ann′mm′ a constant. Indeed:

⟨ζnm(r,θ),ζn′m′(r,θ)⟩=
∫ 2π

0
ei(n−n′)θ dθ

∫ W

0
Jn(qnmr)Jn′(qn′m′r)rdr, (2.137)

where the integral in dθ is null for any n′ ̸= n. Thus, assuming n = n′, to solve

the second integral we can recall that if B(r) is solution of the Bessel equation

(2.122) then:

rq2
nmBn(qnmr) =− ∂

∂ r

{
r

∂Bn(qnmr)
∂ r

}
+

n2

r
Bn(qnmr), (2.138)

and

q2
nm

∫ b

a
rBn(qnmr)Bn(qnm′r)dr =∫ b

a

[
− ∂

∂ r

{
r

∂Bn(qnmr)
∂ r

}
+

n2

r
Bn(qnmr)

]
Bn(qnm′r)dr =

−
∫ b

a

∂

∂ r

{
r

∂Bn(qnmr)
∂ r

}
Bn(qnm′r)dr+

∫ b

a

n2

r
Bn(qnmr)Bn(qnm′r)dr =

−
[
r

∂Bn(qnmr)
∂ r

Bn(qnm′r)
]b

a
+

∫ b

a
r

∂Bn(qnmr)
∂ r

∂Bn(qnm′r)
∂ r

dr

+
∫ b

a

n2

r
Bn(qnmr)Bn(qnm′r)dr =

−
[
r

∂Bn(qnmr)
∂ r

Bn(qnm′r)
]b

a
+
[
rBn(qnmr)

∂Bn(qnm′r)
∂ r

]b

a

−
∫ b

a

∂

∂ r

{
r

∂Bn(qnm′r)
∂ r

}
Bn(qnmr)dr+

∫ b

a

n2

r
Bn(qnmr)Bn(qnm′r)dr =

−
[
r
(

∂Bn(qnmr)
∂ r

Bn(qnm′r)−
∂Bn(qnm′r)

∂ r
Bn(qnmr)

)]b

a

+
∫ b

a

[
− ∂

∂ r

{
r

∂Bn(qnm′r)
∂ r

}
+

n2

r
Bn(qnm′r)

]
Bn(qnmr)dr =

−
[
r
(

∂Bn(qnmr)
∂ r

Bn(qnm′r)−
∂Bn(qnm′r)

∂ r
Bn(qnmr)

)]b

a

q2
nm′

∫ b

a
rBn(qnmr)Bn(qnm′r)dr.

(2.139)
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Therefore:

(q2
nm−q2

nm′)
∫ b

a
rBn(qnmr)Bn(qnm′r)dr =[

r
(

∂Bn(qnm′r)
∂ r

Bn(qnmr)− ∂Bn(qnmr)
∂ r

Bn(qnm′r)
)]b

a
.

(2.140)

Applying the above equation to the current case where Bn = Jn, a = 0, and

b = W , it follows that the inner product (2.137) for n = n′ and m ̸= m′ can be

assumed always null if:

Jn(qnmW ) = 0 or
∂Jn(qnmW )

∂ r
= 0, (2.141)

where the first is a pressure release and the second is a rigid boundary condition.

Hence, since the latter of the (2.141) has been assumed true, the functions (2.135)

are mutually orthogonal. The completeness of the basis comes from the fact

that the eigenfunctions associated with regular boundary conditions on bounded

domains automatically form a complete basis [102, p. 379]. The result of the scalar

product is generally not unitary, but it can be normalised by the normalisation

factors:

N00 =
1

W
√

π
n = m = 0 (2.142a)

Nnm =
qnm/
√

π√
(qnmW )2−n2

1
Jn(qnmW )

otherwise. (2.142b)

and, with these assumptions, the basis is said to be orthonormal.

The coefficients Mnm can be determined to match the specific pressure spatial

distribution of the source. Since the functions in (2.135) form a complete and

orthonormal basis, a source S(r,θ , t) with an arbitrary pressure distribution placed

in z = 0 and whose Fourier transform is:

Ŝ(r,θ ,ω) =
1√
2π

∫ +∞

−∞

S(r,θ , t)eiωtdt (2.143)
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can be decomposed as a linear combination of the function of the basis. The

coefficients of the linear combination are the magnitudes Mnm and, generally, they

are frequency dependent. They are determined from:

Mnm(ω) =

∫ 2π

0
∫W

0 Ŝ(r,θ ,ω)ζ ∗nm(r,θ)r drdθ∫ 2π

0
∫W

0 ζnm(r,θ)ζ ∗nm(r,θ)r drdθ
, (2.144)

where the formula above is a direct consequence of the orthogonality of the basis.

Note that if the pressure space distribution does not depend on the frequency, the

value of the coefficient Mnm can be assumed constant over the whole frequency

range.

Figure 2.10: Example of normalised spatial pressure distribution placed
in z = 0.

An example of the spatial distribution of a normalised pressure source placed

in z = 0 is shown in figure 2.10. Figures 2.11 represent the amplitudes of two

of the related modes calculated with (2.144). Once the coefficients have been

determined, the pressure source can be expanded as:

Ŝ(r,θ ,ω) =
+∞

∑
n=−∞

+∞

∑
m=1

Mnm(ω)ζnm(r,θ). (2.145)

Figures 2.12 show how the sum of a sufficiently high number of modes approxi-

mates the same shape of the pressure source given. The pressure values along

the waveguide can be found from:
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p̂(r,θ ,z,ω) =
+∞

∑
n=−∞

+∞

∑
m=1

Mnm(ω)ζnm(r,θ)eikznmz. (2.146)

(A) Mode (2,1) (B) Mode (3,1)

Figure 2.11: Source modal components calculated for the cross section z = 0 and for the pressure
source reported in figure 2.10. A) Mode: n = 2, m = 1. B) Mode: n = 3, m = 1.

Pressure in the time domain can be obtained from (2.112), which yields:

p(r,θ ,z, t) =
1√
2π

+∞

∑
n=−∞

+∞

∑
m=1

∫ +∞

−∞

Mnm(ω)ζnm(r,θ)eikznmze−iωtdω. (2.147)

(A) Sum of 35 modes (B) Sum of 381 modes

Figure 2.12: Reconstruction of the pressure source of figure 2.10 using modal decomposition. A)
Source approximation using 35 modes. B) Source approximation using 381 modes.
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2.8.3 Dispersive effects

To understand how a waveguide affects the acoustic signal as it propagates

along the channel, it is convenient to analyse first a single-frequency harmonic

signal. As seen in section 2.8.1, a single harmonic wave at frequency ω can be

written as:

pnm(r,θ ,z, t)|ω = Mnmeinθ Jn(qnmr)ei(kznmz−ωt). (2.148)

It has been shown that, given geometries and boundary conditions, values of

qnm are fixed and frequency independent per each mode. However, since:

ω2

c2 = k2
znm +q2

nm, (2.149)

kznm is clearly frequency dependent, and the waveguide shows dispersive be-

haviour in the z direction. From the previous identity, it is possible to distinguish

two different scenarios per each mode. The frequency:

Ωnm = cqnm (2.150)

is called cut-on angular frequency for the mode nm, and it is the transition

frequency between two different behaviours of the mode nm. For frequencies

above the cut-on, kznm is real and (2.148) describes a wave propagating along the

positive z direction. For frequencies below the cut-on, kznm is purely imaginary and

it can be written as:

kzmn =±i
√

q2
mn−

(
ω

c

)2
. (2.151)

For the only sign with a physical meaning, it entails:

pnm(r,θ ,z, t)|ω = Mnmeinθ Jn(qnmr)e
−z

√
q2

mn−ω2

c2 e−i(ωt), (2.152)
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(A) Phase velocity
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(B) Group velocity
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Figure 2.13: Velocities for an inviscid water cylinder with rigid boundary. W = 35mm, c =
1480m/s. All the modes (except (0,0)) exhibit dispersive behaviour. A) Phase
velocity, vp ≥ c. B) Group velocity, vg ≤ c.

which describes an evanescent standing wave that attenuates exponentially

along z and does not propagate energy along the waveguide. Phase velocity and

group velocity can be calculated directly from (2.103) and (2.108).

The phase and the group velocities for an inviscid water cylinder, W = 35mm,

c = 1480m/s, are reported in figure 2.13. Modes are represented above the

cut-on and, with the exception of the mode (0,0), all the others exhibit dispersive

behaviour with variable phase and group velocity. Note how the phase velocity

can be higher than the speed of sound in water c and how, around the cut-on, the

dispersive behaviour is more pronounced. The wavenumbers kz as a function of

frequency are shown in figure 2.14.
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Figure 2.14: kz for an inviscid water cylinder with rigid boundary. W =
35 mm, c=1480m/s. All the modes, with the exception of
the mode (0,0), are dispersive.
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An interesting physical interpretation is given in [65, p. 249], where (2.148) is

approximated as:

pnm(r,θ ,z, t)|ω ≃
Mnm√
qmnr

ei(nθ)ei(±qmnr+kzmnz−ωt) (2.153)

using an asymptotic approximation of the Bessel function. Equation (2.153)

can be interpreted as a decomposition of the mode in two conic waves whose

directions with respect to the z axis are given by:

±arctan
(qnm

kznm

)
=±arctan

( qnm√
q2

nm− ω2

c2

)
=±arctan

( 1√
1− ω2

Ω2

)
(2.154)

Hence, when the frequency ω is close to the cut-on, the directions of the conic

waves tend to be orthogonal to z, explaining the reason for the low group velocity

and the high phase velocity along z. On the contrary, when the frequency ω is

much higher than the cut-on, the directions of the conic waves tend to z, and both

phase and group velocities tend to c.

2.9 Effect of elastic boundaries

In the previous section, assuming rigid walls yielded simple boundary conditions,

but this hypothesis might not be reasonable in a real context. As seen in section

2.6.3, a rigid boundary condition is a good approximation only when the mismatch

of the specific acoustic impedances is high (e.g. metal/air). When this condition is

not satisfied (e.g. metal/water), the walls cannot be assumed rigid since a certain

amount of energy is transferred through the interface. The propagation in different

mediums, however, emerges as a unique process influenced by all the materials.

The literature reports several applications for waveguides with elastic boundaries,

such as pipe inspections [140], in-pipe communications [66] and noise reduction

[141]. Applications are often supported by numeric simulations, but the analytic

approach is useful to have a deeper understanding of the underlying physics [128].

The mathematical formulation provided in this section is a fundamental block of
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the model developed in chapter 4, where several additional aspects are developed

and analysed.

x
z

y

r
z

θ

W1

W2

Figure 2.15: Circular elastic waveguide

2.9.1 Equations of a straight lossless circular waveguide with elastic

boundaries

This section follows an approach first developed by Del Grosso [142] for axisym-

metric waveguides and then further developed by Gazis [143] for the general case.

A straight, circular waveguide with a lossless solid elastic shell filled with some

inviscid lossless fluid is considered. The outer surface of the shell is assumed to

be surrounded by air at ambient pressure. The inner and the outer radii are W1

and W2, respectively (Fig. 2.15).

In order to determine the acoustic quantities, it is useful to set the equations

for the potentials. As seen in section 2.3, the shell admits a displacement vector

with both vector and scalar potentials, while the displacement for the internal

fluid is obtained from the scalar potential only. Adopting a system of cylindrical

coordinates with the z axis matching the axis of the waveguide, and repeating

the same steps seen in section 2.8.1 to yield the Helmholtz equation (2.115),

equations (2.37) and (2.41) can be written as:
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∂ 2φ̂

∂ r2 +
1
r

∂ φ̂

∂ r
+

1
r2

∂ 2φ̂

∂θ 2 +
∂ 2φ̂

∂ z2 + k2
φ φ̂ = 0 (2.155a)

∂ 2γ̂

∂ r2 +
1
r

∂ γ̂

∂ r
+

1
r2

∂ 2γ̂

∂θ 2 +
∂ 2γ̂

∂ z2 + k2
γ γ̂ = 0 (2.155b)

∂ 2 ˆ⃗ψψψ
∂ r2 +

1
r

∂ ˆ⃗ψψψ
∂ r

+
1
r2

∂ 2 ˆ⃗ψψψ
∂θ 2 +

∂ 2 ˆ⃗ψψψ
∂ z2 + k2

ψ
ˆ⃗ψψψ = 0, (2.155c)

where φ indicates the scalar potential for the liquid, while γ and ψ⃗ψψ are the

scalar and the vector potentials for the solid, respectively. Equation (2.155c) is a

vector equation and, since in polar coordinates the unit vectors⃗̄rrr and ⃗̄
θθθ are not

independent, it can be rewritten as:

∂ 2ψ̂r

∂ r2 +
1
r

∂ψ̂r

∂ r
− ψ̂r

r2 +
1
r2

∂ 2ψ̂r

∂θ 2 −
2
r2

∂ψ̂sθ

∂θ
+

∂ 2ψ̂r

∂ z2 + k2
ψψ̂r = 0 (2.156a)

∂ 2ψ̂θ

∂ r2 +
1
r

∂ψ̂θ

∂ r
− ψ̂θ

r2 +
1
r2

∂ 2ψ̂θ

∂θ 2 +
2
r2

∂ψ̂r

∂θ
+

∂ 2ψ̂θ

∂ z2 + k2
ψψ̂θ = 0 (2.156b)

∂ 2ψ̂z

∂ r2 +
1
r

∂ψ̂z

∂ r
+

1
r2

∂ 2ψ̂z

∂θ 2 +
∂ 2ψ̂z

∂ z2 + k2
ψψ̂z = 0, (2.156c)

where the derivative identities ∂⃗ r̄rr/∂θ = ⃗̄
θθθ and ∂

⃗̄
θθθ/∂θ = −⃗r̄rr have been used.

Equations (2.155) and (2.156) can be solved by separating the variables as for

section 2.8.1. However, a few more observations must be pointed out to satisfy

the boundary conditions and to solve the coupled equations for ψ̂r and ψ̂θ . The

form of the solution for all the potential components is assumed to be:

ξ (r,θ ,z) = R(r)Θ(θ)Z(z). (2.157)

Given the geometrical shape, the terms Z(z) describe the propagation along z

of the potentials and, considering only the positive direction, it can be assumed of

the form:

Z(z) = Z̄eikzz. (2.158)

As seen in section 2.6, Snell’s law entails that kz, which is the component of the
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wavenumber vector parallel to the boundary, must be assumed equal for all the

potentials. The components Θ(θ) provide the angular variation of the potentials,

and, given the geometry, they must be 2π/n periodic. Again, they can be assumed

of the form:

Θ(θ) = Θ̄einθ , (2.159)

with n ∈ Z[...,−2,−1,0,1,2, ...]. However, the continuity of the normal displace-

ment ur across the liquid-solid boundary imposes a further condition between the

Θ(θ) components of the potentials. If Θφ (θ) = Θ̄φ einθ , the boundary condition:

∂ φ̂

∂ r
= ulz = usz =

∂ γ̂

∂ r
+

1
r

∂ψ̂z

∂θ
− ∂ψ̂θ

∂ z
r =W1,∀θ ,∀z (2.160)

entails:

Θφ (θ) = Θ̄φ einθ (2.161a)

Θγ(θ) = Θ̄γeinθ (2.161b)

Θψr(θ) = iΘ̄ψre
inθ (2.161c)

Θψθ
(θ) = Θ̄ψθ

einθ (2.161d)

Θψz(θ) = iΘ̄ψze
inθ , (2.161e)

where the phase mismatch has been explicitly shown. Furthermore, Θψr(θ) and

Θψθ
(θ) are linked by the coupled equations (2.156a) and (2.156b).

Rφ (r), Rγ(r), Rψz(r) can be found as described in section 2.8.1. Except for

the liquid potentials, both Bessel functions of the first and second kind should

be considered since r = 0 is not part of the solid domain. Finally, for Rψr(r) and

Rψθ
(r) a few more steps are required [73, p. 466],[68, p. 198]. Collecting together

all the amplitude factors and from the relationships found above, we can assume:

ψ̂r = Rψr(r)ie
inθ eikzz (2.162a)

ψ̂θ = Rψθ
(r)einθ eikzz. (2.162b)
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Plugging (2.162) into (2.156a) and (2.156b) yields:

r2 ∂ 2Rψr

∂ r2 + r
∂Rψr

∂ r
−Rψr−n2Rψr−2nRψθ

+ r2q2
ψRψr = 0 (2.163a)

r2 ∂ 2Rψθ

∂ r2 + r
∂Rψθ

∂ r
−Rψθ

−n2Rψθ
−2nRψr + r2q2

ψRψθ
= 0, (2.163b)

where q2
ψ = k2

ψ − k2
z . Adding and subtracting member to member the two

previous equations yields:

r2 ∂ 2Ṙ(r)
∂ r2 + r

∂ Ṙ(r)
∂ r

+(q2
ψr2− ṅ2)Ṙ(r) = 0, (2.164)

where:

Ṙ =

 R+(r) = Rψr(r)+Rψθ
(r)

R−(r) = Rψr(r)−Rψθ
(r)

ṅ =

 n+ = n+1

n− = n−1
. (2.165)

Equation (2.164) has, once again, the form of a Bessel equation. Therefore:

R+(r) = A+Jn−1(qψr)+B+Yn−1(qψr) (2.166a)

R−(r) = A−Jn+1(qψr)+B−Yn+1(qψr). (2.166b)

The property of gauge invariance [68, p. 199] states that any equivoluminal

displacement field corresponding to any of R+, R− and Rψz can be obtained by a

combination of the other two potentials. Hence, the elimination of one of the above

potentials yields an equivalent solution without any loss of generality. Assuming

R− = 0, the previous equations can be turned into:

Rψr(r) =CJn+1(qψr)+DYn+1(qψr) (2.167)

Rψθ
(r) =CJn+1(qψr)+DYn+1(qψr), (2.168)
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where C = A+/2 and D = B+/2. Merging everything together and considering

only real values of kz, the solutions for the potentials can be summarised as follows:

φ̂ = ΦJn(qφ r)einθ eikzz (2.169a)

γ̂ =
[
Γ1Jn(qγr)+Γ2Yn(qγr)

]
einθ eikzz (2.169b)

ψ̂r =
[
Ψ1Jn+1(qψr)+Ψ2Yn+1(qψr)

]
ieinθ eikzz (2.169c)

ψ̂θ =
[
Ψ1Jn+1(qψr)+Ψ2Yn+1(qψr)

]
einθ eikzz (2.169d)

ψ̂z =
[
Ψ3Jn(qψr)+Ψ4Yn(qψr)

]
ieinθ eikzz, (2.169e)

where the coefficients are unknown and should be determined from the rest of

the boundary and the initial conditions. To obtain the displacement vectors, the

following identities for the Bessel functions are applied [102, p.471]:

ξ
′
n(x) =−ξn+1(x)+

n
x

ξn(x) (2.170)

ξ
′
n+1(x) = ξn(x)−

n+1
x

ξn+1(x). (2.171)

Furthermore, to simplify the tedious calculations, the following compact notations

for the Bessel functions are adopted:

A α
n = AJn(qαr) (2.172a)

AB α
n = AJn(qαr)+BYn(qαr). (2.172b)

Hence, using (2.170) and (2.171):

∂AJn(qαr)
∂ r

=−qα A α
n+1 +

n
r

A α
n (2.173a)

∂
[
AJn(qαr)+BYn(qαr)

]
∂ r

=−qα AB α
n+1 +

n
r

AB α
n (2.173b)

∂AJn+1(qαr)
∂ r

= qα A α
n −

n+1
r

A α
n+1 (2.173c)

∂
[
AJn+1(qαr)+BYn+1(qαr)

]
∂ r

= qα AB α
n −

n+1
r

AB α
n+1. (2.173d)
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Plugging the potentials components (2.169) into equation (2.34), the displace-

ment vectors for the liquid domain u⃗uul and for the solid domain u⃗uus can be obtained.

The notations above are used to shorten the analytic expressions:

ˆ⃗uuul = eikzzeinθ
[⃗
r̄rr ⃗̄

θθθ ⃗̄zzz
]

−qφ Φ

φ

n+1 +
n
r Φ

φ
n

in
r Φ

φ
n

ikz Φ
φ
n

 (2.174)

ˆ⃗uuus = eikzzeinθ
[⃗
r̄rr ⃗̄

θθθ ⃗̄zzz
]


−qγ Γ1Γ2
γ

n+1 +
n
r

Γ1Γ2
γ
n−

n
r

Ψ3Ψ4
ψ
n − ikz Ψ1Ψ2

ψ

n+1

i
n
r

Γ1Γ2
γ
n− kz Ψ1Ψ2

ψ

n+1− i
n
r

Ψ3Ψ4
ψ
n + iqψ Ψ3Ψ4

ψ

n+1

ikz Γ1Γ2
γ
n +qψ Ψ1Ψ2

ψ
n


(2.175)

2.9.2 Boundary conditions and wavenumbers

The analytic expressions for the displacement vectors determined in the previous

section contain seven unknown constants, namely Φ, Γ1, Γ2, Ψ1, Ψ2, Ψ3, Ψ4.

Per each mode, to find the actual value of the modal displacement, the value

of the constants must be determined according to the boundary and the initial

conditions. As already pointed out, the total displacement is the summation of the

displacement of every single mode. Finding the constants, however, depends on

the actual value of kz (which in turn depends on n). In other words, for a given

frequency ω and index n, there exists only a set of (infinite) m discrete values of

kz for which the integration constants can be determined. Per each frequency,

each value of kz represents the z component of the wavenumber vector of the

mode (n,m). Hence, determining the values of kz per each frequency yields the

dispersion curves of the waveguide and, consequently, the characterisation of

the propagation behaviour. Differently from the rigid boundary case, however, it
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seems not possible to find an analytic expression for kz, and its value should be

determined through a numeric approach.

As from section 2.6, for the geometry reported in (Fig. 2.15) the boundary

conditions can be summarised as:

• continuity of normal displacement at solid-liquid interface (r =W1, 1 equation);

• continuity of normal stress at solid-liquid interface (r =W1, 1 equation);

• null shear stresses at solid-liquid interface (r =W1, 2 equations);

• null normal and shear stresses at vacuum-solid interface (r =W2, 3 equations).

The above conditions yield a system of seven equations in seven unknowns that,

as suggested by Baik at al. [76], can be reduced to six by applying the conditions

on normal displacement and normal stress together:

σsrθ

∣∣∣
r=R1

= 0 σsrθ

∣∣∣
r=R2

= 0 σsrz

∣∣∣
r=R1

= 0 σsrz

∣∣∣
r=R2

= 0 (2.176)

σlrr

ulr

∣∣∣
r=R1

=
σsrr

usr

∣∣∣
r=R1

σsrr

∣∣∣
r=R2

= 0.

To turn (2.176) into an explicit form, (2.174) and (2.175) should be substituted

into (2.28) to find the stress components in cylindrical coordinates as a function of

the potentials. Hence for the liquid domain:

σ̂lrr =−λ
ω2

c2
φ

Φ
φ
n einθ eikzz (2.177a)

σ̂lrθ = 0 (2.177b)

σ̂lrz = 0, (2.177c)

and for the solid domain:

σ̂srr = eikzzeinθ
{
−λs

(
q2

γ + k2
z

)
Γ1Γ2

γ
n +2µs

[(n(n−1)
r2 −q2

γ

)
Γ1Γ2

γ
n

+
qγ

r
Γ1Γ2

γ

n+1− ikzqψ Ψ1Ψ2
ψ
n + ikz

n+1
r

Ψ1Ψ2
ψ

n+1

+
n(1−n)

r2 Ψ3Ψ4
ψ
n +

qψn
r

Ψ3Ψ4
ψ

n+1

]} (2.178a)
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σ̂srθ = eikzzeinθ
µs

{2in(n−1)
r2 Γ1Γ2

γ
n−

2inqγ

r
Γ1Γ2

γ

n+1− kzqψ Ψ1Ψ2
ψ
n

+
2kz(n+1)

r
Ψ1Ψ2

ψ

n+1 +(iq2
ψ +

2in(1−n)
r2 )Ψ3Ψ4

ψ
n

−
2iqψ

r
Ψ3Ψ4

ψ

n+1

} (2.178b)

σ̂srz = eikzzeinθ
µs

{
+

2ikzn
r

Γ1Γ2
γ
n−2ikzqγ Γ1Γ2

γ

n+1 +
qψn

r
Ψ1Ψ2

ψ
n

+(k2
z −q2

ψ)Ψ1Ψ2
ψ

n+1−
ikzn

r
Ψ3Ψ4

ψ
n

}
.

(2.178c)

Applying the boundary conditions (2.176) and sorting the equations yields:



d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

d41 d42 d43 d44 d45 d46

d51 d52 d53 d54 d55 d56

d61 d62 d63 d64 d65 d66





Γ1

Γ2

Ψ1

Ψ2

Ψ3

Ψ4


= DDD



Γ1

Γ2

Ψ1

Ψ2

Ψ3

Ψ4


= 0. (2.179)

If the determinant |DDD| is not zero, the only possible solution is the trivial null

solution. However, per each n, it is possible to find a set of values of kz for which

the determinant is null. In that case, the equation admits not null solutions, and the

value of all the parameters remains uniquely specified when the initial or additional

boundary conditions are given. The value of the coefficients di j is reported below:

From σ̂srθ

∣∣∣
r=W1

= 0:

d11 = Jn(qγW1)
[2in(n−1)

W 2
1

]
+ Jn+1(qγW1)

[−2inqγ

R1

]
(2.180a)

d12 = Yn(qγW1)
[2in(n−1)

W 2
1

]
+Yn+1(qγW1)

[−2inqγ

W1

]
(2.180b)

d13 = Jn(qψW1)
[
− kzqψ

]
+ Jn+1(qψW1)

[2kz(n+1)
W1

]
(2.180c)

d14 = Yn(qψW1)
[
− kzqψ

]
+Yn+1(qψW1)

[2kz(n+1)
W1

]
(2.180d)
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d15 = Jn(qψW1)
[2in(1−n)

W 2
1

+ iq2
ψ

]
+ Jn+1(qψW1)

[
−

2iqψ

W1

]
(2.180e)

d16 = Yn(qψW1)
[2in(1−n)

W 2
1

+ iq2
ψ

]
+Yn+1(qψW1)

[
−

2iqψ

W1

]
(2.180f)

From σ̂srz

∣∣∣
r=W1

= 0:

d31 = Jn(qγW1)
[2ikzn

W1

]
+ Jn+1(qγW1)

[
−2ikzqγ

]
(2.181a)

d32 = Yn(qγW1)
[2ikzn

W1

]
+Yn+1(qγW1)

[
−2ikzqγ

]
(2.181b)

d33 = Jn(qψW1)
[qψn

W1

]
+ Jn+1(qψW1)

[
k2

z −q2
ψ

]
(2.181c)

d34 = Yn(qψW1)
[qψn

W1

]
+Yn+1(qψW1)

[
k2

z −q2
ψ

]
(2.181d)

d35 = Jn(qψW1)
[
− ikzn

W1

]
(2.181e)

d36 = Yn(qψW1)
[
− ikzn

W1

]
(2.181f)

Coefficients from σ̂srθ

∣∣∣
r=W2

= 0, namely d21−d26, can be obtained from d11−

d16 replacing W1 with W2. Coefficients from σ̂srz

∣∣∣
r=W2

= 0, namely d41−d46, can

be obtained from d31−d36 replacing W1 with W2.

From σ̂lrr
ulr

∣∣∣
r=W1

= σ̂srr
usr

∣∣∣
r=W1

, assuming

H =
ρlω

2

2ρsc2
ψ

Jn(qφW1)

qφ Jn+1(qφW1)− n
R1

Jn(qφW1)
(2.182)

yields:

d51 = Jn(qγW1)
[n(1−n+W1H)

W 2
1

− k2
z +

k2
ψ

2

]
+ Jn+1(qγW1)

[
−qγ

1+W1H
W1

]
(2.183a)

d52 = Yn(qγW1)
[n(1−n+W1H)

W 2
1

− k2
z +

k2
ψ

2

]
+Yn+1(qγW1)

[
−qγ

1+W1H
W1

]
(2.183b)
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d53 = Jn(qψW1)
[
ikzqψ

]
+ Jn+1(qψW1)

[
− ikz

n+1+W1H
W1

]
(2.183c)

d54 = Yn(qψW1)
[
ikzqψ

]
+Yn+1(qψW1)

[
− ikz

n+1+W1H
W1

]
(2.183d)

d55 = Jn(qψW1)
[n(n−1−W1H)

W 2
1

]
+ Jn+1(qψR1)

[
−

nqψ

W1

]
(2.183e)

d56 = Yn(qψW1)
[n(n−1−W1H)

W 2
1

]
+Yn+1(qψW1)

[
−

nqψ

W1

]
(2.183f)

Coefficients from σ̂srr

∣∣∣
r=W2

= 0, namely d61−d66, can be obtained from d51−d56

imposing H = 0 and replacing W1 with W2. Interestingly, H is a ratio of acoustic

pressure to displacement thus, as seen in section 2.6.3, it is similar to the specific

acoustic impedance [89].

Once the geometries and the properties of the materials have been assigned,

equation (2.179) should be solved in order to obtain kz in the desired range of

frequency ω and for the desired index n. More details are provided in chapter 4.

2.10 Summary

This chapter reviews the literature and the essential concepts of acoustics that

provide the theoretical foundations for the model developed in chapter 4. The

analysis of the existing literature offers a thorough assessment of the possible

strategies to implement the acoustic model and identifies the gaps to be filled

by the novel solution developed. In particular, the required liquid-solid boundary

condition and its consequence on the modal orthogonality are discussed. The

semi-analytic and the quasi-analytic approach are compared as viable options.

Then, from the fundamental equations of the linear elasticity theory, the wave

equations for sound propagation in both liquid and solid mediums are derived.

Some crucial quantities, such as wavenumber, acoustic intensity, and acoustic

impedance, are introduced. In addition, the definitions of phase and group velocity

and an explanation of the role they play in the description of dispersive effects

are reported. The formulation of the boundary conditions problem is introduced

for the setup to be modelled. Finally, the equations underlying the propagation
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in cylindrical waveguides are formulated for the rigid and elastic boundary cases.

An overview of the modal analysis, the related dispersive effects, and the source

modelling is provided for the rigid case and as a reference for the concepts further

developed in chapter 4.
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Chapter 3

Concepts of machine learning

This chapter introduces a few notions of machine learning that will be used to

develop automatic in-pipe event classification. The first part provides some basic

concepts about collecting and organising data for typical artificial intelligence tasks.

These ideas are recalled in chapter 5, where they are adopted to develop the

dataset used in this work. The other sections of the chapter describe the tasks

typically involved in machine learning: from data representation to some of the

techniques used for the automatic extraction of human-meaningful information.

A brief overview of the performance assessment is also provided. The concepts

introduced are applied and further expanded in chapter 6. Given the number of

theories and solutions in the literature, the topics reported here are only those

strictly necessary.

3.1 Data for machine learning

The very first common problem among very different artificial intelligence applica-

tions, from web security [144],[145] to social network analysis [146],[147], from facial

or object recognition [148],[149] to weather and climate modelling [150],[151], is the

collection of a sufficiently large amount of examples to be used as a reference to

train and test the developing algorithms.

The training dataset is usually employed to determine a set of numeric param-

eters that characterise a specific model used to make predictions about a given
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phenomenon. Since the calculated predictions are strictly related to the data used

in the training process, the quality of the data employed naturally assumes a key

role in the whole development process. Besides, to compare and assess the effec-

tiveness of different proposed approaches, a further distinct set of data, the test

or evaluation dataset, is required. In certain cases, the evaluation dataset can be

simply obtained by separating a smaller non-overlapping portion from the training

dataset. In other circumstances, the requirements for the evaluation dataset are

more demanding and preparing useful data might require additional effort. When

assessing and comparing different solutions, it is necessary to quantify results

towards specific goals, avoiding confusion that might mislead the development

effort.

The preparation of good data usually concerns two main aspects: the quality of

the data itself and the quality of the metadata associated. The quality of the data

refers to the capability to represent the space of all the possible examples for a

given application. When the application space is extensively represented, trained

models are more likely to generalise to unknown examples. Good quality data is

generally provided by the three following conditions [38, p. 149]:

• coverage: all the relevant classes to be investigated in the application should

be included;

• variability : each class should be represented by a set of observations that

includes a sufficient number of its possible variations;

• size: a large number of observations for training and testing purposes should

be included.

In reality, however, the conditions above cannot always be fulfilled. For example,

those applications usually referred to as open-set include unknown classes that,

given their unknown nature, cannot be completely represented by the observations

in the training dataset, leading to further classification difficulties [152]. Besides,

even when all the observations can be associated with specific classes, some

classes might be better covered than others providing an imbalanced representa-

tion that can affect the outcomes [153].

The quality of the metadata refers to the quality of the annotations that are
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associated with the raw data to provide meaningful information for both humans

and machines. Depending on the application, annotation can be composed of

a rich set of information that can be used to improve the effectiveness of the

machine learning technique implemented [154]. The most important and basic

form of annotation, however, is a simple label proving the association between

an observation (or a portion of it) and a specific class. In general, labels should

satisfy the following conditions [38, p. 152]:

• representation: in the context of a given application, each label should provide

a clear description of the item it is associated with;

• non-ambiguity : each label should have clear, unique correspondence to only

a class.

The above conditions are critical when labels of the same dataset are defined

or assigned by different people. In this case, subjective assessment based on

personal experiences might lead to inconsistent or meaningless definitions [155].

Ideally, good annotations provide a rich set of additional information and are both

machine and human-readable.

3.1.1 Datasets for sound event detection and classification

Further to the purpose of this work, the dataset shall be regarded as a dataset

for sound event detection and classification. Although the detection is not explicitly

investigated, the dataset synthesised as described in chapters 5 and 6 can also be

used for detection tasks. Therefore, when useful, some basic detection concepts

are mentioned.

The aim of automatic audio classification and detection is to identify specific

events belonging to specific classes in a set of audio recordings gathered in a

dataset. Labels associated with events in the audio file are named weak (or audio

tag) if they are associated with the entire recording without any specific timing

information. Alternatively, strong annotations (figure 3.1) provide information about

the beginning (onset) and the end (offset) of the event. When multiple annotations

are allowed to overlap in time, they are called polyphonic [156].
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Certainly, weakly annotated datasets are easier to collect since the class can

be simply specified as belonging to the recordings or not. However, the lack

of timing information limits their direct usability only to specific cases. Weakly

annotated recording, for example, can be employed for automatic feature extraction

or, as it will be shown in chapter 5, to build artificial strongly annotated datasets.

It is remarked that strong annotations are often necessary. For instance, the

final performance assessment usually requires a precise indication of the time.

Furthermore, when sound events exhibit noise-like features, it might be difficult to

extract structured discriminating information from a random point of the event. In

these cases, understanding the behaviour of the source during the initial and final

transient might be the key to correctly distinguishing two different classes. This

approach can be adopted only if timing information is available during the training

process.

Class1

Class2

Class3

Unknown

Figure 3.1: Representation of strong open-set polyphonic annotations
for a time domain signal. Class labels are indicated along
with the timing information.

3.2 Signal featurization

The raw representation of a signal in the time domain as a sequence of samples

is hardly useful for extracting meaningful information. Basic operations, such

as detecting the variation of signal levels, can be performed directly on the raw

signal representation, but the amount of information obtainable is very limited.

Signal information is generally extracted by comparing sets of signal features

with sets of references. This comparison operation is performed by calculating
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a certain distance between the former and the latter. When the features used

for this calculation are not appropriate, the values of the distances do not allow

reliable discrimination between different classes or events. Hence, before applying

any classification or event detection algorithm, it is necessary to obtain a useful

representation by some kind of featurization process that provides a representation

in a well-suited space. Many solutions can be found in the literature, some of

which are described in the following sections. Certainly, the effectiveness of each

solution depends on the application, and it is one of the key factors for the good

performance of the other processing stages. Notwithstanding its importance, the

choice of a particular representation rather than a different one is rarely justified

[38, p. 96] and some features, such as MFCC (see section 3.2.2), seem to be widely

preferred, even beyond their native context [157],[158],[159]. When the extraction of

the features is performed with a set of fixed operators, the featurization is usually

called feature engineering. On the other hand, when the operators include some

kind of reference to the processed data, the featurization is called feature learning.

Feature engineering is usually justified by certain reasons, such as its simplicity or

its relation to some bio-inspired equivalent. On the other hand, feature learning

can take advantage of the known data to find discriminating signal structures.

These two approaches are not necessarily disjoint since engineered features can

be used as an input for obtaining learned features [160]. When learned features are

obtained without including any reference to the signals metadata, the featurization

is said to be unsupervised. On the contrary, in the supervised case, metadata

annotations are used to improve and promote more discriminating features.

3.2.1 Desired feature properties

This section reviews a few desired properties for features used in classification

tasks. A quick analysis of techniques commonly used to extract features is further

provided.

3.2.1.1 Time-frequency localisation

Acoustic events exhibit peculiar characteristics at both small and large time

scales. Smaller time scales, for example, can reveal specific sound textures while
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larger time scales can offer an understanding of bigger sound structures and

describe temporal dependencies of macro-areas of the signal linked together (e.g.

onset, regime, offset) [161],[162]. Unfortunately, despite rendering the best time

resolution, a simple analysis in the time domain generally offers poor insight, and

better representations are required.

In the following sections, unless otherwise specified, the following definitions of

inner product for one-dimensional continuous and discrete signals will be used:

⟨x(t),y(t)⟩=
∫ +∞

−∞

x(t)y∗(t)dt ⟨x[n],y[n]⟩=
+∞

∑
n=−∞

x[n]y∗[n], (3.1)

where the ∗ indicates the complex conjugate. The definition of the (squared)

Euclidean norm follows accordingly as ∥x∥2
2 = ⟨x,x⟩. Moreover, the notations ∥x∥2

and ∥x∥1 indicate respectively
√
⟨x,x⟩ and

∫+∞

−∞
|x(t)|dt.

In its general definition, a linear time-frequency transform can be seen as

a decomposition of a given function in a space defined by a dictionary D of

waveforms with unitary norm ζγ(t) called time-frequency atoms [80, p. 89]. The

transform is then given by:

x̂D =
{
⟨x(t),ζγ(t)⟩

}
ζγ∈D =

∫ +∞

−∞

x(t)ζ ∗γ (t) dt ∀ ζγ ∈D . (3.2)

To provide certain transformation properties, the functions of the dictionary are

usually chosen to be localised in time and frequency. Localisation properties can

be defined using mean value and variance. Since ∥ζγ(t)∥2
2 = 1, the moments in

the time domain can be calculated as:

µt(ζγ) =
∫ +∞

−∞

t|ζγ(t)|2dt σ
2
t (ζγ) =

∫ +∞

−∞

(t−µt)
2|ζγ(t)|2dt. (3.3)

Recalling the Plancherel’s formula ∥ζ̂γ(ω)∥2
2 = 2π∥ζγ(t)∥2

2 [139, pp. 9.6.13–

9.6.14], the equivalent moments in the frequency domain can be written as:
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µ ω
2π
(ζ̂γ) =

1
2π

∫ +∞

−∞

ω|ζ̂γ(ω)|2dω σ
2
ω
2π

(ζ̂γ) =
1

2π

∫ +∞

−∞

(ω−µω)
2|ζ̂γ(ω)|2dω.

(3.4)

Heisenberg’s uncertainty theorem [102, p. 288] links together the standard de-

viations in the time and frequency domain. For the functions of the dictionary D ,

Heisenberg’s uncertainty relation holds:

σtσω ≥
1
2
. (3.5)

In the time-frequency plane, the point (µt ,µω) can be interpreted as the centre

of a box of size σt×σω — the Heisenberg’s box — which represents the resolution

of the function ζγ (figure 3.2).

t

ω

|ζγ(t)|

|ζγ(ω)|

σt

σω

μt

μω^

Figure 3.2: The Heisenberg’s box. Position and size of the box are de-
termined by the first and second order moments of |ζγ(t)|
and its Fourier transform |ζ̂γ(ω)|. The resolution is inversely
proportional to the box size.

The relationship 3.5 shows that time resolution cannot be reduced indefinitely

without affecting the frequency resolution and vice-versa. Note that, when calculat-

ing the time-frequency transform, the coefficient associated with ζγ describes the

function x around the point (µt ,µω) in a neighbour proportional to the Heisenberg’s

box. This can be shown by recalling the Parseval’s formulas [139, pp. 9.6.13–9.6.14]:
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⟨x(t),ζγ(t)⟩=
∫ +∞

−∞

x(t)ζ ∗γ (t) dt =
1

2π

∫ +∞

−∞

x̂(ω)ζ̂ ∗γ (ω) dω. (3.6)

From the previous equation, the value of the transform coefficient associated

with ζγ is mainly determined from those values of x and x̂ where ζγ and ζ̂γ are

not negligible, that is, in the Heisenberg’s box. Hence, when transforming a signal

x(t), the time and frequency resolution of the transformed representation cannot

be determined independently. It is also remarked that, to offer a complete repre-

sentation per each possible signal, each part of the time-frequency plane should

be completely covered by the Heisenberg’s boxes of the functions in D [80, p. 19].

Time-frequency localisation of the Fourier transform

Ideally, a perfect representation would have infinite resolution in both the time

and frequency domains. From what is shown above, however, this condition

is not possible, and the desired representation should balance between time

and frequency. The limit cases are given by simple time-domain and Fourier-

domain representations, where a set of non-redundant orthonormal functions of

the dictionary D is defined respectively as ζη(t) = δ (t−η) and ζξ (t) = eiξ t with

η ,ξ ∈ R. Hence, in the first case, the Heisenberg box will be infinitesimal along

the time axis and infinite along the frequency axis, meaning infinite time resolution

and null frequency resolution. Conversely, the Fourier transform shows infinite

frequency resolution and null time resolution. In both cases, the time-frequency

plane is tiled with lines either parallel to the frequency axis (time representation) or

parallel to the time axis (frequency representation). Note that the Fourier transform

holds the time information in its phase, but since it cannot be easily handled, it

is usually discarded. Therefore, considering only the modulus, signals with the

same frequency components but completely different time envelopes will appear

the same. This is a practical consequence of the null time resolution.

When the signal x(t) is sampled with frequency ωs, the Fourier transform x̂(ω) =∫
x(t)e−iωtdt, turns into the Fourier series:
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x̂(ω) =
∫ +∞

−∞

+∞

∑
n=−∞

x(t)δ (t−n)e−iωtdt =
+∞

∑
n=−∞

x[n]e−iωn, (3.7)

where the spectrum x̂(ω) is periodic with period equal to the sample frequency

ωs. If x[n] is periodic with a period of finite length N (the periodicity is built by

replicating a sequence of finite length N), the dictionary D can be simply defined

with a set of N orthonormal vectors ζk ∈ CN for ∀ k ∈ [0 : N − 1], where the

components of each vector ζk[n] = e
i2πkn

N are obtained ∀ n ∈ [0 : N− 1]1. The

discrete Fourier transform (DFT) assumes form:

x̂[k] = ⟨x,ζk⟩=
N−1

∑
n=0

x[n]e
−i2πkn

N with 0≤ k < N. (3.8)

where x̂[k] has period N. Again, from Parseval’s formula for finite discrete signals:

⟨x,ζk⟩=
N−1

∑
n=0

x[n]ζ ∗k [n] =
1
N

N−1

∑
n=0

x̂[n]ζ̂ ∗k [n]. (3.9)

N

ω

2πk/N
2π(k+1)/N

Figure 3.3: The Heisenberg box of the DFT. The transform provides the
coarsest time resolution and the finest frequency resolution.

For any k, the Heisenberg box of ζk is a rectangle of area 2π with length along

the time axis equal to N and height equal to the frequency resolution 2π/N in the

interval 2π

N [k,(k+1)] (figure 3.3).

1

if k = h ⟨ζk,ζh⟩= N

if k ̸= h ⟨ζk,ζh⟩= 1+ r+ ...+ rN−1 = 1−rN

1−r = 0 with r = e
i2π(k−h)

N
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In both the continuous and discrete cases, the Fourier transform exhibits the

finest frequency resolution and, at the same time, the coarsest time resolution.

The poor time resolution is an undesired feature for signal discrimination, and this

issue is the first main limitation of approaches based on the Fourier transform.

Time-frequency localisation of the short-time Fourier transform

A simple solution to balance time and frequency resolution is given by the short-

time Fourier transform (STFT) [80, pp. 92–101], which can be seen as a localised

version of the Fourier transform. In the continuous case, the functions of the

dictionary D can be defined as:

ζη ,ξ (t) = φ(t−η)eiξ t ∀(η ,ξ ) ∈ R2, (3.10)

and the STFT of a signal x(t) ∈ L2(R) is:

x̂(η ,ξ ) = ⟨x,ζη ,ξ ⟩=
∫ +∞

−∞

x(t)φ(t−η)e−iξ tdt ∀(η ,ξ ) ∈ R2. (3.11)

The function φ(t) is called the window function. It is real, even (φ(t) = φ(−t)),

and, to keep the norm of ζη ,ξ unitary, with its norm unitary. φ(t) localises the

function x(t) in time and is usually chosen to provide specific properties such as

smooth transitions at the boundaries [163, p.87]. The calculation of the moments

for ζη ,ξ yields:

µt =
∫

t|ζη ,ξ (t)|2dt =
∫

t|φ(t−η)|2dt = η (3.12a)

σ
2
t =

∫
(t−η)2|ζη ,ξ (t)|2dt =

∫
(t−η)2|φ(t−η)|2dt =

∫
t2|φ(t)|2dt (3.12b)

µω =
∫

ω|ζ̂η ,ξ (ω)|2dω =
∫

ω|φ̂(ω−ξ )|2dω = ξ (3.12c)

σ
2
ω =

∫
(ω−ξ )2|ζ̂η ,ξ (ω)|2dω =

∫
ω

2|φ̂(ω)|2dω, (3.12d)

where µω is found by considering that the Fourier transform φ̂(ω) is real and
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symmetric as φ(t) and |ζ̂η ,ξ (ω)|= |φ̂(ω−ξ )e−iη(ω−ξ )|= |φ̂(ω−ξ )| is simply

a translation by ξ of φ̂(ω) in frequency. From equations (3.12), it appears that

Heisenberg’s boxes are simply translated in time and frequency by η and ξ

and have a constant size determined by the window function φ(t). Hence, the

STFT tiles the time-frequency plane with boxes of constant size and provides

the same time-frequency resolution everywhere. Note that, since in the definition

(3.10) η and ξ vary continuously in R, each point of the time-frequency plane

is covered by an infinite number of Heisenberg’s boxes and (3.11) provides a

very redundant representation. The geometry of Heisenberg’s box can be easily

changed by scaling the window function. Indeed, φs(t) = s−1/2φ(t/s) increases

the time length by s and reduces the frequency spread by the same factor, leaving

the area of the box unaltered. A non-redundant representation can be obtained by

discretizing the shift parameters and defining a time hop η0, and a frequency hop

ξ0 according to the area occupied by Heisenberg’s box. Hence, the functions of

the dictionary assume the form:

ζh,m(t) = φs(t−hsη0)ei mξ0
s t ∀(h,m) ∈ Z2, (3.13)

where the scale factor s has also been included. To provide a complete repre-

sentation, however, further conditions need to be imposed on the window φ(t) [80,

p. 183]. Despite its simplicity and the possibility of reshaping Heisenberg’s box,

the characteristic of having constant time-frequency resolution might be undesired

when certain sound patterns require variable resolution, either time or frequency.

The discrete version of the STFT for a signal x[n] of length N is defined as:

⟨x,ζh,k⟩=
K−1

∑
n=0

x[n]φ [n−hH]e
−i2πkn

K 0≤ k < K 0≤ h < Hmax, (3.14)

where K is the length of the window and Hmax = N/H. For simplicity, N/H is as-

sumed integer. Note that, per each h, the STFT matches the DFT of x[n]φ [n−hH]

in the length of the window. In the previous definition, the vectors of the dictionary

are chosen as:
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ζh,k = φ [n−hH]e
i2πkn

N ∀ n = [0 : K−1]. (3.15)

The constant H ≤ N defines the hop size, that is, the shift of the window φ [n]

in time. To evaluate Heisenberg’s box, it is observed that the sum (3.14) is non-

null only over an interval of length K centred in hH, that is, the support of the

shifted window. As for the continuous case, the length along the time axis of the

Heisenberg box depends only on the window φ [t] and does not change with its

position in the time-frequency plane. To assess the height, the DFT of ζh,k can be

written as:

ζ̂h,k[l] =
K−1

∑
n=0

φ [n−hH]e
i2πkn

K e
−i2πln

K = φ̂ [l− k]e
−i2πhH(l−k)

K , (3.16)

with φ̂ [k] DFT of φ [n]. Again, ζ̂h,m depends only on the Fourier transform of the

window function φ̂ [k] and does not change with the frequency shift k.

t

ω
ζ k,n

ζ h,m

Figure 3.4: The Heisenberg’s box of the STFT. The resolution of STFT is
independent on both time and frequency shift.

Therefore, as for the continuous case, the STFT provides the same time-

frequency resolution per each value of time and frequency (figure 3.4). Note that,

to offer a complete representation, the following constant-overlap-add (COLA)

condition is usually imposed on the windows [80, p.184]:
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Hmax−1

∑
h=0

|φ [n−hH]|2 = A > 0 ∀n ∈ [0 : N−1]. (3.17)

In chapter 5, the discrete STFT will be used for the noise filters, and the previous

condition will be used to reverse the transform and recover the signal x[t].

A commonly adopted trade-off for audio signals is a window of 20÷50ms [164],

[38, p. 27]. This is usually thought of as the maximum length beyond which the

benefit of higher frequency resolution does not compensate for the loss of temporal

details.

3.2.1.2 Translation invariance

When analysing audio or images, translation is unavoidable. The simplest case

is an identical audio signal whose start time has been delayed. Obviously, if the

purpose is to characterise certain information included in the signal, the features

extracted should guarantee invariance to the translation. A less stringent but still

useful property is the equivariance, which means that the extracted features will

also be translated without changing their values. Formally, the time-frequency

transform of the shifted signal ⟨x(t−µ),ζγ(t)⟩ will return a shifted representation

⟨x(t),ζγ(t +µ)⟩, if ζγ(t +µ) still belongs to the dictionary D up to a multiplicative

constant [80, p. 91]. Hence, equivariant dictionaries can be built by translating

a family of generator functions. Invariance and equivariance are often neces-

sary properties in classification tasks and play a key role in the definition of the

dictionaries for time-frequency representations [165],[166].

The modulus of the Fourier transform, for example, is translation invariant since:

|x̂η(ω)|=
∣∣∣∫ +∞

−∞

x(t−η)e−iωtdt
∣∣∣= |e−iηω x̂(ω)|= |x̂(ω)|. (3.18)

The STFT is translation invariant if the shift η is negligible with respect to the

length of the window. If the shift is a multiple of the hop size, it is possible to obtain

at least the equivariance. From this point of view, choosing a window sufficiently

small, as in the previous section, always guarantees equivariance in practice.
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Another possible invariant representation is given by the autocorrelation whose

invariance follows directly from the definition:

Cx(u) =
∫ +∞

−∞

x(t)x(t−u)dt. (3.19)

In general, at the cost of losing signal information, it is possible to transform

a time domain representation into some low-dimensional translation invariant

features. For example, zero-crossing rate, which for discrete signal is defined as:

Zcrx =
∑

N
n=2 |sign(x[n])− sign(x[n−1])|

2(N−1)
, (3.20)

are translation invariant but discard almost all the information associated with

the signal. Similarly, statistical moments:

µ = E[x] (3.21)

σ
2 = E[(x−µ)2] (3.22)

sn =
E[(x−µ)n]

σn (3.23)

such as mean µ (n = 1), variance σ2 (n = 2), skewness s3 (temporal asymme-

try) (n = 3), and kurtosis s4 (temporal flatness) (n = 4) provide only a very coarse

interpretation of the signal properties and are affected by accuracy issues increas-

ing with the order of the moments [167]. Similarly, a time-frequency representation

that is not invariant but only equivariant can be turned invariant by performing

some averaging operations on the extracted features [168]. The drawback is, again,

the loss of information potentially relevant.

3.2.1.3 Stability to deformations

In real applications, different instances of the same class might exhibit a certain

degree of deformation. An image marginally distorted and a slightly tuned tone are

just two simple examples. In general, when the deformation is small, it is desirable

to obtain features whose values are close to the original ones or, at least, values
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that change proportionally to the deformation. Unfortunately, this stability property

does not belong to all the representations, and it is certainly something to account

for when choosing a certain solution for the features. Obviously, deformations

can appear in different flavours, and some transforms that are stable in respect of

certain deformations might behave differently with respect to others. Some cases,

however, are particularly meaningful and allow some important discrimination

between transforms. In [82], it is pointed out that, for a translation-equivariant

nonexpansive transforms2 {ζ}, the stability can be characterised using Lipschitz

continuity relative to small deformations close to translations. It means that, if

the signal x(t) is deformed by τ(t) as xτ(t) = x(t− τ(t)) with |τ ′(t)|< 1, then the

transformation {ζ} is stable if:

∥{ζ (x)}−{ζ (xτ)}∥2 ≤C sup
t
|τ ′(t)|∥x∥2, (3.24)

that is, if the transform {ζ} is Lipschitz-continuous in respect to the deformation

τ . The constant C > 0 can be interpreted as a measure of stability. Note that

since Lipschitz continuity guarantees differentiability almost everywhere, the defor-

mations are locally linearized by the transform {ζ}. Therefore, a family of small

deformations generates a linear space, and invariants to these deformations can

be found in a space built as its orthogonal complement [79].

The action of the deformation τ(t) can be exemplified by considering a little shift

in the tones emitted by a mechanical sound generator. This might be caused by

unavoidable tweaks in the mechanical setup. These differences, however, shouldn’t

be relevant for the purpose of sound classification. A simple model to describe

this kind of variation for a signal x(t) can be obtained by assuming τ(t) = εt with ε

small. If the features are extracted using the Fourier transform, the representation

of xε(t) = x(t− εt) can be written as x̂ε(ω) = 1
1−ε

x̂( ω

1−ε
). Hence, the frequency

shift |ω −ω/(1− ε)| is proportional to the frequency of the tones and is more

relevant at higher frequencies. If high-frequency tones have a sufficiently high

amplitude, ∥x̂(ω)− x̂ε(ω)∥2 does not diminish with ε since the two spectra do not

2Nonexpansive means: ∥{ζ ( f )}−{ζ (h)}∥2 ≤ ∥ f −h∥2.
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overlap where most of the energy is located. Hence, the Fourier transform does

not satisfy the 3.24. It is remarked that this behaviour is certainly related to the

fine frequency resolution of the Fourier transform. Indeed, if a transform operated

some frequency averaging across large frequency bands, the abovementioned

issue would be mitigated. From this point of view, the STFT works better than

simple FT, but it does not solve the problem. In fact, dealing with Heisenberg’s

boxes of fixed size introduces an unavoidable trade-off between the averaging

operation (generally more relevant at higher frequencies) and the necessity to

preserve the lower spectrum (where it is usually necessary to distinguish tones

whose frequencies are much closer).

(A)
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Figure 3.5: A stationary signal x(t) obtained as a sum of eight cosine tones placed at intervals
of one octave starting from 100Hz (left). The norm of the distance between the
autocorrelation of x(t) and the autocorrelation of the deformed version xε(t) (right).
Distance blows for very small values of ε and saturates when the representations do
not overlap.

Another frequently used [169],[170] time-invariant operator, the auto-correlation,

suffers the same kind of instability. In fact, since the Fourier transform of the auto-

correlation of x(t) is |x̂(ω)|2, applying the Plancherel formula yields ∥Cx−Cxτ∥2
2 =

1
2π
∥|x̂(ω)|2−|x̂τ(ω)|2∥2

2. Figure 3.5A illustrates a signal x(t) obtained by summing

a number of cosines tones placed at intervals of one octave starting from 100Hz.

Figure 3.5B reports the norm of the distance ∥Cx(t)−Cxε(t)∥2
2 with τ(t) = εt for

different values of ε . Cx is calculated as circular auto-correlation. As shown, the

distance becomes immediately very large for very small values of ε and saturates
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when Cx(t) and Cxε(t) do not overlap. In a stable representation, the norm of the

distance would change roughly linearly with the deformation.

3.2.2 MFCC

Many signal representations found in the literature are based on ideas that come

from bio-acoustics research. Some non-exhaustive examples are critical bands

[171], Bark scale [172] and gammatone filters [173]. In the context of machine

learning, the most widely used features, the Mel Frequency Cepstral Coefficients

(MFCC), are based on the mel scale. The mel scale is a transformation of the linear

frequency scale into a different one mapped on the psychological sensations of

pure tones [174]. Unfortunately, since the measurements are based on subjective

perceptions, more than a single definition can be found in the literature. A popular

formula, mentioned for example in [175], reports:

f̄ = 2595× log10

(
1+

f
700

)
, (3.25)

while the formula reported in [176, p. 19]:

f̄ =
f0

log(C)
× log

(
1+

f
f0

)
=

1000
log(2)

× log
(

1+
f

1000

)
. (3.26)

In the previous equation, the term log(C) provides a Mel-Hz conversion not

dependent on the particular logarithmic base, while the corner frequency f0 is

experimentally determined. Usually, the lowest part of the spectrum is discarded

since sources such as voices exhibit negligible energy in that range and the typical

50Hz ’hum’ can be avoided.

Given an input signal x(t), to calculate the MFCC, firstly, the energy of the

spectrogram |x̂(t, f )|2 is obtained as the squared modulus of the STFT x̂(t, f ).

The STFT is calculated with a window φ(t) of length T . Then, the energy is

averaged over several frequency bands using a set of filters {ψ̂λ ( f )} in a filter

bank. In the next step, the amplitude non-linearity of the auditory system is

modelled by taking the log10 of the averaged energies. Since filters overlap, the
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resulting filtered energies are correlated. To decorrelate, in the last step, the MFCC

coefficients are calculated using the cosine transform.

Further details about the MFCC can be found in [177]. Here it is useful to

analyse the frequency averaging operation performed by the filter bank since there

lies the reason for the effectiveness of these standard features. Mel filter banks

are obtained by dividing the desired frequency range in the Mel scale into P+1

equal intervals. Let [ f̄0, f̄1, ..., f̄(P+1)] be the P+ 2 boundaries of the intervals.

The distance between adjacent points is Dm = ( f̄(P+1)− f̄0)/(P+1). In the Mel

scale, the frequency support of the λ th filter has length 2Dm and center in f̄λ with

λ = [1 : P]. Back to the linear frequency scale, the ratio of the frequency band to

the central frequency for the λ th filter is:

1
Q

=
fλ+1− fλ−1

fλ

=

(
C

f̄
λ+1
f0 −1

)
−
(

C
f̄
λ−1
f0 −1

)
C

f̄
λ
f0 −1

≈C
Dm
f0 −C−

Dm
f0 , (3.27)

which does not depend on the filter index λ when C
f̄
λ
f0 ≫ 1. Hence, accounting

for the approximations, the filter bank {ψλ} can be implemented as a set of

Q-constant filters where each filter ψ̂λ ( f ) is centred in fλ .

In practical applications, the filters ψλ are taken so that |ψ̂λ ( f )|2 is triangular, and

the output in the λ th band is calculated as a weighted sum of energy components.

The weights are given by the corresponding amplitude of |ψ̂λ ( f )|2. For a typical

bandwidth of 16kHz, the number of filters is commonly chosen between 12 and 30

[38, p. 81]. A common filter bank frequency response in the linear frequency scale

is reported in figure 3.6A

From above, integrating in ω , the averaged energy at the output of the filter ψλ

can be written as:

Mx(t,λ ) =
1

2π

∫ +∞

−∞

|x̂(t,ω)|2|ψ̂λ (ω)|2dω. (3.28)
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Figure 3.6: A normalised filter bank of 12 triangular filters |ψ̂λ ( f )|2 over a frequency range of
16kHz (A). The norm of the difference between the MFCC representation of x(t) and
the MFCC representation of xε(t) (B). x(t) is the same signal reported in figure 3.5A.
To reduce the effect of the side lobes of the filter, a Chebyshev window has been used
for φ(t). Since x(t) is stationary, the window length does not play a very relevant role
in this case. Note that the distance increases linearly as expected, and it is more than
an order of magnitude smaller than for the autocorrelation.

From the definition of the STFT (3.11), recalling that x̂(t,ω) is the Fourier trans-

form of xt = x(u)φ(u− t), (3.28) turns in:

Mx(t,λ ) =
1

2π

∫ +∞

−∞

|x̂t(ω)|2|ψ̂λ (ω)|2dω. (3.29)

Applying Plancherel’s formula yields:

Mx(t,λ ) =
∫ +∞

−∞

|xt(v)⋆ψλ (v)|2dv (3.30)

=
∫ +∞

−∞

∣∣∣∫ +∞

−∞

x(u)φ(u− t)ψλ (v−u)du
∣∣∣2dv,

where the product in the Fourier domain has been turned into the convolution ⋆

in the time domain. Recalling that the MFCC are not defined for low frequencies, it

is possible to assume the band of the λ th filter ωλ/Q so that T > 2πQ/ωλ , where

T is the duration of the window φ(t). Hence, the window φ(t) is roughly constant

on the support of ψλ (t) and it yields:
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Mx(t,λ )≈
∫ +∞

−∞

∣∣∣∫ +∞

−∞

x(u)φ(v− t)ψλ (v−u)du
∣∣∣2dv

=
∫ +∞

−∞

∣∣∣∫ +∞

−∞

x(u)ψλ (v−u)du
∣∣∣2|φ(t− v)|2dv (3.31)

= |x⋆ψλ |2 ⋆ |φ |2(t),

where φ(t) = φ(−t) has also been used. From the previous equation, the

calculation of the MFCC at frequency ωλ involves the convolution with two different

filters: ψλ (t) and |φ(t)|2.

The band-pass filter ψλ (t) provides stability to deformations by operating fre-

quency averaging over its own band. Recalling the time-warping deformation

described in 3.2.1.3, the progressively larger shift proportional to the frequency of

the tone |ω−ω/(1− ε)|= |ω|ε is balanced by filters that have a progressively

larger band ωλ/Q≈ |ω|/Q. This guarantees that a tone and its deformed copy

are described by the same coefficients (figure 3.6B).

The window function |φ(t)|2 can be seen as a low pass filter that averages

|x(t) ⋆ψλ (t)|2 over the length T of the window. This time-averaging operation

introduces time invariance as from section 3.2.1.2 but, at the same time, discards

most of the information associated with |x(t) ⋆ ψλ (t)|2. This issue limits the

performance of the MFCC, and it is one of the main reasons behind the introduction

of the wavelet scatting transform (see section 3.2.3.4) [79]. In practical applications,

the length T for the MFCC is chosen by balancing the loss of information with the

time-invariance and the need to characterise longer sound structures. As for the

STFT, T is commonly chosen in the range 20÷50ms.

3.2.3 Wavelets representations

In the previous section, it has been shown how MFCC introduces stability to

time-warping deformations and time invariance by approximately performing a

frequency averaging filtering and a time averaging filtering. Unfortunately, by

seeking time-invariance, a certain amount of information associated with the signal

is discarded, and this issue generally limits the performance of classification tasks.
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A solution to this issue comes from wavelets. In particular, the wavelet scattering

transform offers a strategy not to lose the discarded information without affecting

invariance and time-warping stability. Wavelets have been rigorously formalised

in literature relatively recently [178], but their first application dates back in time.

Wavelets find applications in a wide range of fields, from physics [179] to medicine

[180]. In machine learning, they are frequently applied to extract sets of descriptive

features, for example, for audio [181] and images [182]. The introduction of the

discrete scatting transform (section 3.2.3.4) has also offered some interesting

insight into the reasons behind the good performance of deep neural networks in

artificial intelligence tasks [183]. Here, only a short review of the main concepts is

given, providing only those concepts that are used in chapter 6 for detection and

classification tasks.

3.2.3.1 Real and analytic wavelets

A function ψ(t) ∈ L2(R)3 centered around t = 0, with zero average and unitary

norm:

µψ =
∫ +∞

−∞

ψ(t)dt = 0 ∥ψ∥2
2 =

∫ +∞

−∞

|ψ(t)|2dt = 1 (3.32)

is called a wavelet [80, p. 102]. A dictionary of wavelets is generated by scaling

and translating a mother wavelet ψ(t) while keeping (3.32) valid for each atom of

the dictionary:

Dψ = {ψu,s(t)}=
{ 1√

s
ψ

(t−u
s

)}
u∈R,s∈R+

. (3.33)

The definition of the wavelet dictionary is usually supplemented with the admis-

sibility condition:

∫ +∞

0

|ψ̂(ω)|2

ω
dω <+∞. (3.34)

For x(t) ∈ L2(R), (3.34) provides a sufficient condition [80, p. 105-110] for the

3L2(R) indicates the functions square-integrable on R.
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continuous wavelet transform Wx(u,s) = {⟨x(t),ψu,s(t)⟩}u∈R,s∈R+ to be complete

(any function x(t) ∈ L2(R) can be recovered from its transform), and to exhibit

energy conservation (the energy of x(t), ∥x∥2
2 =

∫+∞

−∞
|x(t)|2dt, can be recovered

from the energy of its transform). Note that, to guarantee (3.34), it is sufficient

that the Fourier transform of ψ(t) is null in ω = 0 (ψ̂(0) = 0), and it is either

continuously differentiable or sufficiently fast decaying:

∫ +∞

−∞

(1+ |t|)|ψ(t)|dt <+∞. (3.35)

Apart from the conditions above, no further restriction is given on the nature

of the function ψ(t), which usually depends on the particular application. A first

important distinction can be made between real and complex analytic wavelets.

When the function ψ(t) is real, the wavelet transform Wx(u,s) is used to measure

the transitions of x(t) in an interval around u proportional to s. On the other

hand, choosing ψ(t) complex and analytic4, allows to separate amplitude and

phase components, giving the means to measure evolution in time of frequency

structures [80, p. 103].

A possible way to define an analytic mother wavelet is to choose ψ(t) = eiξ tθ(t)

where ξ > 0 and the function θ(t) is real and even (θ(ω) = θ(−ω)) and is taken

so that θ̂(ω) = 0 for |ω| > ξ . ξ allows setting the frequency shift as for the

4To be analytic, the Fourier transform of a function fa(t) must be null for negative frequencies:

f̂a(ω) = 0 ∀ω < 0. (3.36)

Given its Fourier transform, fa(t) is necessarily complex, but it can be entirely characterised by its real part
f (t). In the time domain, this dependence can be written as:

fa(t) = f (t)+ iH( f (t)) = A(t)eiφ(t) (3.37)

where H( f (t)) = 1
πt ⋆ f (t) is the Hilbert transform of f (t) [184, p. 38]. Note that the previous equation can

also be used to obtain the analytic version of a real signal f (t). From (3.37), to obtain a real function f (t) from
its analytic version fa(t), it is sufficient to take the real part of fa(t). Hence, f (t) can also be written as:

f (t) = ℜ( fa(t)) = A(t)cos(φ(t)) (3.38)

where the identity eix = cosx+ isinx has been used. Therefore, using its analytic version, a real function
f (t) can be decomposed into an envelope A(t) = | fa(t)| and a carrier cos(φ(t)) with φ(t) = arg( fa(t)) [185].
The meaning of A(t) and φ(t) depends on the signal f (t). Note that when f (t) is narrow-band, e.g. an AM
modulated signal with a single frequency carrier, taking the modulus of the analytic version extracts the
envelope, which matches the modulated signal. The envelope has its own frequency spectrum, and in general,
calculating the modulus of | fa(t)| results in a shift to lower frequencies of the resulting spectrum.
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STFT, and the previous operation corresponds to the frequency modulation of a

low pass filter. Since ψ̂(ω) = θ̂(ω − ξ ) and has null spectrum for ω < 0, ψ(t)

is certainly analytic. Besides, given that θ(t) is real and even, its spectrum is

real and symmetric, and the wavelet spectrum is centred in ξ . All the generated

wavelets are also analytic since their Fourier transform can be written as:

ψ̂u,s(ω) = F
{ 1√

s
ψ

(t−u
s

)}
(3.39)

=
1√
s

∫ +∞

−∞

eiξ t−u
s θ

(t−u
s

)
e−iωtdt =

√
s e−iωu

θ̂(sω−ξ ),

which is centered in ξ/s and still null for ω < 0. For instance, a Morlet (or Gabor )

wavelet is obtained with a Gaussian window [80, p. 111]:

θ(t) =
e
−t2

2σ2
N

σN
√

2π
θ̂(ω) = e−

σ2
Nω2

2 , (3.40)

where the previous definition has been normalised to obtain max(θ̂(ω)) = 1.

Note that θ(t) and θ̂(ω) are both Gaussian and the product of their standard

deviation in the time and the Fourier domain is unitary. The Morlet wavelets are

only approximately analytic (pseudo-analytic) since the spectrum is not exactly

null for negative frequencies. However, their spectrum for ω < 0 can be forced to

0 by weakening the constraints about the decay in the time domain.

Unless otherwise specified, the following sections refer to analytic wavelets since

they are functional to the signal featurization used in 6.

3.2.3.2 Wavelets time-frequency localisation

In section 3.2.2 it has been shown that Q-constant filter banks exhibit frequency

resolution decreasing with the central frequency of the filter, and this feature is

crucial to guarantee stability to time-warping deformations. Wavelets reveal a

similar characteristic, and a simple calculation of the Heisenberg box is provided

in this section to illustrate this point.
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As seen in section 3.2.1.1, the time-frequency localisation of the wavelet trans-

form Wx(u,s) = {x(t),ψu,s(t)} depends on time and frequency spread of the

atoms of the dictionary. If the mother wavelet is assumed to be time-centred

in t = 0 as for the Morlet wavelets, the time-centre of the atom is µt = u. The

time-spread σt is:

σ
2
t =

∫ +∞

−∞

(t−u)2|ψu,s(t)|2dt (3.41)

=
∫ +∞

−∞

(t−u)2
∣∣∣ 1√

s
ψ

(t−u
s

)∣∣∣2dt = s2
∫ +∞

−∞

t2|ψ(t)|2dt = s2
σ̄

2
t ,

where σ̄2
t =

∫+∞

−∞
t2|ψ(t)|2dt is the time spread of the mother wavelet. As seen

in the previous paragraph, for a mother wavelet frequency-centred in:

ξ =
1

2π

∫ +∞

−∞

ω|ψ̂(ω)|2dω, (3.42)

the generated wavelets are frequency-centred in uω = ξ/s. The frequency

spread can be calculated as:

σ
2
ω =

1
2π

∫ +∞

−∞

(
ω− ξ

s

)2
|ψ̂u,s(ω)|2dω

=
1

2π

∫ +∞

−∞

(
ω− ξ

s

)2
|
√

s ψ̂(sω)e−iωu|2dω (3.43)

=
1
s2

1
2π

∫ +∞

−∞

(ω−ξ )2|ψ̂(ω)|2dω =
σ̄2

ω

s2 ,

where σ̄2
ω is the frequency spread of the mother wavelet. The relationships

above indicate that the scale parameter s plays a key role in the time-frequency

resolution. In particular, a larger scale dilates the wavelet in time, increases

the time spread and reduces the frequency spread. Hence, a large s entails

high-frequency resolution and low time resolution. Vice versa, a small value of s

returns high time resolution and low-frequency resolution. Note that the area of

the Heisenberg box sσ̄t× 1
s σ̄ω always remains the same despite being reshaped.

The position of the Heisenberg box depends on both u and s. Figure 3.7 illustrates
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two different Heisenberg boxes for two different values of u and s. Note that, with u

and s continuous, each point in the time-frequency plane is included in an infinite

number of Heisenberg boxes, and the wavelet transform returns a redundant

representation.

t

ω

σω/s1

s1σt

ψu1,s1
s2σt

σω/s2
ψu2,s2

ξ/s1

u1 u2

ξ/s2

Figure 3.7: The Heisenberg box of the wavelet transform. Time and fre-
quency resolution depend on the scale value s. Small s means
high time resolution and low frequency resolution. Large
s means low time resolution and high frequency resolution.
The scale s also controls the position of the box along the fre-
quency axis, while the position along the time axis depends
only on u.

A more formal definition is reported in [80, p. 106] where redundancy is char-

acterised by expressing the coefficients of the transform as a function of other

coefficients. A non-redundant wavelet representation can be built by sampling

time shift and frequency scale to generate a dictionary of orthogonal wavelets5.

For instance, in [186], an orthogonal wavelet basis is built as:

D =
{

ψ j,n(t) =
1√
2 j

ψ

(t−2 jn
2 j

)}
( j,n)∈Z2

, (3.45)

where wavelets are dilated by discrete factors s = 2 j and translated by dis-

crete steps u = n2 j. Note that, in this case, the time-frequency plane is tiled by

Heisenberg boxes placed at discrete steps. Further completeness and redundancy

5A wavelet ψn, j(t) is orthogonal to another wavelet ψm,k(t) if:

⟨ψn, j,ψm,k⟩= δ (n,m)δ ( j,k) (3.44)
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conditions are reported in the literature [80, p. 155].

Calculating the inner product of a translated wavelet can be interpreted as a

convolution product. Indeed:

⟨x,ψu,s⟩=
∫ +∞

−∞

x(t)
1√
s
ψ
∗
(t−u

s

)
dt = x⋆ψs(u), (3.46)

which shows that the wavelet transform is a convolution between x(t) and the

filters ψs(t) =
1√
sψ∗

(
−t
s

)
. Besides, since:

ψ̂s(ω) =
√

sψ̂
∗(sω) and ψ̂(0) =

∫ +∞

−∞

ψ(t)dt = 0, (3.47)

then ψ̂s(0) = 0, and ψs can be seen as a bandpass filter.

3.2.3.3 Matching MFCC and wavelet transform

In the previous section, it has been shown that wavelets can be seen as band-

pass filters. Besides, if a wavelet in (3.33) is scaled by a factor s, as seen in

section 3.2.3.2, both its frequency band and its centre frequency are scaled by

a factor 1/s. This means that a family of wavelets can be seen as a Q-constant

filter bank. It is possible to define the desired number M of wavelets per octave

by choosing the scale factor as s = 1/2λ/M with λ ∈ Z. If the central frequency

of the mother wavelet ψ̂(ω) is ωc, the generated wavelets will be frequency-

centered in ωλ = ωc2λ/M. If the mother wavelet is chosen as the one centred

at unitary frequency, the centres of the generated wavelets can be written as

ωλ = 2λ/M. This frequency-normalised mother wavelet is indicated as ψ0. Since

F
(
ψλ (t)

)
= F

(√
ωλ ψ0(ωλ t)

)
= 1√

ωλ
ψ̂0(ω/ωλ ), to avoid scaling the modulus

in the frequency domain, each generated wavelet is multiplied by a scaling factor
√

ωλ , that is:

ψu,λ (t) = ωλ ψ0
(
ωλ (t−u)

)
. (3.48)

Here, the bandwidth B0 of ψ0 is chosen to be 1/M to cover the whole frequency
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axis. With this choice, Q = ω0/B0 = M and the central frequency of the filters can

be written as ωλ = 2λ/Q. For instance, for the Morlet wavelets, f0 and B0 can be

imposed by defining ξ = 1 and σN = 1/Q in (3.39) and (3.40), respectively.

Apart from the filter shape, the family of wavelets described above is almost

equivalent to the Q-constant filter bank described for the MFCC. As from equation

(3.31), however, calculating MFCC also involves a convolution with the low pass

filter φ(t) obtained from the window function of length T . In section 3.2.2, it has

been pointed out that (3.31) is valid for T > 2πQ
ωλ

, that is, for those wavelets ψλ

whose time spread σtλ = 2πQ
ωλ

is smaller than the window length T . Hence, the

construction of a Q-constant wavelet filter bank is kept only for ωλ ≥ 2πQ/T or,

equivalently, λ ≥ Q log2(2πQ/T ). For lower frequencies, in order not to exceed

the length T , the spectrum between 0 and 2πQ/T is divided into Q equal intervals

covered by Q− 1 band-pass filters ψλ of bandwidth 2π/T . Note that the lower

part of the filter bank is equivalent to a STFT and that this abrupt change from Q-

constant to STFT is sometimes replaced by a smooth transition [187]. Sometimes,

in fact, despite not being perfectly Q-constant, a smooth transition is more desirable

than a constant bandwidth at lower frequencies. Finally, the filter bank is completed

by adding one more low-pass filter φ(t) with bandwidth 2π/T and |φ̂(ω)| ≤ 1.

Therefore, the wavelet transform operator Wx can be modified to include also the

low-frequency (non-wavelet) function φ(t) [79] :

Wx =
{

x⋆φ(t), x⋆ψλ (t)
}

t∈R,λ∈Λ
, (3.49)

where Λ indicates the set of indexes per each central frequency ωλ of the

functions ψλ . The operator Wx is contractive, that is:

∥Wx∥2
2 ≤ ∥x∥2

2. (3.50)

In fact, because of the construction described above, the following relation [82]

holds for the sum of the squared modulus6:

6In general, the relation (3.51) is valid accounting for at most a multiplicative factor, even when the
bandwidth of the filters is not defined as ωλ /Q but using different criteria.
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A(ω) = |φ̂(ω)|2 + 1
2 ∑

λ∈Λ

(
|ψ̂λ (ω)|2 + |ψ̂λ (−ω)|2

)
≤ 1 ∀ω ∈ R. (3.51)

Multiplying the previous relation by |x̂(ω)|2, integrating over ω , and applying

Plancherel’s formula returns (3.50). Note that A(ω) is also > 0 and, with analogous

steps:

(1−α)∥x∥2
2 ≤ ∥Wx∥2

2 0≤ α < 1, (3.52)

which implies that the function x(t) can be recovered from Wx as its stable

inverse [80, pp. 168–170].

When computing the mel coefficients |x⋆ψλ |2 ⋆ |φ |2(t) in (3.31), the squares do

not play any important role in the effectiveness of the representation. Moreover,

they make the functions more difficult to handle and introduce a non-linearity that

might amplify undesired outliers. Hence, it is possible to consider |x⋆ψλ |⋆ |φ |(t) =
|x⋆ψλ |⋆φ(t) instead of the original relation in (3.31) without any loss of generality.

Recalling the interpretation in terms of analytic wavelets, note that calculating the

modulus of x⋆ψλ (t) is a necessary operation to calculate the average obtained

by the convolution with φ(t). Indeed, without introducing a non-linearity, averaging

the wavelet coefficients x⋆ψλ would return zero. Besides, the modulus does not

alter the contractive property of Wx (indeed |x− y| ≥ | |x|− |y| |), preserves the

energy, and because of the redundancy of the wavelet representation, does not

cause any loss of information as it would be for the Fourier transform [188].

3.2.3.4 Wavelets scattering transform

It has been shown that x⋆ |φ |(t) provides translation invariant coefficients while

|x⋆ψλ |(t) provides coefficients that are robust against deformations without losing

information. The operator wavelet modulus transform is defined as:

|W |x =
{

x⋆φ(t), |x⋆ψλ (t)|
}

t∈R,λ∈Λ
. (3.53)
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As for Wx, |W |x is invertible [188] and contractive. The contractive property is

important to guarantee that the representation provides a distance that is no bigger

than the actual distance between two different signals, that is:

∥ |W |x−|W |y ∥2
2 ≤ ∥Wx−Wy∥2

2 ≤ ∥x− y∥2
2. (3.54)

This property keeps the representation stable if the operator is applied multiple

times and limits the effect of additive noise.

It is here remarked that, since ψλ is assumed analytic, |x⋆ψλ |(t) calculates the

modulus of the analytic function x⋆ψλ (t). This operation extracts the envelope

of the latter and reshapes its spectrum. Since the envelope is smoother, the

reshaped spectrum tends to translate the energy of the original analytic signal

toward the low frequencies. Coefficients |x⋆ψλ |(t) are simply equivariant since

the representation shifts with the translation of the input. This is an issue when

time invariance is required for the analysis. For MFCC, the problem is tackled

by averaging, that is, by calculating the convolution with φ(t). However, this

operation causes a loss of information since it keeps only the very low-frequency

components of the envelope |x⋆ψλ |(t). The rest is lost. The wavelet scattering

transform provides a solution to this issue with a multilayer iterative architecture.

In layer zero, the information lost by the invariant features S0x(t) = x⋆φ(t) are

recovered by calculating the wavelet modulus transform:

|W1|x =
{

x⋆φ(t), |x⋆ψλ1
(t)|

}
t∈R,λ1∈Λ1

. (3.55)

Here Λ1 refers to the set of filters used in layer one. To make |x⋆ψλ1
(t)| time

invariant, a convolution with φ(t) is calculated. This operation returns the features

for the layer one S1x(t,λ1) = |x ⋆ψλ1
| ⋆ φ(t) for each λ1 ∈ Λ1, which are time

invariant and stable against time-warping deformation. As for S0x(t), however,

the low pass filter discards most of the information associated with the envelopes

|x⋆ψλ1
|. Again, this information is maintained by calculating the wavelet modulus
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transform for layer two per each λ1 ∈ Λ1:

|W2||x⋆ψλ1
| (3.56)

=
{
|x⋆ψλ1

|⋆φ(t), ||x⋆ψλ1
|⋆ψλ2

(t)|
}

t∈R,λ2∈Λ2
∀λ1 ∈ Λ1.

The quantity ||x ⋆ψλ1
|⋆ψλ2

(t)| computes a new set of envelopes that can be

averaged by the low pass filter φ(t) in order to provide invariant and stable features

for layer two S2x(t,λ1,λ2) = ||x⋆ψλ1
|⋆ψλ2

|⋆φ(t) for each λ1 ∈ Λ1 and λ2 ∈ Λ2.

S0x(t)

S1x(t,λ1)

S2x(t,λ1,λ2)

x

|x*ψλ1|

||x*ψλ1|*ψλ2|

Figure 3.8: Topology of the scattering transform network. At each layer, the invariant coefficients
Sm are calculated by filtering with the low pass filter φ(t). Information lost to achieve
invariance is recovered in the subsequent layer by calculating a new wavelet modulus
transform. The root of the tree is given by the input signal x(t).

This procedure can be repeated for the higher order layers to yield the invariants

and to keep the information discarded while achieving invariance. Figure 3.8

illustrates the architecture of the network. The scattering coefficients for the layer

m of the wavelet scattering transform (WST) are indicated as:

Smx(t,λ1, ...λm) = |||x⋆ψλ1
|⋆ ...|⋆ψλm|⋆φ(t), (3.57)

where Smx denotes the wavelet scattering operator for layer m, and λ1, ...,λm

indicate a specific path of the scattering network. Note that, since the wavelet

modulus transform is contractive, the scattering transform is contractive too, and

it is stable to additive noise (a small perturbation affects the representation only

marginally). Besides, since the envelopes at each step shift the energy toward
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lower frequencies, the original signal energy is progressively captured by low-pass

filters, and coefficients tend to decrease when a new layer is calculated. Usually,

for audio signals, the coefficients beyond layers three or four are negligible. This

number, however, is also related to the length T of the window. As T increases,

the band of the low-pass filter φ becomes narrower. This means that a greater

portion of the energy is scattered to the next layer. For short windows, e.g.

20ms, layer one might be sufficient to capture most of the energy, making MFCC

performance comparable to scattering transform. However, a larger window is

required to capture large sound structures, and MFCC loses the information that

the scattering transform represents on higher-order layers. For audio signals, a

good starting point for the resolution of the filter is Q1 = 8 and Qn = 1 for n > 1 [79].

However, this choice depends on the application, and other values might be

required for better performance.

Features extracted with wavelets scattering transform can be optimised by

performing a normalisation between coefficients of adjacent layers. In its general

form, the normalisation can be written as:

S̄mx(t,λ1, ...,λm) =
Smx(t,λ1, ...,λm)

Sm−1x(t,λ1, ...,λm−1)+ ε
, (3.58)

where ε is a silence threshold to set S̄mx = 0 if x = 0. For instance, for m = 1,

the normalisation makes the representation invariant when x(t) is multiplied by

a constant. For all the orders, normalisation generally decorrelates coefficients

belonging to different layers. Further implementation details for discrete signals

and other observations to reduce the amount of useful coefficient required are

reported in chapter 6.

Wavelet scattering networks exhibit similarities with convolutional networks [189]

in terms of both topology and performed operations. However, the most important

difference is related to the fact that scattering networks do not need to be trained

since filters and pooling operations are already given. This provides better per-

formance when training data are scarce, but its predefined structure might cap

the performance in the case of complex sound structures. Moreover, scattering
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features are extracted at each layer, while convolutional networks usually extract

features from the last layer.

3.3 Feature transformation and reduction

Dealing with large datasets requires a lot of resources in terms of hardware to

store and process the data. Besides, processing raw data directly is not a good

practice for several reasons. For instance, the source representation might be

unnecessarily complex and even too sensitive to undesired inputs such as additive

noise. When compression is applied to sounds or images, the size of the primary

data is remarkably reduced with negligible loss of quality. This transformation

is achieved through algorithms that provide a more meaningful and compact

representation of the data while discarding unnecessary redundancy. For instance,

the standard jpeg2000 [190] uses wavelet representation to describe only those

portions of the images that carry interesting information (e.g. the edge of an

object). The audio standard MP37 achieves the same result via discrete cosine

transform [191]. Similarly, representing the features in a lower-dimensional space

allows a reduction of the resources necessary for storage and computation and,

in machine learning, usually yields better results. In the previous section, it has

been shown how a signal can be represented to provide robust and invariant

features. The next step is understanding how to transform/reduce these features

to yield something more convenient for machine learning tasks. Obviously, any

good transformation shall not lose any relevant information.

3.3.1 Principal component analysis

Principal component analysis (PCA) is probably one of the most widespread

techniques for feature transformation/reduction. It has been implemented in many

variants [192],[193],[194] and the underlying idea is to transform the data to obtain

a new set of equivalent and decorrelated variables that can be sorted in relation to

their variance. Although the transformed variables often lose trivial connections
7To the best of our knowledge, at the time of writing this text, no audio compression standard using

wavelets has been published.
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with meaningful physical quantities, the transformed representation generally

allows better visualisation, dimensionality reduction, and improved clustering. In

the next section, it is shown the case where the transformation between the old

and new set of coordinates is linear. In section 3.3.1.2, the same concept is

extended to non-linear transformations.

3.3.1.1 Linear PCA

Linear PCA [195] is usually implemented either as a solution to an eigenval-

ues/eigenvectors problem or from singular values decomposition. Under certain

conditions, however, these two solutions provide equivalent results. Here, the first

option is described because it allows the extension to the non-linear case.

Data is assumed organised in a matrix XXX ∈ RN×D, with N examples and D

variables. The examples are given by the row vectors xxxn,: = XXX (n,:) ∈ R1×D ∀ n ∈
[1 : N], while the variables by the column vectors xxx:,d = XXX (:,d) ∈RN×1 ∀ d ∈ [1 : D].

For audio, this can be obtained by slicing signal representations in N arrays

of D samples. Firstly, it is assumed that each variable xxx:,d, is centred. This

condition can be obtained by shifting to zero the mean of each column. Issues

related to non-centred variables are accounted for later. The aim of the principal

component analysis is to find a linear transformation ZZZ = XXXWWW ∈ RN×L where

the new variables zzz:,l = ZZZ(:,l) ∈ RN×1, the principal components (PCs), exhibit

maximised and descending variance, from the first PC zzz:,1 to the last zzz:,L. The new

reference system is given by the loadings of the matrix WWW ∈ RD×L, that is the L

orthonormal vectors www:,l =WWW (:,l) ∈ RD×1. The loadings represent the direction

of the PCs in the original reference system. The vectors zzzn,: = ZZZ(n,:) ∈ R1×L are

called scores since they represent each example in the new reference system.

The scores of an example are given by a numerical value per each PC.

The principal components can be found one by one, starting from the first. To

find the first PC, it is necessary to determine the first vector www:,1 as:

www:,1 = argmax
www:,1

∣∣
∥www:,1∥22=1

N

∑
k=1

z2
k,1 = argmax

www:,1

∣∣
∥www:,1∥22=1

wwwT
:,1XXXT XXXwww:,1 , (3.59)
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where T denotes the transpose. The maximisation problem above with the

condition ∥www:,1∥2
2 = 1 is equivalent to maximising the Lagrangian function:

L (www:,1,λ ) = wwwT
:,1XXXT XXXwww:,1−λ (wwwT

:,1www:,1−1) , (3.60)

with λ being the Lagrange multiplier. The solution can be obtained by finding

the vector www:,1 that makes the derivative null, that is:

XXXT XXXwww:,1 = λwww:,1 . (3.61)

Hence, recalling the definitions of eigenvalue and eigenvector, the variance of

zzz:,1 is maximised by one of the eigenvectors w̄ww of XXXT XXX corresponding to one of the

eigenvalues λ̄ . Since w̄wwT XXXT XXXw̄ww = λ̄ w̄wwT w̄ww = λ̄ , the eigenvector w̄ww that maximises

the variance is the one corresponding to the highest eigenvalue. Equation (3.61)

does not change by multiplying the eigenvector by −1, meaning that its direction

is irrelevant. Besides, note that the matrix XXXT XXX ∈ RD×D is real, symmetric and

positive semi-definite, 8 9 so its D eigenvalues are all real and ≥ 0. Furthermore,

the associated D eigenvectors are all orthogonal. To find the second principal

component, the matrix XXX can be decomposed as:

XXX = X̃XX +XXXwww:,1wwwT
:,1 , (3.64)

where X̃XX is obtained from XXX by removing the variations in the direction of the

first principal component. Recalling that the direction of the second principal

component must be orthogonal to the first, that is wwwT
:,1www:,2 = 0, and repeating

8A matrix AAA ∈ RD×D is positive semi-definite (definite) if, for any non-null vector yyy ∈ RD×1, it returns:

yyyT AAAyyy≥ 0 (> 0) (3.62)

For positive semi-definite (definite) matrices, the eigenvalues are always ≥ 0 (>0) since, if yyy is an eigenvector
and λ its eigenvalue,

yyyT
λyyy = yyyT AAAyyy≥ 0 (> 0), (3.63)

where yyyT λyyy has the same sign of λ .
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the steps above for www:,2, the highest eigenvalue of X̃XXT X̃XX is the second highest

eigenvalue of XXXT XXX . Hence, www:,2 is the eigenvector associated with the second

highest eigenvalue. The procedure above can be repeated for all the L highest

eigenvalues (certainly even when L = D) by removing from X̃XX the variation in the

direction of all the previous principal components.

Usually, to calculate the principal components, the mean of the variables xxx:,d

is assumed to be null. Through the matrix WWW , the principal components analysis

provides a rotation of the original reference system to align the first principal

component to the direction of the maximum variation.

(A) Centred data
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4 data
PC1
PC2

(B) Not centred data
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Figure 3.9: PCA for centred and not centred data. The yellow points indicate a random variable
obtained as a realisation of a Gaussian process. The blue line indicates the direction
of the eigenvector associated with PC1, while the red one is associated with PC2.
Both lines have been scaled proportionally to the related eigenvalues. For centred
data (left), PC1 correctly indicates the direction of the maximum variance. When
data are not centred, PC1 indicates the direction of the cluster, missing the correct
max variance direction.

If data is not centred but clustered away from the origin, the first principal

component is aligned to the direction of the centre of the cluster, which is, in

general, different from the direction of the maximum variation. Moreover, if the

cluster’s distance from the origin is much bigger than the size of the cluster,

the variance is incorrectly dominated by the cluster’s distance, and it is mainly

associated only with the first principal component. In this case, PCA does not

provide useful information about the variance of the variables (figure 3.9). This
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issue is usually tackled by calculating the PCA using the sample covariance matrix

KKKxx
9 instead of XXXT XXX . Indeed, KKKxx centers the variables by definition, and it

simply becomes 1
N−1XXXT XXX when data are already centred. Note that the sample

covariance matrix of ZZZ is not null only along the main diagonal. This is usually

recalled by saying that the PCA diagonalises the covariance matrix. Indeed,

zzzT
:,kzzz:,h = wwwT

:,kXXXT XXXwww:,h = λhwwwT
:,kwww:,h, which is not null only for h = k.

An interesting property of PCA [197, p. 388] is that it minimises the reconstruction

error in the sense of the squared norm ∥XXX −ZZZLWWW T
L∥2

F
10, where the subscript

L indicates that PCA is obtained by accounting only for the first L principal com-

ponents. Hence, by choosing L < D it is possible to reduce the dimensionality,

meaning that each example xxxn,: can be represented by L variables instead of D

while keeping the best approximation of xxxn,: in the sense of the squared norm.

9Given the sample data matrix XXX ∈ RN×D with N examples of D variables:

XXX =


x11 x12 . . . x1D
x21 x22 . . . x2D
...

...
. . .

...
xN1 xN2 . . . xND

 , (3.65)

the sample covariance matrix KKKxx is the symmetric matrix defined as [196, p. 177]:

KKKxx =
1

N−1


k11 k12 . . . k1D
k21 k22 . . . k2D
...

...
. . .

...
kD1 kD2 . . . kDD

 , (3.66)

where

k j j =
N

∑
i=1

(xi j− x̄ j)
2 ∀ j = [1 : D] (3.67)

kh j = k jh =
N

∑
i=1

(xi j− x̄ j)(xih− x̄h) 1≤ h, j ≤ D j ̸= h (3.68)

x̄ j =
1
N

N

∑
i=1

xi, j. (3.69)

Note that KKKxx can be written as:

KKKxx =
1

N−1

N

∑
i=1

(xxxi− x̄xx)(xxxi− x̄xx)T with x̄xx =
1
N

N

∑
k=1

XXXT
(k,:) xxxi = XXXT

(i,:) (3.70)

For centered data x̄:, j = 0 ∀ j = [1 : D] and KKKxx =
1

N−1 XXXT XXX . KKKxx is positive semi-definite since per each
vector yyy ∈ RD×1:

yyyT KKKxxyyy =
1

N−1
yyyT

[ N

∑
i=1

(xxxi− x̄xx)(xxxi− x̄xx)T
]
yyy =

1
N−1

N

∑
i=1

[
(xxxi− x̄xx)T yyy

]2 ≥ 0 (3.71)
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Since the variance and the eigenvalue of each principal component are directly

related, it is possible to define a threshold in terms of the percentage of the total

sum of the eigenvalues and to keep only the associated eigenvectors. Commonly,

most of the variance is associated with the first few principal components. If the

number of components is reduced to two or three, it is possible to represent data

defined in a higher dimensional space using a simple 2D or 3D plot.

3.3.1.2 Kernel PCA

PCA performs a linear transformation between two different reference systems.

Depending on the data, however, this linear transformation may not be able to

enhance the representation and provide relevant benefits to the other machine-

learning tasks. Sometimes, a better solution comes from assuming the source

data given in a space S as a simplified representation of a different one living in a

much higher dimensional space S′. Classes that appear strongly tangled in S, after

performing PCA in S′ might become better clustered and linearly separable (figure

3.10). The optimal space S′, however, is generally unknown in advance. Besides,

since the dimension of S′ is usually much larger or infinite, even assuming a certain

known map function ξξξ : S−→ S′, calculating PCA in S′ might be unfeasible.

An elegant solution comes from the Kernel method for PCA [198], which, un-

der certain conditions for ξξξ and by using the so-called kernel trick, allows the

calculation of PCA in S′ without actually performing any calculation in the higher

dimensional space. With the same notations used in the previous paragraph, it is

here assumed that the map function ξξξ (xxxi,:) maps any example xxxi,: from S ∈ RD to

a different space S′ ∈ RH , with H > D. ΞΞΞ indicates the matrix of size N×H that

collects the representation of the examples in S′. Firstly, it is assumed that data

mapped in S′ are centred. This condition is generally not verified, but this issue is

accounted for toward the end of this section.

As from the previous section, performing PCA in S′ would require calculating

10The Frobenius norm of a matrix is defined as:

∥AAA∥2
F =

N

∑
i=1

M

∑
j=1

a2
i j = trace(AAAT AAA) (3.72)
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eigenvalues and eigenvectors of ΞΞΞ
T

ΞΞΞ. However, since ΞΞΞ
T

ΞΞΞ is of size H×H, with

H potentially infinite, the above calculation is generally not feasible. Instead, let UUU

be a matrix containing the normalised eigenvectors of ΞΞΞΞΞΞ
T arranged by columns

and ΛΛΛ a matrix with the corresponding eigenvalues along the principal diagonal.

With these assumptions, ΞΞΞΞΞΞ
TUUU =UUUΛΛΛ. Multiplying by ΞΞΞ

T yields:

ΞΞΞ
T

ΞΞΞΞΞΞ
TUUU = ΞΞΞ

TUUUΛΛΛ, (3.73)

which means that ΞΞΞ
TUUU are the eigenvectors of ΞΞΞ

T
ΞΞΞ with the same eigenvalues

in ΛΛΛ. Note that ΞΞΞ
T

ΞΞΞ has the same number of independent eigenvectors of ΞΞΞΞΞΞ
T

so ΞΞΞ
TUUU includes them all11. As for the PCA, eigenvectors of ΞΞΞ

T
ΞΞΞ shall exhibit

unitary norm and, since uuuT
:, jΞΞΞΞΞΞ

T uuu:, j = uuuT
:, juuu:, jλ j = ∥uuu:, j∥2

2λ j = λ j, the normalised

eigenvectors will be ΞΞΞ
TUUUΛΛΛ

−1
2 .

(A) Source data
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Figure 3.10: Effect of the non-linearity on PCA. Picture A shows a set of data ∈ R2 that are
not linearly separable. After performing kernel PCA (picture B), the two classes
are better clustered and can be linearly separated with just a few outliers. Good
separation can be achieved with just one principal component. The nonlinearity is
given by a Gaussian Kernel.

As seen in the previous section where ZZZ = XXXWWW , the principal components ZZZ′ in

the transformed space S′ can be found by projecting the transformed data ΞΞΞ on

the eigenvectors found above, that is:

ZZZ′ = ΞΞΞΞΞΞ
TUUUΛΛΛ

−1
2 . (3.74)

11Given matrix AAA ∈ RM×N with rank k ≤min(M,N), the symmetric matrices AAAAAAT and AAAT AAA have rank k and
k linearly independent eigenvectors.
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In the previous equation, UUU and ΛΛΛ can be calculated but ΞΞΞ is unknown. However,

ΞΞΞ appears only in the form ΞΞΞΞΞΞ
T , which is a matrix of size N×N, and it can be

calculated under the conditions reported below.

The Mercer’s theorem [199] guarantees that, given a kernel function κ : S2 −→ R
defined to be:

κ(xxxh,: , xxx j,:)≥ 0

∀ h, j ∈ [1 : N] (3.75)

κ(xxxh,: , xxx j,:) = κ(xxx j,: , xxxh,:),

if the related Gram matrix :

KKK =


κ(xxx1,: , xxx1,:) . . . κ(xxx1,: , xxxN,:)

... . . . ...

κ(xxx1,: , xxx1,:) . . . κ(xxx1,: , xxxN,:)

 (3.76)

is positive definite, then there exists a map function ξξξ (xxx) so that the kernel

function computes its inner product. Hence, if the non-linear transformation is

chosen by choosing first its associated Mercer’s kernel, ΞΞΞΞΞΞ
T can be written as:

KKK = ΞΞΞΞΞΞ
T (3.77)

=


ξξξ (xxx1,:)ξξξ

T (xxx1,:) . . . ξξξ (xxx1,:)ξξξ
T (xxxN,:)

... . . . ...

ξξξ (xxxN,:)ξξξ
T (xxx1,:) . . . ξξξ (xxxN,:)ξξξ

T (xxxN,:)

=


κ(xxx1,: , xxx1,:) . . . κ(xxx1,: , xxxN,:)

... . . . ...

κ(xxx1,: , xxx1,:) . . . κ(xxx1,: , xxxN,:)


and this allows the calculation of the PCA in the space S′. Replacing the inner

product with a call to the kernel function is usually referred to as the kernel trick

and is the crucial point of kernel methods [197, p. 488].

As seen for PCA, to make the transformation useful, data should be centred.

However, in this case, centring cannot be done directly since no explicit represen-

tation is given in S′. To solve the problem, once the kernel κ has been chosen, indi-

156



cating the centred version of the vector ξξξ (xxxh,:) as ξ̄ξξ h,: = ξξξ (xxxh,:)− 1
N ∑

N
j=1 ξξξ (xxx j,:),

the items of the centred Gram Matrix can be calculated using the inner product

and the kernel trick one more time:

K̄h,k = ξ̄ξξ
T
h,:ξ̄ξξ k,: (3.78)

= ξξξ
T
h,:ξξξ k,:−

1
N

N

∑
j=1

ξξξ
T
h,:ξξξ j,:−

1
N

N

∑
j=1

ξξξ
T
k,:ξξξ j,: +

1
N2

N

∑
j=1

N

∑
l=1

ξξξ
T
j,:ξξξ l,:

= κ(xxxh,: , xxxk,:)−
1
N

N

∑
j=1

κ(xxxh,: , xxx j,:)−
1
N

N

∑
j=1

κ(xxxk,: , xxx j,:)+
1

N2

N

∑
j=1

N

∑
l=1

κ(xxx j,: , xxxl,:).

The previous equation can be written in matrix form as:

K̄KK = Ξ̄ΞΞΞ̄ΞΞ
T
= KKK− 1

N
111NKKK− 1

N
KKK111N +

1
N2 111NKKK111N = HHHKKKHHH, (3.79)

where HHH = III− 1
N 111N , III is the identity matrix of size N×N, and 111N is the all-one

squared matrix of size N×N. Note that eigenvectors UUU and eigenvalues ΛΛΛ in

(3.73) need to be calculated using K̄KK = Ξ̄ΞΞΞ̄ΞΞ
T instead of KKK = ΞΞΞΞΞΞ

T .

When using kernel PCA, the main issue is finding a transformation which can be

expressed in terms of its kernel and is appropriate for the application. In general, it

is not easy to prove that a kernel is Mercer’s [197, p. ], but Mercer’s kernels can be

combined to obtain new Mercer’s kernels. For instance, this approach has been

used in multiple kernel learning [200] to find sub-optimal kernels. Some examples

are given in chapter 6.

3.4 Classification and event detection

Once a signal has been represented with some set of features, transformed

and reduced, the last step consists in detecting and classifying possible acoustic

events happening along the audio recording. This last step provides information

that is meaningful to humans. Detecting an event means identifying its start and

its end time in the recording. This information is complemented with the classifi-

cation, which, in this work, means assigning a descriptive audio label taken from
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a set of given audio classes. The software entity that performs this latter opera-

tion is called classifier. In the discriminative approach (figure 3.11), a classifier

tries to predict the labels by describing some boundaries that can discriminate

between different classes. No further modelling assumptions are required. For

instance, K-nearest neighbours (KNN) (section 3.4.1), support vector machines

(SVM) (section 3.4.2), and random forests [201] are classification techniques that

can be defined as discriminative. Accounting for the differences, traditional neural

networks can also be considered discriminative.

Discriminative Generative

Figure 3.11: Discriminative versus generative classifiers. In the discriminative approach, classes
are separated by boundaries in the representation space. The generative approach
tries to model the underlying process that generates the data.

On the other hand, a generative approach (figure 3.11) tries to work out a

model that is intended to describe the underlying process that generates the data.

They are called generative in the sense that it is possible, if needed, to generate

new data points from the model of the process. Some examples of generative

techniques are naive-Bayes classifiers [202, p. 258], Gaussian mixture models

(GMM) [38, p. 115] and Hidden Markov Models (HMM) [203]. Although it is not

possible to provide an always-true rule, a discriminative approach is arguably more

indicated for this work. This assumption is motivated by the fact that noise-like

events might be very difficult to model, and outliers are better managed by defining

simple separation boundaries between classes [38, p. 27]. Hence, the following

sections are mainly focused on discriminative approaches.

Classifiers exploit reference examples to assign meaning to similarities between

different groups of features. From this point of view, classification is always a
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supervised learning operation. Nevertheless, machine learning algorithms can

take advantage of operations where data are processed independently from their

labels to extract underlying relevant information. PCA, for instance, does not

require any labels to be performed and can be considered an unsupervised

operation. A supervised approach can also be adopted at the feature extraction

level to provide a more discriminative representation.

Given the number of solutions reported in the literature, it is not possible to

provide an exhaustive description of the field, and the following sections describe

only those techniques that will be recalled later in chapter 6.

3.4.1 K-nearest neighbours

The K-nearest neighbours (KNN) algorithm [204], in its naive implementation,

provides one of the simplest forms of classifiers. Given its simplicity, it is often

considered a benchmark for more complex techniques. The basic idea is to

measure the distance between a test example and a set of references to select

the nearest K of them (figure 3.12). The test example is classified by counting the

labels of the nearest K references and assigning the label of the most represented

class among the neighbours (the majority vote). In the case of K = 1 the assigned

label corresponds to the label of the nearest reference. If (xxx,y) ∈ RD×C is a test

example, and {(rrri,ci)}N
i=1 ∈R

D×C is a set of N reference examples, the distance

between (xxx,y) and (rrri,ci) can be written as:

dxxx,rrri = ∥xxx− rrri∥, (3.80)

where ∥ · ∥ is some kind of metric, C the set of reference classes, and D the

dimension of the features. By sorting the distances dx,ri and selecting the smallest

K, it is possible to formulate a prediction for the class y. Choosing the optimal

number of neighbours K generally reduces the sensitivity to noisy examples and

improves the classifier performance. This is usually done with some heuristic

supervised approach [205].

In its basic implementation, a KNN classifier does not require a proper training
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stage but only a collection of a certain number of reference examples. KNN is a

discriminative classifier since it only provides decision boundaries between classes

and does not require any modelling assumption. Nevertheless, to guarantee good

performance, it is necessary to address a few issues related to the data and the

distance used. Some of these issues are briefly reviewed below.

x1

x2

?

Figure 3.12: Representation of K-nearest neighbours algorithm in R2 for K = 3. The distance is
calculated with the Euclidean norm.

Skewed datasets - One common issue related to the data emerges when the

dataset is unbalanced or skewed. In this case, some classes are over-represented

by a large number of reference examples, while others appear only a few times.

Since the former are more abundant, in the case of near or overlapping classes, the

probability of having them included in the K-neighbours is higher even if they don’t

belong to the same class. A possible solution to this issue consists in performing

the majority vote after multiplying each neighbour by a weight that is inversely

proportional to the distance. This solution generally makes the impostors less

relevant. At the same time, the actual rule used for the majority vote can be made

unbalanced by accounting for the prior probability of each class [206]. Another

approach consists of sub-sampling or over-sampling opportunely the reference set

to rebalance the number of instances per class [207]. For all the strategies above,

a supervised approach can be used.

Curse of dimensionality - A second issue related to the data concerns the

dimension D. When calculating the distance (3.80), for example using the common
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Euclidean norm, a small value of the distance requires each correspondent couple

of components to have similar values. This is more difficult to achieve when D

increases from a few components to large arrays of features. When D increases,

the ratio of the closest distance to the average distance between the test and the

reference points approaches one [208, p. 170]. This issue is usually referred to

as the curse of dimensionality [197, p. 18] and can be thought of as due to the

fact that the same number of points N is sparser in a higher-dimensional space.

Therefore, instead of increasing exponentially the amount of data, a possible

solution comes from dimensionality reduction techniques such as PCA. Note

that reducing the dimensionality helps also to eliminate those features that are

irrelevant and potentially noisy.

Size of the dataset - KNN performs classification by comparing each test example

with each reference example. Hence, to reduce the amount of memory and

calculation required, it is useful to reduce the number of reference points without

affecting the classification performance. This operation may also be beneficial

in terms of noise reduction for the overall classification process [209]. Usually,

a data reduction algorithm firstly eliminates the outliers12 from the training set.

Then, from the remaining examples, it tries to learn (prototype selection) or to

generate (prototype generation) a set of prototypes that should be representative

of the various clusters [210]. The prototypes should be able to correctly classify

the remaining points, the absorbed examples, that can be safely removed from the

dataset. Guaranteeing the quality of the prototypes, that is their ability to represent

and classify the various clusters, is the key to reducing the number of reference

examples without affecting the performance of the classifier [209].

Data normalisation - From the definition given above, since classification depends

on the distance and some distances depend on the scale, it may be useful to

introduce some form of normalisation in those cases where relevant components

vary in very different ranges of magnitude [211].

Choice of the distance - A common choice for the distance (3.80) is the Euclidean

12For KNN, an outlier is a point in RD surrounded by other points belonging to different classes. Outliers
may be caused by noise in the dataset but also by an inadequate set of features or skewed data.
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norm, but a range of metrics have been proposed in the literature to estimate

similarities between examples and improve the selection of the right neighbours

[212],[213]. For instance, the LMNN generalises the Euclidean norm by defining

the distance as:

dx,ri = (xxx− rrri)
T MMM(xxx− rrri), (3.81)

where MMM is a positive semi-definite matrix to be learned. The previous definition

returns the Euclidean norm if MMM is the identity matrix.

3.4.2 Support vector machines

Support vector machines (SVM) [86],[202, p. 319] have been introduced for

classification and regression tasks. For classification, the basic idea behind

this technique is finding optimal hyper-dimensional surfaces that can separate

examples belonging to different classes. As shown below, this method is naturally

formulated for binary classification problems where the two classes are linearly

separable. Nevertheless, with a few observations, the same approach can be

extended to multi-class classification problems where classes are only non-linearly

separable and include a certain number of outliers. An important characteristic of

SVMs is that separation boundaries rely on just a small subset of training examples

called support vectors; this peculiarity, at least after the training stage, mitigates

issues like those related to the size of the dataset seen for KNN.

3.4.2.1 The linear classifier

For the simplest form of SVM, it is assumed that a set of N training examples

{xxxi,ci} ∈ χ×C is linearly separable. Here χ represents a set of features ∈ RD,

and C represents a set of two classes, c+ and c−. The aim is to find a hyper-

plane in RD−1 that can separate the two different clusters, χ+ = {xxxi|ci = c+} and

χ− = {xxxi|ci = c−}, and maximise the separation margin. With reference to figure

3.13, named H the separation boundary, the classification rule should classify

xxxi ∈ χ+ all the xxxi above H and xxxi ∈ χ− all the xxxi below. Assuming www as a vector
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orthogonal to H, the projection of a vector xxx on www is given by the inner product wwwT xxx.

Hence, the equation of H is given by:

wwwT xxx+b = 0, (3.82)

where both www and b need to be determined. Since data has been assumed

linearly separable, it is possible to imagine H as equidistant from two margin

boundaries, H+ and H−, which are two hyper-planes respectively placed on the

closest examples of the two classes. The distance mH between H+ and H− is the

margin that SVM aims to maximise.
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Figure 3.13: Binary linear support vector machine. Construction of the optimised boundary
margins in R2. H indicates the classification hyper-plane while H+ and H− are the
optimised boundaries for the two linearly separable classes c+ and c−.

Without loss of generality, since www and b need to be determined and margin

boundaries are equidistant from H, it is possible to assume that the training

examples satisfy the relations:

wwwT xxxi +b≥ 1 ∀ xxxi ∈ χ+ wwwT xxxi +b = 1 ∀ xxxi ∈ H+ (3.83a)

wwwT xxxi +b≤−1 ∀ xxxi ∈ χ− wwwT xxxi +b =−1 ∀ xxxi ∈ H−. (3.83b)
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Since C defines only two classes, for all xxxi ∈ χ , it is possible to define yi = 1 if

ci = c+ and yi =−1 if ci = c−. Using this definition together with relations (3.83)

yields:

yi(wwwT xxxi +b)≥ 1 ∀ xxxi ∈ χ yi(wwwT xxxi +b) = 1 ∀ xxxi ∈ H+,H− . (3.84)

With reference to figure 3.13, the margin distance between H+ and H− can be

written as:

mH =
wwwT

∥www∥2
(xxx+− xxx−) =

2
∥www∥2

, (3.85)

where xxx+ and xxx− are any two vectors on H+ and H− respectively, and www
∥www∥2

is a unitary vector orthogonal to the boundaries. The last identity is obtained by

using (3.84) for xxx+ and xxx−. Hence, the SVM boundary maximisation problem is

equivalent to the primal optimisation problem:

min
www,b

1
2
∥www∥2

2 with yi(wwwT xxxi +b)≥ 1 ∀ xxxi ∈ χ, (3.86)

the solution of which yields the optimal margin classifier13. This problem can be

addressed numerically by using a quadratic programming solver, but it is usually

further simplified by means of the generalised Lagrangian multipliers method14.

This latter approach, in fact, offers some useful insights into the solution and a

strategy to turn SVMs into non-linear classifiers.

The generalised Lagrangian for the problem (3.86) can be written as [214]:

L (www,b,ααα) =
1
2
∥www∥2

2−
N

∑
i=1

αi

(
yi(wwwT xxxi +b)−1

)
, (3.87)

where αi are the Lagrangian multipliers associated with each example xxxi. The

13In (3.86) the 2 is introduced only for mathematical convenience since it does not alter the original
maximisation problem.
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original primal optimisation problem (3.86) is equivalent to maximising (3.87) in

respect to the multipliers αi while satisfying the following Karush-Kuhn-Tucker

(KKN) conditions [214]:

∂L (www,b,ααα)

∂www
= 0 (3.88a)

∂L (www,b,ααα)

∂b
= 0 (3.88b)

αigi(www) = 0 ∀ i ∈ [1 : N] (3.88c)

gi(www)≤ 0 ∀ i ∈ [1 : N] (3.88d)

αi ≥ 0 ∀ i ∈ [1 : N], (3.88e)

where gi(www) = −yi(wwwT xxxi + b)+ 1 and ααα = [α1, ...,αN ]. The previous relation-

ships are valid at the solution w̄ww, b̄, ᾱαα .

This equivalent formulation is usually referred to as the dual optimisation prob-

lem. Equation (3.88c) implies that the only non-null αi are those where gi(www) =

−yi(wwwT xxxi +b)+1 = 0, that is only the points belonging to the margins H+ and

H−. Then, (3.88a) and (3.88b) yield respectively:

∂L (www,b,ααα)

∂www
= www−

N

∑
i=1

αiyixxxi = 0, (3.89)

that is:

www =
N

∑
i=1

αiyixxxi, (3.90)

and:

∂L (www,b,ααα)

∂b
=

N

∑
i=1

αiyi = 0. (3.91)

An important consequence of (3.90) is that www can be simply found as a linear

14The generalised Lagrangian multipliers method extends the Lagrangian multipliers method when some
inequalities are given for the constraints.
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combination of xxxiii and, since αi are not null only on the boundaries, www depends

only on a small subset of examples placed on the optimised boundaries. The

examples belonging to this subset are called the support vectors. Plugging (3.90)

and (3.91) into (3.87) yields:

L (www,b,ααα) (3.92)

=
1
2

N

∑
j=1

α jy jxxxT
j

N

∑
i=1

αiyixxxi−
N

∑
i=1

αiyi

N

∑
j=1

α jy jxxxT
j xxxi−b

N

∑
i=1

αiyi +
N

∑
i=1

αi

=
N

∑
i=1

αi−
1
2

N

∑
j=1

N

∑
i=1

α jαiy jyixxxT
j xxxi.

Hence, the simplified optimisation problem to be determined numerically consists

in maximising:

L(ααα) =
N

∑
i=1

αi−
1
2

N

∑
j=1

N

∑
i=1

α jαiy jyixxxT
j xxxi with

N

∑
i=1

αiyi = 0; αi ≥ 0 ∀i ∈ [1 : N].

(3.93)

Once the multipliers αi have been determined, the constant b can be found

by using the (3.84) and evaluating wwwT xxxi on H+ or H−, that is, using either the

minimum value of wwwT xxxi if ci = c+ or the maximum value of wwwT xxxi if ci = c−. Finally,

the decision rule for an unclassified example (xxx,c) can be written as:

i f wwwT xxx+b =
N

∑
i=1

αiyixxxT
i xxx+b≥ 0 then c = c+ (3.94a)

else c = c−, (3.94b)

where the classification is performed by calculating the scores wwwT xxx+b. Note

that the decision rule is written as a simple linear combination of support vectors.
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3.4.2.2 Non-linear extension and soft boundaries

The core of the linear algorithm found in the previous section is given by the

boundary margin maximisation problem (3.93) and by the decision rule (3.94).

In both cases, the examples xxx appear only in the form of the inner product xxxT
j xxxi.

Recalling section 3.3.1.2, this property allows the use of the kernel trick also in

the case of SVM. Again, given a Mercer kernel κ(xxx j,xxx j) associated with a map

function ξξξ (xxx), the classification in the higher dimensional space is obtained by

replacing xxxT
j xxxi with κ(xxx j,xxx j) in (3.93) and (3.94). As for PCA, the main issue

remains the selection of a useful kernel for a specific classification problem.

Although a non-linear implementation can improve the separability of different

clusters, an important issue of the solution described in the previous section

is that it does not allow for outliers in the data15. Indeed, an outlier does not

satisfy the condition yi(wwwT xxxi +b)≥ 1. Furthermore, even when the clusters are

separable, since SVMs strongly depend on just a few support vectors, a small

number of examples placed near the boundary but far from the rest of the cluster

can significantly affect the choice of the hyper-plane and the overall performance of

the classifier. The above solution is then referred to as SVM with hard boundaries.

A commonly used workaround consists in introducing a regularisation term in

(3.86) whose magnitude is controlled by a regularisation constant C ≥ 0, that is:

min
www,b

1
2
∥www∥2

2 +C
N

∑
i=1

υi with υi ≥ 0 yi(wwwT xxxi +b)≥ 1−υi ∀i ∈ [1 : N].

(3.95)

In the relation above, an outlier is associated with a υi > 0 and affects the

minimisation by adding a positive term Cυi to the objective function. The constant

C modulates the regularisation. Since the formulation above allows outliers, it is

usually referred to as SVM with soft boundaries. As for the hard boundaries, the

solution to the (3.95) can be found by solving the associated dual problem. The

generalised Lagrangian can be written as:

15For SVM, an outlier is an example that lies on the wrong side of the boundary.
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L (www,b,υυυ ,ααα,βββ ) (3.96)

=
1
2
∥www∥2

2 +C
N

∑
i=1

υi−
N

∑
i=1

αi

(
yi(wwwT xxxi +b)−1+υi

)
−

N

∑
i=1

βiυi,

and the KKN conditions require ∂L /∂www = 0, ∂L /∂b = 0, ∂L /∂υi = 0 and:

βi ≥ 0 −υi ≤ 0 −βiυi = 0 (3.97a)

αi ≥ 0 − yi(wwwT xxxi +b)+1−υi ≤ 0 −αi

(
yi(wwwT xxxi +b)−1+υi

)
= 0,

(3.97b)

∀ i ∈ [1 : N] and for www,b,υυυ ,ααα,βββ evaluated at the solution. By calculating the

derivatives and applying conditions (3.97), the simplified Lagrangian to be max-

imised can be written as:

L(ααα) =
N

∑
i=1

αi−
1
2

N

∑
j=1

N

∑
i=1

α jαiy jyixxxT
j xxxi (3.98)

with
N

∑
i=1

αiyi = 0; 0≤ αi ≤C ∀ i ∈ [1 : N].

Note that (3.98) differs from (3.93) only for the upper boundary on αi and that

relation (3.90) remains valid.

Training a SVM with standard solvers generally requires a computational com-

plexity proportional to N3 [197, p. 499]. Several solutions have been proposed to

make the training process more efficient [215], sometimes at the expense of accu-

racy [216]. On the other hand, some solvers can achieve better performance in the

case of a large number of examples [217] or when the dimension of the features

is high [218]. Further improvements can be achieved by optimising the data. For

instance, to reduce the number of examples, the optimisation can be performed

on a subset of randomly selected points [219], after analysing the clusters [220], or

on those vectors that are more likely to be support vectors [221].

168



3.4.2.3 Multi-class SVM

The algorithm described in the two previous sections implements a classifier

for a set of only two classes. However, extension to M classes is possible, and it

is usually achieved with methods such as the one versus all and the one versus

one [222].

In the one versus all approach, M different classifications are performed by using

M different boundaries obtained by separating each of the M classes from the rest

of the data. The simplest form of classification for the unknown example xxx is then

obtained by evaluating the margin value wwwT
mxxx+bm ∀ m ∈ [1 : M] and assigning the

label of the class with the highest margin.

In the one versus one approach, M(M−1)/2 different classifications are per-

formed by using M(M−1)/2 different boundaries obtained by grouping classes

in pairs. In its simplest implementation, a vote is assigned to a class every time

a binary classification is performed. The class of the unknown example xxx is then

assumed to be the one with the majority of the votes.

Note that the sets of data used in the one versus all are generally unbalanced

by construction and, unfortunately, the performance of SVMs decreases under

these circumstances [223]. Possible solutions consist in rebalancing the data

before training the machine [224] or modifying the training algorithm to account

for the prior probability [225]. These solutions can also be adopted in case of an

unbalanced dataset.

On the other hand, the majority vote described for the one versus one approach

can introduce uncertainty regions where more than one class receives the majority

of the votes. A better solution [226] (used also for the results reported in chapter 6)

consists in defining a binary loss lb as a function of the jth binary classifier, of the

kth class, and of the value of the score s j(xxx) = wwwT
j xxx+b j = ∑

N
i=1 α jiy jixxxT

jixxx+b j:

lb(xxx, j,k) =−g(ȳ jk,s j(xxx)), (3.99)

where ȳ jk is +1 if the class k is the positive class of the binary classifier j, −1 if
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it is the negative one, and zero if the binary classifier j is not trained for the class

k. The classification label for xxx is then assigned by calculating the negative loss,

that is averaging lb(xxx, :,k) as:

l(xxx,k) =
∑ j |ȳ jk|lb(xxx, j,k)

∑ j |ȳ jk|
, (3.100)

and choosing the class k with the maximum average. Frequently, the function

g(y,s) is assumed to be the hinge function:

g(y,s(xxx)) = max(0,1− ys(xxx)), (3.101)

which is always positive except for those xxx on the correct side of the margin

boundary H +/H−, where it assumes a null value.

3.5 Assessing the performance

When performing automatic detection/classification tasks, it is essential to com-

pare the results against different solutions/benchmarks. This operation is not

always straightforward since different definitions of the evaluation indicators may

provide very different results. Therefore, it is necessary to introduce some standard

indexes and understand what kind of insight a specific index actually provides.

Although some indicators are more robust than others, no definition suits all pos-

sible situations. The choice of a specific indicator should be motivated by the

performance that is intended to be measured [38, p. 165].

3.5.1 Metrics

The definition of performance indicators is crucial to assess how good a certain

machine is for the task it has been designed for. In general, different indicators

offer different insights, and the numerical values provided may be misleading if the

corresponding definition is not correctly interpreted. Besides, even when a certain

indicator provides the desired information, it is important to consider the conditions
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under which its numerical value has been determined. For instance, a training

set too small might generate problems of underfitting, and an indication of bad

performance might be more related to the amount of training data used rather than

the machine itself. On the contrary, if the machine is designed to fit every oddity

in the data or if train and test data are not well separated, problems of overfitting

might generate unreliable good results with large discrepancies between train, test

and field validation [227, p. 391]. Moreover, cumulative indicators can be defined

as the average of the performances assessed per class. If the dataset is not

well balanced, the performance of classes that are rare and potentially not very

important might disproportionately affect the final rate.
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Figure 3.14: Calculation of the intermediate statistics (segment-based). Metrics can be calculated
from class-based or class-cumulative values.

When performing audio event detection, it is possible to define segment-based

or event-based metrics [228]. With the segment-based approach (figure 3.14),

signals are divided into short segments, and elementary checks are performed

per each class and each segment. With the event-based approach (figure 3.15),

elementary checks are performed per each class and each matched/unmatched

event. Working at the event level also means finding the start and the end time

of each event to define the working boundaries. Certainly, it is always possible to

merge several segments to provide metrics at the event level, but the minimum

possible misalignment is dictated by the step resolution of the segments.
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Metrics are usually defined as aggregates of results of elementary trials per-

formed at the atomic level (segments or events). Each elementary trial assesses

the prediction of the machine for a specific class c against the reference labels of

an atom (Figures 3.14, 3.15). Four possible outcomes are possible [38, p. 167]:

• TP - True positive: both the machine and the reference labels indicate that c

is contained in the atom;

• TN - True negative: both the machine and the reference labels indicate that c

is not contained in the atom;

• FP - False positive (I - insertion): the machine indicates that c is contained in

the atom while the reference labels do not;

• FN - False negative (D - deletion): the machine indicates that c is not contained

in the atom while the reference labels do.

The collections of these atomic results are usually referred to as intermediate

statistics. Attention should be paid to their interpretation. For instance, if the

analysis is performed on segments, the number of T N is usually relatively high

since a +1 is counted every time a class is not included and is not detected.

On the other hand, if the analysis is performed on events, boundaries cannot be

defined for a non-existing event, and T N cannot be defined. Moreover, in case of

wrong classifications, a false positive and a false negative are generated at the
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same time. This issue can be accounted for either as two separate errors or as a

single error (a S - substitution).

Aggregates of intermediate statistics can be calculated by applying a certain

metric operation over the whole set of results together (instance-based), or by

calculating the average of the metrics evaluated per every single class (class-

based). In the first case, the most common classes mainly determine the final

value of the performance, while in the second case, the importance of rare classes

might be disproportionately magnified. The definition of a few cumulative metrics

is given below:

The accuracy is defined as:

Acc =
T P+(T N)

T P+(T N)+FP+FN
(3.102)

and it measures the rate of the total correct predictions over the total number of

predictions. T N are included only for segment-based analysis. Accuracy is not

very meaningful in the case of sparse labels. Indeed, if a class is rare and the

machine produces no output (T P = FP = 0), T N is much bigger than FN, and the

accuracy for the class is roughly unitary even if the machine makes no predictions.

Note that in certain situations, distinguishing between the error associated with

FP and FN might be relevant, but this information cannot be extracted from the

accuracy.

The error rate is defined as:

Err =
D+ I +S

N
, (3.103)

where N is the total count of reference labels or events. FP and FN are counted

only once in case of a substitution S. Again, note that the error rate might be

misleading. Indeed, a machine that makes no prediction returns a unitary error

rate, while a machine that makes many insertions and, at the same time, a good

number of correct predictions can have Err > 1.
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The F-score [229, p. 119] is defined as:

Fsc =
2

1/P+1/R
=

2PR
P+R

, (3.104)

where the precision P is defined as P = T P/(T P+FP) and the recall R is

defined as R = T P/(T P+FN). The maximum value of F-score is limited to 1 in

the best case of no errors. Note that, in class-based analysis, each class should

be included at least once in order to always return meaningful values.

For all the metrics above, in the case of event-based analysis, it is also necessary

to define a maximum allowed misalignment for a detection to be considered valid.

3.6 Summary

This chapter analyses the prerequisites for the development of the dataset

reported in chapters 5 and 6. It also introduces the necessary concepts for

implementing the machine learning processing chain adopted in chapter 6, and

provides a comprehensive literature review of the required notions. Three different

signal representations, namely the short-time Fourier transform, the mel-frequency

cepstral coefficients, and the wavelet scattering transform, are examined along with

their representation in the time-frequency plane. The required properties of the

acoustic features are described to understand how to tailor the extraction process

and find the right balance among divergent necessities. In particular, feature

invariance and stability are introduced, and the trade-off against loss of information

and computational complexity is analysed. The potential of mel-frequency cepstral

coefficients and wavelet scattering transform is discussed concerning the loss

of information and computational complexity. Simple numerical simulations also

illustrate the concept of stability. Moreover, the importance of feature normalisation

is briefly discussed. The principal component analysis, a popular tool for feature

transformation and reduction, is presented along with its non-linear kernel version.

The potential benefits of feature dimensionality reduction and the limitations of

non-linear kernels are highlighted. Regarding the classifiers, K-nearest neighbours
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and support vector machines are described along with other issues, such as

the curse of dimensionality, skewed dataset, dataset size, data normalisation,

and distance definition. The classification margin for support vector machines

is also introduced for further developments in chapter 6. Finally, three popular

performance indicators, namely error rate, accuracy, and F-score, are reviewed,

and the procedure for their calculation from intermediate statistics is given.
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Chapter 4

An acoustic model for elastic pipes

This chapter introduces the acoustic model of the synthesiser. The model is

articulated in three layers and allows the simulation of acoustic reverberations in

elastic pipes with the setup illustrated in figure 4.1. The first layer accounts for the

shape and the materials of the waveguide. It describes the dispersive behaviour

of the modal propagation, providing information about phase and group velocity

per each mode. The second layer describes the source SP and how it is integrated

into the model. It accounts for the geometry, the position and the dynamics of

the source. Two different methods are analysed and compared. The third layer

determines the output pressure at a point G once the input signal driving the

source is known. Thanks to its layered structure, the model does not need to be

entirely recalculated every time a new simulation is performed. For instance, if

the waveguide and the source geometry remain unchanged, the output signal

can be quickly recalculated, leaving the first two layers unaltered. As for any

mathematical abstraction, the model accounts only for ideal components, and,

in a real implementation, many aspects might differ from what is described here.

Geometric flaws, materials characterisation, and mechanical implementation of

source and receiver are just some examples [230],[231]. Besides, the range of

geometrical options is limited and numerical finite element techniques are certainly

more adequate for modelling complex shapes [232],[233]. Nevertheless, accounting

for the limitations, the model provides a powerful tool when integrated into the
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synthesizer described in chapter 5, giving an indication of the distortion caused by

in-pipe propagation. Moreover, the model can be matched to simple, inexpensive

test rigs for direct in-house experiments and measurements. The procedure to

conduct some relevant measurements is provided later in this chapter.

r
z

θ

GRP
CP
SP

W1
W2

Figure 4.1: Elastic waveguide with pressure source and receiver.

4.1 Dispersive effects in waveguides with elastic walls

Section 2.8 describes how to model a signal propagating along a waveguide

with rigid walls for a source whose distribution lies on a plane orthogonal to the

main axis. It was shown that phase velocity and group velocity are affected

by the boundary and how this issue translates into dispersive effects. In this

section, the analysis of the dispersive effects is extended to the case of elastic

boundaries, leaving for the following sections the problem of modelling sources

and signal propagation. Given the importance in practical applications, we focus

on circular pipes. It is remarked that the analytical approach is feasible only when

the geometry allows a closed form of the equations (e.g. rectangular, circular,

and elliptical sections). On the other hand, the meaningfulness of the results

provided remains valid for pipes of arbitrary shapes. The reference setup is an

aluminium pipe (inner radius W1 = 49.20mm, outer radius W2 = 50.80mm) filled

with inviscid water. Further examples describing how the dispersion changes with

177



geometry and materials are mentioned in section 4.1.2. The values of all the

physical quantities used are reported below:

Material Density [kg/m3] Longitudinal Velocity [m/s] Shear Velocity [m/s]

Water 1000 1479 -

Aluminium 2700 6420 3040

PMMA 1190 2690 1340

Table 4.1: List of material properties used for the acoustic models.

4.1.1 Determination of propagative and evanescent modes

In section 2.9, it has been shown that the homogeneous Helmholtz equations for

the potentials (2.155) with boundary conditions (2.176) admit non-trivial solutions

for those values of kz for which the determinant of the matrix DDD given by (2.179) is

null. It is remarked that equations (2.155) refer to the potentials. In the inner liquid

domain, where the pressure values are meant to be measured, the potential φ

is related to the pressure p by the (2.46), which in the harmonic regime can be

written as:

p̂ = ρω
2
φ̂ , (4.1)

meaning that equivalent results can be obtained for the potential or the pressure.

4.1.1.1 Numerical calculation of the axial wavenumbers

Due to the analytical complexity of the determinant |DDD|, kz needs to be deter-

mined numerically and in a predefined range of frequencies. This is an important

difference compared to the case of rigid boundaries where an analytical solution

can be worked out. Given the mode order n and the frequency ω , the algorithm

implemented (algorithm 1) aims to find the M values of kz that satisfy the equation

|DDD(n,ω,kz)|= 0 in a predefined range for kz. These values identify the modes

(n,m), ∀ m ∈ [1 : M], at frequency ω .
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Algorithm 1 Simplified numerical kz solver algorithm for propagative modes

Input: DDD(n,ω,kz), N, VVV ω , VVV kz, Sinit
ω , ΩΩΩ

init , Rkz, Wω , Wkz

Output: ωωωcut , KKK

1: VVV cut
ω ←VVV ω ↑ 10 ▷ Increase VVV ω resolution by 10

2: VVV init
ω ←VVV ω ↓ Sinit

ω ,ΩΩΩinit ▷ Obtain initialisation frequencies

3: for n = 0 : N do ▷ Repeat for all the modes

4: for cω = 1 : length(VVV cut
ω ) do ▷ Scan for kz = 0 cut frequencies

5: AAAcut ← |DDD(n,VVV cut
ω (cω),0)| ▷ Save |DDD| for VVV cut

ω with kz = 0

6: end for

7: AAAcut
± ← sign(AAAcut) ▷ Find where ℜ(AAAcut) changes sign

8: ωωωcut ← disc(AAAcut
± ,Wω) ▷ Clean discontinuities, save cut frequencies

9: VVV init
ω ←VVV init

ω , neighbours(ωωωcut) ▷ Add points around cut frequencies

10: LLLl, LLLr← steps(VVV ω ,VVV init
ω ) ▷ Define scan intervals ∀ VVV init

ω steps

11: for iω = 1 : length(VVV init
ω ) do ▷ Init scan starting from VVV init

ω

12: for each x in VVV kz do ▷ Scan ∀x ∈VVV kz

13: AAAinit ← |DDD(n,VVV init
ω (iω),x)| ▷ Save |DDD| for ∀x ∈VVV kz

14: end for

15: AAAinit
± ← sign(AAAinit) ▷ Find where ℜ(AAAinit) changes sign

16: sωi ← sωi

∣∣VVV init
ω (iω) ==VVV ω (sωi)

▷ Select scan init index in VVV ω

17: KKKl/r(:,sωi)
← disc(AAAinit

± ,Wkz) ▷ Clean AAAinit
± , save kz in KKKl , KKKr

18: for sω = sωi−1 : sωi−LLLl(iω), sω = sωi +1 : sωi +LLLr(iω) do ▷ Scan

19: for each kz in KKKl(:,sω+1), kz in KKKr(:,sω−1) do ▷ Known kz

20: for x = kz−Rkz : kz +Rkz do ▷ Scan around known kz

21: AAA← |DDD(n,VVV ω (sω),x)| ▷ Save |DDD| for the neighbours

22: end for

23: end for

24: AAA±← sign(AAA) ▷ Find where ℜ(AAA) changes sign

25: KKKl/r(:,sω)← disc(AAA±,Wkz) ▷ Clean AAA±, save kz in KKKl , KKKrrr

26: end for

27: end for

28: KKK← merge
(
KKKl,KKKr

)
▷ Merge KKKl and KKKr into KKK

29: return ωωωcut , KKK

30: end for

179



Apart from DDD(n,ω,kz) in its analytical form, the main input variables fed to the

algorithm are: the maximum mode order N, the frequency vector VVV ω , and the

vector of test points VVV kz. Both VVV ω and VVV kz are chosen in the desired range and

with the necessary resolution.

In the first step, the kz = 0 cut frequencies are calculated by solving the equation

|DDD(n,VVV cut
ω (cω),0)|= 0, with cω index of VVV cut

ω . The solution returns the frequency

values at which the branches of the modes intersect the frequency axis. Since

these points mark the frequencies where evanescent modes turn propagative,

higher accuracy is convenient. Therefore, VVV cut
ω is obtained from VVV ω increasing the

resolution by a factor 10. The complex values of the determinant |DDD(n,VVV cut
ω (cω),0)|

are analysed to find the frequencies where the sing changes. For this purpose,

the imaginary part does not add any relevant information and can be neglected.

A further check is performed to remove those points where the change of sign is

given by a ±∞ discontinuity. This refinement is achieved by inspecting the local

maximum of the absolute value of ℜ
(
|DDD(n,VVV cut

ω (cω),0)|
)

in a neighbourhood of

radius Wω around the frequency where the sign changes. The remaining zeros

are the kz = 0 cut frequencies and are saved in ωωωcut .

In the next step, the branches of the modes are calculated. The aim is to

minimise the calculations required by shrinking the region where |DDD(n,ω,kz)|
needs to be evaluated. The algorithm is initialised by defining a small subset

of Sinit
ω frequencies obtained from VVV ω at regular intervals. This subset, named

VVV init
ω , is further expanded by adding a few additional initialisation points in a

neighbourhood of the frequencies saved in ωωωcut . If desired, a set of user-defined

steps ΩΩΩ
init can also be included. Then, the left and right scan intervals LLLl and LLLr

are obtained accordingly. The initialisation frequencies mark the beginning of the

scans, meaning that the first set of kz is extracted by calculating |DDD(n,VVV init
ω (iω),x)|,

with iω index of VVV init
ω and ∀ x ∈ VVV kz. This operation is represented in figure 4.2,

where the initial x = kz solutions are marked by the red circles placed on the green

lines at frequencies VVV init
ω (iω). From VVV init

ω (iω), the scan is continued to the left and

to the right, setting the index sω according to the intervals defined in LLLl and LLLr,

respectively. The calculation of |DDD(n,VVV ω (sω),x)|, however, is now executed only for
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a small subset of x ∈VVV kz, focusing only on neighbourhoods of radius Rkz around

known kz solutions found in the previous iteration steps. As for the cut frequencies,

solutions of |DDD(n,VVV ω (sω),x)|= 0 are found by analysing the change of sign and

checking for ±∞ discontinuities in a neighbourhood of radius Wkz . In the last step,

the matrices yielded by the left and right scans are merged in a unique matrix KKK.

Figure 4.2 illustrates the results of the solver for the n = 2 evanescent modes. Note

how the extra initialisation points in the neighbourhood of the kz = 0 cut frequency

at 18.5kHz allow the discovery of the small branch not intercepted by the green

line placed at V init
ω (iω) = 20kHz (see also mode (2,C) figure 4.9-B).

The resolution of the numerical analysis is a trade-off between computational

cost and accuracy. Here, a ∆ω of 5Hz for VVV ω is chosen to provide good frequency

resolution and detect those branches with large ∆kz/∆ω variations (for instance

see mode (3,3) in figure 4.12-A). On the other hand, a ∆kz of 0.01rad/m for

VVV kz guarantees an accurate evaluation of the derivatives for the group velocities.

Additional issues related to the finite resolution of the vectors VVV ω and VVV kz are

discussed in the next section. Finally, the algorithm above (algorithm 1) is used to

extract propagative modes. For evanescent modes, however, the procedure can

be identically repeated by simply using iVVV kz in place of VVV kz.

0.0 8.0 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0
0.0

62.5

125.0

187.5

250.0

312.5

375.0

437.5

500.0

Figure 4.2: Results of the kz numerical solver for the n = 2 evanescent modes. The green dashed
lines indicate the initialisation frequencies. The red circles mark the initial set of
kz from which the scan for the remaining kz begins. The directions of the scan and
the radius of the search neighbourhood for one of the initial points are indicated by
the blue arrows and the grey-shaded region, respectively. Four initial neighbouring
frequencies 50Hz apart are added at both sides of each kz = 0 cut frequency.
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4.1.1.2 Mode separation

The execution of the solver described in the previous section returns a matrix

KKK where the contained axial wavenumbers kznm(ω) mark, for a given n and at

a given frequency ω , up to M different modes. These modes, however, are not

separated, and the extraction of additional information, such as phase and group

velocities, requires further processing. In section 2.8, it has been shown that

orthogonality provides major simplifications for a simple liquid cylinder with rigid

boundaries. This benefit can also be exploited for other physical configurations. In

[128], for instance, the orthogonality is at the foundation of the technique used to

separate the modes in the case of an elastic multilayered cylinder. When modes

are orthogonal, the inner product:

g
(
n′,n′′,kzn′m′ ,kzn′′m′′

)
= ⟨ein′θ Jn′(qn′m′r), ein′′θ Jn′′(qn′′m′′r)⟩, (4.2)

with q2
nm = ω2/c2−k2

znm , is null for any n′ ̸= n′′ or m′ ̸= m′′ (see sections 2.8 and

2.9). For what concerns the separation of the modes discussed in this section, the

index n can be neglected imposing n = n′ = n′′. Assuming that the resolution ∆ω

is sufficiently small and the orthogonality is verified as in [128], the hth point of the

solution at frequency ω +∆ω , kznh(ω +∆ω), is the continuation of the mth mode

at frequency ω , kznm(ω), when the related inner product given by equation 4.2,

g
(
n,n,kznm(ω),kznh(ω +∆ω)

)
, is reasonably not null. This consideration offers a

simple criterion for mode sorting. Nevertheless, named v⃗vvnm and σσσnm the particle

velocity and the stress tensor for mode (n,m), the demonstration proposed in [128],

extension of a similar work in [129], relies on the reciprocity equation:

∇ · (⃗vvvn′m′ ·σσσn′′m′′− v⃗vvn′m′′ ·σσσn′m′), (4.3)

and requires, among other hypotheses, free external boundaries and continuity

of the displacement. Although the same assumption for the external boundaries

has been adopted in this work, the liquid-solid interface considered imposes

only the continuity of the normal displacement, which is a weaker condition not
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sufficient to preserve the orthogonality. Consequently, the inner product 4.2 cannot

be assumed null for m′ ̸= m′′, and separating points belonging to different modes

requires a different approach.

Algorithm 2 Simplified mode separation algorithm for a set of M modes of order n
Input: KKK, VVV ω , H, Rkz

Output: KKKM,

1: KKKM← f it(KKK,VVV ω) ▷ Organise kz values by frequency step

2: for hω = 2 : length(VVV ω) do

3: XXX ← f ill(KKKM(:,hω−H:hω−1)) ▷ Last part of the sorted branches

4: YYY ← KKKM(:,hω) ▷ Get the next set of points to sort

5: M′← branches(KKKM(:,1:hω−1)) ▷ Total branches at step hω −1

6: XXXδ ← di f f
(
XXX
)

▷ Get the differentials for the M′ branches

7: WWW ← [0 : 1/H : 1] ▷ Differential weights

8: ∆̃∆∆y← XXXδWWW T/sum(WWW ) ▷ Averaged differentials for the M′ branches

9: ỹyy← KKKM(:,hω−1)+ ∆̃∆∆y ▷ Predicted values for the next kz of the branches

10: for m = 1 : M′ do

11: j, l← min
(
ỹyy,YYY

)
▷ Closest points between ỹyy and YYY

12: e← abs
(
ỹyy( j)−YYY (l)

)
▷ Prediction error for the closest points

13: if e < Rkz then ▷ The points are closer than the max radius

14: KKKM( j,hω)← YYY (l) ▷ Set the point returning the min distance

15: YYY (l)←−∞ ▷ Remove the assigned value from the list

16: end if

17: ỹyy( j)←+∞ ▷ Remove the predicted value from the list

18: end for

19: M′′← sum(YYY > 0) ▷ Number of new branches

20: KKKM(M′+1:M′+M′′,hω)← YYY (YYY > 0) ▷ Add new branches

21: end for

22: KKKM← clean(KKKM) ▷ Remove undesired branches

23: KKKM← interpol(KKKM) ▷ Close gaps by interpolation

24: return KKKM
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The pseudo-code summarised in algorithm 2 describes the topological approach

used as a workaround. The basic idea is to isolate the branches of the solution by

joining together neighbouring points that ensure the continuity of the first derivative.

Firstly, the matrix KKK obtained from the solver is reorganised into a new matrix KKKM

where the kz values are arranged in columns by frequency step. In the main part

of the algorithm, this new matrix is sorted to obtain a mode per each of its rows.

Assuming KKKM sorted up to the frequency VVV ω (hω−1), the selection of the next point

of a branch at step hω relies on the calculation of the predicted value obtained from

the differential of the previous H points. In the pseudo-code, M′ are the number

of branches found at step hω − 1, YYY represents the points to sort organised in

a column vector of size M′×1 extracted from KKKM at step hω , and XXX is a matrix

M′×H obtained from KKKM by selecting the columns from step hω −H to hω −1.

The rows of XXX with at least one value not null are completed by an extended

linear interpolation. This solution also allows a trivial initialisation obtained by

simply skipping the first frequency step. The M′ approximated differentials ∆̃∆∆y are

calculated as the weighted average of the differentials XXXδ of the M′ rows of XXX .

The weights are linearly assigned, from 0 for the first item to 1 for the last. This

operation provides a more accurate evaluation of the desired differential, reducing

the importance of points farther apart. The predicted value ỹyy at step hω are then

calculated as KKKM(:,hω−1)+ ∆̃∆∆y. Finally, this prediction is compared against the

values in YYY to select the points ỹyy( j) YYY (l) whose distance is minimum and below the

maximum radius Rkz. The last step is repeated for all the M′ points in ỹyy. The M′′

points in YYY not selected as branch continuation are added at the bottom of KKKM as

starting points of new branches.

When separating the branches, the procedure implemented deals with potential

missing points in the solutions obtained from the solver. This issue is caused by

the shape of the function |DDD(n,ω,x)| and by the finite resolution of the vectors VVV ω

and VVV kz. From this point of view, two different cases have been detected while

attempting to solve the equation |DDD(n,ω,x)| = 0. The first case is given by the

change of sign associated with ±∞ discontinuities. These points are rejected

by analysing the absolute value of ℜ(|DDD(n,ω,x)|) in the related neighbourhoods.
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However, when a zero-cross point is too close to a discontinuity, the solution

is neglected along with the latter. In the second case, generally verified for

evanescent modes at low frequencies, the function |DDD(n,ω,x)| is tangent to the

null value, and the solver cannot detect the solution for kz. In the matrix KKKM,

the issues above cause small gaps in the branches of the modes. These gaps,

however, are small enough to be reconstructed with a simple linear interpolation,

and this task is covered by the last part of the algorithm.

Finally, the mode extractor also produces a table reporting the cut-on and the cut-

off frequencies. The cut-on frequency of a mode, either propagative or evanescent,

indicates the frequency at which a mode begins its contribution to the pressure field.

Similarly, the cut-off is the frequency at which this contribution disappears. Some

of the cut-on/off frequencies are just the kz = 0 cut frequencies (vector ωωωcut) at

which modes convert from evanescent to propagative and vice versa (for instance,

see figures 4.3). For other modes, however, the shape is more intricate, and a

single branch can identify two different modes coexisting at the same frequency. In

the latter case, the cut-on/off does not mark any evanescent/propagative transition

(for instance, see figure 4.9-B, modes (2,A) and (2,B)).

4.1.1.3 Discussion and analysis of a case study

Modes are identified by two indexes: n and m. The index n relates to the θ

angular direction, while the index m relates to the r radial direction. Therefore,

when the problem is axially symmetric, modes for n ̸= 0 can be neglected. On the

contrary, for a non-axisymmetric configuration, modes in the range [−N : N] should

be considered. Note that, N mainly depends on the potential field that needs to

be described, and that, for cylindrical geometries, the sign of n is irrelevant. As

a rule of thumb, the minimum value for N should be chosen so that the angular

dimension of the smallest field feature is around π/N. If the potential field is

smooth and changes slowly in the θ direction, a satisfactory truncation can be

achieved even for N = 3. The index m accounts for the radial variations. For

clarity, propagative and evanescent modes are marked using numbers and letters,

respectively. Similarly to n, the optimal truncation for m depends on the variation of

the potential field along r. For m, however, a few more observations are required.
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n

m
1 2 3 4 5 6 7 8 9

0
0 0.015 12.421 25.208 38.832 52.895 67.233 - -

- - - - - - - - -

1
0 0 9.678 13.871 20.371 31.917 45.664 59.883 74.339

- - - - - - - - -

2
0 0.181 19.355 21.842 33.135 39.418 52.344 66.668 -

- - - - - - - - -

3
0 0.572 27.680 27.680 29.032 42.415 51.779 59.261 73.324

- - 27.743 - - - - - -

Table 4.2: Cut-on (top) and cut-off (bottom) frequencies in kHz for a circular aluminium tube
filled with inviscid water. Propagative modes. W1 = 49.20mm, W2 = 50.80mm (see
figure 4.1). The indices n and m indicate the modal order for the angular and radial
variations, respectively. Each box reports the cut-on frequency at the top and the cut-off
frequency at the bottom. For those modes whose frequencies are beyond the range of
the simulations, the "-" indicates the unknown value or existence.

n

m
A B C D E F G H I

0
0 0 0 0 0 0 0 - -

12.421 25.208 38.832 52.895 67.233 - - - -

1
0 0 0 0 0 0 0 0 0

9.678 13.871 20.371 31.917 45.664 59.883 74.339 - -

2
0.181 0 18.555 18.555 0 0 0 0 0

13.210 13.210 19.355 21.842 33.135 39.418 52.344 66.668 -

3
0.572 0 27.743 0 0 0 0 0 0

16.420 16.420 29.032 42.415 51.779 59.261 73.324 - -

Table 4.3: Cut-on (top) and cut-off (bottom) frequencies in kHz for a circular aluminium tube
filled with inviscid water. Evanescent modes. W1 = 49.20mm, W2 = 50.80mm (see
figure 4.1). As for table 4.2, the values at the top indicate the cut-on, the values at the
bottom indicate the cut-off, and values beyond the range of the simulation are indicated
with "-". For clarity, a literal sequence is used for the index m of the evanescent modes.
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Apart from the geometrical characteristics of the field, the required m modes

also depend on the signal processed for a specific simulation. Indeed, as seen for

the rigid wall case, modes propagate only above their cut-on frequency. Therefore,

knowing the frequency range of interest, it is possible to omit all those modes

whose cut-on frequency lies beyond the upper-frequency boundary without affect-

ing the accuracy of the simulated propagation. In the non-propagative regions of

the spectrum, however, the related evanescent modes should be considered to

improve the accuracy of the modelled source. This approach, which is new to the

best of our knowledge, is dictated by the lack of modal orthogonality and is further

motivated in the following sections.

The results reported in the rest of this section mainly refer to the aluminium

pipe of figure 4.1 with W1 = 49.20mm and W2 = 50.80mm. Table 4.2 and 4.3

list cut-on and cut-off frequencies for both propagative and evanescent modes,

respectively. The m index for the evanescent case is marked with letters since the

relation between evanescent and propagative modes is not always one-to-one.

Consider, for instance, the modes (0,A) and (0,3): the cut-off frequency of the

evanescent mode (0,A) matches the cut-on frequency of the propagative mode

(0,3). Both modes can be thought of as belonging to the same branch of the

solution, which describes an exponentially decaying mode for f < 12.421kHz

and a propagative mode beyond the same frequency. This description is better

understood from figure 4.3 where modes (0,A) and (0,3) are marked with the

same colour and intersect the frequency axis at the same point. Consider now

modes (3,3), (3,5) and (3,C). As shown in figure 4.12, the evanescent mode

(3,C) intersects the frequency axis at two different points, which are also the

intersection points of the propagative modes (3,3) and (3,5). Therefore, they all

belong to the same branch of the solution. Interestingly, the same branch also

includes mode (3,4), which cannot be simply considered as the continuation of

mode (3,3). Indeed, these two propagation statuses can coexist in the frequency

range between 27.675kHz and 27.742kHz. In other words, although these modes

can be visualised as belonging to the same branch, they are associated with

different waves and different wavenumbers. A similar behaviour can also be
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observed for evanescent modes (2,A), (2,B), (2,C), (2,D), (3,A), (3,B).

Figures 4.3, 4.6, 4.9, 4.12 show that a certain degree of similarity exists between

dispersive effects for different values of n. Further observations can be made by

recalling the definition given in section 2.7 for phase velocity and group velocity :

cp =
ω

kz
cg =

∂ω

∂kz
, (4.4)

where ω is the angular frequency, and kz is the axial wavenumber of the mode in-

spected. Interestingly, apart from n= 0, the modes m= 1 exhibit non-dispersive be-

haviour, always maintaining the proportionality between frequency and wavenum-

ber. As it can be observed in figures 4.7, 4.8, 4.10, 4.11, 4.13, 4.14, for these

modes, non-dispersive behaviour means constant phase and group velocity. The

numerical value also matches the shear velocity of the external aluminium tube,

meaning that the shear propagation is stimulated by non-axisymmetric excitation

and is not affected by dispersion effects. For all the other modes, the dispersion

introduces a non-linear behaviour for phase and group velocity. Excluding the

propagative modes existing at very low frequencies, around the cut-on, the phase

velocities decrease from an asymptotic infinite value, while the group velocities

increase from zero. Therefore, around the cut-on, phase and energy propagate

above and below the intrinsic material velocities, respectively. In other ranges,

phase velocities show a flat interval around the shear velocity and an asymptotic

convergence at the velocity of the inner fluid. Group velocities show a first oscilla-

tion (always below the longitudinal velocity of the aluminium shell), a flat interval

around the shear velocity, and an asymptotic value equivalent to the one seen

for the phase velocities. As for the rigid boundary, the asymptotic convergence

indicates a straight propagation in the z direction at frequencies much higher than

the cut-on [65, p. 255]. Only one mode per each group, namely (0,1), (1,2), (2,2),

(3,2), exhibit different behaviour, and their group and phase velocities always

remain below the longitudinal velocity of the inner liquid. Finally, note that under

specific hypotheses, the characteristic equation (2.179) can assume particular

forms where the motion exhibits special features. For instance, the motion obtained

imposing kz = 0 is analysed in [143],[234].

188



(A) Propagative
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(B) Evanescent
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Figure 4.3: Axial wavenumber kz0m for an aluminium pipe filled with inviscid water. n = 0,
W1 = 49.20mm, W2 = 50.80mm. The propagative branches (A) match the evanescent
branches (B) at the cut-off/cut-on.
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Figure 4.4: Phase velocity vp for an aluminium pipe filled with inviscid water. n = 0, W1 =
49.20mm, W2 = 50.80mm. vp is higher than the max speed of the mediums around
the cut-on.
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Figure 4.5: Group velocity vg for an aluminium pipe filled with inviscid water. n = 0, W1 =
49.20mm, W2 = 50.80mm. vg is null at cut-on and always lower than the max speed
of the mediums.
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(A) Propagative
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(B) Evanescent
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Figure 4.6: Axial wavenumber kz1m for an aluminium pipe filled with inviscid water. n = 1,
W1 = 49.20mm, W2 = 50.80mm.
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Figure 4.7: Phase velocity vp for an aluminium pipe filled with inviscid
water. n = 1, W1 = 49.20mm, W2 = 50.80mm.
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Figure 4.8: Group velocity vg for an aluminium pipe filled with inviscid
water. n = 1, W1 = 49.20mm, W2 = 50.80mm.
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(A) Propagative
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(B) Evanescent
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Figure 4.9: Axial wavenumber kz2m for an aluminium pipe filled with inviscid water. n = 2,
W1 = 49.20mm, W2 = 50.80mm. Along the spectrum, some branches can convert
from evanescent to propagative and vice-versa.
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Figure 4.10: Phase velocity vp for an aluminium pipe filled with inviscid
water. n = 2, W1 = 49.20mm, W2 = 50.80mm.
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Figure 4.11: Group velocity vg for an aluminium pipe filled with inviscid
water. n = 2, W1 = 49.20mm, W2 = 50.80mm.
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(A) Propagative
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(B) Evanescent
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Figure 4.12: Axial wavenumber kz3m for an aluminium pipe filled with inviscid water. n = 3,
W1 = 49.20mm, W2 = 50.80mm. Propagative modes (3,3) and (3,4) belong to the
same branch but can coexist in a small frequency range.
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Figure 4.13: Phase velocity vp for an aluminium pipe filled with inviscid
water. n = 3, W1 = 49.20mm, W2 = 50.80mm.
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Figure 4.14: Group velocity vg for an aluminium pipe filled with inviscid
water. n = 3, W1 = 49.20mm, W2 = 50.80mm.
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4.1.2 Variation of shell thickness, diameter and material

Wavenumbers, phase velocities, and group velocities clearly depend on the

materials and the geometries of the waveguide. This section provides a brief

qualitative description of this dependency showing how the results obtained in

section 4.1.1.3 are affected by:

• a change in wall thickness,

• a change in pipe diameter,

• a change in pipe material.
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Figure 4.15: Axial wavenumber kz0m for an aluminium pipe filled with
inviscid water. n = 0, W1 = 44.45mm, W2 = 65.20mm.
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Figure 4.16: Group velocity vg for an aluminium pipe filled with inviscid
water. n = 0, W1 = 44.45mm, W2 = 65.20mm.
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Figure 4.17: Axial wavenumber kz0m for an aluminium pipe filled with
inviscid water. n = 0, W1 = 98.40mm, W2 = 100mm.
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Figure 4.18: Group velocity vg for an aluminium pipe filled with inviscid
water. n = 0, W1 = 98.40mm, W2 = 100mm.

In the examples reported in this section, only the axisymmetric modes are con-

sidered (n = 0). Figures 4.15 and 4.16 report, respectively, the axial wavenumber

kzmn and the group velocity vgnm for a circular aluminium pipe with inner radius

W1 = 44.45mm and outer radius W2 = 65.20mm. Thus, the wall thickness has

been increased by a factor of 10 compared to the case reported in section 4.1.1.3.

The shift in the cut-on frequencies is not consistent for all the modes since some

of them are translated to lower frequencies (e.g. (0,4), (0,5)), while others are

translated to higher frequencies (e.g. (0,3)). Despite the remarkable change in

thickness, the shifts appear to be small, and this seems to be consistent with the
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fact that the overall dimensions have not been excessively modified: an acoustic

ray travelling along the waveguide runs through similar paths in the two different

cases. The change of thickness, however, seems to have a stronger impact on the

dispersive behaviour of the waveguide. In the frequency range analysed, despite

evident similarities, all the modes exhibit a second overshot before converging to

their asymptotic value. Moreover, mode (0,1) propagates faster with a thicker wall.
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Figure 4.19: Axial wavenumber kz0m for a PMMA pipe filled with inviscid
water. n = 0, W1 = 49.20mm, W2 = 50.80mm.
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Figure 4.20: Group velocity vg for a PMMA pipe filled with inviscid
water. n = 0, W1 = 49.20mm, W2 = 50.80mm.

Figures 4.17 and 4.18 report the first seven modes for an aluminium pipe with

inner radius W1 = 98.40mm and outer radius W2 = 100mm. Compared to the case
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reported in section 4.1.1.3, the inner radius has been increased by a factor 2

while the wall thickness remains unchanged. Clearly, a larger diameter shifts all

the cut-on to lower frequencies, while the dispersive behaviour appears to be

marginally affected. This result suggests that dispersive effects in larger pipes

with lower frequency signals can be investigated using smaller pipes and signals

with a larger frequency range. Consequently, a significant cost reduction could

be achieved if a test rig was required. At the same time, it should be noted that

higher frequency signals have roughly non-dispersive behaviour for the lower order

modes and, for the latter, the propagation develops at a constant group velocity.

The last case reported in figures 4.19 and 4.20 concerns a pipe with the same

dimensions as the one in 4.1.1.3 but with a shell made of different material: PMMA.

Interestingly, the cut-on frequencies appear almost identical to those for the alu-

minium case, confirming, once again, that geometry is the main factor in the

determination of the frequency range of the modes. The dispersive behaviour,

however, is visibly affected by the new material. As for the aluminium case, PMMA

longitudinal velocity sets the upper limit for all the group velocities, while modes

(n,1) for n > 0 propagates at PMMA shear velocity. Again, almost all the modes

asymptotically propagate at the speed of sound in water.

4.2 Techniques for the measurement of the dispersion

This section provides a few techniques for the practical measurements of modal

dispersive effects in an actual test rig.

4.2.1 Experimental measurement of group velocity

As seen in section 2.7, the group velocity indicates how fast the energy asso-

ciated with each mode propagates along the waveguide. A generic signal, in

general, spreads its spectrum across several frequencies and stimulates multiple

modes. Consequently, different frequency components experience different delays,

and a listener at a distance receives a signal whose duration is longer than the

original one [73, pp. 161]. If the propagating signal was a train of sine pulses with
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a single frequency component at ω̄ , all the stimulated modes would propagate

with their own specific group velocity vgnm(ω̄), and the receiver would see several

trains of pulses separated in time accordingly. Hence, reporting in a spectrogram

the time domain envelope of the signals at the receiver per each frequency, it is

possible to visualise every single mode separately and estimate the numeric value

of the group velocity per each mode.

To implement the procedure, the test signal should have a duration ∆t short

enough to create a clear time gap at the receiver between modes propagating at

different speeds. Ideally, it is also necessary to have a band ∆ω narrow enough to

measure a single value of the group velocity per each mode [80, p. 89]. Therefore,

for the requirements above, a reasonable trade-off should be found. Note that

increasing the distance between source and receiver ∆z loosens the requirements

for both ∆t and ∆ω and, consequently, improves the level of details that can be

represented in the spectrogram. However, from a practical point of view, building

a test rig using a long pipe might be unfeasible. Therefore, the distance ∆z is

assumed given, and the test pulse specifications are defined accordingly. Firstly, a

simple condition on ∆t can be imposed assuming:

∆t≪ ∆z
max

(
vgnm(ω)

) = Tmin ∀ω, (4.5)

where Tmin is the minimum propagation time between the source and the receiver.

Condition (4.5) aims to minimise the overlapping between the train of pulses

associated with different modes. The condition on ∆ω can be found imposing

a low time spread of the pulses received. Assuming a narrow band pulse with

frequencies between ω̄ and ω and a variation of the group velocity approximately

linear in the interval, a short pulse spread at the receiver means:

∆z
vgnm(ω)

− ∆z
vgnm(ω̄)

≪ ∆t. (4.6)

According to the condition above, a test pulse has a low time spread when the

difference between the arrival time of its components at max and min frequencies is
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much smaller than the duration of the pulse itself. Hence, since vgnm(ω)≈ vgnm(ω̄),

vgnm(ω) can be expanded using the Taylor series in vgnm(ω̄) and (4.6) yields:

vgnm(ω̄)−
[
vgnm(ω̄)+

∂vgnm(ω)

∂ω

∣∣∣
ω̄
(ω− ω̄)

]
≪ ∆t

∆z
vgnm(ω)vgnm(ω̄), (4.7)

which provides the condition for the frequency boundaries of the pulse:

∆ω = ω− ω̄ ≪ ∆t
∆z

vgnm(ω)

vgnm(ω̄)

(
∂ 2kznm

∂ω2

∣∣∣
ω̄

)−1
≈ ∆t

∆z

(
∂ 2kznm

∂ω2

∣∣∣
ω̄

)−1
= (4.8)

∆t
∆z

d−1
nm (ω̄),

where dnm(ω̄) is called pulse spreading of mode nm at frequency ω̄ . Since a

single line of the spectrogram includes all modes at a given frequency, ∆ω should

be determined, where possible, using the maximum value of dnm(ω) among all

the propagative modes. Hence:

∆ω ≪ ∆t
∆z max dnm

∀ω with ∆t≪ Tmin. (4.9)

The spectrogram is built by dividing the frequency spectrum into intervals

[ω̄, ω̄ +∆ω], with ω̄ = n∆ω , and stacking together the recordings of the envelopes

of the related narrow band pulses in the time domain. Indeed, the pressure signal

at the receiver can be thought of as a sum of several pressure signals all shifted

by a specific delay given by the related group velocity. This can be shown by

considering a narrow band pressure signal of central frequency ω̄ :

p̂ω̄(r,θ ,z,ω) = ρω
2
φ̂ω̄(r,θ ,z,ω) = (4.10)

ρω
2

+∞

∑
n=−∞

+∞

∑
m=1

ŵ
(

ω− ω̄

∆ω

)
Φnm(ω)Jn(qφnm(ω)r)einθ eikznm(ω)z,

where the ∆ω narrow band is explicitly introduced by using ŵ(ω), a window

function with unitary bandwidth. Since the test signal is narrow band, the ax-

ial wavenumber kznm(ω) can be expanded in Taylor series using only the first
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derivative:

kznm(ω)≈ kznm(ω̄)+
∂kznm

∂ω

∣∣∣
ω̄
(ω− ω̄) = kznm(ω̄)+

ω− ω̄

vgnm(ω̄)
. (4.11)

Plugging (4.11) into (4.10) yields:

p̂ω̄(r,θ ,z,ω) = (4.12)
+∞

∑
n=−∞

+∞

∑
m=1

ρω
2
Φnm(ω)Jn(qφnm(ω)r)einθ ei(kznm(ω̄)z−ω̄z/vgnm(ω̄))

· ŵ
(

ω− ω̄

∆ω

)
eiωz/vgnm(ω̄).

Assuming ∆z as the position of the receiver, the quantity τnm(ω̄) = ∆z/vgnm(ω̄)

represents the time required for the mode nm to propagate from the source to the

receiver at frequency ω̄ . Applying the inverse Fourier transform with respect to ω

to the previous equation yields:

pω̄(r,θ ,∆z, t) = (4.13)
+∞

∑
n=−∞

+∞

∑
m=1

hnm(r,θ ,∆z, t)⋆ eiω̄tw(t∆ω)∆ω ⋆δ (t− τnm(ω̄)) =

∆ω

+∞

∑
n=−∞

+∞

∑
m=1

hnm(r,θ ,∆z, t)⋆w
(
(t− τnm(ω̄))∆ω

)
eiω̄(t−τnm(ω̄)),

where ⋆ denotes the convolution, w(t) is the inverse Fourier transform of the

window function ŵ(ω), and hnm(r,θ ,z, t) is the inverse Fourier transform of:

ĥnm(r,θ ,z,ω) = ρω
2
Φnm(ω)Jn(qφnm(ω)r)einθ ei(kznm(ω̄)z−ω̄z/vgnm(ω̄)). (4.14)

Equation (4.13) describes the pressure at the receiver as a sum of modes,

each delayed by its own group velocity at frequency ω̄ . Consequently, the group

velocities can be determined by measuring the delays of the received signals in

the time domain and organising them in a spectrogram. A practical application of

the method described here is reported in section 4.4.
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4.2.2 Experimental measurement of modal dispersion

The modal dispersion curves calculated in section 4.1 can be measured empir-

ically to validate the model. A similar procedure has already been described in

several works [89],[67] and it is here reported to provide complementary measure-

ments to those for the group velocity of the previous section. For the inner liquid,

the pressure at frequency ω can be written as (equation 4.1):

p̂(r,θ ,z,ω) = ρω
2
φ̂(r,θ ,z,ω) = ρω

2
+∞

∑
n=−∞

+∞

∑
m=1

ΦnmJn(qφnmr)einθ eikznmz. (4.15)

For a given ω , the equation above can be space Fourier transformed along z as

follows:

p̂(r,θ , k̄z,ω) =
ρω2
√

2π

∫ +∞

−∞

+∞

∑
n=−∞

+∞

∑
m=1

ΦnmJn(qφnmr)einθ eikznmze−ik̄zzdz

=
+∞

∑
n=−∞

+∞

∑
m=1

ρω2
√

2π
Φnmeinθ Jn(qφnmr)

∫ +∞

−∞

eikznmze−ik̄zzdz

=
+∞

∑
n=−∞

+∞

∑
m=1

ρω2
√

2π
Φnmeinθ Jn(qφnmr)δ (k̄z− kznm).

(4.16)

Equation (4.16) shows that, when p̂(r,θ , k̄z,ω) is represented in the ω − k̄z

space, the space transformed pressure amplitude (thus its energy) exhibits non-

null values only for k̄z = kznm . Therefore, in the ω− k̄z plane, modes are identified

by those points where the pressure amplitude is not null. Note that for k̄z = kznm

the values also depend on the modal amplitude. To build the representation in the

ω− kz plane, per each value of ω in the desired frequency range, it is necessary

to measure the value of the pressure amplitude along the pipe, keeping constant

the r and θ coordinates of the receiver. Once the pressure along z is known, it

can be Fourier transformed to get the representation in kz. At a given frequency,

a complete measurement along z provides a single line in the ω− kz plane. The

whole representation is obtained by repeating the measurement in the desired

frequency range. This method provides fairly accurate results, but it is obviously
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tedious, and care should be taken when the measurements are performed.

As reported in [89] and [67], the procedure is generally implemented using a

pressure source and a hydrophone that is moved along the pipe. It is important

to remark that a source placed in a non-axisymmetric position stimulates modes

for several values of n simultaneously, while one centred on the axis stimulates

only modes for n = 0. Furthermore, to include modes for n ̸= 0 in the recordings,

the hydrophone must be placed away from the axis. Since n ̸= 0 modes cannot

be measured separately as can be done for n = 0, their exact determination on

the ω− kz plane can be arduous. A possible workaround consists in repeating the

measurement with different positions of the hydrophone around the axis to exploit

the einθ dependence of the modes. Other techniques to achieve a certain degree

of isolation for different modes are mentioned in [68, p. 202]. In theory, the test

signal used should be a pure sine with a single pulse in its single-sided frequency

spectrum. However, since a real test rig has finite dimensions, a better option is a

train of sine pulses a few periods long. The duration, in fact, must be determined

as a trade-off between keeping the signal band as narrow as possible (which is

achieved with a longer duration) and the necessity to avoid disturbances introduced

by signals bounced back from the pipe terminals (which is achieved by stopping

the recording before the arrival of the first reflected signal at the hydrophone) [80,

p. 89]. A further observation concerns the resolution of the steps along the z axis,

which should be set according to the Nyquist theorem with respect to the maximum

wavenumber range associated with kz. For instance, if the kz spectrum ranges

from 0 to 250rad/m, a z sampling step of no more than 12mm would guarantee a

correct application of the Nyquist theorem for the space Fourier transform. On the

other hand, the frequency step depends on the desired resolution. For instance,

assuming that the signal to reverberate is 100ms long and sampled at 100kHz, if

one measured pressure value is desired per each signal sample, a frequency step

of 10Hz is required.

A second method is also mentioned in [89], where the dispersion is calculated by

determining the phase velocity from the phase difference between two fixed points

along the pipe. Although much simpler in terms of the number of measurements
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required, the final accuracy is lower. A slightly different approach is also mentioned

in [67], where kznm is determined from the group velocity measured at a single point.

This approach is similar to the one explained in section 4.2.1, where the modal

group velocity vgnm is extrapolated from the spectrogram. The axial wavenumber

kznm is then assessed directly from group velocity definition as:

kzmn(ω) =
∫

ω

0

1
vgnm(ω)

dω + kzmn(0), (4.17)

where the integration constant kzmn(0) can be generally assumed null.

4.3 Modelling the pressure source

This section describes the second layer of the acoustic model, which accounts

for the integration of the acoustic sources. In this work, the acoustic source SP is

assumed to be placed in the inner liquid domain on a plane orthogonal to the axis

of the waveguide (figure 4.1). For convenience, the plane is chosen to be z = 0.

Although it is possible to account for different shapes, the source is also assumed

to be circular.

The integration of the source into the mathematical model can be achieved

by finding the amplitude of the modal potentials so that the pressure distribution

of the source is correctly reconstructed by the sum of the modes at the source

position. Nevertheless, this problem exhibits at least two important differences

compared to the case reported in section 2.8. Indeed, the simple free boundary

condition of a liquid cylinder offers a modal decomposition where the eigenfunc-

tions are orthogonal and form a complete basis for the space of the potentials.

The orthogonality allows modal decoupling and a precise calculation of the modal

amplitudes, while the completeness guarantees that every potential function can

be represented by a certain combination of modes. As seen in section 2.1.2.1

and 4.1.1.2, the liquid-solid interface invalidates these hypotheses, meaning that

orthogonality and completeness can no longer be assumed verified [138],[102,

p. 363, 374]. Because of the lack of orthogonality, the modal amplitudes cannot

202



be determined independently. For a given order n, modes (n,x) are coupled

together, and, in theory, an infinite number of modes should be accounted for

when determining the amplitudes. Fortunately, a reasonable truncation allows

a good approximation of the original pressure distribution, and the amplitude of

the potentials can be determined considering only a finite number of modes. The

potential lack of completeness means that some potential functions might not be

written as a combination of the modes found from the homogeneous equation.

Although completeness is important for a rigorous approach, in the literature, it

has been assumed true [105],[106] or not explicitly mentioned [107], and this seems

to be a problem still unsolved2. In the following, it is also assumed verified.

Two different novel methods are proposed for calculating the coupled amplitudes,

and they both rely on the formulation of the pressure field emitted by a source in

a half-space. Other approaches based on the formulation of the Green function

[235],[236] are theoretically possible but, as explained in section 2.1.2.1, not con-

venient when orthogonality is missing. Since the model is meant to be coupled

with a simple test rig, the source here considered is a baffled circular piston,

which is a good trade-off between complexity and accuracy when the emitter is

an electrodynamic speaker. The same procedures, however, can be used for any

pressure distribution in the plane z = 0 3. As shown, the only concern relates to

the number of modes to include in the calculation: the more intricate the pressure

distribution, the higher the number of modes that should be considered.

To the best of our knowledge, the proposed methods are new. However, other

examples of source integration certainly already exist in the literature. Some

issues reported in [105] by Alonso have been considered to develop the methods

used in this work. A range of other examples concerning source modelling in

2Completeness, however, cannot be assumed true only for rigid and free boundary conditions. For
example, considering a simple cylinder, if boundary conditions are given as a function of the impedance Z,
free and rigid boundaries are obtained for Z = 0 and Z = ∞, respectively. If we assume that for Z ̸= 0 and
Z ̸= ∞ the set of modes is not complete, there must be at least a function f that cannot be written as a linear
combination of modes for any value of Z different from 0 or ∞. However, since modes can be thought of as a
continuous function of the impedance Z, their summation in Z = 0 or Z = ∞ must be equal to the summation
on the limit for Z→ 0 or Z→ ∞, respectively. If a certain summation for Z = 0 or Z = ∞ reconstructed the given
function f , assuming the completeness only in Z = 0 and Z = ∞ gives a contradiction since there would be a
summation of modes that, for Z→ 0 or Z→ ∞, converges at the same time to f and to a different function.

3Used in combination with FEM techniques, the model proposed could be extended to sources with
arbitrary distribution by calculating the equivalent pressure in z = 0.
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different conditions can also be found. For instance, Baik [76] describes the source

modelling when the source creates a cross-sectional excitation. Alonso [106] and

Rienstra [107] provide a solution to model the source when the coupling between

the inner fluid and the outer shell is known in terms of wall impedance.

4.3.1 Decomposition of a baffled pressure source

Speakers are generally modelled as circular pistons [122, p. 459], and datasheets

usually provide emission diagrams, sound pressure levels and other electro-

acoustic data. These specifications, however, can only be partially predicted by the

circular piston model since they also depend on other specific electro-mechanical

features [65, p. 406],[237]. Besides, specifications are medium dependant, and

a new characterisation is required if the device is used in a different medium4.

Here, as a reasonable trade-off between complexity and accuracy, the source is

calculated as a circular piston in inviscid water.

A model for a source of finite extension, such as a piston, can be obtained from

the pressure field of a monopole that pulsates with velocity v⃗vv in an inviscid fluid

medium [239, p. 107]. Its harmonic pressure field can be written as:

p(d, t) =− iρcQ
2λd

ei(kd−ωt), (4.18)

where d is the distance from the source, ρ is the density of the medium, c is

the intrinsic acoustic velocity of the medium, and λ is the wavelength at the given

frequency. The source strength Q is:

Qe−iωt =
∫

S
v⃗vv ·⃗̄nnndS, (4.19)

with the integral of the normal velocity v⃗vv calculated on the surface S of the source.

Equation (4.18) is valid when the dimension of the source is much smaller than

λ . When the source is placed on a rigid plane boundary - usually named baffle -,

4It is not always possible to employ common speakers for underwater acoustic. However, there exist
simple devices that are waterproof and can be used as a simple alternative to more costly and more adequate
emitters. For instance, [238] is an inexpensive waterproof speaker that can be submerged without incurring
any damage. The dimensions of this device are used as a reference in the following sections.
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using the method of images [65, p. 163], it is possible to demonstrate that the

pressure amplitude doubles. Therefore, the pressure of a baffled monopole is:

p(d, t) =− iρcQ
λd

ei(kd−ωt). (4.20)

When a source has finite dimensions, the pressure field can be found by decom-

posing the source into infinitesimal components. All the contributions are then

summed up to obtain the desired finite extension. Hence, considering a baffled

flat piston of radius RP whose surface moves in the direction of the symmetry axis

with velocity v̂(ω)eiωt (figure 4.21), the pressure field at the point G≡ (r,θ ,z) in

the frequency domain can be calculated as:

p̂(G,ω) =− iρc
λ

∫
QP

eikd

d
dQ =− iρcv̂

λ

∫
SP

eikd

d
dSP, (4.21)

where SP is the surface of the piston, dSP its infinitesimal part, and d the

euclidean distance between G and dSP.

Decomposing large radiating surfaces into small radiating elements is also a

common approach in FEM [68, p. 214]. Arbitrary sources are generally decomposed

as a collection of monopoles or bipoles, and, to avoid singularities, no pressure

value is given at the exact position of the simple sources. The same issue also

exists for 4.21.

4.3.2 Pressure field of a circular baffled piston

The pressure field given by (4.21) can be calculated either numerically or ana-

lytically. In the latter case, however, the solution can only be found in the far-field

approximation or along the symmetry axis. The far-field representation provides a

general idea about the behaviour of the source while the numeric calculation is

used to find the pressure in the proximity of the radiating surface. To calculate the

far-field radiation, it is convenient to adopt a spherical reference system as shown

in figure 4.21.
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Figure 4.21: Spherical reference system for the radiating piston.

Assuming:

x = r sinφ cosθ (4.22a)

y = r sinφ sinθ (4.22b)

z = r cosφ , (4.22c)

the euclidean distance between two points S and G is:

d(G,S) =
√

(xG− xS)2 +(yG− yS)2 +(zG− zS)2 = (4.23)√
r2

G + r2
S−2rGrSα(φG,θG,φS,θS), (4.24)

where:

α(φG,θG,φS,θS) = (4.25)

sinφG cosθG sinφS cosθS + sinφG sinθG sinφS sinθS + cosφG cosφS. (4.26)

In the far-field approximation, the dimension of the source is negligible in respect

of the distance between the source and the observation point. The same distance

is also much bigger than the wavelength, thus:
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d(G,S)≈ d(G,O) = rG ∀S ∈ SP (4.27a)

d(G,O)≫ λ , (4.27b)

where O is the centre of the piston and the origin of the reference system.

Approximations (4.27) can be used to simplify the integration of (4.21). The

denominator of the integrand function:

eikd(G,S)

d(G,S)
(4.28)

can be simply replaced by rG since this substitution only introduces a little

inaccuracy on the amplitude. The numerator carries the phase of a complex

exponential, and the angle dependencies cannot be neglected. Hence:

d(G,S) =
√

r2
G + r2

S−2rGrSα ≈ rG

√
1−2

rS

rG
α ≈ rG

(
1− rS

rG
α

)
, (4.29)

where the previous relationship is found for rS/rG ≪ 1 and from the Taylor

expansion up to the first derivative of the function
√

1−2 rS
rG

α . With the previous

two approximations, equation (4.21) can be rewritten as:

p̂(G,ω) =− iρcv̂
λ

∫
SP

eikd

d
dSP ≈ (4.30)

− iρcv̂
eikrG

λ rG

∫
SP

e−ikrSα(φG,θG,φS,θS)dSP.

Now, considering that the integration is on the surface of the piston, where

φS = π/2:

p̂(G,ω)≈−iρcv̂
eikrG

λ rG

∫
SP

e−ikrS sinφG cos(θG−θS)dSP. (4.31)

Hence:
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p̂(G,ω)≈− iρcv̂
eikrG

λ rG

∫ RP

0
rS

∫ 2π

0
e−ikrS sinφG cosθSdθSdrS =

− iρcv̂
eikrG

λ rG

∫ RP

0
rS2πJ0(krS sinφG)drS, (4.32)

where the integral form of the Bessel function:

J0(x) =
1

2π

∫ 2π

0
e−ixcosθ dθ (4.33)

has been used. Changing the integration variable with z = rSk sinφG yields:

p̂(G,ω)≈−iρcv̂
eikrG

λ rG

2π

k2 sin2
φG

∫ RPk sinφG

0
zJ0(z)dz = (4.34)

− iρcv̂
eikrG

λ rG

2πR2
PJ1(kRP sinφG)

kRP sinφG
=−iωρ v̂ R2

P
eikrG

rG

J1(kRP sinφG)

kRP sinφG
,

where the following identity has been used:

xJ1(x) =
∫ x

0
yJ0(y)dy. (4.35)

As expected from the symmetry of the problem, equation (4.34) depends only

on the distance from the source rG and on the angle φG. Besides, since rG and φG

appear as independent factors, their contribution can be represented separately.

The function:

B(φG)dB = 20log
∣∣∣2J1(kRP sinφG)

kRP sinφG

∣∣∣ (4.36)

can be used to represent the angular dependence in dB scale (figure 4.22). It

exhibits a main lobe around φG = 0, where it reaches its maximum value 0dB.

Then, depending on the value of kRP, other secondary lobes can appear on the

side of the main one. The pressure nodes that separate different lobes can be

found for those values of φG where:
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J1(kRP sinφG) = 0. (4.37)

Note that when kRP is smaller than 3.831 (the first zero of J1(x)), only the

main lobe is present. Figure 4.22 shows the polar diagram for A) kRP = 0.09,

B) kRP = 1.91, C) kRP = 4.78, and D) kRP = 9.55. For very low kRP (figure 4.22-A),

the amplitude of the main lobe tends to be constant for any φG, and the radiation

of a baffled piston resembles the radiation of a baffled monopole. This result is

sometimes adopted in FEM simulations [122, p. 45] to simplify the model. For

high kRP (figure 4.22-D), the piston tends to concentrate the radiation along the

symmetry axis (high directivity ), and the approximation with a simple monopole is

no longer accurate.

Figure 4.23 shows the radiation from a circular piston in water for the same

cases illustrated in figure 4.22. Pressure is given in the scaled dimensionless

form |p̂|/|ρcv̂|. Each sub-figure reports the radiation on the rz plane (left side):

the beam patterns shown in figure 4.22 can be easily recognised. For the same

velocity amplitude, the pressure (and the related intensity radiated) increases

with frequency. As for simple sources, pistons are not good radiators when the

wavelength is much larger than the radius RP. The right-hand side of subfigures

4.23 reports the pressure distribution on a plane parallel and close to the surface

of the piston at z = dm. The distance dm is chosen to avoid the singularity given by

a null distance between source S and observation point G, when the latter is on

the plane of the piston.

(A) 1 kHz (B) 20 kHz (C) 50 kHz (D) 100 kHz

Figure 4.22: Beam pattern B(φG)dB of a circular plane piston in water. RP = 0.0225mm, c =
1480m/s.
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Note that, when approximating the pressure on the piston surface at high fre-

quency, the distance dm must be chosen more carefully. Indeed, at high frequency,

the pressure exhibits more irregular variations along z (at low frequency, the

variation is just 1/r as for the monopole).

Some limitations must be remarked for the model proposed in this section. The

first issue concerns the movement of the piston surface. In real transducers, the

surface vibrates, changing its position. This displacement, however, is neglected

in the proposed model. Moreover, the velocity cannot be assumed to be the

same at each point of the radiating surface. Speakers, for instance, are actuated

by a central coil, and the velocity is higher at the centre and lower toward the

rim. Finally, the baffle is considered rigid and infinite, a condition certainly not

completely verified in practice. The scattering introduced by the edge of the baffle,

for example, has been analysed in a more accurate model by Backman [237].

Despite all these limitations, the model introduced here offers a good trade-off

between complexity and accuracy, and it is used in the following sections.

(A) 1 kHz (B) 20 kHz

(C) 50 kHz (D) 100 kHz

Figure 4.23: Radiation from a baffled circular piston. RP = 0.0225mm, c = 1480m/s, dm = 1mm.
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4.3.3 Integration of the source by distance minimisation

Under the hypothesis of completeness, pressure in the inner liquid domain can

be written as (section 2.9.1):

p̂(r,θ ,z,ω) = ρω
2

+∞

∑
n=−∞

+∞

∑
m=1

ΦnmJn(qφnmr)einθ eikznmz. (4.38)

Hence, the pressure distribution in z = 0 p̂P can be written as:

p̂P(r,θ ,ω) =
+∞

∑
n=−∞

p̂n(r,θ ,ω) = ρω
2

+∞

∑
n=−∞

+∞

∑
m=1

ΦnmJn(qφnmr)einθ , (4.39)

where p̂n is the pressure component related to all the modes with the same

angular dependence. Under the assumption of completeness, the set of functions:

B = {βmn(r,θ ,ω)}= {Jn(qφnmr)einθ} (4.40)

form, per each ω , a non-orthogonal basis in the domain r ∈ [0,W1], θ ∈ [0,2π]

equipped with the inner product defined as in (2.134):

⟨ζ1(r,θ),ζ2(r,θ)⟩=
∫ 2π

0

∫ W1

0
ζ1(r,θ)ζ ∗2 (r,θ)r dr dθ , (4.41)

where ∗ indicates the complex conjugate. Because of the missing orthogonality,

modes with the same n have amplitudes Φnm(ω) coupled together, meaning that

their calculation cannot be separated as seen in section 2.8 for the liquid cylinder

with rigid boundary. The first decoupling method proposed in this section is the

distance minimisation. The underlying idea is to find a set of coefficients Φ̃nm(ω)

that provide a good approximation of the pressure distribution by minimising an

objective function conveniently defined. To define the objective function, a definition

of distance is first introduced. Using the definition of inner product (4.41), the

distance between two functions ζ1(r,θ) and ζ2(r,θ) can be defined as:
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∆
2(ζ1,ζ2) =

1
πW 2

1

〈
(ζ1−ζ2),(ζ1−ζ2)

〉
(4.42)

=
1

πW 2
1

∫ 2π

0

∫ W1

0
|ζ1(r,θ)−ζ2(r,θ)|2r dr dθ ,

which returns a non-negative scalar that measures the similarity between

ζ1 and ζ2. Obviously, when ζ1 and ζ2 are equal, their distance is null. As-

suming ζ1 = p̂P(r,θ ,ω) as the given source pressure distribution in z = 0, and

ζ2 = ˆ̃pP(r,θ ,ω) as its modal pressure approximation, the previous equation can

be rewritten as:

∆
2(p̂P, ˆ̃pP) = (4.43)

1
πW 2

1

∫ 2π

0

∫ W1

0

∣∣p̂P(r,θ ,ω)−ρω
2

+∞

∑
n=−∞

+∞

∑
m=1

Φ̃nmJn(qφnmr)einθ
∣∣2r dr dθ ,

where ∆2 is a function of the frequency ω and of all the required amplitudes

Φ̃nm(ω). Hence, per each frequency, ω , ∆2(Φ̃nm) is the required objective function,

and ideally, the minimisation algorithm should find those values of Φ̃nm for which

∆2 is null. To be practically feasible, the infinite series should be truncated including

only a finite number of coefficients Φ̃nm. In this case, the best possible outcome is

finding those values of Φ̃nm for which the function ∆2 reaches its minimum value.

The main issue in implementing the minimisation algorithm is avoiding dummy

solutions given by local minima. Therefore, it is convenient to reduce the number

of coefficients involved by running the algorithm once per each value of n. Defining

ˆ̃pn̄ as:

ˆ̃pn̄(r,θ ,ω) = ρω
2
+∞

∑
m=1

Φ̃n̄mJn̄(qφn̄mr)ein̄θ , (4.44)

the distance between the source p̂P and the approximation of the n̄th pressure

component ˆ̃pn̄ is:

∆
2(p̂P, ˆ̃pn̄) =

1
πW 2

1

∫ 2π

0

∫ W1

0
(p̂P− ˆ̃pn̄)(p̂∗P− ˆ̃p∗n̄)r dr dθ . (4.45)
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Using the source expansion (4.39) and the expression for ˆ̃pn̄ (4.44) yields:

∆
2(p̂P, ˆ̃pn̄) = (4.46)

ρ2ω4

πW 2
1

∫ 2π

0

∫ W1

0

[ +∞

∑
k=−∞

+∞

∑
j=1

Φk jJk(qφk jr)e
ikθ −

+∞

∑
m=1

Φ̃n̄mJn̄(qφn̄mr)ein̄θ
]

·
[ +∞

∑
h=−∞

+∞

∑
u=1

Φ
∗
huJh(qφhur)e−ihθ −

+∞

∑
l=1

Φ̃
∗
n̄lJn̄(qφn̄l r)e

−in̄θ
]
r dr dθ .

It is remarked here that, in the previous equation, Φk j and Φhu are the coefficients

of the exact pressure expansion, while Φ̃n̄m and Φ̃n̄l are the coefficients of the

best approximation sought for the index n̄. Different indexes have been used for

clarity. Considering that the integral in dθ is null over multiple of 2π periods, and

separating the summation in k and h, the previous equation yields:

∆
2(p̂P, ˆ̃pn̄) = (4.47)

2ρ2ω4

W 2
1

∫ W1

0

n̄−1

∑
k=−∞

[ +∞

∑
j=1

Φk jJk(qφk jr)
][ +∞

∑
u=1

Φ
∗
kuJk(qφkur)

]
r dr

+
2ρ2ω4

W 2
1

∫ W1

0

+∞

∑
k=n̄+1

[ +∞

∑
j=1

Φk jJk(qφk jr)
][ +∞

∑
u=1

Φ
∗
kuJk(qφkur)

]
r dr

+
ρ2ω4

πW 2
1

∫ 2π

0

∫ W1

0

[ +∞

∑
j=1

Φn̄ jJn̄(qφn̄ jr)e
in̄θ −

+∞

∑
m=1

Φ̃n̄mJn̄(qφn̄mr)ein̄θ
]

·
[ +∞

∑
u=1

Φ
∗
n̄uJn̄(qφn̄ur)e−in̄θ −

+∞

∑
l=1

Φ̃
∗
n̄lJn̄(qφn̄l r)e

−in̄θ
]
r dr dθ ,

where the term:

∆
2(p̂n̄, ˆ̃pn̄) = (4.48)

ρ2ω4

πW 2
1

∫ 2π

0

∫ W1

0

[ +∞

∑
j=1

Φn̄ jJn̄(qφn̄ jr)e
in̄θ −

+∞

∑
m=1

Φ̃n̄mJn̄(qφn̄mr)ein̄θ
]

·
[ +∞

∑
u=1

Φ
∗
n̄uJn̄(qφn̄ur)e−in̄θ −

+∞

∑
l=1

Φ̃
∗
n̄lJn̄(qφn̄l r)e

−in̄θ
]
r dr dθ
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is the distance between p̂n̄ and ˆ̃pn̄. Hence, since ∆(p̂n̄, ˆ̃pn̄) ≥ 0 and it is null

only when Φ̃n̄m = Φn̄m, it follows that the function ∆(p̂P, ˆ̃pn̄) reaches its minimum

for those values of Φ̃n̄m that best approximate p̂n̄. Therefore, the minimisation

algorithm can be applied independently per each value of n, reducing the number

of variables that need to be minimised simultaneously. This approach reduces the

processing time and increases the accuracy.
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Figure 4.24: Scaled pressure emitted from a circular piston of radius RP = 0.0225m in axisym-
metric position CP ≡ (rc = 0m,θc = 0◦). In blue, dimensionless maximum and mean
pressure values of the pressure source and of the related modal approximations
obtained by distance minimisation on 14 modes. The red line reports the error as
the normalised distance between the source and its modal approximation.
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Figure 4.25: Real and imaginary parts of the dimensionless scaled amplitudes for propaga-
tive mode (0,3) and evanescent mode (0,A). Values obtained by distance min-
imisation for a circular piston of radius RP = 0.0225m in axisymmetric position
CP ≡ (rc = 0.02m,θc = 0◦).
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(A) 1 kHz - source (B) 1 kHz - modal sum

(C) 20 kHz - source (D) 20 kHz - modal sum

(E) 50 kHz - source (F) 50 kHz - modal sum

Figure 4.26: Modal approximation of a radiating circular piston of radius RP = 0.0225m in
axisymmetric position CP ≡ (rc = 0m,θc = 0◦) obtained by distance minimisation
on 14 modes. On the left-hand side, the dimensionless scaled source pressure
distribution p̂P. On the right-hand side, the related approximated modal summations
ˆ̃pP.
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It is important to note that modes included in the objective function should be both

propagative and evanescent. Indeed, the pressure approximation is performed

in z = 0, where evanescent modes offer a contribution that is not negligible to the

total pressure approximation.

Figure 4.24 reports the scaled dimensionless pressure amplitudes of a piston

placed in axisymmetric position. Maximum and average pressures are divided

by the scale factor v̂cφ ρl , where v̂(ω) is the piston velocity along z, cφ the speed

of sound in water and ρl the density of water. Overall, the maximum and the

mean values of the modal approximation are very close to the desired values.

The maximum value exhibits a slightly higher inaccuracy just in the last part of

the frequency range considered. The red line reports the global relative error

calculated as the distance between the pressure source distribution and its modal

approximation. Clearly, the error is low everywhere, with higher values at very

low frequencies and towards the high-frequency range. Figure 4.25 reports the

real and imaginary parts of a couple of related scaled amplitudes. As shown, the

scaled evanescent mode (0,A) exists up to the cut-on frequency of the scaled

propagative mode (0,3). At the cut-off/cut-on, the scaled amplitudes of propagative

and evanescent modes are the same. Other modes exhibit similar behaviour and

are not reported for simplicity and brevity. Figures 4.26 provide a direct visual

comparison between the scaled pressure source p̂P (figures on the left-hand side)

and the related scaled modal approximations ˆ̃pP (figures on the right-hand side).

For all the frequencies reported, differences are barely detectable.

4.3.4 Integration of the source by analytical decoupling

As seen in the previous section, the integration of the source into the acoustic

model is complicated by the interdependence of the modes. The distance min-

imisation method aims to overcome this issue by determining sets of coefficients

that approximate the pressure distribution in z = 0. Nevertheless, this approach

can be time-consuming in terms of calculation complexity and a second different

approach is proposed in this section. Recalling equation (4.39), the pressure p̂P

in z = 0 can be approximated using a limited number of modes as:
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p̂P(r,θ ,ω)≈
+N

∑
n=−N

p̂n(r,θ ,ω) = (4.49)

ρω
2

+N

∑
n=−N

+M

∑
m=1

ΦnmJn
(
qφnmr

)
einθ = ˆ̃pP(r,θ ,ω),

where n and m are integers in the range [−N : N] and [1 : M], respectively.

Multiplying both members of the previous equation by the decoupling factor :

Jh
(
qφh jr

)
eihθ (4.50)

and integrating over the section of the waveguide, with r ∈ [0,W1] and θ ∈ [0,2π],

yields:

∫ 2π

0

∫ W1

0
p̂P(r,θ ,ω)Jh

(
qφh jr

)
eihθ r dr dθ (4.51)

≈ ρω
2

+N

∑
n=−N

+M

∑
m=1

Φnm

∫ 2π

0

∫ W1

0
Jn
(
qφnmr

)
Jh
(
qφh jr

)
ei(n+h)θ r dr dθ ,

where indexes h and j are chosen in the range [−N : N] and [1 : M], respectively.

The right-hand side of the previous equation is not null only for h =−n since the

integral in dθ is null over an integer number of periods. Assuming h = −n and

noting that qnm(ω) = q−nm(ω), the previous equation can be rewritten as:

∫ 2π

0

∫ W1

0
p̂P(r,θ ,ω)J−n

(
qφn jr

)
e−inθ r dr dθ ≈ (4.52)

2πρω
2
+M

∑
m=1

Φnm

∫ W1

0
Jn
(
qφnmr

)
J−n

(
qφn jr

)
r dr.

For any ω and per each n, the previous equation contains M unknowns Φnm(ω)

coupled together. Besides, M different equations can be obtained by choosing the

index j in the range [1 : M]. Hence, for any ω and per each n ∈ [−N : N], (4.52)

represents a system of M equations in M unknowns. Note that only one value of n

appears in each system, so the equations are decoupled in the θ direction. From

the above, the decoupling systems of equations can be written as:
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ΛΛΛ(n,ω)ΦΦΦ(n,ω)≈ 1
2πρω2 ϒϒϒ(n,ω), (4.53)

which can be expanded as:



∫W1
0 Jn(qφn1r)J−n(qφn1r)rdr ...

∫W1
0 Jn(qφnmr)J−n(qφn1r)rdr ...

∫W1
0 Jn(qφnMr)J−n(qφn1r)rdr

... ... ... ... ...∫W1
0 Jn(qφn1r)J−n(qφn jr)rdr ...

∫W1
0 Jn(qφnmr)J−n(qφn jr)rdr ...

∫W1
0 Jn(qφnMr)J−n(qφn jr)rdr

... ... ... ... ...∫W1
0 Jn(qφn1r)J−n(qφnMr)rdr ...

∫W1
0 Jn(qφnmr)J−n(qφnMr)rdr ...

∫W1
0 Jn(qφnMr)J−n(qφnMr)rdr



·



Φn1

...

Φnm

...

ΦnM


≈ 1

2πρω2



∫ 2π

0
∫W1

0 pP J−n(qφn1r)e−inθ r dr dθ

...∫ 2π

0
∫W1

0 pP J−n(qφn jr)e−inθ r dr dθ

...∫ 2π

0
∫W1

0 pP J−n(qφnMr)e−inθ r dr dθ


∀n ∈ [0 : N]. (4.54)

To calculate the vector of coefficients ΦΦΦ(n,ω), the squared matrix ΛΛΛ(n,ω) should

be calculated and then inverted. This operation is repeated per each n and for any

ω in the desired range. As for the distance minimisation, for axisymmetric sources,

the decomposition requires only n = 0 modes.

4.3.4.1 Calculation of the modal amplitudes

Finding ΦΦΦ(n,ω) by simple inversion of the matrix ΛΛΛ(n,ω), as mentioned in the

previous section, hides an important issue. Indeed, for several frequencies, ΛΛΛ(n,ω)

is almost singular and tiny variations of ϒϒϒ(n,ω) can generate huge variations in

ΦΦΦ(n,ω). The impact is so severe that even the numerical rounding (due to the finite

number of digits in a standard calculator) can generate results mainly dominated

by errors. Problems with this kind of issue are called ill-conditioned [240, p. 126],

and several methods to improve the accuracy of the solution can be found in

the literature [241],[242]. One of the most widely used is the truncated singular

value decomposition (TSVD). The main idea is to generate a new matrix Λ̃ΛΛ(n,ω)
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that provides a solution close to the one sought and robust with respect to the

inaccuracies introduced by the error in ϒϒϒ(n,ω). This procedure is generally called

regularisation [243]. Using the singular value decomposition (SVD) and temporarily

omitting n and ω , ΛΛΛ can be decomposed as follow:

ΛΛΛ =UUUΣΣΣVVV T = [uuu111uuu222...uuuMMM]


σ1

. . .

σM

 [vvv111vvv222...vvvMMM]T , (4.55)

where ΣΣΣ is the diagonal matrix of the singular values, and UUU and VVV are the

orthonormal left and right singular vectors, respectively. Vectors uuummm are the

eigenvectors of ΛΛΛΛΛΛ
T , vectors vvvmmm are the eigenvectors of ΛΛΛ

T
ΛΛΛ, and the singular

values σm are the square roots of the eigenvalues of ΛΛΛΛΛΛ
T or ΛΛΛ

T
ΛΛΛ. When building

the matrices, the singular values σm are sorted in descending order:

σ1 ≥ σ1 ≥ ...≥ σM ≥ 0. (4.56)

Plugging (4.55) into (4.53), the vector of modal amplitudes ΦΦΦ(n,ω) can be

written as:

ΦΦΦ≈ 1
2πρω2UUUT

ΣΣΣ
−1VVV ϒϒϒ, (4.57)

where ΣΣΣ
−1 is built by using the inverse of each singular value 1/σm. This form

provides a further explanation. In determining ΦΦΦ(((nnn,,,ωωω))), a very small singular

value introduces a correspondent very high value in ΣΣΣ
−1, which, in turn, causes a

great sensibility of the solution to the error in ϒϒϒ(n,ω). On the contrary, assuming

the exact solution ΦΦΦ(n,ω) is known and using (4.53) and (4.55), smaller singular

values may offer a negligible contribution to ϒϒϒ(n,ω). Hence, the TSVD aims to

calculate an approximation of the modal amplitudes, namely Φ̃ΦΦ(n,ω), by neglecting

the contribution of the smallest singular values. Note that the notation Φ̃ΦΦ(n,ω)

also indicates the approximation related to the truncation of the modal series to

M modes. To achieve that, a new matrix Σ̃ΣΣν(n,ω) is obtained from ΣΣΣ(n,ω) by

replacing the last M−ν terms along the diagonal with zeros:
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Σ̃ΣΣν =


σ1

. . .

σν

0

 . (4.58)

Replacing ΣΣΣ(n,ω) with Σ̃ΣΣν(n,ω) in (4.55) and plugging it into (4.53) yields:

Λ̃ΛΛνΦ̃ΦΦ =
1

2πρω2 ϒϒϒ. (4.59)

From the previous equation, the approximated modal amplitudes Φ̃ΦΦ can be

calculated as:

Φ̃ΦΦ =
1

2πρω2 Λ̃ΛΛ
†
νϒϒϒ, (4.60)

where the symbol † indicates the Moore-Penrose pseudoinverse [244]. Note that

Λ̃ΛΛν cannot be simply inverted since its rank is ν . Besides, Λ̃ΛΛ
†
ν can be written as:

Λ̃ΛΛ
†
ν =UUUT

Σ̃ΣΣ
†
νVVV , (4.61)

where:

Σ̃ΣΣ
†
ν =


1/σ1

. . .

1/σν

0

 . (4.62)

Therefore, the approximation of the modal amplitudes Φ̃ΦΦ is obtained by removing

those factors that make the solution sensible to the approximations in ϒϒϒ. A key

issue of the TSVD is the determination of the truncation index ν . Although several

optimisation techniques are reported in the literature [243],[245], the optimal value

for ν is here calculated using a simplified approach aimed to keep the calculation

complexity low. The condition number is defined as:
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κ(ΛΛΛ) =
σ1

σM
, (4.63)

and, from its definition, the higher the condition number, the more sensible Φ̃ΦΦ

is to the approximations in ϒϒϒ [243]. Using the condition number, it is possible to

give a measure of the conditioning problem and, at the same time, to assess the

truncation index ν . Assuming δ Φ̃ΦΦ as the error of the modal amplitude related

to the approximations δϒϒϒ, applying the Euclidean vector norm5 and the related

properties6, the two following relations hold:

∥∥ΛΛΛ
∥∥

2

∥∥Φ̃ΦΦ
∥∥

2 ≥
1

2πρω2

∥∥ϒϒϒ
∥∥

2 (4.64)∥∥δ Φ̃ΦΦ
∥∥

2 ≤
1

2πρω2

∥∥ΛΛΛ
†∥∥

2

∥∥δϒϒϒ
∥∥

2 , (4.65)

where the norms applied to ΛΛΛ(n,ω) and ΛΛΛ(n,ω)† are the associated induced

matrix norms.

Dividing (4.65) by
∥∥Φ̃ΦΦ

∥∥
2 and using (4.64) yields:

∥∥δ Φ̃ΦΦ
∥∥

2∥∥Φ̃ΦΦ
∥∥

2

≤
∥∥ΛΛΛ

∥∥
2

∥∥ΛΛΛ
†∥∥

2

∥∥δϒϒϒ
∥∥

2∥∥ϒϒϒ
∥∥

2
, (4.66)

which, using definition (4.63), can be rewritten as:

∥∥δ Φ̃ΦΦ
∥∥

2∥∥[Φ̃ΦΦ∥∥
2

≤ κ(ΛΛΛ)

∥∥δϒϒϒ
∥∥

2∥∥ϒϒϒ
∥∥

2
. (4.67)

Since the input error
∥∥δϒϒϒ

∥∥
2/

∥∥ϒϒϒ
∥∥

2 is fixed by the relative accuracy of the

calculations, the error of the modal amplitude can be reduced by reducing the ratio

of the maximum singular value to the minimum non-null singular value7.

5The Euclidean norm for a vector xxx = [x1,x2, ...,xM ] is defined as
∥∥xxx

∥∥
2 =

√
x2

1 + x2
2 + ...+ x2

M , while the
associated induced matrix norm is simply equal to the largest singular value σ1.

6Vector and matrix norms satisfy the properties:
∥∥AAABBB

∥∥
2 ≤

∥∥AAA
∥∥

2

∥∥BBB
∥∥

2 ,
∥∥αAAA

∥∥
2 = |α|

∥∥AAA
∥∥

2
7Note that the condition number of Λ̃ΛΛk is infinite.
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However, since [243]: ∥∥ΛΛΛ− Λ̃ΛΛν

∥∥
2 = σν+1, (4.68)

a truncation index too small improves the conditioning but offers an inaccurate

approximation of ΛΛΛ. Therefore, the truncation index should be determined as

a trade-off between the conditioning and the approximation of ΛΛΛ. For practical

calculation purposes,
∥∥δϒϒϒ

∥∥
2 can be assigned as the norm of the floating point

relative accuracy8 of ϒϒϒ. The truncation index ν is determined from:

σ1

σν

≤ w f

∥∥ϒϒϒ
∥∥

2∥∥eps(ϒϒϒ)
∥∥

2
, (4.69)

where the weight w f is defined according to the desired final error of the ap-

proximated amplitudes Φ̃ΦΦ. Note that w f affects the range of the small singular

values retained, and consequently, it influences the spatial dynamics associated

with small modal components. Moreover, the final error on Φ̃ΦΦ depends also on the

initial number of modes included in the approximation.
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Figure 4.27: Dimensionless scaled pressure radiated from a circular piston of radius
RP = 0.0225m in axisymmetric position CP ≡ (rc = 0m,θc = 0◦). In blue, the
scaled dimensionless maximum and mean pressure values of the actual source and
the related modal approximations obtained by analytical decoupling on 14 modes.
In red, the error as the normalised distance between the source and its modal
approximation.

8Function eps in Matlab.
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Figure 4.27 reports the accuracy results obtained by applying the analytical

decoupling for the modal decomposition of the pressure emitted by a circular piston

of radius RP = 0.0225m with centre CP ≡ (rc,θc) on the axis of the waveguide.

Results in the range 0−50kHz can be directly compared with those reported in

the previous section since the same number of modes for n = 0 have been used (7

propagative and 7 evanescent). Although the distance minimisation yields slightly

better accuracy for the maximum pressure at higher frequencies, overall, both

methods return max and mean values very close to those desired. The relative

error for the distance, however, despite being small in both cases, appears to be

roughly one order of magnitude lower for the analytical decoupling.

(A) 1 kHz - modal sum (B) 20 kHz - modal sum

(C) 50 kHz - modal sum

Figure 4.28: Modal approximations of a radiating axisymmetric circular piston of radius
RP = 0.0225m placed in CP ≡ (rc = 0m,θc = 0◦). Analytical decoupling obtained
using 14 modes. Related source pressure distributions are reported in figures 4.26A,
4.26C, 4.26E.
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Figure 4.29: Real and imaginary part of the scaled amplitudes for propagative mode (0,3) and
evanescent mode (0,A). Values are obtained by analytical decoupling for a circular
piston of radius RP = 0.0225m in axisymmetric position CP≡ (rc = 0.02m,θc = 0◦).

As a result, the modal sum reported in figures 4.28 are barely distinguishable

from the original pressure source distribution reported in 4.26A, 4.26C, 4.26E.

Note that the amplitudes obtained by analytical decoupling, although not identical,

are very close to those obtained by distance minimisation. An example for the

modes (0,A) and (0,3) is reported in figure 4.29, which can be directly compared

with the equivalent reported in figure 4.25.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

5

6

7

8

9

10

Max source
Max modal sum
Mean source
Mean modal sum
Error %

Figure 4.30: Dimensionless scaled pressure radiated from a circular piston of radius
RP = 0.0225m in non-axisymmetric position CP ≡ (rc = 0.02m,θc = 0◦). In blue,
the dimensionless maximum and mean pressure values of the actual source and
the related modal approximations obtained by analytical decoupling on 110 modes.
In red, the error as the normalised distance between the source and its modal
approximation.
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Another example concerns the same circular piston as above but placed in a

non-axisymmetric position with rc = 0.02m and θc = 0◦. Because of the missing

symmetry, the modal approximation should also include n ̸= 0 modes to account

for the θ angular dependency. In addition to the 14 modes used in the previous

case, further 96 modes (14n=1, 14n=2, 14n=3 propagative and 18n=1,20n=2,16n=3

evanescent) are included for the decomposition. Indeed, a good approximation

for a non-axisymmetric pressure distribution requires a much higher number of

modes compared to the axisymmetric case. As reported in figure 4.30, despite

the maximum and the mean values remaining close to the desired values, the

distance error appears to be much higher, especially for higher frequencies (where

the shape of the pressure distribution becomes more intricate).
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Figure 4.31: Real and imaginary part of the scaled modal amplitudes obtained by analytical
decoupling. Circular piston of radius RP = 0.0225m in non-axisymmetric posi-
tion CP ≡ (rc = 0.02m,θc = 0◦). Top - modes (+1,4)/(+1,B). Bottom - modes
(+2,4)/(+2,D).
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(A) 1 kHz - source (B) 1 kHz - modal sum

(C) 20 kHz - source (D) 20 kHz - modal sum

(E) 50 kHz - source (F) 50 kHz - modal sum

Figure 4.32: Modal approximation of a radiating circular piston of radius RP = 0.0225m in non-
axisymmetric position CP≡ (rc = 0.02m,θc = 0◦) obtained by analytical decoupling
with 110 modes. On the left-hand side, the dimensionless scaled source pressure
distribution. On the right-hand side, the related modal sum.
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A clear visualisation is provided in figures 4.32, where the modal sum at 50kHz

can be easily distinguished from its original representation.

Two examples of modal amplitudes are reported in figure 4.31. As for distance

minimisation, analytical decoupling returns continuous amplitude at those fre-

quencies (cut-off/cut-on) where evanescent modes turn into propagative modes.

However, as shown in figure 4.9 for n = 2 and figure 4.12 for n = 3, not all the

evanescent modes have zero cut-on, and not all of them turn into propagative

modes. Under these circumstances, the amplitudes of these evanescent modes

tend to be null at the cut-on/cut-off transition. An example is reported in figure 4.31

for the scaled evanescent mode (+2,D), whose amplitude is null at its evanescent

cut-on.

4.3.5 Angular invariance

When the pressure source has a non-axisymmetric distribution, the value of

the complex amplitude Φnm depends on the position of the source in the chosen

reference system. Figure 4.33 illustrates the variation of the modal amplitudes of

the example reported in figure 4.32, when the centre of the source CP ≡ (rc,θc) is

rotated around the axis of the waveguide while keeping the receiver at the same

position. It is shown how both real and imaginary parts of Φnm are described by

the same sine functions with constant amplitudes and shift equal to a quarter of

the period9. Indeed, for θc ∈ [0→ 360◦], the modes can be written as:

Φnm(θc) = |Φnm|e−in(θc+α0), (4.70)

with α0 constant. Although the modulus is angular invariant, the phase changes

linearly with period 2π/n. However, since each mode exhibits an angular variation

of the form einθ (with the position of the receiver), if the relative angular position

between the source SP and the receiver G is kept constant, their absolute angular

position on the reference system has no influence in the determination of the

modal pressure.
9Since a limited number of modes is accounted for the calculation, the shape of the variation calculated is

only roughly sinusoidal.
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Figure 4.33: Scaled modal amplitudes as a function of the angular position of the source
(n = 0,−1,+2,+3). Circular piston of radius RP = 0.0225m at 25kHz in non-
axisymmetric position. rc = 0.02m and θc ∈ [0→ 360◦].
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Figure 4.34: Dimensionless pressure for a circular piston of radius RP = 0.0225m at 25kHz
in non-axisymmetric position with rc = 0.02m and θc ∈ [0→ 360◦]. In blue, the
maximum and mean pressure values and the related modal approximations obtained
by analytical decoupling on 110 modes. The red line reports the error as normalised
distance between the source and its modal approximation.

Therefore, the modal representation can be assumed angular invariant with

respect to the reference system, a conclusion that is in accordance with the

symmetry of the system. Figure 4.34 shows the maximum and the mean value

of the source pressure distribution and the related modal approximations when

the centre of the source CP ≡ (rc,θc) is shifted in the θ direction in respect of the
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reference system. The red line reports the error as the relative distance between

the source and its modal approximation. As can be observed, the approximation

accuracy is pretty much constant for each value of θc, being the difference caused

by the truncation of the modal series.

4.4 Modelling the output signal

The third layer of the model proposed in this chapter concerns the calculation

of the reverberated signals in the time or the frequency domain. The output is

evaluated at a point G in the inner liquid along the waveguide and at a certain

distance from the source SP placed in z= 0 (figure 4.1). A driving time or frequency

domain input signal must be defined along with the quantities required by the first

two layers of the model: geometry, materials, and pressure source distribution. The

spectrum of the driving signal defines which modes are excited in a propagative

form and which modes exist only in an evanescent form. The amplitudes of the

modes depend on both the driving signal and the pressure distribution of the

source. As seen in section 4.3, the evanescent modes need to be included in the

second layer of the model for the calculation of the modal amplitudes. Indeed,

their contribution is not negligible at the source. For the third layer, however, the

distance from the source is assumed large enough to account for the exponential

decay, and the evanescent modes can be neglected.

From sections 2.9 and 4.3, the approximated frequency domain representation

of the pressure in the waveguide can be written as:

ˆ̃p(r,θ ,z,ω) = ρω
2

+N

∑
n=−N

+Mn

∑
m=1

Φ̃nmJn(qφnmr)einθ eikznmz. (4.71)

In the previous equation, the approximated modal amplitudes Φ̃nm(ω) are only

known in their scaled form Φ̄nm = Φ̃nm/v̂cφ ρ . Hence, dividing the (4.71) by the

velocity v̂(ω), it is possible to obtain the transfer function between output pressure

and the driving velocity of the piston:
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ˆ̃pv =
ˆ̃p(r,θ ,z,ω)

v̂(ω)
= ρ

2cφ ω
2

+N

∑
n=−N

+Mn

∑
m=1

Φ̄nmJn(qφnmr)einθ eikznmz. (4.72)

Equation 4.72, although important, is not directly useful since the velocity of the

piston is unknown. In general, it is necessary to establish a relationship between a

known input and the output pressure. Therefore, named x̂(ω) the desired input

signal, a further transfer function S(ω) = v̂(ω)/x̂(ω) must be defined to obtain the

desired transfer function:

ˆ̃px(ω) = S(ω) ˆ̃pv =
v̂(ω)

x̂(ω)

ˆ̃p(r,θ ,z,ω)

v̂(ω)
(4.73)

The possible solutions for the definition of the transfer function S(ω) are analysed

in section 5.5.1. For now, it can just be observed that, once the input signal x̂(ω)

has been defined, the output pressure at a point G≡ (rG,θG,zG) can be calculated

as:

ˆ̃p(rG,θG,zG,ω) = x̂(ω) ˆ̃px(rG,θG,zG,ω) = (4.74)

x̂(ω)S(ω)ρ2cφ ω
2

+N

∑
n=−N

+Mn

∑
m=1

Φ̄nmJn(qφnmrG)einθGeikznmzG

The related time-domain representation can be obtained by calculating the

inverse Fourier transform of equation 4.74. Note that, since the inverse Fourier

transform is a linear operator, the total pressure signal in the time domain is also

given by the superimposition of each mode in the time domain.

As an example of signal processing, assuming a sample rate of 100kHz, results

of the first two layers of the model obtained in the frequency band between

0−50kHz and in steps of 10Hz can be used directly to process a signal 100ms

long. If the input signal needs to be truncated, a window (which allows sufficient

damping at the end of the recording) can be used to avoid spectral leakage [246].

When a simulation for a longer recording is needed, the input signal can be

processed in short windows, or an interpolation of the results of the first two layers

can be calculated. Further details are reported in section 5.5.
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To visualise the results of the simulation, the dimensionless output pressure in

G is defined as:

ˆ̃p0(rG,θG,zG,ω) =
ˆ̃px(rG,θG,zG,ω)

S(ω)cφ ρ
x̂(ω) = (4.75)

x̂(ω)ρω
2

+N

∑
n=−N

+Mn

∑
m=1

Φ̄nmJn(qφnmrG)einθGeikznmzG,

where x̂(ω) is assumed to be a dimensionless input signal. The following

examples report p̃0 for the pipe of figure 4.1 described in section 4.1.1.3 and for a

piston of radius RP = 0.0225m in different configurations. In the first two cases, the

source and the receiver are in non-axisymmetric positions, meaning that modes

for |n|> 0 should be included. The dimensionless driving signal x(t) is assumed

to be the chirp signal represented in figure 4.35 with a frequency range spanning

from 7.5kHz to 25kHz.
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Figure 4.35: Dimensionless chirp signal driving the pressure source. Time domain representation
(top) and frequency spectrum (bottom).

Figure 4.36 reports the output signal when the source and the receiver are 6m

apart and aligned in the angular direction. Their radial position is rc = 20mm. As

reported in section 4.1.1.3, the maximum group velocity in the frequency range

of x(t) is around 5km/s. This velocity corresponds to an arrival delay of roughly

1.2ms at 6 meters of distance. The same time gap can be observed in figure 4.36.
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Figure 4.36: Time and frequency domain representation of the dimensionless output pressure
at the recording point G of the pipe illustrated in figure 4.1. Pipe material: alu-
minium, W1 = 49.20mm, W2 = 50.80mm, RP = 0.0225m, CP ≡ (0.02m,0◦,0m),
G≡ (0.02m,0◦,6m).
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Figure 4.37: Representation of the dimensionless pressure for the modes (0,3), (1,3), (2,1), (3,2)
composing the signal reported in figure 4.36. Mode (0,3) exhibits strong dispersive
behaviour and discards the spectrum below its cut-on. Mode (2,1) propagates at
the shear velocity of the aluminium shield and is non-dispersive. Modes (1,3) and
(3,2) are only slightly dispersive, the latter propagating below the speed of sound
in water.
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The output signal described above is the summation of several modes with

different characteristics. For some of them, the time and frequency domain repre-

sentation of the dimensionless pressure is reported in figure 4.37. Mode (0,3), for

instance, exhibits a strong dispersive behaviour. The spectrum of the input signal

spreads around its 12.421kHz cut-on, and all the frequency components in the

evanescent region are not propagated. This issue appears as a sharp spectral

step at the beginning of the propagative range. The frequency components just

above the cut-on propagate at very low group velocity, causing a long tail lasting far

beyond the duration of the input signal. Note that the maximum group velocity of

the mode (0,3) in the range considered is around 5km/s (figure 4.5). Nevertheless,

this speed concerns only the last part of the chirp signal. The first part spreads be-

low the cut-on or propagates at a very low group velocity. Consequently, the initial

delay for mode (0,3) is around 3ms. Very different behaviour can be observed for

mode (2,1). In figures 4.9 and 4.11, it is shown that this mode is non-dispersive

and propagates at the shear velocity of the aluminium shield (vg = 3040m/s, initial

delay 1.97ms). Despite its non-dispersive characteristic, however, an evident defor-

mation appears in both time and frequency representation. Indeed, this alteration

is caused by the value of the coefficients obtained for the specific pressure source

as described in section 4.3.
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Figure 4.38: Time and frequency domain representation of the dimensionless output pressure
at the recording point G of the pipe illustrated in figure 4.1. Pipe material: alu-
minium, W1 = 49.20mm, W2 = 50.80mm, RP = 0.0225m, CP ≡ (0.02m,0◦,0m),
G≡ (0.02m,45◦,6m).
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Modes (1,3) and (3,2) are only slightly dispersive, and their duration is similar

to the duration of the input signal. Mode (3,2) propagates at the slowest group

velocity and reaches the receiver after more than 10ms. It roughly preserves

the shape of the spectrum, but its contribution is tiny and completely masked by

the tails of other dispersive modes. A similar example is reported in figure 4.38,

where the angular position of the receiver has been rotated by 45◦, meaning

CP ≡ (0.02m,45◦,6m). Note how, although similar to the one reported in fig-

ure 4.36, the spectrum of the output signal is affected by the einθ dependence of

the modes. In signal post-processing, this periodicity can be exploited to cancel

or amplify modes by combining recordings obtained at different points around the

axis of the waveguide.

A further meaningful example concerns the experimental measurement of the

group velocity, as described in section 4.2.1. For a clear visualisation, the source

and the receiver are now assumed in the central position at a distance of 6 meters.

As already pointed out, only n = 0 modes should be considered in this case.

Indeed, an axisymmetric source does not require any einθ variation, and since

Jn(0) = 0 for |n|> 0, modes for n ̸= 0 can be neglected when the receiver is placed

at the central position. The driving signal represented in figure 4.39 is a tapered

sine with its frequency band centred at 18kHz.
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Figure 4.39: Time and frequency domain representation of the dimensionless tapered sine used
as the input signal for group velocity measurement. The signal is built to obtain a
short time duration and a narrow frequency band.
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Figure 4.40: Group velocity measurement. Time and frequency domain representation of the
dimensionless output pressure at the recording point G. Pipe material: aluminium,
W1 = 49.20mm, W2 = 50.80mm, RP = 0.0225m. Source and receiver in axisym-
metric position at a relative distance of 6m. Two different modes propagating at
different group velocities can be observed as separate entities in the output signal.
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Figure 4.41: Group velocity measurement. Dimensionless pressure time and frequency domain
representation of the first four n = 0 modes for the output signal of figure 4.40.
Given their amplitudes, only modes (0,2) and (0,3) are fully visible when all the
modes are combined together. Modes (0,1) and (0,4) exhibit dispersive behaviour
caused by the spectral tails of the input signal.
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The spectrum and the duration of the driving signals are chosen to satisfy (4.9),

which guarantees a good separation between the train of pulses propagated by

different modes and recorded in G. Figure 4.40 reports the output signal at the

receiver. Note how two groups of pulses appear perfectly separated in time. This

result is better understood by analysing the isolated modes illustrated in figure 4.41.

According to figure 4.5, the group velocity of mode (0,2) at 18kHz is slightly below

5km/s, while mode (0,3) propagates roughly at 1.2km/s. At a distance of 6m,

these velocities correspond to delays of 1.2ms and 5ms, respectively. These time

gaps can be clearly observed in figures 4.40 and 4.41, and offer a direct solution

for the measurement of the group velocities. Mode (0,1), despite being in its

propagative range, exhibits a tiny amplitude, and its detection in the output signal

is difficult. Besides, the amplitudes of its coefficients strongly modify the spectrum,

and the spectral tail of the input signal toward the lower frequencies is better

preserved than the rest. This explains the evident dispersive behaviour shown in

the top boxes of figure 4.41. Finally, the cut-on of mode (0,4) (25.208kHz) lies

above the central frequency of the input signal. Nevertheless, the upper spectral

tail of the latter extends above this boundary, which explains the tiny signal with

the visible dispersive behaviour illustrated in the bottom boxes of figure 4.41.

4.5 Summary

This chapter presents the acoustic model developed in this work and the related

elements of novelty. Starting from the equations reported in chapter 2, it introduces

a quasi-analytical simulator organised in three layers and aimed to minimise

the time required to calculate non-attenuated in-pipe reverberations. The first

layer accounts for the materials and the geometry of the waveguide, yielding

the dispersion curves for the modes along with the related phase and group

velocities. Two novel algorithms are implemented for the calculation and the

separation of the axial wavenumbers. In particular, the proposed solution for

the latter provides a workaround for non-orthogonal modes, a case not reported

in the literature but crucial for the present work. The effects of the variation of

mechanical and geometrical properties are qualitatively discussed by comparing
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the results for waveguides with different geometries and materials. The second

layer accounts for the acoustic source, offering a solution for calculating the modal

coefficients given a certain source pressure distribution. Two novel strategies

are proposed to deal with the non-orthogonality hypothesis. In the first case, the

algorithm aims to minimise the distance between the source pressure distribution

and its approximation obtained from a limited number of modes. In the second

case, modes are analytically decoupled by solving a specific matrix equation.

Since the formulation of the problem is ill-conditioned, a further transformation

based on the singular value decomposition is discussed to improve the accuracy

of the results. An example of a pressure source modelled as a baffled piston

is also considered for reference. Results show that, for both algorithms, the

approximation error for a smooth axisymmetric source mainly remains below 1%,

being the analytical decoupling approximately one order of magnitude better. A

much larger number of modes is required for similar approximations of sources

in non-axisymmetric positions. The last layer of the model calculates the desired

reverberation, establishing a transfer function between a given dimensionless input

signal and the output pressure at a point G along the waveguide. A procedure

for the direct measurement of the most relevant quantities is further provided and

compared against other options in the literature. A related application for the

measurement of the group velocity is analysed in the last section. Finally, the

developed model can be matched to real low-cost test rigs for practical in-house

experiments and is used in chapter 5 for the acoustic data augmentation of the

synthetic dataset proposed.
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Chapter 5

Synthesis of augmented data

This chapter describes how synthetic augmented observations are generated in

this work. The next section discusses the motivations underlying the adoption of

artificial data and analyses similar solutions reported in the literature. Then, the

details about the methodology used for the synthesis are reported. The first step

concerns the creation of the soundbank and its structure. A brief overview of the

hardware acquisition chain is given to understand the strengths and limitations of

the adopted solutions. Section 5.3 proposes a statistical spectral noise filter to

improve the quality of the synthesised audio and the related controlled properties.

Section 5.4 introduces the synthesis and describes how audio blocks are combined

to obtain new observations with properties and annotations as required. Finally,

the acoustic model presented in chapter 4 is integrated to add simulated in-

pipe reverberation. The processing chain developed in the following sections is

employed in chapter 6 to generate the necessary observations for the creation of

the synthetic dataset.

5.1 Motivations for data augmentation

In chapter 3, it is pointed out that every machine learning system requires one

or more datasets to train the algorithms. Audio data archives for machine learning

purposes have become more common in recent years, and several examples can

be found online. Some of them, such as Freesound [247] and Audioset [248], are
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organised as general purpose repositories, while others are structured datasets for

specific purposes (e.g. TUT [39], SONYC-UST [40], DESED [249]). Frequently, the

latter are extracted from the former, integrated with additional data and published

as part of calls for machine learning challenges [250],[251]. This work focuses on

in-pipe audio events and, in particular, on domestic in-pipe audio events. Practical

reasons dictate the domestic choice, but the methodology can be extended to

similar applications. To the best of our knowledge, no similar dataset is available

in the literature.

Usually, apart from other acoustic specifications, good quality datasets for ma-

chine learning should be strongly labelled, meaning that -at least- class annotations

and timing data are specified for all the events. Given the difficulties related to the

creation of such repositories, weakly labelled datasets with labels given without

timing data or just given at segment level are frequently provided [38, p. 154]. In

general, depending on the requirements, collecting suitable recordings is difficult

and time-consuming. For instance, for what concerns this work, direct acquisition

of a reasonable number of audio examples would require unpractical access to

a large number of different venues. As a consequence, it is difficult to provide

enough variability and to cover additional acoustic effects that are typical of in-

pipe propagation. Besides, the manual creation of strong annotations would be

time-consuming and unavoidably affected by human inaccuracies.

Despite the differences, gathering large reliable datasets is a common barrier

against the development of new AI algorithms and some solutions proposed aim

to ease the problem by creating datasets of artificially generated sound scenes

[252],[56]. Scaper [58], for instance, is a software package that can be used to

generate sound observations by combining a set of isolated sounds in a soundbank.

The underlying idea is to join a background signal together with multiple foreground

signals representing the acoustic events to detect. Signal-to-noise ratio S/N and

other acoustic properties can be assigned to control and diversify the occurrences

of the chosen classes in the synthesised signals. Over the entire dataset generated,

each parameter is controlled according to a set of probabilistic rules. Since the

original classes are known, the synthesised recordings are generated together
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with the related labels, and it is possible to obtain strongly labelled datasets that

are also arbitrarily large.

Given the difficulties in the in-pipe scenario, a similar approach can be profitably

exploited. However, it should be pointed out that in-pipe acoustic observations

cannot always be synthesised by the simple superimposition of signal chunks from

a soundbank. Indeed, sounds propagating in waveguides are strongly affected by

reverberation, and the complexity increases if additional reflections or scattering

are considered. Therefore, a simple cut and paste of parts of recorded signals

would return unrealistic results and limited variability. Similar issues have been

analysed in different contexts. Kinoshita et al. [57], for instance, investigated

reverberation in the context of room acoustics for Automatic Speech Recognition.

For in-pipe acoustics, although only for straight and circular pipes, the model

proposed in chapter 4 provides a tool to calculate the above-mentioned effects.

Besides, since a similar mechanism always regulates reverberation, the model

maintains its usefulness despite its simplicity.

Accounting for the issues above, the adopted dataset is created by generating

semi-synthetic observations obtained by isolating and recombining clean, non-

reverberated audio blocks from real sources. Then, timing, S/N, reverberation, and

other acoustic properties can be imposed, controlled, and accurately annotated.

5.2 The soundbank

In order to create the synthetic repository described above, a collection of low-

reverberated sounds related to the desired class instances must be acquired.

This collection of sounds is named soundbank, and this section describes the

experimental procedure to acquire and organise its content. A description of the

hardware setup and the related motivations is provided along with the procedure for

the signal acquisition; a further section is about the structure of the soundbank. It is

shown how the methodology proposed allows the minimisation of the human tasks

required and how this is achieved by avoiding the direct collection of metadata.

The last section introduces the synthetic soundbank, later detailed in section 5.4.1
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5.2.1 Hardware acquisition chain

A/D
Converter

Charge
amplifier Storage

Hydrophone

Gain
amplifier

Anti-aliasing
filter

Figure 5.1: Soundbank acquisition chain. The signal is acquired using
a single hydrophone, conditioned, converted in samples of
16-bit, and stored in uncompressed digital format.

Source signals are recorded using the acquisition chain illustrated in figure

5.1. The acquisition chain includes a hydrophone, a signal conditioning stage, an

analogue-to-digital converter (A/D), and a storage unit. As better shown in chapter

6, for the signals recorded, most of the energy is concentrated below 4÷5kHz

with some weaker components up to around 10kHz. Since signals propagate in

liquid and solid domains, a hydrophone is the simplest choice for the transducer.

The selected device is a Brüel&Kjær type 8103 [253], which has dimensions

compatible with the application and exhibits a charge sensitivity (0.097pC/Pa)

roughly constant (+1dB, −1.5dB) in a range larger than the minimum required

(0.1−20000Hz). An extract of the datasheet concerning the hydrophone frequency

response is reported in figure 5.2. The charge amplifier, the anti-aliasing filter,

and the gain amplifier are part of the same Brüel&Kjær Nexus 2692 [254], which

is the recommended coupled device for the hydrophone chosen. Output voltage

and anti-aliasing frequency range are compatible with the following A/D sampling

stage. The analogue-to-digital converter is a 16-bit resolution ADLINK USB-1210

[255], where the converter resolution is chosen considering the noise floor of

the analogue chain. Indeed, a 24-bit conversion would require higher costs (e.g.

equipment, processing, storage), while no relevant additional information would be

stored in the least significant 8 bits. The whole acquisition chain is configured so
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that the numeric values stored represent the actual value of the acoustic pressure

in Pascal.

Figure 5.2: Hydrophone frequency response (Brüel&Kjær type 8103 datasheet). Values reported
in dB Re1V/µPa.

5.2.2 Acquisition of the soundbank signals

When recording audio items in their natural environment, noise and other un-

desired acoustic phenomena can affect or mask the actual sound emitted by the

acoustic sources. In pipes, sounds propagate through complex geometries and

layers of different materials, and acoustic distortions cannot be avoided. Neverthe-

less, optimisations of the recording process are possible. For instance, the receiver

can be positioned in direct contact or in the closest proximity of the sound source

to improve the signal-to-noise ratio and reduce reverberation effects. Generally,

the hydrophone cannot be placed directly in water, and special adaptors need to

be used to guarantee an acceptable acoustic path. Indeed, as seen in section

2.6.3, when the path between source and receiver includes layers of very different

characteristic acoustic impedance, most of the transmitted power bounces back at

the boundary. Therefore, a high-density gel has to be spread on the contacting

surfaces of the adaptors to eliminate residual air layers and close the acoustic

path between the source and the receiver.

Figure 5.3 shows the hydrophone and an aluminium adaptor for a 15mm copper

pipe during a recording session. The surfaces in contact with the pipes and the

hydrophone slot are prepared with high-density acoustic gel before being clamped

using two cable ties. Several other plastic and metallic adaptors have been used

on pipes of different diameters, such as 25mm and 40mm.
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Figure 5.3: Example of a recording session for the acoustic emission of a
tap using a 15mm pipe adaptor. Sound samples are recorded
from the pipe just beneath the sink.

Given the spectrum of the signals and the available options for the aliasing

filter, during the recording sessions, the (low-pass) cut-off frequency is set to

30kHz, while the corresponding sample frequency to a minimum of 60kHz. In

post-processing, however, all signals are resampled at the standard frequency

of 48kHz, and a further reduction is possible. The gain of the analogue stage is

determined according to the intensity of the specific source so that the amplified

analogue signal covers the entire dynamic range of the A/D converter. The resam-

pled signals are then stored in .wav format. Since the .wav requires amplitude

between −1 and +1, the signals are normalised to their maximum value, and

the normalisation factor is stored in the comment field of the file metadata. The

values of the acoustic pressure in Pascal can be recovered from the .wav file by

multiplying the normalised numeric values by the normalisation factor.

The recorded observations are organised in classes, and a different folder is

used per each class. A class represents a specific group of objects emitting noise.
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In this thesis, the following eight classes related to domestic environments have

been identified:

• Taps

• Sinks

• Showers

• Toilets

• Washing Machines

• Dish Washers

• Disturbances*

• Backgrounds*

Each class folder contains a folder per class instance (e.g.: tap 1, tap 2, etc.).

Each class instance contains three separate observation folders: events, distur-

bances and backgrounds. All the observations in the same instance folder are

recorded using the same hardware setup. A single event or disturbance folder

includes only one recording with a certain background noise level. Background

noise observations are recorded without any event or additional disturbance for

statistical noise processing purposes. Since classes and class instances are

stored separately, a weak annotation is intrinsically contained in the folder struc-

ture and the related names. This approach avoids any further manual collection

of metadata. More details about the structure of the soundbank and the special

classes, disturbances and backgrounds, are given in section 5.2.3.

Some of the classes identified refer to physical appliances that might not always

be connected to the same pipes. Toilet drainage, for example, is obviously not

connected together with tap pipes. Pipes can also have different sizes and exhibit

different reverberation effects. Hence, it is unrealistic to imagine a single real

IoT device trying to discriminate all the above-mentioned classes and the related

events from a single listening point. This issue, however, is irrelevant since we

only aim to provide a set of examples related to in-pipe events and to understand

how they can be processed and organised in a dataset for machine learning

applications.
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5.2.3 Structure of the soundbank

The structure of the Soundbank can be represented as in figure 5.4. The Sound-

bank folder contains all the source signals used to generate the synthetic blocks

(stored in the Synthetic Soundbank folder — section 5.2.4) and the final synthetic

observations (stored in the Synthetic Observations folder — section 5.4). The

Soundbank contains a folder per each class, including the two special classes Back-

grounds* and Disturbances* and a further attribute file Classes Attributes.txt.

Except for the special ones, each class stores a folder per each class instance (e.g.

Tap 0, Tap 1, Tap n), meaning a specific appliance and the related acquisition

hardware set-up. Each class instance contains the folders Background Obser-

vations, Disturbance Observations, and Event Observations. The first folder

stores the isolated background noise signals used for both the post-processing

noise reduction and the synthesis of the synthetic background. The Disturbance

Observations folder includes a set of unlabelled events recorded using the same

hardware configuration of the related class instance. For example, it may include

voices, music or other unclassified domestic sounds. The last folder, Event Ob-

servations, contains a set of observations related to the specific instance, that

is, a set of sounds produced by the specific appliance. As shown in figure 5.4,

each observation for backgrounds, disturbances and events is stored in a different

folder (Backgrund 0, ..., Background n; Disturbance 0, ..., Disturbance

n; Event 0, ..., Event n). Each observation folder contains a further Source

folder where the source data is stored in the same format as produced by the ADC.

Once the real signals have been imported into the Soundbank, an additional

post-processing step must be performed to attenuate the noise level for events

and disturbances. Per each class instance, the noise mask described in section

5.3.1 is obtained from the Background observations. Then, events and distur-

bances are processed to attenuate the undesired background noise. The purpose

of post-process filtering is not to obtain noise-free synthetic observations but to

better isolate events and disturbances. In the final synthesis, the desired back-

ground noise can be superimposed, allowing precise control of the S/N ratio, thus

accounting for different recording conditions.
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Figure 5.4: Structure of the soundbank.
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Post-processed noise-free events are stored as event.wav in the correspond-

ing Event n folder along with the unfiltered version of the event event unfil-

tered.wav. The amplitude is normalised and the scale factor to convert in pres-

sure (Pascal) is stored in the comment field of the .wav file. The absolute position

of the audio file in the soundbank is saved in the related title field of the file

(e.g. Soundbank > Taps > Tap 1 > Event Observations > Event 3). A picture

of the time-domain filter result is saved as filter result.pdf under the Picture

folder.

Soundbank
...

Disturbances*

Disturbance Observations

disturbance 0.lnk
...

disturbance n.lnk

Figure 5.5: Structure of the soundbank: special class Disturbances.

Disturbance files are processed and organised as for the events, but a further

step is performed in this case. Although disturbance recordings belong to specific

class instances, for the synthesis of new observations, they are considered generic

and not associated with any specific class instance. Hence, while their original

collocation is maintained keeping the disturbance in the related folder, a link to the

actual position is generated and stored under the folder Disturbance Observa-

tions of the class Disturbance* as shown in figure 5.5. Background observations

are treated similarly to disturbances maintaining their original collocation in the

class they belong to and generating a link under the Background Observations

folder of the special class Backgrounds* (figure 5.6).

Finally, the file Classes Attributes.txt in the Soundbank folder defines a list of

attributes used during the creation of the synthetic audio blocks. In particular, the

attribute include defines which class can be used to generate a synthetic block,
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Soundbank
...

Backgrounds*

Background Observations

background 0.lnk

...

background n.lnk

Figure 5.6: Structure of the soundbank: special class Backgrounds.

while the attribute structured indicates those classes whose source observations

cannot always be considered homogeneous and should not be combined together

when creating a new synthetic observation. More details about the creation of

synthetic blocks are given in the section 5.4.

5.2.4 The synthetic soundbank

When a new synthetic dataset is created, the class/instance structure defined in

the soundbank is replicated in a separate repository named Synthetic Soundbank.

Sound Repository

Acoustic Models

Soundbank

Datasets

Synthetic Dataset 0

...

Synthetic Dataset n

Synthetic Observations

Synthetic Soundbank

Figure 5.7: Position of the synthetic soundbank.
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The content of the synthetic soundbank is not generated upfront during the

post-processing stage of the soundbank but during the synthesis of the related

dataset. Since the synthesis combines different blocks together, a copy of the

isolated items is stored for reference and placed in the related class/instance folder

of the synthetic soundbank. This solution allows the creation of multiple datasets

while keeping track of the building audio blocks without affecting or replicating the

source audio data. The position of the Synthetic Soundbank is reported in figure

5.7, while its content is described in section 5.4.1.

5.3 Noise reduction

The signal samples recorded to build the soundbank are affected by noise

related to both the recording environment and the acquisition chain. Some non-

exhaustive examples are the 50Hz harmonics coming from the power network

and the quantisation noise related to the finite resolution of the analogue to digital

converter.

The literature reports many noise reduction techniques, but the selection of a

suitable algorithm depends on the specific context. In some cases, for example,

methods based on Wiener filters or more advanced dynamic noise cancellation

offer a remarkable solution to enhance the signal-to-noise ratio. These approaches,

however, can be exploited only when additional information is given. Wiener

filters, for example, require some preliminary knowledge about the nature of the

noise, such as autocorrelation and cross-correlation [53, p. 339]. Similarly, noise

cancellation algorithms must be fed with additional signals, which can be, for

instance, a measure of the error or a correlated version of the disturbance [53,

p. 349],[256]. Another possible approach is based on Kalman filters, which require

modelling the observation as the output of a linear system, including the estimation

of both system dynamics and system order [53, p. 371],[257].

For this work, an approach based on spectral subtraction or noise gating [258,

p. 136],[259],[260] seems to be more suitable, meaning that good filtering per-

formances are achievable without additional acquisition constraints and with low
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computational complexity. Fast algorithms are also convenient for batch processing

and real-time signal enhancement in devices with limited hardware resources. Two

open-source implementation examples are the free software Audacity [261] and

the python library Noise reduce developed by Sainburg et al. for post-processing

of animal vocal repertoires [52]. The latter is used for performance reference in the

following sections since it is recent, still maintained, and closer to our scope. The

implementation here proposed aims to:

• improve the overall S/N gain achievable,

• eliminate filtering sound artefacts,

• provide an algorithm suitable for real-time and batch processing,

• provide an accurate methodology to assess the algorithm performance against

different solutions.

The filter algorithm articulates in three parts: the first step concerns the deter-

mination of a statistical noise filter mask (section 5.3.1), the second step regards

the synthesis of the filter (section 5.3.2), and the third step provides the actual

signal filtering (section 5.3.3). A further software utility (section 5.3.4) has been

developed for performance assessment.

5.3.1 Synthesis of the noise mask

Although stationary assumptions do not hold for the acquired recordings, under

the hypothesis that the hardware setup remains unaltered during the acquisition of

a class instance, the background noise can be considered mainly time-invariant.

To obtain a robust characterisation, a statistical approach is used and a given

set of pure noise recordings is divided into a characterisation set {Q} and a

check set {C}. The noise sets {Q} and {C} can be chosen to be disjoint or

overlapping, the latter option being necessary when only one or a small number

of noise recordings is available. Each recording in {Q} is short-time Fourier

transformed using windows of length L. A Hann windowing function is applied to

smooth the time boundaries and reduce the frequency artefacts when transformed

in the frequency domain. The power spectral density (PSD) Pi[n f ] is derived

∀ i∈ [0 : WQ−1] windows in {Q}. Then, the PSD noise mean N0[n f ], the PSD max

250



Nmax[n f ], and the standard deviation σN [n f ] are calculated per each frequency

bin f [n f ]. Finally, a noise mask MN [n f ] of length L/2+ 1 is found as the mean

value plus the standard deviation times an excess factor E%:

MN [n f ] = N0[n f ]+E%σN [n f ] with σN [n f ] =

√√√√∑
WQ−1
i=0

(
Pi[n f ]−N0[n f ]

)2

WQ
.

(5.1)

The desired excess factor is calculated by assigning a maximum percentage

excess threshold ET %, that is, specifying the percentage of frequency bins of the

check set {C} that are allowed to be above the mask level. This solution enables

precise control of the synthesised mask by using a direct specification on the

outliers. A good choice for the excess threshold is a trade-off between filtering

noise and preserving useful signal components that lay very close to the noise

level. A range between 0.5% and 3% is a reasonable choice, being ET % = 1% the

value assumed as default. The determination of the E% by imposing an excess

threshold on the noise check-set differentiates the calculation of the noise mask

from the other noise gating approaches reported above [261],[52]. Note that some

of the recordings used for synthesising the noise mask may be more similar to the

actual noise to filter than others. From this point of view, assessing the mask on a

single noise recording from {Q} can occasionally offer a more accurate synthesis,

but the selection of the best option cannot be controlled. Algorithm 3 reports

the pseudo-code for the synthesis of the noise mask MN given the input noise

recordings {Nrec} and the excess threshold ET %.

Figure 5.8 (top) illustrates an example of mask MN [n f ] with E% = 1.6 obtained

by imposing ET % = 2% (green line). The spectrum ranges from 0 to 24kHz

(sample rate 48kHz). Time windows are 50ms long, giving 1201 frequency bins

f [n f ] including null and Nyquist frequency. Each frame is smoothed with a Hann

function and overlaps the two adjacent windows by 50%. The yellow line reports

the mean noise level N0[n f ], while the red line represents the max noise values

Nmax[n f ]. Finally, the blue line reports the power spectral density of a window that

includes some useful signals. Values in dB are referred to the mean of N0.
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Algorithm 3 Synthesis of the noise mask

Input: {Nrec},ET %

Output: MN ,N0,Nmax

1: {Q},{C}← f rom {Nrec} ▷ Obtain noise sets

2: N0,Nmax,σN ← f rom {Q} ▷ Calculate statistics

3: MN ← N0, k← 0 ▷ Init noise mask

4: while ({C}> MN)% > ET % do ▷ Check excess threshold

5: k← k+1

6: E%← k ∗∆E% ▷ Update excess factor

7: MN ← N0 +E%σN ▷ Update mask

8: end while

9: return (MN ,N0,Nmax)
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Figure 5.8: Filter modelling. Window length 50ms, window overlap 50%. (Top) - Noise filter
mask obtained with E% = 1.6, ET % = 2%. Noise mask MN (green line), noise floor
N0 (yellow line), max noise Nmax (red line). The power spectral density of a window
including a useful signal is represented in blue. Values in dB are referred to the
mean of N0. (Bottom) - Filter implementation using FIR filters of different orders.
Frequency density radius RFD = 100Hz, time density radius RT D = 200ms, frequency
smooth radius RFS = 150Hz, time smooth radius RT S = 125ms.
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5.3.2 Filter synthesis

The filter mask obtained in the previous section is employed to model the actual

noise filter. In [52] the signal PSD is directly compared to the noise mask, gated,

and the resulting boolean mask is frequency and time smoothed. Smoothing the

filter mask in frequency and time undoubtedly attenuates sparse noise components

above the level of the noise mask. The magnitude of this reduction, however, must

be determined as a trade-off between reduction of noise and loss of filter selectivity,

which translates into stronger attenuation of the useful signal and worse attenuation

of the other noise components.

Accounting for this issue, the solution proposed aims to suppress the bins with

random noisy behaviour by identifying the components that appear isolated either

in frequency or in time. This approach provides a double benefit: it directly reduces

the noise in the recordings and allows the synthesis of more selective filters by

relaxing the requirements for time and frequency smoothing. The only drawback

relates to the possibility of processing signals with very short or narrow-band

features, a scenario safely negligible in the context of this work.

Frequency

j

j-1

j-2

j+1

j+2

i

i

Si > MN

FDi > TFDi

TDj > TTDj

Figure 5.9: Filter density masks. (Top) - The PSD of ith window Si is first compared against the
noise mask MN to eliminate the components below the noise floor. Then, the weighted
sum of the frequency neighbours is compared against the frequency density threshold
T FDi. (Bottom) - The time density for the window j is evaluated over multiple
neighbouring windows. Spectral time neighbours are weighted before being compared
against the time density threshold T T D j. Blocked components are represented in red.
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Algorithm 4 Synthesis of the kth filter mask
Input:

Si,S j,MN ,N0,Nmax,

FFFDDD, TTT DDD

T FDmin,T FDmax,T T Dmin,T T Dmax

RFD,RT D,RFS,RT S

Output: |Hk|
1: i← k+RT D +RT S ▷ Index of the new input window

2: αi = [min(Si−MN)10%/10dB]10 ▷ Frequency factor

3: T FDi← T FDmin +αi× (T FDmax−T FDmin) ▷ Update T FDi

4: if Si < Nmax then

5: FDi← 0 ▷ Null mask

6: else

7: FDi← Si > MN ▷ Si thresholding

8: FDi← gaussSum(FDi,RFD)

▷ Frequency neighbours weighted sum of radius RFD for the ith window

9: FDi← FDi > T FDi ▷ FDi thresholding

10: FFFDDD← [FFFDDD(2:end),FDi] ▷ Discard the oldest, save new FDi

11: end if

12: j← k+RT S ▷ Time density mask index

13: β j = [min(S j−MN)10%/10dB]10 ▷ Time factor

14: T T D j← T T Dmin +β j× (T T Dmax−T T Dmin) ▷ Update T T D j

15: T D j← gaussSum(FFFDDD( j−RT D: j+RT D),RT D)

▷ Time neighbours weighted sum of radius RT D for the jth window

16: T D j← T D j > T T D j

17: T D j← T D j×
(

1− MN−mean(MN)
max(MN)−mean(N0)

)
▷ Scale T D j

18: T D j← gaussSmooth(T D j,RFS) ▷ Smooth T D j in frequency with radius RFS

19: T D j← T D j/max(T D j) ▷ Normalise T D j

20: TTT DDD← [TTT DDD(2:end),T D j] ▷ Discard the oldest, save T D j

21: |Hk| ← gaussSmooth(TTT DDD(k−RT S:k+RT S),RT S)

▷ Smooth T Dk in time with radius RT S

22: return |Hk|
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To build the filter mask, a frequency density mask FDi[n f ] is first obtained from

the PSD of the ith window of the input signal Si[n f ] (figure 5.9 - top). FDi[n f ] is

assumed null if all the components of Si are below Nmax[n f ]. In the other cases,

the bins above the noise mask MN [n f ] are initially set to 1. The importance of

the frequency neighbours is weighed using Gaussian windows of radius RFD,

meaning higher weights for closer neighbours. Then, the weighted values of all the

neighbours are summed and divided by the sum of the samples of the Gaussian

window (gaussSum in algorithm 4). Finally, the frequency density mask FDi[n f ]

is obtained by setting to 1 the bins above the frequency density threshold T FDi

and leaving null the rest. This solution discards isolated noisy components and

allows clusters of frequency bins. A similar operation is repeated in time (figure 5.9

- bottom). The last frequency density mask (step i) is buffered in FFFDDD discarding

the oldest. This buffering shift centers FFFDDD around the jth window, and the time

neighbours of the latter can be weighted using a Gaussian function. The time

density mask T D j[n f ] is obtained by setting to 1 only those bins for which the

sum of the weighted time neighbours divided by the sum of the samples of the

Gaussian window of radius RT D is greater than the time density threshold T T D j.

Frequency and time density thresholds T FDi and T T Di are defined in a given

range ([T FDmin,T FDmax][T T Dmin,T T Dmax]) and adapted dynamically, being

higher when the signal level is higher above the noise level. In particular, the

proportionality factors (α and β in algorithm 4) are determined by measuring the

level above the noise floor of the 10% highest samples of Si and S j, the input

signal PSD for the windows i and j respectively.

The T D j[n f ] is then scaled according to the noise floor, making it lower where

the noise floor is higher. Finally, the mask is frequency smoothed by convolution

using a Gaussian window of radius RFS
1 and normalised in the interval [0,1]. The

jth mask processed as above is then saved in TTT DDD, centering the buffer around

the kth window. Finally, the kth mask is smoothed in time to obtain the final

full-resolution filter mask |Hk[n f ]|. The time-smoothing window is Gaussian of

radius RT S. Note that a full-resolution filter mask is generally unnecessary and,

1Gaussian smooth is obtained using the Matlab function smoothdata
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within a certain limit, masks can be down-sampled without affecting the final result.

More considerations about this point are reported in sections 5.3.3 and 5.3.4.

It is remarked that processing the time density mask T D j[n f ] and the final time-

smoothing introduces a temporal shift between a new window Si[n f ] and the output

of a new filter mask |Hk[n f ]|. This delay, which is equal to RT D +RT S, should be

kept low for real-time applications. The key features of the algorithm described are

schematically given by the pseudo-code reported in algorithm 4.

Figure 5.8 (bottom), represents the desired filter |Hk[n f ]| for three different sub-

sampled solutions. The duration of the window is a trade-off between frequency

and time resolution (section 3.2.1.1) [80, p. 89]. As for many sound processing

applications [38, p. 21], a window of 20÷ 60ms provides a good balance. The

frequency density radius RFD applied is 100Hz, the time density radius RT D is

200ms. Gaussian frequency smooth radius RFS and Gaussian time smooth radius

RT S are 150Hz and 125ms, respectively.

5.3.3 Signal filtering

To obtain the filtered signal, it is possible to apply the filter in either the time

or the frequency domain. In the first case, the time-domain input signal is linear

convoluted with the time-domain impulse response of the filter hk[nt ]. In the

frequency domain, each frequency component of the signal is multiplied by the

correspondent component of ĥk[n f ] = Hk[n f ] and the obtained spectrum is anti-

transformed in the time domain. Sainburg [52], for instance, filters in the frequency

domain after smoothing time-adjacent filters using a Gaussian function.

In the filtering process, a relevant issue concerns the introduction of undesired

sound artefacts, that is, the alteration of the samples’ expected value. This

problem relates to both the windowing division and the filtering itself. When the

input signal x[nt ] is split into short overlapping windows xk[nt ] of length L, hop

Q, and smoothing windowing function w, as long as the windowing functions

satisfy the non-zero overlap add (NOLA) condition (∑k φk[nt ] = ∑k φ [nt−kQ] ̸= 0),

regardless the chosen hop, the original signal can be rebuilt from its windows.
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Indeed:

∑
+∞

k=−∞
xk[nt− kQ]

∑
+∞

k=−∞
φ [nt− kQ]

=
∑
+∞

k=−∞
x[nt ]φ [nt− kQ]

∑
+∞

k=−∞
φ [nt− kQ]

= x[nt ]
∑
+∞

k=−∞
φk[nt ]

∑
+∞

k=−∞
φk[nt ]

= x[nt ]. (5.2)

When the windows xk[nt ] are processed using a filter h[nt ], however, summing

the filtered windows and dividing by the sum of the windowing function does not

always return the desired filtered signal, meaning the signal obtained by filtering

directly x[nt ] with h[nt ]. A sufficient condition to obtain a correct reconstruction is:

∑
k

φk[nt ] =C, (5.3)

which is known as constant overlap add (COLA) condition. Besides, since C

is a constant, it can be assumed unitary without loss of generality. To prove the

statement above, it is recalled that, in the time domain, the filtered window yk[nt ]

can be obtained by linear convolution:

yk[nt ] =
+∞

∑
jt=−∞

h[ jt ]xk[nt− jt ]. (5.4)

Summing the filtered windows yields:

+∞

∑
k=−∞

yk[nt− kQ] =
+∞

∑
k=−∞

+∞

∑
jt=−∞

h[ jt ]xk[nt− kQ− jt ] =

+∞

∑
jt=−∞

h[ jt ]
+∞

∑
k=−∞

xk[nt− kQ− jt ] = (5.5)

+∞

∑
jt=−∞

h[ jt ]x[nt− jt ]
+∞

∑
k=−∞

φ [nt− kQ− jt ],

which, if the COLA condition with C = 1 is valid, returns:

y[nt ] =
+∞

∑
jt=−∞

h[ jt ]x[nt− jt ] =
+∞

∑
k=−∞

yk[nt− kQ], (5.6)
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proving that summing the filtered windows returns the exact reconstruction

of the filtered signal. Certain windowing functions, such as the Hann window,

naturally satisfy the COLA condition for a specific overlap value (50% for the

Hann). Although choosing the COLA exact overlap is the best way to preserve

the function properties, the implemented noise filter allows an overlapping range

between 25% and 50% by complementing the windowing function. Figure 5.10

illustrates the alteration of the Hann function aimed to reestablish the COLA

condition for overlap values different from 50%.
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Figure 5.10: Alteration of the Hann windowing function to reestablish
the COLA condition. Overlap: 35%

In a practical implementation, when the (5.4) is calculated using a FIR2 filter

hk[nt ] of order F , the sum can be limited to F +1 terms and, for an input signal of

length L, equation (5.4) returns L+F samples:

yk[nt ] =
F

∑
j=0

hk[ jt ]xk[nt− jt ]. (5.7)

The output sequence exhibits a leading and a trailing interval (both of length

F) where the convolution is calculated over a reduced set of points, and the filter

response appears altered.

2Finite Impulse Response (FIR) filters are digital filters defined by an impulse response with a finite
number of samples. On the contrary, the impulse response of an Infinite Impulse Response (IIR) filter exhibits
an infinite number of non-null samples generated by some kind of feedback mechanism. In this work, only FIR
filters are considered since the masks are obtained as a set of samples of finite length, and the conversion
into FIR filters is immediate. Besides, FIR filters are always stable, and this avoids further complications
during the synthesis.
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Figure 5.11: Linear convolution. (Top) - Input signal (blue). Filtered output by linear convolution
on the entire input signal (grey) and as the superimposition of the filtered windows
W1 and W2 (violet). No artefact appears in the central part of the signal. (Bottom) -
Input and filtered windowed signals. Leading Ri and trailing Ti artefacts are shown
at the edges of the windows.

In figure 5.11, a 130 samples long input signal x[nt ] is divided by two trapezoidal

overlapping COLA windows (W1 and W2) of length L = 80 and filtered using a

FIR filter of order F = 16 (h[nt ] = h1[nt ] = h2[nt ]). In the bottom picture, the

windowed signals are separated and leading (R1) and trailing (T2) artefacts are

clearly distinguishable. Because of the windowing functions, artefacts T1 and R2

appear less pronounced. Since the filters h1[nt ] and h2[nt ] are the same, T1 and

R2 are perfectly complementary, and the resulting overlapped signal is identical

to the one calculated by processing without any windowing division (figure 5.11

top). When different filters are applied to adjacent windows, the artefacts are not

perfectly complementary. From this point of view, increasing similarities between

adjacent filters, as seen in the previous section with the Gaussian time smoothing,

keeps the artefacts low.

When filtering is executed in the frequency domain, the output signal is generally

calculated using the inverse discrete Fourier transform:
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yk[nt ] = F−1
(

ĥk[n f ]x̂k[n f ]
)
. (5.8)

This operation, however, is a modulo-L circular convolution [53, p.20] and, in

general, it returns a sequence of L points that is different from (5.7). Circular

convolution can be considered a linear convolution where the same input sequence

of length L is repeated periodically. In each period L, the trailing tail wraps around

and overlaps the leading tail at the beginning of the window. Hence, the returned

output is correct only if the input signal is truly L periodic. If the circular convolution

is calculated using a FIR filter of order L−1 with L samples, all the points of the

output window are affected by sound artefacts.
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Figure 5.12: Circular convolutions. (Top) - Input signal (blue). Filtered output by circular
convolution on the entire input signal (grey) and as the superimposition of the filtered
windows W1 and W2 (orange). Leading Ri artefacts are shown at the beginning of
the windows. A further small artefact in S2 appears just after the overlapping region.
(Bottom) - Input signal (blue). Filtered output by improved circular convolution
(Matlab filtfilt) on the entire input signal (grey) and as the superimposition
of the filtered windows W1 and W2 (azure). Artefacts appear at the end and at the
beginning of the windows since the signal is here processed in the forward and
backward direction.
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To make the circular convolution equivalent to (5.7), it is necessary to pad the

input signal and the filter impulse response with zeros up to the length L+F .

This allows the trailing tail to develop without wrapping around and returns L+F

samples as for the linear convolution. Therefore, if filtering is performed in the

frequency domain applying 5.8 with a filter of length L, artefacts can be avoided

by padding the input signal xk[nt ] up to the length 2L and increasing the number

of samples of the filters (by anti-transforming in the time domain, padding the

impulse response up to 2L, and transforming back in the frequency domain). This

operation, however, increases the computational cost of filtering in the frequency

domain.

The same example of 5.11 is repeated in figure 5.12 (top), where the windows

are processed by circular convolution. Artefacts can be compared to the desired

time-domain response. As shown in regions R1 and R2, artefacts are limited to the

beginning of the windows (signal is processed only if forward direction), but the

superimposition of the windows does not restore the desired output. Moreover,

since the transient effects of the windowed smoothing function extend beyond

the overlapping region, additional artefacts can appear just after the latter (S2).

As reported by Sadovsky [262] and implemented in Matlab3, circular convolution

artefacts can be reduced by solving a set of equations. The obtained result is

closer to the desired one but requires higher complexity (figure 5.12 bottom).

5.3.4 Filter performance

Filter performance regards different issues. Computational complexity and

filtering quality are analysed in the following subsections.

5.3.4.1 Computational complexity

Regarding the computational complexity, accounting only for the core operations,

processing in the time domain is faster only when the filter order is small compared

3Matlab function filtfilt provides zero phase shift by processing the input data in both forward and
reverse directions and corrects the artefacts at the edges of the filtered window. A phase shift correction is
unnecessary when the filter frequency spectrum is purely real.
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to the size of the window. Assuming the fastest algorithm [263], the computa-

tional complexity order of approximation of the fast Fourier transform (FFT) is

O(Nlog2N) and, for a window, filtering in frequency without artefacts corrections

has complexity:

O f ,L = O
(L

2
+1

)
+O

(
L× log2(L)

)
, (5.9)

where L is the length of the window. The first term accounts for the spectrum

scaling operations, while the second term for the inverse Fourier transform.
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Figure 5.13: Computational complexity. Filtering by inverse Fourier transform (blue line), by
inverse Fourier transform with artefacts correction (red line), and by linear convo-
lution (yellow line). Length of the window L = 4800. Time is normalised against
the execution of the IFFT solution. Improved IFFT remains roughly constant for
filters of low order but tends to increase for higher values. Strong irregularities are
related to the different efficiency of the FFT algorithm for signal chunks of different
lengths. Linear convolution is more efficient than IFFT for F below 70÷80 and
more efficient than the improved IFFT for F below 500÷600. Values are averaged
over 5000 repetitions.
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If the filter is improved including the correction of the artefacts, using a filter of

order F , the equation above becomes:

O f ,F,L =O
(
(F +1)× log2(F +1)

)
+O

(
(L+F)× log2(L+F)

)
+ (5.10)

O
(L+F

2
+1

)
+O

(
(L+F)× log2(L+F)

)
.

The first term accounts for the inverse FFT (IFFT) of the impulse response of the

filter, the second for the FFT of the filter of length L+F , the third for the spectrum

scaling, and the last for the anti-transform of the filtered signal. Equation 5.10

assumes that the FFT of the input signal (L+F samples long) is already available.

When F is small, the equation above is roughly equal to 2× (L+F)log2(L+F).

The analogous relation for filtering in the time domain is:

Ot,F,L = O
(
(F +1)× log2(F +1)

)
+O

(
L× (F +1)

)
(5.11)

where the first term accounts for the calculation of the filter impulse response

and the second term for the convolution.

Figure 5.13 compares the three filtering solutions above for L = 4800. Results

are obtained using a demo application running in Matlab environment and repeat-

ing each step 5000 times. As expected, filtering using the linear convolution (yellow

line) is slower than filtering in the frequency domain (blue line) for F above 70÷80.

However, if the correction of the artefacts is accounted for (red line), filtering by

convolution remains more convenient for F below 500÷600. Therefore, since a

good performance can be obtained with filters of order 150÷300, filtering in the

time domain remains a convenient solution and is the one adopted for the software

implementation. For instance, figure 5.8 reports the filter modelling with filters

of order 11, 119, 299: the latter is very close to the shape of the full resolution

filter. During the filter synthesis, the order of the filter is imposed by decimating

the full-resolution filter mask: the whole spectrum is divided into F +1 intervals,

leaving null and Nyquist frequencies in the non-decimated group of samples. Then,
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the decimated filter is anti-transformed to obtain the impulse response and perform

the linear convolution.

5.3.4.2 Filtering quality

Although it is not possible to provide a unique performance figure for any possible

signal, a special case is analysed to evaluate the filter effectiveness. A bespoke

software utility has been developed for this purpose, and the related block diagram

is represented in figure 5.14.

CLEAN
SIGNAL

PURE
NOISE

NOISY
SIGNAL

FILTER

NOISE
REFERENCE+

S/N OUTS/N IN

SYNTHESIS

Figure 5.14: Block diagram of the proposed software utility for the assessment of the filtering
quality performance. A noisy signal is synthesised by combining a clean signal
and pure noise. Then, the filter is synthesised from the noisy signal and the noise
references. Finally, the clean signal and the pure noise are filtered separately using
the synthesised filter.

To obtain the real signal-to-noise ratio S/N before and after the filter, a 5s artificial

noisy signal is synthesised by combining a pure noise from the soundbank and a

clean signal. The clean signal is obtained by filtering white noise and retaining only

the bands [0.5kHz,1.5kHz] and [4.75kHz,7.25kHz]. The non-null clean signal is

limited between 1 and 4 seconds by imposing a Chebyshev window to keep the

frequency lobes down outside the frequency bands. The desired input signal-to-

noise ratio is obtained by adjusting the amplitude of the clean signal in respect of

the noise level. The pure noise signal selected is not included in the synthesis of

the noise filter mask.

The S/N before the filter is simply calculated as the ratio of the clean signal

energy to the pure noise energy. For the S/N after the filter, both the clean signal
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and the pure noise are processed separately by applying the filter synthesised

using the noisy signal (the synthesis reference) obtained as described above.

S
ig

na
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/N
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)

In
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ca
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r(
dB

)
Filter

Test Id

A
ve

ra
ge

(d
B
)

1 2 3 4 5

SI 5

BG 0

TA 1

BG 0

TO 3

BG 0

SH 4

BG 0

WM 2

BG 0

S
/N

ga
in Liter. ref. 25.329 19.444 25.006 19.769 20.700 22.050

Prop. equiv. 32.824 29.877 25.863 37.400 23.370 29.867

Prop. default 36.053 30.232 30.878 40.340 23.729 32.246

0
dB

S
at

t. Liter. ref. 0.027 0.060 0.059 0.032 0.212 0.078

Prop. equiv. 0.231 0.087 0.159 0.102 0.146 0.145

Prop. default 0.430 0.155 0.316 0.176 0.237 0.263

N
at

t. Liter. ref. 25.356 19.504 25.065 19.801 20.912 22.128

Prop. equiv. 33.055 29.964 26.023 37.502 23.516 30.012

Prop. default 36.484 30.388 31.194 40.516 23.967 32.510

S
/N

ga
in Liter. ref. 24.683 17.456 23.192 19.467 13.390 19.638

Prop. equiv. 30.754 25.491 25.091 39.292 26.557 29.437

Prop. default 37.915 32.515 32.936 41.988 27.256 34.522

−
20

dB

S
at

t. Liter. ref. 0.673 2.048 1.873 0.334 7.522 2.490

Prop. equiv. 0.308 0.274 0.320 0.171 1.175 0.450

Prop. default 0.503 0.414 0.547 0.241 2.035 0.748

N
at

t. Liter. ref. 25.356 19.504 25.065 19.801 20.912 22.128

Prop. equiv. 31.062 25.765 25.411 39.463 27.731 29.886

Prop. default 38.418 32.930 33.483 42.229 29.290 35.270

Table 5.1: Filter performance comparative table. The literature reference is compared against the
proposed equivalent solution and the proposed default solution. Pure noise recordings
are extracted from 5 different instances in the soundbank (Sink 5, Tap 1, Toilet
3, Shower 4, Washing Machine 2). For each instance selected, the first recording
(Background 0) is used as pure noise, while the others are used for synthesising the
noise filter mask. The clean signal is obtained by filtering white noise. S/N values are
calculated using the clean signals and the pure noise before and after the filter. Results
are calculated for 0dB and −20dB input S/N. The attenuation of the noise and the
attenuation of the clean signals are also indicated separately.
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As a consequence of the superimposition principle, the ratio of the energy of the

filtered clean signal to the energy of filtered pure noise is exactly the value sought.

Table 5.1 compares the performance of the filter proposed against the literature

reference [52] for five different noise examples extracted from the soundbank.

Noise recordings are selected from five instances of five different classes. Per

each instance, one recording is used as pure noise, while the others are employed

to synthesise the noise filter mask. The configuration "proposed equivalent" is

obtained by setting the filter parameters as close as possible to the "literature ref-

erence". For instance, the same excess factor (E% = 1.5) and the same Gaussian

smoothing radius (RFS = 250Hz have been used). Filtering is obtained by single

forward convolution. On the contrary, the "proposed default" reports the perfor-

mance using the default configuration assumed in the software library. As shown,

the S/N gain of the proposed solution always outperforms the literature reference

for both the moderate noise case (0dB) and the strong noise case (−20dB).

ET % RFS(Hz) Convolution S/N gain (dB) Signal attenuation (dB)

1%

150
Linear F/B 32.928 0.972

Linear F 31.539 0.614

250
Linear F/B 32.978 1.099

Linear F 31.869 0.691

2%

150
Linear F/B 32.708 0.855

Linear F 29.399 0.532

250
Linear F/B 32.759 0.977

Linear F 29.714 0.604

5%

150
Linear F/B 32.349 0.718

Linear F 26.105 0.438

250
Linear F/B 32.358 0.835

Linear F 25.688 0.506

Table 5.2: Filter performance as a function of some filter parameters. Other settings: windows
length = 50ms, overlap = 50%, F = 199, RFD = 100Hz, RT D = 200ms, and RT S =
0.125ms. Input signal S/N =−20dB.
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On the other hand, the literature reference exhibits slightly better behaviour for

what concerns the attenuation of the clean signal in the 0dB case. This issue,

however, is fairly negligible given the entity of the difference and the fact that the

proposed solution attenuates less clean signal in the case of strong noise, when it

is more important.

Table 5.2 reports the performance for different values of some of the filter param-

eters to understand how their variations affect the S/N gain and the clean signal

attenuation. As reasonable, smoothing the density masks on larger frequency

intervals makes the filter less precise, and part of the useful signal can be lost in

the process. Similarly, reducing the ET % limits the noise, but the higher threshold

also affects the signal attenuation.
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Figure 5.15: Filtering example. Input S/N = 0dB, S/N gain = 30.884dB, clean signal attenua-
tion = 0.326dB. (Top) - Synthetic noisy signal. (Bottom) - Filtered signal.

The convolution technique used can also have a strong impact and, although it

comes with some drawbacks, performing a forward/backward linear convolution4

generally introduces some relevant improvements on the S/N gain. The order of

the filter should be chosen to provide enough resolution to follow the filter mask.
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Resolution higher than necessary does not offer any significant improvement and

increases the computational complexity. Table 5.2 is obtained using the default

setting F = 199 for L = 4800.

Figure 5.15 illustrates a filtering example for a synthetic signal with S/N =

0dB. The filter settings are: 50ms windows, 50% overlap, F = 199, linear for-

ward/backward convolution, ET % = 1%, RFD = 100Hz, RT D = 200ms, RFS =

150Hz and RT S = 0.125ms.

5.4 Synthesis of the observations

Machine learning systems need data to be trained and perform specific tasks

successfully. When the dataset available is not sufficiently large, the probability of

overfitting the training data and underperforming on an unknown test set is high.

When a larger dataset is needed, a possible partial workaround could be extend-

ing what is already available by creating new artificial data. Although synthetic

observations may not always be completely realistic, this method introduces some

interesting benefits. Apart from extending the dataset size, augmenting data by

combining and transforming elementary sound blocks allows accurate control of

the resulting signals. For instance, labels can be assigned precisely, and acoustic

properties, such as signal-to-noise ratio and event overlapping, can be decided be-

forehand. Besides, to obtain more realistic results, additional rules can be adopted

during the synthesis, for example, by creating a kind of language model for the

sound scene simulated [38, p. 161]. Nevertheless, the main drawback is generally

the limited coverage of the soundbank used for the synthesis (see also section

6.3). Several examples of augmented datasets are available online [264],[249]

along with the related software tools [58].

4To perform a forward/backward convolution, the filtering signal is convoluted once in the forward direction.
Then the resulting signal is reversed, convoluted again and reversed back. Computational complexity is
almost equivalent to a filter of double order, and the entire window must be acquired before filtering. However,
apart from offering improved S/N, when the filter exhibits a complex frequency response, this convolution
allows zero-phase filtering, meaning that filtering can be performed without phase distortions. Note that the
filters proposed in this section are purely real and do not introduce phase distortion.
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This section describes how the synthetic observations are generated in this

work. A schematic representation is provided in figure 5.16, which illustrates how

signals are processed along the chain. The Sound Repository is organised in

three main archives: Acoustic Models, Soundbank, Synthetic Datasets. The

first folder stores a set of results for the acoustic model obtained in chapter 4. The

second folder stores the real recordings used as audio sources (see section 5.2).

The last folder collects all the synthetic datasets created, with a new directory

(Synthetic Dataset n) per each new dataset. Finally, every dataset instance is

organised into two further sub-folders: Synthetic Observations and Synthetic

Soundbank. The former stores the final results of the processing chain — the

synthetic observations —, while the latter a copy of the synthetic audio blocks used

for the synthesis (see section 5.2.4). The synthetic audio blocks are divided into

events, disturbances and backgrounds, each having a different role in the output

signal. The following subsections describe the techniques used to synthesise the

observations and the structure of files and folders in the datasets. A description of

the annotations is also provided.
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Alterations Reverb

Synthetic
observation

Sound
blocks

Block
Synthesis

Sound
sources
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processing
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AnnotationsSynthetic
Soundbank
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Figure 5.16: Block diagram of the acoustic synthesiser.
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5.4.1 Semi-synthetic augmented observations

The recordings included in the soundbank can be recombined and transformed

to obtain new semi-synthetic augmented observations organised in datasets

arbitrarily large. A similar approach has already been employed in several contexts,

but the way source signals are transformed and recombined together depends

mainly on application constraints, such as the necessity to preserve harmonic

features or to create meaningful time-structured events. A first possible solution is

the one adopted by Salamon and Bello [265], which consists of pre-transforming

the input audio signals by applying pitch-invariant time stretching, time-invariant

pitch-shifting and dynamic range compression. Implementation details about

these techniques are reported in [266] and [267]. The transformed signals are then

superimposed to create the final synthetic observation. Another solution is the one

employed by Parascandolo et al. [268], where transformations such as sub-frame

time shifting and block mixing are applied on the extracted features in the frequency

domain. A further example is the Equalised Mixture Data Augmentation [269] given

by Takahashi et al., where new instances are obtained by mixing different events

of the same class and by partial alteration of the spectrum.

The approach here used to generate synthetic observations for in-pipe events

employs some of the solutions seen above but introduces elements of novelty

dictated by the specific context. A synthetic observation is generated by combining

a certain number of synthetic event blocks, a certain number of synthetic distur-

bance blocks and a synthetic background. The number of events and the number

of disturbances per observation are obtained by randomly choosing them in the

desired range. To synthesize an event block, a class instance is first selected

from the soundbank. The new event is obtained by selecting a set of random

Event items from the Event Observations folder, slicing them into parts, and

combining a semi-random subset of slices together. When a certain class exhibits

non-homogeneous or structured source observations, the random set includes

only one randomly selected source observation (the option is regulated by the

parameter structured in Classes Attributes.txt). This strategy guarantees

more realistic results when classes include events with complex sound structures
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that are unlikely to recombine properly. A typical sliced source event is represented

in figure 5.17. To preserve the integrity of its structure, the event is sliced into three

parts: onset, regime and offset. This novel approach is motivated by the need to

preserve the transient peculiarities contained at the beginning and at the end of

audio events.

0 5 10 15

-1

-0.5

0

0.5

1 Normalised amplitude 
RMS envelope

Figure 5.17: A sliced event observation (normalised amplitude). The orange line reports the RMS
envelope while the boundaries of the slices are marked with dashed lines of different
colours (red:onset, green:regime, violet:offset). The main interesting part of the
signal is isolated from other undesired sounds and the silent parts of the recording.

Source signals are processed in windows of fixed length (100ms by default),

and the position of the splitters is determined semi-randomly using a mix of time,

amplitude, and energy criteria. A minimum window energy threshold is first used

to identify the beginning and the end of the main part of the signal and to isolate

it from other undesired sounds or from the silent parts of the recordings. The

main section of the signal is then extended to include adjacent sound bits in its

temporal proximity. Once the boundaries have been identified, the other splitters

can be marked. In particular, onset and offset are determined by the application

of thresholds on the total energy, on the amplitude of the envelope, and on the

average energy, along with other conditions on the minimum and on the maximum

length for very long or very short recordings. In case of extra long events, a

randomly positioned regime chunk is extracted between onset and offset. In the

other cases, an overlap region of one window length is left between onset, regime

and offset.

Once the signal chunks have been obtained, an onset and an offset are randomly
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selected to set the beginning and the end of the new synthetic event. Several

regime chunks are then stacked together to obtain a resulting event whose length

is close to the desired one. For smoother joints, the best-joining windows are

determined by comparing both spectrum and average amplitude (a larger weight

accounts for the spectrum similarity). The amplitudes are then adjusted across

the joining region to guarantee a smooth transition (figure 5.18). When only

a single short event observation is selected as a signal source, the resulting

synthetic event will be identical to the original one cleaned of the silent endings

and other undesired sounds: this allows the inclusion of real observations among

the synthetic ones. Once a new synthetic event has been obtained, its length

is tweaked by pitch-invariant time stretching to match the randomly determined

desired length. A random time-invariant pitch-shift is also applied to increase the

variability of the results. The implementation of the time-stretch and the pitch-shift

is the one given by the Matlab functions stretchAudio and shiftPitch, whose

description is reported in [270]. In the last step, the artificial reverberation is applied

as discussed in section 5.5.
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-20
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Figure 5.18: Structure of a synthetic event. The endings are obtained from an onset chunk and an
offset chunk, respectively. The central part of the signal is built by combining and
matching adapted regime slices together.

Once a synthetic event block has been generated, a set of audio files is stored

for reference in the Synthetic Soundbank under the related Synthetic Event

folder. The file synthetic event (no alterations).wav represents the synthetic

event before time-stretch and frequency shift. The file synthetic event (no

reverberation).wav represents the synthetic event before the reverberation (see

272



section 5.5). Finally, the file synthetic event.wav is the sound block used for the

synthetic observation. Along with the audio files, a set of time-domain graphical

representations of each step of the event synthesis is stored under the folder

Pictures (figure 5.19). Moreover, an annotation file annotations.jams is also

generated. Further details are reported in the following section.

Synthetic Dataset n

Synthetic Observations

Synthetic Soundbank
...

Taps
...

Tap k

Synthetic Events
...

Synthetic Event j

Pictures

annotations.jam

synthetic event (no alterations).wav

synthetic event (no reverberation).wav

synthetic event.wav

Figure 5.19: Position of the synthetic events and related files in the synthetic soundbank of the
dataset.

Apart from the events, the other optional signals for synthesising a new obser-

vation are the disturbance blocks and a background block. The disturbances are

randomly selected from the Disturbance Observations folder under the Distur-

bances* class of the Soundbank and processed to isolate the main part of the

signal. Then, time-stretch and pitch-shift alterations are applied along with the

reverberation (section 5.5). As for the synthetic events, each synthesis step is
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saved as an audio file along with the related annotations and graphic time-domain

representations. Each synthetic disturbance is stored in the Synthetic Soundbank

in the folder Synthetic Disturbances under the class Disturbances*. Similarly,

a source background is randomly selected from the folder Background Observa-

tions in Backgrounds* and replicated several times to reach the desired duration.

No further transformation is applied in this case. The generated background is

then stored in the folder Synthetic Backgrounds under the class Backgrounds*.

Sound Repository

Acoustic Models

Soundbank

Datasets

Synthetic Dataset 0

...

Synthetic Dataset n

Synthetic Soundbank

Synthetic Observations
...

Synthetic Observation k

Pictures

annotations.jams

synthetic observation.wav

Figure 5.20: Position of the synthetic observations and related files in dataset.

Once all the required sound blocks have been generated, they can be superim-

posed to generate the synthetic observation. The synthetic background, whose

length matches the duration of synthetic observation, is added first. Then, the

position of events and disturbances is randomly determined. Knowing the position,

it is possible to randomly assign (or to calculate) the scale factor to maintain the

signal-to-noise ratio between the desired minimum and the desired maximum.
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Figure 5.21: Time domain representation of a synthetic observation. The timing of the sound
blocks is marked by the lines underneath.

Completed the task above, the resulting observation is placed under the Syn-

thetic Observations folder of the Sound Repository (figure 5.20). The Pictures

folder contains a time-domain representation of the synthesised observation with

the indication of the position of the audio blocks (figure 5.21). The time-frequency

representation is also generated as a spectrogram (figure 5.22).

Figure 5.22: Power spectral density spectrogram of a synthetic observa-
tion. Measures are reported in dB/Hz ref 1uPa.

To maintain the coherence of the dataset, care must be taken when items in either

the Synthetic Soundbank or the Synthetic Observations folders are modified.

For instance, if a synthetic observation were removed, some synthetic events would

remain in the Synthetic Soundbank without being included in any synthetic output.

Vice-versa, if a sound block were removed, a synthetic observation would exhibit
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missing references to the Synthetic Soundbank. Therefore, to allow modifications

in these folders, the software library developed is equipped with software tools

to remove the desired items while maintaining the content of both the Synthetic

Soundbank and the Synthetic Observations coherent.

5.4.2 Annotations

One of the most common barriers to creating new datasets is producing strong,

reliable annotations. In general, labels should guarantee [38, p.152]:

• representation, that is, a clear description of the classes in a given context,

• non-ambiguity, that is, a clear separation of instances of different classes.

When labels are assigned manually on existing recordings, apart from the human

labour required, marking the exact position of the sound instances and distinguish-

ing between different classes has a subjective component of uncertainty [38, p.157].

On the other hand, reliable and precise annotations are the key to training ma-

chine learning algorithms successfully. One more issue also concerns the way

annotation data are structured and stored. In general, metadata should be easily

machine and human-readable and should allow for the storage of complex struc-

tured information. Simple textual annotation can be accessed easily, but the lack

of structure easily translates into increasing complexity. Alternatively, other formats

proposed, such as XML [271] or RDF [272], may not be easily human readable.

To mitigate the issues mentioned above, apart from defining an unambiguous

set of class names, the assignment of the labels is here executed automatically

and without any human intervention. As seen in the previous section, the sound

blocks are isolated and synthesised from a set of weakly annotated files containing

only one class each. Therefore, during the synthesis, the timing and the class

label of each sound instance are exactly known. Observations metadata are then

stored using Json Annotated Music Specification (JAMS) [154],[273], a format

originally created for music annotation but recently adopted also for several Scene

Event Detection datasets [58],[274]. The JAMS format guarantees good flexibility

to store structured information and, at the same time, human readability as good

as for common JSON files. Annotations are created and stored according to the
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version JAMS-0.2 of the standard. Under this format, it is possible to extend the

list of the possible tasks to be annotated by declaring a new task namespace,

that is, a bespoke partial JSON schema that can be imported into the library and

where the rules for the required task annotations are reported. In general, a task

annotation is composed of a 4-tuple of fields: time, duration, value, confidence.

The definition of a new namespace mainly concerns the rules for the field value,

where bespoke data can be organised and stored.

JAMS file
...

annotations
...

time

duration

namespace: pipeSound
...

entry annotation n
...

time

duration

value
...

class

source class instance

source class observation

source extract time s

source extract duration s

amplitude scale factor

snr dB

Figure 5.23: Structure of the annotation JAMS file for a synthetic observation.
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Here, a new namespace named "pipeSound" is defined to keep track of the steps

necessary to create the synthetic signals. The fields time and duration specify the

beginning and duration of the sound block, while the field confidence is neglected.

Each annotation entry in the field value describes a sound block composing the

synthetic sound. The annotations of a synthetic observation include an annotation

entry per each synthetic event, disturbance, and background composing the sound

signal. Figure 5.23 highlights the main features of the structure of the JAMS file for

a synthetic observation. The fields class, source class instance and source

class observation identify the source of the specific sound block imported.

The fields source extract time s and source extract duration s identify

the sub-part of the source file imported. Note that synthetic sound blocks are

imported entirely into the synthetic observation, so the value extract time is zero

and the extract duration matches the length of the sound block.

The amplitude scale factor stores the multiplication factor used to scale a

sound block during the creation of the synthetic observation, while snr dB stores

the signal-to-noise ratio of a sound block for the correspondent background.

Each sound block used in the synthesis is created along with the related JAMS file.

Although similar, the annotations for sound blocks exhibit a few differences with

respect to those for the synthetic observations described above. When synthetic

events and synthetic disturbances are generated, each stacked chunk is annotated

separately. Besides, further transformations are applied to the whole sound block

to finalise the synthesis. These transformations are annotated as special entries

that appear on top of the list. Figure 5.24 highlights the main features of a JAMS

file for a synthetic event block. The fields time stretch ratio and pitch shift

semitones of the first entry store the alteration factors for time-stretch and pitch-

shift, respectively. Then, a new entry is added per each chunk stacked, and

references to the source are annotated as for synthetic observations. In this case,

however, extract time and extract duration are given by the actual position of

the chunk in the source recording. Finally, details about the field reverberation

are given in the next section.

A similar description can also be given for the annotations related to the synthetic
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backgrounds. However, since backgrounds are synthesised by simply repeating

the chosen signal up to the desired length, the annotation contains only a single

entry.

All the JAMS files are generated using the official Python library [275] which has

been wrapped into Matlab for the purpose.

JAMS file
...

namespace: pipeSound

entry annotation 0
...

time

duration

value
...

time stretch ratio

pitch shift semitones

reverberation
...

entry annotation n
...

time

duration

value
...

class

source class instance

source class observation

source extract time s

source extract duration s

Figure 5.24: Structure of the annotation JAMS file for a synthetic event.
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5.5 Adding reverberation by means of the acoustic model

As seen in chapters 2 and 4, sounds propagating in pipes are affected by the

reverberation introduced by the presence of geometric boundaries. A similar

scenario can be found in other applications where sounds propagate in closed

or semi-closed spaces. Accounting for the reverberated sounds is an important

requirement for applications such as improvement of room acoustics, video games

audio rendering, production of datasets for indoor speech recognition, pipe status

monitoring, and understanding of human sound perception in closed environ-

ments [59],[61],[276]. As shown in section 2.1.1, adding reverberation is generally

performed using either a combination of calculation and real measurements or a

fully simulated approach. In the former case, even not considering other practi-

cal acquisition issues [277], impulse responses depend on both the environment

properties and the position of the source and the receiver [70]. Therefore, despite

being more accurate, collecting impulse responses lacks flexibility when the aim is

simulating a reverberated environment in different conditions.

In this work, a fully simulated approach has been preferred since, despite the lim-

itations, considerable flexibility can be achieved without additional hardware costs

or human labour. The same approach is generally preferred when the simulated

conditions need to be changed in real-time or when there is a need to simulate

the environment under different conditions or for different positions of source and

receiver. For room reverberation, for instance, several solutions (generally based

on image source models) have been proposed along with the related software

libraries [59],[278]. Note that perfect simulations of real environments might be

unfeasible, even with the aid of simulators using fully numerical methods. However,

depending on the application, a simplified representation might be enough to

account for the propagative distortions. Besides, if the simulated setup is simple, it

can be replicated in a real test rig to verify the results.

As seen in chapter 4, the approach used in this work aims to simulate the

reverberation in the simple case of straight elastic pipes where a circular piston

represents the pressure source distribution. This solution provides a fair represen-

280



tation of the in-pipe reverberations and allows for matched measurements from

real test rigs. Moreover, although this point has been left for future developments,

real measurements can be integrated to improve the accuracy, for example, by

acquiring the measured amplitude of the frequency response of the source. When

solving the model, numerical calculations are performed only once and beforehand.

The results are stored under the folder Acoustic Models (figure 5.4) and retrieved

each time a new synthetic observation is to be generated. One simulation archive

is saved per each simulation setup, that is, per each configuration of materials,

geometries and radial position of the source. Numeric results relate mainly to

mode amplitudes and wavenumbers. Results are calculated in frequency steps up

to the chosen frequency limit providing frequency resolution chosen as a trade-off

between accuracy and calculation speed. During the synthesis of the observations,

only the third layer of the model is used. This makes the time required for the

simulated reverberation shorter than the time necessary for the other tasks of the

synthesis.

5.5.1 Simulated impulse response

Recalling section 4.4, the approximated output pressure in a point G for an input

signal x[it ] can be written as:

ˆ̃p[i f ] = x̂[i f ] ˆ̃px[i f ] = (5.12)

x̂[i f ]S[i f ]ρ
2cφ (2π f [i f ])

2
+N

∑
n=−N

+Mn

∑
m=1

Φ̄nm[i f ]Jn(qφnm[i f ]rG)einθGeikznm [i f ]zG.

In the previous equation, rG, θG and zG are the continuous space coordinates of

the output pressure point G, while [i f ] is the index of the discrete frequency vector

f [i f ]. The transfer function S[i f ] is defined according to the input signal x[it ]. Here,

x[it ] is a sequence of pressure values corresponding to a "dry" signal captured as

described in section 5.2. To define S[i f ], it is first defined the function:
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A[i f ] = max
(

ρ
2cφ (2π f [i f ])

2
+N

∑
n=−N

+Mn

∑
m=1

Φ̄nm[i f ]Jn(qφnm[i f ]rG)einθG
)
[i f ], (5.13)

which corresponds to the maximum pressure on the radiating surface scaled by

its velocity v̂[i f ]. S[i f ] is assigned according to the three following criteria:

Model normalised : S[i f ] is constant and assigned as:

S[i f ] =
1

max(A[i f ])
, (5.14)

which means that the velocity v̂[i f ] is chosen so that the input pressure

— at the frequency where the speaker pressure is maximum — matches

the maximum pressure on the speaker. Using this definition, the simulated

impulse response of the speaker is not altered.

Unitary : S[i f ] is chosen as function of the frequency as:

S[i f ] =
1

A[i f ]
. (5.15)

This option alters the model results but assumes that, per each frequency,

the maximum pressure on the speaker surface matches the pressure of the

input signal. This is the option used by default for the synthesis.

Measured : S[i f ] is chosen as:

S[i f ] =
Am[i f ]

A[i f ]
, (5.16)

where Am[i f ] is the dimensionless measured amplitude, which describes the

frequency response of the speaker. This option alters the simulated results

but provides an impulse response more similar to the one associated with

the real pressure source. Since Am[i f ] should be determined experimentally,

this option is included in the software library, but it is not further investigated.
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Once the transfer function has been defined, equation (5.12) can be used to

obtain the pressure in the time domain. To calculate the product above, x̂[i f ]

and ˆ̃px[i f ] must have the same number of samples and be defined in the same

frequency range. Since x̂[i f ] is the input signal, the number of samples is deter-

mined by the related duration and sample rate. Therefore, ˆ̃px[i f ] is resampled by

adapting f , Φ̄nm, qφnm, and kznm. To retrieve the reverberated signal in the time

domain, it is sufficient to perform the inverse fast Fourier transform and select

the real part. When calculating the output pressure away from the source, the

signal energy associated with the evanescent modes does not reach the receiver.

Indeed, a small distance is sufficient to account for the exponential dumping.

5.5.2 Obtaining reverberated signals

When x[it ] is reasonably short, the whole signal can be processed at once (single

window). To limit the artefacts introduced by truncation and circular convolution

and to allow for the reverberation time, the input signal can be padded at its

endings.
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Figure 5.25: Reverberation of a synthetic sound block. Aluminium pipe filled with water, outer
pipe diameter 0.1016m, pipe thickness 0.0016m. Source transfer function: source
model normalised. Reverberation distance 500m. Speaker and receiver in axisym-
metric position.
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Figure 5.25 shows an example of single window processing for a signal of a few

seconds. Since no attenuation is considered, the reverberation distance has been

chosen long enough to highlight the delay and the tail in the reverberated signal.

If the signal is too long or other processing requirements arise (e.g. variable

distance between source and receiver), the reverberation can be processed by

dividing the signal into smaller windows. The technique proposed below is an

adaptation of the overlap-add solution described for the noise filter (section 5.3.3)

and commonly adopted in the literature for STFT signal reconstruction [279],[280].

In typical signal processing involving the STFT, the input signal x[it ] is first sliced

into smaller overlapping chunks of fixed length. Then, a windowing function is

applied to reduce the frequency-domain artefacts that would be associated with a

squared truncation. The aim is to process each window in the frequency domain,

and rebuild the signal back in the time domain (section 5.3.3). When a signal

reverberates, however, a certain time shift is introduced, and the reverberation tail

extends the duration of the output signal towards its end (section 4.4). When the

operator ˆ̃px[i f ] multiplies the windowed signal x̂h[i f ] in the frequency domain, the

circular convolution is calculated.
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Figure 5.26: Multi-window calculation of the reverberated signal. The interval of the extended
window is long enough to cover the effects of the reverberation. Signal window
length 100ms, extended window length 200ms, window function Hann window.
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Therefore, applying the reverberation directly on the windowed input signal would

produce an undesired wrap-around effect in the time domain and, consequently,

invalidate the results. To overcome this issue, the window φ of length Lφ (the

basic window) is extended with zeros (padded) for an integer number k of extra

lengths Lφ . The number k is chosen to allow for the time necessary to extinguish

the reverberated signal. Note that, because of the propagation, the reverberated

signal extinguishes even if no dumping is accounted for.

Figure 5.26 (top) illustrates the multi window processing where a Hann window

φ [it ] of 100ms is extended for extra 100ms. The bottom signal shows how the

reverberation causes the extension in the null area beyond the original window and

how the extended window φ [it ] avoids the wrap-around. The frame h of extended

windowed signal in the time domain can be written as:

xh[it ] = x[it +hH]φ [it ], (5.17)

where h indicates the index of the extended windowed frame, and H is the hop.

As shown in section 5.3.3, if the chosen extended window and the related hop

satisfy the COLA condition (∑h φ h[it ] = ∑h φ [it−hH] = 1), then the reverberated

signal can be rebuilt as the sum of the reverberated windows:

p̃[it ] =
F−1

∑
h=0

F−1(x̂h[i f ] ˆ̃px[i f ]
)
[it−hH]. (5.18)

For the extended window φ [it ] described above, the COLA condition requires

choosing the basic window φ [it ] and the related hop to satisfy the COLA, and the

hop of the extended window equal to the hop of the basic window.

5.5.3 Reverberation annotations

All the relevant reverberation properties used for the simulation are annotated

under the reverberation field of the pipeSound namespace (figure: 5.27). The

fields pipe material, inner liquid, rho liquid (kg/m3), c liquid (m/s), rho

pipe (kg/m3), cl pipe (m/s), cs pipe (m/s) describe the physical properties of

285



the pipe and of the inner liquid. The fields pipe outer diameter (m) and pipe

thickness (m) report the size of the pipe. The field source spectrum amplitude

annotates the source normalisation method as described in section 5.5.1.

JAMS file
...

entry annotation n
...

value
...

reverberation

pipe material

inner liquid

rho liquid kg m3

c liquid m s

rho pipe kg m3

cl pipe m s

cs pipe m s

pipe outer diameter m

pipe thickness m

source spectrum amplitude

reverberation distance m

angle offset deg

source radial position m

output radial position m

delta T start s

delta T end s

Figure 5.27: Reverberation annotations in JAMS files.
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The fields reverberation distance (m) and angle offset (deg) give the rela-

tive distance between source and output point, while source radial position

(m) and output radial position (m) the related radial positions. Finally, the

fields delta T start (s) and delta T end (s) store the delay and the tail extra

time introduced by the reverberated signal with respect to the original one.

The delta T fields are used to improve the accuracy of the annotation in the final

synthetic observation so that the time shift and the distortion introduced by the

reverberation do not affect the timing accuracy of the annotation. Unfortunately,

time shift and tail also depend on the frequency components of the input signal

and, regardless of the other simulation parameters, they cannot be assumed fixed.

To overcome this issue, the initial time shift is found as:

∆Tstart = T (max(corr(x[it ],y[it ]))−T (max(corr(x[it ],x[it ]))) (5.19)

that is, by assessing the time difference between the maximum of the cross-

correlation between the input and the output signal and the maximum of the

auto-correlation of the input signal. On the other hand, the extra time introduced

by the tail is evaluated by comparing the time necessary to reach the 90% of the

signal energy for both the input and the output signal.

Note that the reverberation is randomly added only to synthetic events and

synthetic disturbances, and the reverberation annotation appears only in the

related JAMS files. In these annotations, the duration of events or disturbances

differs from the related source audio blocks by a time given by delta T end. Then,

delta T start is used during the synthesis of the observation to mark the exact

beginning of the audio instance.

5.5.4 Limitations and benefits of the simulated approach

Adding reverberations to the signals of the dataset is undoubtedly helpful in

accounting for in-pipes propagative effects. However, although the implemented

model embeds some advanced features, it remains an extreme simplification of

what can be found in reality. Although the acoustic mechanism underlying the

287



reverberation is the same, the final audio signal is affected by other factors, such

as real geometries, real materials, obstacles, temperature, viscosity, and many

others. For instance, the effects of attenuation have been completely neglected,

and this issue certainly affects the modal components of the received signals

[89]. Obviously, it is possible to improve the model, for example, by account-

ing for sound scattering from obstacles or by introducing more realistic sound

sources as described in section 2.1.1. On the other hand, however, additional

complications would increase the computational costs and are also likely to make

matching with a real test rig more difficult. An interesting point to investigate might

be understanding how a more accurate model would improve the accuracy of

the machine learning algorithms trained using the dataset obtained. Finally, a

heuristic approach (e.g. recording impulse responses) certainly provides a better

representation of the sound scene but reduces the flexibility and increases the

requirements for hardware and human labour.

5.6 Summary

This chapter describes the proposed methodology for creating an arbitrary num-

ber of semi-random augmented synthetic observations starting from a relatively

small collection of source recordings. Firstly, the procedure followed for the acquisi-

tion of the soundbank is explained. The acquisition chain is analysed to clarify the

motivations behind the hardware devices employed. It is shown how the human

tasks required to gather the metadata are minimised and reduced to the storage

of audio files in the related class/instance folders. A statistical spectral filter to

attenuate the background noise is proposed to enhance the quality of the audio

blocks and improve the accuracy of the audio synthesis. Two novel algorithms are

described for the creation of noise masks and time/frequency density masks. The

pros and cons of filtering in the time and frequency domain are analysed along with

the conditions required for proper signal reconstruction. A bespoke methodology

is proposed to measure the filter performance regarding computational complexity

and filtering quality. For the latter, the signal-to-noise ratio for both moderate and

high noise levels indicates a clear improvement of several decibels against the
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closest example in the literature. The diagram of the novel audio synthesiser

is illustrated and discussed. The recombination and the synthesis of the audio

blocks, and the strategy adopted to control properties such as signal-to-noise ratio,

duration, and the number of overlapping events are explained. The acoustic model

developed in chapter 2 and 4 is integrated to simulate in-pipe reverberation. A so-

lution to perform the related calculations in short windows is proposed. Finally, the

annotations, the proposed extension of the .JAMS format, and the strategy adopted

to keep track of the synthesised source blocks are described. The limitations of

the approach adopted are also briefly discussed.
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Chapter 6

Dataset and event classification

In the previous sections, it has been shown how to turn a collection of sounds

into hard-labelled synthetic augmented observations. The reverberation effects

have also been included to simulate sound propagation in an in-pipe environment.

The last part of this work aims to analyse the recordings to automatically clas-

sify the acoustic events by means of some machine learning techniques. The

concepts introduced in chapter 3 are here recalled, applied to the new datasets,

and extended to improve the performance. In the first part of the chapter, data

are synthesised, extracted, and organised for machine learning tasks. Then, the

adopted processing chain is introduced along with the signal representations and

the reference classifiers employed. The performances of the feature solutions

developed are compared and reported as a benchmark for future developments.

6.1 Dataset synthesis and partitions

When machine learning techniques are tested against a specific dataset, it is

usually necessary to partition the recordings in at least a training set and a test

set. The former is used to train the algorithms that perform a specific task, while

the latter is used to assess the performance. To obtain a reliable evaluation, it is

important to keep the test and the training set separate. Indeed, if some recordings

are shared between the test and training sets, overfitting can be easily confused
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with the ability to generalise to unknown observations. Besides, as shown in

chapter 3, it is desirable to perform training and test operations on datasets where

the different classes are sufficiently represented and balanced.

Instance A1

SOUNDBANK
Cl

as
s 

A

Instance A2

DATASET PARTITIONS

o2

o3

o4

o5

o6

o7

o8

SI
N

G
LE

 F
O

LD
M

U
LT

IP
LE

 F
O

LD
S

Te
st

Tr
ai

ni
ngInstance B1

Cl
as

s 
B

Instance B2 o9

Te
st

Tr
ai

ni
ng

o1

o10

o11

o1

o3

o5

o6

o10

o11

o2

o4

o8

o2

o3

o1

o7

o5

o8

o10

o11

Figure 6.1: Dataset synthesis and partitioning. The single-instance foldable synthesis guarantees
that instances are evenly distributed in the synthesised dataset. Single-fold partitions
are obtained by dividing the source observations in the soundbank in training (orange,
yellow, violet, black) and test (red, green, blue, azure) observations. Multiple folds
partitions are obtained by dividing the source instances in training (A1, B1) and test
(A2, B2) instances. In different folds, instances are included (in turn) either for testing
or for training purposes. Synthetic observations where test and training source blocks
are mixed up are not included in the partitions.

To guarantee the properties above for a synthetic dataset, further considerations

are required. Generally, a class is assumed to be adequately represented when a

sufficiently large number of examples are given. For a synthetic dataset, however,

although the number of examples can be arbitrarily expanded, the related ability to

represent a specific class is, to some extent, limited by the number of underlying

source observations in the soundbank. Besides, defining the training set and the

test set by simply dividing the synthetic dataset into two non-overlapping groups
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of synthetic observations might lead to unreliable overfitted performances. For

example, two different synthetic observations (e.g. Synthetic Observation 0 and

Synthetic Observation 1) can share the same source instances (e.g. Tap 1)

and even part of the same source observations (e.g. Event 3). Therefore, to

operate a useful partition of the synthetic dataset, it is necessary to understand

how to manage the partition of the underlying source blocks.

6.1.1 Single instance foldable synthesis

To be effective, the solutions proposed for the partition of the dataset rely on a

synthesis strategy here called single-instance foldable synthesis (figure 6.1).

To optimise the usage of the data available, a common method adopted consists

of creating different folds of the same dataset (cross-validation) [281],[282]. In

different folds, the same observation can be used, in turn, either for training or

testing purposes. If properly implemented, this allows training and testing over

the whole dataset while limiting possible overfitting issues. Although this solution

can be helpful in the case of small datasets, it is important to understand how

partitions are defined to reliably characterise the performance [283],[284]. From

this point of view, tuning a synthetic dataset can facilitate the partitioning process.

Indeed, instances that are under-represented in the soundbank can be rebalanced

to be adequately separated at the instance or at the event level. A balanced

representation is also beneficial in the case of single-fold partitions since the

separation can be directly obtained without specific concerns about the size of

particular instances.

With the single-instance foldable synthesis, the dataset is synthesised while

ensuring that each instance of each class is evenly represented in the dataset

(figure 6.1). For single-class synthetic observations, this strategy allows the

creation of non-overlapping partitions obtainable even from randomly picked class

instances. Note that, since the soundbank is usually unbalanced, synthesising the

observations as described above generates skewed datasets, meaning that some

classes will be associated with more observations than others. This issue, however,

can be fixed as shown in the next sections. Table 6.1 reports the composition of the
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soundbank used in this work. Figure 6.2 illustrates the summary of a single-class

(plus background) dataset generated by single-instance foldable synthesis from

the soundbank of table 6.1.

Class

Instance
0 1 2 3 4 5 6 7 8 9 10

Backgrounds 459

Disturbances 84

Dish Washers 2 2 2 2 - - - - - - -

Showers 2 11 13 17 11 10 15 - - - -

Sinks 6 7 3 2 2 9 10 12 10 11 10

Taps 12 12 9 9 8 9 10 9 9 11 10

Toilets 5 8 3 10 10 10 12 - - - -

Washing Machines 40 17 18 47 18 23 - - - - -

Table 6.1: Composition of the soundbank. Some classes are better represented than others making
the source archive unbalanced. Backgrounds and disturbances are acquired along with
the other classes but joined all together as unique instances.

DW0 S0 S0 T0 T0 WM0

DW1 S1 S1 T1 T1 WM1

DW2 S2 S2 T2 T2 WM2

DW3 S3 S3 T3 T3 WM3

S4 S4 T4 T4 WM4

S5 S5 T5 T5 WM5

S6 S6 T6 T6

S7 T7

S8 T8

S9 T9

S10 T10

Figure 6.2: Summary of a dataset of 2000 single-class synthetic observations generated with
single-instance foldable synthesis. No disturbance is included. The dataset imbalance
reflects the imbalance of the soundbank since each instance is evenly represented in
the dataset.
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6.1.2 Dataset partitioning

Once the dataset has been generated, it is possible to create the partitions

by analysing the source blocks associated with each observation. In this work,

partitions are created in single or multiple folds as described below.

The single-fold approach (figure 6.1) is similar to a simple test/training split [283].

In this case, however, the dataset is not partitioned by simply dividing the syn-

thetic observations into test and train sets. Indeed, this solution would potentially

gather synthetic observations whose source blocks share part of the same source

audio recordings between both the training and test set. Instead, the synthetic

observations are first analysed to check the source items included. Then, the

included source recordings (events and disturbances) are divided into the desired

proportion to represent each instance in both the training and the test set. Finally,

the synthetic observations are assigned to either the test or the training set to

achieve disjoint source items. Note that synthetic observations including source

blocks obtained from source events or disturbances belonging to both the training

and the test sets will be excluded from the partitions.

DW0

S0
T0

WM0

DW1

S1
S1

WM1

DW2

T2

WM2

DW3

S3

WM3

S4

S4

T4

WM4

S5

WM5

S6

S7

T9

S10

Figure 6.3: Unbalanced single-fold test partition for the dataset reported in figure 6.2. Desired
percentage test split = 25%. The number of synthetic events included also depends
on the number of source events per instance in the soundbank and on the number of
synthetic observations excluded due to the inclusion of both test and training source
recordings.
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Figure 6.4: Unbalanced single-fold training partition for the dataset reported in figure 6.2. De-
sired percentage training split = 75%. All the instances are represented in the training
set.

Since the dataset is unbalanced, the generated partitions will also be unbalanced.

The balance, however, can be reestablished by randomly picking the same number

of observations per class. Compared to a traditional test/training split, this solution

guarantees disjoint source audio items and the presence of all the instances in the

two partitions. Note that, although having the same instances in both the train and

test set increases the representation of the classes in the partitions, this solution

might penalise the reliability of the performance since source blocks belonging

to the same sound source (e.g. Tap 0) can be used for both training and testing

purposes. Figures 6.3 and 6.4 represent an example of unbalanced partitions for

the dataset of figure 6.2.

The multiple-folds approach (figure 6.1) is similar to nested cross-validation [283],

which generally provides better reliability over other forms of multi-fold cross-

validation [285]. However, similarly to the single-fold case, the partitions are

obtained by randomly separating, in a chosen proportion, the source instances

in training and test source instances. The number of folds is chosen to make the

test partitions cover the whole dataset. For instance, if the desired test proportion

is 25%, the corresponding number of folds will be 4. Depending on the number

of folds, some instances might overlap in the first and in the last folds (remaining
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always disjoint between the test and training set). By considering the partitions of

all the folds together, it is possible to account for all the instances in the dataset

while always having disjoint audio sources in the test and the training set. Similarly

to the previous case, multi-class (or multi-instance) synthetic observations that

include both training and test instances are not included in the partitions.

T0
S1

WM1

DW2

S3

S4

WM4S6

T6

T6

T8

S9 T9

Figure 6.5: Balanced 4-folds test partition for the dataset reported in figure 6.2. Fold 1/4. Test
desired percentage split = 25%. The instances included in the test set are not included
in the train set and vice-versa, that is, the test and the training set include disjoint
audio sources.
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Figure 6.6: Balanced 4-folds training partition for the dataset reported in figure 6.2. Fold 1/4.
Training desired percentage split = 75%.
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Therefore, the set of observations included can be different between two different

folds. No observation is discarded when the dataset is synthesised with a single

instance per observation. Note that, when disturbances are accounted for in

the creation of the partitions, since no instance is defined for them, they are

divided by the related source observations as in the single-fold case. Finally,

note that the created partitions are generally imbalanced, but the balance can be

reestablished by randomly selecting the same number of synthetic observations

per class. Figures 6.5 and 6.6 show the balanced multi-fold partitions for the fold

1/4 of the dataset reported in figure 6.2.

6.2 Single class discrimination

In this section, the concepts introduced in chapter 3 are recalled and applied to

understand how different signal representations perform with respect to classifica-

tion tasks related to the previously generated data.

A
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Figure 6.7: Processing chain for single class discrimination. First, the partitioned synthetic
observations (A) are organised in balanced collections of examples (B). Then, (C),
the time domain signals are represented using one among STFT, MFCC and WST.
The obtained representations are transformed/reduced in a set of features (D) which
are employed to feed either the KNN or the SVM classifier (E). Finally, step (F), the
performance is assessed using F-score, error rate and accuracy.
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Figure 6.7 provides a schematic representation of the processing chain adopted.

First, the partitions obtained according to the previous section, either in single

or multiple folds, are processed to extract collections of examples. Then, each

example is represented using one of the techniques introduced in section 3.2, that

is, one among short-time Fourier transform, mel frequency cepstral coefficients

and wavelet scattering transform. The extracted representations are optionally

reduced and/or transformed to obtain a solution for the acoustic features required

for the classification task. For instance, the principal component analysis or its

kernel version (section 3.3) are employed for the purpose. The features obtained

are then used to feed the classifier, either a k-nearest neighbours (section 3.4.1)

or a support vector machine (section 3.4.2). Finally, the performance is assessed

by calculating the error rate, the accuracy and the F-score (section 3.5). When

relevant, a confusion matrix is also reported. All the results can be replicated with

the associated software library developed.

It is remarked that the purpose of the analysis proposed here is to understand

how to preserve the information of the audio in-pipe events when the signals are

converted into acoustic features for classification purposes. Accounting for the

issues discussed in section 3.2.1, we aim to compare a few possible solutions for

feature extraction and also to provide a reference baseline for further developments

on the same or other pipe-related datasets.

6.2.1 Data extraction and transformation chain

The analysis performed in this section aims to distinguish a class from the others

in the same dataset. The input data are just short audio chunks extracted from

the synthetic observations at points where the annotations indicate the presence

of single classes. Disturbances are not included, and the background noise in

the extracted chunks is not considered an additional class. In section 6.1, it has

been shown how the synthesised dataset can be divided into balanced partitions

where synthetic observations are separated guaranteeing non-overlapping source

instances (multi-folds) or non-overlapping source observations (single-fold) be-

tween training and test set. The separated sets are further processed to obtain
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the chunks required. Figure 6.8 illustrates the process implemented and the other

data organisation steps described below.
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Figure 6.8: Data extraction and transformation chain. The synthetic observations in the partitions
are analysed to find the intervals where the classes are located. A number of pools
of examples are then extracted from each interval and gathered in a collection of
pools of examples. A collection includes a training set and a test set per each fold of
the dataset. Examples in a pool can be used for feature extraction either directly or
pre-shingled. The pools of features obtained can be used directly for classification or
further operations, such as reduction, averaging and shingling, can be applied.

The duration of the atomic examples, (e.g. 25ms, 50ms, 100ms) is defined

together with the number of examples per pool. A pool of examples is a set of N

atomic examples of length L chosen to be either simply consecutive or overlapping

for 50% of their length. A simple unitary step windowing function is applied at this

stage. Each homogeneous interval found in a synthetic observation is processed

to extract the desired number of non-overlapping pools or by tiling for the whole

duration of the interval. If the partitions are balanced and with only one class

per synthetic observation, a small number of short pools per observation can be

extracted while leaving the resulting collection of examples still balanced. On the

other hand, when the balance is lost in the extraction process, it can be reimposed

with a random final selection that provides the same number of pools per class.

The examples in the extracted pools can be employed directly for future extraction

(unprocessed) or further organised. In particular, a new single example can be
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obtained by chaining together the examples in a pool (pre-shingling). Note that,

when a pool is composed of an odd number of windows overlapping for 50% of

their length, the exact original source signal of the pool can be rebuilt by skipping

a window per each one chained starting from the first. Table 6.2 summarises the

collections of examples used for classification purposes in the following sections.
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CA0 1 10 3 1 - 282 60 1692 360

CA1 1 25 3 1 - 282 60 1692 360

CA2 1 50 3 1 - 282 60 1692 360

CA3 1 100 3 1 - 282 60 1692 360

CA4 1 250 3 1 - 282 60 1692 360

CA5 1 500 3 1 - 282 60 1692 360

CA6 1 1000 3 1 - 282 60 1692 360

CB0 1 50 3 19 50 282 60 1692 360

CB1 1 50 3 19 50 282 60 1692 360

CB2 1 50 3 19 50 282 60 1692 360

CB3 1 50 3 19 50 282 60 1692 360

CC0 4 500 3 1 - 390÷393 129÷132 2340÷2358 774÷792

Table 6.2: Summary of the collections of examples used for classification. All the collections are
extracted from the same dataset of 2000 synthetic observations reported in figure 6.2.
Signal sample rate = 48kHz.

From the pools of examples, unprocessed or shingled, the same number of pools

of features are then extracted. In the unprocessed case, the pools of features

obtained can be further transformed before classification. Pool-level operations can

offer some benefits. For instance, pool-averaged features can reduce the effect of

the noise, while shingling a pool of features in a single example potentially provides
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a better description of longer sound structures. Further feature optimisations can

be obtained in combination with reduction techniques described in section 3.3.

6.2.2 Performance of the STFT

For the first analysis performed, the features are obtained using the short-time

Fourier transform. Although it is unfeasible to run full comprehensive multivariate

optimisations for every parameter of the processing chain, meaningful tests can be

performed to gain some understanding of convenient strategies for the extraction

of the features. In particular, the STFT allows some useful insights into feature

scaling and feature dimensionality.
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Collection/bins

CA0 CA1 CA2 CA3 CA4 CA5 CA6

241 601 1201 2401 6001 12001 24001

F-
sc

or
e

K
N

N

0.353 0.397 0.472 0.503 0.592 0.564 0.553

✓ 0.542 0.494 0.517 0.581 0.569 0.564 0.603

✓ 0.372 0.389 0.453 0.489 0.55 0.564 0.564

✓ ✓ 0.544 0.475 0.533 0.575 0.583 0.558 0.583

S
V

M

0.458 0.458 0.497 0.517 0.539 0.536 0.528

✓ 0.572 0.575 0.672 0.722 0.711 0.736 0.767

✓ 0.414 0.372 0.436 0.503 0.522 0.536 0.544

✓ ✓ 0.556 0.544 0.611 0.644 0.681 0.731 0.775

Table 6.3: Average F-score performance of a 19-NN euclidean classifier and of a linear SVM
classifier for windows of different lengths. The source collections (table 6.2) and the
number of frequency bins of the STFT are reported on top. Total training pools = 1692,
total test pools = 360. Performance is evaluated for simple STFT, for STFT log-scaled,
STFT PCA-reduced and STFT log-scaled and PCA-reduced. Log-scaling is calculated
as log(1+ |x̂[i f ]|). The linear PCA is calculated by retaining 98% of the variance.
When log-scaling is applied together with PCA, the former is calculated first.

Table 6.3 reports the average STFT performance for the collections CA0, ...,CA6

of table 6.2. The F-score is calculated using a Euclidean 19-NN classifier and a

linear SVM classifier.
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The first line of each classifier reports the results obtained when the modulus

of the STFT is used directly as feature set. Although a clear dependence on the

length of the windows appears, the overall performance is quite poor for both KNN

and SVM. Besides, given the large number of features used, this solution appears

very inefficient. This poor performance certainly has more than one underlying

reason. For instance, as mentioned in section 3.4.1, the curse of dimensionality

generally entails worse performance for features carrying the same information

in higher dimensions and, as pointed out by Vabalas [283], increasing the ratio

between the number of features and the number of training examples generally

makes the trained machine less accurate. Besides, as pointed out in section

3.2.1.3, the STFT does not provide very stable representations, especially for

high-frequency components. One more issue (section 3.4.1) is related to the

relative numeric magnitude of the features. Indeed, having subsets of feature

values much bigger than others makes the latter irrelevant for classification, even

when they carry important discriminative information.

6.2.2.1 Feature scaling

The last problem mentioned above can be tackled by non-linear feature scaling,

that is, by compressing the largest values and magnifying the smallest. A simple

and effective solution consists of using a logarithmic scale law, such as:

ŷ[i f ] = log(1+ |x̂[i f ]|) (6.1)

where x̂ is the STFT. Adding 1 keeps the features always positive as for the

modulus. The second line of both classifiers in table 6.3 shows the remarkable

benefit achieved by applying this simple transformation. The benefit of using

scaled features for audio processing seems to be recognised in the literature

offering performance enhancement in applications such as speech [286] and music

processing [287]. Log scaling is also an important component of bio-inspired

features, and it is also adopted for MFCC and WST [79].

Note that a similar improvement can be obtained by applying alternative scaling
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operations at the classifier level. For instance, if the Euclidean metric in the KNN

classifier is replaced by the cosine similarity :

d(xxx,yyy) = 1− xxxT yyy
∥xxx∥2∥yyy∥2

= 1− ∑
N
i=1 xiyi√

∑
N
i=1 x2

i

√
∑

N
i=1 y2

i

, (6.2)

all the "distances" are normalised in the interval [0,1], obtaining a scaling effect

as for the log transformation.

Table 6.4 reports a comparison between the performances obtained by scaling

at feature and classifier level for a KNN classifier. Note how applying a scaling

operation at both the classifier and the feature level does not provide any further

improvement and the performance remains similar to the one obtained by scaling

only at the feature level.

In
di

ca
to

r

C
la

ss
ifi

er Scale Collection

F C CA0 CA1 CA2 CA3 CA4 CA5 CA6

F-
sc

or
e

K
N

N

0.353 0.397 0.472 0.503 0.592 0.564 0.553

✓ 0.542 0.494 0.517 0.581 0.569 0.564 0.603

✓ 0.497 0.483 0.550 0.636 0.636 0.675 0.700

✓ ✓ 0.575 0.531 0.525 0.575 0.536 0.561 0.569

Table 6.4: Average F-score performance of a 19-NN classifier for different scaling solutions. Total
training pools = 1692, total test pools = 360. The feature scaling (F) is obtained using
equation (6.1) to scale the modulus, while classifier scaling (C) is obtained using
equation (6.2) for the distance.

6.2.2.2 Dimensionality reduction

The other main issue concerns dimensionality and efficiency of the representa-

tion. Table 6.3 shows that the performance increases with the length of the window,

but, for instance, a set of features associated with any example of CA6 contains as

many as 24001 variables.

In section 3.3.1, it has been shown how PCA can be used to reduce the dimen-
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sionality by selecting only the principal components that carry most of the variance.

Table 6.3 (third line KNN/SVM) reports the values of the performance for features

reduced by retaining 98% of the variance. A comparison against the first line of

the same table, however, reveals that no relevant benefit is gained in terms of

performance. This is caused again by the unbalance in the magnitude of the STFT

modulus. Indeed, when the STFT feeds the PCA directly, even removing only

2% of the variance yields a great reduction of the dimensionality of the features

(greater than 99.5% for CA6, table 6.5). This substantial reduction indicates that

PCA discards most of the low-magnitude variables and the related information

associated. Consequently, all the benefit gained in terms of dimensionality reduc-

tion is lost because of the loss of information. Similarly to the previous section, an

improvement in the performance can be obtained by applying PCA after log-scaling

the STFT. Table 6.3 (fourth line KNN/SVM) reports the performances for this case

and shows how the dimensionality reduction can be achieved without losing the

benefit associated with the non-linear scaling. For an optimal solution, however, it

is important to determine the right number of retained components by assessing

the trade-off between loss of information and reduced dimensionality.

P
C

A

Lo
g Collection

CA0 CA1 CA2 CA3 CA4 CA5 CA6

Fe
at

ur
es 241 601 1201 2401 6001 12001 24001

✓ 18 23 39 56 74 93 103

✓ ✓ 72 175 314 526 776 945 1038

Table 6.5: Number of features before and after PCA reduction retaining 98% of the variance. The
log case is calculated by applying the scaling before calculating PCA.

Figures 6.9 illustrate, for both classifiers, the variation of the F-score as a function

of the number of principal components retained. In all the cases, the performance

reaches its maximum value for no more than 100 principal components and either

remains stable or decays afterwards. At their peak, the log-PCA features slightly

outperform the full log representation showing that a compact set of features can

greatly improve the efficiency without compromising the associated information.
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Figure 6.9: Average F-score performance of the log-STFT as a function of the number of linear
principal components retained. Collections CA0, ...,CA6. Total training pools = 1692,
total test pools = 360. A) Euclidean 19-NN classifier. B) Linear SVM.

Regarding the stability issue of the STFT mentioned above, it is important to

remark that PCA does not offer any benefit. A simple alternative - to reduce the

number of features and, at the same time, to attenuate potential instabilities -

consists of grouping and averaging the log frequency components in frequency

bins. Each bin, except the last one, is obtained with an equal number of consec-

utive frequency components. This approach, despite being very simple, has the

advantage of being more robust to high-frequency deformations, as discussed

in 3.2.1.3. Nevertheless, especially for a low number of bins, it penalises the

information contained in the lower part of the spectrum.
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Figure 6.10: Average F-score performance of the log-STFT with frequency components grouped
and averaged in frequency bins of equal lengths. Performance values are reported
as a function of the number of bins. Collections CA0, ...,CA6. Total training pools =
1692, total test pools = 360. A) Euclidean 19-NN classifier. B) Linear SVM.
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The resulting F-score as a function of the number of bins is reported in figure

6.10. Note that the curves saturate quickly and choosing no more than 100 bins

yields just slightly worse results than more detailed solutions. The upper limit is

given by the case reported in table 6.3 (second line KKN/SVM), which shows how

the performances deteriorate when the number of bins grows too much. Note that

the log-STFT grouping and log-STFT PCA return similar values, being the former

slightly better for 250÷300 bins and slightly worse for 100÷150 bins. It is here

remarked that, because of the equal size of the bins, the best grouping solution

is determined as a trade-off between increased deformation stability and loss of

low-frequency information.

6.2.2.3 Detailed performance of the STFT

This section briefly reports the performance per each class of the dataset when

features are extracted using the STFT.
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DW SH SI TA TO WM

C
B

0,
C

B
1,

C
B

2,
C

B
3

K
N

N

Err 0.369 0.567 0.433 0.192 0.383 0.125 0.513

Acc 0.877 0.878 0.844 0.845 0.869 0.954 0.872

Fsc 0.631 0.695 0.519 0.358 0.605 0.860 0.658

S
V

M

Err 0.282 0.321 0.208 0.275 0.288 0.150 0.450

Acc 0.906 0.924 0.907 0.865 0.901 0.950 0.889

Fsc 0.718 0.793 0.698 0.534 0.699 0.850 0.702

Table 6.6: Averaged performance indicators for the collections CB0, ...,CB3. Total training pools
per collection = 1692, total test pools per collection = 360. Features are extracted by
grouping and averaging the log-STFT components in 200 bins of equal length. Pools
are pre-shingled in windows of 500ms.

Table 6.6 provides the indicator values averaged over the collections CB0, ...,CB3

of table 6.2. Pools are pre-shingled to return examples of 500ms. This specific

length is chosen since, from figures 6.10, SVM seems to provide better perfor-
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mances than KNN and results for longer 1s windows are almost identical. The

features are calculated by log-scaling the STFT and grouping the frequency com-

ponents in 200 equal bins. The distance for KNN is calculated using the cosine

similarity, since, despite the log-scaling applied to the STFT, it offers slightly better

results than Euclidean metric. Figures 6.11 report the confusion matrices extracted

from the classification of collection CB0.

(A) KNN
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(B) SVM
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Figure 6.11: Confusion matrix for the examples of collection CB0. Total training pools = 1692,
total test pools = 360. Features are extracted by grouping and averaging the log-STFT components
in 200 bins of equal length. Pools are pre-shingled in windows of 500ms. A) Cosine 19-NN classifier.
B) Linear SVM classifier.

6.2.3 Performance of the MFCC

The second representation option analysed is based on the mel cepstral fre-

quency coefficients described in section 3.2.2. For STFT, it has been shown how

grouping frequency components in bins provides benefits to the performance. This

transformation can be seen as a simple solution to obtain a stabler representation

as discussed in section 3.2.1. Accounting for the differences, the filter bank used

to calculate the MFCC delivers a similar operation. Because of the way the filter

bank is built, however, lower frequency components are represented with higher

resolution, while larger bins at higher frequencies make the representation more

stable. Besides, the MFCC simulate the non-linearity of the auditory system by
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taking the log of the averaged energies (section 3.2.2), thus implementing the

feature scaling as seen for the STFT (section 6.2.2.1). In this section, we aim to

optimise the MFCC representation to improve the performance of classification

tasks on the proposed dataset.

6.2.3.1 Frequency range, number of filters, length of the window

Before attempting to find an optimal filter bank, a first test is performed to

understand if the inspected spectra can be shrunk. Figures 6.12 report the

performance of a linear SVM classifier for different values of the lowest and of

the highest frequency boundaries of a 50-filters filter bank. The collections of

examples used are CA0, ...,CA6 from table 6.2. The minimum and the maximum

boundaries are chosen by dividing the whole frequency range 0−24kHz in 150

steps of equal mel length, according to equation (3.26) with f0 = 1000Hz.
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Figure 6.12: Effects of the variation of the minimum and the maximum boundary frequencies for a
50-filters MFCC filter bank. Performances are obtained using a linear SVM classifier
for different lengths of the windows. Boundary steps are obtained by dividing the
mel scale into 150 equal intervals. Dashed lines report the normalised averaged
energy captured over the whole training set. Examples collections: CA0, ...,CA6 from
table 6.2. Total training pools = 1692, total test pools = 360. A) Performance for
different values of the minimum boundary frequency. B) Performance for different
values of the maximum boundary frequency.

Figure 6.12A reports the average performance as a function of the lowest

frequency boundary. The dashed line reports the normalised energy captured

by the filter bank averaged over the whole training partition. Clearly, the lowest

frequency components represent a relevant part of the signal energy, and the
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performance diminishes roughly linearly when the lower boundary is moved toward

higher frequencies. On the contrary, figure 6.12B shows how the highest part

of the spectrum contains only a small portion of the energy (mainly associated

with the background noise) and performance always saturates beyond 9÷10kHz.

Similar results can also be observed for KNN classifiers. Therefore, it is possible

to cut the highest part of the spectrum out without significantly penalising the

performance.

In figures 6.13, it is reported the performance as a function of the number of

filters in the filter bank, with frequency range 0−12kHz and the number of MFCC

coefficients equal to the number of filters. The collections used are the same

as above. With only a few exceptions, regardless of the length of the window

considered and for both classifiers, the performance increases with the number of

filters. However, beyond a certain threshold, the benefit of a modest performance

boost is hardly justified compared to the increased dimensionality of the features.

Interestingly, as seen for the STFT, the actual value of the performance strongly

depends on the length of the window used, which suggests that very low-frequency

components play a key role in the classification. This is somewhat different

from other audio classification tasks reported in literature where, as seen in

section 3.2.2, no significant performance gain comes from windows longer than

25÷50ms [164],[288],[38, p. 27].

(A) KNN

20 40 60 80 100 120 140
0.3

0.4

0.5

0.6

0.7

0.8

10 ms
25 ms
50 ms

100 ms
250 ms
500 ms

1000 ms

(B) SVM

20 40 60 80 100 120 140
0.4

0.5

0.6

0.7

0.8

10 ms
25 ms
50 ms

100 ms
250 ms
500 ms

1000 ms

Figure 6.13: Average performance as a function of the number of triangular filters and for
different values of the window length. Windowing function: Chebyshev. The number
of MFCC coefficients is equal to the number of filters. Collections of examples:
CA0, ...,CA6 from table 6.2. Total training pools = 1692, total test pools = 360.
A) Cosine 19-NN classifier. B) Linear SVM classifier.
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6.2.3.2 Low-pass filter selection

Recalling section 3.2.1, the feature extraction process can be tailored either to

increase invariance or to preserve the information contained in the signal. The

trade-off is mainly determined by the length of the averaging filter, which, for MFCC,

is given by the windowing function φ (section 3.2.2).

From the results reported in figures 6.13, SVM seems to offer slightly better

performance than KNN, and we now refer mostly to the former. Besides, windows

longer than 500ms provide no additional benefit and going beyond 1s might be

undesired in the case of real-time machines.

Assuming 500ms to be the length of the audio chunk to be converted into features,

two different extreme-case options appear relevant for the determination of the

above-mentioned trade-off. The first option, the one used for figures 6.13, aims

to achieve feature invariance by applying a single window over the entire 500ms

interval. The second one aims to preserve information by processing consecutive

shorter windows and merging together the resulting features.

For a reliable comparison, both options need to be analysed by referring to the

same collection of examples, which are chosen to be CB0, ...,CB3 from table 6.2.

By extracting atomic examples of 50ms organised in pools of 19 with 50% overlap,

as described in section 6.2.1, it is possible to reuse the same set of examples for

the two different cases. The continuous 500ms signal is obtained by alternate pre-

shingling, with a windowing function 500ms long applied before feature extraction.

Conversely, for the second solution, a windowing function of 50ms is applied to

each of the 19 examples of the pools and the shingling operation is performed after

feature extraction1. Note that, in terms of information contained, the two source

signals are equivalent, in the sense that one can be obtained from the other and

vice-versa.

In section 3.2.1, it has been mentioned that the shape of the windowing function

can affect the performance since windowing inevitably introduces frequency arte-

1With reference to the processing chain of figure 6.8, shingling or averaging are both possible strategies
to merge the features of the 19 examples of the pool. Although both solutions yield similar results, some
interesting remarks about the differences are reported at the end of the section.
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facts mainly associated with the lateral lobes of the spectrum. Table 6.7 shows

the F-score performance of a linear SVM classifier for the two window lengths

defined above, for three different windowing functions, and for the four collections

of examples mentioned above. Both the number of filters and the number of

coefficients of the MFCC representation are set to 60.
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ct
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n Window / Length

Kaiser Gauss Chebyshev Kaiser Gauss Chebyshev

50ms 50ms 50ms 500ms 500ms 500ms

CB0 0.742 0.778 0.758 0.789 0.781 0.769

CB1 0.714 0.764 0.767 0.756 0.739 0.722

CB2 0.739 0.792 0.808 0.792 0.794 0.772

CB3 0.703 0.753 0.750 0.742 0.739 0.722

Table 6.7: Average F-score performance of the MFCC as a function of the low pass filter length
and of the windowing function. Results are obtained for collections CB0, ...,CB3 of table
6.2. Total training pools per collection = 1692, total test pools per collection = 360.
Number of MFCC filters: 60. Number of MFCC coefficients: 60. Classifier: linear
SVM.
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Figure 6.14: Representation in time and frequency of the Kaiser, the Gauss and the Chebyshev
windowing functions.

A quick analysis of table 6.7 and figure 6.14 [163] shows that, when the artefacts

introduced by the lateral lobes are low, the performance is higher for shorter

windows (Chebyshev: 0.771@50ms→ 0.746@500ms on average). On the con-

trary, the spectrum of the Kaiser window shows important lateral lobes and the
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performance improves with the length (Kaiser: 0.724@50ms→ 0.769@500ms

on average). The Gauss window, whose lateral lobes are less pronounced than

the Kaiser but more than the Chebyshev, returns a similar performance for both

the window lengths (Gauss: 0.771@50ms→ 0.763@500ms on average). Hence,

when choosing the windowing function, avoiding high lateral lobes is important

only when windows are short. Overall, the average values of the performances

are comparable for the 50ms and the 500ms solutions, being the latter just 0.5%

higher than the former over the full unitary scale. This suggests that the increased

representation invariance compensates for the loss of information.

It is important to remark, however, that the performances reported in table 6.7

are obtained with two very different numbers of coefficients, namely 60 for the

500ms window and 19×60 for the 50ms one. Hence, a better comparison can be

obtained by repeating the same test but reducing the features to the same number

using linear PCA. Table 6.8 reports the results obtained retaining only the first 50

principal components for both cases.
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n Window / Length

Kaiser Gauss Chebyshev Kaiser Gauss Chebyshev

50ms 50ms 50ms 500ms 500ms 500ms

CB0 0.756 0.775 0.769 0.822 0.828 0.797

CB1 0.714 0.733 0.772 0.781 0.792 0.781

CB2 0.694 0.758 0.744 0.786 0.808 0.794

CB3 0.700 0.739 0.725 0.747 0.761 0.736

Table 6.8: Performance of the solutions reported in table 6.7 obtained by limiting the number of
features to 50 using linear PCA reduction.

When the dimensionality of the features is the same, filtering by using longer

windows provides better performance, and table 6.8 shows an average difference

slightly below 5% over the full unitary scale. Note that the long Gauss window

returns an average performance that is 1% better than the Kaiser and 2% better

than the Chebyshev.
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For completeness, it is here remarked that an alternative solution for the short

windows consists of post-averaging the pools instead of post-shingling. This

solution directly returns 60 features and results similar to those reported in table

6.7. This circumstance is mainly related to the noise cancellation effect provided by

the averaging operation on the features. Nevertheless, since features are cleaner,

when PCA is applied, dropping a few principal components means also dropping a

greater portion of relevant information. Indeed, reducing the principal components

from 60 to 50 yields similar results to those reported in table 6.8.

The results above, suggest that working with longer windows and selecting

appropriate windowing functions can improve the overall performance, meaning

that preserving feature invariance is worth sacrificing part of the signal information.

Besides, as shown in section 3.2.3.4, featurization based on wavelets scattering

transform allows the recovery of the discarded information, and the adoption of

this solution further limits the benefit of working with shorter windows.

6.2.3.3 Filter bank optimisation

The definition of the MFCC features can be further improved by determining an

optimal solution for the filters of the filter bank. If the maximum and the minimum

frequencies are chosen as explained above, the optimisation concerns the number

F of triangular filters and the related frequency bands. It is firstly remarked that

attempting to find the filter edges by optimising them individually is unlikely to

provide a valuable solution since it translates into the maximisation of a cost

function of F variables with a large number of local maxima. Applying techniques

such as gradient descent scarcely adapts to the discrete nature of the problem

and generally leads to local maxima where the performance is lower than what is

achievable with standard MFCC. Besides, as seen in section 3.2.1, the distribution

of filters with larger grouping toward higher frequencies is likely to be more robust

by introducing stability against issues such as time-warping deformations. Since

stability also means better generalisation, it is important to preserve this property

in the optimisation process.

A viable solution consists of keeping the filter edges equally spaced in the mel
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scale while trying to optimise the number of filters F and the conversion law

between linear frequency f and mel scale f̄ . Therefore, we seek to improve the

performance by searching sub-optimal values for F and for the constants C and f0

in:

f̄ =
f0

log(C)
× log

(
1+

f
f0

)
, (6.3)

where standard MFCC coefficients are generally calculated assuming C = 2 and

f0 = 1000Hz [176]. Besides, if f̄C1→ f and f̄C2→ f are two different values of the

mel scale calculated for two different C (with the same f0) but corresponding to

the same linear frequency f , then log(C1) f̄C1 = log(C2) f̄C2 and log(C1) f̄C1/k =

log(C2) f̄C2/k, which means that the edges of the filters in the linear frequency do

not depend on the value of C. Therefore, the optimisation concerns only F and f0,

while C can be assumed equal to 2. Note that it is not convenient trying to optimise

the Q factor of the filter bank. Indeed, as shown in section 3.2.2, mel filters are

only approximately Q constant (the approximation is invalid at low frequencies)

and trying to impose the same Q for all the filters would mean a ratio of the last to

the first frequency edge roughly proportional to QF−1.

Implementing a supervised algorithm requires the definition of a cost function

and, for this task, we refer to SVM since it seems to offer slightly better performance

than KNN. In section 3.4.2.3, it has been shown that multi-class classification can

be performed by introducing a binary loss:

lb(xxx, j,k) =−g(ȳ jk,s j(xxx)), (6.4)

where j identifies the binary classifier, k the class, xxx the example to classify, and

s j(xxx) = wwwT
j xxx+b j = ∑

N
i=1 α jiy jixxxT

jixxx+b j the related score. Assuming g(y,s) as the

hinge function (equation (3.101)) and defining ȳ jk = {−1,0,1} as from section

3.4.2.3, the binary loss lb is always ≤ 0 and the magnitude of the negative values

give a measure of the classification uncertainty for the binary classifiers. Averaging

the binary loss over all the binary classifiers as from (3.100), it is possible to obtain

the negative loss l(xxx,k), that is a measure of the classification uncertainty for a
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specific class [226]. Using the definitions above, the classification margin for the

example xxx can be defined as [87]:

m(xxx) = l(xxx,kT )−max
(
l(xxx,kF)

)
, (6.5)

that is the difference between the negative loss of the true class and the maxi-

mum negative loss among the false classes. The classification margin provides a

measure of the robustness of the classification, being a larger margin generally

associated with better performances. Finally, averaging the margin over the whole

training set2 provides a scalar function usually referred as classification edge [87]:

E(F, f0) =
∑

N
n=1 m(xxxnnn)

N
. (6.6)

The classification edge can be seen as a function of the set of features chosen,

and consequently, as a function of F and f0. Nevertheless, referring to figure

6.13, it is reasonable to assume that using the definition (6.6) as a cost function

would generally return the maximum number of filters even when the benefit of

higher feature dimensionality is marginal or negligible. Therefore it is necessary to

introduce a regularisation term that penalises the cost when the number of filters

F increases without any relevant benefit, that is:

Λ(F, f0) = E(F, f0)−wrF. (6.7)

A reasonable value for the regularisation multiplier wr can be assigned by

referring again to figure 6.13 and considering roughly negligible the increase in

the performance beyond the corner points of the plots. With this assumption, the

value of the classification edge is sampled for f0 = 1000Hz and for a few values

of F between Fmax/2 and Fmax. The sampled values E(F1),E(F2), ...E(FH), are

then linearly interpolated as the least-squares solution of the problem [289]:

2Since the dataset is balanced, no prior weighs are necessary when the (6.6) is calculated.
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F1 1

F2 1
...

FH 1


b

a

≈


E(F1)

E(F2)
...

E(FH)

 . (6.8)

Assuming wr = b, the negligible increment of performance shown in figure 6.13

does not determine any increment of the cost function Λ(F, f0).

Algorithm 5 Mel scale and number of filters optimisation

Input: H,M, [Fmin,Fmax], [ f0min, f0max],{rrrl}
Output: F, f0

1: wr← from E(F1, f ), ...,E(FH , f )
∣∣∣ Fh ∈ [Fmax/2,Fmax], f = 1000

2: {lm}= 1 ▷ Init radii to the first ∀ m ∈ [1 : M]

3: {pppm}← Random pppm ∈ ([Fmin,Fmax], [ f0min, f0max])

4: {Λ(pppm)} ▷ M initial cost values @ {pppm}
5: while length({pppm})> 1 & min{lm}< L do

6: for each pppm
∣∣ lm < L do

7: {pppm∆}= (Fm± rFlm, fm),(Fm, fm± r flm) ▷ 4 neighbouring points of pppm

8: {Λ(pppm∆)} ▷ Cost values of the 4 neighbours

9: if Λ(pppm∆)> Λ(pppm) then

10: pppm← pppm∆ ▷ Update the center point

11: Λ(pppm)← Λ(pppm∆) ▷ Update the center reference cost

12: lm← lm−1 ▷ Increase radius if lm > 1

13: else

14: lm← lm +1 ▷ Reduce radius

15: end if

16: end for

17: {pppm}← {pppm}− pppm∗

∣∣∣ Λ(pppm∗) = min{Λ(pppm)}, length({pppm})> 1

18: end while

19: (F, f0)← pppm

20: return (F, f0)
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Although the application of gradient ascent strategies remains unfeasible, the

cost function defined above depends only on two variables and its optimisation

is certainly easier than dealing with each single filter edge in the filter bank. The

solution proposed to maximise the cost function is inspired to pattern search [84]

and simulated annealing [85], and it is summarised by algorithm 5.

Once the cost function Λ(F, f0) has been defined, the algorithm proposed starts

with a set of M random points {pppm} ≡ [(F1, f01), ...,(FM, f0M)] determined in the

range Fm ∈ [Fmin : Fmax] = [10 : 150] and f0m ∈ [ f0min, f0max] = [1,10000]. Further

expansion of these domains does not seem to provide any benefit. A set of

L discrete and descending search pattern radii {rrrl} ≡ [(rF1,r f01), ...,(rFL,r f0L)],

with rFL = r f0L = 0, is also defined beforehand. The initialisation is completed

by calculating the cost for each random point pppm, hence providing the values

{Λ(pppm)} for the first step of the iterative search. The iterations are aimed to move

the random points {pppm} towards better performances and gradually discard those

points that yield lower cost.

(A)

0 2 4 6 8 10 12
0

1000

2000

3000

4000
f
0
=115.0, C = 2.0

f
0
=1000.0, C = 2.0

(B)

10 20 30 40 50
0.74

0.76

0.78

0.8

0.82

0.84

0.035

0.04

0.045

0.05

0.055

0.06

Figure 6.15: Mel scale and number of filters optimisation. Length of the training examples:
500ms. Low-pass filter window: Gaussian. Collection used: CB0 with alternate
pre-shingling (table 6.2). A) Comparison between standard and optimised Hz-mel
conversion law. B) Results of the optimisation algorithm obtained using 50 initial
random points. Average F-score obtained using 360 test pools from CB0 .

At each iteration step, a cross pattern of four neighbouring points {pppm∆} around

each pppm, (Fm± rFlm, f0m) and (Fm, f0m± r f0lm), is selected to assess the direction

toward which the cost increases. If a neighbour pppm∆ offers better performance, it

substitutes the centre point pppm for the next iteration. Otherwise, the current pppm is
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kept, but the neighbouring radius is reduced (lm← lm +1) to investigate further

closer points. If the point pppm changes, whether possible, the selected radius is

increased by one step (lm ← lm− 1). When the neighbouring radius reaches

the last step (rFL,r fL) = (0,0), no further evaluation on the neighbours of pppm is

performed since it is assumed that a local maximum has been found. At each

iteration, the worst performing point is removed from {pppm} and the list of points to

check is shrunk by one. The algorithm stops when a single point remains on the

list, and the related radius is null (0,0).

Figure 6.15B illustrates the improvement of the average performance at {pppmmm}
obtained with the algorithm described above for 50 initial random points. Examples

of 500ms with a Gaussian low pass filter have been considered. Clearly, the

performance saturates beyond 35 iterations, meaning that all the remaining pppmmm

have reached their local maximum. To check against overfitting, the average

F-score is evaluated on the correspondent test set. The F-score performance

improves with the cost and goes from roughly 0.75 to almost 0.84 obtained for

F = 60 f0 = 115Hz. Over the full unitary scale, this value is roughly 6% higher than

the correspondent non-optimised value reported in table 6.7 (CB0, 500ms, Gauss,

no PCA). Note that each iteration step is supervised only with data belonging

to the train set while the test set classification performance (average F-score) is

calculated only for reference.
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Figure 6.16: A) Standard (black) and optimised (red) mel filter bank. Number of filters = 60.
The optimised filters provide higher resolution at lower frequencies and lower
resolution at higher frequencies. B) Average F-score of the standard (black) and of
the optimised (red) MFCC as a function of the number of retained linear principal
components. Standard representation saturates beyond 30 PC while optimised
representation increases steadily. Results averaged over CB0, ...,CB3 (table 6.2, 360
test pools per collection).
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Figure 6.15A compares the Hz-mel conversion law before and after the optimisa-

tion, showing that the optimised filter bank exhibits much higher resolution at low

frequencies and a smaller number of filters at high frequencies. Again, this con-

firms the importance of low-frequency components, their role in the discrimination

of different classes, and the need to use windows much longer than 20÷50ms.

The resulting filter bank is illustrated in figure 6.16A. Note that a much lower corner

frequency f0 means that the Q-constant approximation is valid over a larger range

of frequencies. Finally, a lower f0 also means that relevant low-frequency informa-

tion is spread on more features while high-frequency noise tends to be collected by

a minor number of larger filters. As a consequence, using PCA, the performance

of the optimised solution steadily increases with the number of retained principal

components while the standard MFCC roughly saturates beyond 30 (figure 6.16B).
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n Std. F = 60, f0 = 1000Hz, PC = 50 Opt. F = 60, f0 = 115Hz, PC = 55

Kaiser Gauss Chebyshev Kaiser Gauss Chebyshev

50ms 50ms 50ms 500ms 500ms 500ms

CB0 0.822 0.828 0.797 0.858 0.861 0.817

CB1 0.781 0.792 0.781 0.842 0.814 0.806

CB2 0.786 0.808 0.794 0.842 0.831 0.825

CB3 0.747 0.761 0.736 0.792 0.808 0.778

Table 6.9: Average F-score comparison between standard and optimised MFCC. 50 PC are
retained for the former while 55 for the latter. The different number of PC is dictated
by the different saturation behaviour illustrated in picture 6.16B. Number of filters
F = 60. Total training pools per collection = 1692, total test pools per collection = 360.
Average standard performance = 0.786. Average optimised performance = 0.823.

Table 6.9 reports the comparison between the standard MFCC reduced to the

first 50 PC (see also table 6.8) and optimised MFCC reduced retaining the first

55 PC. The last 5 components are discarded for noise reduction. In both cases,

the number of filters is set to 60. Over the full unitary scale, the average F-score

of the optimised solution (0.823) is almost 4% higher than the other (0.786) and

more than 6% higher if compared to the one not reduced of table 6.7 (0.7597).
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6.2.3.4 MFCC detailed performance and class clusters

This section provides a detailed overview of the classification when the optimisa-

tions reported above are applied together. Therefore, features are extracted by

assigning f0 = 115Hz and C = 2 in the conversion law (6.3), with 60 filters between

0 and 12kHz, and using linear PCA to remove the last 5 principal components.

The Gauss window is chosen for the low pass filter.
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Figure 6.17: Linear PCA scatter plot. Representation of the first two principal components
for the collection CB0 of table 6.2. Window: Gauss, f0 = 115Hz, f ilters = 60,
fmax = 12kHz. A) Test set. B) Training set.
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Figure 6.18: Performance of the Gaussian-kernel PCA. Window: Gauss, f0 = 115Hz,
fmax = 12kHz, f ilters = 60, collection: CB0 (table 6.2, training pools = 1692, test
pools = 360). A) Average F-score as a function of the parameter σ of the Gaussian
kernel. B) Scatter plot of the first two principal components for σ = 13.

Figures 6.17 provide an overview of the clusters given by the two first principal

components for the training and the test set of CB0. Although only in 2 dimensions,
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a certain degree of clustering appears. Classes, however, are certainly divided

into sub-clusters, meaning that a large number of different class instances should

be included in the dataset to increase the robustness of the classification against

unknown sound sources. In section 3.3.1.2, it has been mentioned that non-linear

kernels applied to PCA can provide further improvement. This fact, however, is

strongly dependent on the kernel used. Figures 6.18, for instance, show that the

application of a Gaussian kernel with a similar number of retained components

does not provide any additional benefit, being the maximum value of the perfor-

mance for different values of σ very similar to the best performance achievable

with linear PCA.
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DW SH SI TA TO WM

C
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C

B
1,

C
B

2,
C

B
3

K
N

N

Err 0.303 0.300 0.333 0.175 0.329 0.300 0.383

Acc 0.899 0.942 0.897 0.865 0.869 0.932 0.888

Fsc 0.697 0.847 0.700 0.466 0.582 0.814 0.676

S
V

M

Err 0.170 0.050 0.275 0.242 0.258 0.088 0.108

Acc 0.943 0.988 0.922 0.910 0.923 0.962 0.956

Fsc 0.830 0.963 0.774 0.722 0.775 0.882 0.865

Table 6.10: Performances of the optimised MFCC representation averaged over collections
CB0, ...,CB3 of table 6.2. Window: Gauss, f0 = 115Hz, f ilters = 60, fmax = 12kHz.
Total training pools per collection = 1692, total test pools per collection = 360.

Table 6.10 provides the optimised averaged performance indicators over collec-

tions CB0, ...,CB3 of table 6.2. A comparison against the equivalent table for STFT

(table 6.6) reveals that SVM returns a F-score improvement of 11.2% over the full

unitary scale. Error rate and accuracy also improve accordingly going from 0.282

to 0.170 for the former, and from 0.906 to 0.943 for the latter. Improvements for

KNN are more contained, with the F-score 6.6% higher over the full unitary scale.

Finally, as for figure 6.11, figure 6.19 illustrates the confusion matrix of the

optimised MFCC representation for the collection CB0 and for both KNN and
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SVM. Note that all the classes indicate better classification, with the most evident

improvements related to the worst performing classes of the SFTF.
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Figure 6.19: Performance of the optimised MFCC for the collection CB0 of table 6.2. Window:
Gauss, f0 = 115Hz, f ilters = 60, fmax = 12kHz, Principal components = 55. A) Cosine 19-NN
classifier. B) Linear SVM classifier.

6.2.4 Performance of the wavelet scattering transform

In the previous sections, it has been shown that working with low-pass filters

implemented with longer windows provides better performance by increasing

the representation invariance and by capturing low-frequency components. The

drawback of this approach is the loss of information that inevitably arise when

some form of averaging operation is performed. As discussed in section 3.2.3.4,

one of the most interesting properties of the wavelet scattering transform (WST) is

the capability to recover the discarded information by stacking additional layers of

wavelet processing. Hence, in this section, this third representation and some of

the optimisations found for the STFT and the MFCC are applied together to further

improve the performance of the extracted features. In the following, we mainly

refer to the software implementation provided by Scatnet [290].
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6.2.4.1 Optimisation of the filter banks

As for STFT and MFCC, the inspected spectrum can be reduced to 0−12kHz

with negligible repercussions on the performance. Moreover, as shown below, this

restriction of the inspected spectrum can even be beneficial, and the considerations

reported in section 6.2.2.1 about feature scaling remain valid. Indeed, similarly to

the other cases, log-scaling the WST features boosts the performance without any

drawback. Normalisation of the coefficients as described in section 3.2.3.4 is also

empirically proven to be beneficial.

When features are extracted using the WST, the amount of signal energy - and

the associated information - diminishes moving from one layer to the next [79].

Hence, apart from layer zero, which merely returns the value of the input signal x[n]

time-averaged by the low-pass filter φ0[n] (x[n]⋆φ0[n]), a proper definition of the first

layer is crucial. Although it is certainly necessary to perform a direct optimisation,

as shown in section 3.2.3.3, the mathematical operation implemented by the first

layer of the WST is very similar to the one associated with MFCC. Therefore, the

results obtained for the MFCC can be used as a starting point for the optimisation

of both the averaging filter φ1[n] and the filter bank {ψ1,:[n]}.

As for the MFCC, the low pass filter φ1[n] is implemented using a Gaussian

window covering the whole 500ms length. In Scatnet, however, the actual low-

pass filter is not determined directly by choosing the length of a given window.

Instead, it is calculated from the properties of the mother wavelet ψ[n], namely

the number of filters (or wavelets) per octave Q and the reciprocal of the octave

bandwidth B. Named L the number of samples of the windows, h the index of

the layer (h ∈ [1 : H]), Jh the maximum wavelet scale, and being the scaling index

j ∈ [0 : Jh−1], the largest wavelet in the time domain is:

ψJh−1[n] = 2−
Jh−1
Qh ψh(2

− Jh−1
Qh [n]), (6.9)

while the related normalised frequency bandwidth is:
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BWJh−1 = 2−
Jh−1
Qh (1−2−

1
Bh )π. (6.10)

The correspondent time duration is calculated as [291]:

Th = 2
Jh−1
Qh 4Bh. (6.11)

From (6.11), Jh is found as:

Jh = 1+ round
(

Qh log2
L

4Bh

)
, (6.12)

that is, imposing the duration of the largest wavelet to be as close as possible to

the duration of the desired window L. The low-pass filter is then chosen to have

the same duration and bandwidth as for ψJh−1[n] but centred at null frequency 3.

The mother wavelet here adopted is a Morlet wavelet (section 3.2.3.1), that is

an analytic wavelet based on a Gaussian window (equation (3.39))4. A Gaussian

window is also used for the low-pass filter. With reference to equations 3.40, the

low-pass Gaussian filter remains defined by retrieving the value of σφNh as:

σφNh =
π

2BWφh

σ0, (6.13)

where BWφh = BWJh−1 is the double-sided bandwidth of the low pass-filter, and

σ0 = 2/
√

3 5.

3Note that the single-sided frequency band of the low-pass filter is half the frequency band of the band-
pass filter ψJ−1[n]. When required, the band of the low-pass filter can be extended, yielding a related shorter
time window.

4Morlet and Gabor wavelets are both analytic wavelets obtained from a Gaussian window. The Morlet
wavelets can be obtained from the Gabor and have zero means in the time domain. [291]

5The Gaussian window Θ[k] is not defined on a compact support. However, if it is assumed as a function
of the discrete variable 2πk/N and defined as:

Θ[k] = e−
σ2

0 2πk/N
2 , (6.14)

with σ0 = 2/
√

3, its amplitude can be neglected outside the interval [−π,π] (k <−N/2, k > N/2). With the
definition above, the (double-sided) −3dB bandwidth is roughly π/2.
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Along with the low-pass filter, the definition of the scattering layer requires

the creation of the filter bank. As mentioned in section 3.2.3.3, Jh Q-constant

filters are generated at different scales of the mother wavelet, while the remaining

lower frequencies are covered with a set of equal Ph filters spaced with constant

frequency steps. Although the max index Jh depends on both Bh and Qh, the

frequency positions {ξψh,:} of the Jh filters depends only on Qh, being:

ξψh, j = ξψh,02− j/Qh with ξψh,0 =
1
2
(2−1/Qh +1)π and j ∈ [0 : Jh−1].

(6.15)

When creating the filter bank, Scatnet imposes the analytic wavelets by setting

the Gaussian functions only on one side of the spectrum. Nevertheless, the

analytic hypothesis is violated if the non-compact support of the Gaussian function

is considered. Furthermore, if the filters are excessively wide, some of them, both

at low and high frequencies, may extend into the second half of the spectrum,

violating the analytic hypothesis again. At low frequencies, Scatnet limits the issue

by controlling the number and the position of the linearly spaced filters. At high

frequencies, however, some filters may extend their support to the second half of

the spectrum, violating the analytic hypothesis and introducing noisy scattering

coefficients. For instance, even not considering the tail of the Gaussian beyond its

bandwidth, the normalised upper boundary of filter the ψh,0 (the upper boundary

of the filter bank h) is:

ψ
+
h,0 =

1
2
(2−1/Qh +1)π +

1
2
(1−2−1/Bh)π, (6.16)

which is higher than π for Bh < Qh. To avoid the issue, an appropriate margin

can be imposed between the Nyquist frequency π and the upper boundary of the

inspected spectrum fmax. By accounting for the length of the tails, the margin can

be found from:

fNyquist ≥ fmax +2BW j̄h with j̄h : ξψh, j̄h
< fmax, h ∈ [1 : H], (6.17)
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that is, as twice the bandwidth of ψh, j̄h , the last filter with center frequency ξψh, j̄

below fmax. Using this condition, all the scattering coefficients generated from the

filters ψh, j with j < j̄h can be discarded.

Figures 6.20 illustrate the filters of the first and of the second layer of the

scattering network used to obtain the results reported at the end of this section.

The black dashed line indicates the Nyquist frequency of the sampled signal

(24kHz), while the green dashed line indicates the upper boundary of the inspected

spectrum (12kHz). As shown, removing the filters indicated in red avoids including

filters with bands extending into the second half of the spectrum. On the contrary,

choosing fNyquist equal to fmax would return filters with part of their band in the

second half of the spectrum. Note that eliminating the coefficients associated with

the red filters does not discard signal information but avoids the introduction of

noisy features.
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Figure 6.20: Filter banks of the scattering network. The black dashed line indicates the Nyquist
frequency. The upper boundary of the inspected spectrum is indicated by the green
dashed line. The coefficients associated with the red filters are discarded since they
carry no information and are potentially noisy. All the blue filters are contained in
the first half of the spectrum.

When creating the scattering network, the number of scattering layers is cer-

tainly a key parameter of the architecture. Scatnet [291] suggests that, for audio

signals, using two layers is the optimal choice. Indeed the second layer suffices to

recover almost all the information discarded by the first, and a third layer would

disproportionately increase the complexity without adding relevant performance

benefits. This setup is also the most adequate for this work, being the performance
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achievable with three layers even worse as a result of the increased dimensionality

and the lack of additional information retained.

Finally, the definition of the two layers requires the values for Bh and Qh. A

first approximation for Q1 can be obtained directly from the results of the MFCC.

Recalling that MFCC filters are Q-constant at high frequencies, the equivalent

number of filters per octave QMFCC can be calculated as:

QMFCC =
f̄max− f̄max/2

f̄max
F, (6.18)

where F is the optimised number of MFCC filters, f̄max the mel value of the

linear upper boundary of the inspected spectrum fmax, and f̄max/2 the mel value of

fmax/2. Assuming fmax = 12kHz, F = 60, and the corner frequency f0 = 115Hz,

6.18 yields QMFCC = 8.8, which is close to 8, the Scatnet default value for audio

processing. This value, however, does not return the optimal performance, and

further optimisation is required. Therefore, the quest of the optimal Q1 is performed

by pattern search [84] using the classification edge (equation 6.6) as cost function

and QMFCC as starting point. A similar operation is also applied for B1. Both

Q1 and B1 are optimised assuming Q2 = 1 and B2 = 1 as for Scatnet default.

Using the collection of examples CA5 (table 6.2), the optimisation algorithm returns

Q1 = 6 and B1 = 5. Values for the second layers are left as their default since

further optimisation on the second layer, with Q1 and B1 as above, returns the

same default values.

6.2.4.2 Detailed performance of the WST

Applying the settings to the scattering network as above, the resulting aver-

aged performance over collections CB0, ...,CB3 is reported in table 6.11. The

WST outperforms the STFT and the MFCC returning an improvement of the SVM

F-score, over the full unitary scale, of 15.4% and 4.2%, respectively. KNN perfor-

mance, despite remaining worse than SVM, shows similar or better improvements

with respect to both STFT and MFCC. The confusion matrix of the classification

performed over collection CB0 is reported in figures 6.21.
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Err 0.195 0.242 0.200 0.058 0.167 0.121 0.383

Acc 0.935 0.951 0.949 0.920 0.915 0.965 0.909

Fsc 0.805 0.867 0.855 0.704 0.721 0.896 0.755
S

V
M

Err 0.128 0.038 0.142 0.129 0.204 0.071 0.188

Acc 0.957 0.984 0.957 0.947 0.930 0.976 0.949

Fsc 0.872 0.952 0.873 0.837 0.788 0.927 0.853

Table 6.11: Detailed performances of the optimised WST averaged over collections CB0, ...,CB3
of table 6.2. Number of scattering layers = 2, mother wavelet: Morlet, window
length = 500ms, Q1 = 6, B1 = 5, Q2 = 1, B2 = 1, fmax = 12kHz, fNyquist = 24kHz.
Total training pools per collection = 1692, total test pools per collection = 360.

.

It is also interesting to compare the optimised performance against the one

obtained using the Scatnet default audio settings. With reference to collection CB0,

the optimised SVM average F-score is 0.903, while the correspondent value for the

Scatnet audio setting is 0.878. Besides, in the first case, the dimensionality of the

features is 873, while in the second 1233. Note that the latter performance is ob-

tained assuming fmax = fNyquist = 24kHz. The negative effect of noisy features

generated by filters extending into the second half of the spectrum can be further

highlighted. Indeed, resampling the signals imposing fmax = fNyquist = 12kHz

and extracting the scattering coefficients (using the optimised filters) produces

the same number of features as for the optimised solution, but the SVM F-score

performance returns 0.883.

Another important point concerns the efficiency of the representation. Obviously,

the WST returns better results than the MFCC, but the improvement is obtained at

the cost of a much higher number of features. This is easily explained by referring

to the architecture of the scattering network, where the recovered information

is associated with the second layer. Indeed, if WST features are compared to

MFCC features imposing the same dimensionality using linear PCA, the benefit

of using the WST appears less relevant. For instance, retaining only 55 principal
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components and averaging over collections CB0, ...,CB3 as for table 6.11, the SVM

F-score returns 0.847, a value much closer to the correspondent one for the MFCC

reported in table 6.10. Interestingly, the reduced dimensionality improves the

performance of the KNN classifier, which scores 0.827, a higher value compared

to 0.805 of table 6.11 and 0.697 of table 6.10.
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Figure 6.21: Classification confusion matrix of the optimised WST for the collection CB0 of table
6.2. Number of scattering layers = 2, mother wavelet: Morlet, window length = 500ms, Q1 = 6,
B1 = 5, Q2 = 1, B2 = 1, fmax = 12kHz, fNyquist = 24kHz. Total training pools = 1692, total test
pools = 360. A) Cosine 19-NN classifier. B) Linear SVM classifier.

6.3 Single versus multiple folds

In the previous sections, the collections of examples employed are obtained

using the single-fold approach defined in section 6.1. Although the same source

audio files cannot be shared between the training and the test set, the single-fold

approach allows different recordings of the same acoustic source to be divided

between the test and training sets. This section briefly describes the performance

of a collection of examples obtained using the multiple-fold approach, that is,

strictly separating the acoustic sources between the test and the training set. This

condition is clearly more restrictive and less tolerant to the limited intra-class

variability in the soundbank. The multi-fold collection of examples used is CC0

(table 6.2).
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Err 0.439 0.606 0.562 0.170 0.548 0.192 0.554

Acc 0.855 0.886 0.851 0.857 0.794 0.912 0.837

Fsc 0.566 0.732 0.594 0.411 0.325 0.699 0.518
S

V
M

Err 0.335 0.132 0.398 0.327 0.688 0.223 0.244

Acc 0.889 0.953 0.873 0.902 0.792 0.916 0.900

Fsc 0.669 0.849 0.618 0.716 0.410 0.726 0.677

Table 6.12: Detailed performances of the WST for the 4-folds collection CC0. Minimum training
pools per fold = 2340, minimum test pools per fold = 774. Features are extracted
with the same procedure used for table 6.11.
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Figure 6.22: Classification confusion matrix of the WST for the 4-folds collection CC0. Minimum
training pools per fold = 2340, minimum test pools per fold = 774. Features are extracted as from
table 6.11. A) Cosine 19-NN classifier. B) Linear SVM classifier.

Table 6.12 and figures 6.22 report, respectively, the detailed performance and the

classification confusion matrix for both SVM and KNN. The features are extracted

using WST as for table 6.11. Although KNN results can be improved by 4÷5%

using linear PCA, the overall performance is lower for both classifiers. Interestingly,

the reduction of the performance is not uniform, with some classes, such as Tap,
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more affected and others, such as Dish Washers and Toilets, closer to the single

fold results. The class Tap is also the worse performing in the single-fold case,

suggesting that stronger intra-class variability is necessary in the soundbank.

In general, however, more comprehensive intra-class variability is required for

all the classes. Table 6.1 shows that the number of sources used to build the

dataset is quite limited and, despite the benefit provided by the artificial synthesis,

the acquisition of a good number of real sources remains crucial. Indeed, since

the collection of sounds used are noise-like and (acoustically) poorly structured,

wider coverage of the in-class variability is necessary, especially if classifiers are

supposed to analyse unknown sound sources.

6.4 Summary

This chapter shows how the created dataset can be processed to extract opti-

mised features suitable for machine learning applications. A particular synthesis

strategy, the single instance foldable synthesis, is proposed to guide the synthesis

of the dataset and produce observations that can be conveniently partitioned into

training and test sets, keeping either source observations or source instances

strictly separate. Three sets of example collections with different properties are

extracted from single and multi-fold partitions to conduct performance tests. A

minimum number of 1692 pools per collection (2340 for the multi-fold) are used for

the training sets, while 360 pools per collection (774 for the multi-fold) are used for

the test sets. Performance tests focus on three different signal representations:

short-time Fourier transform, mel-frequency cepstral coefficients, and wavelet scat-

tering transform. The processing chain adopted employs K-nearest neighbours

and support vector machines as classifiers. A range of different parameters is

optimised to tailor the chosen signal representations, increasing the efficiency and

the performance of the extracted features. For instance, the retained spectrum is

reduced to 0−12kHz, and the optimal length of the windows (500ms) is found to

be longer than the one usually adopted for machine learning audio applications

(20÷50ms). The Gauss windowing function is conveniently adopted as a low-pass

filter for windows of such a length. The importance of non-linear feature scaling,
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as for bio-inspired feature solutions, is confirmed by several percentage points

of performance improvement, and it is obtainable either at the feature or at the

classifier level. Dimensionality reduction is preferably obtained through linear PCA

since no relevant benefit has been found with non-linear kernel solutions. MFCC

and WST are identified as viable options for obtaining light representations or

boosting performance, respectively. To optimise the MFCC, a novel algorithm

is proposed to find the optimal number of filters and a more convenient mel-Hz

frequency conversion law. The optimised features, which are more detailed at

low frequencies, exhibit average F-score performance roughly 6% higher. The

number of filters and the related bands of the WST are also optimised using a

similar algorithm. An additional truncation of the filter banks is adopted to mitigate

the effect of noisy features related to the violation of the analytical hypothesis of

the wavelets. The optimised WST yields a 4.2% F-score improvement compared

to the optimised MFCC, and a 2.5% improvement compared to the default Scatnet

configuration. The contribution of the filter truncation to the latter is around 2% out

of the total 2.5%. Overall, the results show that the size of the acquired soundbank

is reasonable only if the machine is supposed to process known sound sources,

while more comprehensive coverage of the intra-class variability is necessary for

other applications. Additional machine learning tasks, such as event detection,

multi-class classification, and disturbances discrimination, can be developed as

future extensions of this chapter. The analysis of the representation robustness

as a function of reverberation phenomena of different magnitudes is also left for

future developments.
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Chapter 7

Conclusions

In this chapter, the main conclusions are summarised along with the related

limitations. A further overview of possible industrial applications and future devel-

opments is provided.

7.1 Conclusions, remarks, limitations

This work proposes a development chain for in-pipe acoustic machine-learning

applications. Starting from a comprehensive review of the existing literature, it

is demonstrated how the usage of a relatively limited amount of real data can

be optimised to create one or more datasets for the implementation of machine

learning algorithms. Different signal representations and transformations are

investigated and analysed to extract suitable solutions for the acoustic features.

A baseline classification performance is obtained as a benchmark for further

research.

The creation of the soundbank is the first crucial node of the processing chain.

It is shown how the human labour required to generate a new dataset can be

minimised by avoiding the manual creation of strong annotations. The only manual

collection of metadata required is reduced to weak annotations obtained by sorting

the audio files by class instances in different folders. Strong, rich, and precise

labels are created automatically during the synthesis and stored in the machine

and human-readable format .jams.
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The post-processing of the soundbank removes the background noise from

the source recordings using a statistical spectral noise filter. A novel solution is

proposed and evaluated against close references in the literature. Filtering the

background noise from the source recordings allows precise control of the signal-

to-noise ratio in the synthetic observations and a more accurate determination of

the event on-set and off-set.

Although the number of source recordings remains crucial for the synthesised

dataset, several artifices are implemented to obtain increased intra-class variability

for a given soundbank. For instance, duration-constant pitch shift and pitch-

constant dilation are applied on top of artificial events obtained by recombining

distinct source observations belonging to the same instances. Care is taken

to promote natural-like results. Acoustic properties of the generated synthetic

observations, such as signal-to-noise ratio, duration of the events, and the number

of overlapping events, can be finely controlled by assigning the boundaries of the

related random variation ranges.

Synthetic observations are also reverberated using the acoustic model developed.

The model is implemented using a modal decomposition analysis and simulates

the dispersive effects introduced by the propagation of sounds in linear elastic

waveguides. Novel solutions are proposed for mode extraction and separation,

along with a procedure to model cross-sectional pressure sources. Using a mixture

of numerical and analytical solutions and an implementation on three different

layers, the model provides calculation time much lower than what is achievable

using finite element software. Although this advantage also comes with several

limitations (e.g. the options for the allowed geometries are limited), the model

remains flexible enough to be matched to simple real in-house test rigs. A further

limitation, certainly surmountable in future releases, is given by the unaccounted

modal dumping. As a consequence, the relative magnitude of the propagating

modes is unrealistically assumed constant along the waveguide.

An arbitrary number of pseudo-random synthetic observations can be generated

and organised in synthetic datasets. The synthesis is guided using a procedure

that has been called single-instance foldable synthesis. This procedure allows the
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creation of improved balanced dataset partitions despite the possible imbalance

in the soundbank. The single or multi-fold partitions generated are truly non-

overlapping, meaning that test and training partitions cannot contain synthetic

observations with source audio files or source audio instances in common. This is

also achievable since the synthesis maintains its entire history clearly recorded in

the links between the soundbank and the dataset in the annotations. It is remarked

that single and multi-fold partitions use two different separation strategies. While

the single-fold allows different observations belonging to the same instances in

both test and training partitions, the multi-fold imposes strict separation of the

instances. The latter means that the same physical source cannot be associated

with both test and training partitions in the same fold.

The obtained partitions are used to perform machine-learning tasks. In particular,

representations based on short-time Fourier transform, mel-frequency cepstral

coefficients, and wavelet scattering transform are optimised with respect to classi-

fication tasks using K-nearest neighbours and support vector machine classifiers.

The importance of very low-frequency components is shown. Window duration,

window shape, filter banks, and feature dimensionality are among the optimised

quantities. A novel algorithm is proposed to optimise the number of filters and the

mel-Hz conversion law for the MFCC. A similar procedure is also applied for the

WST, where a truncation of the filter bank is also introduced to discard noisy fea-

tures. PCA and kernel PCA are applied to investigate the reduction and non-linear

transformation of the features. The efficiency of the representation as performance

versus dimensionality is also discussed. Single-fold and multi-fold results are

compared, showing that a wider inter-class representation in the soundbank is

necessary when unknown sound sources need analysing. Finally, a set of results

is provided as a benchmark for future developments.

7.2 Future developments

The results obtained in this research can be applied for the development of real

in-pipe event detectors. Better results, both in terms of the accuracy and the variety

of events detectable, can be achieved by combining acoustic solutions with data
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provided by other sensors, such as flow, temperature, and turbidity. An example

of this integration is given by the multi-purpose measurement unit developed by

Aquacheck Engineering Ltd (figure 7.1), which is designed to support an acoustic

detector along with other sensing devices under the same physical case.

Further research is undoubtedly required to gain a better insight into other

machine learning tasks such as event detection and multi-class/disturbance dis-

crimination. These investigations can be conducted on the same datasets as a

direct extension of this work. From a broader perspective, additional research is

undoubtedly required to blend heterogeneous data, and the approach developed

in this work can be extended and complemented. Nevertheless, acquiring and

collecting representative sets of examples in soundbanks (or, more generically, in

sample banks) remains challenging. Mathematical models can certainly help by

simulating data that cannot be easily acquired. Indeed, further improvements for

audio data can be obtained by refining the reverberation model and accounting for

modal dumping and wave scattering.

Figure 7.1: Aquacheck Engineering multi-purpose measurement unit.
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