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Source apportionment of polychlorinated biphenyls (PCBs) using different
receptor models: A case study on sediment from the Portland Harbor
Superfund Site (PHSS), Oregon, USA
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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Different PCB signatures identified by 4
different statistical models.

• Major PCB sources in sediments attributed
to A1248 (16 %), A1254 (41 %) and to
A1260 (42 %).

• Novel residual method may be used to
identify inadvertently produced PCBs.

• 6.6 % of PCBs in sediments may be attrib-
uted to non-aroclor sources.
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Multivariate modelling techniques are used by a wide variety of investigations in environmental chemistry. It is sur-
prisingly rare for studies to show a detailed understanding of uncertainties created by modelling or how uncertainties
in chemical analysis impact model outputs. It is common to use untrained multivariate models for receptor modelling.
These models produce a slightly different output each time they are run. The fact that a single model can provide dif-
ferent results is rarely acknowledged. In this manuscript, we attempt to address this by investigating differences that
can be generated using four different receptor models (NMF, ALS, PMF & PVA) to perform source apportionment of
polychlorinated biphenyls (PCBs) in surface sediments from Portland Harbor. Results showed that models generally
had a strong agreement and identified the samemain signatures that represented commercial PCBmixtures, however,
subtle differences were identified by; different models, same models but with a different number of end members
(EM), and the same model with the same number of end members. As well as identifying different Aroclor-like signa-
tures, the relative proportion of these sources also varied. Depending on which method is selected it may have a sig-
nificant impact on conclusions of a scientific report or litigation case and ultimately, allocation on who is
responsible for paying for remediation. Therefore, care must be taken to understand these uncertainties to select a
method that produces consistent results with end members that can be chemically explained. We also investigated a
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novel approach to use our multivariate models to identify inadvertent sources of PCBs. By using a residual plot pro-
duced from one of our models (NMF) we were able to suggest the presence of approximately 30 different potentially
inadvertently produced PCBs which account for 6.6 % of the total PCBs in Portland Harbor sediments.

1. Introduction

1.1. Chemical fingerprinting

Chemical fingerprinting is an important tool that allows scientists to
identify similarities and differences among environmental samples to ap-
portion pollution sources and age date contamination events (Johnson
et al., 1964; Morrison and Murphy, 2010; Megson et al., 2014; Murphy
andMorrison, 2014). Chemical fingerprinting has been widely used for nu-
merous pollutants including volatile organic compounds (VOCs)
(Srivastava, 2004; Srivastava et al., 2005; Cai et al., 2010), polycyclic aro-
matic hydrocarbons (PAHs) (Khalili et al., 1995; Boehm et al., 1997;
Baldwin et al., 2020), polychlorinated dibenzo-p-dioxin (PCDD) and diben-
zofuran (PCDF) (Kjeller et al., 1996; Buekens et al., 2000; Sundqvist et al.,
2010) and heavy metals (Pekey et al., 2004; Muhammad et al., 2011;
Men et al., 2018).

Chemical fingerprinting can be at its most effective when there are
many chemicals present in a mixture and when there are a number of con-
served source patterns of chemicals that have been produced through a
batch process. This is the case for polychlorinated biphenyls (PCBs)
which contain a group of 209 congeners that were largely produced in
batches as commercial mixtures. In the U.S., PCBs were manufactured by
Monsanto and given the trade nameAroclor. However, it is important to ap-
preciate different manufacturers produced similar products in other coun-
tries (e.g. Clophen in Germany and Kanechlor in Japan). Our ability to
perform better chemical fingerprinting has increased over time alongside
advances in analytical chemistry techniques (Wait, 2000; Megson et al.,
2013). Initial PCB fingerprinting methods were performed by visually
inspecting chromatograms and using trained analysts to identify different
patterns and relate these to Aroclors (e.g. Environmental Protection Agency
(EPA)methods 8082A& 608) and other commercialmixtures (e.g. Clophen
and Kanechlor). This historical technique worked well when releases of
PCB mixtures was new and only consisted of a single type. Most releases
being investigated now, including analysis of sediments in large river sys-
tems such as Portland Harbor, consists of old, highly weathered releases
of PCBs from multiple commercial mixtures and incidental PCB sources.
The simple Aroclor identification using EPA 8082 is no longer a simple
and viable task. Today, modern fingerprinting techniques use multivariate
models that rely on accurate and quantitative congener specific data which
aim to separate as many polychlorinated biphenyls (PCBs) as possible.
These can be obtained from multidimensional chromatography methods
or high-resolution gas chromatography coupled with high resolution mass
spectrometry (e.g. EPA method 1668C) (Litten et al., 2002; US EPA,
2010; Muscalu et al., 2011; Megson et al., 2013).

Most PCB studies use truncated datasets that only measured selected
PCBs, such as the most abundant PCBs commonly analysed, or indicator
PCBs. These limited datasets have been used estimate total PCB concentra-
tions with some success (Longnecker et al., 2003; Fitzgerald et al., 2005;
Wolff et al., 2005; Ishikawa et al., 2007; Jain and Wang, 2010) or to calcu-
late health risks (van den Berg et al., 2006), however chemical fingerprint-
ing techniques are most effective with larger congener datasets (Megson
et al., 2019). The main reason for this is that PCB signatures change over
time in the environment, and therefore separating and identifying specific
PCB congeners is crucial when ascertaining important processes such as
bioaccumulation, volatilisation and microbial dechlorination (Field and
Sierra-Alvarez, 2008; Saba and Boehm, 2011; Rodenburg et al., 2015;
Erickson, 2018, 2020; Capozzi et al., 2019). Using a reduced dataset, such
as one that focuses on PCBs that are most common to specific commercial
mixtures (such as Aroclors), also increases the likelihood of missing new
sources of PCBs such as PCBs that are produced as by-products in other

chemical processes (these are referred to as by-product PCBs here but are
also commonly called inadvertently produced or incidental PCBs). There
are currently over 100 published and certified methods for analysing
PCBs, the majority of which have been summarized (Muir and Sverko,
2006; Clement et al., 2012; Reiner et al., 2013; Guo and Kannan, 2015;
Megson et al., 2019). The absence of one universally used method presents
a significant challenge when combining and comparing datasets for envi-
ronmental fingerprinting. This is often approached by filtering the data
by combining or removing certain PCBs to match co-elutions between the
datasets. However, the more data are filtered, the more its diagnostic
power is potentially reduced.

1.2. Use of multivariate models

As well as differences in analytical methods used to determine PCBs,
there are also a wide range of mathematical methods that are used to ana-
lyse and interpret datasets and perform chemical fingerprinting. These
range from manual visual comparison of PCB profiles to performing de-
tailed multivariate analysis. Often the analyst will use a method that is
tried and tested or a method that is most familiar to them.Within the scien-
tific literature or during litigation proceedings, there is rarely a comparison
of the effectiveness and sensitivity of different multivariate (statistical)
models. Over the last two decades, advanced statistical andmultivariate ap-
proaches have becomemore commonplace in PCB forensics. These are used
to model congener specific data from environmental samples, allowing for
more accurate source apportionment, and identifying other factors such as
degradation and incidental PCBs (Johnson et al., 2015). Some studies may
still rely on visual inspection of data and do not presentmultivariatemodels
(Hagemann et al., 2018), whereas others are starting to use a combination
of models (Mao et al., 2020). The following multivariate models have been
used for PCB fingerprinting: Principal Component Analysis (PCA) (Megson
et al., 2013, 2014, 2015; Ranjbar Jafarabadi et al., 2018; Foster et al., 2019;
Guerra et al., 2019; Mao et al., 2020; Santos et al., 2020), US EPA Positive
Matrix Factorization Model (PMF) (US EPA, 2014; Karakas et al., 2017;
Capozzi et al., 2018, 2019; Cetin et al., 2018; Rodenburg and Delistraty,
2019; Yurdakul et al., 2019; Mao et al., 2020; Rodenburg et al., 2020)
and Polytopic Vector Analysis (PVA) (Johnson et al., 2000, 2015;
DeCaprio et al., 2005; Magar et al., 2005). As well as Partial Least Squares
(PLS) (Zhang and Harrington, 2015), Alternating Least Squares (ALS)
(Salau et al., 1997) and Non-negative Matrix Factorisation (NMF) (Kfoury
et al., 2016; Trindade et al., 2017; Vesselinov et al., 2018). Receptormodel-
ling relies on the concept that a dataset matrix (A) containing concentra-
tions can be factored by the number of potential end members
represented as (k), producing both a width (W) and a height matrix (H),
where the rows of the original matrix are samples (m) and the columns
are the congeners (n) (Baldwin et al., 2020). This is summarized in Eq. (1):

A m∗nð Þ ¼ W m∗kð Þ∗H k∗nð Þ (1)

Equation 1. Generation of a data matrix for receptor modelling
Manymultivariatemodels are designed tofind principal components at-

tributing to the most variability of the data, so it is common for analysts to
remove certain PCBs from their dataset to improve the variance they can
explain. However, this may not always be the best approach and if any
PCB is omitted it should be fully justified, and not just performed to im-
prove the overall variance (Johnson et al., 2015). A detailed overview of
a proposed approach for data screening and treatment was produced by
Johnson et al. (2015). There are a variety of different appropriate
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approaches that have been successfully used, however there is no standard
approach or set of rules. Therefore, the environmental forensic analystmust
be systematic and non-bias in their approach and document each decision
(Erickson, 2018, 2020). This leaves room for variability and can result in
data analysts failing to perform adequate pre-treatment to those focusing
on trying to optimise the predictive capability of their models rather than
trying to understandwhat their data set is revealing. Inmost environmental
samples, main sources of PCBs are from commercial PCB mixtures (such as
Aroclors), therefore, PCBs prevalent in commercial mixtures often drive the
formation of the model. By removing certain PCBs that don't fit this model
(because they are not prevalent in commercial mixtures) there is the poten-
tial to bias data to focus on Aroclor sources (Erickson, 2018). This approach
could miss important inputs from by-product PCBs (PCBs produced inad-
vertently as by-products in other chemical processes) or degraded/
dechlorinated PCB's from weathered sources (Magar et al., 2005; Capozzi
et al., 2019; Rodenburg and Delistraty, 2019). In application of this bias as-
sessment of data in litigation proceedings, it can mean wrongly implicating
certain polluters over others resulting inmillions of dollars of clean-up costs
being allocated to the wrong PCB emitter. There is also potential to create
this bias when dealing with non-detected contaminants in datasets. Differ-
ent approaches to this include removing PCBs with a high percentage of
values below a certain limit of detection (LOD) as recommended by
Helsel (2006), substituting LODs with a nominal value and causing a left
censored dataset (e.g. 0.5 LOD), or imputing values between zero and the
detection limit to provide a continuous distribution below the detection
limit. By running iterativemodels with and without these changes, it is eas-
ier for an analyst to identify what effect this pre-data processing has on their
overall outputs.

Most PCB fingerprinting studies have been focused on identifying
which commercial PCB mixtures are responsible for the contamination
that is observed. Since 2011, there has been a broadening of this approach
when Hu and Hornbuckle (2010) were able to identify a new inadvertent
source of PCBs that did not originate from the traditional commercial
PCB mixtures. Since then, by-product PCBs, for example PCBs 11, 28, 52,
77 and 209, have gained more interest due to their ubiquitous nature and
ability for long range transport (i.e. atmospheric transport). These PCBs
have since been identified in other environmental datasets as well as con-
sumer products (Hu and Hornbuckle, 2010; Hu et al., 2011; Garmash
et al., 2013; Guo et al., 2014; Vorkamp, 2016; Liu and Mullin, 2019;
Megson et al., 2019; Hermanson et al., 2020; Rodenburg et al., 2020;
Mao et al., 2021a, 2021b). It is important to note that by-product PCBs
are not likely to have one single specific signature, unless there is a
‘plume’ originating from a known sourcewhere they showup in higher con-
centrations in certain samples. It can be easier to identify by-product PCBs
that are not present in most commercial mixtures (e.g. PCBs 11 and 209).
Some inadvertently produced PCBs (e.g. PCBs 28 and 52) are also abundant
in technical mixtures, but it has been possible to detect a non-Aroclor
source of these congeners in arctic samples (Bartlett et al., 2019).

1.3. PCBs in Portland Harbor Superfund Site (PHSS)

The Portland Harbor Superfund Site (PHSS), located in Portland, Ore-
gon, is a well characterised contaminated site with multiple chemicals of
concern that occupies over 10 miles of the lower Willamette River. The
PHSS has been contaminated with many environmental contaminants (in-
cluding PCBs) following decades of industrial use along the river
(Sethajintanin et al., 2004; Rodenburg et al., 2015; Fitzpatrick et al.,
2018; Rodenburg and Delistraty, 2019; US EPA, 2019). It has been the in-
ternational subject of numerous studies on pollutants in environmental
samples (e.g. sediment, fish, birds and water) (Sethajintanin et al., 2004;
Henny et al., 2009; Luxon et al., 2014). High concentrations of PCBs have
been found at the PHSS, which helped contribute to the EPA placing it on
the National Priority List (NPL) in 2000 (Sethajintanin et al., 2004;
Rodenburg et al., 2015; US EPA, 2019). There are several existing studies
in the scientific literature on source apportionment at Portland Harbor
(http://ph-public-data.com, 2020) in a variety of sample types

(Rodenburg et al., 2015; Rodenburg and Delistraty, 2019) which makes
for an excellent comparison of different approaches. Data from the PHSS
were collected using EPA method 1668C so contains a comprehensive con-
gener specific dataset (data for all 209 PCBs as 162 variables, due to
coelutions). Details on sample collection, analysis and all raw data used in
this manuscript is publicly available (http://ph-public-data.com, 2020)
which makes it an excellent testing ground for other analysts to compare
outputs from their own chemical fingerprinting methods.

1.4. Aims and objectives

Themain aim of thismanuscript is to use data from the Portland Harbor
Superfund Site (PHSS) to compare the effectiveness of different PCB finger-
printing techniques and receptor models used for source apportionment.
Specifically, this study aims to 1) compare the variation produced by four
different multivariate models (PMF, NMF, PVA, ALS) on the same PCB
dataset and evaluate their effectiveness for source apportionment, 2) use
the most appropriate fingerprinting method to apportion PCB sources in
surface sediment from Portland Harbor, Oregon, USA 3) and establish if
multivariate models can help to identify sources of incidental PCBs.

2. Materials and methods

2.1. Obtaining a sample database

The Portland Harbor Pre-Remedial Design Investigation and Baseline
Sampling (PDI) databasewas obtained online from the Portland Harbor En-
vironmental Data Portal (http://ph-public-data.com, 2020). All samples
were collected from surface sediments (0–30 cm depth) during March
30th 2018 and May 1st 2019, and analysed by the same laboratory using
the same analytical method. The datawere acquired inMicrosoft Access da-
tabase format, extracted into Microsoft Excel, and imported into statistical
software JMP. All samples with a sediment matrix were selected and
exported as a subset. The subset was distilled further by selecting only the
765 samples with PCB results. Coeluting congeners were combined as one
variable (e.g. PCBs 12 and13 coeluted so were reported as PCB 12/13).
This resulted in a total of 162 PCB variables (reported as concentrations)
that were used to begin the data analysis. This dataset is available in the
Supplementary information (SI1).

In preparation for comparison of the source apportionment results to
the Aroclor profiles the PCB congener lists were converted to relative pro-
portions for comparison against the 2004 Rushneck et al. Aroclor profiles
and 1996/1999 Frame et al. Aroclor profiles. To allow for a direct compar-
ison of the source apportionment results to the Aroclor data, applicable
PCBs were combined so that coelutions were identical in the PDI data and
Aroclor profiles reported by Rushneck (Rushneck et al., 2004) and Frame
(Frame et al., 1996). If one PCBwas reported as a non-detect when combin-
ing PCBs, then only the detected valuewas used; the detection limit was not
included in the calculation. If both values were non-detect, then the maxi-
mum detection limit was used. This process resulted in the creation of a
dataset with 148 different variables, comprised of the same individual or
coeluting PCBs. We accept that there will be errors in PCB measurements
associated with sample collection, preparation and analysis and these
have been previously investigated in the Portland Harbor Environmental
Data Portal (http://ph-public-data.com, 2020). As data was collected for a
period of over 1 year we performed exploratory data analysis (using
UMAP) to assess the impact of temporal variation. No distinct sample clus-
ters or end members could be linked to sample date and therefore any
variation with time did not appear to have a significant impact on the re-
sults. Whilst there will be some small degree of variation and error
within the data this is desirable as the aim of this manuscript was to
use data from real environmental samples, rather than a fabricated
dataset. The same final dataset was used by each model to perform
source apportionment.
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2.2. Imputations

The PDI dataset included values below detection limit as identified by a
‘U’ or ‘UJ’ laboratory qualifier. Approximately 28% of all data points in the
dataset were below the laboratory detection limit. This included 20 PCB
congeners with over 90 % of the data points below detection limit. These
specific PCB congeners were removed from analysis following investigation
with an initial PCA analysis as their inclusion addednoise to the dataset and
did not provide any additional diagnostic value. This resulted in the pro-
duction of a final dataset containing 128 different variables, comprised of
the same individual or coeluting PCBs, with 17 % of the values below the
limits of detection. The remaining data points reporting below the detec-
tion limit were imputed using the Kaplan-Meier (KM) method (Palarea-
Albaladejo andMartín-Fernández, 2015). The KMmethod is a nonparamet-
ric method that does not assume any underlying probability distribution of
the data.

2.3. Data analysis

The dataset was examined using four different receptor models,
Polytopic Vector Analysis (PVA), Positive Matrix Factorisation (PMF),
Non-negative Matrix Factorisation (NMF) and Alternating Least Squares
(ALS).

Polytopic Vector Analysis (PVA) is an eigenvector decompositionmodel
resolved in terms of oblique vectors (i.e., rotated “factors”) as source com-
positions. The PVA algorithm is a collection of MATLAB scripts developed
by Dr. Glen Johnson and summarized by Ehrlich et al. (1994). The PVA re-
ceptor modelling was performed according to procedures from Johnson
et al. (2015). The EXTENDED QMODEL version of PVA was run with 150
iterations, DENEG value set to 0.25 and themaximumnegativemissing pro-
portions set to 0.05.

PositiveMatrix Factorization (PMF)Model is amulti-dimensionalmath-
ematical receptor model developed by Paatero and colleagues (Paatero and
Tapper, 1994; Paatero, 1999; Paatero et al., 2005; Paatero and Hopke,
2008; Paatero et al., 2014) by the United States Environmental Protection
Agency (US-EPA). Results are obtained using the constraint that no sample
can have significantly negative source contributions and using user calcu-
lated uncertainties. The PMF model software was downloaded directly
from the US-EPA (US EPA, 2018). The model was run three different
times eachwith 150 iterations using a random seed number. An uncertainty
matrix was calculated following guidance in Baldwin et al. (2020). The un-
certainty of the individual congener concentration was calculated using
Eq. (2), where the error termwas calculated as themedian relative percent-
age difference between duplicate samples. Thirty-nine duplicate sample
pairs were identified in the PDI database and the median relative percent
difference was calculated for use in the uncertainty calculation. The com-
bined unit uncertainty Uc(x) on the total sample concentration was com-
puted as the root sum of the squares of the individual compound
uncertainties (Eq. (3)):

Congener uncertainty ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL2 þ error� concentrationð Þ2

q
(2)

Equation 2. Congener uncertainty

Uc xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 xð Þ2 þ U2 xð Þ2 þ U3 xð Þ2 þ . . .

� �r
(3)

Equation 3. Uncertainty matrix calculation
Non-negative Matrix Factorisation (NMF) is a multi-dimensional math-

ematical receptormodel where amatrix is factorised into twomatriceswith
the constraints that all three matrices have no negative elements. NMF was
developed on the same basis as the original PMF algorithm by Paatero and

colleagues. The algorithm was named, ‘non-negative matrix factorization’
after Lee and Sung (1999) investigated the properties of the algorithm
and published some simple and useful extensions of the PMF foundation.
NMF was run three separate times using [R package: NMFN 2.0] (Lee and
Seung, 2001). The model (method = “nnmf_mm”) was run untrained,
using default settings with maximum iterations (argument maxiter) equal
to 1000.

Alternating Least Squares (ALS) is a further extension of the NMF algo-
rithm that aims to reduce the root mean squared error (RMSE) between the
actual and predicted matrices. ALS was run three separate times using an
application developed by ChemistryMatters. Themodelwas run untrained,
with defaulted settings and maxiter set to five.

The actual versus predicted concentrations reconstructed from the re-
ceptor models were compared through a cosine theta (cos-Ɵ) similarity
metric (herein referred to as cosine similarity) [R package: LSA]. This sim-
ilarity metric can be used to compare two sets of data (e.g., two histograms
or samples) by treating each congener distribution as a multi-dimensional
vector and to calculate the cosine of the angle (Ɵ) between the two
vectors. If two samples are identical, the vectors will be parallel, the angle
between the vectors will be 0 degrees, and the cosine of that angle is 1.0.
Similarity, if two samples share no common vector similarity, the angle de-
fined between them is 90 degrees and the cosine of that angle is zero. Thus,
cos-Ɵ is bounded between zero and one where zero is indicative of 0% vec-
tor similarity and 1 is indicative of 100 % vector similarity.

3. Results and discussion

3.1. Comparison of multivariate models

An important first step in source apportionment is deciding how many
end members (EM) should be included when modelling the data. This
was initially assessed graphically using scree plots and non-graphically
using; optimal coordinates, the acceleration factor, the parallel analysis,
and the Keyser-Guttman rule, as described in Raîche et al. (2006). The re-
sults indicated the data could be best represented by a four orfive endmem-
ber solution (SI2). Therefore, to identify the most appropriate solution the
four models (NMF, ALS, PMF and PVA) were run for both four and five
andend member solutions. Each model was run three times to assess vari-
ability between runs, except for PVA which was run once (because the
polytype is calculated the same way so each run produces identical an-
swers). Each endmember produced by thesemodels was compared visually
against Aroclor profiles fromRushneck et al. (2004) and Frame et al. (1996)
(SI3), in addition cosine theta valueswere calculated to aid the comparison.
The profiles produced byRushneck and Framewere very similar, but cosine
similarity provided a slightly better relationship using the Rushneck data,
therefore the Rushneck data are reported for comparison.

Under the four end member scenario the four multivariate models gen-
erally produced the same four end member patterns which were identified
as; three Aroclor-like signatures A1248, A1254, and A1260, and a weath-
ered A1260 pattern (A1260W) (Table 1). However, PMF and one of the
ALS runs failed to identify the weathered A1260 signature and instead re-
ported two similar A1260 signatures. The multivariate models are un-
trained which is why the numbering of the end members changed for
each signature, but importantly the same four signatures were consistent
(cosine similarity of 0.878–0.969). Although each of the four models pro-
duced similar end members, there were some differences in the outputs
for the A1260 and A1260W type signatures (see Fig. 1). The weathering
of A1260 appears to have occurred through microbial dechlorination that
has targeted the PCBs with a chlorine in the flanked meta position (Wu
et al., 1998; Bedard, 2001) (SI2). This resulted in relative decreases of
PCBs 180, 174, 170, 153, 149 and 138, and relative increases in PCBs
100, 91, 54, 53, 51, 49, and 47. As there is no definitive “source” of
A1260W (it is linked to A1260) the models varied in predicting the exact
composition of PCBs in the A1260 and A1260W end members. For exam-
ple, when run through PVA, the A1260W signature contained higher pro-
portions of the hexachlorinated congeners than in other models (e.g.
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NMF), which had the resulting effect of making the original A1260 signa-
ture appear more like A1262 (Fig. 1).

By using five end members, the overall variance explained by the
models increased, as did the mean cosine similarity result. However, the
profiles produced from the five end member models were less consistent
(Table 1). Most models appeared to split one of the Aroclor-like end mem-
bers into two similar but distinct signatures of A1254, A1260 or A1260W
(that could not be explained chemically), or they identify an additional sig-
nature that is indicative of A1242.

The results highlight the different outputs that can be produced by using
different multivariate models on the same dataset. Seven different end
members (or potential signatures) were identified by the different models;
A1242, A1248, A1254, A1260, A1260W, A1262 and a signature that didn't
match any known commercial PCB mixtures, “no match”. The results also
show how different outputs can be produced by using the same model
(e.g. ALS with five end members gave three different results each time).
The largest variation in source apportionment results was observed for
the PMF outputs. Our assessment was performed using default convergence
criteria (Paatero et al., 2014), yet the results indicate that the model did not
reach convergence. As our final source apportionment was performed by
NMF, we did not perform optimisation to achieve convergence of the
PMF model. However, we would recommend that anyone using PMF for
source apportionment should follow the guidance from Brown et al.
(2015) to achieve this. Differences can also be observed when comparing
these findings against valid approaches taken by other researchers. For ex-
ample, Rodenburg et al. (2015) used PMF with four endmembers to model
the sediment data, processed to contain 83 PCB variables (comprised of 116
congeners or congener groups). Rodenburg et al. (2015) identified the same
three Aroclor-like signatures (A1248, A1254 and A1260) as identified by
our current study, however they identified a different fourth end member
that was classified as an incidental PCB signature with a high proportion
of PCB 11 (3 %). A similar signature to this was observed in the PVA 5
endmember model (identified as S5 “no match” in Table 1 and SI3). The
weathered Arolcor 1260 signature (not observed by Rodenburg et al.,
2015) was only observed by PMF in our current study when by a five end
member model which may explain why it was not recorded by the 4 end
member PMF model used in Rodenburg et al. (2015).

The different outputs reported by these different approaches (both
within this manuscript and the wider scientific literature) were all reached
using robust and scientifically accepted methods. However, these differ-
ences highlight the importance of understanding uncertainty in

multivariatemodelling as differentmethods andmodels can produce differ-
ent outputs. In some scientific studies and courtroom scenarios the data an-
alyst will only use one model with a fixed number of end members
(sometimes run one time without varying model parameters) and have
complete confidence in the output. By performing a more detailed assess-
ment it is possible to better understand the uncertainty in the data (which
may be more difficult to explain in a courtroom) but will ultimately allow
us to make more informed scientific decisions. To achieve this, we must
take due care and consideration to understand the predictive uncertainty
in models, establish the most appropriate number of end members to use,
and make sure the signatures identified make sense from a chemical per-
spective.

3.2. Portland Harbor source apportionment

Seven different end members were identified by the four receptor
models, these included Aroclor-like signatures; A1242, A1248, A1254,
A1260, A1260W, A1262 and “no match”. The appropriateness of these
end members was assessed statistically, through cosine similarity analysis,
and chemically, by interpreting and comparing the signatures visually.
The A1242 signature was recorded by two models with five end member
solutions (NMF run 2 and PVA). The cosine similarity results of these end
members to A1242 were strong (∼0.93), but the fact that it was not consis-
tently identified casts doubt on its presence as a major source of PCBs for
the entirety of Portland Harbor sediments as compared to other end mem-
bers. By reviewing the data spatially, it is considered more likely that it is a
minor contributor to the overall PCB load in Portland Harbor but may have
some significant inputs on a localised scale in specific areas within Portland
Harbor. A1248 and A1254 were consistently detected across most models
with strong cosine similarity matches of >0.97, therefore these are likely
the major sources of PCBs. The A1260 and A1260W signatures are linked
as discussed in Section 3.1 and Fig. 1. Both signatures were identified in
nearly every model with the exceptions of A1260W not appearing in the
PMF four end member models or some of the ALS runs. Therefore, the re-
sults indicate that A1260 is considered a likely major source of PCBs.
A1262 and A1260 have a very similar composition, however, A1262
(<1 % U.S. sales) was used less than A1260 (>10 % U.S. sales) (Durfree
et al., 1976). From interpreting all signatures together it appears more
likely that the A1262 signature is an artefact created by the variation in out-
puts for the A1260 and A1260W signatures as discussed in Section 3.1 and
Fig. 1. Due to its low usage and the fact it was only identified intermittently

Table 1
Aroclor-like source apportionment of PCBs derived from four and five end member models, and the mean cosine similarity for each model. S1–5 corresponds to each end
member identified by the model (presented in SI3).

A1221 A1232 A1016 A1242 A1248 A1262 A1268 no match

NMF Run 1 S2 0.969
NMF Run 2 S4 0.969
NMF Run 3 S1 0.969
ALS Run 1 S4 0.888
ALS Run 2 S3 0.885
ALS Run 3 S2 S1 0.878
PMF Run 1 S1 S2 S3 0.969
PMF Run 2 S4 S1 S3 0.969
PMF Run 3 S1 S2 S3 0.969

PVA Run 1 - 3 S3 NA

NMF Run 1 S4 S1 S2 0.97
NMF Run 2 S3 S2 0.973
NMF Run 3 S1 S3 S4 0.97
ALS Run 1 S2 S1 S3 S5 0.885
ALS Run 2 S5 S2 S4 S1 S3 0.891
ALS Run 3 S3 S2 S5 0.892
PMF Run 1 S2 S4 S5 0.972
PMF Run 2 S1 S4 S5 0.972
PMF Run 3 S5 S1 S2 0.972

PVA Run 1 - 3 S3 S5 NA

S1
S3

S3
S2
S2

Cosine ThetaModel Four end members
A1254 A1260 A1260W

Five end members

S4
S1
S4
S3
S1

S3

S4
S2

S3 S4

S1
S2

S4
S2
S4
S1 S2* S4

S4S1

S1 S3
S3 S2

S3S4
S2*

S4

S3 S5
S5 S4 S1

S5S2
S4

S1

*Although cosine similarity was a better match for A1262 we believe it is more likely to represent an Aroclor 1260 type source as explained in Fig. 1.
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Fig. 1. Comparison of the 2004 Rushnek PCB Aroclors 1260 and 1262 signatures and observed patterns for the four EM NMF run 1 S3 and S4, and PVA run 1 S2 and S4.
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casts doubt on A1262 being a significant potential source of PCBs and this
contribution is more likely to have arisen from A1260. The final potential
signature was only detected by PVA in the five end member iteration
(and by Rodenburg et al., 2015 with a four end member PMF model).
This signature did not match any known commercial mixture and contains
high proportions of PCBs that have been associated with by-product PCB
production (e.g. 4 % PCB 11, 19 % PCB 206 and 14 % PCB 209). This indi-
cates that there is a source of by-product PCBs in the river system and using
this end member could provide a useful indication of the input from by-
product PCBs, however it may not be the most robust approach. There is
no one common specific signature for a by-product PCB source, there are
wide variety of different by-product PCB sources that each have their
own unique signature that can contain one to tens of different PCBs all in
different proportions. Therefore, to assess this all together as one signature
may provide misleading results. Each time one of these congeners is de-
tected in a sample, themodel is restricted to adding the identified endmem-
ber (and the other congeners in the end member) to the sample in order to
account for the presence of the single congener. This will result in overpre-
diction of some congeners from the by-product PCB end member.

Based on a review of all model outputs and potential signatures we be-
lieve the data are indicating that three different commercial PCB mixtures
represent the main sources of PCBs in this system. This is best characterised

by four end members that match aroclor like signatures for 1) A1248,
2) A1254, and 3) A1260 & A1260W, with localised inputs of A1242 and
sources of by-product PCBs. In this assessment the four endmember system
produced by NMF best represented this dataset as it resulted in a consistent
output where end member could be chemically explained. Using this
model, the major sources of PCBs in this sample set for Portland Harbor
river-wide could be attributed to 16 % A1248, 41 % A1254 and 42 % to
A1260. A summary of outputs for all models is presented in Table 2. This
highlights variability in modelling and shows that the relative proportion
of each signature was variable between and within models. A1254 and
A1260 were identified as the main sources of PCBs with estimates of
A1254 inputs varying from 41 % to 63 % and A1260 from 27 % to 46 %.

The data from four end member NMF (Run 1) were assessed
geospatially to see if PCB signatures were homogenously distributed within
the river basin or if there were hotspots. By plotting total PCB concentra-
tions (SI4) it was possible to identify that the highest PCB concentrations
were located two areas along the north bank, with several additional
hotspots located along the course of the river. These hotspots appear to cor-
relatewith high proportions of either A1254 or A1260 alongwith a hotspot
of A1242 in the north west section of the river (Fig. 2). Results show
A1260Wwas present in lower concentrations andwas distributed relatively
evenly along the river.

Table 2
Summary of source apportionment for all models (% values for each end member are rounded to the nearest whole integer, but all sum to exactly 100 %). Where more than
one endmembermatched the same commercial mixture the two contributions for each endmember were summed in bold and allocations for each endmember presented in
brackets “()”.

A1242 A1248 A1262 no match

NMF Run 1 16%

NMF Run 2 16%

NMF Run 3 16%

ALS Run 1 9%

ALS Run 2 7%

ALS Run 3 9% 6%

(35%) (20%)

(37%) (15%)

(21%) (20%)

(28%) (13%)

(12%) (31%)

(12%) (22%) (12%)

(49%) (14%) (21%) (9%)

(2%) (4%)

(22%) (14%)

(16%) (39%)

(7%) (17%)

42% 35% 7%

63% 26% 2%

63% 26% 3%

59% 27%

Model A1254 A1260 A1260W
Four end members

41% 35% 7%

41% 35% 7%

PVA Run 1 - 3 16% 37% 34%

Five end members

13%

41%

PMF Run 1

PMF Run 2

PMF Run 3

55%

52%

5% 40%

19%

5% 54%

29%

30%

34% 24%26%

NMF Run 1

NMF Run 2

NMF Run 3

ALS Run 1 44%

41%

43%

47%

ALS Run 2

ALS Run 3

PMF Run 1

PMF Run 2

PMF Run 3

63%

27%

15%

63%

6%26%

36%

55%

16%

PVA Run 1 - 3 13% 35% 29%

24%

7%

5%

21%

6%

4%

16% 37% 7%

5% 13% 41% 32% 9%

15% 36% 5%

9%

19%

16%
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3.3. Identifying sources of incidental PCBs

By-product PCBs in most studies have been identified as anomalies in
datasets by identifying something unusual in the PCB profiles of their sam-
ples, or as unusual end members in multivariate models (SI3 5EM PVA S5;
Rodenburg et al., 2015). In many studies, they may go unnoticed or unre-
ported with many investigations targeting and focusing on, indicator,
WHO12 or common PCBs found in commercial mixtures (e.g. Aroclors).
Existing studies have identified by-product PCBs in environmental samples
including PCBs 5, 11, 52, 206, 207, 208 and 209 (Hu and Hornbuckle,
2010; Bartlett et al., 2019; Rodenburg et al., 2020; Megson et al., 2022).
However, these PCBs are only a small subset of the wide range of potential
by-product PCBs that may be present in the environment. Many different
by-product PCBsmay be present in low (but potentially significant) concen-
trations, unless near a specific point source, and so can be easily missed in
chromatograms and spreadsheets. In litigation and source apportionment
studies these PCBs need to be appropriately accounted for. We investigated
whether a comparison between the observed and predicted PCB concentra-
tions in ourmultivariate models could help identify inputs from by-product
PCBs. We have observed that by-product PCBs often do not fit multivariate
models well, presumably as the model is focused on explaining the most
variance or the majority of the data. Therefore, models focus on common

trends and patterns for high concentration PCBs, which are often linked
to commercial mixture signatures that are present in the majority of sam-
ples. Our four end member NMF model was based on four end members
that represent Aroclor-like signatures (A1248, A1254, A1260 and
A1260W). We hypothesised that due to this, PCBs from commercial mix-
ture signatures would have a normal distribution with no significant differ-
ence between observed and predicted concentration from the models (as
they fit the model well). Whereas, PCBs that have a skewed distribution
that consistently underpredicted observed concentrations by the models,
may indicate the presence of a source of by-product PCBs. Using the four
end member NMF (Run 1), residual percentages were calculated using
Eq. (4) so that a negative residual corresponds with the model
underpredicting the observed concentration:

Predicted Concentration � Actual Concentrationð Þ
Actual concentration

� 100 (4)

Equation 4. Residual percentage calculation
Only a handful of by-product PCBs have ever been identified in environ-

mental samples in the scientific literature e.g. PCBs 5, 11, 52, 206, 207, 208

A1242 Percent Contribu�on
0%
15%
25%
35%
50%
70%
95%
100%

A1254 Percent Contribu�on
0%
15%
25%
35%
50%
70%
95%
100%

A1260 Percent Contribu�on
0%
15%
25%
35%
50%
70%
95%
100%

A1260W Percent Contribu�on
0%
15%
25%
35%
50%
70%
95%
100%

Fig. 2. Geospatial plots displaying the relative proportion of each end member (A1242, A1254, A1260, and A1260W, Percent Contribution) within the river section.

D. Megson et al. Science of the Total Environment 872 (2023) 162231

8



and 209 (Hu and Hornbuckle, 2010; Bartlett et al., 2019; Rodenburg et al.,
2020; Megson et al., 2022). Hannah et al. (2022) identified a total of 149
different incidental PCBs in paints which indicates there are likely to be
many that are missed. Megson et al. (2019) identified over 40 PCBs that
are major components from a variety of sources to contain inadvertently
produced PCBs (pigments and dyes, waste incineration and impurities in
other chemical processes). By using this information, the residual plot
(Fig. 3) was presented to identify potential; by-product PCBs not commonly
found in commercial mixtures (green), common Aroclor PCBs (red), and
mixed PCBs (blue) that may have originated from either by-product or
Aroclor sources.

The PCBs that best fit the model (and hence have the lowest residual
values) tended to be those that are present in relatively high concentrations
in commercial mixtures and were the most resistant to weathering such as,
PCBs 180 and 153 (Fig. 3). Two of the PCBs which had the largest
underpredictions in observed concentrations were py-product PCBs 11
and 209 (Fig. 3). However, there weremanymore PCBswhichwere greatly
underpredicted by the model and may be a result of a by-product PCB
source. Nineteen of these PCBs were identified as inadvertently produced
PCBs by authors referenced in Megson et al. (2019). These included PCBs
1–8, 9, 12/13, 15, 16, 26/29, 31, 34, 35, 126, 206 and 208. We believe
this shows the strongest evidence to date of the presence of these PCBs
from by-product sources in environmental samples. PCBs created from de-
chlorination of highly chlorinated analogues were generally well predicted
by the model (e.g. PCBs 44/47/65, 45/51, 49/69, 50/53, 52 and 88/91),
therefore it is reasonable to expect that the model is working well at
predicting PCB concentrations produced by dechlorination. The A1260W
end member also produces an excellent match (SI 1) with A1260 dechlori-
nation experiments performed byWu et al. (1998). This is important as two

key congeners in this end member (PCBs 47 and 51) are associated with in-
advertent PCBs from silicone (Jan and Peridh, 1991; Herkert et al., 2018).
However, if a significant silicone source was present then there would
also be elevated proportions of PCB 68 (Jan and Peridh, 1991; Herkert
et al., 2018) (which there is not). Whilst we cannot discount the possibility
that some of the mixed source PCBs are dechlorination products (especially
many of the lighter PCBs), the underprediction of observed concentrations
does suggest that there are many more inadvertently produced PCBs than
just PCB 11 and 209 present within Portland Harbor sediments. The resid-
ual plot also identified several PCBs that were not identified as by-product
PCBs by Megson et al. (2019), but were highly underpredicted by the
model, (PCBs 111, 112, 120, 155, 181 and 182). These PCBswere generally
detected in very low concentrations around the detection limit, which may
explain these slight underpredictions.

By investigating the residuals produced by our NMF model, we identi-
fied the following 27 PCBs that did not fit the model well and had an ob-
served concentration that was consistently underpredicted: PCBs 1–8, 9,
11 12/13, 15, 16, 26/29, 31, 34, 35, 111, 112, 120, 126, 155, 181, 182,
206, 208 and 209. When compared against the end member produced by
the five end member PVA S5 profile with a high proportion of by-product
PCBs (SI3) there is a poor correlation between PCBs identified by the resid-
uals analysis and those present in the end member. The differences may be
due to the S5 profile picking up one specific by-product PCB source (ac-
counting for ∼4 % of the total PCBs), whereas the residual analysis picks
up multiple different inadvertent sources of these individual PCBs, which
means there is no specific PCB signature that covers all by-product PCBs.
By-product PCBs are produced by many unrelated industries and processes
so they are often not all co-located which means multiple by-product PCB
sources may be identified by multivariate modelling (Mao et al., 2021a,

PCB type

By-product
Mixed

0

Re
sid

ua
l

50

-50

100

-100

Aroclor

Fig. 3.Residual plot for all PCBs with By-product PCBs (green), Aroclor PCBs (red) and PCBs thatmay have originated frommixture of both sources (blue). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2021b). End members identified in models that are a poor match for com-
mercial mixtures and contain elevated proportions of PCBs 11 or 209 are
a good indication that by-product PCBs are present. But considering the re-
siduals may bemore useful to identify potential by-product PCB sources es-
pecially for PCBs present in both by-product sources and commercial
mixtures. Residuals accounted for 6.6 % of the total PCBs mass that could
not be attributed to commercial mixtures by the NMF model, within this
52 %were attributed to known by-product PCBs resulting in a conservative
estimate that at least 3.4 % of PCBs in Portland harbor may have arisen
from by-product sources.

4. Conclusion

Seven different potential PCB signatures were identified by analysing
the same dataset using four different receptor models (NMF, ALS, PMF &
PVA) based on four and five end member solutions Although the five end
member models had a higher average cosine similarity result, there was
less consistency between the runs and resulted in the creation of very sim-
ilar endmembers where differences could not be chemically explained. The
four endmembermodelwasmore consistent and generally apportioned the
same four signatures (Aroclor 1248, 1254, 1260 and 1260W). This assess-
ment shows that there can be a high degree of variability between (and
within) multivariate models. We therefore recommend that data analysts
investigate the use of more than one model and run that model on several it-
erations to better understand the potential uncertainty in this type of analysis.

A four endmember NMF source apportionment model was used to allo-
cate the PCBs in the surface sediments of Portland Harbor to 16 % A1248,
41 % A1254 and 42 % to A1260. However, this apportionment is based on
the PCBs identified by the model. Residual analysis identified that 6.6 % of
PCBs observed in the river system could not be identified by this model.
This allowed us to revise our source apportionment as: 15 % A1248,
38 % A1254, 40 % A1260, 3.4–6.6 % non-Aroclor sources, and 0–3.2 %
other commercial mixtures.

By using residual plots produced from NMF we have provided the first
evidence for the potential presence of approximately 30 different by-
product PCBs in environmental samples (PCBs 1–8, 9, 11 12/13, 15, 16,
26/29, 31, 34, 35, 111, 112, 120, 126, 155, 181, 182, 206, 208 and 209).
Whilst we accept it is unrealistic to claim that the PCBs that did not fit
this NMF model are all definitively due to by-product PCB sources, it will
be interesting to see if subsequent research will follow this approach and
identify similar trends, thus linking these PCBs to by-product PCB sources.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.162231.
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