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Abstract: The design and investigation of an intelligent controller for hardware-in-the-loop (HIL)
implementation of hybrid electric vehicles (HEVs) are proposed in this article. The proposed in-
telligent controller is adopted based on the enhancement of a model predictive controller (MPC)
by an artificial neural network (ANN) approach. The MPC-based ANN (NNMPC) is proposed to
control the speed of HEVs for a simulation system model and experimental HIL test systems. The
HIL is established to assess the performance of the NNMPC to control the velocity of HEVs in an
experimental environment. The real-time environment of HIL is implemented through a low-cost
approach such as the integration of an Arduino Mega 2560 and a host Lenovo PC with a Core i7 @
3.4 GHz processor. The NNMPC is compared with a proportional–integral (PI) controller, a classical
MPC, and two different settings of the ANN methodology to verify the efficiency of the proposed
intelligent NNMPC. The obtained results show a distinct behavior of the proposed NNMPC to control
the speed of HEVs with good performance based on the distinct transient response, minimum error
steady state, and system robustness against parameter perturbation.

Keywords: hybrid electric vehicle; model predictive control; artificial intelligence; hardware in
the loop

1. Introduction

Electric vehicles have a long history of development and will continue to do so. Based
on a disposable battery, they were first manufactured around 1830 [1]. They were improved
in 1881 with the first electric vehicle (EV) based on a rechargeable battery. In addition, the
first EV operated via a small electric motor was made in 1898 [1]. In fact, electric vehicles
had more drawbacks than internal combustion engine (ICE) vehicles, such as the inability
to reach high speeds. In addition, the capacity of the battery was very small compared to
an ICE’s tanks [2]. Due to gasoline and oil shortages, the electric vehicle industry began
again in the twenty-first century [3]. Furthermore, the use of EVs is increasing in order to
help the environment by reducing carbon pollution. As a result, consumers returned to
using EVs based on improvements to keep up operations compared to ICE cars [1–3].

EVs are classified into three main types based on their power supplies [4]. The types
are battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and plug-in hybrid
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electric vehicles (P-HEVs). Battery-based chargers and electric motors are examples of
BEVs. However, the HEV has the advantage of combining a traction motor with an ICE
to push and move the vehicle. In HEVs, a system of regenerative braking is used to
recharge the disposable battery. The P-HEV is similar to the HEV, but it has the difference
that the batteries in the P-HEV are rechargeable through an external electric source. The
speeds of EVs are very slow compared with ICE vehicles. As a result, researchers were
forced to merge EVs with ICE vehicles in order to facilitate operation with a different
source. However, control of the resultant HEV type became harder. Therefore, HEVs are a
remarkable research field that can present a solution for decreasing oil and gas consumption,
reducing pollution, and increasing the speed of EVs [1–4]. Recently, the research area of
HEV control has grown rapidly.

The HEV is an interesting research point for many scientific researchers. The PID
controller is commonly used for many applications, such as HEVs. Reference [5], the PID is
applied to the DC motor of HEVs to control the speed. Furthermore, the HEV was studied
with a DC motor and mechanical engine to control the speed using a PID controller [6]. The
objectives of the HEV [6] are to maximize efficiency and reduce carbon. A control system for
the speed of an HEV-based DC motor using a microcontroller card as the electronic control
unit of the vehicle is demonstrated in [7]. The control design was developed using a PID
controller and realized based on a prototype that integrated different types of sensors [7].
The optimal sharing of consumed energy between an ICE and the battery source that feeds
the motor was studied [8]. Additionally, the two sources are recommended to operate in
their efficient regions. Reference [8], the energy management approach is improved based
on a neural network and fuzzy logic strategy for HEVs. In addition, fuzzy logic techniques
are proposed as a control strategy for HEVs [9]. In addition, the genetic algorithm (GA)
is utilized to obtain the optimal minimum fuel consumption and decrease the level of
emissions [9]. The authors of [10] introduced a comparative study based on different
performance tests to show the effectiveness of applying different control techniques such
as PID, H∞, and fuzzy controllers for nonlinear HEVs. Sliding mode control is applied to
achieve the required torque set point of the clutch transmission [11]. Moreover, the actual
torque is estimated based on the PI observer in [11]. Particle swarm optimization is used
to find the optimal parameters of a fractional order PID controller to track the position of
the DC motor clutch in [12]. The FO-PI was introduced by the authors of [13] to achieve
better control performance at lower speeds with high torque per ampere as a motor output,
where it was experimentally proven to be a better indirect field-oriented control method for
induction motors. The research in [14] presents several economic variables of hybrid power
train systems to demonstrate the effectiveness of MPC-based online energy management.
The article [15] shows a two-level MPC for HEVs, where it has been used to gain the finest
control strategy concerning the energy consumption method. Furthermore, the simulation
results revealed savings of up to 39% when compared to commercial solutions [16]. A study
of the series type of HEVs is discussed based on the development of energy management
by an MPC in [17]. The article [18] introduced different control techniques to maintain
the required motor speed using an electronic throttle control system [18]. The damping
speed oscillations represented an important issue for HEVs, as discussed in [19]. As a
result, the methodology of the fuzzy-PID controller is adopted to solve this problem [19].
Batteries are a very important component for HEVs, whether pure electric or hybrid types,
as they are an essential and important source of power for HEVs. Many studies concerned
with improving the performance of batteries have been carried out, such as improving the
charging rate of these batteries or increasing the capacity of the batteries to give the vehicles
a longer supply period [20–22]. A detailed review study on the most important types of
batteries and the ones most widely applied in HEVs, which are lithium-ion batteries, was
discussed in [20]. Another review study on the chemistry of batteries and the analysis of the
chemistry of cells and materials used in batteries is given in [21]. One of the most important
research topics is the recycling of batteries and its impact on sustainable development, as
presented in [22].
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In this paper, the suggested type of HEV is a series HEV. A series drivetrain is used to
achieve hybrids, in which only the electric motor gives mechanical power [2,3,6,9–11,17].
The motor is operated by either an engine-powered generator or a battery pack. The
simplest hybrid configuration is a series drivetrain. In a series hybrid, the motor is the sole
source of power that drives the wheels. An electronic card is used to estimate how much
power is drawn from the engine or generator, or battery pack. In addition to the engine
or generator, regenerative braking can be used to recharge the battery. The series type
operates with good performance during go-and-stop traffic, where engines are considered
inefficient [2,3,6,9,17]. The electronic card can control the operation of the motor by using
the battery feed only, which will allow the engine to work in the operations in which it
is better and more efficient. The batteries in the series type are considered more effective
than the engine, so the engine is typically small. Due to the importance of the electrical
part in HEVs, the focus of this research was on the design of speed control through the
electric motor. As a result, the system was considered single input, single output (SISO)
despite being multi-input, multi-output (MIMO). The rest of the paper is structured as
follows. Section 2 discusses the system modeling. Section 3 presents the implementation
of hardware in the loop, and Section 4 demonstrates the structure and behavior of the
ANN. In addition, Section 5 introduces the MPC. Finally, the results and conclusion are
given in Sections 6 and 7, respectively. The contributions of the paper can be summarized
as follows:

• Implementing an experimental HIL for HEVs to validate the performance of the
proposed controller.

• Designing a robust NNMPC for simulation and experimental speed control of HEVs.
• Evaluating the proposed controller based on different performance criteria.
• Comparing simulation and experimental results for speed control of HEVs.
• Comparing the proposed NNMPC with the PI and MPCs.

2. System Modeling

The mathematical description of HEVs is categorized into two main parts [10–19].
The first is related to mechanical components in the vehicle such as the engine and the
dynamics of the vehicle body. However, the second part is related to electrical equipment
such as batteries, DC-DC converters, motors, and generators. The studied architecture of a
series hybrid transmission vehicle is shown in Figure 1. The produced mechanical power
is converted to electrical energy through generation, as depicted in the block diagram in
Figure 1. The generator feeds the DC network with a constant power flow that is taken from
the vehicle engine. The power is drawn from the battery by the electrical motor to accelerate
the vehicle, which subsequently utilizes regenerative braking to supply that power back
to the electrical battery. The MATLAB/Simulink model of the HEV is given in Figure 2.
The model of the HEV in this article was built using physical blocks in MATLAB/Simulink
for different components of the vehicle. The parameters of the physical blocks are given
in Tables 1–7.
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Table 1. Dynamic Model Parameters.

Symbol Description Value

Tv Load torque provided by the vehicle 400 N.m

rw Wheel radius 0.3 m

W Vehicle weight 1200 kg

β Grade of road Variable

f Coefficient of vehicle rolling resistance 0

ρ Air density 1.18 kg/m3

Cd Coefficient of aerodynamic drag 0.4

A Vehicle frontal area 3 m2

v Speed of vehicle Variable

η Motor and driver efficiency 97%

2.1. Calculation Block

The calculation block in the battery model is used to calculate the power of the battery;
sensors measure the voltage and current, which are then multiplied to display this power
(Power (P) = Current (I) ∗ Voltage (V)). It also provides the lost power by squaring the
current and multiplying the internal resistance of the battery (Plosses = I2 ∗ R). In addition,
we can monitor the battery charging rate.

2.2. Purpose of Engine Management

The system of engine management is used in the vehicle to arrange the operation
of the devices for controlling the engine’s behavior. In practical systems, it prevents the
starting of the engine in case the vehicle is stolen. In addition, it can shut down the vehicle



Electronics 2023, 12, 971 5 of 20

when the power is not needed. The system of engine management provides the correct fuel
ratios and timing for every case.

Table 2. Vehicle body parameters.

Description Value

Mass 1200 kg

Number of wheels per axle 2

Horizontal distance from CG to the front axle 1.4 m

Horizontal distance from CG to the rear axle 1.6 m

CG height above ground 0.5 m

Gravitational acceleration 9.81 m/s2

Frontal area 3 m2

Drag coefficient 0.4

Air density 1.18 kg/m3

Table 3. Battery model parameters.

Description Value

Nominal voltage 201.6 Volt

Internal resistance 0.05 Ohm

Ampere hour rating 150 h × A

Voltage V1 when the charge is AH1 190 Volt

Charge AH1 when no-load voltage is V1 75 h × A

Open-circuit measurement temperature 298.15 K

Table 4. DC-DC Converter parameters.

Description Value

Output voltage reference demand 500 V

Rated output power 200 kW

Output voltage droop with output current 0.01 V/A

Maximum expected supply-side current 500 A

Winding ratio 500/201.6

Table 5. Motor and Drive System parameters.

Description Value

Motor type BLDC

Max torque 400 N ×m

Max power 200 kW

Torque control time constant Tc 0.2 s

Motor efficiency 97%

Speed at which efficiency is measured 600 rpm

Torque at which efficiency is measured 300 N ×m
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Table 6. Engine parameters.

Description Value

Engine type Spark ignition

Max power 50 kW

Speed at max power 5500 rpm

Max speed 7000 rpm

Stall speed 500 rpm

Engine inertia 0.2 kg ×m2

Engine time constant 0.2 s

Displaced volume 400 cm3

Revolutions per cycle 2

Table 7. Tire parameters.

Description Value

Rated vertical load 3000 N

Peak longitudinal force at rated load 3500 N

Slip at peak force at rated load 10%

Rolling radius 0.3 m

Tire inertia 0.01 kg ×m2

Velocity threshold 0.1 m/s

The engine speed can be controlled by controlling the air–fuel intake for combustion
in the cylinder. The air–fuel intake is determined by the throttle opening. The engine is
controlled via a proportional controller (Kp = 1 × 10−3).

The dynamic model for the vehicle is given in Equation (1) [19].

Tv =
rw

η
(W Sin β + f W cos β +

1
2

ρCd Av2 +
W
g

dv
dt

) (1)

The parameters in Equation (1) are described in Table 1.
In the engine, the crankshaft is modeled with the equilibrium equation of motion as in

Equation (2) [10–19].[
J f + Jm(θ)

] .
ω +

1
2

d(θ)
dθ

Jm ∗ω2 = Te = Ti − Tf − Tl (2)

whereω is crankshaft rotatory speed, Ti stands for the torque due to gas pressure,Tl is load
torque, Tf is friction torque.

The battery is described with the following equation:

V = V0

(
SOC

1− β(1− SOC)

)
(3)

where V0 is nominal voltage, SOC is the state of charge, and β is a constant depending on
battery operation.

The DC-DC converter is simplified and modeled by

v = vref − iload D + iload Rout (4)
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where Rout is based on losses, vref is the side of the load voltage command, D is a specified
value for the output voltage, iload is the load current.

Pelec= Plosses+ω ∗ τelec (5)

I =
Pelec
V

(6)

where τelec is the saturated demand torque, Pelec and Plosses are the used electrical power
and the power losses during operation, respectively. V and I are voltage and current at the
terminal, respectively. The values of the vehicle components are defined in Tables 2–7. The
motor type used in this study is a brushless DC motor (BLDC).

3. Hardware in The Loop (HIL)

Hardware in the loop is a test methodology that is applied to give more real-time
embedded control (see Figure 3). It is proposed to save cost and effort and improve the
effectiveness of systems [23–27]. Additionally, it is adopted to check how intelligently
devices will act with real-life systems and to ensure safety for real-life system operations.
Due to the discussed benefits of HIL, most HIL fields are related to automotive and
aerospace applications [23–28]. As a result, it behaves better than pure software testing,
as it has better coverage. Unlike the old systems approach, which required waiting until
the system was completed and integrated into its final form before beginning testing and
identifying issues, testing can begin right away. Figure 3 shows the HIL investigation
based on the Arduino Mega 2560. Testing controllers are expensive and unsafe, so the
HIL is used to replace controllers where sensors, transducers, and actuators are simulated
wherever all inputs/outputs (I/Os) are being tested by representing real-time response
and virtual environment simulations [25–27]. MATLAB/Simulink is often used to model
these environments with all the connected I/Os to verify if the component is fit for its
purpose. In this paper, the control design for HEV-based HIL is proposed to describe how
the validation of the HIL signaling model has been used through the Arduino Mega 2560
to obtain a more accurate simulation (closed loop system) with different scenarios and to
test the suggested intelligent controllers.
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4. Artificial Neural Network (ANN)

The ANN is an algorithmic structure inspired by human brains that consists of multiple
layers (see Figure 4): one for input, one or more hidden layers, and one for output [29–33].
Each node (artificial neuron) has its own threshold, which activates whenever the data
exceed that threshold and moves them to the next layer of this network [29–33]. It learns
from training data that consist of inputs and outputs and improves their accuracy over time.
Hence, an adaptive system is created and improved continuously [31–33]. The significance
of ANNs can be summarized by the fact that they can execute different tasks at the same
time and operate with lacking knowledge. Additionally, they are commonly utilized in
applications of control, as suggested in this paper, due to their tractability with collected
data. As a result, it is recommended to build a nonlinear model and very complicated
relations [32,33].
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In this study, the data used for the training process of the ANN were collected via
four inputs and one output. Delayed setpoint speed with one sample, error of system and
its change, and delayed actual speed with one sample are the four inputs suggested. IN
addition, the actual speed of the vehicle is proposed as the output of the ANN.

5. Model Predictive Controller (MPC)

Model predictive control is able to control the system through the error signal re-
sulting from the difference between the desired behavior and the output of the sensors
used to measure the system’s reaction to the desired signal. Furthermore, it is used to
predict the future output of the plant by calculating data and for optimizing future control
actions [14–17]. It is considered an advanced control method that is applied efficiently
and successfully in many applications. It is dependent on three key processes, such as
optimization, summarizing, and correcting feedback signals [14–17].

The MPC bases its decision on a linear system model. In this paper, it is used for a
single input, single output (SISO) system, and it can be tested experimentally with different
control laws to monitor the resulting system output via MATLAB/Simulink-based HIL.
The MPC parameters are listed in Table 8.
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Table 8. Parameter description of MPC.

Parameter Value

Control interval (seconds) 0.001

Prediction horizon (P) 70

Control horizon (M) 20

Constraints 400 ≥ u ≥ −400

Weight (Q) 0

Rate weight (R) 0.0009975

Output weight 0.99

ECR weight 100000

The MPC is governed based on cost function and constraints as given below.

C(k) = ∑P
i=1 Q.[ ŷ(k + i|k )− r(k + i|k )]2 + ∑M−1

i=0 R.[∆u(k + i|k )]2 + ∑P
i=1 Q1.[u(k + i|k )]2 (7)

Subject to
ymin ≤ ŷ(k + i|k ) ≤ ymax (8)

umin ≤ u(k + i|k ) ≤ umax (9)

∆umin ≤ ∆u(k + i|k ) ≤ ∆umax (10)

where P and M are prediction control variables. k is time of the discrete signal, i is an index.
ŷ, u, ∆u are forecasted output, best control parameter, and change in rate of the control
parameter, respectively. The state space model used to build the expected signal in the
MPC is formulated in the following Equation (11).

A =

1.8911 −1.0638 0.1726
1.000 0 0

0 1.000 0

, B =

1
0
0


C = 10−3 ×

[
0.0612 0.1622 0.0255

]
, D = 0

(11)

6. Results

Speed control for a simulation model and the HIL investigation of HEVs are the main
contributions in this article. The HIL investigation is proposed to verify the simulation re-
sults for the control design process. The control of speed is achieved by applying intelligent
controllers to the HEV. Based on the NN speed control design, the improved MPC was
created. To visualize the results with graphs and numerical values, the MATLAB/Simulink
software was used. The speed profile for the study is classified into various modes of
operation. The profile is designed so that the HEV operates at 54 km/h for the first two
hours, then accelerates at 3.6 km/h2 from 2 to 7 h to the target speed of 54 km/h. The HEV
continues to operate at a constant speed of 54 km/h in the following phase.

We built the nonlinear model in MATLAB/Simulink. In the case of the MPC, we used
the design function in the MPC block to linearize the model as shown in Figure 5. In the
case of an MPC based on an NN, we used the NN to extract the model as shown in Figure 6.
In this research, the behavior of speed control in HEVs was used to process the data needed
to build an improved MPC using an ANN. The data were accurately collected and based
on the application of an ANN for improving controllers or building a forecasting model.
One of the most important procedures in the construction is to choose the number and type
of inputs for the enhancement model. Four inputs were used, and they were functions of
error, its rate of change, the desired speed, and the measured speed.
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The collected data for ANN training were obtained through four inputs and one
output. System error, error change, delayed setpoint speed with one sample, and delayed
actual speed with one sample were the four inputs chosen. In addition, the measured speed
was selected as the output of the neural network.

Figure 6 shows the flow of signals that were input and output from the ANN, as well
as the connections between the HEV model and the MPC. In the beginning, the model is
run through the MPC, and the required data are stored in an Excel sheet between the HEV
model and the MPC. These data are divided into training, testing, and validation to build
the desired controller.

The suggested controllers for speed control are PI, MPC, and NNMPC. The study is
divided into two scenarios, as explained below.
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6.1. Scenario (1): Nominal Case

In the first scenario, the data are collected from the system based on the MPC. Then,
three types of NN are introduced based on different settings, as given in Table 9. The sample
data for training, validation, and testing for the three ANN-based MPCs are depicted in
Table 9. In addition, the evaluation criteria for the three ANNs, such as mean square error
(MSE), regression, and performance are also given in Table 9.

Table 9. Data of ANNs.

ANN Samples MSE Regression Performance

A
N

N
1 Training 8001 1.76 × 102 9.99 × 10−1

3.75 × 105Validation 5000 0 0

Testing 7000 1.93 × 102 9.99 × 10−1

A
N

N
2 Training 10,001 1.86 × 102 9.99 × 10−1

1.63 × 105Validation 7000 1.70 × 102 9.99 × 10−1

Testing 3000 2.09 × 102 9.98 × 10−1

A
N

N
3 Training 13,001 1.42 × 102 9.99 × 10−1

9.44 × 104Validation 4000 0 0

Testing 3000 1.44 × 102 9.99 × 10−1

To enhance the model-based ANN, the training algorithm is varied from the Levenberg
–Marquardt approach in ANN1 and ANN2 to the Bayesian regularization algorithm in
ANN3. As a result, ANN3 depicted a distinct training in the comparison process compared
to ANN1 and ANN2. Considering the three built ANNs, we can observe that ANN3 has a
good evaluation, such as a minimum MSE for the training, validation, and testing processes
that are around 1.42 × 102, zero, and 1.44 × 102, respectively.

The suggested ANNs, PI controller, and classical MPC were applied to the simulated
model of the HEV to control the speed. After that, the results were verified based on
experimental HIL for the vehicle to check the performance of the introduced strategies. The
constant speed response and various mode profiles are demonstrated in Figures 7 and 8.
In Figures 7 and 8, the speed response of the vehicle is controlled via PI and MPCs.
Figures 9 and 10 show the constant speed response of the HEV for the simulation model
and HIL environment, respectively, for the improvement of the ANN-based MPC. The
variable mode profile of speed for the simulation model and HIL investigation are presented
in Figures 11 and 12. In addition, Figure 13 demonstrates the performance of the suggested
controllers. In addition, the performance of the controllers is compared using numerical
values in Table 10. However, Table 11 compares the behavior of the vehicle based on
different controllers. The integral time absolute error (ITAE), integral square error (ISE),
and integral absolute error (IAE) were applied as evaluation methods in the variable mode
profile as in Table 11.

Table 10. Performance Criteria based constant response.

Controller Rise Time Settling Time Overshoot

PID 6.88 ×10−7 2.0353 0.2756

MPC 7.38 ×10−14 0.1814 0.4091

ANN1-MPC 0.0037 0.2318 0.076

ANN2-MPC 0.0025 0.1975 0.0104

ANN3-MPC 0.0017 0.1718 0.0101
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Table 11. Performance Criteria based on variable speed profile.

Controller ITAE ISE IAE

PID HIL 523.5 1185 58.71

PID SIM 523.5 1184 58.7

MPC HIL 57.41 910.6 10.05

MPC SIM 57.34 910.5 10.04

ANN1 HIL 57.56 910.6 9.971

ANN1 SIM 57.98 910.7 10.02

ANN2 HIL 57.73 910.6 9.976

ANN2 SIM 57.67 910.6 9.968

ANN3 HIL 57.52 910.6 9.951

ANN3 SIM 57.46 910.6 9.943

The simulation and experimental HIL results were obtained by MATLAB/Simulink
from the closed loop system with the PI controller, the MPC, and three trials of improvement
of neural network-based data collected from the MPC. The desired velocity profile is
proposed to be a constant speed function and a variable speed profile with acceleration,
constant, and deceleration modes. The suggested controllers clearly have significantly
better tracking performance at a constant speed and across the entire speed range. However,
there is a difference in performance among controllers as shown in the figures and tables.
For example, in the case of the PI controller, when overshoot occurs, the error increases at
first when the speed reference changes, but it decreases once the reference speed stopped
increasing as shown in Figures 7 and 8. However, overshoot does not occur in the MPC
because of the high value in the case of PI (see Figures 7 and 8). As a result, the MPC
achieves better performance over the full speed range when compared with PI. The speed
response of the vehicle system with a PI controller and MPC is presented and compared in
Figures 7, 8 and 13 and Table 10. The response-based PI controller takes a longer time to
control the vehicle and to reach the desired speed. However, the MPC takes a shorter time
compared to PI controllers.

In this study, a neural network is trained using groups of MPC data to improve MPC
behavior by minimizing overshoot and settling time. We introduce three trials of training
with different settings and parameters. After obtaining a well-trained MPC based on three
adaptive ANNs, it is very useful to test the improved control system by controlling the
speed of the vehicle in different profiles and different environments.
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Figures 9–12 show the adaptive ANN-based MPC response for the simulation model
and experimental HIL. Considering the obtained numerical results in Tables 10 and 11 and
plotted figures in Figures 9–12, it is very clear that the adaptive ANN3-based MPC has
the best performance in terms of minimum rise time, minimum system overshoot, and
minimum steady-state error compared with ANN1-MPC, ANN2-MPC, the classical MPC,
and PI controller. Additionally, the zoomed-in parts in Figures 7–12 show smooth results
for adaptive ANN3-MPC in comparison with oscillations in output vehicle speed for the
MPC and PI.

In fact, when compared to other methods, the performance of adaptive ANN3-MPC
offers an acceptable settling time of about 0.17 h and a percentage of overshoot of 0.01%,
as shown in Table 10. Therefore, the adaptive ANN3-MPC is a recommended control
approach to control the velocity of HEVs from the point of view of the simulation and
HIL results.

From the above, this can be good proof that the proposed adaptive neural MPC in this
article has better performance than the other trained ANNs, MPC, and PI.

6.2. Scenario (2): Disturbance Rejection

In this article, another test is introduced in order to prove the efficacy of the proposed
adaptive neural network-based MPC in terms of the accuracy and stability of speed control
of HEVs. The test is established by providing the system with a source of disturbance. The
disturbance source is created from sine wave noise and band-limited white noise during
the operation of the speed control system. The equation of the produced disturbance signal
is as follows:

Disturbance(t) = A× sin(ωt)+Rnd(t) (12)

Rnd(t) =
{

Random white noise IF (|Random white noise| < Threshold)
Threshold IF (|Random white noise| ≥ Threshold)

(13)

where A and ω stand for signal amplitude and frequency. Rnd(t) is a random signal noise
based on (13). The generated disturbance is plotted in Figure 14.
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The parameters of the signal were adjusted to create the suggested disturbance source,
as shown in Table 12. Consequently, the noise disturbance signal as given in (11) was sent
from the computer to the model of the HEV through the Arduino Mega 2560. As a result,
this HEV formed the perturbed environment for the speed control of the HEV in testing the
performance (see Figures 15–18). Additionally, the speed responses of constant and various
mode profiles are compared in Figures 15–18. These figures are plotted for the simulation
model and HIL environment. In addition, the responses are evaluated using a numerical
comparison in Table 13. This table contains the three types of errors for the variable mode
speed profile.

Table 12. Parameters of the disturbance signal.

Disturbance

Sine wave
Amplitude (Volt) 0.1

Frequency (Hz) 0.1

White noise saturation
Power (Volt) 0.00008

Threshold (Volt) ±0.05

Electronics 2023, 12, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 14. Disturbance signal. 

 

Figure 15. Constant Speed Simulation Response for HEV-based Adaptive ANNs with disturbance. Figure 15. Constant Speed Simulation Response for HEV-based Adaptive ANNs with disturbance.

Table 13. Error comparison for disturbance rejection study.

Controller ITAE ISE IAE

PID HIL DIST 523.6 1185 58.73

PID SIM DIST 523.6 1184 58.72

MPC HIL DIST 57.96 910.6 10.11

MPC SIM DIST 57.86 910.6 10.1

ANN1 HIL DIST 58.07 910.7 10.03

ANN1 SIM DIST 57.5 910.6 9.961

ANN2 HIL DIST 58.76 910.8 10.11

ANN2 SIM DIST 58.66 910.8 10.09

ANN3 HIL DIST 58.35 910.7 10.05

ANN3 SIM DIST 58.25 910.7 10.04
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In this scenario, considering the graphs and results in Table 13, it is very obvious
that the speed response with the proposed adaptive ANN3-based MPC is still stable with
small oscillations. Furthermore, it is clear that in the case of the ANN3-based MPC, HEV
robustness against applied disturbance signals has been achieved. Based on the results,
the neural MPC (ANN3-MPC) is recommended for use in the system, even though most
adaptive ANN-based MPCs performed well in the disturbance test.

There are many ways to implement the idea of HIL, with the need to take into account
the speed of the processor and the size of the memory. In this study, in order to reduce the
cost, a PC was used and its processor was utilized as the main processor for the hardware,
with the Arduino interface.

7. Conclusions

In this paper, a new intelligent controller (NNMPC) has been introduced for the speed
control of HEVs. The NNMPC is compared to different types of controllers such as PI and
the classic MPC. The study was designed to simulate a model of a vehicle and then verify the
results with an experimental HIL environment. The HIL was investigated using an Arduino
Mega 2560 and a host computer, with complex vehicle parts modeled. We introduced two
different scenarios in this article; the first is the nominal case study without any variations
for the system, and the second was used to test the behavior of the proposed new intelligent
vehicle controller in the case of disturbance rejection signals. A constant speed signal and a
variable mode speed profile were used to test the vehicle. After a deep study, the simulation
and experimental results show the effective use of the improved NNMPC for precise control
of the speed of the vehicle. The final decision was produced depending on the distinct
numerical comparison in terms of steady-state errors and transient errors. The results
show minimal errors and good performance obtained by the new NNMPC in comparison
with other strategies. As a result, the proposed intelligent controller is recommended to
be applied for speed control of hybrid electric vehicles. The study of internal combustion
chamber controller design will be considered in future work. In addition, the study will
extend to practical HEVs. Furthermore, battery energy management is suggested for future
research to reduce and manage battery energy consumption. In addition, in the future, the
investigation will be more extensive, relying on high-quality data cards and processors
such as FPGA and Raspberry Pi.
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