
Please cite the Published Version

Ayzed Mirza, Muhammad, Yu, Junsheng, Raza, Salman, Krichen, Moez, Ahmed, Manzoor, Khan,
Wali Ullah, Rabie, Khaled and Shongwe, Thokozani (2023) DRL-assisted delay optimized task
offloading in Automotive-Industry 5.0 based VECNs. Journal of King Saud University: Computer
and Information Sciences, 35 (6). p. 101512. ISSN 1319-1578

DOI: https://doi.org/10.1016/j.jksuci.2023.02.013

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/631439/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article which appeared in Journal of King Saud
University: Computer and Information Sciences, published by Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-9784-3703
https://doi.org/10.1016/j.jksuci.2023.02.013
https://e-space.mmu.ac.uk/631439/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

DRL-assisted delay optimized task offloading in automotive-industry 5.0
based VECNs

Muhammad Ayzed Mirza a, Junsheng Yu a,b,c,⇑, Salman Raza d, Moez Krichen e, Manzoor Ahmed f,
Wali Ullah Khan g, Khaled Rabie h,i,⇑, Thokozani Shongwe i

aBUPT-QMUL EM Theory and Application International Research Lab, Beijing University of Posts and Telecommunications, Beijing 100876, China
b School of Physics and Electronic Information, Anhui Normal University, Wuhu 241003, China
c School of Intelligence and Digital Engineering, Luoyang Vocational College of Science and Technology, Luoyang 471000, China
dDepartment of Computer Science, National Textile University, Faisalabad 37610, Pakistan
e Faculty of CSIT, Al-Baha University, Saudi Arabia ReDCAD Laboratory, University of Sfax, Tunisia
f School of Computer and Information Science and also with Institute for AI Industrial Technology Research, Hubei Engineering University, Xiaogan 432000, China
g Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg City 1855, Luxembourg
hDepartment of Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
iDepartment of Electrical and Electronic Engineering Technology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa

a r t i c l e i n f o

Article history:
Received 19 January 2023
Revised 10 February 2023
Accepted 11 February 2023
Available online 24 February 2023

Keywords:
Automotive-Industry 5.0
Vehicular Edge Computing (VEC)
Task offloading
Beyond fifth-generation (B5G)
Deep Reinforcement Learning (DRL)

a b s t r a c t

The rapid growth of Automotive-Industry 5.0 and its emergence with beyond fifth-generation (B5G) com-
munications, is making vehicular edge computing networks (VECNs) increasingly complex. The latency
constraints of modern automotive applications make it difficult to run complex applications on vehicle
on-board units (OBUs). While multi-access edge computing (MEC) can facilitate task offloading to exe-
cute these applications, it is still a challenge to access them promptly and optimally. Traditional algo-
rithms struggle to guarantee accuracy in such dynamic environment, but deep reinforcement learning
(DRL) methods offer improved accuracy, robustness, and real-time decision-making capabilities. In this
paper, we propose a DRL-based mobility, contact, and load aware cooperative task offloading (DCTO)
scheme. DCTO is designed for both cellular and mmWave radio access technologies (RATs), and both bin-
ary and partial offloading mechanisms. DCTO targets delay minimization by opportunistically switching
RATs and offloading mechanisms. We consider relative efficacy and neutrality factors as key performance
indicators and use them to derive the DRL agent’s reward function. Extensive evaluations demonstrate
that the DCTO scheme exhibits a substantial enhancement in task success rate, with an increase from
2.61% to 21.34%. It also improves the efficacy factor from 1.38 to 3.52 and reduces the neutrality factor
from 4.99 to 0.76. Furthermore, the average task processing time is reduced by a range of 3.77% to
24.15%. Additionally, the DCTO scheme outperforms the other evaluated schemes in terms of reward
and TFPS ratio.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recent technological advancements in the Automotive-Industry
5.0 and smart vehicles along with the emergence of beyond fifth-
generation (B5G) communication, the vehicular edge computing
networks (VECNs) are becoming more convoluted (Khan et al.,
2022). The goal of Automotive-Industry 5.0 is to enable the intelli-
gent linkage among humans and connected and autonomous vehi-
cles (CAV) utilizing cutting-edge technologies like 6G
communications, machine learning tools, edge computing, and
more (Ahmed et al., 2022; Liu et al., 2022). The real-time intelli-
gence brought by the smart vehicles greatly uplifted the inter-
connectivity, sharing dynamic road safety data, and quality of

https://doi.org/10.1016/j.jksuci.2023.02.013
1319-1578/� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding authors.
E-mail addresses: mamirza@bupt.edu.cn (M.A. Mirza), jsyu@bupt.edu.cn (J. Yu),

salmanraza@ntu.edu.pk (S. Raza), moez.krichen@redcad.org (M. Krichen), waliullah.
khan@uni.lu (W.U. Khan), k.rabie@mmu.ac.uk (K. Rabie), tshongwe@uj.ac.za
(T. Shongwe).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2023.02.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jksuci.2023.02.013
http://creativecommons.org/licenses/by/4.0/
mailto:mamirza@bupt.edu.cn
mailto:jsyu@bupt.edu.cn
mailto:salmanraza@ntu.edu.pk
mailto:moez.krichen@redcad.org
mailto:waliullah.khan@uni.lu
mailto:waliullah.khan@uni.lu
mailto:k.rabie@mmu.ac.uk
mailto:tshongwe@uj.ac.za
https://doi.org/10.1016/j.jksuci.2023.02.013
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

experience (QoE) in VECNs (Tang et al., 2021). However, vehicular
intelligent and immersive applications are also increasing swiftly
to accompany the QoE but with the increased resources require-
ments and latency sensitivity. On the other hand, the computation
power of modern vehicles alone, is not enough to meet the require-
ments of these applications (Jiang et al., 2021).

To overcome this challenge, the concept of computation/task
offloading has been widely employed, and traditionally done
through multi-access edge computing (MEC), and vehicular edge
computing (VEC). MEC, and VEC being the edge computing para-
digms, are installed in closer proximity to the vehicles at serving
evolved-node-B (eNB), road side units (RSUs), or at parking lots.
Therefore, are effective in reducing transmission and processing
delay and improving energy consumption. Besides, Vehicle-
vehicle, vehicle-to-edge, and edge-to-edge both horizontal and
vertical collaboration is also widely proposed in research to
addresses these latency and load unbalancing issues (Ahmed
et al., 2022).

In addition, to perform the task offloading operation, various
radio access technologies (RATs) options are available. For
instance, dedicated short-range communications (DSRC) and cellu-
lar (i.e., 4G/5G/LTE and 5G new radio (NR)). Task offloading is sup-
ported by all these RATs, but each of them has different levels of
support for the various vehicle to everything (V2X) use cases
(Naik et al., 2019). Consequently, their support for high through-
put, ultra-low latency, high reliability and accuracy, and high
mobility can significantly change the next-generation VECNs and
their applications (Shibata et al., 2019).

However, nearby vehicles, vehicle cloudlets, and MEC/VEC ser-
vers have considerable computational capabilities. In addition,
there are various RATs to communicate with these resource-rich
nodes (Boukerche and Sotoro, 2020). Still, offloading decision-
making is another important point, because completing the tasks
under the given limit depends on this decision.

1.1. Motivation & contributions

Reducing the delays, such as processing, queuing, and transmis-
sion, is the most important task offloading objective. However, the
dynamic and complex conditions in vehicular edge computing
environments pose major challenges for task offloading, including
network variability, mobility, resource limitations, high computa-
tional demands, and latency restrictions. These challenges require
innovative solutions to handle the complexities and deliver accu-
rate results in real-time. RL/DRL methods can be used to address
these difficulties by learning directly from the environment (Jin
et al., 2022). To tackle the challenges of task offloading in the
dynamic VECN environment, we propose a DRL-based task offload-
ing scheme. The key features of the proposed DRL based mobility,
contact, and load aware cooperative task offloading (DCTO) scheme
are as follows:

System Configuration: A VECN dynamics aware 5G-NR-V2X
architecture based systemmodel is followed. Hybrid wireless tech-
nologies and transmission methods in sub-6 GHz and 28 GHz fre-
quency bands have been considered to minimize the transmission
latency. Vehicles generate tasks, process them locally or generate
offloading requests to the VEC server at RSU for processing, while
being under RSU’s coverage area.

Assessment Structure: The dynamic attributes of tasks and their
arrival, communication and availability metrics of computational
resources are considered in the system model. Characteristics of
the vehicle environment, such as local and edge resources avail-
ability, and communication parameters are closely monitored
and updated whenever they become operational upon the task
arrival. Relative efficacy and neutrality factors are also introduced
for fair estimation of computation offloading.

Algorithm Design: Initially, a computation offloading and
resource allocation optimization objective is formulated, while
ensuring that the whole offloading process complies with delays
and resource constraints. Later, this objective is transformed into
a Markov decision-making process (MDP) based on the description
of states and actions in the dynamic VECNs setup. Then, a DRL-
driven DCTO scheme is proposed following proximal policy opti-
mization (PPO) to minimize the overall task processing latency.

Numerical Evaluation: Numerical results show that our proposed
DCTO scheme achieves significant advantages over other DRL-
based task offloading schemes. Like, more reward in less time with
less variability, even training takes less time. Furthermore, better
task success and failure ratio, higher average relative efficacy and
lower neutrality factor.

The rest of the paper is organized as follows. The system model,
including the network, communication, and computation models,
is presented in Section 3. The problem formulation and the DCTO
scheme are discussed in Section 4. Numerical results and discus-
sions are provided in Section 5, and the paper is concluded in
Section 6.

2. Related work

We investigated different task offloading schemes in VECNs.
Several approaches for instance, heuristic, greedy, game theory,
convex/non-convex optimization, machine learning (ML), and RL/
DRL, have been adopted to address the task offloading challenge.
Some techniques have focused on minimizing computation and
communication delay, cost, and energy, while some other work
has been done on optimal resource allocation, MEC/VEC load bal-
ancing, server selection, and QoS stability.

For instance, considering the optimization of task acceptance
ratio and execution time, Nguyen et al. (2022) targeted the compu-
tational resources of parked vehicles. A meta-heuristic edge
genetic algorithm (EdgeGA) is proposed to deal with the time com-
plexity and scalability problems of binary integer problems (BIP)
while formulating the task offloading problem. A containerized
orchestration framework is built for the task offloading problem
on Kubernetes. In an other work Du et al. (2022) aimed to reduce
the system cost and latency while exerting nonorthogonal multiple
access (NOMA) based VEC model. Two heuristic algorithms are
proposed, one for offloading decision optimization and the other
for vehicular clustering and resource allocations. However, the pro-
posed solution provides a low-cost and latency-optimal solution
but comes at the cost of high complexity.

Optimization and game theoretic approaches are also widely
applied in computational offloading research. Similarly, Luo et al.
(2021) exerted Pareto optimality and particle swarm optimization
(PSO) into vehicular task offloading problem. A multi-objective
optimization is provided to decrease the delays and system cost
while jointly considering the offloading decision and the resources
(communication and computation). In another work, Shu and Li
(2022) introduced a quantum PSO algorithm and targeted to
reduce the latency and energy consumption while resource alloca-
tions. In another work Raza et al. (2021) also provided a game-
theoretic task offloading scheme while considering both modes
(mmWave and cellular) of 5G new-radio-vehicle-to-everything
(NR-V2X) radio access technology (RAT). The proposed scheme
aims to reduce overall system delay and energy consumption. To
further improve the system, Raza et al. extended their work in
Raza et al. (2022), and utilized multi-hop V2V communications,
vehicular clouds to optimize task’s average response time. Simi-
larly, Deng et al. (2021) proposed a user-centered joint optimiza-
tion loading scheme for edge computing in the Internet of Things
(IoT). The goal is to minimize the weighted cost of time delay,

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

2

energy consumption, and price while meeting the advanced per-
sonalized needs of users. The optimization problem is modeled
as a mixed-integer nonlinear programming problem and solved
using a branch-and-bound algorithm based on linear relaxation
improvement and a particle swarm optimization algorithm based
on 0–1 and weight improvement. Likewise, Chen et al. (2022a)
introduced a distributed multi-hop task offloading decision model
for improved task execution efficiency in MEC based vehicular net-
work. Initially the candidate vehicles are selected based on k-hop
wireless communication range. Later, the task offloading problem
is modeled as a generalized allocation model and solved using
the greedy algorithm and improved discrete bat algorithm. A
new approach to Federated Learning (FL) in VEC is proposed by
Liu et al. (2021) to address the challenges of communication over-
heads and data privacy. The proposed approach, called FedCPF,
provides a customized local training strategy, a partial client par-
ticipation rule to reduce uplink congestion, and a flexible aggrega-
tion policy to manage communication overheads.

The literature has proposed a number of task offloading
approaches using various techniques, such as heuristics, greedy
algorithms, game theory, and convex/non-convex optimization,
to tackle the challenge of task offloading. The main objective in
task offloading is to minimize delays, which encompass processing,
queuing, and transmission time (Nguyen et al., 2022; Du et al.,
2022; Luo et al., 2021; Shu and Li, 2022; Raza et al., 2021; Raza
et al., 2022; Deng et al., 2021; Chen et al., 2022a).. However, vehic-
ular edge computing environments are characterized by dynamic
and complex conditions that pose considerable difficulties for task
offloading. These conditions can include, among others, network
variability, mobility, resource limitations, high computational
demands, and latency restrictions. These dynamic challenges make
task offloading in vehicular edge computing environments a com-
plex problem that requires new approaches to handle the intrica-
cies and deliver accurate results in real-time (Jin et al., 2022). To
overcome these complexities, one approach is to leverage direct
learning from the environment through RL/DRL methods (Jin
et al., 2022). DRL offers a model-free approach that is capable of
handling complex and high-dimensional state spaces, resulting in
improved accuracy, robustness, generalization, and real-time
decision-making capabilities, which make it a more suitable alter-
native compared to conventional algorithms (Jin et al., 2022; Liu
et al., 2022).

RL/DRL has dramatically anchored state-of-the-art performance
in various vehicular environments, particularly the task offloading
(Liu et al., 2022). Considering the dynamic nature of the vehicular
environment, Shuai et al. (2021) provided a delay optimization
scheme. Initially, the transmission latency is minimized using the
optimal flow-based routing algorithm, then a deep Q-learning
based task offloading strategy selection scheme is used for adap-
tive task offloading considering the MEC load states. In another
work Cui et al. (2021) proposed a multi-objective RL scheme for
task offloading. Firstly K-nearest neighbour approach is used for
the selection of offloading layers, then a V2V collaborative
algorithm is used for V2V computation sharing scenarios. Later, a
Q-learning based communication and computation resource
allocation algorithm is used in MEC for further cost, latency, and
reliability optimization. Similarly, Yao et al. (2022) also presented
a twin delayed deep deterministic policy gradient (TD3) based
computation offloading scheme. The offloading problem is initially
transformed into Markov decision process (MDP), then TD3 is used
to find the optimal offloading strategy given the minimum delay
and energy consumption. In one of the works, Zhang et al.
(2022a) address the limited energy and computing capacity of
internet of things (IoT) nodes by integrating wireless power trans-
mission and mobile edge computing. A DRL-based framework is
proposed to learn the near-optimal wireless power transmission

duration. Another work by Zhou et al. (2020) proposes a solution
for task offloading optimization in an Internet of Health Things
(IoHT)-based e-Health paradigm. The task offloading problem is
formulated as an adversarial multi-armed bandit problem and a
ultra-reliable low latency communications (URLLC)-aware task
offloading scheme based on the exponential-weight algorithm for
exploration and exploitation (EXP3) algorithm is designed to
dynamically balance the URLLC constraints and energy consump-
tion. In another work by Qiao et al. (2020), a distributed trustwor-
thy storage architecture with RL is proposed for intelligent
transportation systems (ITS). The architecture features an intelli-
gent storage scheme that stores data dynamically based on trust-
worthiness and popularity, improved resource scheduling, and
storage space allocation. A trapdoor hashing based identity
authentication protocol is proposed to secure the transportation
network access and a federated trusted evaluation model is used
to evaluate the trustworthiness of edge servers and data producers.

Holding a trade-off between computation and communication
while observing the local, MEC, and cloud resources, Wang et al.
(2022) proposed a quantum-inspired RL (QRL) task offloading
scheme. The resource management scheme is initially formulated
as a delay optimization problem which is later transformed into
an MDP problem, then QRL is applied to find out the optimal
resource allocation policy. Quantum parallelism is adopted here
with QRL algorithm for the acceleration of convergence and to
overcome the dimentionality. In another work, Zhang et al.
(2022b) also provided an RL-based task offloading algorithm to
minimize task execution and communication delays with through-
put optimization while using Sub-6 GHz and 28 GHz frequency
bands. The task offloading problem is initially formulated into
MDP, then a DRL-based deep Q-network (DQN) algorithm is
applied for task offloading and resource allocation to reduce
latency. Moreover, a federated RL algorithm is used to minimize
transmission overheads. Similarly, Chen et al. (2022b) proposed
an asynchronous advantage actor-critic (A3C) based task offloading
scheme while considering fairness and efficiency. Firstly, joint
offloading and resource-allocation are optimized in accordance
with delay constraints. Later, the problem is transformed into
MDP and A3C is applied for the optimal offloading decisions.

3. System model

This section proposes a vehicle and edge collaboration architec-
ture considering sub-6 GHz and mmWave communication and
transmission modes.

3.1. Network and communication model

We consider an architecture where eNBs are connected to the
core cloud while serving next-generation Node B (gNB) type RSUs
and RSUs serving 5G-NR capable vehicles, as shown in Fig. 1. Each
RSU ri is connected to and can communicate with the attached VEC
server, and an eNB or remote cloud center through a dedicated link.
There is a parking access point (P-AP) at the parking lot, which is
connected to the parked vehicles and the adjacent gNB type RSUs
through a dedicated link. The system architecture is supposed to
be on 5G NR-V2X RAT with mmWave and Sub-6 GHz spectrum
bands. There are two types of vehicles in our model, resourceful
vehicles represented by v j , and resource demanding vehicles vk .
Both v j;vk can communicate with each other through ri and with
the VEC server attached to the ri through Uu links or mmWave
links. Here, i; j; k 2 N and N ¼ 1;2; . . . ;Nf g, and is a natural
number.

We have considered that vehicles are equipped with multiple
antennas, as they are supposed to communicate on both

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

3

Sub-6 GHz and mmWave links. The allocated spectrum to the v j

and vk is orthogonal (ITU, 2021). The transmission rate Rc
k;i for cel-

lular link among vk and the connected ri is:

Rc
k;i ¼ Blog2 1þ pkd

�n
k;i jhj2

� �
=r2

� �
; ð1Þ

where B is the channel bandwidth, pk is vehicle transmission power.
dk;i is the distance among vk and ri and is defined by
dk;i ¼ rdlk=re � lk½ �; lk is the current position of vk and r is the commu-
nication footprint radius of ri. In addition, n denotes the path loss

exponent (Wang et al., 2016), jhj2 is Rayleigh fading of uplink chan-
nel (Wang et al., 2018), and r2 is the white Gaussian noise (Raza
et al., 2022).

The signal to noise ratio (SNR) of a typical mmWave based link
is calculated by following (2) and the data transmission rate is cal-
culated using (3).

SNRk;i ¼ pmm
k � rmm � 10 log10 Bmmð Þ
þ2Grx ;tx � 101 log10 dj;i

� �� 69:6� qa;
ð2Þ

Rmm
k;i ¼ Bmm log2 1þ SNRk;i

� �� �
: ð3Þ

Pmm
k is vk’s transmit power for mmWave, rmm;Bmm, and 1 are noise

power in the mmWave link, mmWave bandwidth, and the path loss
exponent, respectively. Grx ;tx is the antenna gain of a generic
mmWave based Rx� Tx pair. qa is the shadow fading effect mod-
eled as qa ¼ N 0; r2

� �
, a log-normal random variable with zero-

mean standard deviation whose value is set to 5:0dB for LOS and
7:6dB for NLOS at 28GHz (3GPP, 2019). Moreover, the contact dura-
tion tk;i of vk with ri can be calculated as:

tk;i ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � e2

p� �
= lk
�!

: ð4Þ

here, lk
�! and e are the vector speed of vk and vertical distance

between the road and the ri, respectively.

3.2. Task model

Weconsiderthatthetimedomainisdividedintosnsectionsofequi-
lengthmt-timeslots m; n; t 2 Nð Þ.Thetaskgenerationprobabilityfol-
lowsaBernoullidistributionwithprobabilityP,hencethemeanrateof
task arrivals k# ¼ P=t (Ye et al., 2021). Each offloading vehicle gener-
ates#k taskat thebeginningof t-timeslot, andeach#k taskconsistsof
a6-tuple#k ¼ ck; sk; tk;uk; xk; dkf g.Here ck; sk, anduk are therequired
CPUcycles, task input size inbits, andmaximumthresholdexecution
time of task #k, respectively. Whereas, xk represents the vehicle vk’s
position, anddk is thedistance amongservingRSUandvk.While, tk is
#k’s arrival time.

3.3. Offloading decision model

Each #k task is associated with a dk offloading decision, where
dk 2 0;1f g. The decision dk ¼ 0 corresponds to local processing
and dk ¼ 1 implies that the task is decided to be offloaded. When
ever dk ¼ 1, the vehicle also has to decide the optimal offloading
decision dk. Here, dk 2 0;1f g, and defines the offloading type, i.e.,
binary or partial offloading. The dk is set to 0 when binary offload-
ing is opted otherwise it is set to 1 for partial offloading.

3.4. Queue, resources state model

Being realistic, vk can only offload as many #k tasks or as many
portions #k;z z 2 Nð Þ of #k as it currently has, and follows
sok 6 qsk � svk, the offloading constraint. All the sizes are in bits. Here
sok; q

s
k, and svk are the offloading task size, queue size, and the local

task’s size, respectively. The offloading task size sok also follows
sok 6 Rj;i constraint. The queue size evolution can be expressed
as:

qsk t þ 1ð Þ ¼ max svk � sok þ k#
� �

;0
� 	

; ð5Þ

Fig. 1. System model, illustrating the framework mechanism followed to conduct the task offloading under both NR C-V2X and mmWave technologies.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

4

The computation resources (local or edge) allocation can be
done only within the one of corresponding t-time slot. The
dynamic CPU resource state SC

t at the starting of t-time slot can
be represented as following matrix:

SC
t ¼

C1; c1 C1; c2 . . . C1; cn
C2; c1 C2; c2 . . . C2; cn

: : . . . :

: : . . . :

Ct ; c1 Ct; c2 . . . Ct; cn

2
6666664

3
7777775 ð6Þ

Ct ; cn, is the residual CPU time of tth time slot for the nth CPU, it
ranges from 0 to t.

Since, every task arrives at the start of t-time slot, it may not be
processed immediately, as there could be other local and or off-
loaded tasks in the queue to be processed. Therefore, a task may
have to wait for the starting of new t-time slot. Additionally, it
has to wait in the in-slot waiting queue before its processing turn.
The slot waiting delay can be expressed as t:sn, and the in-slot
queuing delay tq can be calculated as in (7).

tq ¼ sn �max Ct; c1;Ct ; c2; . . . ;Ct ; cnf gð Þ: ð7Þ

3.5. Computation model

The computing model we followed consists of local computing
model and edge computing model, and they are as follows.

1) Local computing model:We assume that all the vk, the offload-
ing vehicles, have the same CPU frequency, denoted as fk. While
assuming c as CPU cycles required to process one bit of task, then
the average local processing delay for task #k having a size of sk
can be calculated as:

Tl ¼ 1� dk 1� dkð Þð Þ t:sn þ tq þ c askþsv
kð Þ

fk

 �
; s:t: Tl 6 uk:

�
ð8Þ

here, a is the portion of the task to be processed locally, and has a
value range of 0 6 a 6 1.

2) Edge computing model: Each RSU is considered to be equipped
with a multi CPU VEC server, and each VEC server performs parallel
computing of various types of tasks. The availability of each CPU
will be different at every t-time slot, due to dynamic nature of
VECN’s. When vk is unable to process the #k task within uk time,
it is decided to be offload at the edge, then dk is set to 1.

The VEC server’s CPU resources are assigned to the #k tasks
according to the longest available CPU time in the corresponding
t-time slot. Just in case, there are multiple CPUs available with
the same CPU time availability, then a random CPU selection is
done. Moreover, processing #k task at VEC also includes the
t:sn; tq, and the transmission delays. The waiting time at VEC can
be expressed as:

Te ¼ dk
c bso

kð Þ
fe

þ t:sn þ tq þ bso
k

Rk;i

�
;

s:t: Te 6 uk:

ð9Þ

here, Rk;i is the generalized term for transmission rate, either for
cellular or mmWave accordingly. When Te complies with the
Te 6 uk; bsok=Rk;i

� �
6 tk;i, and dk ¼ 1; anddk ¼ 0, the value of b

becomes 1 and the computation is entirely done by the VEC. The
b is the portion of task to be processed at VEC, it have a value range
of 0 6 b 6 1. However, both a and b must follow the constraint
aþ b ¼ 1.

The decision dk ¼ 1; anddk ¼ 0, is only taken when vk has no free
CPU available to accommodate the #k at given t-time slot. Other-
wise, if vk has some free CPU available but not enough to complete

the #k task, it must choose partial offloading considering uk. In
addition, when partial offloading is opted both dk; dk become 1.

4. Problem formulation and the solution

In this section, we formulate the delay minimization problem.
We have proposed our solution considering efficacy and neutrality
factors for offloading with the aim of reducing the overall task pro-
cessing delay. The total delay of a given task can be expressed as:

Ck ¼ 1� dk 1� dkð Þf g � Tl þ dk � Te; ð10Þ
Ck represents the processing delay for single task, the average delay
Cavg , for K total tasks can be determined by following (11).

Cavg ¼ 1
K

XK
k¼1

1� dk 1� dkð Þð ÞTl þ dkTe½ �: ð11Þ

The lower the value of Cavg , the more efficient and rationale the
allocation of resources will be. Ultimately the system will be able
to process more tasks. Therefore, minimizing the average task pro-
cessing delay is the optimization goal and can be expressed as:

minimize
Tl ; Te

1
K

XK
k¼1

Cavg ;

s:t: C1 : min Tl;Tef g 6 uk;

C2 : 8 dk 2 0;1f g; and 8 dk 2 0;1f g;
C3 : 8 k 2 1;2;3; . . . ;Kf g:

ð12Þ

Here the constraint C1 specifies that the minimum of Tl;Te

should be less than or equal to the maximum threshold time uk to
process the #k task. dk and dk are the offloading decision parameters
in C2. When the local processing is opted, the decision dk becomes 0.
However, when there is no free CPU available locally on device at the
given time slot the dk becomes 1, but dk remains 0. Moreover, when
there is free CPU available locally but is not satisfying the condition
Tl 6 uk, then, dk becomes 1 along-with the dk. At this moment, par-
tial offloading will be opted, i.e., a part of #k will be processed locally
according to the available CPU, and b part will be offloaded to VEC. In
addition, when partial offloading is opted, the total latency Ck must
follow the uk constraint to process #k.

Due to the dynamics of the VECN environment, the information
of the tasks/sub-tasks uploaded to the VEC is not the same for each
t-time slot. Consequently, in this type of situation, rational com-
parison should be followed for evaluation. Therefore, we introduce
the efficacy and neutrality factors as follows. The local completion
delay Cb for a given task #k is considered as a benchmark to facil-
itate the comparison.

1) Efficacy factor: The product of difference between Cb;Ck and
uk;Ck is considered as relative latency saved from processing. This
will show the effectiveness of the offloading decision, and can be
expressed as:

Cs
k ¼ Cb � Ckð Þ � uk � Ckð Þ ð13Þ

Cs
k is for only one task, the average Cs

k for all K tasks can be consid-
ered as the relative efficacy factor, expressed in (14). It is worth
mentioning here that the higher the value of Cs

avg , the more effec-
tive the offloading decision is.

Cs
avg ¼

1
K

XK
k¼1

Cb � Ckð Þ � uk � Ckð Þ½ �: ð14Þ

2) Neutrality factor: The neutrality is taken as a measure of the
fairness of task processing in terms of delay. The neutrality is cal-
culated by the variance of the difference of Cs

k and Cs
avg , expressed

in (15). It should be noted that the lower the value of the neutrality
factor, the more effective the offloading decision will be.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

5

Cr ¼ 1
K

XK
k¼1

Cs
k � Cs

avg

� �2
: ð15Þ

The goal of optimization is to provide maximum fairness
between tasks, i.e., ensuring the minimum average processing
delay of all K tasks/sub-tasks scheduled at t-time slot. Due to the
influx of dynamic tasks and the complex VECN environment, the
optimization objective mentioned in (12) is difficult to achieve
using traditional optimization schemes. Therefore, in this article,
we propose a DRL-driven DCTO scheme to determine the optimal
offloading policy.

In the following sub-section, we show the integration of the
complex VECN environment with the DRL method for optimal
computation offloading decision making. We use the PPO model,
because it is relatively new and has proven its performance in con-
junction with the edge computing platforms unlike other RL algo-
rithms (Lv et al., 2022).

4.1. DRL and the PPO

DRL is an evolution and extension of RL with deep neural net-
work (DNN) (Li, 2017). A typical RL problem consists of an agent
interacting with temporal states of the environment for a defined
goal. The DRL agent grabs observations at st , takes action at on it,
then the environment moves to the next state i.e., stþ1, and returns
the reward rt . Both st and at belong to state space S and action
space A, respectively. The agent follows p at jstð Þ policy to select
action at .

The reward is given according to the reward function
R st ; at; stþ1ð Þ and environment state action probability P stþ1jst ; atð Þ.
This trend continues until the agent observes a termination condi-
tion. The expected accumulated reward from state st at t-time slot
can be expressed as:

Rt ¼
Xmend

m¼0

cmr st ; atð Þ ð16Þ

here, c is the discount factor and is a real number, from 0 to 1. The
state value function vp sð Þ is the expected accumulated reward at s
following policy p, given in (17). The action value function qp s; að Þ is
the expected accumulated reward after a chooses p on s, given in
(18). Both functions exhibit how decent a state and state-action pair
is, their relationship is given in (19).

vp sð Þ ¼ Ep Rtjst ¼ s½ � ð17Þ

qp s; að Þ ¼ Ep Rt jst ¼ s; at ¼ a½ � ð18Þ

vp sð Þ ¼
X
a2A

p ajsð Þ qp s; að Þ ð19Þ

The ultimate goal of RL is to learn the optimal policy
vp� sð Þ ¼ maxa vp sð Þ ¼ maxa qp� s; að Þ, that maximizes the expected
total reward at any temporal state of the state space. Both policy
and value optimization is done using DNNs in DRL. The value-
based DRL algorithms attempt to optimize the difference between
a value function/network and a real-value function, expressed in
(20). DQN and double DQN are examples of value-based DRL meth-
ods (Van Hasselt et al., 2016).

LV hð Þ ¼ Et vp� stð Þ � v st; hð Þ½ Þ�2 ð20Þ
Here, v �; hð Þ and vp� �ð Þ represent the value network and real-value
function, respectively, and h represents network parameters. Et �½ �
denotes the pragmatic median, over samples from a finite memory
batch. On the other hand, there are other methods of DRL that
approximate the policy network (parameterized policy) using pol-
icy gradient (PG) methods, such as actor–critic and REINFORCE

(Degris et al., 2012). A generally used PG estimator structure is

described in (21), with estimator function bAt and p stochastic
policy.

rLPG hð Þ ¼ Et rh logp at jst ; hð Þ bAt

h i
ð21Þ

Besides, the policy-based DRL algorithms also suffer from high
variance in obtaining Rt , due to the use of Monte Carlo sampling.
In addition, they also face local maxima convergence of on-policy
updates. The generalized advantage estimator (GAE) overcomes
some of these shortcomings, and provides a compromise amid bias
and variance (Schulman et al., 2016). The GAE can be expressed as
(22), while / is used for the bias-variance trade-off adjustment.

bAGAE c;/ð Þ
t ¼

Xtend
t¼0

c /ð Þm gvtþm ð22Þ

gvt ¼ rt þ cv stþ1 ; xð Þ � v st ; xð Þ: ð23Þ
Augmenting the ability for exploration to solve local maxima,

off-policy methods are introduced. PPO, introduced by OpenAI,
works under off-policy learning mechanism, The objective function
of PPO is defined in (24), with rt hð Þ policy probability ratio in (25)
(Schulman et al., 2017).

LCLIP hð Þ ¼ Et min rt hð ÞbAt ; clip rt hð Þ;1� �;1þ �ð ÞbAt

� �h i
ð24Þ

rt hð Þ ¼ p at jst ; hð Þ =p atjst ; holdð Þ ð25Þ
The clip function in (24), bounds rt by the interval 1� �;1þ �½ �,

with the � clip range control hyperparameter. Therefore, there are
two probabilities for rt hð Þ, the clipped and and the unclipped. The
minimum of both objective probabilities is taken, to restrict the
final objective to the lower bound of the unclipped objective. Fol-
lowing these developments in PPO, we develop the DCTO scheme
adopting PPO.

4.2. MDP model formulation

Generally, an MDP is represented by a 5-tuple
M ¼ S;A; P;R; cf g. The role of these MDP elements in the context
of our task offloading problem is described in the following
subsections.

1) State space: The learning agent takes offloading decisions on
the basis of these environmental states. In our case, for each #k

task, we define the state space as in (26).

S¼D sjs ¼ ck; sk; tk; stk; sto; ste; dkð Þf g ð26Þ
whereas, ck; sk; andtk are the task parameters. stk and ste contain infor-
mation about the remaining CPU cycles required to complete the cur-
rent task by the local processing unit (LPU) and the edge, respectively.
sto is the remaining amount of task data to be offloaded to the edge. dk

belongs to the wireless communication environment, i.e., the distance
between the vehicle vk and the serving RSU.

a) The local processing state stk: For stk state, suppose task #k is
scheduled at t1 time slot, and the vehicle vk itself is capable of

computing it. At this point, stk t1½ � is initialized to c askð Þ, and Cl
f

CPU time is assigned to compute #k, every t P t1 thereafter, where

Cl
f #Cl

t ; cn.

The value of stk will decrease by Cl
f until the execution of #k is

completed, and stk becomes 0, as expressed in (27). The condition,
stk ¼ 0 , implies that the vehicle vk can process the new task, other-
wise it is called busy.

stk t½ � ¼ max stk t � 1½ � � Cl
f

� �
;0

n o
; t > t1 ð27Þ

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

6

b) The offloading state sto: Now, for state sto, suppose that at time
slot t2, a task needs to be offloaded such that the conditions
Tl 6 uk and dk ¼ 0 are not feasible. At this stage, the sok data of task
#k is needed to be uploaded to the edge. Therefore, sto t2½ � is set
equals to sok. After realizing the wireless communications,
bsok=Rk;i

� �
bits will transmitted from the vehicle to the edge, fol-

lowed by each t P t2. Consequently, sto is reduced by bsok=Rk;i
� �

,
until the uploading process is complete or it becomes 0, this pro-
cess of updating the offloading state is given by:

sto t½ � ¼ max sto t � 1½ � � bsok
Rk;i

t � 1½ �
�

;0

 �

; t > t2 ð28Þ

c) The edge computing ste: The functional activity of edge state
ste, is identical to the stk. Suppose at time slot t3, there is a task that
is uploaded to the edge and is ready to be processed. Then the edge
state is set to ste t3½ � ¼ c bsok

� �
, immediately. At every upcoming time

slot the edge server provide Ce
f CPU cycles, where Ce

f #Ce
t ; cn, there-

fore, reduces the ste by Ce
f , i.e., given by:

ste t½ � ¼ max ste t � 1½ � � Ce
f

� �
; 0

n o
; t > t3 ð29Þ

Since, the state space is assumed to be discrete, therefore, each
element of the state space has a sufficient range of values (i.e.,
0 6 ck;0 6 sk;0 6 tk;0 6 stk;0 6 sto;0 6 ste; and0 6 dk 6 r). Conse-
quently, it depicts that our MDP contains a very large state space.

2) Action space: The offloading decisions that our learning agent
makes while observing the VECN environment are taken as actions.
These include, L#e;B#o;P#o, and E#e actions. Therefore, our MDP
action space is the union of 4 action sets, i.e.,

A¼DLe [Bo [Po [Ee ð30Þ
a) Local execution action L#e: The action L#e is performed on a

given task to process it task locally. The set Le, holds all such
actions and can be defined as:

Le ¼D L#e
1;L#e

2; . . . ;L#e
m

� 	 ð31Þ
here, L#e

m (m 2 1;2; . . . ;mf g) indicates themth task is ready for exe-
cution in the LPU’s ready queue. This action can only be taken when
the ready queue of LPU has space for #k task, and an idle CPU is
available. Then, the processing condition is set to dk ¼ dk ¼ 0.

b) Offloading actions B#o, and P#o: Unlike L#e, the actions B#o and
P#o decide to proceed for edge computing option for a given task.
But, these actions can only be taken when no idle CPU is available
on LPU and or the condition Tl 6 uk is not sufficiently good. The sets
of such binary Bo and partial Po offloading actions are defined as:

Bo ¼D B#o
1;B#o

2; . . . ;B#o
m

� 	 ð32Þ

Po ¼D P#o
1;P#o

2; . . . ;P#o
m

� 	 ð33Þ
Action B#o

m is taken on a given mth task at the beginning of the
t2 time slot only when there is no idle CPU available on the LPU.
Besides, the action P#o

m is opted when the condition Tl 6 uk is
not satisfiable despite having idle CPU on LPU. A given task can
be offloaded in a binary manner or partially, not the both ways.
Therefore, only one action from B#o

m, and P#o
m actions can be taken

on a given mth task at t-time slot, accordingly.
c) Edge execution action E#e: The Offloading actions (B#o;P#o)

are associated with edge execution actions. Since edge execution
can only be done when a given task/sub-task is completely off-
loaded to the edge server. The set Ee containing all edge computing
actions is defined as:

Ee ¼D E#e
1; E#e

2; . . . ; E#e
m

� 	 ð34Þ

action E#e
m illustrates the mth task ready to be executed on the vehic-

ular edge. Suppose, at the start of the t3, task #k is completely offloaded
i.e., sto ¼ 0, then agent will be able to take action E#e

m on the given task.
3) Rewards: The reward function is responsible for indicating how

good the state transition is. Suppose, at the t-time slot, the agent per-
forms action at and moves from st to stþ1 receiving the reward rt .

The time consumption based reward function R st ; at ; stþ1ð Þ for
DCTO scheme is defined as:

R st; at; stþ1ð Þ¼D w :Cs
k st; at; stþ1ð Þ ð35Þ

The constant w in (35) is used to scale the reward value range.
The agent interacts with the environment from state st while fol-
lowing a stochastic policy p at jstð Þ. Next, a Markov chain of states
is obtained, i.e., st ; at ; stþ1; atþ1; . . ., then the accumulated reward
can be expressed as:

Rt ¼
Xmend

m¼0

cmR stþm; atþm; stþmþ1ð Þ; st 2 S: ð36Þ

Rt is the weighted sum of the saved latency of all the tasks if c ¼ 1.
Therefore, finding the optimum offloading policy p� is consistent
with the main objective described in the first half of the Section 4.

4.3. The DCTO scheme

Our DCTO scheme is established on the PPO algorithm. It consists
of two actors (Act1;Act2) and one critic Crit1 network, as shown in
Fig. 2. The Act1 network is used to represent the current policy ph,
which drives the agent to relate with the VECN environment. The
Crit1 network evaluates the ph with respect to the reward assign-
ment. The latter updates itself, via backpropagation of the loss func-
tion. The Act2 is used to represent the old policy phold . After training
the agent a few steps, the parameter (h) of Act1 is used to update
Act2. By reiterating the policy updating process until the PPO is con-
verged, we obtain a trained VECN task-offloading model established
on an actor-critic framework. The following sub-sections describe
the working of our DCTO scheme and the training process of the
offloading agent interacting with the environment.

1) The DCTO training Algorithm: Since the DCTO scheme is built
on PPO, the DNN architecture includes parameter sharing and a
GAE estimator. Then the general objective function can be
expressed as in 37 while substituting (22), (25) into (24).

LPPO hð Þ ¼ Em LCLIPm hð Þ � fLVm hð Þ
h i

ð37Þ

f is the loss coefficient here. We take pragmatic mean from mini
batches-of-samples after their summation for LCLIPm ; LVm values,
instead of expectations in (20) and (24).

The PPO based training algorithm is presented in Algo.1. The
DNN initialization of both actor networks is done with the same
parameters. Since Act2 belongs to policy phold , and policy phold is
used to sample (lines 4–10), i.e., to explore, the VECN environment.
The state transition trajectories [i.e., (s1; a1; r1; s2; a2; r2; . . . ; send)]
made by following phold are sampled and stored into Tti. The GAE
advantage Ati of each trajectory Tti is also calculated in advance,
for training efficiency. At this stage the paired (Tti;Ati) sampled data
is stored in the cache, to be used in the optimization stage. The
exploration stage is used to refine the agent’s knowledge of actions
for long-term reward. However, the exploitation phase is used for
optimization of rewards while following greedy approach along
with the estimated GAE. For optimization of ph, i.e., exploitation
(lines 11–13), the policy parameters are updated. Considering the
cached paired (Tti;Ati) sampled data, gradient descent Adam is used
to optimize the ph policy in each epoch. Later, the policy phold is
updated with the policy ph, and the cached data is wiped out, then
the next iteration gets under way.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

7

Fig. 2. DCTO agent interaction with the VECN environment.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

8

Algorithm 1. The DCTO training algorithm

Algorithm 2. DCTO algorithm

a) Training optimization: Since random actions are performed in
the exploration phase, the validity of the action cannot be assured,
as if the agent has taken a valid action or not. According to the sys-
tem model and our MDP model, there are constraints attached to
each action. Suppose that a randomly chosen action is to locally
process a given task #k, and there is no locally idle CPU available,
then the action taken is not a legal action. Similarly, an edge com-
puting action cannot be taken until #k is not completely uploaded
to the edge server. Therefore, to improve the training, the training
of the DRL agent in the sampling phase is designed in such a way
that such illegal actions do not affect the environmental state.
Besides, the agent is penalized over this non-legit action.

In order to force the learning agent to avoid the non-legit
actions, we have added ð as a penalty term with the reward, and
ð 2 ðl;ðo;ðef g. ðl;ðo, and ðe are the non-legit action penalties for
the local, offloading, and edge processing actions, respectively.
Therefore, the optimal reward function of our DCTO scheme can
be rewritten as:

R st; at; stþ1ð Þ¼D w Cs
k st; at; stþ1ð Þ � ð

� � ð38Þ
The objective of the DCTO scheme is to train the DRL agent for

offloading decision making while inquiring the attached con-
straints. The DRL agent interacts with the VECN environment, as
shown in Fig. 2, and works according to the instructions mentioned
in Sections 3 and 4.

2) The DCTO Offloading Algorithm: Each DRL agent requires inter-
action with the environment to explore the states. Algo.2 describes
the VECN task offloading environment of our proposed DCTO
scheme. Learning, and environment interaction of the DRL-agent
is a joint process. Therefore, both Algo.1 and Algo.2, work for each
other. Algo. 2 takes local processing or VEC processing decisions
from Algo. 1. For all types of decisions, Algo.2 must calculate
Ck;C

s
k;C

s
avg , and Cr, and return these values to the Algo. 1.

However, if the local processing is chosen (step 5), Algo.2
updates the local state stk and returns the updated state to the
Algo.1. Besides, if a binary offloading decision is made (step 9),
the Algo.2 updates the states sto; ste, accordingly. Also, if a partial
offloading decision is given (step 13), then the states stk; sto, and
ste are updated, and returned to the Algo.1. The contact period of
the vehicle vk with ri is considered before the latency calculation
and updating process for binary and partial offloading decisions.
The Algo.1 assigns rewards or penalties to the learning agent based
on the states stk; sto; ste at time slot t þ 1 following the rules
described in Table 1.

Later, if task states stk; sto, and ste all are set equal to 0 and then
the task #k’s status is set to #k ¼¼ done , it is considered that the

Table 1
Reward and penalty mechanism.

dk dk Tl 6 uk Te 6 uk tk;i > bsok=Rk;i
� �

Remark

0 0 - - - No task
local processing 1 0 T - - Reward

1 0 F - - Penalty
Binary offloading 0 1 - T T Reward

0 1 - F T Penalty
0 1 - T F Penalty
0 1 - F F Penalty

Partial offloading 1 1 T T T Reward
1 1 F T T Penalty
1 1 T F T Penalty
1 1 F F T Penalty
1 1 T T F Penalty
1 1 F T F Penalty
1 1 T F F Penalty
1 1 F F F Penalty

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

9

current task has been processed successfully. Then it is handed
over to the result dissemination process, and the next #kþ1 task is
loaded for processing. The results dissemination process then
observes the contact duration tk;i of vehicle vk with ri, the resulting
output of task sopk , current data rate Rk;i, edge offloading decision
parameter, and the task processing status #k. If the vehicle vk’s stay
time under RSU ri is greater than the result transfer time (i.e.,
sopk =Rk;i), and the offloading option is opted (i.e., dk ¼¼ 1), and the
task processing is completed (i.e., #k ¼¼ done), as per step 18, then
the result is sent directly to vk. Otherwise, the result is forwarded
to the nearest riþ1 in headway of vk.

After exploring the VECN environment and exploiting the sam-
ple state, action, and reward trajectories, the learning converges to
a certain point. At this particular point the DCTO scheme is said to
be optimally trained. The following section provides a detailed dis-
cussion of the results obtained for testing our DRL agent.

5. Simulation setup, results and discussion

In this section, extensive simulation evaluations are presented
to estimate the proposed DCTO scheme.

5.1. Simulation setup

We consider a scenario with a one-way straight 2 km long road,
with evenly distributed 5 RSUs, each having one sided coverage
range of 200 m for C-V2X, and 150 m for mmWave. Similarly,
the vehicles have 100 m C-V2X, and 80 m mmWave communica-
tion range. We assume that each vehicle is moving on the road
with a random speed between 8 m/s – 18 m/s. The task size and
processing threshold time is randomly selected from a range of 1
– 50 MB, and 200 – 500 ms, respectively. Moreover, we have also
implemented a sub-task mechanism. The sub-task ratio is set to
1 : 1� 100½ �, i.e., a single task may contain 1 to 100 sub-tasks. Sim-
ulations are implemented in Python 3.7 using PyTorch
STable (1.13.1) for all the schemes. The DRL algorithms used in
these schemes are implemented on the guidelines provided by
OpenAI. Other simulation parameters and DRL hyperparameters
are listed in the Table 2.

5.2. Contender approaches and evaluation metrics

The DCTO scheme has two variants. Both variants are
extensively evaluated under highly dynamic contexts against other
DRL based offloading schemes as follows. To ensure a fair

comparison, the simulation parameters were kept consistent
across all schemes, with any exceptions noted.

� DCTO-PPO: It is the exact proposed scheme.
� DCTO-TRPO: It differs from DCTO-PPO with the change of DRL
algorithm, that the learning agent is based on trust region policy
optimization (TRPO).

� DQN: It is a Deep Q-Network (DQN) based MEC task offloading
scheme where vehicles process a task locally or offload to the
MEC. This scheme optimizes the computation latency while
considering binary offloading and using LTE-C-V2X RAT
(Zhang et al., 2022c).

� DFO-DDQN: It is another LTE-C-V2X based MEC offloading
scheme based on dueling DQN. DFO-DDQN considers partial
task offloading and optimizes the latency while including local
and V2I computation offloading scenarios (Tang et al., 2022).

� AUC-AC: It is an edge based task offloading scheme and uses
actor critic (A2C) DRL algorithm for decision making. It is a C-
V2X RAT based binary offloading scheme that maximizes the
saved latency (Gu et al., 2021).

The episodic reward and the algorithmic time frames per step
(TFPS) are used to evaluate the DRL properties of learning agents.
Additionally, we use the average efficacy and average neutrality
factors to evaluate communication and computation delays, and
the task success and drop ratio to measure the number of com-
pleted tasks in the VECN environment.

5.3. Results and discussion

We have conducted several evaluations to test the validity and
robustness of our proposed DCTO scheme under a highly variable
and dynamic VECN environment.

1) DRL performance evaluation: In this section, we evaluate the
DRL features of our proposed DCTO schemes.

Figs. 3(a) and 3(b) depict the effect of varying the learning rate on
the episodic reward in DRL. Fig. 3(c) shows the variation of TFPS dur-
ing the learning process with different learning rates. The learning
rates is set to 0.0005, 0.0007, and 0.0009 and the mean episodic
reward rate is observed. Fig. 3(a) shows the actual rewards but it is
difficult to determine which learning rate produces the best rewards.
To obtain a clearer picture, the Savitzky-Golay filter was applied to
smooth the trend of the obtained rewards, as shown in Fig. 3(b).
From the Fig. 3(b), it can be seen that a learning rate of 0.0007 yields
a slightly higher reward rate than the other learning rates.

In the DRL based task offloading scheme, the TFPS rate is a cru-
cial metric to evaluate the performance of the DRL agent. The aim
is to achieve a lower TFPS over time, indicating that the agent is
performing well. The results of our experiments, depicted in
Fig. 3(c), show that the learning rate of 0.0007 resulted in a better
TFPS compared to the learning rates of 0.0005 and 0.0009. There-
fore, the learning rate of 0.0007 is used in all further experiments
for optimal performance in DCTO schemes for.

Extending the DRL characteristics evaluations, we have compared
DCTO scheme with other DRL based VECN task offloading solutions,
as shown in Figs. 4(a–c). Episodic reward is typically related to com-
munication and processing delays in most task-offloading environ-
ments (Zhang et al., 2022c; Tang et al., 2022; Gu et al., 2021).
Therefore, we have taken the saved latency as the episodic reward
for equitable comparisons as mentioned in Section 4.3. Figs. 4(a)
and 4(b) display the mean episodic rewards of various schemes. As
evident, DCTO_PPO and DCTO_TRPO outperform other DRL algo-
rithms in the VECN environment in terms of rewards. The average
reward achieved by DCTO_PPO is 41.40, while DCTO_TRPO achieved
38.81. Both DCTO_PPO and DCTO_TRPO are close to each other as
they are designed over Minorize-Maximization (MM), but DCTO_PPO

Table 2
Simulation parameters.

Parameter Value

No. of vehicles vk and RSUs 20, 4
Task generation probability 0.7
One bit processing density 300 CPU cycles
Per CPU Computation capacity

of vk and ri

1 MHz–1 GHz, 1.5 GHz–2.5 GHz

pk;h, and r 1.3w, 0.23, 3 � 10�13

pmm
k ;rmm; 1, and Grx ;tx 30 dB, �174, 3.3, 13 dB

Cellular Bandwidth 20 MHz in 800 MHz frequency range
mmWave Bandwidth 200 MHz in 28 GHz frequency range

DRL Parameter
Training/ Evaluation time steps 100 k
per update steps 2048
Learning rate, c / discount factor 0.0007, 0.99
Batch size, epochs 64, 10
GAE /, Clip range, w 0.9–1, 0.2, 0.2
Entropy, value function coefficient 0–0.01, 0.5–1
Max value of gradient clipping 0.5
Penalty ðl;ðo , and ðe 4

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

10

takes the lead. This lead of DCTO_PPO is due to it’s simplicity, less
complexity, and efficient sampling mechanism. However, TRPO uses
KL divergence and trust region constraints, which increase its com-
plexity and affect convergence. In fact, PPO is a simpler and less com-
plex variant of TRPO, which uses a clipping and penalty mechanism
instead of KL divergence. On the other hand, similar to the DCTO
schemes, the AUC-AC also employs the actor-critic model. In terms
of rewards, the AUC-AC performed better than DQN and DFO-
DDQN and obtained an average reward of 16.92, but it did not reach
the level of performance of both DCTO schemes. The DQN algorithm
had an average reward of 03.43, while DFO-DDQN was able to attain
an average reward of 11.10. Besides, if we compare these actor critic
based solutions with the Q-Network based solutions, they performed
worse in comparison. Both DQN and DFO-DDQN overlap each others
half the time but then DFO-DDQN takes the lead over DQN. The DQN
scheme remain unable to recover itself until the end of the simula-
tion. Besides, DFO-DDQNmanages to recover itself in the second half
of the simulation, but is still unable to compete in performance with
the DCTO schemes. In addition to the reward comparison, Fig. 4(a)
depicts the analysis of TFPS for all algorithms. DCTO_PPO starts off
with a high TFPS but gradually learns to maintain a lower TFPS, ulti-
mately reaching an average TFPS of 196.67. On the other hand,
DCTO_TRPO begins with a low TFPS but over time, instead of decreas-
ing, it increases. However, after a certain period it stabilizes at almost
the same TFPS for each time frame and has an average TFPS of
223.12. The learning behavior of AUC-AC is similar to that of
DCTO_TRPO, but with a tendency to have a flat slope close to zero.
It starts with a lower TFPS, increases, and then stabilizes at almost
the same TFPS for each time step, although lower than DCTO_TRPO.
AUC-AC reaches an average TFPS of 171.29. In comparison, DQN and
DFO-DDQN exhibit a different but similar learning pattern. Initially,
the slope of DQN is close to zero, but as learning starts, it maintains
a lower TFPS, ending up inferior to all but DCTO_TRPO. DFO-DDQN is
superior in terms of TFPS, but falls short of AUC-AC and the proposed

DCTO_PPO over half of the time. DQN and DFO-DDQN reach average
TFPS values of 217.54 and 206.69, respectively.

Summary: DRL algorithms have distinct features and performance
measures, but their effectiveness can vary in different settings. In our
study, we examined the characteristics of DRL in the 5G-NR-V2X
VECN environment. Among the analyzed algorithms, DCTO schemes
showed themost consistent reward, with DCTO_PPO performing par-
ticularly well. While DFO-DDQN had the lowest TFPS rate, it was not
as consistent as DCTO_PPO, which consistently achieved lower TFPS
from beginning to the end of the evaluation. To conclude, the PPO-
based DCTO algorithm demonstrated the best overall performance
among the compared schemes.

2) Offloading performance evaluation: In this section, we assess
the offloading performance of our proposed DCTO schemes com-
pared to other state-of-the-art methods. Task turnover vs drop
ratio and latency are important metrics to consider when evaluat-
ing the effectiveness of an offloading scheme.

Fig. 5, provides an analysis regarding task success rate versus
task drop rate of various task offloading schemes. This evaluation
is part of the evaluation process for deciding whether to compute
the task locally or offload it to the VEC server. Timely and accurate
decision making according to the task and resource constraints
leads to successful task execution or else it may lead to failure.
On similar grounds, both variants of DCTO outperform all other
task offloading schemes in terms of task success and failure rates.
DCTO_PPO provides task processing success and failure rates of
94.43%, 05.57%, respectively. The other variant, DCTO_TRPO pro-
vides a success and drop rate of 93.12%, 06.88%, respectively.

In contrast to the DCTO schemes, DQN, DFO-DDQN, and AUC-AC
provide task processing success rates of 76.22%, 87.82%, and
91.99%, respectively. Similarly, the task drop rates of DQN, DFO-
DDQN, and AUC-AC are 23.78%, 12.18%, and 08.01%, respectively.
Statistically, AUC-AC performs well against DQN and DFO-DDQN
schemes but not against DCTO schemes. DFO-DDQN maintains its

Fig. 3. Impact of variable learning rate on mean episodic reward, and TFPS variability.

Fig. 4. Mean episodic reward and TFPS analysis of different DRL algorithms.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

11

superiority over the DQN based offloading scheme, but is inferior
to all other schemes.

Similarly, minimizing task processing latency is also considered
important in any task offloading scheme. We consider efficacy and
neutrality factors as performance indicators, which are derived
from task processing latencies and are described in Sections 4-1
and 4-2. Fig. 6 and Fig. 7 show average relative efficacy and neu-
trality statistics for increasing number of tasks.

We evaluate the efficacy and neutrality factor of over 100 tasks per
second with 1 to 100 random subtasks for each task. For fair compar-
ison, all the parameters of this test are kept as mentioned in Sec-
tion 5.1. From the Figs. 6 and 7, it can be seen that each task
offloading scheme is able to save some time but with performance
differences. However, both of DCTO schemes perform almost identi-
cally but with different efficacy and neutrality factors, and outperform
to other schemes. All the offloading schemes initially has better save
time ratio, when task rate is up to 40 tasks per second. Since, the sys-
tem will perform better when the number of tasks is less.

Conversely, if the tasks are increased, the performance of the sys-
tem will ultimately depend on the task handling mechanism and its
capacity. But both DCTO schemes in this range achieve much better
average efficacy and neutrality factors due to the binary offloading
mechanism. When the task rate is increased from 40 to 80 tasks
per second, DCTO schemes perform both binary and partial offload-
ing. As the task rate goes up from 40 to 80 tasks per second, the DCTO
schemes engage in both binary and partial offloading. And when the
task rate keeps rising from 80 to 100 tasks per second, the DCTO
schemes fully adopt partial offloading, achieving optimal efficacy
and neutrality factors while balancing the computing platforms. On
average, DCTO_PPO attained an efficacy factor of 4.63, and
DCTO_TRPO attained 3.36, with average neutrality factor of 1.29,
and 1.31, respectively. Additionally, DCTO_PPO saved 44.87% of time,
while DCTO_TRPOmanaged to saved 43.59% of time. The DFO-DDQN
algorithm balances the computing platforms through partial offload-
ing, but it does not achieve the same level of time savings as the
DCTO schemes. On average, it achieved an efficacy factor of 3.25
and a neutrality factor of 2.05, while saving 36.53% of the time.
DQN and AUC-AC both perform binary offloading, but DQN performs
better in terms of average efficacy compared to AUC-AC. On the other
hand, AUC-AC performs better in terms of average neutrality com-
pared to DQN. Both DCTO schemes and DFO-DDQN are similar in
terms of neutrality factor, with DCTO_PPO outperforming all other
offloading schemes. The average efficacy factor achieved by DQN
and AUC-AC is 1.11 and 1.30, respectively, and their average neutral-
ity factor is 6.28 and 4.58, respectively. On average, DQN and AUC-AC
saved 20.72% and 41.10% time, respectively.

Task threshold time is another important constraint when eval-
uating task offloading schemes. In this study, we evaluated the per-
formance of all tasks offloading schemes under various task
threshold times, as depicted in Figs. 8 and 9. The results varied
due to randomness, but all offloading schemes were able to process
tasks even at the lowest uk. However, their performance in terms
of efficacy and neutrality factors varies. DCTO schemes initially
have the lowest average efficacy factor because the randomly
assigned VEC CPU frequency is lower than that of the other
schemes. However, as uk increases, both DCTO schemes outper-
form the other schemes in terms of efficacy and neutrality. The
DCTO_PPO and DCTO_TRPO achieved an average efficacy factor of
4.70 and 4.14, and an average neutrality factor of 2.40 and 2.66,
respectively. Additionally, these managed to save 37.55% and
38.96% of time, respectively. AUC-AC performs better than DQN
and DFO-DDQN in terms of average efficacy, but not as well as
the DCTO schemes. DFO-DDQN also performs well compared to
DQN in both efficacy and neutrality factors. The average efficacy
factor for the DQN, DFO-DDQN, and AUC-AC schemes is 2.29,
3.50, and 4.17, respectively. The average neutrality factor for these
schemes is 3.26, 0.97, and 3.21, respectively. Additionally, these
schemes saved an average of 27.25%, 27.61%, and 34.38% of time,
respectively. Initially DCTO_PPO, DQN, DFO-DDQN follow the same
learning pattern for efficacy factor, up to uk ¼ 30 ms. Later, the
DCTO_PPO took over until it achieve the maximum efficacy factor
as per the system configuration. The same applies to the neutrality
factor, as it is derived from the efficacy factor. Moreover, DCTO
schemes follow a partial offloading mechanism when uk is set to

Fig. 5. Performance of DCTO and other offloading schemes with respect to task
success and drop (failure) rate.

Fig. 6. Average relative efficacy of task offloading schemes against increasing
number of tasks.

Fig. 7. Average relative neutrality of task offloading schemes against increasing
number of tasks.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

12

a minimum. As uk gradually increases to 200 ms, the DCTO
schemes follow a combination of partial and binary offloading
mechanisms. Later, beyond 200 ms DCTO schemes switch to binary
offloading mechanism to have maximum efficacy and neutrality
factor. It is also observed that, if uk is too small, the task drop ratio
increases for all schemes. Nevertheless, DCTO_PPO manages to
control the task drop ratio through its partial offloading
mechanism.

Figs. 10, 11, show the analysis of average efficacy and neutrality
behavior against different tasks sizes. The task processing pattern

of all the offloading schemes is almost the same, i.e., as the task
size increases, the saving time decreases. This behavior is observ-
able from both figures. On average, DCTO_PPO and DCTO_TRPO
achieve an average efficacy of 7.75 and 7.48, respectively, and an
average neutrality of 1.14 and 1.50, respectively. Additionally,
these managed to save 41.04% and 39.04% of time, respectively.
The AUC-AC scheme resulted in an average efficacy and neutrality
of approximately 1.76 and 1.50, respectively, and saved 40.34% of
time. Meanwhile, DQN and DFO-DDQN ended up with average effi-
cacy of 0.54 and 4.18, respectively, and average neutrality of 7.77
and 2.74, respectively, and saved 26.17% and 27.69% of time,
respectively. Analyzing these results, the DQN offloading scheme
handles it the worst, as it manages to save much less time from
start to finish than all other schemes. AUC-AC manages it well
compared to DQN, and DFO-DDQN outperforms both the DQN
and AUC-AC schemes. On the other hand, both DCTO schemes out-
perform all offloading schemes in terms of average efficacy and
neutrality factors. As the major performance factor of DCTO
schemes, we consider 5G-NR-V2X based cellular and mmWave
RATs for V2I communication. The combined use of these RATs
increases the performance of the V2I link, therefore, providing
low-latency transmission. In contrast, all other schemes only con-
sider C-V2X RATs for V2I links, which leads to delayed transmis-
sion compared to 5G-NR-V2X RATs.

Summary: In a given VECN environment, all the task offloading
schemes were able to perform effectively with varying degrees of
success. AUC-AC and DQN only operate with a binary offloading
mechanism, which results in degradation in delay control when
the task size increases or the task threshold time decreases. In con-
trast, DFO-DDQN operates with both binary and partial offloading
mechanisms, which contributes to its superiority over AUC-AC and
DQN in most cases. Another factor affecting the performance of the
listed schemes is that they are all based on LTE-C-V2X RATs. How-
ever, the use of 5G-NR-V2X RATs and binary and partial offloading
mechanisms is also a performance-enhancing factor for the DCTO
schemes. Based on the results, the DCTO_PPO scheme is the clear
winner across all metrics, including task success or drop ratio,
average efficacy, average neutrality, and the percentage of time
saved.

6. Conclusion

In this paper, we presented a study on the performance
enhancement of VECNs. A DRL-based DCTO task offloading scheme
is developed considering 5G-NR-V2X heterogeneous RATs, and
both binary and partial offloading mechanisms. The DCTO scheme

Fig. 8. Average relative efficacy of task offloading schemes against increasing task
processing threshold time.

Fig. 9. Average relative neutrality of task offloading schemes against increasing
task processing threshold time.

Fig. 10. Average relative efficacy of task offloading schemes against increasing task
size.

Fig. 11. Average relative neutrality of task offloading schemes against increasing
task size.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

13

is designed for a highly random and complex VECN environment
while considering the relative efficacy and neutrality factors. The
DCTO scheme opportunistically switches its RATs and offloading
mechanisms while targeting delay minimization. This switching
mechanism works by considering the V2I contact duration and
vehicle’s mobility headway. The switching mechanism is moti-
vated by the task offloading decision mechanism, and the decision
mechanism is controlled by the DRL agent. Additionally, the DRL
agent is trained to focus on delay optimization. The results of
extensive evaluations show that the PPO based DCTO scheme sig-
nificantly improves task success rate, increasing it from 2.61% to
21.34%. Additionally, the efficacy factor is improved from 1.38 to
3.52 and the neutrality factor is reduced from 4.99 to 0.76. The
average task processing time is also reduced by a range of 3.77%
to 24.15%. Furthermore, the DCTO_PPO scheme also achieved sig-
nificant results in terms of reward and TFPS ratio compared to
the other evaluated schemes. In future work, we plan to incorpo-
rate V2V offloading, energy consumption, and load balancing using
a multi-agent DRL mechanism.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

3GPP, 2019. Study on evaluation methodology of new vehicle-to-everything v2x
use cases for lte and nr (release 15). 3gpp rel 15, no. TR 37.885.

Ahmed, M., Raza, S., Mirza, M.A., Aziz, A., Khan, M.A., Khan, W.U., Li, J., Han, Z., 2022.
A survey on vehicular task offloading: Classification, issues, and challenges. J.
King Saud Univ.-Compu. Informat. Sci. 34 (7), 4135–4162.

Boukerche, A., Sotoro, V., 2020. Computation offloading and retrieval for vehicular
edge computing: Algorithms, model and classification. ACM Comput. Surv.
(CSUR) 53 (4), 1–35.

Chen, C., Zeng, Y., Li, H., Liu, Y., Wan, S., 2022a. A multi-hop task offloading decision
model in mec-enabled internet of vehicles. IEEE Internet Things J. 1–1.

Chen, C., Li, H., Li, H., Fu, R., Liu, Y., Wan, S., 2022b. Efficiency and fairness oriented
dynamic task offloading in internet of vehicles. IEEE Trans. Green Commun.
Network. 6 (3), 1481–1493.

Cui, Y., Du, L., Wang, H., Wu, D., Wang, R., 2021. Reinforcement learning for joint
optimization of communication and computation in vehicular networks. IEEE
Trans. Vehicular Technol. 70 (12), 13062–13072.

Degris, T., White, M., Sutton, R.S., 2012. Linear off-policy actor-critic. In: Proceedings
of the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc/ Omnipress.

Deng, X., Sun, Z., Li, D., Luo, J., Wan, S., 2021. User-centric computation offloading for
edge computing. IEEE Internet Things J. 8 (16), 12559–12568.

Du, J., Sun, Y., Zhang, N., Xiong, Z., Sun, A., Ding, Z., 2022. Cost-effective task
offloading in noma-enabled vehicular mobile edge computing. IEEE Syst. J.

Gu, L., Xu, X., Qi, L., Zhang, Y., Zhang, X., Dou, W., 2021. Cooperative task offloading
for internet of vehicles in cloud-edge computing. In: 2021 IEEE 23rd Int Conf on
High Performance Computing & Communications; 7th Int Conf on Data Science
& Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor,
Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys).
IEEE, 2021, pp. 1537–1544.

ITU, 2021. Land mobile (including wireless access) - volume 4: Intelligent transport
systems. In: ITU-R WP5A. Radiocommunication Bureau, ITU, March 2021.
[Online]. Available: http://handle.itu.int/11.1002/pub/81734039-en.

Jiang, X., Yu, F.R., Song, T., Leung, V.C., 2021. Resource allocation of video streaming
over vehicular networks: a survey, some research issues and challenges. IEEE
Trans. Intell. Transp. Syst. 23 (7), 5955–5975.

Jin, H., Gregory, M.A., Li, S., 2022. A review of intelligent computation offloading in
multi-access edge computing. IEEE Access 10, 71481–71495.

Khan, W.U., Ihsan, A., Nguyen, T.N., Ali, Z., Javed, M.A., 2022. Noma-enabled
backscatter communications for green transportation in automotive-industry
5.0. IEEE Trans. Industr. Inf. 18 (11), 7862–7874.

Li, Y., 2017. Deep reinforcement learning: An overview, arXiv preprint
arXiv:1701.07274.

Liu, S., Yu, J., Deng, X., Wan, S., 2021. Fedcpf: An efficient-communication federated
learning approach for vehicular edge computing in 6g communication
networks. IEEE Trans. Intell. Transp. Syst. 23 (2), 1616–1629.

Liu, J., Ahmed, M., Mirza, M.A., Khan, W.U., Xu, D., Li, J., Aziz, A., Han, Z., 2022. RL/DRL
meets vehicular task offloading using edge and vehicular cloudlet: A survey.
IEEE Internet Things J. 9 (11), 8315–8338.

Luo, Q., Li, C., Luan, T., Shi, W., 2021. Minimizing the delay and cost of computation
offloading for vehicular edge computing. IEEE Trans. Services Comput.

Lv, P., Xu, W., Nie, J., Yuan, Y., Cai, C., Chen, Z., Xu, J., 2022. Edge computing task
offloading for environmental perception of autonomous vehicles in 6g
networks. In: IEEE Trans. Network Sci. Eng., pp. 1–18.

Naik, G., Choudhury, B., Park, J.-M., 2019. IEEE 802.11 bd & 5G NR V2X: Evolution of
radio access technologies for V2X communications. IEEE Access 7, 70169–
70184.

Nguyen, K., Drew, S., Huang, C., Zhou, J., 2022. Parked vehicles task offloading in
edge computing. IEEE Access 10, 41592–41606.

Qiao, F., Wu, J., Li, J., Bashir, A.K., Mumtaz, S., Tariq, U., 2020. Trustworthy edge
storage orchestration in intelligent transportation systems using reinforcement
learning. IEEE Trans. Intell. Transp. Syst. 22 (7), 4443–4456.

Raza, S., Wang, S., Ahmed, M., Anwar, M.R., Mirza, M.A., Khan, W.U., 2021. Task
offloading and resource allocation for iov using 5g nr-v2x communication. IEEE
Internet Things J. 9 (13), 10 97–10410.

Raza, S., Ahmed, M., Ahmad, H., Mirza, M.A., Habib, M.A., Wang, S., 2022. Task
offloading in mmwave based 5g vehicular cloud computing. J. Ambient Intell.
Humanized Comput., 1–13

Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P., 2016. High-dimensional
continuous control using generalized advantage estimation. In: Bengio, Y.,
LeCun, Y. (Eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal policy
optimization algorithms. CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347.

Shibata, Y., Sakuraba, A., Sato, G., Uchida, N., 2019. Iot based wide area road surface
state sensing and communication system for future safety driving. In:
International Conference on Advanced Information Networking and
Applications, Matsue, Japan, March 2019, pp. 1123–1132.

Shuai, R., Wang, L., Guo, S., Zhang, H., 2021. Adaptive task offloading in vehicular
edge computing networks based on deep reinforcement learning. 2021 IEEE/CIC
International Conference on Communications in China (ICCC). IEEE, Xiamen,
China.

Shu, W., Li, Y., 2022. Joint offloading strategy based on quantum particle swarm
optimization for mec-enabled vehicular networks. Digital Commun. Networks.

Tang, F., Mao, B., Kato, N., Gui, G., 2021. Comprehensive survey on machine learning
in vehicular network: technology, applications and challenges. IEEE Commun.
Surv. Tutor. 23 (3), 2027–2057.

Tang, H., Wu, H., Qu, G., Li, R., 2022. Double deep q-network based dynamic framing
offloading in vehicular edge computing. IEEE Trans. Network Sci. Eng.

Van Hasselt, H., Guez, A., Silver, D., 2016. Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30, no. 1, Phoenix, Arizona USA.

Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J., 2016. Mobile-edge computing: Partial
computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64
(10), 4268–4282.

Wang, H., Li, X., Ji, H., Zhang, H., 2018. Federated offloading scheme to minimize
latency in mec-enabled vehicular networks. 2018 IEEE Globecom Workshops
(GC Wkshps). IEEE, pp. 1–6.

Wang, D., Song, B., Lin, P., Yu, F.R., Du, X., Guizani, M., 2022. Resource management
for edge intelligence (ei)-assisted iov using quantum-inspired reinforcement
learning. IEEE Internet Things J. 9 (14), 12588–12600.

Yao, L., Xu, X., Bilal, M., Wang, H., 2022. Dynamic edge computation offloading for
internet of vehicles with deep reinforcement learning. IEEE Trans. Intell.
Transport. Syst., 1–9

Ye, Q., Shi, W., Qu, K., He, H., Zhuang, W., Shen, X., 2021. Joint ran slicing and
computation offloading for autonomous vehicular networks: A learning-
assisted hierarchical approach. IEEE Open J. Vehicular Technol. 2, 272–288.

Zhang, S., Gu, H., Chi, K., Huang, L., Yu, K., Mumtaz, S., 2022a. Drl-based partial
offloading for maximizing sum computation rate of wireless powered mobile
edge computing network. IEEE Trans. Wireless Commun. 21 (12), 10934–10948.

Zhang, Q., Wen, H., Liu, Y., Chang, S., Han, Z., 2022b. Federated reinforcement
learning enabled joint communication, sensing and computing resources
allocation in connected automated vehicles networks. IEEE Internet Things J.
12. 1-1.

Zhang, L., Zhou, W., Xia, J., Gao, C., Zhu, F., Fan, C., Ou, J., 2022c. Dqn-based mobile
edge computing for smart internet of vehicle. EURASIP J. Adv. Signal Process.
2022 (1), 1–16.

Zhou, Z., Wang, Z., Yu, H., Liao, H., Mumtaz, S., Oliveira, L., Frascolla, V., 2020.
Learning-based urllc-aware task offloading for internet of health things. IEEE J.
Sel. Areas Commun. 39 (2), 396–410.

M.A. Mirza, J. Yu, S. Raza et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101512

14

http://refhub.elsevier.com/S1319-1578(23)00042-3/h0010
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0010
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0010
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0015
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0015
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0015
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0020
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0020
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0025
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0025
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0025
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0030
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0030
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0030
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0040
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0040
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0045
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0045
http://handle.itu.int/11.1002/pub/81734039-en
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0060
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0060
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0060
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0065
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0065
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0070
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0070
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0070
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0080
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0080
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0080
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0085
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0085
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0085
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0090
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0090
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0095
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0095
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0095
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0100
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0100
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0100
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0105
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0105
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0110
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0110
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0110
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0115
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0115
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0115
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0120
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0120
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0120
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0135
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0135
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0135
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0135
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0140
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0145
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0145
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0150
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0150
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0150
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0155
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0155
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0165
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0165
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0165
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0170
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0170
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0170
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0175
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0175
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0175
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0180
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0180
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0180
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0185
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0185
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0185
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0190
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0190
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0190
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0195
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0200
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0200
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0200
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0205
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0205
http://refhub.elsevier.com/S1319-1578(23)00042-3/h0205

	DRL-assisted delay optimized task offloading in automotive-industry 5.0 based VECNs
	1 Introduction
	1.1 Motivation & contributions

	2 Related work
	3 System model
	3.1 Network and communication model
	3.2 Task model
	3.3 Offloading decision model
	3.4 Queue, resources state model
	3.5 Computation model

	4 Problem formulation and the solution
	4.1 DRL and the PPO
	4.2 MDP model formulation
	4.3 The DCTO scheme

	5 Simulation setup, results and discussion
	5.1 Simulation setup
	5.2 Contender approaches and evaluation metrics
	5.3 Results and discussion

	6 Conclusion
	Declaration of Competing Interest
	References

