
Please cite the Published Version

Cong, Longfei, Teng, Bin, Bai, Wei and Chen, Biaosong (2023) A VOS based Immersed
Boundary-Lattice Boltzmann method for incompressible fluid flows with complex and moving
boundaries. Computers and Fluids, 255. p. 105832. ISSN 0045-7930

DOI: https://doi.org/10.1016/j.compfluid.2023.105832

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/631437/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an Accepted Manuscript of an article which will appear in Com-
puters and Fluids, published by Elsevier

Data Access Statement: Data will be made available on request.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-3537-207X
https://doi.org/10.1016/j.compfluid.2023.105832
https://e-space.mmu.ac.uk/631437/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


A VOS based Immersed Boundary-Lattice Boltzmann method for

incompressible fluid flows with complex and moving boundaries

Longfei Cong∗1,3, Bin Teng 1, Wei Bai 2, and Biaosong Chen 3

1State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

2Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, UK

3State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian

116024, China

Abstract

A Volume of Solid (VOS) based Immersed Boundary-Lattice Boltzmann Method (IB-LBM) in the framework of the

direct forcing based IB-LBM model has been developed in this work to simulate the fluid flow with complex and moving

boundaries efficiently. In the present model, the concept of VOS is introduced to achieve the field extension to the solid

phase, and a unified Lattice Boltzmann Equation (LBE) has been obtained to describe the fluid flow and the solid body

motion consistently. To solve the resulting unified LBE, an efficient direct forcing model has been developed. Compared

with the traditional surface based IB model with the direct forcing strategy, in the present work, the dependency of the

Lagrangian grid to describe the body profile on the background Cartesian grid is removed by modelling the solid body

with a Level-Set function. With such Level-Set description about the body surface, the VOS function can be obtained

for the further field extension. With the present IB-LBM algorithm, the motion of the solid body can be enforced

effectively without iterations about the forcing term compared with the implicit velocity correction or multiple velocity

correction based IB algorithm, and flow penetration, which has been observed in the explicit velocity correction based

IB model, can be reduced considerably. To achieve the velocity adjustment in the solid phase, an optimal forcing factor

is recommended. With such optimal factor, the unphysical oscillation during force prediction can be well controlled. To

verify the performance of the present model, a series of typical benchmarks, including the fluid flow caused by general

shaped fixed or moving structures, hydrodynamic characteristics of thin-wall bodies undergoing specified motions and

even more complex vortex induced vibrations, are conducted and the good agreements between the present results and

the well-validated previous ones confirm the reliability and robustness of the present model.

Keywords: Immersed Boundary method; Lattice Boltzmann method; Direct forcing method; Level-Set function; Volume

of Solid; Field extension

1 Introduction1

As one of its main goals, the development of Computational Fluid Dynamics (CFD) aims to predict effec-2

tively the behaviors of fluid flows with complex boundaries. In addition to the complexity of the static boundary3

geometry, the term “complex” is also associated with the deformation or the rigid motion of boundary surfaces.4
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Compared with the well-developed Arbitrary Lagrange-Euler (ALE) algorithm, the Immersed Boundary (IB)5

method, or Embedded Boundary (EB) method, has attracted plenty of attention due to its advantages in the6

flexibility and relative ease to treat moving boundaries, especially with large deformations. Because of the local7

velocity correction process around the solid body embedded in the background Cartesian grid to account for8

its effect on the fluid flow, the IB model simplifies the flow prediction considerably, while avoids the possible9

breakdown of the simulation caused by the grid distortion.10

As an extension of the original IB model (Peskin, 1972), the penalty IB (pIB) model (Goldstein et al., 1993;11

Huang et al., 2011; Tian et al., 2011) has been well developed to simulate the fluid flow around rigid or deformable12

bodies. With the introduction of user-defined penalty parameters to couple the feedback force, the body motion13

and the fluid flow, the resulting stiff problem limits the allowable time increment for a stable simulation. For14

the consideration about numerical stability and to remove the empirical parameters in the pIB model, Fadlun15

et al. (2000), Tseng and Ferziger (2003), Yang and Balaras (2006) and Mittal et al. (2008) developed the16

sharp interface direct forcing model, where the fluid velocity around the solid boundary is reconstructed by17

the bounded interpolation with the surrounding fluid and boundary nodes as the stencil to implicitly enforce18

the desirable no-slip boundary condition on the boundary surface. To remedy the numerical issues about the19

non-physical mass flux of fluid flow caused by the local velocity correction (Fadlun et al., 2000), Kim et al.20

(2001) and Huang and Sung (2007) introduced the mass source or mass sink inside the solid domain to balance21

the non-physical velocity divergence of fluid flow for flow prediction with improved accuracy around the solid22

boundary. Furthermore, various numerical technics have been developed to achieve such conservation correction23

(Kang et al., 2009; Seo and Mittal, 2011). Generally speaking, although the sharp interface IB method maintains24

the sharp interface between the solid and fluid phases without interface diffussion, the complicated geometrical25

calculation and the stencil-fitting for local velocity reconstruction make the overall algorithm complex, which26

limits the robustness of the model considerably.27

Considering the attractive features of pIB model (flexibility in stencil-fitting for interpolation) and direct28

forcing model (excellent numerical stability), Uhlmann (2005) developed a diffused interface direct forcing based29

IB model. Within such IB framework, the forcing term for velocity correction is evaluated by the direct forcing30

model at the Lagrangian boundary points, rather than the Euler boundary points. With such strategy, numerical31

stability has be preserved compared with pIB model. Different from the sharp interface direct forcing model,32

the geometric-free kernel function based interpolation scheme further improves the robustness of the model.33

In the traditional surface based diffused interface IB method (Uhlmann, 2005), the boundary surface of34

the solid body is presented by the discretized elements, and the forcing term is evaluated at the boundary35

nodes firstly and then spread to the surrounding Euler nodes for velocity correction. Without distribution36

matching between boundary nodes and background Euler nodes, flow leakage may occur (Zhao et al., 2021). In37

the explicit direct forcing model (Uhlmann, 2005), the spacing of the IB nodes can be set as small as possible38

to avoid flow leakage at the expense of computational cost. Meanwhile, within the implicit direct forcing39

framework, the dense distribution of IB nodes leads to numerical issues about singularity and instability (the40

matrix for velocity correction or forcing term can be ill-conditioned as shown in Pinelli et al. (2010)). Therefore,41

there is still no universal rule for the density of IB nodes in the diffused interface direct forcing model, and the42

grid setting is empirical.43

As an alternative strategy, Pan (2006) and Arnab (2018) developed a volume based IB method to achieve44

the coupling between rigid motion and real fluid flow with a combination of these two motions with the Volume45
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of Solid (VOS) function as the weighting factor. It has been proven that such treatment is the first-order46

approximation of the Boundary Data Immersion method (BDIM) (Weymouth and Yue, 2011; Maertens and47

Weymouth, 2015). Within such diffused interface IB framework, the real fluid flow transits smoothly to the48

target solid state and the desirable boundary condition can be enforced implicitly (Nakayama and Yamamoto,49

2005; Jafari et al., 2011).50

In the numerical simulation of incompressible, or weak-compressible flows, the no-slip condition on the51

boundary surface and the divergence-free condition for the fluid flow are two separated constraints to the52

velocity field (Taira and Colonius, 2007; Li et al., 2016). To achieve their correct coupling, Taira and Colonius53

(2007) proposed the IB-projection model, where the pressure of the fluid flow, together with the Lagrangian54

forcing term on the IB boundary, are treated consistently as the Lagrangian multipliers to enforce the divergence-55

free and no-slip boundary conditions for the fluid flow. Other than the decoupling error (divergence-free and56

no-slip conditions for fluid flow) caused by the operator splitting to simplify the overall algorithm, the diffused57

interface direct forcing model also introduces an extra error during the kernel function based interpolation-58

spreading process (Gsell and Favier, 2021). As an extension of the work by Uhlmann (2005), Wang et al.59

(2008), Wu and Shu (2009) and Pinelli et al. (2010) conducted the multi-direct forcing and implicit direct60

forcing models respectively to remedy such interpolation-spreading related slip error.61

Other than traditional incompressible Navier-Stokes solvers based on the finite volume method, finite62

difference method and finite element method, the Lattice Boltzmann Method (LBM), a weak-compressible63

Navier-Stokes solver, has become popular in the field of flow simulations and fluid-structure interactions, due64

to its second-order numerical accuracy, simple numerical scheme and resulting computational efficiency (Li and65

Lu, 2012; Hua et al., 2014; Peng et al., 2018a; Peng et al., 2018b; Cong et al., 2020). In the framework of66

LBM, the distribution function has been adopted to describe the fluid flow by statistic mechanics (Qian et al.,67

1992). Keeping the basic algorithm of LBM, in order to improve local accuracy about flow prediction, multi-68

grid models have been developed to achieve the space-time adaptive simulation of fluid flows (Chen et al., 2006;69

Rohde et al., 2006; Xu et al., 2018). As a natural extension, the diffused interface IB method has also been70

coupled with LBM to achieve an efficient flow simulation with solid body (Feng and Michaelides, 2005; Kang71

and Hassan, 2011; Favier et al., 2014; Wang et al., 2015; Wang et al., 2016).72

To improve the efficiency of surface based direct forcing model, in the present work, a VOS based diffused73

interface direct forcing immersed boundary model is developed for numerical simulation about fluid flow with74

complex and moving boundaries. Within the present IB framework, the effects of solid phase on the fluid flow is75

modelled by an explicitly defined forcing term distributed inside the solid domain, rather than around the solid76

boundary only. Although forcing term iteration, which has been adopted in implicit direct forcing and multi-77

direct forcing model for accuarcy improvement, has been avoided in the present model, the no-slip condition78

can been well enforced on the boundary of the solid domain. Compared with the surface based IB model, in the79

present model, the surface discretization process is removed for the solid body with simple geometries. While80

for the solid body with complex boundaries, the surface mesh is only needed to construct the Level-Set function81

and doesn’t need to match the background Euler grid. As one of its attractive features, the present model82

eliminates the dependency of the Lagrangian grid distribution on the resolution of the background Euler grid,83

thus preventing the flow leakage and diminishing the slip error. In addition, as the velocity is evaluated at the84

Euler points, the interpolation process has been omitted, avoiding the relating interpolation error. With the85

IB force distributed in the whole solid domain and an optimal forcing factor for the evaluation of forcing term,86
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a physical pressure extension to the solid phase has be obtained, which is helpful to control the non-physical87

force oscillation in Fluid-Structure Interactions (FSI). Furthermore, to evaluate the hydrodynamic loading on88

the structure, an indirect formulation without surface integral is developed and the rigid body assumption for89

the force correction is proved for all the rigid motion modes. By the introduction of the concept of multi-grid to90

achieve the adaptive flow simulation, the local accuracy in the near field of the structure has been maintained91

efficiently. Several numerical tests are conducted and extensive comparisons are carried out to validate the92

accuracy and robustness of the present IB strategy and its coupling with LBM.93

2 Numerical methods for fluid flow and rigid body motion94

2.1 Governing equations95

In the present work, a global coordinate system o− xy is adopted and the flow variations are defined with96

respect to this Cartesian coordinate system. The viscous fluid flow can be described by the Navier-Stokes (NS)97

equations, which include both the momentum balancing and the mass conservation equations:98

Ut + (U · ∇)U = − 1

ρf
∇P + ν∇2U,

∇ · U = 0, (1)

where U denotes the velocity vector, P the pressure, t the time, ρf the fluid density and ν the kinematic viscous99

coefficient. In addition, only the solid body with rigid motions is considered in the present work, and the motion100

of the solid body defined on its mass centre can be described with the Newton’s second law,101

mẌc = Fx, mŸc = Fy, Iθ̈c = M, (2)

where m and I are the mass of the body and its inertial moment about mass centre respectively. Xc, Yc and θc102

denote the translational displacements in the x and y directions and the rotational displacement of the body103

about its mass centre, and Fx, Fy and M are the corresponding forces and moment.104

2.2 Lattice Boltzmann method for fluid flow105

In traditional macro-scale NS solvers, the fractional-step method is always adopted to decouple the pressure106

and velocity of fluid flow to enforce the mass conservation and momentum balancing, which imposes the challenge107

in solving the resultant Poisson-type equation. To resolve the fluid flow efficiently, the Lattice Boltzmann Method108

(LBM) is adopted in the present work, in which the incompressible fluid is treated as a weak-compressible one.109

In the framework of LBM, the flow field is described by the distribution function, which relates to the amount110

of particles with a particular velocity in a unit volume (e.g., qα(x, tn) = q̂(x, tn; v = eα) denotes the amount of111

particles in the unit volume around X = x at t = tn with the velocity v = eα in the meso-scopic scale) and112

obeys the Lattice Boltzmann Equation (LBE). In the macro-scale, the density and momentum of the fluid flow113

can be obtained by the statistics of such distribution function directly (Qian et al., 1992).114

In the framework of LBM, the evolution of the distribution function follows two separated steps: (a) at115

certain time t = tn, the distribution function firstly experiences its collision stage q∗α(x, tn) = qα(x, tn) + Ωα,116
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where Ωα denotes the collision operator; (b) after the collision operation, the particle at t = tn and X = x117

moves to its neighbouring grid node, i.e., qα(x+ eαδt, t
n+1) = q∗α(x, tn), and such stage is named as streaming.118

To simplify the complexity and nonlinearity of the collision operator, based on the assumption that qα is a119

perturbation about its equilibrium state qeqα and the observation that the effect of Ωα is to drive qα to its120

equilibrium state, the collision operator can be linearised with Single Relaxation Time (SRT) model: Ωα =121

(qeqα − qα) /τ , where τ denotes the nondimensional relaxation rate(Chen et al., 1991; Qian et al., 1992). To122

improve the performance of LBM, especially for cases with moderate to high Reynolds numbers, the Multiple123

Relaxation Time (MRT) model (Lallemand and Luo, 2000) has become popular for its excellent numerical124

stability.125

Considering its improved numerical stability, in the present work, the MRT model is adopted as the collision126

operator and the Lattice Boltzmann equations with such collision model can be written as127

qα(x+ eαδt, tn + δt)− qα(x, tn) = −M−1·S·M ·(Q−Qeq)

∣∣∣∣
α

,

Qeq

∣∣∣∣
α

= ρfωα

[
1 +

eα · u
c2s

+
(eα · u)2

2c4s
− u · u

2c2s

]
, (3)

where qα denotes the distribution function with v = eα, Q = (q1, q2, ...) is a vector consisting of qαs, the128

symbol (·)eq denotes the equilibrium state, M is the transformation matrix to achieve the mapping from the129

meso-scopic scale distribution functions to their macro-scale moments, and M−1 is the matrix for the backward130

transformation. In the present 2D case, the D2Q9 model is adopted as the lattice model (Qian et al., 1992).131

To execute the collision operator, S is a diagonal matrix, which contains different relaxation rates to drive the132

moments to their equilibrium states, and the diagonal elements of the matrix are set by following the work in133

Fakhari and Lee (2013) for an improved numerical stability, especially for cases with larger Re. In the definition134

of the equilibrium distribution functions, cs denotes the sound velocity of the fluid and its value relates to the135

grid spacing and the time increment by cs = δx√
3δt

. Furthermore, ρf and u are the density and velocity of the136

fluid flow respectively and can be evaluated by137

ρf =
∑
α

qα, ρfu =
∑
α

eαqα. (4)

According to the multi-scale analysis about the LBE, if the pressure of the fluid flow depends on the density138

of the fluid explicitly by P = (ρf − ρ0)c2s, where ρ0 is the reference value of the fluid density, i.e., the density of139

the fluid flow without disturbance, the macro-scale behaviour of the fluid flow recovers to the NS equation with140

an error O(Ma3), where Ma is defined by the reference velocity and the local sound speed as Ma = |Uref | /cs.141

In addition, to resolve the fluid flow in detail with local high resolution, a multi-grid technique is adopted in142

the present work, where the computational domain is covered by rectangular patches with different grid spacings,143

as shown in Fig. 1(a). To keep a consistent cs among patches with different grid spacings, the time increment144

δt matches the grid spacing by δtfine/δtcoarse = δxfine/δxcoarse. To simplify the data synthetics between145

patches with different spacings, the refinement ratio between two levels of patches is set as δxfine/δxcoarse = 1
2 .146

Therefore, the flow field is firstly resolved on the coarse grid, and then followed by two steps of flow predictions147

on the fine grid.148

Before the fluid flow is predicted on the fine grid, the interpolation for the buffer data with that on the149

coarse grid is carried out firstly ((a) and (b) in Fig. 1(b)). Using those values as the boundary condition, the150
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LB algorithm can be conducted on the fine grid in its usual manner ((c) in Fig. 1(b)). Once the solution on151

the fine grid is available, the coarse grid solution is recovered where it is overlapped with the fine grid ((d) in152

Fig. 1(b)). As it can be observed, the aforementioned sequences shown in Fig. 1(b) couple the flow fields on153

the fine grid and the coarse grid strongly. In the present work, the space-time multi-scale LBM (Rohde et al.,154

2006) is used for its better conservation characteristics.155

(a) Grid arrangement (b) Advance sequences

Fig. 1. Sketch of the multi-grid space-time adaptive Lattice Boltzmann model.

3 Volume of Solid (VOS) based Immersed Boundary method for156

fluid-structure coupling157

To account for the effect of the solid body on the fluid flow, the diffused interface IB model is adopted in158

the present work based on the direct forcing strategy. In difference to the surface based direct forcing model,159

where the surface mesh is adopted to describe the profile of the solid body, in the present model, the solid body160

is treated in a similar way as the well-known Volume of Fluid (VOF) model to capture the interface between161

two phases. In this method, for a given grid point, a Volume of Solid (VOS) function α is defined to represent162

the ratio of the solid which is contained in a certain control volume, that is163


α = 1 for solid cell

α = 0 for fluid cell

0 < α < 1 for interface cell

. (5)

In its original form, the VOS function changes sharply in the interface region and this characteristic164

challenges the robustness of the numerical solver. To improve the stability of the solver, the sharp interface165

between the fluid and solid phases is smoothed out in a transition region across a few grid layers. The typical166

width of the interface is 2∆/δx = 4, where ∆ is the half-width of the diffused interface, and δx denotes the167

typical grid spacing. To achieve such smoothing, a Level-Set (LS) function φ is defined on a given grid point,168

which is in the form of the signed distance function, and it is defined as the minimum distance from the grid169

point to the surface of the solid body. If the grid point is inside the solid body, the LS function is defined to be170

negative, while if the grid point is in the fluid region, its value is positive. With the well-defined LS function,171

the VOS function α can be defined with the smooth version of the Heaviside function,172
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α =


1, φ < −∆

1− 1+φ/∆+sin(πφ/∆)/π
2 , −∆ ≤ φ ≤ +∆

0, φ > +∆

. (6)

For the solid body with simple boundary, the LS function φ can be obtained according to its definition173

directly with the explicit expression for boundary surface. For example, for the circular cylinder, φ can be174

defined by φ = Dx,c − rc, where Dx,c denotes the distance from a given grid point to the centre of the cylinder175

and rc denotes the radius of the cylinder. For the cases with rigid structure undergoing both translational and176

rotational motions, the local coordinates to the body centre xl,c = T · (x− xc) is used to update φ, where T is177

defined as Ti,j = ei,j and ei,j denotes the components of the base vectors fixed on the rigid body, as shown in178

Fig. 2(a).179

For the solid body with complex boundary, an efficient reconstruction algorithm based on the concept of180

bounding box and the pseudonormal has been developed to obtain and to update the LS function φ. As shown181

in Fig. 2(b), normal vectors are firstly obtained on the line segments and vertices of the boundary surface. The182

edge normal is defined in its usual way, while the vertex normal is defined by the average of the corresponding183

two edge normals. To update φ, traverse about the line segments is carried out. For each boundary edge, a184

bounding box consisting of Euler grid nodes is built firstly, as shown in Fig. 2(b) (the width of the bounding box185

relates to the scale of the segment and the width of the diffused interface ∆). For each Euler point inside the186

bounding box, the nearest point (projection point) on the edge and the absolute distance |φ| can be obtained187

easily. When such projection point is on the edge, the product between the vector from projection point to188

the Euler point and the edge normal is used to determine the sign of φ, while the vertex normal is used to189

obtain such ±1 sign, when the projection point coincides with the vertex, which are the cases for A and B in190

Fig. 2(b) respectively. When the Euler point is accessed multiple times by different boundary segments (C191

in Fig. 2(b)), its φ value is defined with that with smaller |φ|. With such algorithm, φ can be reconstructed192

with complexity of O(NS) in a narrow band around the solid boundary, where NS denotes the amount of193

surface segments to represent the body surface. The remaining φ values on the Euler nodes can be defined194

with the maximum positive and minimum negative φ values during the boundary segment traverse. It should195

be mentioned that even line segments are essential to reconstruct φ, its density only affects the representation196

of the surface boundary, while has no direct effect on the flow prediction. For the solid boundary with sharp197

corners, local refinement is essential for its accurate presentation. The further details about the bounding box198

based reconstruction algorithm for φ can be found in Baerentzen and Aanaes (2005) and Liu and Hu (2014).199

3.1 VOS model for the field extension200

Strictly speaking, the NS equations and the LBE are defined in the fluid domain only. The key concept of201

the VOS based IB model is to extend the equations to the solid phase to form a unified equation that can be202

applied in the whole domain. For the rigid body, the velocity is well-defined in the solid phase. Therefore, a203

natural strategy for equation reconstruction is the weighted average of the flow equations and the solid motion.204

Taking the NS equations as an example, the following equations are defined in the whole domain,205
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(a) Rigid body with simple surface (b) Rigid body with complex surface

Fig. 2. Numerical strategy for the definition of LS function.

(1− α)

[
Ut + (U · ∇)U +

1

ρf
∇P − ν∇2U

]
+ α(U − Us)/δt = 0,

∇ · U = 0, (7)

where δt denotes the time increment and is adopted to achieve the dimension balancing, and Us is the target206

velocity determined by the body motion. It can be observed that those equations tend to be the NS equations207

in the fluid domain and the solid velocity can be recovered in the solid domain. If the pressure can be defined208

properly, by using the explicit Euler scheme for the flow prediction, the velocity can be obtained as209

Un+1 = αUs + (1− α)Ũ , (8)

where Ũ = Un + N(Un, P )δt denotes the velocity without the effect of solid phase and N(Un, P ) represents210

the contribution from the convection term, diffusion term and pressure gradients to the momentum of the fluid211

flow. As it can be seen, the velocity varies smoothly in the whole domain, therefore, the no-slip condition is212

implicitly enforced without any special treatment.213

As shown in Eq. (7), the flow equation takes different forms in the fluid and solid phases. By rearranging,214

Eq. (7) can be reformulated as215

Ut + (U · ∇)U +
1

ρf
∇P − ν∇2U = α

[
(Us − U)/δt+ Ut + (U · ∇)U +

1

ρf
∇P − ν∇2U

]
,

∇ · U = 0. (9)

It is obvious that the LHS of the equation is the same as the normal NS equations for fluid phase, which is216

consistent in the whole domain. On the RHS of the equation, it vanishes in the fluid phase and transits smoothly217

to the solid phase. By denoting such term as a forcing term, the NS equations can be reformulated as218

Ut + (U · ∇)U +
1

ρf
∇P − ν∇2U = αf,

∇ · U = 0, (10)
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where f relates to the solid velocity and is implicitly defined to enforce the motion of rigid body. Eqs. (7) and219

(10) demonstrate that the effect of the solid body on the fluid flow is equivalent to adding a forcing term to the220

solid phase.221

For the LBM, the field extension is not as obvious as the above formulation because the flow field is222

defined with the distribution function, rather than the macro-scale velocity and pressure. Therefore, a modified223

formulation should be built firstly to achieve the extension of LBE. In the solid phase, the solid velocity can224

be enforced by qα = qsα = qs,eqα (Us) + qs,neqα , where qsα is the solid distribution function, qs,eqα its equilibrium225

state and qs,neqα its non-equilibrium part. In the definition of qsα, the macro-scale behaviour is defined by its226

equilibrium part only, while the remaining non-equilibrium part makes no contribution to the velocity field and227

is implicitly defined. With the solid distribution function, the distribution function inside the solid domain228

follows229

qα − qsα = 0. (11)

In the fluid domain, the evolution of the distribution function follows the LBE defined in Eq. (3), while230

the behaviour of the distribution functions should follow Eq. (11) to reproduce the rigid motion inside the solid231

domain. As it has been investigated in Weymouth and Yue (2011), the convolution of Eqs. (3) and (11) with232

Heaviside function is an efficient way to couple the flow behaviour and rigid motion of solid body. Similar to233

Eq. (7), adopting the first-order approximation of their convolution term (Weymouth and Yue, 2011), a unified234

equation for the evolution of the distribution function can be obtained as235

(1− α) [qα(x+ eαδt, t+ δt)− qα(x, t)− Ωα(x, t)] + α [qα(x+ eαδt, t+ δt)− qsα(x+ eαδt, t+ δt)] = 0. (12)

In this way, the LBE can be extended to the whole domain.236

3.2 VOS based Immersed Boundary method for LBM237

Different from macro-scale NS solvers, the LB solver adopts the distribution function to describe the fluid238

flow. To implement the direct forcing model in the framework of LBM, similar with the strategy to obtain Eq.239

(10), Eq. (12) can be reformulated as240

qα(x+ eαδt, t+ δt)− qα(x, t)− Ωα(x, t)

=α [qsα(x+ eαδt, t+ δt)− qα(x+ eαδt, t+ δt) + qα(x+ eαδt, t+ δt)− qα(x, t)− Ωα(x, t)] (13)

=α [qsα(x+ eαδt, t+ δt)− q∗α(x, t)] ,

where q∗α = qα + Ωα denotes the post-collision distribution function.241

Following Eq. (10), the RHS of Eq. (13) is modelled as an implicitly defined forcing term Fα. As it can242

be observed, Eq. (13) shows obvious implicit characteristics. To remove such implicitness, qsα(x+ eαδt, t+ δt)243

is evaluated at (x, t), rather than (x+ eαδt, t+ δt), and such treatment is equivalent to split Eq. (13) into the244

separated collision-streaming processes,245

9



q̃α(x, t) = (1− α)q∗α(x, t) + αqsα(x, t) = q∗α(x, t) + αFα (14)

qα(x+ eαδt, t+ δt) = q̃α(x, t).

In Eq. (14), the effect of the forcing term Fα is to drive the distribution to its solid state, which is an246

analogy to the effect of body force in Eq. (10). As it can be observed, the effect of such forcing term is equivalent247

to the body force in the macro-scale. Therefore, to conserve the mass in the whole domain, the Fα term is248

selected as the forcing term with the macro-scale body force. To cancel the inconsistent velocity, the body force249

should follow250

f = β
Us − Un

δt
. (15)

In the previous works (Wu and Shu, 2009; Kang and Hassan, 2011; Favier et al., 2014), β has been set to251

2.0 to match the equilibrium fluid velocity Ueq =
∑
α fαeα/ρf + 1

2fδt to its target value, which is fairly good252

for the surface based direct forcing model. However, with such forcing strategy, even the contribution from253

the forcing term to Ueq is 1
2fδt, the remaining contribution to the post-collision distribution function and the254

resultant velocity is also 1
2fδt. Taking a fixed cylinder in uniform flow as a simple example, the initial condition255

is often set as U = (U∞, 0) in the whole domain. Therefore, the forcing term should drive the distribution256

function to Qs(Us = 0). With f = 2Us−Un

δt , Ueq is well enforced. However, considering the post-collision state257

with such forcing term, the flow velocity in the solid domain will be driven to U = (−U∞, 0). It is an obvious258

over-correction about the fluid velocity in the solid phase. As it will be shown later, this inconsistency leads to259

serious force oscillations during the initial stage of the simulation and such unphysical phenomenon lasts for a260

long time. The present work suggests that β = 1.0 can properly drive the distribution function and further the261

fluid velocity to their target states. For the fixed cylinder, even the corrected equilibrium velocity is 0.5U∞, the262

remaining contribution from the forcing term leads to the recovery of static state in the solid phase. After the263

collision stage with such forcing term, the velocity can be driven to 0.0 as expected. In this way, at least in the264

sense of numerical experiments, the force oscillation can be well controlled.265

To account for the forcing term effects on the distribution functions, the model in Guo et al. (2002) is266

adopted. The overall algorithm of the present IB-LBM model can be summarised as Algorithm 1.267

268

3.3 Indirect method for the force prediction269

To obtain the hydrodynamic force on the structure, an indirect method without surface integral is developed270

in the present work. Considering the definition of the hydrodynamic force on the structure271

F =

∫
∂S

σ · ndS,

M =

∫
∂S

rs × (σ · n)dS, (16)

where ∂S denotes the surface of the structure, rs is the location of the surface grid point relative to its mass272

centre, n is the unit normal vector on the surface grid point, and σ = −P I+ τ is the stress tensor. To evaluate273
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Algorithm 1: IB-LBM algorithm

(1) The distribution functions are well-defined at t = tn.

(2) Define the macro-scale flow field with the distribution functions,

ρf =
∑
α

qα, Û =
∑
α

qαeα/ρf .

(3) Define the LS function φ, with analytical expression based on local coordinates for rigid body with

simple boundary or bounding box based reconstruction algorithm for rigid body with complex boundary.

(4) Define the VOS function α with Eq. (6).

(5) Obtain the forcing term with the direct forcing model,

f = β
Us − Û
δt

.

(6) Loading evaluation based on the indirect force prediction model.

(7) For cases with Fluid-Structure Interaction, update the location and motion of rigid body.

(8) With the forcing term, advance the flow field using the algorithm in Eq. (14).

(9) n = n+ 1, return to (1).

the force on the structure using Eq. (16), interpolation is essential to obtain the stress tensor on the surface274

Lagrangian points, which may not coincide with the Euler points. To avoid such interpolation, the surface275

integral is transformed into the volume integral with the Green’s theorem. To achieve such goal, Eq. (16) is276

firstly transformed into its general form according to the principle of virtual work277

∑
i

F̂iδξi =
∑
i

∫
∂S

δrs,i · (σ · n)dS, (17)

where F̂i denotes the general force component and δrs,i is the virtual boundary displacement under general278

virtual displacement on the mass centre of the structure δξi. In the definition of force components, i = 1 − 3279

denotes the translational mode and i = 4− 6 denotes the rotational mode for 3D cases, while i = 1− 2 denotes280

the translational mode and i = 3 denotes the rotational mode for 2D cases. Considering the arbitrary value of281

δξi, with the Green’s theorem, the force component F̂i can be written as282

F̂i =

∫
S

(∇δr̃s,i) : σdV +

∫
S

δr̃s,i · (∇ · σ)dV , (18)

where δr̃s,i is defined as δrs,i = δξiδr̃s,i (no summation about i), and denotes the unit virtual boundary283

displacement in mode i.284

Within the present volume based IB framework, consistent velocity correction has been carried out in285

the whole solid phase. Therefore, in the solid domain S, strain tensor can be evaluated by the rigid velocity,286

εij = 1
2 (us,i,j+us,j,i), with an errorO(δt) at a conservative estimate. For the rigid body motion, the rigid velocity287

is strain-free (εij = 0), and such characteristic leads to the vanishing of viscous stress, i.e., τij = 2ρfνεij = 0.288

Therefore, the first term in Eq. (18) can be evaluated by (∇δr̃s,i) : σ = −P (∇·δr̃s,i). In addition, as∇·δr̃s,i = 0289

for the rigid body motion (divergence-free condition for the rigid motion), the contribution from the first term290
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in Eq. (18) equals 0. Within the transition region around the boundary surface, the divergence-free condition291

still holds, but the viscous stress appears, because of the smooth transition of rigid velocity to flow velocity.292

Therefore, extra error exists for the force prediction with the present indirect model. Because the width of the293

transition region is comparable with grid spacing, it is believed that such contribution is ∆F̂i = O(δx) at a294

conservative estimate. Using Eq. (10), the second term in Eq. (18) can be further simplified as295

F̂i =

∫
S

δr̃s,i · ρf [Ut + (U · ∇)U − αf ] dV

=

∫
S

δr̃s,i · ρf
(
DU

Dt
− αf

)
dV =

∫
S

δr̃s,i ·
(
ρf
DU

Dt

)
dV +

∫
S

δr̃s,i · (−αρff)dV . (19)

Eq. (19) indicates that the hydrodynamic force under the rigid body mode can be evaluated as the integral of296

the IB force and the negative inertial force inside the solid domain without the need of the integral about flow297

stress over the body surface. In Suzuki and Inamuro (2011), Eq. (19) was proved. For the rotational modes,298

Suzuki and Inamuro (2011) introduced the extra Lagrangian points to evaluate the inertial momentum of the299

fluid flow. The reason for such strategy is that for the surface based IB model, the forcing term is only applied on300

the surface of the structure. Therefore, the internal flow shows difference with the solid motion. In the present301

model, because of the enforcement of rigid body motion for the entire solid phase, the rigid body motion can be302

well-enforced and the first term in the RHS of Eq. (19) can be further simplified for all the rigid body modes303

(rigid body assumption). Compared with the work in Suzuki and Inamuro (2011), no extra Lagrangian points304

are needed and the algorithm for the internal momentum evaluation is simplified, which further improves the305

efficiency of the present model.306

As it has been discussed in Eq. (19), for the rigid body, the force prediction can be simplified considerably307

(the integral of fluid acceleration term can be evaluated by the inertial mass and moment of the body filled308

with fluid), which is the case of the present work. For the flexible body with arbitrary deformation, such force309

prediction model relates to the evaluation of fluid acceleration at a certain Euler grid point, which may not310

be coincident with the structure grid. Furthermore, for the flexible body, the divergence and strain of the311

velocity field inside the solid domain lead to extra corrections about the force prediction, as shown in Eq. (18).312

Generally speaking, the present version of the IB-LBM model can be only applied to the interaction between313

rigid body and fluid flow, while for the general flexible structure, a robust interpolation model to transfer the314

body response from structure grid to Euler grid is essential and it is one of our research topics in the future.315

4 Numerical Results316

In the previous sections, the present VOS based IB algorithm in the framework of direct forcing model317

has been developed and coupled with LBM to solve the fluid-body interactions. To validate the accuracy and318

the robustness of the present model, in this section, numerical simulations are carried out for the interaction319

between fluid flows and solid bodies, which include the structures with both simple and complex boundaries.320

In the present work, the Reynolds number covers the low to moderate region, i.e. Re = O(101) − O(103).321

Therefore, no turbulence model is activated during the simulation.322
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4.1 Steady flow around a fixed cylinder323

In this subsection, steady flow around a fixed cylinder is simulated to confirm the performance of the324

present VOS based IB strategy to enforce the no-slip boundary condition on the surface of the structure. With325

such configuration about fluid flow and solid body, the only parametre affecting the flow pattern is Reynolds326

number Re = U∞D
ν , where U∞ and D denote the inlet velocity of the fluid flow and the diametre of the cylinder327

respectively.328

With Re = 5− 40, steady flow can be observed around the cylinder. As shown in Fig. 3, with Re = 40, a329

pair of steady re-attached region exists around the cylinder. As it has been observed in Coutanceau and Bouard330

(1977) and numerically simulated by Berthelsen and Faltinsen (2008), flow seperation occurs at θ ≈ 53◦ − 54◦.331

Adopting present VOS based IB model, as it can be observed in Fig. 3(a), the prediction about the location of332

seperation matches well with the previous ones. Furthermore, compared with the flow pattern adopting surface333

based direct forcing model(Figs. 3(b) and 3(c)), the flow penetration has been weakened considerably and the334

unphysical flow within the solid domain has been controlled. With the present IB strategy, the forcing term to335

enforce the solid body motion is evaluated in an explicit manner, and implicit forcing term iteration, which has336

been adopted in Wu and Shu (2009) and Zhao et al. (2021), is avoided. Such treatment leads to the efficiency337

of the present IB algorithm.338

As shown in Fig. 4, discontinuity can be observed for the pressure prediction with the surface based direct339

forcing model. Despite of its limited effect on the pressure prediction in the fluid domain as shown in Fig. 4 for340

the fixed structure, the evaluation of hydrodynamic force on the moving structure can be affected and special341

attention should be paid to remedy such issue. With the present IB model, because of the consistent velocity342

correction for the solid phase, a smooth pressure field can be obtained and such phenomenon is helpful for the343

force prediction about moving structure.344

4.2 Unsteady flow around an oscillating cylinder345

In this subsection, the unsteady flow around an oscillating cylinder is simulated to confirm the performance346

of the present IB model for moving boundary cases. According to the work in Dutsch et al. (1998), the cylinder347

is forced to oscillate horizontally with a prescribed amplitude Amax and frequency f . In this case, Re is defined348

based on the maximum velocity Umax = 2πfAmax and the Keulegan-Carpenter number KC is defined as349

KC = Umax

fD , where D denotes the diameter of the cylinder. As reported in Dutsch et al. (1998), when KC = 5350

and Re = 100, a stable periodic flow pattern and force history can be obtained. Considering the characteristic351

of stability, this case is selected in the present work as the benchmark. As shown in Fig. 5, convergence test352

has been carried out firstly to check the numerical performance of the present algorithm. In this case, a coarse353

grid with D = 12.5δx has been adopted as the base grid, and the grid has been refined to L = 2 − 4 to reach354

the desirable resolution. During the simulation, a constant Ma ≈ 0.1 has been enforced by keeping a constant355

δt = T
1000 on the base grid. As it can be observed, with D = 100δx, convergence has been reached and further356

grid refinement makes no obvious improvement about force prediction.357

The force coefficients Cds obtained with different β values and IB strategies are shown in Fig. 6. As it can358

be observed in Fig. 6(a), with β = 2.0, according to the relating discussion in Section 3.2, the over-correction359

about the velocity in the solid phase induces a long-term unphysical force oscillation. For the present case, the360

unphysical oscillation decays in an exponential manner. Furthermore, with the decaying of force oscillation,361

13



(a) Present model (b) Explicit Surface based Direct Forcing model

(c) Implicit Surface based Direct Forcing model

Fig. 3. Steady flow around a fixed cylinder with Re = 40.

Fig. 4. Pressure Contours with Re = 40, where black solid, red dashed and green dash-dotted lines denote

contours with present VOS based IB model, explicit surface based and implicit surface based direct forcing

model respectively.
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the force predictions with different β values match well with each other (4.0 ≤ t/T ≤ 5.0 in Fig. 6(a)).362

Meanwhile, the reliability of the present forcing factor β = 1.0 is confirmed, and the horizontal force reaches its363

stable periodic state after a transition stage around t = 1.0T (Fig. 6(b)). In addition, even with the velocity364

correction around the solid boundary only, i.e., the surface based direct forcing model, the force oscillation365

cannot be completely removed during the initial stage before t = 2.0T . As shown in Fig. 6(b), the present VOS366

based direct forcing model performs well, without any visible oscillation even at the beginning of the simulation.367

With the evolution of the cylinder oscillation, the unphysical force oscillation vanishes and the force predictions368

with all the mentioned IB strategies match each other well and are in good agreement with the previous results369

in Dutsch et al. (1998), as shown in Fig. 7. In Fig. 8, with the present KC and Re numbers, the symmetrical370

flow field around the cylinder can be observed and the flow pattern matches well with that in Dutsch et al.371

(1998).372

Fig. 5. Convergence test about the hydrodynamic force on the oscillating cylinder with KC = 5 and

Re = 100.

4.3 Unsteady flow around a hovering wing373

In this subsection, the unsteady flow caused by a hovering wing undergoing a forced periodic motion along374

a straight line in the stationary fluid is simulated. The thin elliptical wing with the aspect ratio of w/c = 0.25,375

where c denotes the chord length and w is the thickness of the wing, is adopted. The translational motion of376

the centre of the wing follows377

x =
A0

2
cos

(
2πt

T

)
cosβ, y =

A0

2
cos

(
2πt

T

)
sinβ. (20)

In addition to the translational motion, the wing also experiences the rotational motion about its centre378

which is enforced by379

α =
π

4

[
1− sin

(
2πt

T
+ φ

)]
. (21)
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(a) Different β values

(b) Surface based and volume based strategies

Fig. 6. Hydrodynamic force on the oscillating cylinder with KC = 5 and Re = 100 during the initial stage.
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Fig. 7. Comparison of the hydrodynamic force on the oscillating cylinder with KC = 5 and Re = 100 during

the steady stage with the previous results in Dutsch et al. (1998).

(a) t/T = 0.00 (b) t/T = 0.25 (c) t/T = 0.50 (d) t/T = 0.75

Fig. 8. Flow field around the oscillating cylinder with KC = 5 and Re = 100 at different time instants.
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In the present simulation, the same parameters as that in Xu and Wang (2006), i.e., A0/c = 2.5, β = π/3 ,380

φ = 0.0 and Re = 157, are adopted with c as the length scale and πA0/T as the velocity scale, where T denotes381

the flapping period. It should be mentioned that, compared with the definition in Xu and Wang (2006), the382

mean location of the wing centre here is shifted to x = 0 and y = 0, which has no effect on the force calculation383

and flow prediction.384

As shown in Fig. 9, the present results about the forces on the wing match well with the previous ones385

in Xu and Wang (2006) and Yang and Stern (2012). Furthermore, the flow fields around the wing within one386

flapping cycle are shown in Fig. 10. At the beginning of the downward stroke, a strong positive vortex caused387

by the clockwise rotation of the wing around the tip-A can be observed. Due to the counter-clockwise rotation388

of the wing, a negative vortex is formed on the opposite side of the wing and the previous vortex travels to the389

tip-B and is enhanced by the motion of the wing. With the wing moving further, the dettachment of the positive390

vortex occurs, and the negative vortex moves to the tip-B. As shown in Fig. 10(c), when the rotation direction391

of the wing changes, the negative vortex re-attaches to the wing and couples with the positive vortex to form a392

vortex dipole. Such behaviour can be traced back to the non-zero mean angle of the rotational motion.393

(a) Cd (b) Cl

Fig. 9. Hydrodynamic forces on the hovering wing at Re = 157 and the comparison with the previous results.

(a) t = 0
5
T (b) t = 1

5
T (c) t = 2

5
T (d) t = 3

5
T (e) t = 4

5
T

Fig. 10. Flow field around the hovering wing at Re = 157.
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4.4 Unsteady flow around a complex C-shape body394

To show the performance of the present model to predict the fluid flow caused by rigid body with complex395

boundary, in this subsection, the unsteady flow caused by a C-shape rigid structure is carried out. As shown in396

Fig. 11, the C-shape body consists four sets of semicircles. With the present configuration, Re is defined with397

D and U∞ as the length scale and velocity scale. Similar with the numerical simulation with a Diffused Vortex398

Hydrodynamics (DVH) model (Rossi et al., 2015), Re = 2000 is adopted here with 0 ≤ α ≤ π
2 . As it has been399

shown in Rossi et al. (2015), with the increase of α from α = 0, the case where the fluid flow shows periodical400

characteristics, the regularity of hydrodynamic loading on the body is firstly lost. With a further increase of α401

from a certain value, restoring of periodical behaviour of the fluid flow can be observed again. With α = π
2 , the402

loading on the structure becomes almost periodical.403

In this subsection, our main goal is to check the performance of the present IB-LBM algorithm for cases404

with complex boundaries, therefore, only qualitative computations are carried out for various αs. As it can be405

observed in Fig. 12, the predictions about hydrodynamic loading on the structure match well with that obtained406

with DVH model (it should be mentioned that, to accelarate the process reaching its possible periodical state,407

disturbance has been added to the motion of the body, and the original data from Rossi et al. (2015) has been408

shifted to match the phase difference between the present results and previous ones). The mean drag coefficient409

and the amplitude of lift coefficient increase with α. Specially, with α = 0, the cavity flow trapped in the lower410

region of the C-shape body (Fig. 13(a)) leads to the formation of low pressure region and further results the411

negative mean lift force on the body. From the viewpoint of flow structure, with α = 0, the upper part of the412

vortex flow matches well with that of the circular cylinder, and because of the mentioned cavity flow, the fluid413

beneath the C-section pass the rigid body as if there is no hole, i.e., D-shape cylinder with identical orientation.414

For α = π
2 case, the overall far field wake pattern is similar with that of the full cylinder. While in the near field415

of the C-section, the dettached vortex is firstly trapped inside the hole with the action of the former vortex.416

Different from that with α = 0, the cavity flow with such configuration is unsteady. The existence of the hole417

leads to the complex interaction between the dettached vortex and the rigid boundary (Fig. 13(c)), and such418

interaction is believed to be one of the main sources for the formation of weak irregularity of hydrodynamic419

loading on the structure, as shown in Fig. 12. With the dettachment of vortex into the wake flow, the trapped420

vortex in the cavity escapes and leads to the formation of Karman vortex street. With α = π
4 , the flow pattern421

is rather complex, featured by the vortex mergence and splitting. With such vortex-vortex and vortex-structure422

interactions, irregular hydrodynamic loading can be observed on the structure, which is consistent with the423

results by Rossi et al. (2015). Even the bifurcation behaviour of the fluid flow passing the C-shape body is424

interesting and worth investigation in detail, such work is beyond the goal of the present work and it will425

be one of our research topics in the future. As it has been presented, both the qualitative and quantitative426

results in this subsection show the capacity of the present IB-LBM model to treat fluid flow relating to complex427

boundaries.428

4.5 Unsteady flow around a pitching foil429

To validate the present model for the thin-wall structure with moving boundary, the hydrodynamic per-430

formance of a pitching foil is tested. Firstly, numerical simulation about a pitching foil at Re = 500 is carried431

out to check the performance of the present model with relatively low Re numbers. In this part, two sets of432
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Fig. 11. Sketch diagram of the C-shape body with an Angle of Attack (AoA) α.

(a) Cd (b) Cl

Fig. 12. Hydrodynamic forces on the C-shape body with Re = 2000.

(a) α = 0 at tU∞/D = 37.5 (b) α = π
4

at tU∞/D = 38.0 (c) α = π
2

at tU∞/D = 38.0

Fig. 13. Flow field around the C-shape body with Re = 2000.
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Strouhal numbers St, i.e., St = 0.2 and St = 0.4, which are defined by the motion amplitude of the foil tip in433

the y direction, are adopted. In Senturk and Smits (2018), a thin plate without thickness has been adopted.434

With the present IB strategy, such a thin-wall structure should be modelled with an artificial thickness with few435

grid spacing. In the present cases, an artificial thickness of the foil t/L = 2% has been adopted. As shown in436

Fig. 14, both the thrust and the lift coefficients of the foil predicted by the present model match well with the437

previous results (Senturk and Smits, 2018). At St = 0.2, a negative mean thrust is observed, which is the result438

of the normal vortex street in the wake of the foil shown in Fig. 15(a). In this case, because of the relatively439

small St number, the stability of the symmetrical wake is preserved and the resulting thrust and lift on the foil440

are symmetrical. With the increase of St to St = 0.4, the trailing edge vortex (TEV) is enhanced as shown in441

Fig. 15(b). Other than the enhanced TEV, the leading edge vortex (LEV) becomes obvious and the complex442

behaviours of the LEV can be observed. The enhanced TEV leads to the symmetric breaking of the wake flow443

and a vortex dipole can be observed. In this case, the wake flow leans to one side of the foil.444

(a) CT (b) Cl

Fig. 14. Hydrodynamic performance of the pitching plate at Re = 500.

(a) St = 0.2 (b) St = 0.4

Fig. 15. Wake flow of the pitching plate at Re = 500.

Further, the present IB-LBM solver is extended to the flow simulation at moderate Reynolds numbers445

Re = O(103). The pitching plate at Re = 5000 (Garmann and Visbal, 2011) is chosen as the benchmark. In446

this part, two sets of starting styles are adopted which are denoted as Motion-I and Motion-II respectively and447
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the motion style follows448

α =
Ω0

2a
ln

[
cosh(a(τ − τ1)) cosh(a(τ − τ4))

cosh(a(τ − τ2)) cosh(a(τ − τ3))

]
, (22)

where a relates to the smoothness of the initial stage and Ω0 denotes the largest pitching rate. In the definition449

of the pitching angle, τi controls the hold time of the motion and follows450

τ1 = start time, τ2 = τ1 +
α0

Ω0
, τ3 = τ2 + ∆τ, τ4 = τ3 +

α0

Ω0
, (23)

where α0 is the amplitude of the pitching angle. In the present simulation, for Motion-I and Motion-II, the451

parameters are defined as452

Motion-I : Ω0 = 0.4, τ1 = 1.6, α0 =
π

4
,∆τ = 1.121, a = 2;

Motion-II : Ω0 = 0.4, τ1 = 1.6, α0 =
π

4
,∆τ = 1.121, a = 11. (24)

As shown in Fig. 16(a), for relatively smooth Motion-I, the strong LEV can be observed because of the453

rapid change of the angle of attack (AoA). At the present moderate Re = 5000, the secondary structure also454

exists around the leading edge of the plate due to the formation of LEV. With the increase of the pitching angle,455

the stability of the wake flow is destroyed and the vortex sheet breaks into several small separated vortices. At456

the same time, the scale of the LEV increases and re-attaches to the plate, as it can be seen in Fig. 16(b).457

When the anti-direction pitching occurs, the behaviours of the boundary layer on the top surface of the plate458

become complex, which makes the characteristics of the force on the plate more complicated, as shown in Fig.459

17. With the larger pitching rate in Motion-II, the flow behaviour around the leading edge of the plate at the460

pitching-increasing stage shows similarity with that observed for Motion-I. Because of the rapid change of the461

pitching angle, the destruction of the vortex sheet becomes more obvious and the wake flow becomes complex in462

Figs. 18(a) to 18(c). In addition, the irregular flow field results in the complicated trend of the force coefficients,463

especially in the pitching-decreasing stage in Fig. 19. According to the comparisons in Figs. 17 and 19, the464

predictions of the force and moment on the plate agree well with the previous ones with the compressible NS465

solver in Garmann and Visbal (2011) and the adaptive incompressible NS solver in Liu and Hu (2018).466

(a) tU∞/L = 2.5 (b) tU∞/L = 4.0 (c) tU∞/L = 5.5

Fig. 16. Flow field around the pitching plate at Re = 5000 for Motion-I.
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(a) Cd (b) Cl (c) Cm

Fig. 17. Hydrodynamic force on the pitching plate at Re = 5000 for Motion-I.

(a) tU∞/L = 2.5 (b) tU∞/L = 4.0 (c) tU∞/L = 5.5

Fig. 18. Flow field around the pitching plate at Re = 5000 for Motion-II.

(a) Cd (b) Cl (c) Cm

Fig. 19. Hydrodynamic force on the pitching plate at Re = 5000 for Motion-II.
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4.6 Vortex induced vibration of a circular cylinder467

After performance confirmation about the moving boundary with prescribed motions, the present IB-LBM468

solver is further extended to fluid-structure interactions in this and the next subsections.469

Firstly, in this subsection, the Vortex Induced Vibration (VIV) of a circular cylinder with one Degree of470

Freedom (DoF) in the y direction is simulated. According to Wang and Yeung (2016), the mass ratio m∗ is471

defined as m∗ = m/(ρD2) for the cylinder with the mass of m and density of ρ, and Re is defined with the inflow472

velocity U∞ and the diameter of the cylinder D. In addition, the stiffness k is added to restrict the oscillation473

of the cylinder, leading to the definition of the reduced velocity U∗ = U∞/(fD), where f denotes the natural474

frequency 2πf =
√
k/m.475

In Fig. 20, the non-dimensional Y displacement as the function of U∗ with m∗ = 2.0 and Re = 150 is shown476

and compared with the previous results in Ahn and Kallinderis (2006) and Wang and Yeung (2016). As it can477

be observed, the overall agreement between the present results and the previous ones are satisfactory. When478

U∗ is small, the larger stiffness of the restriction limits the motion of the cylinder. In this case, the motion479

amplitude of the cylinder is small and the flow pattern of the wake shares similarity with that of the stationary480

cylinder, as shown in Fig. 21(a). With the increase of U∗, a sudden increase of the motion amplitude can be481

observed and its value reaches about Yc−max/D = 0.56. Because of the oscillation with large amplitude, the482

wake flow of the cylinder changes to the 2S mode, where two sets of isolated vortices are shed into the wake483

in one oscillation cycle in Fig. 21(b). With a further increase of U∗, the motion amplitude decreases and the484

flow pattern of the wake changes back to the normal mode. With U∗ = 8, the frequency of the vortex shedding485

deviates from the natural frequency of the cylinder. In this case, the motion amplitude of the cylinder decreases486

to its minimal value of around 0.08.487

Fig. 20. VIV amplitude of the cylinder with m∗ = 2.0 and Re = 150.

It is well known that the weak coupling strategy is not unconditionally stable, which could have a stability488

issue when the density ratio is small, i.e., the structure is much lighter than the fluid and the added mass489

dominates the motion of the body. When the traditional incompressible NS solver is adopted, to achieve a490

stable simulation, either a small time step or a strong coupling strategy is essential. It is obvious that both491

methods to remedy the stability issue require considerable computational cost due to the small time step or492
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(a) U∗ = 3.0 (b) U∗ = 4.0 (c) U∗ = 5.0

(d) U∗ = 6.0 (e) U∗ = 7.0 (f) U∗ = 8.0

Fig. 21. Flow field around the cylinder with m∗ = 2.0 and Re = 150.

the requirement for sub-cycles in the strong coupling strategy. In the present IB-LBM solver, because of the493

introduction of the multi-grid based adaptive strategy to resolve the fluid flow, the flow field is predicted with494

multi-time scales, i.e., 1 step in the coarse grid followed by 2 sub-steps in the fine grid. This manner is equivalent495

to the “refinement in time” strategy. Therefore, the sub-step integrator in the present model is expected to496

improve the numerical stability. At the same time, the fine grid in the present adaptive framework covers a497

small part of the global domain, which only introduces little additional workload for the sub-step computation.498

To demonstrate such attractive feature, the VIV of a cylinder with two DoFs in the x and y directions and a499

low density ratio of m∗ = 4/π at Re = 200 is simulated. Further, the damping term is added to the motion of500

the cylinder with ζ = c
2
√
km

.501

As shown in Fig. 22, because of the existence of the mean drag, the mean location of the cylinder moves502

to the downstream side. With the periodical lift, the cylinder experiences the oscillation in the y direction.503

The X and Y displacements in the x and y directions form the well-known ”8-shapping” pattern, and the504

present prediction of the displacements agrees well with that obtained by the spectral Finite Element model in505

Blackburn and Karniadakis (1993) and the sharp interface immersed boundary method in Yang et al. (2008).506

Furthermore, the large motion amplitude in the y direction causes the 2S wake of the cylinder, as shown in Fig.507

23. Lastly, the force coefficients on the cylinder are compared with the results in Yang et al. (2008). It can be508

observed from Fig. 24 that the time history of the forces on the cylinder can be also predicted well using the509

present model.510

In the work of Yang et al. (2008), for the density ratio of 1.07, numerical instability occurs using the sharp511

interface immersed boundary model with the weak coupling strategy. Furthermore, with an improved weak512

coupling strategy in Kim et al. (2018), the stable numerical simulation has been extended to about m∗ = 0.2.513

To check the robustness of the present IB-LBM solver, the cases with m∗ = 0.7, 0.5, 0.3 are simulated. As514

shown in Fig. 25, with the decrease of m∗, the mean displacement of the cylinder in the x direction increases,515

which correlates to the decrease of the stiffness to keep the reduced velocity. Even with m∗ = 0.3, the present516

numerical model can also produce a stable prediction about the motion of the cylinder, which confirms the517

robustness of the solver. Compared with the results in Kim et al. (2018), the present prediction about the mean518

shift of the cylinder to the downstream side is satisfactory.519
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Fig. 22. Phase plot for the cylinder with m∗ = 4/π and Re = 200.

Fig. 23. Flow field around the cylinder with m∗ = 4/π and Re = 200.

Fig. 24. Hydrodynamic forces on the cylinder with m∗ = 4/π and Re = 200.
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Fig. 25. Phase plot for the cylinder with m∗ = 0.7 to m∗ = 0.3.

4.7 Vortex induced rotation of a rectangular cylinder520

After the validation about the solid body with a smooth boundary, the vortex induced rotation of a521

rectangular cylinder is further simulated in this subsection. For such configuration, I∗ = Is/(ρsD
4) is adopted522

to measure the inertial moment of the body, and the aspect ratio of the cylinder is fixed as 0.25. In this523

subsection, Re = 250, U∗ = 40 and I∗ = 400 are adopted with two sets of damping ratios ζ = 0.25 and524

ζ = 0.00. As shown in Fig. 26, with the larger damping ratio, the rotational motion of the cylinder is restricted525

within θ ≈ ±15◦. In the present work, an initial angular displacement is enforced for an accelarated process526

of the cylinder reaching its periodic state. Such treatment leads to a phase difference between the present and527

previous predictions about the angular displacement. Furthermore, because of the numerical inconsistency for528

St, i.e., the dimensionless frequency of vortex shedding, an additional phase shift also exists for the long term529

prediction about angular displacement. To match such phase difference, the present results have been shifted530

in time. As shown in Fig. 26, both the amplitude and the frequency of the present results agree well with the531

previous ones. From Fig. 27, it can be observed that the sharp corner of the structure and the resulting flow532

seperation/re-attachment are well captured.533

When the damping ratio decreases, the rotational motion of the cylinder increases obviously. With ζ = 0.00,534

the rotation amplitude reaches about 120◦, which is over 10 times larger than that with ζ = 0.25, as shown in535

Fig. 28. After about 6 periods, the rotational motion of the cylinder reaches its steady state. In Robertson536

et al. (2003), the numerical model failed to simulate such large-amplitude rotation, while the sharp interface537

immersed boundary model (Yang and Stern, 2012) removed such restriction. As it can be observed in Fig. 28,538

the present results are in good agreement with that in Yang and Stern (2012), which confirms the robustness539

of the present immersed boundary method over the traditional body-fitting model. As shown in Fig. 29, with540

the large-amplitude rotation, the complex vortex structure can be observed in the wake of the cylinder.541
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Fig. 26. Angular displacement of the rectangular cylinder with ζ = 0.25.

(a) (b) (c) (d)

Fig. 27. Flow field around the rectangular cylinder with ζ = 0.25.

28



Fig. 28. Angular displacement of the rectangular cylinder with ζ = 0.00.

(a) (b) (c) (d)

Fig. 29. Flow field around the rectangular cylinder with ζ = 0.00.
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5 Conclusions542

In the present work, an efficient Volume of Solid (VOS) based Immersed Boundary (IB) model is built to543

simulate the fluid flow with complex and moving boundaries. To obtain a unified equation in the entire domain,544

the VOS based combination strategy for the flow equations and the solid body motion is developed. With the545

direct forcing algorithm, the no-slip boundary condition is enforced effectively without any special treatment546

around the structure boundary. Compared with the surface based immersed boundary model, the dependency547

of the surface discretization on the resolution of the fluid domain is removed, and only the surface mesh, which548

represents its geometrical characteristics, is sufficient for the model. To solve the interaction between thin-549

wall structures and fluid flows and further the fluid-structure interaction problems, the present IB model has550

been coupled with a Lattice Boltzmann Method (LBM), and a local mesh refinement model, together with an551

adaptive strategy for flow prediction, is developed to improve the efficiency and stability of the model.552

Compared with the surface based IB-LBM model, the forcing factor based on the equilibrium velocity553

has been shown to produce over-corrected flow field in the solid phase and further produces unphysical force554

oscillation. As a simple remedy about such issue, an optimized forcing factor based on the post-collision state555

is recommended to control such force oscillation. In addition to the classical benchmark cases, the fluid flow556

with moderate Re number is also simulated for the Vortex induced Vibration (VIV) problems. The agreement557

between the present results and the previous well-validated ones confirms the accuracy and the robustness of558

the present model. Furthermore, even the present numerical model is developed for the 2D situations, it can be559

easily extended to solve the 3D problems without special difficulties.560
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