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ABSTRACT:  

For regulatory purposes, air pollution has been reduced to management of air quality control regions 

(AQCR), by inventorying pollution sources and identifying the receptors significantly affected. 

However, beyond being source-dependent, particulate matter can be physically and chemically altered 

by factors and elements of climate during transport, as they act as local environmental constraints, 

indirectly modulating the adverse effects of particles on the environment and human health. This case 

study, at an industrial site in a Brazilian coastal city – Joinville, combines different methodologies to 

integrate atmospheric dynamics in a strategic risk assessment approach whereby the influence of 

different wind regimes on environmental and health risks of exposure to PM2.5-bound elements, are 

analysed. Although Joinville AQCR has been prone to stagnation/recirculation events, distinctly 

different horizontal wind circulation patterns indicate two airsheds within the region. The two sampling 

sites mirrored these two conditions and as a result we report different PM2.5 mass concentrations, 

chemical profiles, geo-accumulation, and ecological and human health risks. In addition, feedback 

mechanisms between the airsheds seem to aggravate the air quality and its effects even under good 

ventilation conditions. Recognizably, the risks associated with Co, Pb, Cu, Ni, Mn, and Zn loadings 

were extremely high for the environment as well as being the main contributors to elevated non-

carcinogenic risks. Meanwhile, higher carcinogenic risks occurred during stagnation/recirculation 

conditions, with Cr as the major threat. These results highlight the importance of integrating local 

airshed characteristics into the risk assessment of PM2.5-bound elements since they can aggravate air 

pollution leading to different risks at a granular scale. This new approach to risk assessment can be 

employed in any city's longer-term development plan since it provides public authorities with a strategic 

perspective on incorporating environmental constraints into urban growth planning and development 

zoning regulations. 

Keywords: PM2.5. Heavy metals. Health risks. Meteorological conditions. Development zoning. 
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1. INTRODUCTION 

 

Over the last six decades, the planet has undergone rapid urbanization (UN DESA, 2014). It is 

estimated that more than two-thirds of the world’s population will live in urban areas by 2050 (UN 

DESA, 2018), essentially because of the economic opportunities they provide. The risks associated with 

this rapid (and unplanned) urbanization are even more hazardous in developing countries, where air 

pollution becomes an overlooked downside of industrial-urban growth.   

Ambient exposure to PM2.5 has been estimated to have caused more than 4 million premature 

deaths worldwide in 2016, and 118 million lost Disability-Adjusted Life Years (DALYs), being the 

main driver of air pollution’s burden disease worldwide (IHME, 2020; WHO, 2021). Nevertheless, the 

concern goes beyond the health risks due to its inhalable size, since PM2.5-bound elements are associated 

with significantly different toxicity levels and oxidative potential (Farahani et al., 2021; Godoi et al., 

2016; Nordberg et al., 2021; Polezer et al., 2019). 

Within the complex system of airborne particulate matter pollution, environmental constraints 

resulting from atmospheric circulation under more complex orographic conditioning and seasonal 

patterns are determinants for the local air quality at the granular scale. Many researchers have conducted 

reliable pollution characterisation and source apportionment of particulate matter in ambient air, 

however, few studies have focused on understanding the loading capacity, self-purification, and 

recovery of ambient air quality according to local environmental constraints. Current dispersion models 

still fail to reflect the true air pollution levels at this scale and therefore these constraints are often 

neglected when local air quality management is designed. One approach to close this gap in knowledge 

is to combine air flow regimes with PM2.5 mass and elemental concentrations and their associated risks 

to human and ecological health. 

Understanding air pollutants’ dispersion over a given airshed requires detailed information such 

as tridimensional wind datasets, which are not trivial to obtain and rarely available even for short periods 

of time (Levy et al., 2010, 2008; Russo et al., 2018). Most small to medium-sized cities in developing 

and under-developed countries do not have the resources to invest in that level of research. Under this 
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reality, Allwine and Whiteman (1994)’s approach enables investigating the impact of horizontal wind 

flow on pollution levels by analysing the transport phenomenon as a result of stagnation, recirculation 

and ventilation flow conditions. Although it has some limitations (i.e., it estimates the horizontal 

transport of a plume under idealised homogeneous wind conditions), it is a straightforward method to 

assess the assimilative and dispersal capacities of different airsheds that only requires hourly wind 

components from meteorological observations (Mohan and Bhati, 2013; Russo et al., 2016). 

Allwine and Whiteman (1994) first applied this methodology in the United States. Since then, 

it has been adapted to the diverse reality of airsheds around the world, in countries such as Arab Emirates 

(Levy et al., 2008), India (Mohan and Bhati, 2013); Portugal (Russo et al., 2018, 2016), Australia 

(Crawford et al., 2017), and China (Zhou et al., 2019). Most of these studies applied this mathematical 

approach to quantify airflow characteristics with air pollution as the main focus. Russo et al. (2016), on 

the other hand, applied this approach to analyze the atmospheric driving mechanisms of Legionella’s 

disease outbreak events in Portugal and as such recognized its potential to be a powerful tool to identify 

risk areas during airborne transmission events.  

Mainly caused by the uneven heating of the Earth by the sun in the face of its own rotation, wind 

does not act as an independent phenomenon but as a result of a dynamic nexus between factors and 

elements of climate. As such, to incorporate it, as an integrative meteorological parameter of 

environmental constraints in a strategic holistic approach to address air pollution, can contribute 

significantly into understanding the assimilative and dispersal capacities of different airsheds for more 

sustainable and resilient urban development planning.  

Given that, combining the Allwine and Whiteman (1994) approach with a risk assessment of 

PM2.5-bound elements could provide a new dimension by identifying the impact of environmental 

constraints on the air quality in a coastal urban-industrial airshed. Not only does this have implications 

for community health but it can also provide valuable evidence for new policy-making by local 

authorities by changing the ways of thinking, planning, and management of urban spaces toward natural 

assets. 
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In this paper, for the first time, we quantify the differences in the ecological and human health 

risks under different horizontal airflow regimes at granular level. As a case study, we report data 

obtained at a Brazilian coastal city, Joinville, where complex surroundings dictate environmental, social 

and health-related challenges. Joinville, a mid-sized city in Southern Brazil, also known as “Catarinense 

Manchester” due to its large industrial pole and similar weather conditions, has been playing with 

environmental thresholds since its beginning. Joinville is an originally unorganized-unplanned coastal 

urban-industrial city in Southern Brazil surrounded by mountains (to the west) and the Atlantic Ocean 

(to the east), where air pollution is a never fully investigated known threat. Not surprisingly, like any 

other industrial city, its rapid development consisted of an intensive occupation of industry surroundings 

without any concerns for environmental limitations, which poses a threat to the environment and the 

growing population. Joinville’s residents [~ 600,000 (IBGE, 2021)] are continuously exposed to local 

pollutants since around 35% of them (SEPUD, 2021) besides living under ambient air pollution, also 

work under concentrated levels of pollutants in industrial environments. Consequently, exposure to air 

pollution is unavoidable both while living and working in such an urban-industrial city. In this context, 

this work moves away from traditional risk assessment of air quality and explores the unique link 

between potential environmental and health risks and airshed dynamics as a new approach to air 

pollution control and urban strategic planning to help achieve substantial environmental and health co-

benefits. 

 

2. MATERIALS AND METHODS 

 

To evaluate the potential environmental constraints on air quality and its health risks in Joinville, 

the following investigation approaches were applied: i) meteorological characterization of the sites 

through analyses of atmospheric variables to assess local air mass circulation; ii) detailed assessment of 

the environmental constraints (from meteorological characterization under topographic limitations) on 

air quality; and iii) estimation of ecological and health risks associated with PM2.5 chemical components. 
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All descriptive and statistical analysis were conducted using R 4.0.4 and its packages in 

RStudio. A combination of methods is used to aid the interpretation of the influence of atmospheric 

variables on air quality data. A common method to visualize and explore mean pollutant concentrations 

based on wind speed and wind direction is the use of bivariate polar plots, for which several observations 

in a timeseries are aggregated into wind speed-direction intervals (i.e., bins) (Carslaw et al., 2006; 

Carslaw and Ropkins, 2012; Grange et al., 2016; Kassomenos et al., 2012). Polar plot analysis was 

conducted using the open-source polarPlot function available in the openair R package (Carslaw and 

Ropkins, 2012; R Core Team, 2022) to graphically investigate the influence of horizontal wind dynamic 

on air quality within Joinville’s AQCR. In this function, a smoothed surface is fitted to these binned 

summaries using a generalized additive model (GAM) to create a continuous surface that can be plotted 

with polar coordinates. Further details of the approach can be found in Carslaw and Beevers (2013) and 

Uria-Tellaetxe and Carslaw (2014). In addition, pollutionRose graphical representations were plotted 

using the same R package as a complement to understand the effect of wind direction on the dispersion 

of PM2.5. 

All raw data and main processed data files are available in open-access repositories as well as 

the code folder reports containing all R scripts elaborated and required to reproduce and replicate this 

combined strategic approach for assessing the role of environmental constraints on air quality. Links to 

these repositories are presented in the Data Availability section. 

 

2.1. Sampling design 

 

2.1.1. Study area 

  Joinville (26º04'12”S/49º12'36”W; 26º27'07”S/48º43'12”W) is a coastal city in southern Brazil 

(Figure 1), the largest in Santa Catarina State, with a population of about 600,000 inhabitants (IBGE, 

2021). Covering an area of 1,125 km², Joinville lies between the eastern edge of the Sea Mountain range 

(Serra do Mar) (to the west) covered by the remains of the Atlantic Rainforest, and the estuary of 

Babitonga Bay to the east. Based on the classification of Köeppen (1948), the urban area has a 
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subtropical mesothermal humid climate with hot summers (Cfa). Due to regional topography and coastal 

position, Joinville is characterized by high humidity and prevailing wind directions are usually from 

East, as shown in Figure 1 (wind roses were derived from data of the meteorological stations closest to 

the sampling sites).  

The industrial character of the city began in the 1930s with a foundry plant downtown. The 

urban-industrial area expanded to the east during the fifties, when a district dominated by a major 

Metallurgical Industrial Complex was established, reaching its consolidation as (a mainly) metallurgical 

centre in the seventies toward the north, where a separated industrial district (known nowadays as North 

Industrial District) was delimitated, which ultimately defined the urban densification as seen today.  

 

2.1.2.  Sampling site 

The PM2.5 sampling site was set at the two urban-industrial sites (Figure 1): one at about 2 km 

southwest of the Metallurgical Industrial Complex (26°18’00.1” S/48°49’25.2” W, at 11 m asl, hereafter 

named MIC); and another situated south of the North Industrial District (26°15’10.6” S/48°51’24.2” W 

at 16 m asl, hereafter NID). Both sites are located east of the Sea Mountain range (up to 1540 m asl) and 

west of a small complex of mountains, the Saí Mountain range (Serra do Saí) (up to 700 m asl). In 

addition to these mountainous surroundings, Boa Vista Hill (Morro da Boa Vista) and Finder Hill 

(Morro do Finder) (both up to approximately 250 m asl) separate those two sites.  

The sites were selected based on accessibility, downwind from both urban-industrial districts, 

near residential areas, and their representativeness of different environments (near the coast or mountain 

range, respectively).  
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Figure 1 – Localization of the study area, sampling sites [Metallurgical Industrial Complex (MIC) and 
North Industrial District (NID)], meteorological and rain gauge stations. Wind roses indicate the 

frequency of counts by wind direction at the meteorological stations near to the study area. 
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2.1.3. Sample collection and chemical analysis 

A comprehensive daily PM2.5 sampling campaign was conducted from Sep. 02, 2018 to Feb. 28, 

2020 (NMIC = 491 and NNID = 349) at both sites, using low volume Harvard Impactor samplers. Following 

the European Directive 2008/50/EC (European Union, 2008) and amendments about the location of 

sampling points for assessment of ambient air quality at microscale, the samplers were sited at 2.0 m 

(the breathing zone) above the ground free to any obstacles affecting the airflow in the vicinity of the 

inlet. Samples were collected at a mean sampling flow rate of 10 L min−1 onto 37 mm polycarbonate 

filter membranes (Whatman® Nuclepore™, USA) with pore size 0.8 μm. Field blanks (reducing filter 

handling and transport errors) and samples collected during the campaign were stored at 20°C ± 5 °C 

until analysis. To determine PM2.5 mass concentration (Method 0500 (NIOSH, 1994)), filters were 

weighed before and after sampling with a microbalance (Sartorius Cubis Micro Balance) and an 

electrostatic charge eliminator (Sartorius Stat-Pen). 

Quantification of Al, Br, Co, Cr, Cu, Fe, K, Mn, Na, Ni, Mg, P, Pb, Pt, S, Se, Si, Sr, Ti, V, and 

Zn were performed in triplicate on 50% randomly selected samples and blanks, using a Minipal-4 

(PANalytical, Almelo, The Netherlands) EDXRF. X-Ray Fluorescence analysis (XRF) is a well-

established alternative for elemental analysis of aerosol samples (Van Grieken and Markowicz, 2001). 

The method has been optimised in our laboratory based on elemental specific reference standards 

(Micromatter Seattle, WA, USA) and validated by the measurement of various thin layer standards for 

each element (Polezer et al., 2019, 2018). All results reported in this paper were blank corrected. In this 

study, data were only pre-processed to exclude outliers resulting from measurement or data entry errors. 

More details about sample preparation and analytical procedure are presented in Supplementary 

material, S1. 

 

2.2. Meteorological database 

 

Meteorological data were obtained from the Santa Catarina Civil Defence meteorological 

stations’ network, the Joinville-Lauro Carneiro de Loyola Airport station (SBJV) (available on the 
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MESONET website). Precipitation data was also obtained from the CEMADEN’s rain gauges’ network. 

Detailed information about localization and data availability of each station is presented in Figure 1 and 

Table S2. These data sets were used to study the historical horizontal flow characteristics of the region 

as described in section 2.3. 

To analyse the horizontal flow characteristics during the sampling period, two specific 

meteorologic stations were used. For MIC, the Iate Clube station (ID-1 in Figure 1), approximately 2 

km to the east of the sampling station, were used. For NID, the data were obtained from FlotFlux station 

(ID-3 in Figure 1), approximately 2 km to the south of the station. For missing data, homogenization 

and interpolation were done using the Climatol package in R (Azorin-Molina et al., 2019; Guijarro, 

2019). For these calculations, daily converted data from all stations were used as input and only output 

from the Iate Clube and Flotflux stations were used to fill the dataset for the sampling period. 

As the study investigates seasonal variation amongst others, it is important to define the time 

frame of the different seasons: summer (mid-December – mid-March), autumn (mid-March – mid-June), 

winter (mid-June – mid-September), and spring (mid-September – mid-December). 

 

2.3. Horizontal flow characterization 

 

Allwine and Whiteman (1994) proposed a methodology that can be applied to understand air 

pollution transport potential by assessing whether horizontal flow conditions are favourable for air 

stagnation, recirculation, and/or ventilation at a specific site. The horizontal flow conditions at the 

measurement point are determined by calculating and comparing discrete integral quantities 

characteristic of the flow at the measurement point, which are defined as ‘resultant transport distance’ 

(L), ‘wind run’ (S), and the ‘recirculation factor’ (R), and calculated for each time step i as follows:  

𝑉 = 𝑢 +  𝑣                    𝑖 = 1, 2, … 𝑁   (1) 

𝐿 = 𝑇 ∑ 𝑉  (2) 

𝑆 = 𝑇 ∑ 𝑉  (3) 

𝑅 =  1 −  (4) 
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where 𝑢  and 𝑣   are the wind components used for horizontal wind measurement (computed by 

decomposing the original wind speed and direction observations into their x and y components), 

representing the east-west and north-south components respectively, T is the averaging interval of the 

data (i.e., if hourly information is considered, then T = 1 h = 3600 s, if 5-min information is considered, 

then T = 300 s) and τ is the wind run time for integration (i.e., 24 h) and j corresponds to the integration 

temporal steps. L is a measure of the net distance an air parcel has travelled from the measuring site after 

a period of τ hours. S is the summation of the total distance that the air parcel has travelled and could be 

indicative of the degree of stagnation. S’ is the mean wind speed in m/s when divided by τ in seconds 

(i.e., 24 × 3600). R is a return index ratio between L and S and provides an indication of local horizontal 

wind recirculation after the total wind run time. If R is 0, no horizontal recirculation has taken place and 

the air parcel has moved away (i.e., persistent wind direction), while an R value of 1 means zero net 

transport of air (i.e., changing wind direction). Low R values cannot rule out vertical recirculation since 

it only indicates persistent wind direction at ground level (Levy et al., 2008). Although these quantities 

do not describe the true travel of the plume, they allow describing the conditions for the transport of 

polluted air in different regions simply and straightforwardly.  

In order to characterize horizontal air transport in the study area, these parameters were first 

calculated for each time step (indicated in Table S2). Further, the classification of local wind fields were 

computed by comparing daily (with a wind run time “τ” comprising 24-h for the historical period, or the 

sampling duration for the sampling period) values of R and S with a broad set of critical transport indices 

(CTIs) determined following the approach which Russo et al. (2018) adapted from Allwine and 

Whiteman (1994) by using the individual local station’s datasets. A more detailed discussion of these 

parameters can be found in Supplementary material (S2). 

 

2.4. Trajectory analysis 

 

The chemical and physical composition of an air mass is strongly linked to its path through the 

atmosphere (Fleming et al., 2012). Backward trajectories can provide important information on the air 
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mass origin over days or longer periods of time (Carslaw, 2020), allowing interpretation of pollution 

transport over different spatial and temporal scales by depicting airflow patterns (Stein et al., 2015). The 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model uses a calculation method 

that combines a moving frame of reference (Langragian) for the simulation of advection, diffusion and 

deposition with a fixed three-dimensional grid as a frame of reference (Eulerian) to compute the 

pollutant air concentration (Rolph et al., 2017). The HYSPLIT is the most extensively used computer 

model to simulate the transport and dispersion of air parcel substances through the atmosphere (Rolph 

et al., 2017; Stein et al., 2015). The HYSPLIT is a free computer model that can be run interactively 

through the ARL READY system (https://www.ready.noaa.gov/index.php) to compute air parcel 

trajectories.  

 In this work, the backward trajectories were generated using the HYSPLIT model for each 

sampling site (MIC and NID) at different heights to see what influence the starting height has on the 

results. In order to analyse multiple traces, the trajectories were group into clusters using the openair 

package in RStudio (Carslaw, 2020; Carslaw and Ropkins, 2012) to get an insight into the origin and 

transport pathway of the air masses. Trajectories that share some commonalities in space and time 

simplify airmass history analysis and interpretation when grouping into clusters, by reducing the 

uncertainty in the determination of the atmospheric transport pathways (Fleming et al., 2012; Stein et 

al., 2015). 

The air masses transport patterns were identified by taking into consideration the predominant 

trajectories obtained during simulations. The backward trajectories arriving at 10 m above the ground 

level (AGL) (i.e., air masses arriving near to the sampler height), as well as at 100 m and 300 m AGL, 

during the sampling period have been calculated using the Global NOAA-NCEP/NCAR reanalysis data. 

The HYSPLIT model was run using openair’s run_hysplit function code. The monthly meteorological 

(.gbl) files were downloaded from the NOAA website for the period from Aug. 2018 to Feb. 2020. The 

global data are on a latitude-longitude grid (2.5°). Daily trajectories were produced at those three heights 

and propagated backwards in time (96-hour) at 3-hour intervals (4368 96-h back trajectories).  
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Thereby, a cluster analysis of HYSPLIT back trajectories were conducted, allowing the 

visualisation of air mass histories by grouping data with similar geographic origins. As a result, six 

clusters of trajectories were generated by their air pathways with the highest frequencies in a particular 

grid square. This was done using the angle distance matrix [based on Sirois and Bottenheim (1995)] as 

a measure to determine the similarity (or dissimilarity) of different back trajectories since trajectory 

directions were the main interest. Further details of this method can also be found in the openair manual 

(Carslaw, 2020; Carslaw and Ropkins, 2012). 

 

2.5. Risk assessment 

 

2.5.1.  Geo-accumulation index  

Geo-accumulation index (Igeo) was calculated as an indicator to assess the presence and intensity 

of anthropogenic contaminants. The contamination is given by comparing the concentrations of 

elements in PM2.5 with the background crust levels and is expressed as follows (Censi et al., 2017; Li et 

al., 2015a; Müeller, 1969; Zhi et al., 2021). 

 

𝐼 =  𝑙𝑜𝑔
.  ×

 (5) 

 

where 𝐶  and 𝐶  (both in g ton-1) stand for the concentration of the ith metal in PM2.5 and the 

earth’s crust (background), respectively. In this study, the specific concentration values of the metals in 

the earth crust were obtained from Mason (1966). The factor 1.5 is applied as the background matrix 

correction value and allows to analyse natural fluctuations in the content of a given substance in the 

environment and to detect very small anthropogenic influence (Barbieri, 2016). The pollution levels of 

metal elements at the sampling site are divided into seven categories according to the values of Igeo: 

uncontaminated (Igeo ≤ 0), slightly contaminated (0 < Igeo ≤1), moderately contaminated (1 < Igeo ≤ 2), 

moderately to strongly contaminated (2 < Igeo ≤ 3), strongly contaminated (3 < Igeo ≤ 4), strongly to 
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severely contaminated (4 < Igeo ≤ 5), and severely contaminated (Igeo > 5) (Wei et al., 2015). The highest 

class (Igeo > 5) indicates at least a 100-fold enrichment factor above background values (Barbieri, 2016). 

 

2.5.2.  Ecological risk index  

The enrichment of metals in the environment can disrupt the natural balance of ecosystems, and 

it is also toxic to all species, including humans (Chen et al., 2020a). The potential ecological risk index 

(RI) proposed by Hakanson (1980) was calculated to evaluate the degree of metal elements in particles 

pollution. The potential ecological risk index of a single element (𝐸 ) and comprehensive potential 

ecological risk index (RI) considers the specific concentrations of metals and their toxicity responses 

(Alves et al., 2020; Bai et al., 2019; Zhi et al., 2021). This index takes into consideration 

sedimentological, toxicological and ecological risk perspectives – on the nexus contamination of water-

sediment-biota-fish-humans – into a toxic factor (𝑇 , i.e., the metal’s toxic response factor) which gives 

information about: i) the potential transport avenues and the threat of toxic substances to humans; ii) the 

even more complex threat to the aquatic ecological system. In this approach, the toxic factor concept 

follows “the abundance principle” (i.e., the potential toxicological effect of a substance/element is 

proportional to its abundance in nature) conditioned by three aspects: i) the sink-effect, i.e., the element 

tendency to be deposited in the sediments (the highest the “sink-factor” implies that more of the element 

may be found in the water compared to the sediments); ii) the problem of dimensions, i.e., an abundance 

number correction to give an adequate dimension to the toxic factor so it may be used as 

sedimentological toxic factors; and iii) the bioproduction index as a ”sensitivity factor”, which is 

considered as equal 5.0 for moderately eutrophic and bioproductive waters. In conclusion, the ecological 

risk index is calculated using the metal’s toxic response factor to adjust the contamination factor of toxic 

elements [defined as the ratio between the mean content of the element in the samples and the 

preindustrial (i.e., the earth’s crust elemental concentration as a background) reference values for such 

element], as follows:  
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𝑅𝐼 = ∑ 𝐸  (6) 

𝐸 = 𝑇  (7) 

 

where 𝐸  is the potential ecological risk coefficient of the ith metal, 𝐶  and 𝐶  are the 

same used for Igeo, and 𝑇  is the ith metal's toxic response factor, which is related to its release capability 

and the relative abundance in different media (igneous rock, soil, freshwater, terrestrial plant, terrestrial 

animal, etc.) (Chen et al., 2020a; Liu et al., 2021; Wang et al., 2018; Zhang et al., 2021). According to 

earlier research (Li et al., 2019; Zhi et al., 2021), if RI < 150, there is low ecological risk around the 

sampling site; 150 ≤ RI < 300, 300 ≤ RI < 600, and RI ≥ 600 indicate moderate, considerable, and very 

high ecological risks, respectively. For individual metals, the potential ecological risk can be divided 

into five levels based on their 𝐸  values, namely, low risk (𝐸  < 40), moderate risk (40 ≤ 𝐸  < 80), 

considerable risk (80 ≤ 𝐸  < 160), high risk (160 ≤ 𝐸   < 320), and extremely high risk (𝐸  ≥ 320) (Gujre 

et al., 2021; Williams and Antoine, 2020; Zhang et al., 2021; Zhi et al., 2021). 

 

2.5.3.  Health risk assessment 

Residents living in Joinville are potential receptors of metals in PM2.5. The health risk 

assessment established by the United States Environmental Protection Agency (US EPA, 2015a) allows 

to estimate the health risks associated with PM2.5-bound metals exposure via Chemical Daily Intake 

through oral ingestion [CDIing, mg·(kg·day)−1], Exposure Concentration through inhalation (ECinh, 

μg·m−3), and Dermal Absorption Dose through dermal contact [DADder, mg·(kg·day)−1] that can be 

calculated as follows: 

 

CDI = C %
× × ×

×
 (8) 

EC = C %
× ×

 (9) 

DAD = C %
× × × × ×

×
 (10) 
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where C95% means the reasonable maximum exposure (the 95% upper confidence limit on the arithmetic 

mean chemical concentration) at the sampling sites. These values were used in μg·m−3 to calculate ECinh, 

and in mg kg-1 to calculate CDIing and DADder. Each element-specific dataset was entered into ProUCL 

(Version 5.1), a software package provided by the US EPA (2015b), to determine C95% of each element 

specific as recommended by the US EPA Risk Assessment Guidance for Superfund (US EPA, 1989). 

More details can be found in Supplementary material, S4. Most of the used risk parameters are 

recommended default exposure factors recommended by US EPA, however parameters such as average 

body weight and mortality age were verified by comparing against data from Brazilian Institute of 

Geography and Statistics (IBGE, 2010) about Santa Catarina State population. The description and 

specific values of other parameters in Eqs. (8) – (10) are shown in Table S4. 

The corresponding hazard quotient (HQ) and carcinogenic risk (CR) of toxic metals through the 

three pathways were evaluated further using the following equations (11) – (16). 

 

HQ =  , HQ =
×

, HQ =
×

   (11 – 13) 

CR = CDI × SF , CR = EC × IUR, CR =
×

 (14 – 16) 

 

where RfDo, RfCi, GIABS, SFo, and IUR are the oral Reference Doses [mg·(kg·day)−1], inhalation 

Reference Concentration (mg·m−3), Gastrointestinal Absorption Factor, oral Slope Factor 

[(mg·(kg·day)−1)−1], and Inhalation Unit Risk [(μg·m−3)−1], respectively (Table S5). A Hazard Index 

(HIelement), i.e., the sum of the HQ for each element, is used to assess the elemental non-carcinogenic 

risks (chronic effects) through multiple exposure pathways. From these HQs, integrated effects of multi-

elemental exposure were estimated by exposure pathway (HQmulti-element) and as total hazard index for 

chronic exposure through all pathways (HImulti-element). Any of these HQ > 1 or HI > 1 indicates that there 

is a chance that chronic effects will occur. The CR value reveals the probability that an individual will 

develop any cancer from a lifetime of exposure to carcinogenic metals, which can be categorized as very 

low (CR ≤ 10−6), low (10−6 ≤ CR < 10−4), moderate (10−4 ≤ CR < 10−3), high (10−3 ≤ CR < 10−1), and 
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very high (CR ≥ 10−1) (Behrooz et al., 2021; Hu et al., 2012; Roy et al., 2019; US EPA, 2015a; Zhang 

et al., 2021). 

These risk assessment procedures are well accepted and can be considered the best method when 

short of epidemiological data. Although exposure assumptions are highly conservative and therefore can 

overestimate some risks, they were designed to be protective of residents’ health. The purpose of this 

study is to conduct a screening-level risk assessment of direct or indirect exposure pathways to the 

analysed PM2.5-bound elements in an attempt to identify areas and environmental conditions with the 

potential for adverse health risks, and that should be examined further in regulatory decision-making. 

Therefore, the risk assessment was estimated using some conservative assumptions to compensate for 

the lack of more specific data: (1) the residents of the sampling locations were potentially exposed; (2) 

the assumptions and input parameters used might adequately represent the population; (3) that health 

risks associated with direct inhalation, ingestion (of air, water or food, as well as hand-to-mouth or 

object-to-mouth transfer) and dermal contact (skin adherence) exposure comprehend only direct and 

indirect PM2.5-bound elements contribution to these exposure pathways; (4) the reasonable maximum 

exposure (RME) was used to estimate exposures in the upper range of potential exposure and represent 

the highest exposure reasonably expected to occur; (5) that 100% of PM2.5-bound elements is 

bioavailable independently of exposure pathway; (6) the adherence factor (PM2.5-to skin) is assumed to 

be equal to PM-skin adherence; (7) an additive effect among all elements is assumed for multi-elemental 

exposure risks estimation; (8) the concentration of Cr (VI) was calculated as 40% of the concentration 

of the total Cr as suggested by Świetlik et al. (2011). 

 

3. RESULTS AND DISCUSSION 

 

3.1. Recirculation analysis for the historical period (2012-2021) 

 

The daily trace of wind run and recirculation factor for the region, using the historical dataset 

considering a τ = 24h, is presented in Figure 2. Considering the method suggested by Russo et al. (2018), 
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the critical transport indices (CTIs) for Joinville airshed were: 𝑆 = 123;  𝑃 𝑆 =

141;  𝑃 𝑅 = 0.42;  𝑅 = 0.54. The average daily (τ = 24h) wind run over the covered 3162-

day (2012-2021) period is 123 km for the study area, representing average daily wind speeds of 1.4 m 

s-1. Assuming these results, the daily trace distribution of wind run and recirculation factor values 

regarding the 2012-2021 period for Joinville’s AQCR, therefore, indicate a dominance of events 

classified as stagnation/recirculation throughout most of the study period compared to a lower (< 18%) 

occurrence of stagnation, recirculation, and ventilation events.  

 

 

Figure 2 - Classification of local wind fields according to ventilation, stagnation, and recirculation 
criteria for the historical period 2012-2020. The unclassified area includes those situations when wind 
characteristics are not included in any of the other categories. The blue area represents simultaneous 
stagnation and recirculation. The critical transport indices (CTIs) determined for the airshed are: red- 
and black-dashed lines indicate, respectively, the average of S and R in all periods; and the blue lines 
indicate the 75th and 25th percentile points of S (horizontal) and R (vertical), respectively. 

 

Changes in the percentage of occurrence of each atmospheric condition classification for the 

airshed were observed among seasons, as shown in Figure 3. Simultaneous recirculation/stagnation 

events, during the winter and autumn months accounted on average 54 and 46% of total occurrences, 
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respectively (Figure 3b) and can be identified as the dominant event during these months. The highest 

values of stagnation were observed during winter (24%) when ventilation (6.5%) and recirculation 

(7.1%) were at their lowest. These results are expected, since temperature inversion is common during 

winter, hindering the dispersion of pollutants. Ventilation events reached their maximum during spring 

(22%), followed by summer (18%) when the interaction of several meteorological systems brings more 

instability, causing higher wind speeds (Barbosa, 2009), more than twice the occurrence during winter 

and autumn.  

 
Figure 3 – Percentage of occurrence of each flow condition by (a) month, and (b) season for the Joinville 
airshed, as well as the 𝑅 , and 𝑆  by month. In (d), the seasonal percentage of occurrence of each 
flow condition at each meteorological station is presented. 



19 
 

The change in S reflects the daily distance travelled by air (and, therefore, its pollutants) in the 

area and is the longest during summer, reaching its lowest value in June (Figure 3c). The average return 

index R profile follows the inverse of the S profile, reaching its highest value in June (Figure 3c). This 

would lead one to expect a higher occurrence of recirculation events during the winter months, which is 

not the case as can be seen in Figure 3b (winter 7.1% which is almost four times lower than summer 

(26%)). This probably reflects on the amount of precipitation since convective precipitation is intensified 

by higher insolation of the earth’s surface during summer.  

Figure 3d provides an overview of the frequency of the prevailing atmospheric condition as a 

percentage at each of the 8 weather stations. It is noted that the stagnation/recirculation and stagnation 

only conditions profiles for all stations are similar (≥ 40% and 20%, respectively) except at station #1 

and station #5. Hence, the whole coastal airshed is prone to stagnation/recirculation as these events have 

a dominant presence throughout most of the study period, depicting low (i.e., poor) ventilation 

conditions. However, when comparing the seasonal frequency of each atmospheric condition among 

meteorological stations (Figure 3d), Station #1 and Station #5 showed a different wind field 

classification that seems to directly reflect the maritime and local hilly surroundings influence (as can 

be seen by their positions showed in Figure 1, and in Table S3, where the wind classification at each 

meteorological station for the historical period is shown), resulting in distinct airshed dispersion 

properties. 

Therefore, according to the available data for the historical period (2012 – 2020), the urban area 

of Joinville seems to be under two distinct patterns within the Joinville airshed: one on the western 

portion of the urban area, closest to the coastline, and under the direct influence of Babitonga 

Bay/Atlantic Ocean and its hilly surroundings where Recirculation and Ventilation events prevail; 

another on the eastern portion, closer to the Sea Mountain range surroundings, and prone to 

Stagnation/Recirculation. 

For comparison, for the Grand Canyon region in the USA, based on the prior knowledge of 

wind regimes in the region, Allwine and Whiteman (1994) confirmed prevailed stagnation and 

recirculation events on a sheltered basin floor where there is frequent diurnal forcing of the winds, while 
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on the south rim of the Grand Canyon it was prone to ventilation (i.e., well exposed to synoptic-scale 

circulation systems). Russo et al. (2018) studied wind regimes in the hilly region surroundings of Lisbon, 

a coastal city where wind downhill is channelled. There, they found that stagnation events dominated 

the horizontal air flow, and that recirculation and ventilation events were minimal. In China, 

recirculation and stagnation dominated the local wind field in the Yangtze River Delta and Bohai Bay 

coastal hilly surrounding regions (Wang et al., 2022; Zhou et al., 2019). 

 

3.2. Air quality and environmental constraints during the campaign period 

 

3.2.1.  Long range transport history for the sampling period (2018-2020)  

The PM2.5 transport history was investigated using back trajectories (Hysplit) and consequently 

clusterisation (6 groups) using the Openair package to group similar types of air mass by geographic 

origin. From Figure S1, it is clear that most of the air masses reaching these sites had passed through 

the south-eastern Atlantic Ocean, with the third most frequent group skirting the coast. The arrival of 

western air masses (cluster C3) at the receptor level was less frequent and at a lower height, suggesting 

the conditioning of regional wind circulation by the Sea Mountain range (on the western side). It 

corroborates the role of orography as a barrier to the humidity from the Atlantic Ocean (Barbosa, 2009) 

and, consequently, its effect as a factor that creates a spatial pattern of precipitation gradient with 

increasing amounts of rainfall towards the escarpment of the Sea Mountain range [as observed by Mello 

et al. (2015)]. 

 

3.2.2.  Horizontal wind flow classification at MIC and NID 

To classify the horizontal wind flow conditions at the two sampling sites, influencing the PM2.5 

transport history, we used data (2018-2020) from Stations #1 and #3, for MIC and NID, respectively. A 

detailed analysis complements our understanding of the different assimilative capacities (maximum 

pollution load) within the urban airshed during this specific sampling period. Stagnation/Recirculation 

events prevailed near NID (47% of the days), while stagnation and recirculation had an occurrence of 

about 20% each, and ventilation represented only 4%. Differently, recirculation and ventilation 
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predominated near MIC, with a frequency of 32% each, while stagnation was the least frequent (4%). 

This is not surprising as the average wind speed at MIC was ~40% higher than NID across all seasons, 

with a higher occurrence of values above 2 m s-1, and therefore ventilation will be favoured over 

stagnation. Hence, during the sampling period, the prevailing flow conditions followed the two distinct 

patterns identified within the airshed for the historic period. Independently of wind classification, the 

daily average wind speed was higher near MIC, as well as its frequency of counts by wind direction. 

Consequently, the wind regime near NID indicates that the region is more prone to local recirculation 

than regional recirculation when under Stagnation/Recirculation conditions. 

These results indicate that, even though this is a small study area, the horizontal wind patterns 

vary unevenly within the airshed and consequently, so are the air pollution dispersion characteristics. 

The analysis of the data confirms the importance of environmental constraints, wind dynamics and 

topographic limitations, in regulating local air quality. 

 

3.2.3.  Precipitation and wind speed gradient  

To understand the air quality dynamic due to interactions between long-range and local transport 

of pollutants, the indirect effects of orography as a precipitation gradient (e.g., higher precipitation near 

the Sea Mountain Range) and of maritime air masses as a wind speed gradient (e.g., higher wind speed 

near the coastline) on PM2.5 concentration, were investigated among seasons.  

For that purpose, the PM2.5 mass concentration data (from 2018 to 2020) at both sampling sites 

were compared against wind rainfall conditions (Figure S2). It ranged from 0.53 to 32 µg m-3 at MIC 

and from 0.15 to 35 µg m-3 at NID, with mean values of 6.5 and 5.8 µg m-3, respectively. These values 

seem low if compared to other cities influenced by industrial activities like Athens, Barcelona, Firenze, 

Milan, or Porto (where PM2.5 ranged from 11 – 30 µg m-3 according to Amato et al., 2016) or even larger 

Brazilian cities like Belo Horizonte, Rio de Janeiro, São Paulo, Curitiba, and Porto Alegre (de Miranda 

et al., 2012) where mean PM2.5 mass concentrations ranged from 13 – 28 µg m-3. However, in 

Manchester (UK), for example, even though an industrial medium-sized city similar to Joinville, annual 

mean PM2.5 values have been as low as 8 µg m-3 in the most recent years (AQE, 2023). It should also be 
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mentioned that PM2.5 values may have decreased in more recent years mainly due to new emission 

control strategies (GOV.UK, 2022; US EPA, 2022). 

Joinville is characterized by monthly mean relative humidity higher than 70%, a threshold that 

when exceeded makes suspended particles coalesce and become heavy enough for dry and wet 

deposition according to some studies (Chen et al., 2020b; J. Li et al., 2015b; Wang and Ogawa, 2015). 

In addition, it is also characterized by an average annual rainfall of 2200 mm (coast) – 2500 mm (near 

the mountain), values much higher than these typically registered in all those cities (below 1500 mm). 

Therefore, this difference may be a result from a sum of local environmental constraints such as wind 

regimes, high humidity and heavy precipitation acting on increasing PM2.5 deposition rates (Chen et al., 

2020b). de Miranda et al. (2012) also found a low mean PM2.5 of 7.3 µg m-3 in Recife, a coastal city 

under heavy annual rainfall (2418 mm), but where the main source of particulate matter is the emission 

from ocean-going ships, and the input of pollutants is also favoured by predominant wind direction. 

Therefore, the results indicate that the “lower” PM2.5 concentrations observed in Joinville seem to be a 

result of particular local environmental constraints dominated by different wind regimes and a 

precipitation gradient within Joinville’s AQCR, whose airsheds dynamics promote a PM2.5 decrease as 

wind speed increases (leading to ventilation or recirculation conditions) in an environment of high 

humidity combined with heavy precipitation frequent occurrence favouring both dispersion and wet 

deposition.  

The lower average mass concentration at NID, even though only 7 km NW from MIC, can be 

mainly ascribed to environmental constraints. A Wilcox test confirmed that PM2.5 and some 

meteorological conditions (precipitation, temperature, and wind speed) during dry months were 

significatively different from that in wet months (p < 0.01). A precipitation gradient between the two 

sites was observed, where consistently higher rainfall was recorded at NID (near Sea Mountain range) 

compared to MIC (closer to the coastline). As such, by comparing the PM2.5 concentration during the 

rain with that before the rain [calculation adapted from Luan et al. (2019) and Tian et al. (2021), using 

each total sampling period as a time interval instead of hourly values], the removal by wet deposition 

was mostly higher near NID (median of 28%) than MIC (median of 19%). This could explain the higher 
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PM2.5 concentrations (mean of 9.9 and 8.7 µg m-3 at MIC and NID, respectively) observed during the 

winter months [twice the mean concentration during spring at MIC where ventilation was at maximum 

(48%) and summer (maximum rainfall) at NID], during which rainfall was at its lowest. The slightly 

higher average PM2.5 values at MIC coincides with higher frequency of stagnation conditions (9%, while 

it was 1.3% during summer) and more dry days (Figures S2 and S3). In contrast, the lowest PM2.5 values 

at MIC occurred during ventilation episodes and at NID, when precipitation dominated. In addition, 

winter was characterized by the lowest wind speed (1.8 m/s at MIC and 1.0 m/s at NID, ~30% lower 

than summer) and the highest occurrence of dry days (74% at MIC and 54% at NID, more than twice 

that of summer) during which July and August were characterized by low precipitation (criteria of < 50 

mm for this rainy region). In conclusion, precipitation, and wind speed gradients [due to local 

topography, long-range transport (mainly maritime air masses) and seasonal weather patterns] can 

explain the significantly higher PM2.5 mass concentrations during winter. The PM2.5 profile wet 

deposition at NID and ventilation at MIC seems to be the determining factor. 

These results highlight the importance of assessing local environmental dynamics within the 

city development plan and even more so in the face of climate change challenges. Castelhano et al. 

(2022) found that, from 2003 to 2018, in the Southern Regions, a decrease in the wind speed as well as 

an increase in heavy short bursts of precipitation followed by increasing dry spells affect the dispersion 

and deposition of PM2.5 leading to its increase.  

 

3.2.4.  Impact of ventilation on PM2.5 – local transport  

When tracking air pollutants, understanding local transport is as important as long-range 

transport of pollutants. As observed, local wind circulation plays an essential role in improving or 

deteriorating air quality locally, which entails that air pollution levels at different sites can influence 

each other. The main flow characteristic at MIC is ventilation. Considering that MIC and NID are only 

7 km apart and that the prevailing wind direction from MIC is towards NID, one may hypothesise that 

the air quality at NID would be affected by air pollution at MIC during dispersion/ventilation conditions. 

This stems from the fact that when MIC is under a ventilation regime (better dispersion conditions), 
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stagnation events prevailed at NID (48%). For that purpose, we selected meteorological and PM2.5 data 

corresponding only to the period under ventilation conditions at MIC. The wind dynamics as well as the 

PM2.5 concentration variation by wind speed and direction at each site are indicated in Figure 4. The 

reliability of these graphical representations was confirmed by weighting the frequency of 

measurements in the GAM model during the polarPlot generation. It allowed to account for uncertainties 

due to the existence of very few measurements as a result of natural outliers kept in the database (the 

results are shown in Figure S4). While higher PM2.5 concentrations are associated with local and easterly 

winds at MIC (Figure 4a), low wind speed is associated with high PM2.5 concentrations arriving with 

south-easterly (relative position of MIC towards NID) winds at NID (Figure 4b). Therefore, air 

pollutants may be reallocated to NID. 

Lower PM2.5 was observed during ventilation events at both sites (5.1 µg m-3in MIC and 

4.7 µg m-3 in NID), as expected since good ventilation conditions means replacement (i.e., horizontal 

advection) or dilution (via turbulent mixing) of polluted air by fresh air (Allwine and Whiteman, 1994; 

Russo et al., 2018, 2016; Zhou et al., 2019). Higher values were observed during stagnation/recirculation 

events (8.0 µg m-3 in MIC and 5.6 µg m-3 in NID), as a result of combined low wind speeds with high 

return of polluted air, previously carried away, allowing pollutants to build up locally (Allwine and 

Whiteman, 1994; Crawford et al., 2019, 2017). PM2.5 mass concentration during ventilation conditions 

at MIC was significantly different from all other wind classifications (Wilcox test, p < 0.05), while the 

same was observed for recirculation events at NID. 

In Figure 4c, the wind rose describes the wind profile (speed, direction) under ventilation 

conditions near MIC. The following wind roses (Figure 4d) show the distribution of winds during the 

different wind regimes near NID. The PM2.5 associated with the different wind directions at NID when 

MIC is under ventilation conditions is shown in Figure 5e. Comparing those values, the association of 

high PM2.5 coming from MIC while horizontal wind flow at NID is predominantly north-easterly 

indicates a significant export of pollutants from MIC to NID. However, since land- (from the west) and 

sea- (from the east) breezes usually alternate daily in this city that lies between the edge of a Mountain 
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Range and the ocean, northern winds are frequent near NID as well as southwestern winds near MIC 

(Figures 1 and 4), and horizontal recirculation between those sites is also possible. 

 

Figure 4 – For the sampling period in which ventilation events prevailed in MIC: bivariate polar plots 
of PM2.5 concentrations (µg m-3) in (a) Metallurgical Industrial Complex (MIC), and (b) North Industrial 
District (NID), with ‘ws’ indicating wind speed; and wind roses illustrative of the wind dynamics in (c) 
MIC and for each flow condition occurring in (d) NID are presented. Pollution roses illustrate which 
wind directions contribute most to the overall mean PM2.5 concentrations in (e) NID during the same 
period. These graphical illustrations were done using openair R package (Carslaw and Ropkins, 2012). 
 

3.3. Risk assessment of PM2.5-bound elements 

 

Formation, transformation, transport, and deposition influence the chemical composition of 

PM2.5. Since meteorological parameters influence these processes, it would then directly and/or 

indirectly influence the chemical composition. In this context, the risk associated with PM2.5 elemental 

components because of air pollution transport, was investigated in this section. A summary of the 

elemental data obtained from PM2.5 sampling at MIC and NID is presented in Tables S1. 
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It is essential to note that the elements concentrations used to determine some risks are weighted 

by total PM2.5 mass concentration as follows: i) to estimate ecological risks both concentration used 

(𝐶  and 𝐶 ) are in g ton-1 [e.g., a 𝐶  of 1014 g ton-1 between sites is the element fraction 

(g) in the total PM2.5 mass (ton)]; and ii) exposure via ingestion and dermal contact are calculated using 

the reasonable maximum exposure (C95%) in mg kg-1 . Therefore, a given element may result in higher 

potential ecological and health risks although present in a relatively low concentration as the total mass 

decreases. 

 

3.3.1. Geo-accumulation index (Igeo) 

A comprehensive evaluation of the risk levels of anthropogenic metals and other chemical 

compounds can provide critical information for risk management around the sampling site. The 

importance of this assessment is due to the metallurgical industries surrounding both sampling locations 

and it can therefore provide the evidence of continuous monitoring. A summary of Igeo values for each 

element during each wind classification is presented in Figure 5a. On average, the elemental components 

in PM2.5 at both sites were identified as severely contaminated (Igeo > 5) with Br, Zn, S, Cl, and Pb while 

Sr, Cu, Co, Ni, and P showed moderate contamination (1 < Igeo ≤ 2).  

Comparing the dominant wind conditions at each site (Figure 5a), the highest Igeo values for 

these elements in PM2.5 were observed when Stagnation/Recirculation conditions prevailed, indicating 

that local recirculation is strongly affecting the concentration of these PM2.5-bound elements within 

Joinville airshed. Significant differences (Wilcox test, p < 0.05) between Igeo for Zn during Ventilation 

and both Stagnation/Recirculation and Recirculation events were observed at MIC and for the latter two 

conditions at NID. In addition, IgepPb was significantly different during Recirculation, Stagnation, and 

Stagnation/Recirculation events at NID. Therefore, analogously to the observed PM2.5 profile, 

ventilation seems to be able to reduce contamination of Zn among horizontal wind regimes near MIC 

while local recirculation was associated with the highest values of contamination of Zn and Pb near 

NID. 
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Figure 5 – Summary of the ecological assessment for each sampling site [Metallurgical Industrial 
Complex (MIC) and North Industrial District (NID)] in terms of: a) Elemental geo-accumulation index 
(Igeo) distribution during each wind classification; b) Median 𝐸  (potential ecological risk coefficient for 
each anthropogenic metal) values of heavy metals in PM2.5 (dot end line) and statistical percentage of 
each risk level (stacked bar plot) during the whole sampling period. 
 

3.3.2. Ecological risk  

The ecological risk index was calculated to estimate the sensitivity of ecosystems when exposed 

to toxic metals (Ennaji et al., 2020; Islam et al., 2015; Maanan et al., 2015). Overall, the comprehensive 

ecological risk index for the 9 elements (RI, i.e., the sum of 𝐸 ) was greater than 600, during all seasons 

and horizontal flow condition events, except during rare Ventilation events at NID, indicating severe 

pollution and very high ecological risk.  

The statistical percentage of each risk level for all samples (presented in Figure 5b) further 

showed that Pb and Zn had an extremely high-risk occurrence of 50% and 36% (MIC), and 58% and 

50% (NID), respectively, with median 𝐸  values for Pb - 326 (349), and Zn - 227 (324), at MIC (and 
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NID) for the whole period. These values were even more severe and frequent when Stagnation and 

Stagnation/Recirculation events were predominant (more details can be seen in Figure S5).  

These high levels of aerosol contamination by those elements can pose a risk to the environment 

through weather dynamics, namely precipitation and wind transport, acting on atmospheric mechanisms 

of dry and wet deposition that transfer them to terrestrial and marine ecosystems. Therefore, from urban 

and industrial activities, PM2.5 content (e.g., Zn, Pb, Ni, Mn, Fe and Cu) can disrupt biogeochemical 

cycles and at high concentrations, even essential elements can be associated with toxic effects on the 

biota, affecting physiological and biochemical response, bioaccumulating through the food chain 

(Barbieri, 2016; Luo et al., 2019). In a harbour area in South Korea, Cu, Zn, Cr and Ni pollutant-

enrichment effect in benthic communities was shown in the reduced number of species and macrofaunal 

abundance (Ryu et al., 2011). Pb, Zn, Cu and Cr were found in sediments, water samples and 

bioaccumulated in marine organisms in Babitonga Bay (Bonatti-Chaves et al., 2004; Oliveira et al., 

2006; Vaz et al., 2013), an ecosystem known for being a habitat to innumerous species such as the most 

endangered dolphin from the Southwestern Atlantic Ocean, the franciscana (Pontoporia blainvillei) 

(Cremer and Simões-Lopes, 2008; Vannuci-Silva et al., 2022). Although the actual toxic effects of heavy 

metals on marine mammals are still poorly understood, mass mortalities among seals and dolphins 

inhabiting contaminated areas are being investigated about immunosuppression associated with metal 

contamination (Das et al., 2002). 

Therefore, although the environmental risks caused by V, Cr, Ti, and Mn were slight, and their 

contributions could be neglected, the proportion of samples severely or moderately contaminated and 

representing extremely high or high ecological risk showed that Pb, Zn, Co, and Ni presence in PM2.5 

over the urban-industrial air of Joinville, Brazil requires serious attention.  

 

3.3.3. Health risk assessment 

 

The values of reasonable maximum exposure (C95%), shown in Table 1, are the best output from 

ProUCL (as indicated in the methodology section) and were used as input to estimate the health risks. 



29 
 

More details about PM2.5 and –bound elements’ data distribution across wind flow conditions can be 

seen in Figure S3. In addition, a summary of the elemental data obtained from PM2.5 sampling at MIC 

and NID during the whole sampling period is presented in Tables S1 for comparison. 

 
Table 1 – The reasonable maximum exposure (C95%) values for the whole sampling period (i.e., the 

values were calculated from the ungrouped data, for which wind regimes were not considered), 
obtained using ProUCL analysis for health risk assessment, as well as for each horizontal wind flow 

condition near MIC (Metallurgical Industrial Complex) and NID (North Industrial District). 
MIC  C95% (ng m-3)  

Species 
Sampling 
Period  

Recirculation  Stagnation  
Stagnation/  

Recirculation  
Ventilation  Unclassified  

*PM2.5  *7.0 *8.2 *13.2 *14.0 *6.1 *6.4 
Al  72 66 124 109 60 67 
Br  87 80 125 80 92 87 
Co  0.49 0.57 1.2 2.8 0.57 0.66 
Cr  0.72 0.72 0.80 0.61 0.65 1.0 
Cu  10 14 26 8.4 11 25 
Fe  136 148 196 190 114 127 
Mg  60 56 80 78 56 61 
Mn  8.2 8.4 11 14 8.3 8.0 
Ni  3.0 1.8 2.6 2.2 2.0 9.0 
P  24 25 34 34 23 27 

Pb  6.2 7.0 11.3 11 4.6 8.2 
Se  2.1 1.9 3.5 2.8 1.9 2.1 
V  1.7 2.1 4.4 2.9 1.8 2.0 
Zn  148 166 411 351 143 161 

NID   C95% (ng m-3)  

Species  
Sampling 
Period  

Recirculation  Stagnation  
Stagnation/  

Recirculation  
Ventilation  Unclassified  

*PM2.5  6.7* 9.0* 7.1* 7.5* 5.3* 7.2* 
Al  62 87 80 63 64 84 
Br  88 71 75 110 70 77 
Co  0.88 1.3 0.61 1.0 0.10 0.50 
Cr  0.82 0.47 0.81 1.2 0.74 1.3 
Cu  22 14 11 39 8 46 
Fe  93 117 132 97 83 90 
Mg  51 61 58 53 64 55 
Mn  8.4 7.4 10 11 9.0 8.2 
Ni  5 16 9.2 2.5 - 1.4 
P  24 18 27 26 23 21 

Pb  6.9 4.4 7.9 7.7 3.9 11 
Se  1.6 1.2 2.1 1.9 1.8 2.2 
V  1.8 3.8 1.6 2.2 2.1 2.6 
Zn  178 133 233 234 121 100 

*PM2.5 mass concentration in µg m-3 
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3.3.3.1. Non-carcinogenic health risk assessment 

Epidemiologic and toxicological studies have been finding evidence of the harm that PM2.5-

bound metals can cause to humans (Bell et al., 2009, 2008; Dai et al., 2014; de Miranda et al., 2012; 

Lanki et al., 2006; Nordberg et al., 2021; Pope and Dockery, 2006; Saldiva et al., 1994). Therefore, an 

established methodology from US EPA (1989, 2015a) was applied to investigate the human health risk 

associated with PM2.5 through different exposure pathways in the urban area of Joinville. These results 

are related to the difference in metal accumulation amounts in the human body through three exposure 

pathways and the sensitivities of metals for their target organs (Sah et al., 2019; Tchounwou et al., 2012; 

US EPA, 2015a). The health risks caused by these elements under the different wind conditions are 

presented in Figure 6. 

The health risk associated to 14 of the analysed elements in PM2.5 were estimated according to 

the available reference doses (Table S5). Taking into consideration the estimated reasonable maximum 

exposure (i.e., the highest exposure that is reasonably expected to occur at each site) during the whole 

sampling period, for both adults and children, the contributions to each exposure pathway of the studied 

metals (Figure S6) decreased in the following order:  

HQinh – Ni > Mn > Co > Br > Pb > P > V > Al > Cr > Cu > Zn > Mg > Se > Fe; 

HQder – Ni > Pb > Cr > Mn > V > Co > Se > Zn > Cu > Fe > Al > P.   

On the other hand, these metal contributions to HQing, were different between sites, and 

decreased in the following order:  

HQingMIC – Co > Pb > Se > Zn > Ni > Mn > Cu > V > Fe > Cr > Al > Mg > P;  

HQingNID – Co > Pb > Zn > Ni > Se > Cu > Mn > V > Cr > Fe > Al > Mg > P. 

During the sampling period, only Co, and Pb (through ingestion) and Ni (through dermal 

contact) showed non-carcinogenic risk (i.e., HQ > 1) and only for children at both sites. For children, 

dermal contact and ingestion were the most harmful (HQmulti-element >> 1) multi-elemental exposure 

pathways independently of horizontal wind flow regime. Meanwhile, for adults, ventilation conditions 

were associated with safer levels of non-carcinogenic risk through those pathways at MIC. At NID, 

however, although the same hazardous levels were observed for adults’ dermal contact, ingestion 
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exposure was of no risk. Through inhalation exposure, HQmulti-element were above safe levels for both 

children and adults during local recirculation (recirculation/stagnation) events at MIC and during 

stagnation or recirculation at NID. These results are presented in Figure 6a.  

 

 
Figure 6 - Summary of health risk assessment for each sampling site (Metallurgical Industrial Complex 
(MIC) and North Industrial District (NID) in terms of: a) Hazard Index (HI) and b) Carcinogenic Risk 
(CR) for children and adults through exposure pathways. Values are indicated by the lines on the right 
while stacked bar plot, on the left, indicate the percentage contribution for each wind classification. 

 

Yuan et al. (2019) estimated PM2.5-bound metals’ toxic contribution on human lung cells, and 

found that elements such as Zn, Cr, Mn, Fe, Cu and Pb substantially suppressed the cell viability. 

Anthropogenic Cu has been identified as the transition metal with the highest potential to cause oxidative 

stress in the body (Becker et al., 2005; Charrier and Anastasio, 2015; Godoi et al., 2016) and, therefore, 

its higher bioaccessibility can result in serious damage even at low concentrations (Polezer et al., 2022). 

Zn is also capable of prompting oxidative stress and inflammation and has been associated with 

cardiovascular diseases (Brook et al., 2010; Lippmann et al., 2013). Cr, especially Cr (VI), is associated 

with lesions on the respiratory system and it is classified as a carcinogen via inhalation route (ATSDR, 

2020; International Programme on Chemical Safety and Inter-Organization Programme for the Sound 

Management of Chemicals., 2013; World Health Organization et al., 2009). Due to its higher capacity 

of being delivered directly to the circulatory system via the respiratory exposure route, the neurotoxicity 



32 
 

of Mn can reach the brain before it passes through metabolisms and excretion (Crossgrove and Zheng, 

2004; William-Johnson et al., 1999). Pb is a toxic element able to accumulate in the hard tissues and 

cause severe or even irreversible damage to the nervous system (ATSDR, 2020). In a multi-city study 

in the USA, Bell et al. (2009) found a positive association between higher PM2.5 content of Ni and V 

and short-term effects on cardiovascular and respiratory hospitalizations due to geographical and 

seasonal heterogeneity. In addition, multi-metal exposure can exacerbate toxicity due to synergistic 

mechanisms [Chen et al. (2022) - higher Pb solubility if associated with sulphate and chloride; Yuan et 

al. (2019) – Fe decreases and Mn increases the toxicity of other metals]. 

For children, a high non-carcinogenic risk (HIelement > 1, i.e., hazard index of each toxic element 

through all three exposure pathways) Co (4.2), Pb (2.5), Ni (1.7), and Mn (1.0) at MIC, while Co (6.3), 

Pb (2.7), Ni (2.7), and Mn (1.2) at NID during the whole sampling period. Meanwhile, no element poses 

a non-carcinogenic threat to adults’ health. Overall, HImulti-element was above the safe level of one during 

the sampling period, with values of 12 and 1.8 at MIC, and 17 and 2.4 at NID, for children and adults, 

respectively. 

However, more harmful environmental conditions resulted from the different behaviours of 

PM2.5-bound potentially toxic elements when analysing the health risks caused by these elements under 

the different wind conditions (Figure 6 and Figure S6). 

On an average across horizontal wind regimes, a higher non-carcinogenic risk (in the form of 

HIelement) was observed for children and was mainly caused by Co (HI = 11), Pb (2.9), Ni (2.3), Se (1.9), 

and Mn (1.2) at MIC. For NID, it was Co (4.0), Ni (3.0), Pb (2.7), and Mn (1.1). The lowest total HImulti-

element (i.e., HI as the sum of all toxic elements through all three exposure pathways) corresponded to 

exposure during ventilation (~12 at MIC, and 6.4 at NID) in both sites, while the highest was related to 

stagnation at MIC (~38) and recirculation (~20) at NID conditions. Compared with adults, particle 

exposure to children is relatively higher because of their playing activities and hand-to-mouth habits 

(Ali et al., 2017). Most children are more susceptible to the absorption of potentially toxic elements 

(PTEs) from the digestion system, and the haemoglobin sensitivity to PTEs is much higher than for 

adults due to lower body weights (Sah et al., 2019). Thus, they usually face significantly higher health 
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risks than adults. To be specific, the HQing had the highest proportion [more than 64% (at MIC) and 57% 

(at NID) independently of wind regime classification], followed by dermal contact and inhalation, as 

can be seen in Figure 6. 

In contrast, for adults, on average across wind regimes, no single element/metal HIelement exceeds 

unity but when they were summed a totally different picture emerges. The HImulti-element value ranged 

from 1.7 (ventilation) to 4.2 (stagnation) at MIC, and around 1.0 (ventilation) to 3.5 (recirculation) at 

NID, revealing that the integrated effects of multi-metal exposure represent a severe non-carcinogenic 

risk even for adults. On average, the elements with higher contribution to total HImulti-element were Co 

(35%), Ni (19%), Pb (12%), and Mn (11%) at MIC, while at NID were Ni (36%), Co (17%), Pb (14%), 

and Mn (12%). HI values for adults were lower than those for children, which indicates that they are 

more susceptible to PM2.5-bound elements exposure than adults. These values were higher than that in 

Japan (Zhang et al., 2021), Malaysia (Alias et al., 2020), Russia (Krupnova et al., 2021), Taiwan (Wang 

et al., 2021) and China (Guo et al., 2022), when comparing against their correspondent exposure 

pathway, and where different elements were included.  

For adults, inhalation risks reached >40% of contribution during stagnation or recirculation 

conditions at NID, oral ingestion was the primary exposure pathway at MIC, however, ventilation 

conditions resulted in higher dermal contact risk at both sites. The trend HQinh > HQderm > HQing observed 

at NID was different from that found in several studies of particulate air pollution (Hou et al., 2019; Hu 

et al., 2012; Li et al., 2017; Tang et al., 2017; Zhang et al., 2021), in which the risk for the different 

pathways decreased in the following order: HQing > HQderm > HQinh. Such contrast is possibly because 

more elements were included in the inhalation risk assessment, leading to higher inhalation risk 

associated with adults. The risk associated with inhalation exposure contributed more than 20% (MIC) 

and 29% (NID) to total HImulti-element during any wind flow condition at both sites. 

Analysing the different wind regime classifications, a more harmful non-carcinogenic 

environment was observed during stagnation at MIC and during recirculation at NID, followed by 

recirculation/stagnation conditions, which indicates the air pollutants tends to remain near source what 

summed to local recirculation leads to a build-up of pollutants locally, aggravating local air pollution. 
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The evidence presented here indicates that the chemical composition of PM2.5 contributes to 

local and seasonal heterogeneity in PM2.5 health effects. The difference among regimes and between 

sites revealed that the integrated effects of multi-metal exposure in the industrial-urban areas of Joinville 

might result in severe non-carcinogenic risks for the community. 

 

3.3.3.2. Carcinogenic health risk assessment 

In addition, among those 14 elements, Co, Cr(VI), Ni, and Pb are classified as carcinogens and 

their CR were estimated considering their estimated reasonable maximum exposure. The contributions 

of the studied metals decreased during the sampling period, for both adults and children, in the following 

order: Cr(VI) > Co > Ni > Pb (CRinh) and Cr(VI) > Pb (CRderm and CRing) at both sites. Total CR was 

above acceptable/tolerable limits (1.0 × 10−4 – 1 in 10,000 chance to develop cancer during lifetime) for 

children at MIC and adults (40 years) at both sites. More details are presented in Figure S6. 

The CR values for multi-metal exposure across horizontal wind regimes are shown in Figure 

6b. Except when under ventilation and recirculation conditions, the total CR was above 

acceptable/tolerable limits at both sites. All the carcinogenic risks were higher during 

stagnation/recirculation regimes at both sites (> 2.3 10–4 at MIC, and > 1.9 10-4 at NID). These results 

indicate a moderate carcinogenic risk for children and adults living in Joinville, Brazil.  

Under any wind regime classification, CRing accounted for around 20% and 8%, while CRderm 

contributed to >75%, for children’s and adults’ carcinogenic risk, respectively, at both sites. The average 

contribution of CRinh to total carcinogenic risk, however, was minimal when wind conditions were prone 

to stagnation/recirculation (~1.7%; 2% for children, and ~10%; 13% for adults) and at maximum during 

ventilation (2.5%; 15%) events at MIC and recirculation (4%; 23%) conditions at NID.  

Among the four carcinogens identified, the contribution of Cr(VI) to total carcinogenic risk was 

always the highest, contributing more than 93% during the sampling period, value that decreased to 90% 

(for adults during stagnation) at MIC and to 84% (for children during recirculation) at NID, and increase 

to ~96% (for children during recirculation at MIC, and stagnation/recirculation at NID). During all wind 
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regimes, except recirculation, its contribution to CRinh was higher at NID. For CRderm and CRing, its 

contribution was mostly (except during stagnation conditions) higher at MIC than NID. 

From a worldwide perspective, carcinogenic exposure in Joinville for multi-element exposure 

(considering that different elements were included in each study) was modest. The CRinh for adults was 

lower that the observed in Taiwan  (Wang et al., 2021), and higher than that found in Londrina, Brazil 

(Polezer et al., 2022), for adolescents and adults in Malaysia (Alias et al., 2020), and in Russia 

(Krupnova et al., 2021), while CR was lower than that for children and adults in China (Guo et al., 2022) 

but higher than in Japan (Zhang et al., 2021). 

 

CONCLUSIONS 

The local orography promoted different meteorological conditions at the sites and, 

consequently, different air pollutant dispersions and deposition patterns. These two sites mirrored the 

two horizontal flow regimes of the city (MIC dominated by recirculation and ventilation, and NID by 

recirculation/stagnation) and consequently resulted in different PM2.5 mass concentrations, chemical 

profiles, geo-accumulation, and ecological, and human health risks.  

At granular level, differences in the ecological and human health risks were observed as a result 

of contrasting horizontal airflow regimes. Local recirculation conditions were associated with more 

severe contamination of heavy metals and ecological risks, which lead to worst environmental risks in 

the site nearer to the mountain range. Health risks have shown to be more than three times higher during 

wind regimes of low wind speed and frequent recirculation than during ventilation conditions, which 

resulted in lower exposure risks near the coastline rather than near the mountains. Meanwhile, 

ventilation contributed to the highest risks through inhalation. In essence, the high ecological and health 

risks associated with the elemental proportion into total mass indicate that environmental constraints 

such as wind regimes and high rainfall volumes are important factors acting on reducing the high risks 

associated with potentially heavy industrial emissions contribution to PM2.5 amount suspended in the 

city’s air. 
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Our analysis indicates that if only predominant wind directions are considered, the 

understanding of local conditions such as ventilation, recirculation, and stagnation potentials given by 

environmental constraints will be limited. This disregard for environmental constraints can lead to 

environmental, ecological, and human health consequences if air quality is only assessed through current 

legislation and at a single sampling site within an air quality control (political jurisdiction) region. 

Although our database has some temporal and spatial limitations, the results obtained have 

shown that the proposed approach is reliable and suitable for the reality in regions of limited air quality 

monitoring networks. 

As a whole, the new approach to the traditional risk assessment analysis can be employed in 

any city's longer-term development plan and public policies. It provides to the public authorities and 

local councils a strategic perspective of incorporating environmental constraints into urban growth 

planning and development zoning regulations. This procedure ensures towns and cities explore and 

manage space and natural resources while safeguarding the environment and health synergistically. 

 

Data Availability 

Datasets related to this article can be found at https://doi.org/10.17632/szgtbzwpy8.3, hosted at 

Mendeley data (Santos-Silva et al., 2023). R Scripts (code) developed in this study can be found at 

https://doi.org/10.5281/zenodo.6416325, hosted at Zenodo repository (Santos-Silva, 2022). 
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Text 

 

S1. Chemical analysis of samples 

Measurements of PM2.5 elements were performed on a Minipal-4 (PANalytical, Almelo, The 

Netherlands) EDXRF equipped with a Silicon Drift Detector (SDD) that is thermo-electrically cooled. 

The optimum tube voltage and current were determined based on reference standards (Micromatter, 

Seattle, WA, USA) and validated by measuring various thin layer standards for each element. Samples 

were analysed under He-atmosphere with an acquisition time of 600 s under two conditions: a tube 

voltage of 30 kV, and a current of 0.3 mA for Br (0.095), Co (0.087), Cr (0.11), Cu (0.24), Fe (0.19), K 

(0.48), Mn (0.19), Ni (0.20), Pb (0.26), Sr (0.35), Ti (0.13), V (0.05), and Zn (0.11); a tube voltage of 9 

kV and a current of 1.0 mA for Al (0.4), Na (4.45), P (0.31), Si (0.32), S (0.41), Ca (0.39), Cl (1.9), and 

Mg (4.0). The limit of detection (LoD) and the limit of quantification (LoQ) were calculated as, 

respectively, three and ten times the inverse of instrumental sensitivity multiplied by the square root of 

the background noise signal from the analysis of ten blank filters divided by the measurement time. The 

average LoDs are shown in brackets in ng m-3 (taking into consideration an average daily sampling flow 

rate of 14.4 m³) for the elements.  

However, since the volume and duration were disproportional according to each sample 

collection procedure, average (± standard deviation) LoD and LoQ values in ng m-3, were calculated 

considering each sample flow rate. The values below detection limits were excluded from the analysis. 

Moreover, to reduce analytical errors all results reported in this paper were blank-corrected. The 

summary statistics of these values are reported in Table S1, as well as a summary of the elemental data 

obtained from PM2.5 sampling at MIC (Metallurgical Industrial Complex) and NID (North Industrial 

District).during the whole sampling period for comparison.” 

 

S2. Horizontal flow characterization 

 

Air pollution transport can be characterized by the recirculation potential of a given airshed, 

which is determined by implementing objective quantitative measures of air mass stagnation, 

recirculation, and ventilation based on single-station quantities of wind data (Allwine and Whiteman, 

1994). The horizontal flow conditions at the measurement point are determined by calculating and 

comparing discrete integral quantities such as the ‘wind run’ (S), which represents a measure of the total 

distance the parcel travelled during a certain interval of time, the ‘resultant transport distance’ (L), which 

is the net vector displacement, and the ‘recirculation factor’ (R), a return index ratio between L and S.  

Following this approach, the horizontal air transport in the study area were characterized by 

calculating the S, L and R integral quantities for the local meteorological station network dataset, whose 

average values should then be compared with a set of critical transport indices (CTIs).  



 As the developers Allwine and Whiteman (1994) of this methodology mentioned, it would be 

preferable to adopt a set of critical transport indices (CTIs) valid for each specific study area. Thus, after 

careful consideration, we followed this approach and a set of CTIs for Joinville’s airshed was calculated. 

The horizontal flow circulation in each site was then classified according to the criteria suggested by 

Russo et al. (2018): 

S ≤ Savg :site is prone to stagnation  

R ≥ Ravg :site is prone to recirculation 

S ≥ P75 (Savg) and R ≤ P25 (Ravg) :site is prone to ventilation 

where P75 and P25 refer to the 75th and 25th percentiles, respectively. So, after the daily R, S 

and L values were computed, the daily mean of R (Ravg) and S (Savg) were calculated for all 

meteorological stations within the study area. Then, the CTI were obtained from the overall averages 

(Ravg, and Savg ) and the above-mentioned percentiles. 

Following this approach, horizontal air transport in the study area were characterized by 

calculating the integral quantities for eight meteorological stations for the historical period of 2012 to 

2021. For this purpose, the meteorological parameters available as hourly values (airport dataset) or 5-

min values (other stations) were used to obtain monthly and seasonal averages. The average daily values 

were then used to determine the set of CTIs for the municipality airshed. The horizontal flow 

characterization was done using only the original dataset of each meteorological station without any 

filling.  

The distribution of trace of the wind run and the recirculation factor for a τ = 24h for the region 

using the historical dataset are presented in Figure 2. The average daily (τ = 24h) wind run, 𝑆̅, over the 

covered 3162-day (2012-2021) period is 123 km for the study area, representing average daily wind 

speeds of 1.4 m s-1. The average daily recirculation factor, 𝑅, is 0.54. Therefore, considering the 

available historical meteorological database, the values of CTI obtained according to the method 

suggested by Russo et al. (2018) for this specific study area of Joinville airshed were: S  = 123; 

P75 S  = 141; R  = 0.54; P25 R  = 0.42. 

Finally, to classify wind flow in each sampling site area, the average daily (𝜏 = sampling 

duration) wind run 𝑆̅ and average recirculation factor 𝑅 were calculated using the 5-min data from the 

site’s representative meteorological station (i.e., IateClube to MIC, and Flotflux to NID) and compared 

with the previous estimated CTIs to calculate the percentage of occurrence of each flow condition during 

the period of record. For example, a 24-h sample would be joined with the classification obtained from 

the integral quantities calculated out of the 288 5-min wind speed-direction data collected at the 

meteorological station representative (as indicated in the section 2.3) of each sampling site. It is 

important to add that only days containing at least 75% of the 5-min meteorological data available were 

considered in this analysis. 



The dataset description and individual results for each station are presented in Table S1 and S2. 

More detailed information about this methodology can be found in Allwine and Whiteman (1994), Levy 

et al. (2010, 2008) and Russo et al. (2018, 2016). 

 

S3. Trajectory analysis 

The backward trajectories for each sampling site were calculated using the HYSPLIT model 

(Carslaw, 2020; Carslaw and Ropkins, 2012; Rolph et al., 2017; Stein et al., 2015) integrated into the 

openair package (using RStudio) to get an insight into the origin and transport pathway of the air masses 

arriving near receptor level. Trajectories were run at 3-hour intervals and stored in yearly files. The 

trajectories are started at 10 m (at receptor and near to the sampling level) and propagated backwards in 

time (96 h) for each site during the whole sampling period. Hence, all the analyses are presented and 

discussed only for simulated air masses arriving at this altitude. These trajectories have been calculated 

using the Global NOAA-NCEP/NCAR reanalysis data archives. The global data are on a latitude-

longitude grid (2.5 degree). It is often useful to use cluster analysis on back trajectories to group similar 

air mass origins together. As a result, the air pathways with the highest frequencies in a particular grid 

square are identified. This was done using the angle distance matrix as a measure to determine the 

similarity (or dissimilarity) of different back trajectories.  

 

S4. Reasonable maximum exposure 

The US EPA Risk Assessment Guidance for Superfund (US EPA, 1989) has recommended that 

the reasonable maximum chemical concentration in a specific environmental medium with which a 

receptor may come into contact over a short or long period of time should be characterized using the 

95% upper confidence interval on the arithmetic mean chemical concentration (C95%). Each element-

specific dataset was entered into ProUCL (Version 5.1), a software package provided by the US EPA 

(2015a), to determine C95% of each element specific, for each season, and for each site. The suggested 

C95% (based upon data size, data distribution, and skewness) were then used to estimate the health risks.  

 

 

  



Tables 

Species  LoD  LoQ  Blanks  
MIC  NID  

N  Concentration  N  Concentration   

Al  0.39 ± 0.10 1.3 ± 0.35 3.7 ± 0.99 227 65 ± 41 188 52 ± 53  

Br  0.09 ± 0.02 0.3 ± 0.08 12 ± 3.2 188 78 ± 49 135 76 ± 53  

Ca  0.61 ± 0.16 2.0 ± 0.54 140 ± 115 198 148 ± 120 157 156 ± 109  

Cl  1.2 ± 0.31 3.9 ± 1.04 8.7 ± 2.3 165 80 ± 84 144 85 ± 101  

Co  0.08 ± 0.02 0.3 ± 0.07 0.37 ± 0.10 70 0.33 ± 0.53 65 0.57 ± 0.99  

Cr  0.11 ± 0.03 0.4 ± 0.09 0.59 ± 0.16 201 0.59 ± 0.70 172 0.61 ± 1.04  

Cu  0.23 ± 0.06 0.8 ± 0.20 0.59 ± 0.16 190 7.6 ± 13 152 15 ± 36  

Fe  0.18 ± 0.05 0.6 ± 0.16 0.25 ± 0.07 227 122 ± 81 191 78 ± 74  

K  0.46 ± 0.12 1.5 ± 0.41 4.9 ± 1.3 191 106 ± 71 181 107 ± 80  

Mg  3.9 ± 1.1 13 ± 3.5 51 ± 34 211 54 ± 33 179 48 ± 38  

Mn  0.19 ± 0.05 0.60 ± 0.17 1.9 ± 0.51 226 7.4 ± 4.8 186 7.4 ± 5.5  

Na  4.3 ± 1.2 14 ± 3.8 69 ± 19 218 162 ± 104 171 146 ± 121  

Ni  0.19 ± 0.05 0.6 ± 0.17 2.6 ± 4.3 68 2.0 ± 3.0 51 3.1 ± 5.7  

P  0.30 ± 0.08 1.0 ± 0.27 22 ± 9.8 123 22 ± 11 115 22 ± 8.8  

Pb  0.25 ± 0.07 0.8 ± 0.22 5.6 ± 4.7 206 5.4 ± 4.3 169 5.8 ± 5.5  

Pt  0.19 ± 0.05 0.6 ± 0.17 10 ± 2.7 219 79 ± 51 176 81 ± 61  

S  0.39 ± 0.11 1.3 ± 0.35 11 ± 2.9 227 411 ± 339 191 394 ± 289  

Se  0.10 ± 0.03 0.3 ± 0.09 1.8 ± 1.26 150 1.9 ± 1.3 78 1.5 ± 1.0  

Si  0.31 ± 0.08 1.0 ± 0.27 6.8 ± 1.8 227 116 ± 73 191 83 ± 96  

Sr  0.34 ± 0.09 1.1 ± 0.30 3.8 ± 1.0 174 65 ± 39 128 62 ± 43  

Ti  0.13 ± 0.03 0.40 ± 0.11 1.5 ± 0.40 227 5.7 ± 3.8 192 4.9 ± 5.3  

V  0.05 ± 0.01 0.20 ± 0.05 1.6 ± 1.7 100 1.5 ± 1.5 78 1.6 ± 2.0  

Zn  0.11 ± 0.03 0.40 ± 0.10 128 ± 130 226 126 ± 132 190 151 ± 139  

Table S1 – A summary statistics (average ± standard deviation) of the limit of detection (LoD), limit of 
quantification (LoQ) and blank concentrations in ng m-3 calculated considering each sample flow rate 
are presented here. Also, a summary of the elemental data (concentrations in ng m-3) obtained from 
PM2.5 sampling at MIC and NID during the whole sampling period are reported for comparison. For 
reference, “N” value indicates the number of valid samples after observations below LoD were removed 
from the analysis, and samples were blank corrected. 

  



 

ID Station T Start date End date Latitude Longitude 

#1 IateClube 5 min 2012/04/18 2021/01/21 26°17'33.0"S 48°46'48.6"W 

#2 Cubatao 5 min 2012/04/18 2020/10/01 26°11'41.7"S 48°54'41.1"W 

#3 Flotflux 5 min 2012/04/18 2021/05/20 26°16'31.2"S 48°50'57.1"W 

#4 Águas de Joinville 5 min 2012/04/18 2020/09/10 26°19'18.5"S 48°50'17.0"W 

#5 SBJV Airport 1 h 2012/01/01 2021/05/20 26°12'53.3"S 48°47'51.0"W 

#6 Rodovia do Arroz 5 min 2012/04/18 2013/09/09 26°22'25.7"S 48°57'08.7"W 

#7 Itaum 5 min 2012/01/01 2019/08/14 26°20'42.5"S 48°48'57.9"W 

#8 Ceasa 5 min 2012/04/18 2018/12/06 26°15'13.6"S 48°54'39.8"W 

#9 Aventureiro 10 min 2015/01/01 2020-12-31 26°14'56.4"S 48°47'49.2"W 

#10 Centro 10 min 2015/01/01 2020-12-31 26°18'03.6"S 48°50'27.6"W 

#11 Costa e Silva 10 min 2015/01/01 2020-12-31 26°16'44.4"S 48°51'54.0"W 

#12 Estação da Cidadania 10 min 2015/01/01 2020-12-31 26°19'51.6"S 48°52'30.0"W 

#13 Estrada Geral do Salto 10 min 2015/01/01 2020-12-31 26°17'45.6"S 48°59'16.8"W 

#14 Iririú 10 min 2015/01/01 2020-12-31 26°16'22.8"S 48°49'40.8"W 

#15 Paranaguamirim 10 min 2015/01/01 2020-12-31 26°20'49.2"S 48°46'51.6"W 

#16 Itinga 10 min 2015/01/01 2020-12-31 26°22'58.8"S 48°49'12.0"W 

Table S2 – Description of meteorological stations and rain gauges datasets. ID: Station identification 
used in this study. T: averaging interval of the data. 
 
 
 

ID Station n Ravg Savg Classification 

#1 IateClube 2597 0.48 180 Recirculation 

#2 Cubatao  1557 0.61 112 Stagnation/Recirculation 

#3 Flotflux  2541 0.54 103 Stagnation/Recirculation 

#4 Águas de Joinville  1563 0.52 107 Stagnation/Recirculation 

#5 SBJV Airport  1328 0.47 132 Recirculation 

#6 Rodovia do Arroz  510 0.59 91 Stagnation/Recirculation 

#7 Itaum  1395 0.57 122 Stagnation/Recirculation 

#8 Ceasa  1853 0.59 80 Stagnation/Recirculation 

Table S3 – Meteorological dataset information and the integral quantities average daily recirculation 
factor, R ,  and wind run, S , calculated for each of the eight meteorological stations. Flow 
conditions classification is given by comparing those individual values with the CTIs for Joinville 
airshed obtained from them. ID: Station identification used in this study. n: number of discrete 
observations of wind data in each dataset. 
  



Parameter Notation Unit 
Value  

Children Adults 

Ingestion rate IngR mg·day-1 80 30 

Exposure frequency EF days·year-1 350 350 

Exposure duration ED year 6 40 

Unit conversion factor CF kg·mg-1 1.0×10-6 1.0×10-6 

Body weight BW kg 15 80 

Averaging lifetime AT days 
ED × 365 (for non-carcinogens) ED × 365 (for non-carcinogens) 

70 × 365 (for carcinogens) 70 × 365 (for carcinogens) 

Exposure time ET h·day-1 24 24 

Average lifetime ATn hours 
ED × 365 × 24 (non-carcinogens) ED × 365 × 24 (non-carcinogens) 

70 × 365 × 24 (carcinogens) 70 × 365 × 24 (carcinogens) 

Skin surface area SA cm2 2373 6032 

Skin adherence factor  AF mg·cm-2 0.2 0.07 
    

Table S4 – Input parameters and abbreviations for cancer and non-cancer exposure assessment.  
References: US EPA (2017, 2014, 2015b); Zhang et al. (2021); Zhi et al. (2021). 

  



Parameter Tr
a RfDo RfCi/REL ABSi GIABS SFo IUR 

Al  1b 5 10-3 b 0.01 1 b   

Br   1.7 10-3 d 0.01    

Co 5 3 10-4 b 6 10-6 b 0.01 1 b  9 10-3 b 

Cr (III) 2 1.5 b 5.8 10-5 c 0.01 0.013 b   

Cr (VI) 2 3 10-3 b 1 10-4 b 0.02 0.025 b 5 10-1 b 8.4 10-2 b 

Cu 5 4 10-2 b 2 10-3 e 0.01 1 b   

Fe  7 10-1 b 46 g 0.01 1 b   

Mg  11 e 0.1 e 0.01    

Mn 1 2.4 10-2 b 5 10-5 b 0.01 0.04 b   

Ni  5 1.1 10-2 b 1.4 10-5 b 0.02 0.04 b  2.4 10-4 b 

P  11 e 1 10-3 e 0.01 1 b   

Pb 5 3.5 10-3 h 1.5 10-4 f  0.1a  1 b 8.5 10-3 c 1.2 10-5 c 

Se  5 10-3 b 2 10-2 b 0.03 1 b   

Ti 1   0.01    

V 2 5 10-3 b 1 10-4 b 0.01 0.026 b   

Zn 1 3 10-1 b 3.5 10-2 d 0.01 1 b   

Table S5 – The values of Tr, RfDo, RfCi, REL, ABS, GIABS, SFo, and IUR are presented, where 𝑇 ,  is 
the ith metal's toxic response factor, and RfDo, REL, RfCi, ABS, GIABS, SFo, and IUR are the oral 
Reference Doses [mg·(kg·day)−1], Chronic Reference Exposure Level (mg·m−3), Inhalation Reference 
Concentration (mg·m−3), the Chronic Reference Exposure Level (mg·m−3), Dermal absorption factor, 
Gastrointestinal Absorption Factor, oral Slope Factor [(mg·(kg·day)−1)−1], and Inhalation Unit Risk 
[(μg·m−3)−1], respectively. 
References: aDouay et al. (2013), Egbueri (2020), Zhang et al. (2021), Zhi et al. (2021). bUS EPA (2022); cOEHHA 
(2022a, 2022b); dCal/EPA (1996), eMICHIGAN (2013); fUS EPA (2019), gBuranatrevedh (2013); hZhang et al. 
(2021); and iOEHHA (2012); US EPA (2022). 
Note: For carcinogenic risk, the Cr(VI) concentration was calculated as 40% of the total Cr (Świetlik et al., 2011). 
  



Figures 

Figure S1 – The individual cluster-mean trajectories obtained for the entire study period for (a) 
Metallurgical Industrial Complex (MIC), and (b) North Industrial District (NID), at three different 
endpoint heights (0, 100 and 300 m AGL). Temporal variation of the mixing layer depth during different 
time intervals in (c) at both sites.  



 
Figure S2 – Distribution of (a) frequency of % of removal by wet deposition, and monthly summary of 
mean daily precipitation and percentual of occurrence of dry days (i.e., rainfall of 0 mm) are shown in 
(b) and (c) during the whole sampling period); (d) mean PM2.5 mass concentration and percentage of 
removal by wet deposition (taking as reference only rainy days); and (e) the percentage of occurrence 
of each flow condition, for both sampling sites: Metallurgical Industrial Complex (MIC), and North 
Industrial District (NID). 
 



 
Figure S3 – Summary of average PM2.5 and -bound elements mass concentration (µg m-3) data 
distribution across wind flow conditions at both sampling sites: Metallurgical Industrial Complex (MIC) 
and North Industrial District (NID) 
  



 
Figure S4 – For the sampling period in which ventilation events prevailed in MIC: bivariate polar plots 
of PM2.5 concentrations (µg m-3) at (a) Metallurgical Industrial Complex (MIC), and (b) North Industrial 
District (NID), with ‘ws’ indicating wind speed, including uncertainty calculation in the model by 
considering the frequency of measurements resulting in a grouped plot of the predicted surface together 
with upper and lower uncertainties at the 95% confidence interval. 
  



 

Figure S5 – Median 𝐸  values of heavy metals in PM2.5 (dot end line) and statistical percentage of each 
risk level (stacked bar plot) for MIC (on the left) and NID (on the right) during each wind classification. 
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Figure S6 – Health risk assessment for children and adults [i.e., hazard quocient (HQ) and carcinogenic risk through exposure pathways] considering the 
estimated 95% upper confidence interval on the arithmetic mean elemental concentration (C95) for each wind classification in each site (MIC and NID). 
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