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Towards the ideal vascular implant:
Use of machine learning and
statistical approaches to optimise
manufacturing parameters
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1Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University,
Manchester, United Kingdom, 2Research Centre for Musculoskeletal Science and Sports Medicine,
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Introduction: Electrospinning is a manufacturing technique that creates a net of
nano and microfibres able to mimic the natural extracellular matrix (ECM) of
biological tissue. Electrospun scaffolds' morphology and mechanical behaviour
can be tailored by modifying the environmental, solution and process parameters.
This study aims to produce biomimetic vascular implants optimising the
manufacturing set up through two machine learning techniques and statistical
approaches.

Methods: Polyvinyl alcohol (PVA) based scaffolds were produced by modifying the
concentration of the polymer, flow rate, voltage, type of collector, diameter of the
needle, distance between needle and collector and revolutions of the mandrel. The
scaffolds were morphologically and mechanically characterised using scanning
electron microscopy and mechanical testing respectively to inform the
morphological model (simultaneously predicting diameter of the fibres and inter-
fibre separation) and mechanical model (predicting strain at rupture and ultimate
tensile strength).

Results: Prediction and traditional techniques led to an optimum set up of: 12% PVA,
1 ml/h flow rate, 20 kV, 8 cm between the needle, 18 G gauge needle, rotational
mandrel of 15 cm and 2000 rpm. Optimised PVA scaffolds replicated themechanical
properties and morphology of the vascular tissue with an ultimate tensile strength of
6.17 ± 0.18MPa, a strain at break of 97.39 ± 5.06, fibre diameters of 126 ± 6.11 nm and
inter-fibre separation of 1488 ± 91.99 nm.

Discussion: This work revealed for the first time that machine learning Chi-squared
Automatic Interaction Detection (CHAID)models are a novel and visual route to elect
the optimum manufacturing set up to develop biomimetic vascular implants. Novel
two-output Artificial Neural Networks (ANN) andmultivariate analysis of variance and
covariance (MANOVA, MANCOVA) models presented comparable prediction results
(R2=0.91); however, two-output ANN predicted models demonstrated to be the
most powerful tool for non-parametric conditions, showing cross-validation mean
squared errors (MSE) of 0.0001943. Multi Linear Regression models (MLR) exhibited
the lowest accuracy in their predictions (R2=0.6). Machine learning, statistical
approaches and traditional characterisation methods were studied to successfully
achieve vascular substitutes with analogous biomechanical behaviour and physical
structure to the native vascular tissue.
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1 Introduction

The circulatory system consists of 19000 km of a complex network
of vessels. Thanks to this complex structure, all organs in our body
receive the necessary nutrients and oxygen, and the metabolic detritus
are eliminated [1]. The index of mortality due to cardiovascular
disease (CVD) is increasing year by year, expected to reach more
than 23.6 million deaths/year by 2030 [2]. Specifically, coronary artery
disease (CAD) causes the highest rate of CVD mortality [3].
Nowadays, the gold standard for CAD treatment is coronary artery
bypass graft (CABG) surgery [4]. However, the most used autologous
grafts, such as internal mammary arteries or saphenous veins, are not
always available and other kinds of approaches, such as tissue-
engineered biomimetic grafts, must be investigated [5].

Blood vessels have a nanofibrous extracellular matrix (ECM)
mainly formed by collagen and elastin fibres [6]. Electrospinning is
a manufacturing technique able to create nano-structured scaffolds
comparable to the ECM [7]. This technology allows tailoring of the
morphology and mechanical behaviour of the scaffolds by varying the
manufacturing parameters [8]. There are three different types of
parameters: solution parameters (including viscosity, concentration,
molecular weight, surface tension, or conductivity), process
parameters (voltage, flow rate, gauge of the needle, type of
collector, revolutions of the mandrel, or distance between the
needle and the collector), and environmental parameters (such as
relative humidity or temperature) [9]. By optimising all these
parameters, a stable Taylor cone can be obtained and nanofibrous
scaffolds with the desired properties can be produced [10].

The qualitative effects of these parameters on the created scaffolds
have been previously documented [11–13]; however, the quantitative
values to create the desired scaffold depend on environmental
conditions, process inputs, polymer, and solvent used. Therefore, it
is crucial to find out the range of the manufacturing parameters that
initiates an appropriate Taylor cone and generates scaffolds with no
bead formation and correct evaporation of the solvent. Once high-
quality fibres are identified with certain parameters, these must be
optimised to secure the required mechanical and morphological
properties for our purpose, reproduce native vessel walls (with
diameter of the fibres in the range of 40–150 nm [14–17]), high
inter-fibre separation [18], and ultimate tensile strength and
elongation at rupture close to 4.3–6.3 MPa and 59%–120%,
respectively [19]). Establishing the ideal combination between
solution and process parameters is one of the biggest challenges in
electrospinning [20], since if the combination of all the parameters is
not optimum, beaded fibres would be created, compromising the
quality of the fibres and decreasing the material properties (elongation
at break or ultimate tensile strength) of the scaffolds [10, 21].

Traditional techniques used to optimise the electrospinning input
parameters are subjective, they do not provide errors or assess the
reliability and they are based on trial-and-error technique, which
requires the performance of a large number of experiments, increasing
the time and cost of the experiments due to human and material
resources [22]. These issues can be solved with modelling approaches,
such as statistical or machine learning models, able to inference or
predict the morphology and mechanical properties of scaffolds given

certain manufacturing parameters [23]. However, machine learning
and statistical models are designed for different purpose. Machine
learning provides the highest accuracy predictions even when data
were collected without a good experimental design, there was an
imbalance in the data, presented complicated non-linear interactions,
or the parametric conditions were not met [23, 24]. Therefore,
knowing the morphology and mechanical properties of the natural
tissue (in this case study blood vessels), these can be predicted though
machine learning models and the optimum manufacturing setup can
be determined. The goal of statistical models is to understand the
relationships between variables through regression coefficients and
assessing the model with confidence intervals and significance tests
[25]. However, this approach requires a careful data collection, with
well-balanced data and parametric conditions [26]. Although both
modelling techniques initially require of an important number of
experiments to inform the models, once the models are created it is
possible to determine the optimummanufacturing set-up for different
applications (e.g., different biological tissues). This research studies the
traditional technique and different modelling approaches such as
decision trees (never investigated before in electrospinning), novel
two-outputs ANN,MANOVA,MANCOVA, andMLR and proves the
suitability of all these techniques to optimise the electrospinning
process to create biomimetic vascular scaffolds.

Decision tree models are non-parametric supervised learning
algorithms that combine classification and regression for data
mining. These methods split the multi covariate dataset, based on
different conditions, into branches to create an inverted tree with root,
internal, and leaf nodes [27]. The first node of the diagram is the root
node which is a prediction of the dependant variable considering all
the conditions assessed. The most important independent variable to
predict the dependant variable will be the first internal node. One
independent variable will not be represented in a decision tree when
the algorithm interprets that it is not essential to predict the dependant
variable. This machine learning tool is commonly used for variable
selection, assessing the importance of the variables and simplifying
complex relationships, for data manipulation and interpretation, and
for handling of missing values and prediction [28]. Depending on the
statistical tests used to determine the next best split (selecting the next
best input variable) and the type of variables (categorical or
continuous), the decision trees can be classified in different types.
The most popular are the Classification and Regression Trees (CART)
[27], Iterative Dichotomiser 3 (ID3) [29], C4.5 (an extension of the
ID3) [30], Chi-squared Automatic Interaction Detection (CHAID)
[31], and the Quick Unbiased Efficient Statistical Tree (QUEST) [32].
In this study, CHAID decision trees are used to predict the diameter of
the fibres and the inter-fibre separation given the polymer
concentration, type of collector, rotational speed of the mandrel,
gauge of the needle, distance between the needle and the collector,
flow rate, and voltage.

Artificial neural network (ANN) is a non-linear and dynamic
modelling tool used in data mining to predict the behaviour of an
endogenous variable given a complex dataset of exogenous variables
[33]. This technique has being used for electrospinning to predict
mostly fibre diameters in the past few years [33–35]. The prediction of
mechanical properties of electrospun scaffold has only been reported
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by Vatankhah et al. [36]. That study predicted themodulus of elasticity
given by different ratios of polymers, polymer concentrations, rotation
speed, fibre diameter, and alignment index. All these studies provided
different models to predict certain properties of electrospun scaffolds
without being focussed on any specific application. In the present
research, two novel models one to predict the fibre diameters and the
inter-fibre separation simultaneously and another to predict the
ultimate tensile strength, and strain at rupture were developed with
the final mission of creating biomimetic vascular grafts. For the first
model (morphological model), the independent variables were:
polymer concentration, type of collector, rotational speed of the
mandrel, gauge of the needle, distance between the needle and the
collector, flow rate, and voltage. For predicting the ultimate tensile
strength and the strain at break, the independent variables were
rotation speed and gauge of the needle, and diameter of the fibre
and inter-fibre separation were considered covariates.

Multiple novel findings were determined as part of this work: a) it is
the first study that performs an integral analysis of two morphological
properties (diameter of the fibre and inter-fibre separation
simultaneously) and two mechanical properties (strain at break and
ultimate tensile strength) through ANN; b) seven independent
variables were considered to predict the morphology of the scaffolds,
and two exogenous variables and two covariates were used to predict their
mechanical behaviour; c) novel comparison between ANN and
MANOVA/MANCOVA models; d) novel comparison of the
importance of the factors based on CHAID, ANN, and MANOVA; e)
it is first time that decision trees were used to optimise electrospinning
parameters; and f) novel implementation of machine learning techniques
to find the optimum setup to produce biomimetic vascular implants.

The aim of the present study is to present and compare different
alternatives to optimise the manufacturing parameters used in the
electrospinning technique to manufacture biomimetic cardiovascular
scaffolds.

2 Materials and methods

2.1 Materials

Solutions of PVA (Sigma-Aldrich, United Kingdom) with
concentrations of 10%, 12%, 14%, and 16% were prepared diluting
the polymer in distilled water (dH2O) by heating at 100 °C and stirring
until homogenous solutions were achieved.

Crosslinked samples were fabricated with 25% glutaraldehyde
(GTA) acquired from Sigma-Aldrich (United Kingdom).

2.2 Scaffold production

An electrospinning device (Spraybase®, Ireland) was used to
manufacture the electrospun scaffolds.

After a calibration process to identify the operational rage of each
parameter, the studied scaffolds were produced by varying the values of
concentration of the polymer (10%–16%), flow rate (0.5–5 ml/h), voltage
(18–25 kV), diameter of the needle (15–23G), distance between the needle
and the collector (5–18 cm), type of collector (flat-rotational 8 and 15 cm),
and revolution of the mandrel (500–3,000 rpm). A total of 44 different
datasets were used for the traditional characterisation technique and to
inform the morphological predicted models.

The experiments were conducted at temperatures between 23 °C
and 25 °C following Denis et al. [37].

2.3 Parameter optimisation

To manufacture scaffolds with high-quality nanofibres and
achieve similar morphology and mechanical properties to the
natural blood vessels, the manufacturing parameters need to be
optimised. These parameters (process and solution parameters)
were considered optimum for this study when a stable Taylor cone
was obtained [10], the fibres of the scaffold produced were free of
defects, with comparable diameter of the fibres to the collagen fibrils of
the natural tissue (40–150 nm [14–17]), with high inter-fibre
separation to favour the cell–cell interactions and cell density [18]
and when the scaffold exhibited the closest ultimate tensile strength
and elongation at break to the vascular tissue (4.3–6.3 MPa and 59%–
120% [19]).

The optimum manufacturing conditions were obtained by
altering systematically the variables described in Section 2.2 and
characterising the produced scaffolds. Parameters such as
concentration or distance between needle and collector affect
significantly to the diameter of the fibres [38]. Moreover, the
revolutions of the mandrel highly influence on the mechanical
properties of the scaffolds [39]. Therefore, after a morphological
optimisation, the concentration of the polymer, flow rate, voltage,
type of collector, and distance between the collector and the needle
were determined, and the mechanical optimisation found the
revolution of the mandrel and the size of the needle that produce
the closest ultimate tensile strength and strain at break to the
cardiovascular tissue.

When the optimum input set was determined through traditional
characterisation, statistical and machine learning techniques, the
scaffold produced with those parameters was crosslinked and the
ultimate longitudinal and transverse tensile strength and the
longitudinal and transversal strain at rupture were analysed.

The production and solvent parameters of each experiment
performed are detailed in Table 1.

2.4 Chemical crosslinking

The crosslinking was performed on the optimum scaffold by
vapour deposition, pouring 25 ml of 25% GTA in a Petri dish at
the bottom of a sealed desiccator. A total of 16 samples were
crosslinked to be mechanically characterised and dried under a
fume hood for 24 h.

2.5 Scaffold characterisation

2.5.1 Morphology of the fibres
A SC7640 sputter coater (Quorum Technologies Ltd., Kent,

United Kingdom) was used to coat the samples with gold prior to
their visualization with a field emission scanning electron
microscope (Zeiss Supra 40, FE-SEM, Carl Zeiss SMT Ltd.,
Cambridge, United Kingdom). The intensity used for coating the
samples was 20 mA, voltage 0.8 kV, and the duration of the coating
was 120 s. SEM images of each sample created with the different
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setups were taken at around 6 mm working distance, with a voltage
of 2 kV and with magnifications of 1000x, 2000x and 3000x. Fibre
diameters and inter-fibre separations were determined with
AxioVision SE64 Rel. 4.9.1 (Carl Zeiss SMT Ltd., Cambridge,
United Kingdom) by measuring 20 fibres per sample. Three
samples (replicates) were measured for each different non-
crosslinked scaffold and each testing condition to guarantee the
repeatability of the results.

2.5.2 Mechanical characterisation
A total of 76 samples were mechanically characterised. The

mechanical behaviour of six different non-crosslinked scaffolds and
one crosslinked scaffold (created with the optimum solution and
process parameters) were analysed. From each non-crosslinked
scaffold, six longitudinal and six transverse samples were tested
and for the crosslinked scaffold, and eight longitudinal and eight
transverse samples were mechanically characterised. Longitudinal
samples were called to the samples with the fibres orientated
longitudinally to the applied load during the tensile test. Transverse
samples were the ones with their fibres orientated transversally to the
applied load.

The samples were removed from the mats with a dog-bone cutting
die (25 mm × 4 mm, test length x width). Their thickness was
measured three times with a digital and an analogical calliper in
order to check the consistency of the measurements. They were
attached on a cardboard frame to help the alignment of the sample
in the tensiometer (Instron H10KS) and they were tensile tested until
failure with a 100 N load cell and 1 mm/min test speed. Ultimate
tensile strength and strain at break were determined for each sample
and statistically analysed (described in Section 2.6.1) in order to
evaluate the relationship between this mechanical property and the
morphological properties.

2.6 Prediction models

In this research, data mining tools such as decision trees, ANN,
and statistical models (MANOVA, MANCOVA, and MLR) were
studied to predict morphology and mechanical properties of
electrospun scaffolds and determine the optimum manufacturing
conditions that led to the manufacturing of scaffolds with
comparable morphological and mechanical properties to the
natural blood vessels.

A description of the followed steps is presented in Figure 1.

2.6.1 Statistical analysis and models
An initial exploratory analysis was necessary prior to the

development of the models. The input and output variables were
discretized as needed and the aberrant and null data treated. In
addition to this initial analysis, the homoscedasticity, normality,
independence, and the Box test were assessed to determine the
parametric or non-parametric conditions of the distribution of the
independent variables.

The multivariate analysis of variance (MANOVA) verified the
significance of each of the independent variables, exogenous to the
model and their interactions in the formation of the dependent or
endogenous and continuous variables. A MANOVA was adopted for
the optimisation of the scaffold’s morphology, where the independent
variables were concentration of the polymer, flow rate, voltage,TA

B
LE

1
St
ud

ie
s
p
er
fo
rm

ed
to

d
et
er
m
in
e
th
e
op

ti
m
um

p
ro
ce
ss

an
d
so
lu
ti
on

p
ar
am

et
er
s.

O
pt
im

is
at
io
n

pr
oc
es
s

O
bj
ec
tiv

e
Ty
pe

of
sc
af
fo
ld

In
pu

t
va
ria

bl
e

O
ut
pu

t
va
ria

bl
e

C
on

ce
nt
ra
tio

n
%

C
ol
le
ct
or

ty
pe

Fl
ow ra
te

(m
l/h

)

Vo
lta

ge
(k
V)

N
ee

dl
e

si
ze

(G
)

D
is
ta
nc
e

be
tw

ee
n

co
lle
ct
or

an
d

ne
ed

le
(c
m
)

Re
vo

lu
tio

ns
of

th
e

m
an

dr
el

(r
pm

)

O
pt
im

is
at
io
n
of

th
e

m
or
ph

ol
og
y

St
ab
le
T
ay
lo
r
co
ne
;s
ca
ff
ol
ds

fr
ee

of
de
fe
ct
s;
di
am

et
er

of
th
e
fi
br
es
:
40
–
15
0
nm

;
an
d

m
ax
im

um
in
te
r-
fi
br
e

se
pa
ra
ti
on

N
on

-
cr
os
sl
in
ke
d

sc
af
fo
ld
s

10
,
12
,
14
,
16

Fl
at
,Ø

8
cm

,Ø
15

cm
0.
5,

1,
2,

5
18
,2

0,
22
,2

5
15
,1
8,
20
,2
1,

22
,
23

5,
8,

11
,
18

0,
50
0,

10
00
,
12
00
,

20
00
,
30
00

D
ia
m
et
er

of
th
e
fi
br
e

In
te
r-
fi
br
e

se
pa
ra
ti
on

44
da
ta
se
ts

2,
56
0
ob
se
rv
at
io
ns

po
st
-

de
pu

ra
ti
on

O
pt
im

is
at
io
n
of

th
e

m
ec
ha
ni
ca
l
pr
op

er
ti
es

U
lti
m
at
e
te
ns
ile

st
re
ng
th
:

4.
3–
6.
3
M
P
a
an
d
st
ra
in

at
ru
pt
ur
e:
59
%
–
12
0%

N
on

-
cr
os
sl
in
ke
d

sc
af
fo
ld
s

12
Ø

15
cm

1
20

18
,
21

8
10
00
,
20
00
,
30
00

U
lt
im

at
e

te
ns
ile

st
re
ng
th

St
ra
in

at
ru
pt
ur
e

6
D
at
as
et
s

60
ob
se
rv
at
io
ns

O
pt
im

um
sc
af
fo
ld

U
lti
m
at
e
te
ns
ile

st
re
ng
th
:

4.
3–
6.
3
M
P
a
an
d
st
ra
in

at
ru
pt
ur
e:
59
%
–
12
0%

C
ro
ss
lin

ke
d

sc
af
fo
ld
s

12
Ø

15
cm

1
20

18
8

20
00

U
lt
im

at
e

te
ns
ile

st
re
ng
th

St
ra
in

at
ru
pt
ur
e

1
da
ta
se
t

16
ob
se
rv
at
io
ns

Frontiers in Physics frontiersin.org04

Roldán et al. 10.3389/fphy.2023.1112218

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1112218


diameter of the needle, distance between the needle and the collector,
type of collector, and revolutions of the mandrel, and the dependent
variables were diameter of the fibre and inter-fibre separation.

The multivariate analysis of covariance (MANCOVA) verified the
significance of each of the independent variables (factors), the
covariates and their interactions in the formation of the dependent
or endogenous and continuous variables. A MANCOVA model was
used for the optimisation of the mechanical properties, in this case, the
independent variables were the diameter of the needle and the
revolutions of the mandrel, and the covariates were the diameter of
the fibres and inter-fibre separation; the dependent variables were
strain at break and ultimate tensile strength.

R2 ofMANOVAandMANCOVAmodels determined their accuracy.
In addition, the partial squared Eta value indicates the effect sizes
produced by endogenous variables, a factor or an interaction. Values
of 0.01 produce small effects, those of 0.06 produce average effects, and
those of 0.14 produce very high effects in that factor or interaction [40].
This study helped to corroborate the results of the predictions obtained
with the CHAID and ANN.

In cases where the parametric conditions were not met, non-
parametric tests such as the Kruskal–Wallis and Mann–Whitney U
test were performed. These tests were conducted for all the
independent variables to assess the significance between the means
of diameter of the fibres and inter-fibre separation for each level of the
factors and determine the optimum configuration.

Exploratory statistical analysis of the predicted variables obtained
with ANN models were performed per each factor and level to
determine the optimum setup.

Pearson coefficient of correlation and MLR were used to estimate
the relationship between process and solvent parameters and the
morphology of the scaffolds.

Mean and standard error of the mean (Std error) were calculated
for all quantitative structural and mechanical properties.

All statistical analyses were conducted using SPSS (IBM Inc.,
Chicago, Illinois).

2.6.2 Decision tree: Chi-squared Automatic
Interaction Detection

Decision trees are a powerful technique to predict dependent
variables, determine the optimum values of the independent variables
to achieve a specific goal (for this research, stated in Section 2.3), and
determine the importance of the independent variables in the
dependent variables.

In this study, CHAID decision trees were used to predict dependent
variables (diameter of the fibre and inter-fibre separation) and determine
the importance between those variables and the independent variables
stated in Section 2.2. A total of 1,280 observations of diameter of the fibre
and the same amount for inter-fibre separation were used to inform the
model. The dependant variables were categorised in three intervals: values
below the mean, values between the mean and the 90th percentile, and
values above the 90th percentile. All the independent variables were
considered categorical. The measure used to select input variables was the
Chi-square test. The predicted models were validated through cross-
validation with 10 sample folds and the accuracy of the cross-validation
was evaluated. Standard errors, accuracy of the cross validation, and
percentage of prediction accuracy were obtained with IBM SPSS
v.27.Importance of the factors was compared with ANN, MANOVA,
and characterisation techniques.

CHAID decision trees were conducted using IBM SPSS v.27 (IBM
Inc., Chicago, Illinois).

2.6.3 Two-output artificial neural networks
For the morphological model to simultaneously predict the

diameter of the fibres and the inter-fibre separation, the method
used for ANN was the multilayer perceptron (MLP) with two
hidden layers and 10 neurons in the first hidden layer and
8 neurons in the second layer. The activation function to use for
all units in the hidden layers was the hyperbolic tangent and the
activation function to use for all units in the output layer was the
identity. The training set constituted 70% of the data (1792) and 30%
of the data (768) was considered as the testing set for the

FIGURE 1
Outline of the followed methodology.
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morphological ANN model. The criteria of the training were
minibatch with an automatic minibatch size, the optimization
method was the gradient descent, initial learning was 0.4, learning
glower 0.001, learning epochs 10, momentum was 0.9, interval centre
and interval offset were 0 and 0.5, respectively, and the memory size
was 1000. As in the previous subsection, 44 datasets were used
(Table 1), where the independent variables were concentration of
the polymer, flow rate, voltage, diameter of the needle, distance
between the needle and the collector, type of collector, and
revolutions of the mandrel, and a total of 2,560 observations
(between diameter of the fibre and inter-fibre separation) were
measured and used to inform the ANN model.

The MLP with one hidden layer and two neurons was used in the
mechanical model, to simultaneously predict the ultimate tensile
strength and the strain at break given the diameter of the needle
and the revolutions of the mandrel as independent variables, and the
diameter of the fibres and inter-fibre separation as covariates (six
datasets, Table 1). The activation function used in the hidden layer was
the hyperbolic tangent and the activation function to use for all units
in the output layer was the identity. The criteria of the training,
optimization method, initial learning, learning glower, learning
epochs, momentum, interval centre and interval offset, and
memory size remained the same as in the morphological ANN
model, changing just the minibatch size that was 2. For this model,
the training set was 76.7% of the data (46) and 23.3% of the data (14)
was the testing set, being 60 the total of observations between the
ultimate tensile strength and the strain at break.

ANNs were conducted using IBM SPSS v.27 (IBM Inc., Chicago,
Illinois). The accuracy of the models was assessed by calculating the
mean squared errors (MSEs), R2, and the sensitivity and specificity
evaluated with receiver operating characteristic (ROC) curves.

3 Results

3.1 Optimisation of the morphology of the
scaffold

This first phase of the study was focused on the optimisation of
solution and manufacturing parameters to create scaffolds with
comparable morphology as the natural tissue. Parameters such as
polymer concentration, flow rate, voltage, size of the needle, distance
between the needle and the collector, and revolutions of the mandrel
were optimised in this study. These parameters were used to predict
the diameter of the fibres and the inter-fibre separation through five
different techniques: traditional characterisation technique, decision
trees, two-output ANN, MANOVA, and MLR.

3.1.1 Traditional characterisation techniques
The produced scaffolds were morphologically characterised

measuring the diameter of the fibres and the inter-fibre separation.
The ideal setup was determined based on the premises stated in
Section 2.3. The experiments performed, quality of the fibres (fibres
free of defects or bead formation), and observations noticed during the
performance of the experiments were summarizes in Table 2.

Non-crosslinked scaffolds created with 12% PVA, 1 ml/h flow
rate, 20 kV, and Ø 15 cm and 8 cm between the needle and the
collector presented the most comparable morphology to the natural
tissue, with aligned fibres, diameter of the fibres of 126 ± 6.11 nm

(diameter of collagen fibrils of the ECM: 40–150 nm [14–17]), and
inter-fibre separation of 1488 ± 91.99 nm.

3.1.2 Decision trees: Chi-squared Automatic
Interaction Detection

Diameter of the fibres and the inter-fibre separation was
categorised in intervals of below to the mean (below 134 nm and
997 nm), between the mean and 90th percentile, and above the 90th
percentile to meet the conditions of this test [28].

The election of the nodes depends on the objective that is needed
to achieve. In this case, the aim is to obtain a morphology comparable
to the natural cardiovascular tissue; therefore, the diameter of the
fibres should be in the range of 40–150 nm mimicking the collagen
fibrils of the ECM [14–17], and the inter-fibre separation should be as
higher as possible to favour the cell–cell interactions and cell density
[18]. Considering these premises, the election criteria were to select
those nodes with higher sample size (n) of fibres with diameter below
the mean (Figure 2) and select the nodes with higher sample size (n)
between the mean and above the 90th percentile of the inter-fibre
separation (Figure 3).

Figure 2 shows that nodes 2, 11, and 27 were the ones with higher
sample size for diameter of the fibres below the mean (134 nm). These
nodes corresponded to concentration of 10%–12%, 18 G gauge of the
needle and 1000–2000 rpm. Moreover, the most important variable to
predict the diameter of the fibres was the concentration of the
polymer, followed by the gauge of the needle, applied voltage, and
the revolutions of the mandrel.

The model to predict the diameter of the fibres provided a
standard error of 1.2% and a percentage of total prediction
accuracy of 75%, where the values of diameter of the fibres below
the mean obtained a prediction accuracy of 96.5% and an accuracy of
the cross validation of 72.8%.

Figure 3 shows that nodes 5, 15, and 27 were the ones with higher
sample size for inter-fibre separation above the mean (997 nm). These
nodes corresponded to 1200–2000 rpm, 18–20 G gauge of the needle, and
18–20 kV. Moreover, the most important variable to predict the inter-
fibre separation was the revolutions of themandrel, following by the gauge
of the needle, concentration of the polymer, and the applied voltage.

The model to predict the inter-fibre separation provided a
standard error of 1.1% and a percentage of total prediction
accuracy of 82%, where the prediction accuracy for values of inter-
fibre separation above the mean and 90th percentile was 82.4% and the
accuracy of the cross validation was 80.2%

Considering these two models, the optimum input parameters to
reach the premises previously stated would be: 10% or 12% concentration
of the polymer, 18 G gauge of the needle, 2000 rpm, and 18 or 20 kV.

3.1.3 Two-output artificial neural network
ANNs are able to predict dependent variables and assess the

importance of the independent variables to predict the dependent
variable. The concentration of the polymer had an importance of
31.7%, gauge of the needle had 16.5%, voltage had 14.4%, revolutions
of the mandrel had 12.7%, distance between the collector and the
needle had 11.9%, kind of collector had 9.9%, and the flow rate had an
importance of 2.9% in the prediction of both diameter of the fibres and
inter-fibre separation. These results agreed to the ones obtained with
the CHAID method.

The adopted model generates predictions of diameter of the
fibres with mean squared error (MSE) of 0.00017 and 0.0383 for
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the prediction of the inter-fibre separation. The MSE remained
stable for both the diameter of the fibres and the inter-fibre
separation.

Another way to analyse the accuracy of the model is representing
the predicted values against the observed values. The model will be
more accurate when the gradient of the regression is close to 1,

TABLE 2 Observations of the experiments.

Experiment Observation Best option

Optimisation of the
morphology

Optimisation of polymer
concentration

10%, 12%, 14%, and 16% PVA
and distilled water

a) Scaffolds with beads were produced with concentrations
below 12%

12%

b) Viscosity of the solution caused difficulties in electrospinning
with concentrations above 12%

c) 12% PVA was determined as the concentration that created
the closest average diameter of the fibres to the fibrils of collagen
in the ECM (126 ± 6.11 nm)

Optimisation of collector Flat, Ø 8 cm and Ø 15 cm a) Smaller inter-fibre separation for flat and Ø 8 cm collectors Ø 15 cm

b) Lower productivity with flat and Ø 8 cm collectors due to
small geometry of the collectors

Optimisation of flow rate 0.5, 1, 2, and 5 ml/h a) Continuous drops were observed with rates of 2 and 5 ml/h 1 ml/h

b) At 0.5 ml/h, the flow was not high enough in speed to
maintain a stable jet

c) A flow rate of 1 ml/h created a stable jet without the presence
of continuous drops

Optimisation of voltage 18, 20, 22, and 25 kV a) Taylor cone was not stable below 20 kV 20 kV

b) A charged jet was observed for values above 20 kV. However,
the risk of static shock for the user and the risk of damaging the
electrospinner are high with voltage above 20 kV

c) 20 kV provided diameter of the fibres close to the collagen
fibrils with no static shock

Optimisation size of the needle 15 G, 18 G, 20 G, 21 G, 22 G,
and 23 G

a) Very small diameter of the needle (22 G and 23 G) and the
biggest diameter (15 G) produced thin scaffolds what reduced
the productivity

18 G or 21 G

b) No significant differences were found between gauge of the
needle 18 G and 21 G. Mechanical test must be performed to
determine the optimum size of the needle to obtain the closest
mechanical behaviour to natural blood vessels

Optimisation distance between
the collector and the needle

5, 8, 11, and 18 cm a) Scaffolds made with 5 cm distance between the needle and
the collector exhibited problems of solvent evaporation

8 cm

b) The production of scaffolds made with 11 cm distance was
slower than with 8 cm distance

c) To increase the productivity and the quality of the scaffold, a
distance of 8 cm between the collector and the needle was
selected

Optimisation revolutions of the
mandrel

500, 1000, 2000, and 3000 rpm a) All the scaffolds presented fibre diameters between 100 nm
and 150 nm, identical as the diameter of the collagen fibrils in
the natural ECM. However, the highest inter-fibre separation
was observed for scaffolds made with mandrel revolutions of
2000 rpm, which would promote more cellular migration inside
the scaffold than scaffolds with lower inter-fibre separation

1,000, 2000, or
3000 rpm

b) Values below 2000 rpm did not produce aligned electrospun
fibres

c) Above 2000 rpm beads were produced due to the vibration
caused by the high revolution of the mandrel

d) Although scaffolds performed with revolutions of 2000 rpm
exhibited the most comparable morphology as the natural ECM
mechanical tests with scaffolds manufactured with revolution of
the mandrel of 1000, 2000, and 3000 rpm were performed to
corroborate that 2000 rpm also exhibits the closest mechanical
properties as natural blood vessels
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FIGURE 2
Decision tree to predict the diameter of the fibres based on the most relevant variables.

FIGURE 3
Decision tree to predict inter-fibre separation based on the most relevant variables.
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y-intersect to 0, and the R2 close to 1. Figure 4 shows that both the
prediction of the diameter of the fibres and the inter-fibre separation
are very accurate with R2 of 0.91 and 0.81, respectively. These graphs
also allow comparison with the MANOVA model to assess the
accuracy of both models.

The final technique to evaluate the accuracy of ANN models is
studying its sensitivity (true positives) and specificity (1 - false
positives). However, the dependent variables (diameter of the fibres
and the inter-fibre separation) must be categorised to be able to use
this technique based on the ROC curve. The area under the
sensitivity vs. specificity curves indicates how optimal the model
is. Models with areas between 0.9 and 1 are classified such as
excellent, from 0.8 to 0.9 good, 0.7–0.8 fair, 0.6–0.7 poor, and
0.5–0.6 fail. Figure 5 shows the sensitivity vs. the specificity for the
diameter of the fibres and the inter-fibre separation with the areas
under the curves. All the area’s values indicated an excellent
prediction except for one for the fibre diameter that indicates a
good prediction.

An exploratory statistical analysis of the predicted variables was
performed per each factor to determine the optimum setup. As
previously stated, factors which produced diameter of the fibres
closer to the size of the collagen fibrils and with higher inter-fibre
separation were considered optimum and shadowed areas in Figure 6
represent the optimisation of the parameters. The optimum setup
found from the ANN model was: 12%–14% concentration of the
polymer, 8–9 cm between the needle and the collector, 18–20 kV,
rotational collector of 15 cm, more than 2000 rpm, 18–21 G gauge of
the needle, and 1 ml/h flow rate.

3.1.4 Multivariate analysis of variance
The MANOVA analysis showed that the variance of the means of

the different categories of the variables was significantly different,
which produced different effects of the diameter of the fibres and the
inter-fibre separation (Table 3). Moreover, the model predicted the
diameter of the fibre with R2 of 0.912 and with R2 of 0.816 to predict
the inter-fibre separation, demonstrating in both cases the excellent
goodness of the fit. It is worth noticing that if the intersection is null,
the R2 would be 0.992 and 0.968.

The size of the effects produced by each variable are showed in the
Eta part squared column (Table 3), this indicates that the
concentration of the polymer, revolution of the mandrel, gauge of
the needle, and voltage caused higher effects on the prediction of both
endogenous variables. This fact is in agreement to the results
previously reported for the ANN and the decision trees. A
comparison between the ordinal importance of each factor for
CHAID, ANN, and MANOVA is presented in Figure 7.

The observed diameter of the fibres and observed inter-fibre
separation vs. the predicted values were evaluated in order to
compare the predictions obtained with the ANN and the
MANOVA (Figure 8).

It was observed that regression models generated with multilayer
perceptron (Figure 4) exhibited gradients and y-intercepts analogous
to the ones obtained through MANOVA models (Figure 8), also R2 is
comparable in both cases. Moreover, a linear regression was also
performed between the data predicted by ANN and byMANOVA, the
slope is very close to one and the ordinate at the origin to zero, with R2

equal to 0.99, which indicates that artificial neural networks can
successfully substitute the MANOVA models when the parametric
conditions are not meet.

The Box, Levene, and Kolmogorov–Smirnov tests confirmed
the non-homogeneity of covariance and variance for the model
and the non-normality (p-value < 0.001); therefore, the
parametric conditions were not meet in our case and other
non-parametric tools such as decision trees or ANN were more
appropriate.

After performing the Kruskal–Wallis and Mann–Whitney U test
(non-parametric test) for all the independent variables, it was
demonstrated that there were significant differences between each
level of the factors. As the MANOVA indicated that there were no
differences of the means between the different interactions (with the
exception of two: concentration × needle and needle × voltage
interactions), the differences of the means shown for each factor by
the non-parametric tests were reliable, especially with the high level of
fit (R2) of theMANOVA and with the values of partial squared Eta that
indicated that there were clear effects of the factors in the dependent
variables.

The optimum setup found from the Kruskal–Wallis test to meet
the requirements states in previous sections was the same as for ANN:
12%–14% concentration of the polymer, 8–9 cm between the needle
and the collector, 18–20 kV, rotational collector of 15 cm, more than
2000 rpm, 18–21 G gauge of the needle, and 1 ml/h flow rate.

3.1.5 Multiple linear regression
The MLR model predicted the diameter of the fibres with R2 of

0.6 and the inter-fibre separation with R2 of 0.447. Pearson coefficients
respect the diameter of the fibres were highly significant and revealed
positive correlations for polymer concentration and flow rate and
negative correlations for gauge of the needle, distance between the
needle and the collector, and revolutions of the mandrel; however, the
applied voltage did not have a clear impact on the diameter of the
fibres. Positive correlations were found to respect the inter-fibre-
separation for concentration and flow rate, negative correlations for
voltage and distance between the needle and the collector, and gauge of
the needle and revolution of the mandrel did not have repercussion on
the inter-fibre separation.

3.2 Optimisation of themechanical properties
of the scaffold

The second phase of the study was focused on the optimisation of
the revolutions of the mandrel and the gauge of the needle to create
scaffolds with comparable mechanical properties to the natural tissue.
The rest of the manufacture parameters were constant and determined
in the previous section. Diameter of the fibres, inter-fibre separation,
size of the needle, and revolutions of the mandrel were used to predict
the ultimate tensile strength and strain at break through three different
techniques: traditional characterisation techniques, ANN, and
MANCOVA.

3.2.1 Traditional characterisation techniques
Revolutions of the mandrel and gauge of the needle were

considered optimum when the ultimate transverse tensile strength
and strain at break reached values comparable to the native blood
vessel. Moreover, PVA is a water-soluble polymer, therefore, to slow
down its degradation process it was necessary to crosslink the scaffold
(created with the optimum process and solution parameters) and
characterise the new crosslinked samples. The ultimate longitudinal
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and transverse tensile strength for these non-crosslinked and
crosslinked scaffolds and transverse strain at break are presented in
Table 4.

From the results obtained, it was observed that the crosslinked
samples, created with the optimum setup (2000 rpm, 18 G, 12% PVA,
1 ml/h, 20 kV, and 8 cm distance), increased their ultimate transverse
tensile strength from 4.78 ± 0.36 MPa to 6.17 ± 0.18 MPa, and when
the load was applied longitudinal to the direction of the fibres reached
30.11 MPa. The strain at break for crosslinked scaffolds produced with
the optimum parameters was 97.39 ± 5.06. The observed ultimate
tensile strength for crosslinked samples in the transverse direction and
transverse strain at break exhibited comparable values to the ultimate
tensile strength and strain at break of native blood vessels
(4.3–6.3 MPa and 59%–120% [19]).

3.2.2 Artificial neural network
The importance of the different factors considered in the study to

predict the ultimate tensile strength and strain at break was

determined. The revolutions of the mandrel were the most
important variable to predict the ultimate tensile strength and
strain at break, with an importance of 53%, following by the
gauge of the needle with a 27.8% of importance, the diameter of
the fibres with 10.4%, and the inter-fibre separation with an 8.8% of
importance.

The model produced good predictions of strain at break with MSE
of 0.0497 for the training and 0.0309 for the testing. However, the
variability of the ultimate tensile strength was small between different
factors; therefore, the accuracy of the predictions of the ultimate
tensile strength was low, with high-MSE errors (0.797 for the
training and 0.354 for the testing).

The values of the observed strain at break versus the predicted
strain at break and the observed ultimate tensile strength vs. the
predicted one obtained from the ANN model were represented in
Figure 9. The ideal fit and the linear fit did not differ significantly in the
strain at break graph (Figure 9A), and the observed vs. predicted data
fitted the regression line with R2 of 0.749, which demonstrated the

FIGURE 4
Multilayer perceptron predictions for (A) diameter of the fibres and (B) inter-fibre separation.

FIGURE 5
Sensitivity vs. specificity and areas under the curve for (A) diameter of the fibres and (B) inter-fibre separation.
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goodness of the fit of the ANN model. However, the coefficient of
determination to predict the ultimate tensile strength was 0.223
(Figure 9B), showing a low prediction of this endogenous variable.

As in Section 3.1.3, an exploratory statistical analysis of the predicted
variables was performed per each factor to determine the optimum
setup. Factors which produced ultimate tensile strength and strain at
break comparable to the vascular tissue were considered optimum. The
optimum setup found from this ANN model was 18 G gauge of the
needle and 2000 rpm, (12% concentration of the polymer, 20 kV, 8 cm
between the needle and the collector, and 1 ml/h flow rate were fixed).

3.2.3 Multivariate analysis of variance
The MANCOVA analysis showed that the variance of the means

of the different categories of the variables was significantly different for
gauge of the needle and revolutions of the mandrel, which produced
different effects of the strain (Table 5); however, the diameter of the
fibres and the inter-fibre separation did not present significant
differences. The MANCOVA model predicted the strain at break
with R2 of 0.810, demonstrating a goodness of the fit.

However, this model predicted the ultimate tensile strength with a
coefficient of determination of 0.233, in the same range of the one
obtained with the ANNmodel. This was due to the low variability of the
means of this variable for each factor, what leaded to non-significant
factors and covariates and consequently a non-significant model to
predict the ultimate tensile strength (p-value 0.24, Table 5).

Both the Box test for equality of covariance matrices and the
Levene test for homogeneity of variances confirmed that the
parametric conditions were met with a p-value of 0.448 and 0.506,
respectively.

Figure 10A presents the values of the observed strain at break
versus the predicted strain at break from theMANCOVAmodel. As in
the previous section, the ideal fit and the linear fit did not differ
significantly, and the observed vs. predicted data fitted the regression
line with R2 of 0.8008, which demonstrated the goodness of the fit of
the MANCOVA model. Figure 10B shows a regression line with
analogues gradient, y-intersect and R2 to the regression line
obtained with the ANN model (0.227, 3.356, and 0.223 against the
0.233, 3.273, and 0.233 obtained with the MANCOVA, respectively).

Regression models generated with multilayer perceptron
(Figure 9) exhibited gradients and y-intercepts comparable to the
ones obtained through the MANCOVA model (Figure 10), also the R2

were comparable in both cases, which ratified that ANN can
successfully substitute the MANCOVA models when the
parametric conditions are not meet.

4 Discussion

Decision trees were shown to be a novel and powerful tool in
electrospinning to identify the importance of the different exogenous

FIGURE 6
Optimisation of the parameters based on low values of diameter of the fibres and high values of inter-fibre separation for (A) PVA concentration, (B)
distance between the collector and the needle (mm), (C) voltage (kV), (D) type of collector, (E) revolutions (rpm), and (F) gauge of the needle.

Frontiers in Physics frontiersin.org11

Roldán et al. 10.3389/fphy.2023.1112218

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1112218


variables and identify the path to follow to obtain a specific objective
(in this research to achieve biomimetic vascular grafts). Due to its
ability to classify data, it was the most time effective method to easily

find the optimum setup of the parameters without any additional
analysis. Moreover, they are easy to interpret and understand, they
support non-parametric and parametric conditions, they are robust to

TABLE 3 MANOVA for the diameter of the fibres and inter-fibre separation.

Intersubject effect test

Origin Dependent variable F Sig Eta partial squared

Corrected model Diameter 289.06 0.000 0.912a

Separation 123.65 0.000 0.816b

Intersection Diameter 101,863.26 0.000 0.988

Separation 17,479.55 0.000 0.936

Collector Diameter 0.000

Separation 0.000

Concentration Diameter 558.51 <0.001 0.483

Separation 203.02 <0.001 0.253

Voltage Diameter 141.33 <0.001 0.106

Separation 94.92 <0.001 0.074

Flow rate Diameter 0.000

Separation 0.000

Distance Diameter 8.52 0.004 0.007

Separation 18.63 <0.001 0.015

Needle Diameter 36.25 <0.001 0.132

Separation 79.70 <0.001 0.250

Revolution Diameter 46.94 <0.001 0.136

Separation 118.82 <0.001 0.284

Concentration a needle Diameter 41.13 <0.001 0.121

Separation 14.62 <0.001 0.047

Voltage a needle Diameter 188.02 <0.001 0.136

Separation 1.15 0.283 0.001

aR2 = 0.912 (diameter of the fibre model).
bR2 = 0.816 (inter-fibre separation model).

FIGURE 7
CHAID vs. MANOVA vs. ANN: ordinal importance of each factor to predict both diameter of the fibres and inter-fibre separation (1 is the most important
factor and 7 is the least important factor).
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outliers, divide independent variables into significant subgroups
simplifying complex relationships between exogenous and
endogenous variables and it is not needed data transformation
when the data are heavily skewed [28]. However, if the dataset is
small, issues related to overfitting or underfitting could appear which

compromised the robustness of themodels [28].Moreover, CHAID and
QUEST need to operate with categorical data for the dependent variable,
therefore, if this variable is continuous, it must be previously categorised.
Despite their lower accuracy (82% accuracy in this study) compared to
other machine learning techniques such as ANN, predictions and

FIGURE 8
MANOVA predictions for (A) diameter of the fibres and (B) inter-fibre separation.

TABLE 4 Ultimate longitudinal and transverse tensile strength and transverse strain at break.

Ultimate tensile strength (MPa) Strain at break (%) (transverse)

Longitudinal Transverse

Non-crosslinked Revolutions of the mandrel 1000 rpm 13.69 ± 1.98 4.30 ± 0.36 41.71 ± 7.17

2000 rpm 22.82 ± 1.42 4.78 ± 0.36 141.81 ± 3.66

3000 rpm 20.06 ± 2.81 3.34 ± 0.44 46.26 ± 9.28

Size of the needle 18 G 20.38 ± 2.85 3.85 ± 0.26 116.29 ± 12.53

21 G 13.25 ± 1.55 3.71 ± 0.60 75.52 ± 10.43

Crosslinked and optimum setup 30.11 ± 1.38 6.17 ± 0.18 97.39 ± 5.06

Native blood vessel 4.3–6.3 MPa 59%–120%

FIGURE 9
Observed values vs. predicted values with multilayer perceptron: (A) strain at break (%) vs. predicted strain at break (%) and (B) observed ultimate tensile
strength (MPa) vs. predicted ultimate tensile strength (MPa).
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importance of the variables were in agreement to the ANN; therefore,
the use of this technique is highly recommended by the authors for its
easier interpretation of the results, which can be used for the
optimisation of the manufacturing of different biological tissues.

Machine learning, especially ANN, offers great possibilities for
programming the parameterization of electrospinning by freeing the
constraints to the parametric conditions, as well as the typologies of
the dependent or independent variables of the analysis of variance
and covariance. ANNs have great flexibility to interpret and adapt to
different types of variables and high efficiency in non-linear systems
modelling [33, 42, 43]. The self-organization of information enables
to distinguish inconsequential information (noise) from relevant
information. As a consequence of their learning processes, they are
easy to optimise the quality of the predictions; however, once the
optimal results are obtained, they must be replicated by activating the
initialiser of the active random generator, introducing the data and
factors in the same order and keeping the same configuration of the
model [44]. After 15 interactions, the MSE remained stable and the
coefficient of variation was 3.2% for the training sample,
demonstrating the good stability of the ANN model. As
mentioned in methods Section 2.2, a calibration process was
performed to identify the operational range of each parameter for
PVA, inferior or superior values to the range would not produce
fibres or the quality of the electrospun scaffold would be highly
affected by factors such as bead formation, problems with solvent
evaporation, and unstable Taylor cone. Therefore, the optimal
parameters are within the interval defined during the calibration
process. This study demonstrated that ANN can successfully
substitute popular statistical techniques such as ANOVA,
MANOVA, ANCOVA, MANCOVA, and linear regression models
being an excellent option, especially when the parametric conditions
are not meet. Moreover, the optimum setup parameters can be
determined though an exploratory analysis of all the variables and

their levels and finding the levels that minimise the diameter of the
fibre and maximise the inter-fibre separation.

MANOVA and MANCOVA are able to predict a specific variable
from each observation and assess the accuracy of the model with
predicted values versus observed value plots. The regression obtained
for these plots were used in this study to compare the accuracy
between different techniques (MANOVA and MANCOVA vs.
ANN) and models. However, the parametric conditions of the
distribution of the variables must be met in order to apply
MANOVA and MANCOVA models, otherwise post hoc analysis
such as Tamhane, Dunnett, Games–Howell, or non-parametric
analysis such as the Kruskal–Wallis or U de Mann–Whitney test
must be performed. These statistical methods revealed a good accuracy
(R2 = 0.91) comparable to the ANN.

It is worth mentioning that the inclusion of seven independent
variables with fixed levels for the morphological predictions allowed to
minimise the bias error and the interactions did not affect the
significance of the calculated F of each input variable. These
approaches, in addition to the low number of significant
interactions detected for the MANOVA (2 interactions out of
127 possible interactions. Table 3), the high R2 of the model
(diameters: 0.912 and inter-fibre separation: 0.816), insignificant
MSEs (diameters: 0.000164 and inter-fibre separation: 0.039601),
and the high significance of the independent variables,
demonstrates the simplicity of the model with a very low
representativeness of the interactions.

MLR exhibited the lowest accuracy (R2 = 0.6) of all the prediction
models. This fact was also reported by Kalantary et al., Vle et al., and
Siafaka et al. [33, 45, 46]. Kalantary et al. (2020) developed an ANN
and MLR to predict the fibre diameter in electrospun scaffolds made
with poly (3-caprolactone) and gelatin, the results of ANN modelling
presented higher accuracy than the MLR (R2 = 0.959 vs. R2 = 0.564).
Vle et al. (2015) studied physical properties such as shrinkage and
tenacity in drawn nylon-6 fibres through MLR and ANN, this study
concluded that ANN is an effective technique for prediction of the
physical properties of drawn fibres, providing a better fit for measured
response than the regression model. Siafaka et al. (2016) investigated
the effect of content of poly (lactic acid) and poly (butylene adipate) on
an initial burst effect and dissolution behaviour with ANN and MLR,
these models presented R2 = 0.945 and R2 = 0.85.

In summary, decision trees are the initial tool that indicates the
“path to follow” and provide a clear indication of the optimum
parameter setup; however, their accuracy is lower than ANN (82%
accuracy).When there is more than one dependent variable, the ANNs
are a very useful tool, especially in the event of non-compliance with
the parametric conditions of the MANOVAS/MANCOVAS/MLR or
when the interpretation of their results is found cumbersome. ANNs
are the most accurate technique (cross-validationMSE = 0.000194 and
R2 = 0.91), and they are able to identify the importance of the
independent variables. However, the optimum parameter setup is
not straight forward founded and an exhaustive exploratory analysis is
required. MANOVA and MANCOVA models exhibited a good
accuracy (R2 = 0.91) like the ANN; however, the parametric
conditions must be met. MLR showed the lowest accuracy (R2 =
0.6) of all of the prediction models. Finally, traditional characterisation
methods were a very intuitive alternative and help narrowing the
initial values of the parameters; however, they are subjective, do not
estimate errors or evaluate the reliability and they are based on the
trial-and-error method, which significantly increases the number of

TABLE 5 MANCOVA for strain at break and ultimate tensile strength.

Intersubject effects test

Origin Dependent
variable

F Sig Eta partial
squared

Corrected
model

Strain at break 20.457 0.000 0.810a

Ultimate tensile 1.459 0.240 0.233b

Intersection Strain at break 13.666 0.001 0.363

Ultimate tensile 13.842 0.001 0.366

Diameter Strain at break 0.391 0.538 0.016

Ultimate tensile 0.187 0.669 0.008

Separation Diameter 0.001 0.982 0.000

Separation 0.276 0.604 0.011

Needle Diameter 15.911 0.001 0.399

Separation 0.551 0.465 0.022

Revolution Diameter 43.264 0.000 0.783

Separation 3.133 0.062 0.207

aR2 = 0.810 (strain at the break model).
bR2 = 0.233 (ultimate tensile strength model).
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experiments, and therefore the time invested, material used, and the
cost, these disadvantages can be avoided with machine learning or
statistical models.

All these prediction techniques provided similar importance of the
variables, being the concentration of the polymer, gauge of the needle,
and the revolutions being the most important to predict the diameter
of the fibres, and the revolutions of the mandrel, concentration and
gauge of the needle being the most important to predict the inter-fibre
separation. The distance between the needle and the collector, type of
collector, and the flow rate were found as the least important factors in
the prediction of the morphology.

Decision trees, ANN, MANOVA/MANCOVA, and MRL showed
similar tendencies of the independent variables to respect the
dependent variables, and therefore a similar optimisation of the
inputs which were also consistent with the traditional
characterisation method based on laboratory observations.
Regarding the diameter of the fibres, ANN and MLR showed
positive correlations for polymer concentration, flow rate, both
conclusions in agreement with Li et al. [47]; negative correlations
for gauge of the needle, distance between the needle and the collector
and revolutions of the mandrel, also reported in several studies [9, 47,
48]; and unclear impact on the diameter of the fibres for the applied
voltage, fact also observed by Reneker et al. [49]. The morphological
ANN model found a relationship between the inter-fibre separation
and the independent variables that followed, in most of the cases, a
second order polynomial relation with maximum inter-fibre
separation for values between 12% and 14% of concentration,
8–9 cm distance between the needle and the collector, 18–20 kV, Ø
15 cm mandrel, 2000–3000 rpm, 1 ml/h, and 18–21 G, helping to
determine the optimum input variables.

This article proved the suitability of machine learning and
statistical modelling to find the optimum manufacturing
parameters to develop biomimetic vascular grafts. Following
modelling techniques (machine learning and statistical modelling)
and the traditional method, the optimum setup found was 12% PVA,
1 ml/h, 20 kV, 15 cm mandrel, 8 cm distance, 2000 rpm, and 18 G.
Scaffolds produced with this configuration reporting excellent values
of maximum tensile strength (6.17 ± 0.18 MPa) comparable to
4.3–6.3 MPa exhibited in the vascular tissue [19] and strain at
break of 97.39 ± 5.06 comparable to the 59%–120% reported for

this natural tissue [19]. Moreover, the scaffolds showed values of fibre
diameter between 120 and 140 nm comparable to the values of the
collagen fibrils of the native ECM (40–150 nm [14–17]).

It is worth notice that the relationships found between the
exogenous and endogenous variables in this study are highly
affected by the polymer used [33]; however, once the predicted
models are created, they can be used to find the optimum setup
for different kinds of biological tissues with the same polymer.

5 Conclusion

This study demonstrated for the first time that vascular substitutes,
with comparable biomechanical behaviour and physical structure to
the native vascular tissue, can be successfully achieved through an
optimisation of the manufacturing inputs, based on a novel CHAID
predictionmodel, two-output ANNmodels, MANOVA/MANCOVA/
MLR models, and characterisation methods. Decision trees and ANN
demonstrated to be powerful tools to predict the morphology and the
mechanical properties of electrospun scaffolds and they are able to
determine the optimum manufacturing setup reducing the number of
trails currently needed in the electrospinning technique. In addition,
once machine learning models are created, these can be used to find
the most appropriate set-up for different kind of biological tissue.
Moreover, it was verified that ANN algorithms can substitute
ANOVAS, MANOVAS, ANCOVAS, and MANCOVAS when the
parametrical conditions are not meet.

Scaffolds created with an optimum setup reported ultimate tensile
strength of 4.78 ± 0.36 MPa for the non-crosslinked samples and
6.17 ± 0.18 MPa for crosslinked samples, when the load was applied
transverse to the direction of the fibres. Both crosslinked and non-
crosslinked samples exhibited values of maximum tensile strength
similar to the native vascular tissue 4.3–6.3 MPa [19]. Moreover, the
strain at break in the transverse direction was 141.81 ± 3.66 for the
non-crosslinked samples and 97.39 ± 5.06 for the crosslinked samples,
exhibited values analogous to the vascular tissue 59%–120% [19].
Regarding the morphology, the scaffolds produced with the optimum
input parameters presented fibre diameter between 120 and 140 nm
comparable to the diameter of the collagen fibrils in the extracellular
matrix (40–150 nm [14–17]).

FIGURE 10
Observed values vs. predicted values with MANCOVA: (A) strain at break (%) vs. predicted strain at break (%) and (B) observed ultimate tensile strength
(MPa) vs. predicted ultimate tensile strength (MPa).
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