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Abstract: Cadaverine is a biomolecule of major healthcare importance in periodontal disease;
however, current detection methods remain inefficient. The development of an enzyme biosen-
sor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to tra-
ditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a
diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode
which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltamme-
try. The MWCNTs were functionalised with DAO using carbodiimide crosslinking with 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS),
followed by direct covalent conjugation of the enzyme to amide bonds. Cyclic voltammetry re-
sults demonstrated a pair of distinct redox peaks for cadaverine with the C-MWCNT/DAO/EDC-
NHS/GA SPE and no redox peaks using unmodified SPEs. Differential pulse voltammetry (DPV) was
used to isolate the cadaverine oxidation peak and a linear concentration dependence was identified
in the range of 3–150 µg/mL. The limit of detection of cadaverine using the C-MWCNT/DAO/EDC-
NHS/GA SPE was 0.8 µg/mL, and the biosensor was also found to be effective when tested in
artificial saliva which was used as a proof-of-concept model to increase the Technology Readiness
Level (TRL) of this device. Thus, the development of a MWCNT based enzymatic biosensor for the
voltammetric detection of cadaverine which was also active in the presence of artificial saliva was
presented in this study.

Keywords: biosensor; cadaverine; electrochemistry; multi-walled carbon nanotubes; periodontitis

1. Introduction

Cadaverine, a metabolite found in both eukaryotic and prokaryotic cells, has been
demonstrated to have detrimental effects in diseases such as periodontitis [1,2]. Cadaverine
belongs to a class of metabolites known as the polyamines [3]. Such molecules have been
implicated in inflammatory diseases due to their ability to disrupt host cell-signalling
pathways, allowing for the continuation of inflammation without host immune cell inter-
vention [4]. Of particular interest during electrochemical analysis is the oxidation peak
of cadaverine, which develops due to the formation of 5-aminobutanal, occurring when
cadaverine becomes oxidised by the enzyme diamine oxidase (DAO) [5]. Cadaverine and
its oxidation by-products have been described previously in diseases such as periodon-
titis, causing damage and pain as well as increasing the healthcare costs of the afflicted.
The use of substrate specific enzymes to improve the detection of cadaverine through
electrochemical analysis is an appealing concept [6]. DAO is an enzyme responsible for
the breakdown and oxidation of primary amines, such as cadaverine [7]. Utilising such
enzymes as recognition elements for biosensors attracts significant attention due to their
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high substrate specificity, sensitivity, and ease of bio-conjugation. It is important to be able
to detect metabolites such as cadaverine within biofluids, to a high degree of accuracy,
whilst maintaining low operation and production costs and short turnaround times for
results.

Liquid chromatography mass spectrometry (LC-MS) and high-performance liquid
chromatography (HPLC) are techniques that are well-established for the detection and
determination of biomarkers such as cadaverine in human biofluids, as well as in food-
stuffs, since the detection of such molecules are used as indicators of food spoilage [8,9].
Although these analytical methods are highly accurate and specific, they have significant
disadvantages for clinical and industrial applications including high costs and inefficient
real-time measurements. HPLC measurements for cadaverine detection, for example, are
carried out via fluoresce detection, utilising o-phthaldialdehyde as a derivatising agent [10].
The detection of cadaverine using this complex procedure requires expensive equipment
and staff training. Therefore, it is important to develop simpler analytical techniques, for
efficient point-of-care measurements in clinical environments.

One method that is gaining significant attention is electrochemical sensing, with par-
ticular focus towards biosensors. This discipline allows for the rapid identification of
biomolecules within biofluids without the requirement for pre-sample processing. Biosen-
sors are defined based on their method of transduction [11]. Transducers convey a wide
range of chemical, physical, or biological reactions into an electrical, measurable signal [12].
Electrochemical biosensors have been studied since the early 1960s and can be either im-
pedimetric, potentiometric, or amperometric [13]. Electrochemical biosensors, where the
current is monitored when a fixed potential is applied between two electrodes, has been
widely used within the last decade, and such systems have since been miniaturised, to
operate with smaller sample volumes of complex matrices [14].

The most commonly used materials for the development of screen-printed electrodes
(SPEs) are carbon-based, and the structural and physicochemical properties of such materi-
als have been extensively studied in terms of their electrochemical performance [15–17].
Moreover, carbon-based nanomaterials are also being utilised in bio-electrochemical sens-
ing [18]. Compounds such as graphene and other carbon allotropes are one such group
of nanomaterials which allow for an increase in electrode surface area, since this has been
reported to increase the efficacy of electron transfer, resulting in increased biomolecule
loading, selectivity, and sensitivity [19].

Carbon nanomaterials possess features that are particularly effective for use in biosens-
ing platforms [20]. In particular, multi-walled carbon nanotubes (MWCNT) have demon-
strated their advantages for being incorporated into sensing devices [21–23]. MWCNTs are
pseudo-one-dimensional allotropes of carbon, presenting as hollow cylindrical structures
with one or more walls (single- or multi-wall, respectively), of nanoscale size. They have
major advantages for biosensing applications, such as increased surface area, enhanced
electron transfer rates between active centres of enzymes and the electrode, increased
stability, and multiple active sites, which enable a high loading capacity for enzymes [24].
One of the major advantages for electrochemical biosensing platforms is that MWCNTs can
be used as platforms for the immobilisation of biomolecules [25].

Biomolecule immobilisation is a critical step in ensuring efficient electron transfer
between the enzyme active site and the electrode, thus MWCNTs have been utilised for
adsorbing enzymes onto their surface structures to create an electron bridge between the
working electrode surface and the flavin adenine dinucleotide (FAD) group which is deeply
embedded within the centre of the enzymes [26]. Enzyme loading and entrapment, which
is an important step in effective bioelectrode design, has been extensively studied [27,28].
Physical adsorption is the simplest and most cost-effective method of manufacturing
enzymatic biosensors. Positively charged amino acid residues of enzymes are able to
be electrostatically adsorbed onto negatively charged colloidal surfaces on electrodes
through simple incubation steps [29]. Although this method is fast and simple, it results
in unfavourable enzyme orientations which may negatively impact electron transfer rates.
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To effectively facilitate enzyme immobilisation onto an electrode surface, a number of pre-
functionalisation steps can be implemented to aid in increased enzyme loading. Covalent
attachment of proteins onto carbon structures such as MWCNTs is one such method that
demonstrates increased sensitivity and selectivity in the development of biological sensing
platforms [30].

Electrochemical biosensing technologies which emphasise the detection of cadaverine
have been studied within recent years [31,32]. Cadaverine has long been studied for its
implications in the quality of foodstuffs, namely fish samples, since the presence of ca-
daverine is indicative of spoilage. Cadaverine is a product of bacterial decarboxylation
of lysine; thus, its identification is typically attributed to putrefaction of tissues and is
a reliable indicator of bacterially mediated food spoilage. Whilst cadaverine has been
documented in the literature as having strong associations with diseases, in particular those
of bacterial origin, there is little current literature on cadaverine biosensors with particular
interest towards disease detection and diagnostics. Cadaverine has been studied exten-
sively for its implications in diseases such as periodontitis and traditional techniques [33].
Electroanalytical analysis using biosensors offers a potential new alternative to traditional
methods, enabling real-time measures of the active patient disease state using non-invasive
means for sample measurement in a clinical setting. Thus, the biosensor tested within this
work demonstrates the establishment of an electrochemical biosensor for the detection of
cadaverine for applications in healthcare and infection diagnostics.

The aim of this research was to modify and analyse screen-printed electrodes to enable
the real time measurement of cadaverine. Such a biosensor could be used in future work to
produce a sensitive, low-cost, and highly reproducible sensing platform for applications
such as a non-invasive point of care biosensing device for periodontitis diagnostics.

2. Experimental

All chemicals used were analytical grade and were used as received from Merck
(formerly Sigma-Aldrich), Gillingham, UK without any further purification unless stated
otherwise. Electrochemical solutions and cadaverine suspensions were prepared using
Type 1 ultra-pure deionised water (Milli-Q, Merck, Gillingham, UK) with a resistivity
of 18.2 MΩ cm or greater and were degassed with oxygen-free nitrogen prior to any
electrochemical measurements.

2.1. Fabrication of Screen-Printed Electrodes

The SPEs were fabricated in-house with the appropriate stencil designs to achieve a
3.1 mm diameter carbon working electrode using carbon graphitic ink (Gwent Electronic
Materials Ltd., Pontypool, UK). The graphitic ink was printed using a DEK 248 screen
printer machine (DEK, Redcar, UK) onto a polyester flexible film (Autostat, Gloucestershire,
UK) with a graphitic ink counter electrode. This layer was cured in a fan oven at 60 ◦C for
30 min. A dielectric paste (Gwent Electronic Materials, Pontypool, UK) was printed onto
the polyester flexible film to cover the connections. After a second curing process at 60 ◦C
for 30 min, an Ag/AgCl reference electrode was printed onto the SPE and cured at 60 ◦C
for 30 min so thatthe SPEs were ready to use [34].

2.2. Carboxylation of MWCNTs

An acidic solution containing 7.5 mL H2SO4 (98%) and 2.5 mL HNO3 (70%) was
used to introduce carboxyl groups onto the multi-walled carbon nanotube (MWCNT)
surfaces. For complete carboxylation, two milligrams of MWCNTs (powdered format)
(tube diameter × length:110–170 nm × 5–9 µm, Merck, Gillingham, UK) were placed in an
ultrasonic bath in a 2 mL acidic solution for 6 h at 80 ◦C. The MWCNTs were washed twice
with 25 mL of Type 1 water to remove any acid residues and placed in an oven at 60 ◦C to
dry overnight.
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2.3. EDC-NHS C-MWCNT Coupling

The enzyme diamine oxidase was coupled to the carboxylated multi-walled carbon
nanotubes (C-MWCNT) using EDC-NHS. The C-MWCNTs (2 mg) were initially suspended
in MES buffer solution (2 mL) and sonicated until homogeneous. The C-MWCNTs were
then suspended in 1.2 mL of a 10mg mL−1 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDC) solution (pH 6.5) and left to stand at room temperature for 1 h. N-
Hydroxysuccinimide (NHS) solution (2.2 mL of a 50 mg mL−1) was then added to the
C-MWCNT/EDCs and incubated at 37 ◦C for 1 h under stirring conditions. This coupled
the NHS to the pre-conjugated EDC. The coupled C-MWCNT/EDC-NHS were rinsed using
5 mL of 50 mM MES buffer solution (pH 6.5) through a PTFE membrane filter (0.45 µm)
to remove any unconjugated residues. The fully conjugated C-MWCNT/EDC-NHS were
then dried in a class II cabinet for 1 h before being stored at 4 ◦C until required.

2.4. DAO Conjugated MWCNT Preparation

DAO solution was made using 10 mg/mL DAO in 0.1 M phosphate buffer, and to
this, MWCNT/EDC-NHS (2 mg) in 2 mL of MES, (50 mM at pH 6.5) were added and
incubated at 37 ◦C for 1 h under constant shaking (200 rpm) to allow for the enzyme to
conjugate with the MWCNT/EDC-NHS. Crosslinking was carried out using 1 mL of a
0.2% glutaraldehyde solution (GA) (Agar Scientific, Stansted, UK), which was added to the
C-MWCNT/DAO/EDC-NHS and incubated at room temperature under constant shaking
for 30 min, followed by further incubation overnight at 4 ◦C. The C-MWCNT/DAO/EDC-
NHS/GAs were re-suspended in Tris buffer (100 mM at pH 7.2) for 30 min and then
washed to remove any unconjugated residues. The C-MWCNT/DAO/EDC-NHS/GA
were re-suspended in 0.1 M MES and stored at 4 ◦C until ready to use.

2.5. C-MWCNT/DAO/EDC-NHS/GA Electrode Functionalisation

The working electrode was prepared for functionalisation using the C-MWCNT/DAO/
EDC-NHS/GAs through two sequential rinse steps consisting of 2 mL of distilled H2O
(DH2O). Three replicate SPEs were adhered to a Petri dish using 10 mm × 10 mm double-
sided tape under sterile conditions to eliminate any potential airborne contaminants. To
evenly distribute the C-MWCNT/DAO/EDC-NHS/GA solution onto the working elec-
trode, the C-MWCNT/DAO/EDC-NHS/GA solution was first sonicated for 10 min to
homogenise the suspension, and 10 µL was deposited onto the electrode surface using
drop-casting, ensuring that the SPEs remained completely unagitated. The modified C-
MWCNT/DAO/EDC-NHS/GA SPEs were dried in the class II cabinet for 1 h and placed
in individual 5 mL sterile plastic bijous with 1 mL MES buffer solution until ready for use.

2.6. Fourier Transform Infra-Red Spectroscopy

Unmodified and modified MWCNTs were analysed using FTIR (PerkinElmer, Bucking-
hamshire, UK) for new bond examination. MWCNTs at a volume of 15 µL were deposited
onto 10 mm × 10 mm silicon wafers (Montco Silicon Technologies Inc., Spring City, PA,
USA) and dried in a class II cabinet for 1 h. The samples were stored in a desiccator with
silica gel, until ready for use. The FTIR attachment used was a type A MCT detector. The
aperture was used at 200 mm × 200 mm, and the spectra of the unmodified and modified
electrodes were acquired using Omnic 5.2 software (Thermo Fisher, Winsford, UK).

2.7. Energy Dispersive X-ray Spectroscopy (EDX)

To determine the chemical composition of the SPE before and after modification with
the MWCNT formulation, EDX (Zeiss, Cambridge, UK) analysis was performed using a
EDX Sapphire Si (Li) detector and was quantified using a standardless ZAF algorithm. The
atomic weight percentage was used (n = 3).
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2.8. Electrochemical Measurements

Electrochemical assessment of the C-MWCNT/DAO/EDC-NHS/GA electrodes was
performed using an EmStat3 (Palmsens, GA Houten, The Netherlands) computer-controlled
potentiostat, using PStrace 5.8 software (Palmsens, GA Houten, The Netherlands). A three-
pin SPE connector (Palmsens, GA Houten, The Netherlands) was used as a connector
between the electrode and the potentiostat. Measurements were taken using a typical
three-electrode system, with a nickel wire counter electrode and an Ag/AgCl reference
electrode with the SPEs completing the circuit. Cyclic voltammetric analysis was carried
out at a potential window of −0.5 to +1.0 V s−1 vs. Ag/AgCl reference with scan rates
corresponding to 5 mV s−1, 10 mV s−1, 15 mV s−1, 25 mV s−1, 50 mV s−1, 75 mV s−1,
100 mV s−1, 150 mV s−1, 250 mV s−1, and 500 mV s−1. A potential range of −0.3 to
+0.7 V s−1 was utilised for DPV measurements. All blank measurements were made at
room temperature with a supporting electrolyte solution of 0.1 M potassium chloride (KCl)
solution and a slightly acidic Britton–Robinson buffer made up of equal parts 0.1 M acetic
acid, 0.1 M boric acid, and 0.1 M phosphoric acid.

2.9. Statistical Analysis

Statistical analysis of the results was carried out using GraphPad Prism 9 (Stable
release, San Diego, CA, USA) and unpaired t-tests and one way/two-way ANOVA com-
parison tests were used. In each instance a p < 0.05 was deemed statistically significant.

3. Results and Discussion

This study utilised the electrochemical detection of cadaverine as a potential marker
for the indication of periodontal disease. Previous studies have demonstrated the effects of
increased levels of cadaverine vs. poor patient oral health and deemed cadaverine as an
important predictive periodontal biomarker [35]. The current measurement techniques for
such biomolecules utilise chromatography which is an expensive and time-consuming prac-
tice, requiring sample derivatisation prior to the measurements being obtained. Within the
clinical dental environment, periodontal disease assessment remains a practice whereby the
traditional techniques of clinical attachment level, bleeding on probing, and pocket depth
measurements encompass the gold standard of periodontal disease diagnostics [36]. How-
ever, these traditional techniques are qualitative and are dependent on the practitioner’s
individual assessment of the disease, and this means that clinicians can only identify the
history of the disease. Moreover, this method fails to provide information on current
disease activity, the patient’s current oral health, or the risk of potential future periodontal
breakdown [33]. Since it is qualitative, the results are also not comparable between dental
surgeries. Thus, the requirement for periodontal disease analysis and monitoring is of
the utmost importance. The use of biosensors that detect cadaverine and can be used in
point-of-care devices would enable the current state of oral health of a patient to be estab-
lished quantitatively without bias or the need for clinical invasive analysis or expensive
chromatography-based analysis.

This work modified the electrode of a carbon screen-printed biosensor using MWCNTs
with covalently crosslinked DAO. An essential requirement for any enzymatic biosensing
device is the immobilisation of the protein which in this instance was achieved through
covalent binding to reduce the enzymatic response time and increase the sensor shelf
life [37]. In order to carry this out, 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC),
a water-soluble zero-length crosslinker, was utilised in the development of the sensing
platform [38]. It is typically used in the coupling of carboxyl groups, which in this study
were acid-etched onto the MWCNT surface and used to conjugate EDC to primary amines
as previously shown [39]. EDC undergoes nucleophilic substitution in the presence of
strong nucleotides, such as primary amine molecules, and forms an unstable O-acylisourea
intermediate [40]. This intermediate is readily hydrolysable, and thus able to rapidly
revert to its original carboxylate molecule. To overcome this, N-hydroxysuccinimide
(NHS) has been frequently used to develop a more constant intermediate prior to amine
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introduction [41,42]. This method provides a stable electrode with a greater effective area
enabling increased protein loading for maximizing the probability of enzyme–substrate
complex formation and overall increased sensitivity [43].

Following from previous work, energy-dispersive X-ray analysis was conducted to
show the elemental composition of the pre- and post-modified electrode surfaces (Figure 1).
It was determined that carbon was the bulk element present on the surfaces, and oxygen,
sodium, phosphorus, and sulphur were included. However, after modification, nitrogen,
silicon, and chlorine were present. These additional elements were suggested to have been
introduced via the enzyme, EDC, and NHS compounds.
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FTIR spectra were obtained in the range of 400 cm−1–4000 cm−1 to study the formation
of new bonds on the MWCNT surface via the introduction of diamine oxidase and its
crosslinkers (Figure 3). The unmodified MWCNTs demonstrated typical characteristic
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bonds respective of the photon modes of carbon nanomaterials at 1600 cm−1. For the
functionalised MWCNTs, the organic bonds formed through the introduction of diamine
oxidase and its associated conjugation biomolecules were demonstrated. At 3500 cm−1,
weak C=O bonds were measured indicating the presence of carbonyl groups. Further
functional groups at 2800 cm−1, 2363 cm−1, and 1100 cm−1 demonstrated C-H stretching,
C=NH+, and C-N moieties, respectively, which were indicative of the ionic amine groups of
the enzyme, diamine oxidase. Functionalized MWCNTs demonstrated peaks at 1715 cm−1

and 1300 cm−1, indicative of O-H stretching and C-O bonds, which were characteristic of
COOH− groups present in carboxyl functional groups. C=O bonds were identified between
1750 cm−1 and 1550 cm−1 which can be assigned to the carboxylic acid environment.
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work, cadaverine demonstrated no redox peaks at a concentration of 30 µg/mL when using
an unmodified SPE vs. Ag/AgCl reference electrode (Figure 4). This may have been due to
cadaverine presenting as an electrochemically inert molecule without the presence of an
active site of a conjugated enzyme. Thus, under these conditions, the cadaverine molecule
would not undergo a redox reaction without the addition of a catalyst molecule. The
voltammetric response of cadaverine at the modified C-MWCNT/DAO/EDC-NHS/GA
SPE was then explored, ensuring the same conditions were held as when measuring with
unmodified SPEs. In contrast to the unmodified electrode, the results demonstrated a pair
of redox peaks which denoted the electrochemical oxidation and reduction of cadaverine
and H2O2, respectively, at the working electrode of the C-MWCNT/DAO/EDC-NHS/GA
SPE. The demonstration of the peaks may have occurred in this instance since the cadav-
erine would be able to bind to the active site of the conjugated DAO enzyme located at
the working electrode interface. This would have enabled the transport of electrons from
the enzyme active site to the surface of the working electrode via the aid of the MWCNT
scaffolding, resulting in the electrochemical measurements recorded.
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Figure 4. Cyclic voltammogram obtained using an unmodified carbon SPE (red scan) in the presence
of 30 µg/mL of cadaverine solution in Britton–Robinson buffer at a scan rate of 100 mV s−1. Potential
window −0.5 to 1.0 V s−1 vs. Ag/AgCl reference electrode. Cyclic voltammogram of cadaverine
recorded utilising a C-MWCNT/DAO/EDC-NHS/GA working electrode vs. Ag/AgCl reference
electrode (black scan) at a scan rate of 100 mV s−1.

The height of the oxidation peak, which corresponded to the electrochemical oxidation
of cadaverine as a result of enzyme–substrate interaction at the site of the working electrode,
was next explored as a function of scan rate, whereby the anodic peak height (Ip) vs. the
square root of scan rate was plotted. This demonstrated a linear trend with respect to the
peak current height of cadaverine. Further analysis depicted in the form of log peak current
vs. log scan rate (Figure 5) demonstrated a slope of 0.29, which was found to be within
the theoretical expected value of 0.5 for a diffusional controlled process at the surface of
the working electrode, indicating an electrode structure that was non-porous [45]. Similar
work has been previously conducted whereby the electrochemical oxidation of cadaverine
was achieved via the active redox centre of the enzyme monoamine oxidase, a less-specific
polyamine-oxidising enzyme than the enzyme utilised in this study [32]. The enzyme DAO
demonstrates a much stronger affinity towards cadaverine than other similar biomolecules,
and potentially results in increased sensitivity of the sensor, which would be a significant
advantage in more complex solutions such as human saliva.
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Figure 5. (A) Voltammetric anodic peak height of cadaverine expressed as a function of the square
root of the scan rate. The line equation shows a linear relationship between peak height and square
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trend and a slope of 0.29 representing a diffusional controlled electrochemical process.

Cadaverine has been previously demonstrated to have a potentially concentration-
dependent influence on the disease state of periodontitis, ranging from mild to moder-
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ate and severe/advanced periodontitis. To emulate a periodontitis model of infection
which centres around cadaverine, the concentrations of cadaverine chosen for detection
corresponded to those in their respective periodontitis active disease stage [33]. Thus,
electrochemical responses of the modified C-MWCNT/DAO/EDC-NHS/GA SPE platform
were evaluated as a function of cadaverine concentration. Differential pulse voltammetry
was chosen for this analysis due to its increased analytical peak sensitivity over other
electroanalysis techniques. The single anodic peak of cadaverine in the response of the
C-MWCNT/DAO/EDC-NHS/GA SPE was utilised and a DPV plot of cadaverine concen-
tration vs. peak current was constructed (Figure 6).
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Figure 6. Anodic peak differential pulse voltammograms of cadaverine (3–150 µg/mL) using
MWCNT/DAO/EDC-NHS/GA SPE with resulting peak current range of 32.22–43.13 µA vs.
Ag/AgCl reference electrode in supporting Britton–Robinson buffer at pH 6.0.

A peak current range of 140–204 µA was determined at an increasing concentration
of cadaverine (3–150 µg/mL). The concentration of cadaverine was plotted vs. peak
current (Figure 7) and demonstrated a linear increase in analytical signal in response to
increased cadaverine concentration. When the unmodified carbon SPE was used, little or
no cadaverine was detected, similar to the cyclic voltammetric analysis demonstrated in
Figure 4.
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Figure 7. Cadaverine concentration (3–150 µg/mL) Ip at C-MWCNT/DAO/EDC-NHS/GA SPE
vs. Ag/AgCl reference electrode, with linear ranges identified at low and high concentrations
of cadaverine.

Using this information, the limit of detection for the C-MWCNT/DAO/EDC-NHS/GA
SPE could be determined. The limit of the blank is defined as the highest concentration
of apparent expected analyte concentration of replicates whereby no test analytes are to
be found [46]. The mean blank value was obtained from the voltammetric response of
a C-MWCNT/DAO/EDC-NHS/GA SPE in the absence of cadaverine. Changes to the
current were recorded within the expected potential window (−0.3–0.5 V s−1) whereby
the electrochemical oxidation and reduction of cadaverine would occur. Next, the limit
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of detection (LOD) was determined. The LOD is defined as the lowest concentration
of analyte measured that is reliably distinguishable from the LOB. It is determined by
calculating three times the standard deviation of the blank and for cadaverine this was
0.8 µg/mL [46]. The results demonstrated a LOD which was shown to be similar to
previous works which measured cadaverine using a monoamine oxidase biosensor at
19.9 ± 0.9 µM [32]. Furthermore, the results showed increased sensitivity when compared
to other works which demonstrated a detection limit of 50 µM [47]. Further studies demon-
strated a linear range of 50 µM–1.6 mM for cadaverine and similar biogenic amines for a
biosensor used on fish samples [48]. The increased sensitivity of this device may be hypoth-
esised to be due to the modified enzyme/carbon nanotube surface of the working electrode
allowing for an increased surface area to enable the enzyme–cadaverine interactions [39].
This resulted in the ability of the C-MWCNT/DAO/EDC-NHS/GA SPE to detect the elec-
tron transfer of the concentrations of cadaverine at lower levels than previously reported
(Table 1).

Table 1. Previous reports of cadaverine, and other polyamine-based biosensors and their detection limits.

Sensor Detection Molecule Detection Limit Reference

Cadaverine 3 µg/Kg [33]
Cadaverine and Putrescene 9.9 µM and 19.9 µM [32]

The effect of pH on the electrochemical system was determined as it has been shown
in previous works that pH can significantly alter the affinity of an enzyme to its substrate.
The C-MWCNT/DAO/EDC-NHS/GA SPE was measured against a pH range of 2–12 and
cyclic voltammetric profiles of cadaverine were assessed as a function of pH by plotting the
oxidation peak of cadaverine vs. pH. It should be noted that the pKa of cadaverine is 10.25
at 25 ◦C (Figure 8). A linear correlation was demonstrated between the increasing pH and
the peak potential of cadaverine. The linearity of the system past the pKa of cadaverine
ceased, causing a shift in Ep towards higher values. The performance of the enzyme was
strongly dependent on pH of the buffer solution, showing an increase in peak potential
with an increase in pH.
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To better emulate the environment of the oral cavity, artificial saliva was used to eval-
uate the C-MWCNT/DAO/EDC-NHS/GA biosensor. The constituents of the saliva were
previously elucidated [49]. The peak response of the cadaverine using the C-MWCNT/DAO
/EDC-NHS/GA biosensor within artificial saliva was determined using DPV (Figure 9).
When using the saliva, a narrower potential range was observed with a similar peak current
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response over multiple repeat measurements (Figure 9). This suggested that the biosensor
would not be inhibited by interfering molecules present in human saliva. The biosensor
demonstrated good efficacy when used in a simulated real-world environment, as the
saliva of individuals may be used to potentially detect the level of cadaverine in the body
as a rapid, non-invasive means of potential disease identification.
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This work demonstrated the development of an MWCNT and DAO functionalised
biosensor as a potential inexpensive and rapid alternative method of cadaverine detection.
In addition, using this method precludes the requirement for sample pre-processing, a
major advantage over current polyamine detection methods. This biosensor utilised DAO, a
polyamine-specific enzyme, which was covalently crosslinked to MWCNTs and selectively
detects cadaverine due to enzyme substrate specificity.

This method of detection can be compatible with a range of biomolecules by simply
changing the detection enzyme in the biosensor system. The simplicity of fabrication and
application lends itself to great interest within the healthcare environment due to low
operational potential, low costs, and the benefit of real-time analysis, making it an ideal
alternate device to current detection strategies.

4. Conclusions

This study tested the efficacy of a C-MWCNT/DAO/EDC-NHS/GA biosensing
platform that was successfully developed for use in an electrochemical detection sys-
tem for cadaverine. The incorporation of DAO onto C-MWCNTs demonstrated a viable
method to measure the concentrations of cadaverine in both stock solutions and artifi-
cial saliva. Using electro-analytical techniques such as cyclic voltammetry and DPV, the
C-MWCNT/DAO/EDC-NHS/GA biosensor demonstrated the ability to measure concen-
trations of cadaverine to as low as 0.8 µg/mL, which was measured in real time and showed
limits of detection equivalent to, or lower than, that of current devices. Furthermore, the
device was shown to respond to small changes in cadaverine concentrations, which may
potentially be indicative of periodontal disease state changes within afflicted individuals.
Thus, such a biosensor, which is cheap, readily producible, and produces measurements in
real time, for use in cadaverine measurement has the potential to be developed for use in
devices for the early detection of disease.
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