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Abstract

Background

Eumenorrheic women experience cyclic variations in sex hormones attributed to the men-

strual cycle (MC) which can impact anterior cruciate ligament (ACL) properties, knee laxity,

and neuromuscular function. This systematic review aimed to examine the effects of the MC

on ACL neuromuscular and biomechanical injury risk surrogates during dynamic tasks, to

establish whether a particular MC phase predisposes women to greater ACL injury risk.

Methods

PubMed, Medline, SPORTDiscus, and Web of Science were searched (May-July 2021) for

studies that investigated the effects of the MC on ACL neuromuscular and biomechanical

injury risk surrogates. Inclusion criteria were: 1) injury-free women (18–40 years); 2) verified

MC phases via biochemical analysis and/or ovulation kits; 3) examined neuromuscular and/

or biomechanical injury risk surrogates during dynamic tasks; 4) compared�1 outcome

measure across�2 defined MC phases.

Results

Seven of 418 articles were included. Four studies reported no significant differences in ACL

injury risk surrogates between MC phases. Two studies showed evidence the mid-luteal

phase may predispose women to greater risk of non-contact ACL injury. Three studies

reported knee laxity fluctuated across the MC; two of which demonstrated MC attributed

changes in knee laxity were associated with changes in knee joint loading (KJL). Study qual-

ity (Modified Downs and Black Checklist score: 7–9) and quality of evidence were low to very

low (Grading of Recommendations Assessment Development and Evaluation: very low).
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Conclusion

It is inconclusive whether a particular MC phase predisposes women to greater non-contact

ACL injury risk based on neuromuscular and biomechanical surrogates. Practitioners should

be cautious manipulating their physical preparation, injury mitigation, and screening prac-

tises based on current evidence. Although variable (i.e., magnitude and direction), MC

attributed changes in knee laxity were associated with changes in potentially hazardous

KJLs. Monitoring knee laxity could therefore be a viable strategy to infer possible ACL injury

risk.

1. Introduction

Female athletes (18–40 years old) are ~3.5 times more likely to sustain an ACL injury com-

pared to male athletes [1], depending on sporting population [2]. Despite recent advancements

in sports medicine and technology, ACL injury rates in female athletes are not declining [3–6]

which is problematic as female sport participation rates are increasing [7, 8]. Female ACL

injury incidence rates would therefore be predicted to increase in future due to greater partici-

pant exposures. Although risk factors related to skeletal anatomy [9–13], biomechanical move-

ment strategies [14–17], neuromuscular activation patterns [15, 18–20], and biopsychosocial

factors (i.e., inequities in socioeconomic status and skill training provision) may partially con-

tribute to the sex disparity in ACL injury [3, 4, 21–23], one specific physiological risk factor

increasing in interest is the role of fluctuations in ovarian sex hormones on ACL injury risk

attributed to the menstrual cycle (MC).

Eumenorrheic and naturally menstruating women of reproductive age experience varia-

tions in ovarian sex hormones during different phases of the MC which can influence physio-

logical systems and function [24–29]. For example, based on a 28-day MC length, the early

follicular days 1–5 (Phase 1) is associated with low oestrogen and progesterone, whereas the

highest oestrogen to progesterone ratio is observed during late follicular days 6–12 (Phase 2).

During ovulation (Phase 3; days 13–15), oestrogen is lower (medium concentration) than

phase 2 but higher than phase 1 with low progesterone levels, whereas the mid-luteal days 20–

23 (Phase 4; ~7 days post ovulation) contains the highest progesterone concentrations, with

relatively high oestrogen levels (> phase 1 and 3 but< than 2) [25, 26, 30]. Due to the different

concentrations of ovarian sex hormonal profiles throughout the MC, phases associated with

increased oestrogen may impact soft tissue compliance [31, 32], influence collagen formation

and the tensile properties and integrity of ligaments (i.e., mechanical load tolerance) [33–35],

impacting ligamentous and knee laxity [33, 34, 36], and neuromuscular function [24, 27, 30,

37, 38], and thus potentially increasing ACL injury susceptibility [39, 40].

There is, however, mixed and conflicting evidence that a specific MC phase may predispose

female athletes to greater risk of non-contact ACL injury [39–42]. Notably, previous research

in this area is generally confounded by methodological and research design limitations. These

include inconsistencies in MC verification (i.e., lack of biomechanical analysis or ovulation

kits, thus potential inclusion of anovulatory or luteal phase deficient women) and definitions

[25–27], non-homogenous group profiling (i.e., describing injury in both the follicular and

ovulatory phases [preovulatory] without considering the distinct hormonal variations in the

early and late parts of each), inclusion of hormonal contraception (HC) users (distinctly differ-

ent hormonal profiles) and contact ACL injuries, and use of unreliable injury recall or

questionnaires.
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As neuroexcitation [38], neuromuscular function [24, 27, 30, 37, 38], and ligamentous and

knee laxity [33, 34, 36] can fluctuate throughout the MC, as well as psychological and percep-

tions of perceived effort and intensity [27], MC hormonal perturbations are likely to affect

neuromuscular activation and coordination patterns during high impact tasks [39]. These

changes may impact neuromuscular control and movement quality, which may influence the

generation of hazardous mechanical loads associated with non-contact ACL injury risk during

jump-landing and change of direction (COD) tasks [39]. To improve ACL injury mitigation

strategies, injury screening protocols, and physical preparation and management of female

athletes, greater understanding of how hormonal, neuromuscular, and biomechanical factors

interrelate and influence the execution and movement quality of jump-landing and COD tasks

across different MC phases is needed. The aim of this systematic review was to examine the

effects of the MC on ACL neuromuscular and biomechanical injury risk surrogates, during

dynamic, high impact tasks in eumenorrheic and naturally menstruating women. A secondary

aim was to highlight the limitations, considerations, and future directions for research to

improve our understanding regarding the effect of the MC on ACL injury risk. It was hypothe-

sised that differences in neuromuscular and biomechanical injury risk surrogates would be

observed between MC phases in eumenorrheic and naturally menstruating women. If specific

MC phases may have potentially heightened injury risk, the findings may assist in ACL injury

mitigation strategies, injury screening protocols, and physical preparation and management of

female athletes.

2. Methods

This review conforms to the PRISMA 2020 statement guidelines [43] (S1 Checklist). A review

protocol was not pre-registered for this review; however, the review methods were established

prior to conducting the review.

2.1 Study inclusion and exclusion criteria

Consideration of Population, Intervention, Comparator, Outcomes, and Study design

(PICOS) was used to establish the parameters within which the review was conducted [44].

The PICOS strategy is presented in Table 1. Studies that did not meet the PICOS criteria were

excluded from the review.

2.2 Search strategy

A literature search was performed using PubMed, Medline (OVID), SPORTDiscus, and Web

of Science databases by two reviewers (TDS and MS) from May 2021 to July 2021 with the

final search date of 2nd July 2021. Citation tracking on Google Scholar was also used to identify

any additional material. A schematic of the search methodology in accordance with established

guidelines [43] is presented in Fig 1.

Search terms were as follows:

1. (“Anterior cruciate ligament” OR “knee” OR “ACL”)

2. (“biomechanic” OR “biomechanics” OR “biomechanical” OR “neuromuscular” OR

“injury” OR “kinetic” OR “kinematic” OR “electromyography” OR “muscle activation” OR

“biomec�” or electromy�”)

3. (“menstrual phase” OR “menstrual cycle” OR “menstrual” OR “menstruation” OR “follicu-

lar phase” OR “luteal phase” OR “ovulation” OR “ovulatory”)

4. 1 AND 2 AND 3
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Table 1. Consideration of population, intervention, comparator, outcomes and study design.

Population Participants included women who were: a) aged between 18 and 40 years old; b) Healthy

Eumenorrheic / naturally menstruating women of reproductive age (i.e., post-menarche and

pre-menopausal) who experience ovulation confirmed via biochemical analysis or ovulation

kits; c) free from any menstrual-related dysfunctions (e.g., amenorrhea) or any other

conditions (e.g., pregnancy, eating disorders or disordered eating, low energy availability and

relative energy deficiency syndrome) known to affect the hypothalamic–pituitary–ovarian

axis [24]; d) never previously sustained a severe knee injury such as an ACL injury, and no

previous lower-limb injury which required surgery or no previous lower limb injury within a

year prior to testing; e) engaged in physical activity or sport from recreational to elite playing

status [45]. Studies that contained participants with previous or current history of polycystic

ovary syndrome (PCOS) were excluded.

Intervention /

Method

A specific intervention was not investigated but participants were required to meet the

population criteria above. Studies must have examined biomechanical and/or neuromuscular

surrogates of non-contact ACL injury risk during a pre-planned or unplanned bilateral or

unilateral landing / jump-landing, deceleration, or COD task using 3D motion and/or GRF

analysis, 2D kinematic analysis, goniometry, and/or surface electromyography (sEMG). Only

studies that verified participants’ MC phase via biochemical analysis (i.e., blood/serum

analysis) and / or ovulation kits were included, in line with McNulty et al. [24].

Comparator To determine the effect of MC phase on neuromuscular and biomechanical injury risk

surrogates, included studies must compare an outcome measure (i.e., surrogate of ACL

injury risk) at a minimum of 2 phases of MC in line with McNulty et al. [24]. Comparisons

must have been made between two of the following MC phases in line with classifications

provided in previous research [24, 25]: early follicular (days 1–5), late follicular (days 6–12),

ovulation (days 13–15), early luteal (days 16–19), mid-luteal (days 20–23) and late luteal

(days 24–28).

Outcomes Studies must have included precise mean and SD or SEs for injury risk surrogates for all

phases examined. Subsequently, a change in injury risk surrogate between MC phases

denotes a potential change in non-contact ACL injury risk. Biomechanical non-contact ACL

injury risk surrogates (i.e., factor which has been shown to increase ACL loading / strain /

KJL or prospectively shown to predict injury) included [9, 46, 47]: knee abduction, rotation,

flexion moments / impulse (knee joint loads) due to the propensity to increase ACL strain

[47, 48], or studies that investigated ACL loading via musculoskeletal modelling [49, 50] or

measured proximal anterior tibial shear [51]. Technical, kinetic, or kinematic determinants

of surrogates of injury risk (i.e., KJL) [9, 46, 52] related to quadriceps, ligament, trunk, and/

or leg dominance, such as: vertical / posterior GRF / impulse; initial or peak lateral trunk

flexion/rotation angle, hip internal rotation angle, knee valgus / internal rotation angle, knee

flexion / hip flexion angle, and foot progression angles were also considered as

biomechanical injury risk surrogates. Because neuromuscular activation patterns have been

shown to predict non-contact ACL injury [53, 54], and has the potential to support ligament

unloading [55], or increase ACL loading [56–59]; studies that examined outcome measures

related to quadriceps femoris, hamstrings, gluteal groups, gastrocnemius, and / or soleus

preactivation, time to activation, peak activation at pre ground contact, initial contact and /

or over weight-acceptance were included and considered as injury risk surrogates.

Study design Clinical studies were included for analysis if they: a) were a peer reviewed full published

article in English using human participants; b) had the primary or secondary objective of

monitoring changes in ACL injury risk surrogates between MC phases; and c) included

within-group comparison for phases of MC with outcome measures clearly taken during two

or more MC phases.

Other data

extraction

The following data was extracted and recorded in a spreadsheet:

1. author names, publication year

2. sample size and participant characteristics including sport(s), playing level/status, training

history, strength training history/status/profile

3. timing of injury risk surrogate (outcome measures) during the MC and whether testing

order was randomised

4. how MC phase was identified and verified (method)

5. how ACL injury risk surrogate was assessed (methods)

6. reliability and familiarisation stated for outcome measures / tasks (if reported)

7. outcome measures with results

Key: ACL: Anterior cruciate ligament; MC: Menstrual cycle; KJL: Knee joint load; COD: Change of direction; 2D:

Two-dimensional; 3D: Three-dimensional; GRF: Ground reaction force

https://doi.org/10.1371/journal.pone.0280800.t001

PLOS ONE Menstrual cycle and injury risk surrogates

PLOS ONE | https://doi.org/10.1371/journal.pone.0280800 January 26, 2023 4 / 27

https://doi.org/10.1371/journal.pone.0280800.t001
https://doi.org/10.1371/journal.pone.0280800


Subsequently, bibliographies of prospectively eligible studies were compiled and hand

searched by two independent reviewers to screen for further suitable studies. Studies were first

assessed based on title and abstract to identify potentially eligible studies, the full text of these

studies was then read to confirm if they met the eligibility criteria. If disagreement on eligibility

Fig 1. Flow chart illustrating the different phases of the search strategy in accordance with PRISMA guidelines. Adapted from Page et al. [43].

https://doi.org/10.1371/journal.pone.0280800.g001
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occurred between the two reviewers (TDS and MS), a third independent reviewer (AS) was

consulted, and their decision deemed as final.

2.3 Quality assessment of included studies and quality of evidence

Study quality was assessed by two reviewers (TDS and MS) and independently verified by one

reviewer (AS). The appraisal tool was based on the Downs and Black checklist for measuring

study quality and was modified according to McNulty et al. [24] who conducted a related

review examining the effect of MC on exercise performance, and thus developed a more

appropriate tool for the present review. The modified Downs and Black checklist comprised

15 outcomes, from five domains: (1) reporting; (2) external validity; (3) internal validity—bias;

(4) internal validity—confounding; and (5) power. A maximum attainable score of 16 could be

awarded, whereby study quality was categorised as follows: “high” (14–16); “moderate” (10–

13); “low” (6–9); or “very low” (0–5) [24]. The results of the Downs and Black assessment were

used to assign an a priori quality rating to each study. In accordance with McNulty et al. [24],

the a priori rating was then either maintained, or downgraded a level, based on the response to

two questions that were considered key to the directness of these research studies: Q.1) was the

MC phase confirmed using blood samples? If the authors reported using blood samples to con-

firm MC phase, the a priori rating was maintained and if not, the study was downgraded a

level (e.g., a study that started out as “high” in quality, but did not confirm MC phase using a

blood sample, drops to “moderate” in quality); and Q.2) was the MC phase confirmed using

urinary ovulation detection kits? If the authors reported the use of a urinary ovulation detec-

tion kit to identify MC phase, the Q.1 rating was maintained; if not, the study was downgraded

a level. As such, the maximum rating for any study that does not use serum analysis or urinary

ovulation detection kits to identify and verify MC phase is “low” [24].

Finally, the Grading of Recommendations Assessment, Development, and Evaluation

(GRADE) approach was implemented to further assess the quality of evidence obtained from

the present review [60]. The tool was applied for surrogates of ACL injury risk (Table 1; out-

comes) for five determinants: risk of bias, inconsistency, imprecision, indirectness, and publi-

cation bias [61]. As all studies in this review were experimental / clinical studies (i.e., repeated

measures observations with no formal intervention or treatment), the GRADE scores initially

start with a low rating. The overall quality of evidence within the studies was upgraded for fac-

tors such as large effect sizes or dose-response relationships (i.e., directness) or downgraded for

factors including risk of bias (i.e., control of confounding factors), imprecision (i.e., reporting

of confidence intervals and p values), inconsistency (i.e., reported results / effects), indirectness

(i.e., outcome measures and comparisons between MC phases) and publication bias [60, 61].

2.4 Data collation

Quantitative data pertaining to study methodology, participant characteristics, MC phase and

verification, ACL injury risk surrogates, reliability measures, and results (Table 1) were

obtained for qualitative analysis by two independent reviewers (TDS and MS). Results were

collated through identifying significant (p< 0.05) and non-significant findings (p> 0.05) for

outcome measures and correlational R values where applicable, while percentage changes and

effect sizes were also extracted if provided by the authors.

3. Results

3.1 Literature search

Fig 1 illustrates a flow chart which summarises the results of the systematic search process.
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3.2 Study characteristics and findings

Seven studies met the inclusion criteria for this review [33–35, 62–65]. An overview of the

methodological quality assessment is provided in Table 2, while study characteristics and find-

ings are presented in Tables 3 and 4. Sample sizes ranged from 10 to 71 [33–35, 62, 64, 65],

with Shultz et al. [63] examining a substantially larger sample size of 71 compared to the next

highest (n = 28). Participant characteristics were generally poorly described across all studies

with no study providing any information pertaining to specific sports, skill level, or resistance

training history.

Table 3 provides specific information pertaining to tasks examined (primarily bilateral and

unilateral jumping), biomechanical and neuromuscular measures (primarily via 3D analysis

n = 6 and EMG n = 3), injury risk surrogates, and measurement techniques for the included

studies. Additionally, Table 3 provides information pertaining to no hormonal contraception

usage (n = 4), MC phase verification method (i.e., urinary luteal hormone measurement n = 5

or blood samples n = 5), the MC phases examined (ranging from 2–5 phases in accordance

with recommendations [24]) for the included studies.

With respect to the effect of MC phase on neuromuscular and biomechanical non-contact

ACL injury risk surrogates, four studies observed no significant or meaningful differences

between MC phases [33, 34, 62, 65], while two studies [35, 64] showed evidence that the mid-

luteal phase may predispose women to greater risk of non-contact ACL injury compared to

the early and late follicular phase based on neuromuscular activity and landing kinematics.

Two studies [33, 34] showed that knee laxity fluctuated throughout the MC phases and the

change in knee laxity was associated with changes in KJLs; however, considerable individual

variation was observed with respect to the MC phase which elicited the greatest knee laxity

and KJL. One study [63] also showed that increases in sagittal and frontal knee laxity were

associated with increases in knee valgus motion, but muscle activity and KJLs were not signifi-

cantly different. The researchers [63] examined landing mechanics during the periods of low-

est and maximum laxity during the early follicular and mid-luteal phases but the authors do

not clearly specify which phase elicited the highest or lowest laxity.

Only one study randomised the testing order across MC phases [64], with three studies con-

firming that testing order was non-randomised [33, 34, 62]. The remaining studies did not ver-

ify if the testing order was randomised [35, 63, 65]. Only one study clearly stated that testing

conditions were standardised between MC phases [65], while one study confirmed that the

examiner was blinded to MC phase [35]. Only two studies stated that a familiarisation period

or session was provided prior to data collection [62, 63]. No study provided any reliability

measures pertaining to the neuromuscular or biomechanical outcome measures [33–35, 62–

65], nor did any study compare and interpret the change in outcome measure in relation to

measurement error [33–35, 62–65]. No study examined joint-joint coordination changes

between MC phases [33–35, 62–65], and only one study included a form of temporal analysis

[63] while the remaining studies generally conducted discrete point analysis [33–35, 62, 64,

65].

3.3 Assessment of methodological quality and quality of evidence

Methodological quality assessment data is presented in Table 2. Three [33–35] and four [62–

65] studies were classed as low and very low, respectively, with scores ranging from 7–9. All

studies were provisionally (a priori) scored as low; however, two studies were downgraded due

to the failure to confirm MC phases using blood samples [62, 63], with two more studies

downgraded for not verifying MC phases using ovulation kits [64, 65] in accordance with

McNulty et al. [24]. Thus, only three studies [33–35] maintained their a priori quality rating.
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Table 2. Methodological quality assessment of included studies and quality of evidence.

Study 1 2 3 4 5 6 7

Author Abt et al.

(2007)

Chaudhari

et al. (2007)

Dedrick

et al. (2008)

Okazaki

et al. (2017)

Park et al.

(2009)

AMJSM

Park et al.

(2009)

BJSM

Shultz

et al.

(2012)
Q Title

Reporting
1 Is the hypothesis/aim/objective of the study clearly described?

Yes = 1 No = 0

1 1 1 1 1 1 1

2 Are the main outcomes to be measured clearly described in

the introduction or methods section? If the main outcomes

are first mentioned in the results section, answer no. Yes = 1

No = 0

1 1 1 1 1 1 1

3 Are the characteristics of the participants included in the

study clearly described? In observational studies, inclusion

and/or exclusion criteria should be given. In case-control

studies, inclusion and/or exclusion and the source of controls

should be given. Yes = 1 No = 0

0 0 0 0 0 0 0

4 Were the tested menstrual cycle phases clearly described?

Answer yes if the precise criteria used to define phase were

provided, answer no if the exact phase tested cannot be

ascertained (e.g., vague language such as “early” or “late” were

used, without defining the criteria) Yes = 1 No = 0

1 0 1 1 1 1 1

5 Are the main findings of the study clearly described? Simple

outcome data should be reported for all major findings so the

reader can check the major analyses and conclusions. This

does not cover statistical tests which are addressed in other

questions. Yes = 1 No = 0

1 1 1 1 1 1 1

6 Does the study provide estimates of the random variability in

the data for the main outcomes? In non-normal data, inter-

quartile range should be reported. In normal data, standard

deviation, standard error or confidence intervals should be

reported. Yes = 1 No = 0

1 1 1 1 1 1 1

External validity
7 Were the subjects confirmed as non-hormonal contraceptive

users, for at least three months prior to participation? Yes = 1

No = 0 Unable to determine = 0

0 0 1 0 1 1 1

Internal validity–bias
8 Was at least one familiarization trial conducted prior to

exercise testing? Yes = 1 No = 0 Unable to determine = 0

1 0 0 0 0 0 1

9 Were the exercise test conditions adequately standardised

(taking into consideration factors including time of day, prior

nutritional intake [including caffeine] and prior exercise). Yes

(all relevant factors standardised) = 2 Yes (some relevant

factors standardised) = 1 Exercise testing unstandardized = 0

Unable to determine = 0

0 2 0 0 0 0 0

10 If any of the results of the study were based on ‘data dredging’

was this made clear? Any analyses that had not been planned

at the outset should be clearly indicated. If no retrospective

subgroup analyses were reported, then answer yes. Yes = 1

No = 0 Unable to determine = 0

0 0 0 0 0 0 0

11 Were statistical tests used to assess the main outcomes

appropriate? The statistical techniques used must be

appropriate to the data and the research question. Yes = 1

No = 0 Unable to determine = 0

1 1 1 1 1 1 1

(Continued)
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There was a small number of studies included which were heterogenous in methodology pre-

cluding a meta-analysis; however, we assessed overall quality of evidence using GRADE, and

found it to be very low (Table 2).

4. Discussion

The primary finding from this systematic review is that it is inconclusive whether a particular

MC phase predisposes eumenorrheic and naturally menstruating women to greater non-con-

tact ACL injury risk. Mixed findings from seven studies regarding the effects of the MC on

ACL neuromuscular and biomechanical injury risk surrogates were observed, with very low

quality of evidence. Four studies reported no meaningful differences in neuromuscular or bio-

mechanical ACL injury risk surrogates between MC phases [33, 34, 62, 65], while two studies

Table 2. (Continued)

Study 1 2 3 4 5 6 7

Author Abt et al.

(2007)

Chaudhari

et al. (2007)

Dedrick

et al. (2008)

Okazaki

et al. (2017)

Park et al.

(2009)

AMJSM

Park et al.

(2009)

BJSM

Shultz

et al.

(2012)
Q Title

Reporting
12 Were the main outcome measures used accurate (i.e., valid

and reproducible)? For studies where the validity and

reproducibility of outcome measures are clearly described, the

question should be answered yes. For studies which refer to

other work that demonstrates the outcome measures are

accurate, answer yes. Yes = 1 No = 0 Unable to determine = 0

0 0 0 0 0 0 0

Internal validity–confounding (selection bias)
13 Was the order of phase testing randomised? Yes = 1 No = 0

Unable to determine = 0

0 0 1 0 0 0 0

Power
14 Did the study have sufficient power to detect an a priori

specified scientifically important effect at a pre-determined

probability threshold? Answer yes if they included a power

calculation, and no if not. Yes = 1 No = 0

0 0 0 0 0 0 0

15 Was study retention > 85%? Yes = 1 No = 0 Unable to

determine = 0

1 1 1 1 1 1 1

Grading (assign an a priori study quality rating based on the modified Downs and Black checklist, so all studies will start out as being of “high”, “moderate”,

“low”, “very low”)

16 Identify if menstrual cycle phase was confirmed using blood

samples. If yes, the a priori rating is maintained and this is the

final study quality rating. If not, the study is downgraded a

level (e.g., a study that started out as high, drops to moderate).

No Yes Yes Yes Yes Yes No

17 Identify if menstrual cycle phase was confirmed using

ovulation kits. If yes, the Q1. rating is maintained. If no, the

study is downgraded another level (e.g., a study that started

out high, drops to low). This means that the maximum rating

that any study that does not use blood analysis or ovulation

kits is “low” or “very low”.

Yes No No Yes Yes Yes Yes

Rating 8 7 9 7 8 8 9

Downs and Black checklist (maximum score attainable = 16). Study quality was categorised as follows: “high”: 14–16; “moderate”: 10–13; “low”: 6–9; “very low”:

0–5)

A priori Low Low Low Low Low Low Low

Final classification Very low Very low Very low Low Low Low Very low

GRADE: Risk of bias: high (-); Inconsistency; yes (-); Imprecision: yes (-); Indirectness: no (+); Publication bias (-); moderate (-). Level of Evidence: Very low

Key: GRADE: Grading of Recommendations Assessment, Development and Evaluation; Q: Question.

https://doi.org/10.1371/journal.pone.0280800.t002
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Table 4. Summary of literature that has investigated the effects of MC phase on neuromuscular and biomechanical non-contact ACL injury risk surrogates.

Author Sample size

n = Population details

(i.e., sport, playing level,

age, height)

Population training,

strength, skill history

Population menstrual / health

status and length

MC phase method verification

and details

Dynamic task and methods

Key outcome measures /

variables

Reliability / familiarisation

reported (y/n)

Results and implications (i.e.,

does a certain MC phase

predispose athlete to greater risk

of injury?

Comments

Abt et al.

(2007)

n = 10

Age: 21.4 ± 1.4 years;

height: 1.67 ± 0.06 m;

mass: 59.9 ± 7.4 kg

Physically active women

recruited from a local

university.

Specific sport, skill, or

strength training history

not stated.

Eumenorrheic and ovulating.

MC length and frequency per

year not stated.

Phases were defined based on

first day of menses. Urine

samples collected daily starting

on day 10 until a positive test

was received using ovulation

detection kit. Positive test

indicated start of post ovulatory

phase.

Mid luteal phase was defined as

starting 7 days after a positive

ovulation test (21–23 of MC).

Ovulation was also confirmed by

screening mid-luteal

progesterone threshold level.

Testing occurred three times; on

day 3 of menses (early

follicular), 24–36 hours post-

positive ovulation test, mid-

luteal (21–23) / 7 days post

ovulation detection.

Single leg stop-jump task - 3D

motion and GRF analysis

Knee flexion and valgus angle,

peak proximal tibial anterior

shear force.

Knee flexion and valgus

moment at peak anterior tibial

shear force. From initial

contact to peak to peak knee

flexion / valgus.

One month familiarisation

period. No reliability measures

reported for outcome

measures.

• Estradiol " during post-

ovulatory and mid-luteal vs

early follicular

• Progesterone # in early

follicular and post-ovulatory

• $ in knee flexion excursion,

knee valgus excursion, peak

proximal tibial anterior shear

force, flexion moment at peak

proximal tibial anterior shear

force, or valgus moment at peak

proximal tibial anterior shear

force between MC phases.

• No difference in knee

biomechanical injury risk

surrogate were found in the

phases. This implies that there

may not be a greater risk of

ACL injury associated with one

particular MC phase.

Specific sport, skill, or

strength training history not

stated. 2 phases of MC

verified. Limited number of

biomechanical variables in

relation to ACL examined;

only knee kinetic and

kinematics; ACL injury

multi-segment mechanism

(i.e., hip, trunk and foot).

Small sample size. MC length

not stated. Testing order was

non-randomised. One

subject removed for

anovulatory cycle. No

individual analysis which

may conceal differences. No

reliability measures reported

for outcome measures. No

sEMG. No temporal analysis

/ coordination examined.

MC phases not verified with

blood samples. HC usage not

confirmed. Changes were not

examined relative to

measurement error

Chaudhari

et al. (2007)

n = 12

Age: 19.1 ± 1.0 years;

height: 1.7 ± 0.1 m;

weight: 595 ± 98 N

Women who participated

in recreational sports at a

local university.

Specific sport, skill, or

strength training history

not stated.

Verified MC length for 2 cycles.

Women were tested twice for

each phase of the MC (follicular,

luteal, ovulatory), as determined

from serum analysis. Onset of

the ovulatory phase of the cycle

was determined using the PC-

2000 saliva testing system (I.M.

P., Manschau, Germany), which

gives a positive result 3 to 5 days

before ovulation. The subjects

used this system once a day for

60 days before testing.

Onset of luteal phase (~day 15)

was estimated from saliva testing

data, and a serum blood test for

estradiol, progesterone, and

luteinizing hormone was

performed. Specific dates of the

3 phases not provided. Testing

conditions standardised between

phases.

Bilateral horizontal jump,

bilateral vertical jump, and

unilateral drop from a 30-cm

box on the left leg.

Limited 3D motion and GRF

analysis—5 marker link model

Lower-limb kinematics (at

foot strike and max knee

flexion) and peak externally

applied moments were

calculated (hip adduction

moment, hip internal rotation

moment, knee flexion

moment, knee abduction

moment) during weight

acceptance.

No familiarisation or

reliability measures reported

for outcome measures.

• $ in knee moments or knee

angle between MC phases

• No difference in knee

biomechanical injury risk

surrogate were found in the

phases. This implies that there

may not be a greater risk of

ACL injury associated with one

particular MC phase.

Specific sport, skill, or

strength training history not

stated. Small sample size. MC

phases not clearly described.

Unclear if non-randomised

testing order was used. No

individual analysis which

may conceal differences.

Large variability in mean/SD.

Limited marker model used

for 3D motion analysis. No

reliability measures reported

for outcome measures. No

sEMG. No temporal analysis

/ coordination examined.

MC phases not verified with

ovulation kit. HC usage not

confirmed. Changes were not

examined relative to

measurement error.

(Continued)
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Table 4. (Continued)

Author Sample size

n = Population details

(i.e., sport, playing level,

age, height)

Population training,

strength, skill history

Population menstrual / health

status and length

MC phase method verification

and details

Dynamic task and methods

Key outcome measures /

variables

Reliability / familiarisation

reported (y/n)

Results and implications (i.e.,

does a certain MC phase

predispose athlete to greater risk

of injury?

Comments

Dedrick

et al. (2008)

n = 22

Age: 20.5 ± 1.9 years;

height: 164.9 ± 5.6 cm;

mass: 62.1 ± 13.7 kg; and

Wojtys et al. [66] activity

scale 5.4 ± 1.4 hr/week

Recreationally active

women with no formal

history of jump-landing

training.

Specific sport, skill, or

strength training history

not stated.

Participants had regular menses

for at least one year.

Eumenorrhea was defined as

cycles occurring at regular

intervals ranging from 26 to 32

days. Cycles established for 2

months prior to testing.

MC length 28.3 ± 1.5 days.

Participants non-HC usage � 3

months prior to testing.

Blood assays verified sex

hormone levels and cycle phase.

Random assignment of

participants to testing time: 11

subjects beginning data

collection in the early follicular

phase (day 1–3), 8 in mid-luteal

phase (day 21–24), and 7 in the

late follicular phase (day 11–13)

of the menstrual cycle.

Bilateral drop jumps from

0.5m.

sEMG of six muscles and

goniometer data for knee

angles. Varus/valgus knee

angle and sEMG activity from

six lower extremity muscles

(GM, ST, vastus lateralis,

vastus medialis oblique, tibialis

anterior, and the lateral head

of the gastrocnemius). Angle

data between initial contact

and 500ms of ground contact.

No familiarisation or

reliability measures reported

for outcome measures.

• $ knee valgus angle or time to

reach knee valgus angle between

MC phases

• ST muscle exhibited onset

delays relative to ground

contact during mid-luteal

phase, and demonstrated a

significant difference in onset

time between early and late

follicular phases.

• Muscle timing differences

between the GM and ST were

decreased in the mid-luteal

phases compared to early

follicular phases influencing co-

activation.

• $ temporal muscle sequencing

/ sequential recruitment

between MC phases

• MC phases appears not to

influence knee valgus angle;

however, may alter muscle

activity (onset and timing)

particularly ST and activation of

GM and ST during mid-luteal

phase which may increase ACL

risk.

Participants excluded if

history of formalized jump

training. Specific sport, skill,

or strength training history

not stated. Random

assignment of cycles which is

positive. Only limited

number of variables

examined. Only one task

examined. No reliability

measures reported for

outcome measures. Limited

number of biomechanical

variables in relation to ACL

injury risk examined; only

knee kinematics; ACL injury

multi-segment mechanism

(i.e., hip, trunk and foot). No

temporal analysis /

coordination examined. MC

phases not verified with

ovulation kit. Changes were

not examined relative to

measurement error.

Okazaki

et al. (2017)

n = 28

Age: 21.0 ± 0.8 years;

height: 158.1 ± 6.0 cm;

mass: 52.8 ± 6.5 kg

Specific sport, skill,

activity, or strength

training history not

stated.

Healthy but MC length not

stated

Blood sample verification

menstrual phase (1st-5th day;

actually, early follicular),

follicular phase (7th-10th day;

actually, late follicular),

ovulation phase (12th-15th day),

and luteal phase (7th-9th day

from ovulation; actually, mid-

luteal).

MC cycles verified over 3 cycle

history. MC phases verified with

assay of serum hormonal levels.

The test examiner was blinded

to the MC of the participants.

Ovulation kit used to detect

ovulation.

Unilateral drop-landing 0.30

m. 3D motion and GRF

analysis and sEMG

Peak GRF and time to peak

GRF. Hip, knee, and ankle

kinematics. EMG activity 150

ms before activity. GM, ST,

BF, and RF.

No familiarisation or

reliability measures reported

for outcome measures.

Mid-luteal phase:

• Time to peak GRF # vs. early

follicular phase (6%)

• Hip internal rotation and knee

valgus " vs early follicular (43%

and 34%, respectively)

• Knee flexion # vs early and late

follicular phases (7–9%)

• Ankle dorsi-flexion # vs late

follicular phase (11%)

• Ankle adduction and eversion "

vs early and late follicular

phases (26–46%, and 27–33%,

respectively)

• GM # activation before landing

vs early and late follicular

phases (20–22%)

• $ between MC phases for BF,

ST, or RF muscle activity

• Mid-luteal phase may

predispose women to greater

risk of non-contact ACL injury

based on changes in

biomechanical and NMS injury

risk surrogates

Incorrect definition of MC

phases, specifically stating

menstrual phases. Specific

sport, skill, or strength

training history not stated.

The examiner was blinded

which is positive but unclear

if testing order was

randomised. No knee joint

loads were examined. No

reliability measures reported

for outcome measures. No

individual analysis which

may conceal differences. No

temporal analysis /

coordination examined. HC

usage not confirmed.

Changes were not examined

relative to measurement

error.

(Continued)
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Table 4. (Continued)

Author Sample size

n = Population details

(i.e., sport, playing level,

age, height)

Population training,

strength, skill history

Population menstrual / health

status and length

MC phase method verification

and details

Dynamic task and methods

Key outcome measures /

variables

Reliability / familiarisation

reported (y/n)

Results and implications (i.e.,

does a certain MC phase

predispose athlete to greater risk

of injury?

Comments

Park et al.

(2009)

AMJSM

n = 26

Age: 22.7 ± 3.3 years;

height: 170.1 ± 7.1 cm;

mass: 65.0 ± 9.6 kg

Recreationally active

women who played

Sports—activity levels

8.7 ± 4.6 hr/week

Specific sport, skill, or

strength history not

stated.

MC length: 28.9 ± 2.7 days

Follicular (Early) (3–7),

ovulation (24–48 hours after

detection of oestrogen surge—

ovulation kit) and luteal (mid-

luteal) (~7 days post ovulation)

phases—serum hormone.

Non-randomised order. Blood

samples collected at 3 time

points to verify.

Timing of the third test varied

and ranged between 19 and 26

days (22.85 ± 3.22 days)

depending on the length of the

participants’ MC. Participants

non-HC usages � 3 months.

45˚ pre-planned cut (CUT45);

target speed 3.5 m/s. 3D

motion and GRF analysis

Bilateral jump and stop action

—self-selected speed and kept

consistent between sessions.

3D motion and GRF analysis

Knee laxity—KT-2000

arthrometer 89N and

compared 3D data between

participants with low,

medium, and high laxity

Knee laxity (mm), peak knee

angle, and knee joint moment

(Nm) and knee joint impulse

(Nms). Internal knee

adduction, knee flexion, and

int/ext rotation moment

during stance phase.

Reliability measures reported

for knee laxity only.

• $ for any parameter for both

tasks between MC phases

• Of the 26 participants, 13

showed the lowest knee laxity

during the early follicular phase;

3 were lowest during ovulation,

and 10 lowest during mid-luteal

phase. 14 of 26 participants

displayed highest knee laxity

during ovulation compared

with 10 participants during the

early follicular phase and only 2

participants during the mid-

luteal phase.

• " CUT45 knee adduction

(valgus) impulse (0.31 ± 0.30

Nms) in high vs low knee laxity

group (0.22 ± 0.21 Nms).

• " jump-stop knee adduction

moment (49.77 ± 23.05 Nm) in

high vs medium knee laxity

group (40.23 ± 20.42 N�m).

• " jump-stop knee external

rotation moment and impulse

in high vs low knee laxity group

(external rotation impulse:

0.47 ± 0.42 Nms vs 0.27 ± 0.27

Nms; external rotation moment:

8.28 ± 4.45 N�m vs 6.04 ± 3.51

N�m) during jumping and

stopping.

• 1.3-mm difference in knee

laxity " ~30% in knee adduction

impulse during CUT45, " ~20%

in knee adduction moment, and

" ~ 20–45% external rotation

loads for jump-stop

• No specific MC phases

predisposes women to greater

risk, rather the phases produce

variations in knee laxity, with

increases in laxity increasing

multiplanar knee joint loads

and potential ACL injury risk.

• Higher knee laxity associated

with increased multiplanar knee

joint loads. However, variation

in the MC phase where the

highest and lowest laxity

observed.

• Thus, group analysis is

potentially masking differences.

Clear individual variation in

laxity and subsequent knee joint

loading

Examined two tasks which is

positive. Specific sport, skill,

or strength training history

not stated. Non-randomised

testing order which

introduces potential order

effect. 3D motion analysis

using limited marker set.

Only one cutting angle

examined at a low entry

speed. Limited number of

biomechanical variables in

relation to ACL examined;

only knee kinematics; ACL

injury multi-segment

mechanism (i.e., hip, trunk

and foot). No temporal

analysis / coordination.

Group analysis masked out

differences due to positive

and negative responders. No

reliability measures reported

for outcome measures. Early

follicular phase slightly spans

later follicular MC phase

classification according to

McNulty et al. [24]. No

sEMG. Changes were not

examined relative to

measurement error.
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Table 4. (Continued)

Author Sample size

n = Population details

(i.e., sport, playing level,

age, height)

Population training,

strength, skill history

Population menstrual / health

status and length

MC phase method verification

and details

Dynamic task and methods

Key outcome measures /

variables

Reliability / familiarisation

reported (y/n)

Results and implications (i.e.,

does a certain MC phase

predispose athlete to greater risk

of injury?

Comments

Park et al.

(2009)

BJSM

n = 25

Age: 22.7 ± 3.5 years,

170.2 ± 7.0 cm, 64.7 ± 9.6

kg

Sports at recreational

level—activity levels

8.7 ± 4.6 hr/week

Specific sport, skill, or

strength history not

stated.

MC length: 28.9 ± 2.8 days

Follicular (5–8) (Spans both

early and late according to

McNulty’s et al’s [24]

classification), ovulation (24–48

hours after detection of

oestrogen surge—ovulation kit)

and luteal (~7 days post 2nd test;

(mid-luteal))—serum hormone.

Non-randomised order. Blood

samples collected at 3 time

points to verify. Participants

non-HC usages � 3months.

45˚ pre-planned cut; target

speed 3.5 m/s. 3D motion and

GRF analysis

Knee laxity—KT-2000

arthrometer 89N

Knee laxity (mm),peak knee

angle and knee joint moment

(Nm) and knee joint impulse

(Nms). Internal knee

adduction, knee flexion, and

int/ext rotation moment

during stance phase.

No familiarisation or

reliability measures reported

for outcome measures.

• " knee laxity in ovulation vs.

mid-luteal phase, but$ knee

joint mechanics between MC

phases.

• Positive correlation between Δ
knee laxity and Δ knee joint

loads (moment or impulse)

from follicular phase to

ovulation (r = 0.523), and

ovulation to mid-luteal luteal

phase (r = 0.526)

• Positive correlations between Δ
laxity and Δ knee internal

rotation impulse, and Δ laxity

and Δ knee adduction impulse

from ovulation to the luteal

phase (r = 0.450) and (r = 0.408)

• 15 women with " knee laxity

from follicular to ovulation

phases showed tendency to "

knee joint loads (adduction /

impulse), whereas other 10 with

# knee laxity, showed a

tendency to # knee joint loads.

• 20 women whose knee laxity #

from ovulation to mid-luteal

phase showed a tendency to #

knee joint loads (internal

rotation moment and impulse

and adduction impulse),

whereas the other five, whose

knee laxity ", showed a

tendency to " knee loads.

• Women whose knee laxity "

between MC phases showed "

knee joint loads, and women

whose knee laxity # showed #

knee joint loads.

• 1–3 mm Δ knee laxity during

the MC caused a 3–4 Nm Δ
internal rotation moments and

40–50 Nm Δ adduction

moments.

• No specific MC phase

predisposes females to greater

risk of ACL injury based on

biomechanical risk injury risk

surrogates.

• Changes in laxity associated

with change in KJL—due to MC

phase hormonal changes

(positive = positive /

negative = negative). However,

considerable variability in

changes (magnitude and

direction) in laxity across MC

phases.

Specific sport, skill, or

strength training history not

stated. Non-randomised

testing order. 3D motion

analysis with limited marker

set. Only one cutting angle

examined at a low entry

speed. Limited number of

biomechanical variables in

relation to ACL injury risk

examined; only knee

kinematics; ACL injury

multi-segment mechanism

(i.e., hip, trunk and foot). No

temporal analysis /

coordination. Group analysis

masked out differences due

to positive and negative

responders. No reliability

measures reported for

outcome measures. Follicular

phase spans early and later

follicular MC phase

classification according to

McNulty et al. [24] No

sEMG. Changes were not

examined relative to

measurement error
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[35, 64] showed evidence that the mid-luteal phase may predispose women to greater risk of

non-contact ACL injury compared to early or late follicular phases. Importantly, the MC influ-

enced knee laxity [33, 34, 63], with two studies [33, 34] demonstrating MC attributed changes

in knee laxity were associated with changes in KJL (i.e., increase in laxity associated with

increase in KJL) and thus potential ACL injury risk [9, 47, 52]. However, considerable individ-

ual variation (i.e., magnitude and direction) was observed with respect to the MC phase which

elicited the greatest knee laxity and KJL [33, 34]. Finally, the research in this review was low to

very low in methodological quality, with significant methodological and research design limi-

tations which should be acknowledged when interpreting the findings and improved in future

research. A comprehensive overview regarding the methodological and research design limita-

tions, considerations, and recommendations for future research are presented in Table 5.

4.1 Evidence showing MC phase has no effect on ACL neuromuscular or

Neuromuscular injury risk surrogates

Four studies [33, 34, 62, 65] reported no significant differences in neuromuscular or bio-

mechanical (anterior tibial shear, KJL or knee valgus) ACL injury risk surrogates between MC

phases during jump-landing. Similarly, two studies revealed no biomechanical differences in

knee injury risk surrogates during 45˚ cutting [33, 34] or stop-jump actions [33] between MC

phases. Thus, in line with GRADE interpretation, there is very low level of evidence which

potentially implies that no specific MC phase elevates non-contact ACL injury risk based on

Table 4. (Continued)

Author Sample size

n = Population details

(i.e., sport, playing level,

age, height)

Population training,

strength, skill history

Population menstrual / health

status and length

MC phase method verification

and details

Dynamic task and methods

Key outcome measures /

variables

Reliability / familiarisation

reported (y/n)

Results and implications (i.e.,

does a certain MC phase

predispose athlete to greater risk

of injury?

Comments

Shultz et al.

(2012)

n = 71

Recreationally active

women (2.5–10 hrs/week)

for 3 months prior. Other

anthropometrics not

reported.

Specific sport, skill, or

strength training history

not stated.

Nulliparous—self reported MC

length (26–32 days) ± 1 day

Ovulation kit to verify ovulation.

Early follicular (up to 6 days

after menses) and mid-luteal (8–

10 consecutive days after

ovulation).

Testing performed on days

based on two time points where

knee laxity was highest (T2) and

lowest (T1) which coincided

with these periods. Participants

non-HC usages � 3months.

Bilateral drop-jump from 0.45

m. 3D motional and GRF

analysis with sEMG

(quadriceps, hamstrings,

gastrocnemius).

Knee laxity—KT-2000

arthrometer 133N.

Electromagnetic position

sensors (Ascension

Technology Corp, Burlington,

VT) 10 Nm varus/valgus

torque and 5Nm internal-

external torque)

Sagittal, frontal, and transverse

kinetics and kinematics.

Muscle pre- landing and post-

landing activation. Full

temporal analysis.

Participants’ familiarisation 2

weeks prior to testing.

Reliability for laxity

measurements and landing

duration only—male data only

• Sub-group of women who "

both sagittal and frontal plane

laxity from T1 to T2 (cluster 3

and 4) had greater relative net

change toward knee valgus of

3.7-to 5.2˚ compared with

clusters who did not increase

sagittal and frontal plane laxity

(cluster 1).

• $ in muscle activation and

moments between time points.

• Women who demonstrate

changes in anterior and frontal

laxity may display more valgus

motion; however, moments and

muscle activity do not change

across MC phases which

ultimately contributes to ACL

loading.

Specific sport, skill, or

strength training history not

stated. Large sample size

which is positive. No

reliability measures reported

for outcome measures.

Temporal analysis conducted

which is a positive of study.

Unclear if testing order was

randomised. MC phases not

verified with blood samples.

Changes were not examined

relative to measurement

error

Key: Anterior cruciate ligament; GRF: Ground reaction force; sEMG: Surface electromyography; MC menstrual cycle; 3D: Three-dimensional; GM: Gluteus maximus;

ST: Semitendinosus; BF: Biceps femoris; RF: Rectus femoris; SD: Standard deviation; NMS: neuromuscular; CUT45: 45˚ pre-planned cut. ": significantly greater / higher

/ increase (p < 0.05); #: significantly lower / lesser / decrease (p< 0.05);$ no significant change or difference (p> 0.05)

https://doi.org/10.1371/journal.pone.0280800.t004
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Table 5. Limitations and considerations of the synthesised research pertaining to the effect of the MC on ACL neuromuscular and biomechanical injury risk

surrogates.

Limitations and considerations Recommendations

Sample sizes are generally low and not justified (n = 10–28) [33–35, 62, 64, 65]

with no a priori statistical power or sample size estimates calculated. Studies are

likely underpowered which increases the risk of type II error [91], significant

effects are likely to overestimate population effects sizes [91], have lower precision

[91], and are less likely to be true and reproducible [92].

Greater sample sizes with a priori sample size estimation and rationale are needed

to ensure study is sufficiently powered. Researchers are advised to explicitly state

the method for calculating statistical power (software, inputs etc.) and specify the

chosen test to delineate the given effect size [91] or clearly state the sample size

estimation method.

Participant characteristics are generally poorly described and limited to

recreational or physically active women. Across all studies, none provided any

information pertaining to specific sports, skill level, or resistance training history.

This omission is key because skill level, training history, and physical capacity can

influence movement strategy [93–97]. Additionally, not all women are the same,

as more experienced naturally menstruating / eumenorrheic sportswomen can

have different hormonal profiles concentrations compared to untrained women

which is likely to influence physiology and subsequent performance [98].

Better reporting of participant characteristics, particularly in relation to specific

sports, skill level, or resistance training history [93], and further investigations into

the effect of MC on ACL injury risk surrogates in a range of different sporting

populations and skill levels is needed, particularly in elite populations.

Most studies investigated jump-landing tasks, using generally one or two tasks to

evaluate potential injury risk. Additionally, only two studies examined a COD

task, but this was limited to a 45˚ side-step cutting task only [33, 34]. Athletes’

biomechanical injury risk profiles are task dependent [79–82] and importantly, a

wide range of COD actions are performed in sport [99, 100] which are linked to

ACL injuries including crossover cuts, split steps, shuffle steps, and pivots / turns.

Additionally, the biomechanical demands of COD are angle and velocity

dependent [80, 101], which have distinct implications on the technical execution,

muscle activation, kinetic and kinematics, and KJLs. Thus, investigating only one

COD angle only provides insight into an athlete’s ability to COD at the specific

angle and action. No study examined penultimate foot contact braking strategies

which can play an important role in COD [102, 103], and no study examined a

deceleration task: a key mechanism of ACL injury [104–107].

Further research using a range of different tasks such as jump-landing, COD, and

deceleration actions, with considerations of the angle-velocity trade-off during

COD.

Majority of studies have focused on lower-limb biomechanics, particularly the

knee, and have failed to explore the hip, trunk, and ankle kinetics or kinematics

[33, 34, 62, 65]. This is important because the ACL injury mechanism and loading

is multi-segmental [46, 52, 77, 78].

Comprehensive whole-body analysis is needed when exploring the effect of the MC

on neuromuscular and biomechanical ACL injury risk surrogates.

Three studies examined neuromuscular activity using sEMG techniques during

abovementioned tasks [35, 63, 64]. Alternatively, high density sEMG can provide

more detailed insights into the spatial distribution of activity and muscle

coordination which can help understand how specific neuromuscular activity

patterns affect movement quality, strategy, and potential KJLs.

Further research is needed using high density sEMG in addition to bipolar, which

can provide novel insights into whether the MC alters the muscle coordination and

spatial distribution of activity which can therefore affect movement quality,

strategy, and potential knee joint loading and subsequent ACL injury risk.

Only one study randomised the order of testing across MC phases [64], only one

study clearly stated that testing conditions (extraneous factors) were standardised

between MC phases [65], while one study confirmed that the examiner was

blinded to MC phase [35]. The lack of randomisation introduces the potential for

order / learning / familiarisation effects, while the lack of blinding can introduce

issues with bias. The lack of testing standardisation (extraneous factors) between

MC phases can influence physiological functions and concentrations of

reproductive hormones attributed to changes in circadian rhythm (time of day),

diet and nutritional supplementation, prior exercise, alcohol and consumption

and smoking [25, 29].

Future research should ensure that: 1) randomised or counterbalanced testing

order is adopted; 2) that the assessor is blinded to the MC phase; and 3) ensure that

extraneous factors are standardised when conducting repeated measures /

longitudinal testing.

Majority of studies fail to conduct individual analysis, and generally determine the

effect of the MC on neuromuscular and biomechanical injury risk surrogates

based on group analysis. Because not all women are the same, and the MC can

result in inter-individual variations in physiological and hormonal responses [25–

27], inferences based on group means only may conceal potentially meaningful

information [108–110]; thus, the monitoring of individual changes and

identification of positive-, non- and negative responders, would provide further

insight into the effect of the MC on injury risk and performance. These individual

changes should be interpreted relative to measurement error, SDD, or SWC as

adopted in recently published literature [110–112]. Finally, most data are

presented in tabular or column chart format, and individual data is not provided

in figures. This reduces data transparency, and does not allow researchers to

examine the variability and distribution within the data, identify outliers, and

examine trends in the individual changes in outcome variables between the MC

phases [113]. This is of particular importance when working with small sample

sizes.

In addition to group analysis, researchers are encouraged to conduct individual

analysis, monitoring positive, negative and non-responders. Ideally, when

monitoring changes, these should also be interpreted relative to measurement

error, SDD, or SWC. Finally, data transparency is advocated, and researchers

should present their individual data, such as using univariate scatter plots.

(Continued)
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biomechanical surrogates. The lack of differences in biomechanical ACL injury risk surrogates

between ovulation and mid-luteal phases, speculatively, could be attributed to similar, high

concentrations of oestrogen which may have comparable effects on ligament and tendon prop-

erties, neuromuscular control, and thus potential injury risk [67].

Although Chaudhari et al. [65] standardised testing conditions when comparing biome-

chanics between MC phases, the phase descriptions were unclear (i.e., failed to specify day that

MC phase coincided with); therefore, making it difficult to verify and ascertain whether accu-

rate MC phases were identified [24, 25]. Additionally, Park et al. [33, 34] identified the early

follicular phase, using a date range that spans both early and late follicular phase according to

recent descriptions [24, 25]. This approach may lead to the grouping of non-homogeneous

participants and potential inaccurate evaluation regarding the influence of the MC [25]. The

sample sizes used in the studies are generally small (n = 10–28) and likely underpowered. Two

studies stated the testing order was non-randomised [62, 65], while two studies did not clearly

describe whether randomised testing occurred [33, 34]. Thus, the lack of differences observed

between MC phases by researchers [33, 34] could be influenced by a learning or order effect,

potentially confounding the observations. Based on current evidence, methodological, and

research design limitations, practitioners should be cautious manipulating their injury mitiga-

tion, screening, and physical preparation strategies based on the MC for female athletes.

4.2 Evidence showing mid-luteal phase may increase ACL injury risk based

on neuromuscular or biomechanical injury risk surrogates

Two studies [35, 64] indicated that the mid-luteal phase may predispose women to greater

non-contact ACL injury risk compared to other phases based on biomechanical (i.e., kinemat-

ics linked to greater KJLs) [35] and neuromuscular (i.e., reduced gluteal activation [35] or

delayed semitendinosus activation which could increase anterior tibial shear [64]) surrogates

Table 5. (Continued)

Limitations and considerations Recommendations

No study reported reliability measures for their biomechanical or neuromuscular

data, and only two studies stated a familiarisation session(s) / period [62, 63] was

performed. Reliability is central in order to establish confidence in the data

collection, analysis, and participant’s performance of the task, and to determine

whether the data is stable, consistent, accurate, and valid. Unfortunately, most

investigations failed to report reliability measures, and evidence has shown that

injury risk surrogates, such as KJLs, can be susceptible to variability between

sessions [114–116].

Ensure participants are adequately familiarised with the testing protocols and

ensure the reliability measures are reported to ensure data collected is stable,

accurate, and valid. This will also result in greater data transparency and research

quality.

No study examined joint-joint coordination changes between MC phases [33–35,

62–65]. Examinations of joint-joint coordination; angle-angle plots; position-

velocity plots, will provide further insight into coupling behaviours and

movement strategy and execution during high intensity tasks [117–119]. Only one

study included a form of temporal analysis [63] while the remaining studies

generally conducted discrete point analysis [33–35, 62, 64, 65]. This approach can

lead to regional focus bias, whereby a large amount of data are discarded from the

entire waveform [120–124]; thus, valuable information across the whole curve is

unexamined because only a single data point is examined [125, 126]. Additionally,

discrete point analysis does not consider the position of the key measures (i.e.,

differences in timing); for example, trial peaks may occur at different timings

along the waveform and thus, the temporal organisation of the pattern is lost

[127–129].

Future research should consider examining coordination changes in movement

between MC phases to establish if the MC alters movement strategy and coupling

behaviours between multiple segments. In addition to discrete point analysis,

future research should conduct full temporal analysis of the full waveform, using

statistical approaches such as statistical parametric mapping [114, 130–132] or

temporal phase analysis [133–135]. Conducting such analysis could provide further

insight not only into the magnitude of differences, but importantly provide more

detail into where these differences occur across the whole time-series.

Key: COD: Change of direction; MC: menstrual cycle; ACL: anterior cruciate ligament; KJL: knee joint load; SWC: smallest worthwhile change; SDD: smallest detectable

difference. sEMG: surface electromyography.

https://doi.org/10.1371/journal.pone.0280800.t005
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during drop-landing tasks. This delay, speculatively, could be attributed to significant increases

in progesterone compared to other phases (i.e., follicular and ovulation) which can elicit ner-

vous system inhibitory effects [68, 69]. Importantly, however, minimal differences were

observed in onset timing for other lower-limb muscles by Dedrick et al. [64]. Nonetheless,

these studies have either blinded the assessor [35] or randomised testing [64], thus reducing

bias.

Okazaki et al. [35] and Dedrick et al. [64] did not examine KJLs, a key ACL loading surro-

gate [48, 70–72]. Akin to previous studies [33, 34, 62, 65], reliability measures were not

reported for the outcome measures, while changes in measures were not interpreted relative to

measurement error. This raises questions as to whether observed muscle activity [64] and joint

kinematic [35] changes were due to error (i.e., neuromuscular or movement variability and

measurement error) or truly attributable to MC influenced hormonal changes. Further

research is needed which examines the effect of the MC on neuromuscular and biomechanical

ACL injury risk surrogates, particularly KJLs, accounting for measurement error when inter-

preting changes between MC phases.

4.3 Evidence supporting an effect of MC on knee laxity and subsequent

knee joint loads

While the MC’s effect on neuromuscular and biomechanical ACL injury risk surrogates

appears inconclusive, three studies [33, 34, 63] demonstrated changes in knee laxity between

different MC phases which were accompanied with changes in potentially hazardous biome-

chanics associated with ACL loading. Park et al. [33, 34] reported no differences in KJLs

between MC phases, but measured knee laxity at each MC phase. Interestingly, women with

higher knee laxity [33], and increases in laxity between MC phases [34], were associated with

greater KJLs during cutting or stop-jumping. These findings [33, 34] may help explain why

prospective research has identified an association between knee laxity and non-contact ACL

injury [73, 74]. However, the MC phase which produced the greatest knee laxity and subse-

quent KJL was inconsistent between women (see Table 4), and thus an individualised approach

to laxity, neuromuscular, and biomechanical monitoring is advised.

Collectively, this research indicates no specific MC phase predisposes women to greater

risk of ACL injury based on biomechanical injury risk surrogates or knee laxity [33, 34]; how-

ever, the changes in laxity associated with MC phase hormonal changes produces a problem-

atic laxity effect for KJLs and potential ACL injury risk. Notably, considerable variability in the

changes (i.e., magnitude and direction) in laxity and its effect on KJLs was observed across MC

phases which could be attributed to intra- and inter-individual-variation in the magnitude and

rate of change in ovarian hormonal concentrations which influences laxity [75]. Additionally,

genetic variation between individuals and differential expression of oestrogen receptors may

effect oestradiol’s (E2) ability to bind to its receptor, potentially varying oestrogen-attributed

physiological responses in musculoskeletal connective tissue, thus laxity responses [76].

Caution is advised regarding the aforementioned research [33, 34] as some definitions and

classifications for the early follicular phase are different to recent MC classifications [24, 25],

spanning both early and late phases (i.e., 5–8 days and 3–7 days). Additionally, similar to

aforementioned studies [33, 34, 62, 65], only knee joint kinetics and kinematics were examined

[33, 34], with other segments and joints (trunk, hip, and ankle), and neuromuscular activity

also unexamined. This absence is important because the ACL injury mechanism and loading

is multi-segmental [46, 52, 77, 78], and neuromuscular activity patterns has the potential to

unload [55] or increase ACL loading [56–59]. Conversely, in a larger sample size, previous

work [63] reported that women who demonstrate changes in anterior and frontal knee laxity
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may display more valgus motion during bilateral drop vertical jumping; however, KJL and

muscle activity did not change across phases which ultimately contributes to ACL loading and

injury risk [47, 55]. Although difficult to rationalise these contrasting observations with Park

et al. [33, 34], athletes’ biomechanical injury risk profiles are task dependent [79–82]; thus,

caution is advised generalising the conclusions regarding the role of the MC and biomechani-

cal and neuromuscular injury risk surrogates when only a limited number of tasks have been

investigated.

Although there is no consistent MC effect on knee laxity, MC hormonal perturbations can

both increase and decrease women’s knee laxity at each MC phase. Therefore, monitoring female

athletes’ knee laxity changes could be a viable strategy to infer potential KJLs changes and poten-

tial ACL injury risk throughout the MC. This can be done using an arthrometer [33, 34, 83, 84],

rolimeter [85, 86], ultrasound [87], radiography [88], or wearable accelerometers [84].

5. Limitations, considerations, and future recommendations for

research

Recently suggested [75], greater emphasis should be placed on exploring the effect of hormonal

concentrations (i.e., magnitude, relative and / or rate of change from baseline) rather than

focusing on the MC phase’s effect on performance or injury risk, because the change in hor-

monal contribution ultimately affects the physiological system. Further research is needed to

understand how hormonal, neuromuscular, and biomechanical ACL injury risk factors inter-

relate and influence joint laxity and movement execution of dynamic tasks at different MC

phases, whilst considering hormonal concentrations.

There is significant underrepresentation of female athletes in sports and exercise medicine

research [23, 89, 90]. Researchers often avoid investigating women due to the MC associated

physiological changes and the potential methodological difficulties [25]. The limited published

literature synthesised during this review is insightful and provides unique, important informa-

tion from an underrepresented population. We have, however, highlighted some methodologi-

cal and research design limitations, and have suggested some future recommendations for

research to build on the insightful body of work to improve research quality. Consequently,

this has led to recent recommendations for more research into female athletes [23, 25, 26], par-

ticularly more rigorous research designs when exploring the MC’s effect in relation to potential

injury risk and exercise performance [25, 26]. Therefore, future investigations which follow

this review and other researchers’ suggestions [25, 26, 29], accounting for the methodological

and research design limitations, will produce greater methodological quality and higher-qual-

ity data in women. This will permit fairer and more accurate conclusions regarding the MC’s

effect on ACL injury risk.

Strengths of this systematic review included the comprehensive search strategy conforming

with PRISMA, adopting the PICOS strategy to permit the synthesis of methodology and study

findings. Additionally, methodological quality was assessed using a modified Downs and Black

checklist [24], though this version has not been validated. Overall quality of evidence was eval-

uated using the GRADE approach, but due to the heterogeneity, quantitative statistical analysis

and a meta-analysis could not be performed. Finally, this review was not pre-registered which

can increase risk of bias (i.e., collating and synthesis of research, selective reporting, overall

transparency, duplication, research waste).

6. Conclusion

Based on this review, it is inconclusive whether a particular MC phase predisposes eumenor-

rheic and naturally menstruating women to greater non-contact ACL injury risk based on
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neuromuscular and biomechanical surrogates, with mixed findings observed. Interestingly,

knee laxity was affected by the MC, with evidence that MC attributed changes in knee laxity

were associated with changes in KJL and thus potential ACL injury risk. However, consider-

able individual variation (i.e., magnitude and direction) was observed with respect to the MC

phase which elicited the greatest knee laxity and KJL. Nonetheless, monitoring changes in

knee laxity in female athletes could be a viable strategy to infer potential changes in KJLs and

ACL injury risk. Research synthesised in this review was low to very low in methodological

quality, contributing to a very low quality of evidence, which could be improved with respect

to design and execution. As such, it is difficult to make definitive conclusions regarding the

effects of the MC phase on ACL neuromuscular and biomechanical injury risk surrogates, and

thus practitioners should be cautious manipulating their physical preparation, injury mitiga-

tion, and screening practises based on current evidence.
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