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“The passage of goods carts on narrow city streets so congested them that they became
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Abstract

Urban road congestion is not a new phenomenon and remains an outstanding problem that
continues to impact people around the world. Road congestion costs the European Union an
estimated 1-2% of GDP each year and is responsible for 27% of deadly C02 emissions. In
addition, it can cause life-threatening delays in the emergency services response time.

Road congestion has a multifaceted nature and lacks a clear and explicit definition. This makes
the problem of tackling it very subjective, time and context dependent. There have been
several approaches to both modelling and predicting road congestion. From a physical
perspective, road congestion has been modelled using speed, capacity, velocity, and journey
time; relatively road congestion has been classified using terms such as non-recurrent and
recurrent congestion which tend to be relative to each stakeholder; conceptual models such
as the bathtub, traffic flow, and origin to the destination have been used to ascertain the
impact of road congestion on a city scale.

This research presented tackles the problem of defining what is meant by congestion within an
urban road network through defining a conceptual model that captures the semantics of road
traffic congestion and its causes. The model is validated through the construction of a real-
world dataset and the development of a visual tool which can be used to identify and alleviate
congestion. The final stage of the project uses both the model and the dataset to investigate
and implement a series of fuzzy systems to classify three types of congestion (hon-recurrent,
recurrent, and semi-recurrent). The fuzzy system results are then validated against human
methods of classifying congestion.

The main contributions of this thesis to world knowledge can be summarised as follows: The
design and development of a novel universal Urban Road Congestion Conceptual (URCC)
model. The URCC model is broken down into two main components: Analogical
conceptualisation which builds upon the famous ‘bathtub’ model and will integrate with other
analogies to create ‘a raindrop hitting a leaf inside the bathtub with ever changing water
temperatures’. The second component is an ontological approach to modelling congestion
thus providing a better understanding for decision-makers through providing a formal and
explicit explanation for concepts within the domain of urban road congestion. Another
contribution is the development of a real-world spatiotemporal quasi-real-time big data
dataset known as the Manchester Urban Congestion Data (MUCD) dataset which was used
to validate the URCC. A visualisation graphical user interface called TIM (Transport Incident
Manager) was developed with stakeholders TfGM (Transport for Greater Manchester). TIM
has the ability to fill the void left by the clear lack of visualisation tools that are capable of
visualising real-world big data datasets, such as the MUCD and models of urban road
congestion. The final contribution to knowledge is the design and development of two fuzzy
decision-making systems which are not only capable of predicting urban road congestion on
a link but the type of congestion occurring on a network of links. Using a fuzzy decision-
making system allows for explainable and interpretable decisions, and also provided useful
and meaningful qualitative context back to the relevant TfGM stakeholders. The non-
optimised multi-classification fuzzy system had slightly worst accuracy than the J48 decision
tree algorithm, however, the fuzzy system is easier to interpret and provides meaningful
context compared to the J48 algorithm due to only requiring 12 rules compared to the 1184
learned rules in the J48 decision tree. Furthermore, once the fuzzy system has been
optimised (future work) it is likely to have similar if not better performance than the J48
decision tree.
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Chapter One: Introduction to research

1.1 Theimportance of aresilient road network

Resilient transport networks are vital for sustainable development and therefore
the focus of this research is on road networks. The major threat to resilient
road networks is congestion, which has an estimated cost of 1-2% of GDP
across the European Union and 3-4% within the United Kingdom
(Department for Transport, 2020), including reduced productivity and
increased transport costs (Somuyiwa et al., 2015). Congestion also has a
major impact on air quality and the quality of life in general. Congestion has
two known forms, non-recurrent congestion, which can be the result of a road
traffic incident such as traffic accidents and roadworks, and recurrent
congestion, which can occur at well-known bottlenecks where traffic demand
exceeds capacity (Van Schijndel and Dinwoodie, 2000).

This research will focus on conceptualising and validating the differences
between the traditional types of congestion; non-recurrent congestion,
recurrent congestion, and semi-recurrent congestion which is a third type of
congestion that will be coined within this thesis. Semi-recurrent congestion is
the consequence of scheduled events, such as a ‘football match’, ‘music
concert’, and ‘planned roadworks’. These types of events are not cyclical
because they do not happen at the same time or on the same day. However,
they do tend to be predictable due to schedules, which are created in
advance. The coining of semi-recurrent congestion is one of the contributions
of this thesis which will help stakeholders to be able to distinguish the
difference between a road accident, a ‘cup’ football match, and unplanned
roadworks compared to a concert, ‘league’ football match, and planned road
works. Allowing stakeholders, to respond more adequately depending on the
type of congestion. Which traditionally, all the above have been treated as
non-recurrent congestion.

There are multiple models of congestion that currently exist, including the
‘Bathtub’ model (Arnott, 2013), a data-driven agent-based model (Othman et
al., 2015) and a dynamic ‘bottleneck’ model (Silva et al., 2014). However, to
help reduce congestion there needs to be more work done to improve the
level of resilience, which requires being prepared for a road traffic incident
and/or action a recovery plan within an acceptable period, restoring the
network to the same level or better. The development of a conceptual
framework that can be used for developing an Intelligent Transport System
(ITS) which will increase the quality of information being provided to
stakeholders, such as transport managers allowing for a faster response to
congestion.

1.2 Measurements of congestion
To model urban road congestion, relevant dimensions, such as journey time,

density, (vehicle and traffic) speed, and travel time are required. The
appropriate dimension/s are determined by academics, researchers, and



traffic managers and will depend on what the problem is being solved and
what the technical limitations are.

In recent studies various dimensions, such as journey time (Anbaroglu et al.,
2014; Anbaroglu et al., 2015), density (Bauza et al., 2010), (vehicle and
traffic) speed (Bauza et al., 2010) and travel time (Bar-Gera, 2007; Li and
Chen, 2014) have been used to measure and define urban road congestion
on different scales. In this thesis, the adopted dimension for classifying urban
road congestion was journey time. This was due to the requirements set out
by Transport for Greater Manchester (TfGM). A more in-depth discussion can
be found in Chapter Two.

1.3 Scope

This project was 50% funded by TfGM, who provided two data sources that were
used in this research. These are the Bluetooth passive sensors and
Automatic Traffic Counters (ATC). Due to the location of the data sources
and the project sponsor, the domain for this research will be Greater
Manchester, UK.

1.4 Problem statement

Transportation systems are a fundamental part of society, providing people with
ways to explore the world, commute to work, and visit shops for everyday
essentials. There are several types of transport systems, such as land, rail,
water, air, space, and intermodal. Intermodal transportation is when one or
more mode of transportation is used within the same system, for instance,
goods being transported from America to the United Kingdom may travel on
a ship and then be loaded onto a lorry to be delivered to the destination.

Land transportation is the linchpin that holds the other modes together
(Somuyiwa et al., 2015), however, it generates several challenges, such as
bad air quality due to vehicles being stuck in congestion (Transport 2020,
2016), a financial burden that costs the European Union 1-2% GDP (Djahel
et al., 2015), and wasting limited fuel resources (Djahel et al., 2015). The
crucial issue that these challenges all revolve around is road congestion that
many approaches are being taken to address road congestion; however,
road congestion remains a multifaceted issue due to existing road networks
becoming increasingly more congested because of the growth in the number
of people that are using vehicles; and the inability to develop a more
sustainable and resilient network (Hartgen and Fields, 2009).

The Highways Agency estimates that 65% of congestion is caused by traffic
volumes at or above capacity, 25% as a result of incidents, and 10% by
roadworks (Department for Transport, 2014). In 2020, the Department for
Transport (DfT) released a further report based on 2019 figures that shows
the overall volumes on the road network have increased by an average of 2%
compared to the previous year (2018) and in some cases, such as the
highway, where the traffic volume has increased by 14.1% compared to 10
years ago (Department for Transport, 2020). Furthermore, transportation is
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responsible for 28% of all greenhouse gas emissions within the UK, which
has only reduced by 3% in 30 years (Waite, 2020).

Road congestion has been a problem for many years with literature going back

as far as 1920 by Pigou (Verhoef, 1999) and although there is a vast amount
of literature addressing road congestion there still remains a clear absence
of a formal and explicit understanding of road congestion. Consequently, this
research will attempt to develop a formal and explicit conceptualisation of
urban road congestion. To achieve this, the research presented in this thesis
will explore the use of analogical and ontological methods to conceptualise
urban road congestion and the conceptual model will be validated using a
real-world big data dataset and a custom-built fuzzy decision-making system.

1.5 Research questions

This work attempts to address the following research questions:

RQ1: Is it possible to provide a clear conceptualisation of urban road traffic

congestion using an ontological model?

RQ2: Can quantitative big data be used to provide qualitative information in

conjunction with a road traffic ontology with the support of machine learning?

RQ3: Can quantifiable big data on urban road congestion be visualised to

provide quasi-real-time insight?

RQ4: Can a fuzzy rule-based system be designed to predict road congestion

through validation of the Urban Road Congestion Conceptual (URCC)
model?

1.6 Research aim and objectives

The aim of this research is “To develop a conceptual model that captures the

semantics of road traffic congestion and its causes and to use the model to
better identify and alleviate congestion.’

To achieve the research aim, the following objectives have been set:

1)

2)

3)

4)

5)

Conduct a comprehensive review of what defines congestion, and how
conceptual models have been used with the support of resilience to reduce
congestion.

Develop an Urban Road Congestion Conceptual model using analogical and
ontological approaches that identify the key concepts and the relationships
between them.

Develop a quasi-real-time dataset using real-world data that has the
capability of supporting complexity and volume at a ‘big data’ level.

Conduct an unsupervised learning experiment on the dataset developed in
objective three, to ascertain whether it is possible to use predictive analytics
to predict urban road congestion.

Investigate, design, and develop a fuzzy rule-based decision system to
validate the Urban Road Congestion Conceptual model.



6) Develop a case study using real-time data provided by Transport for Greater
Manchester to conduct a critical evaluation of the conceptual framework and

its ability to support resilience in response to a road network event.

1.7 Research methodology

This section details the approach undertaken to achieve the research aim and
answer the four research questions. The research is experimental in nature,
building on the key findings and gaps in knowledge identified in Chapter Two:
A literature review of road congestion. Figure 1 shows the five key stages of
the research methodology and the associated chapters.

1. Conceptual
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2. Dimensions

)

3. Determine

D

4. Validate The
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5. Define Fuzzy
System of Road
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to measure
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Chapter Seven

Figure 1: Research Methodology

Each stage will now be briefly described:

Stage 1: Is the formulation of an urban road conceptual model of congestion
leading to the development of an ontology to provide a formal and explicit
conceptualisation of congestion and in particular, the impact of road
accidents. This rationale, justification, and methodology for the development
of this conceptual model is described in Chapter Three.

Stage 2: Identifies the different dimensions capable of defining the distinct types
of urban road congestion caused by traffic events by using the ontology
proposed in Chapter Three. The specific research methodology for this stage
is described in Chapters Three and Four.

Stage 3: Now that the dimensions of congestion have been identified due to the
development of the ontology, it is possible to distinguish which big data
sources are relevant by evaluating the data sources described in Chapter
Two and Four. This stage investigates whether it is possible to calculate
journey time using Bluetooth sensors, Global Positioning Systems (GPS),
cameras, and traffic volume with Radio-frequency Identification (RFID) and
Automatic Traffic Counters (ATC). However, this research will only use
Bluetooth sensors and ATC. The complete dataset will be presented in

Chapter Four.

Stage 4: Introduces a statistical visualisation toolkit which was developed as part
of this research and called Transport Incident Manager (TIM). TIM will utilise
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the relevant dimensions and their data sources to perform analytics to identify
patterns in the traffic volumes and journey times, which can be used to
translate quantitative data into qualitative information. Moreover, the
conceptual model is also validated using machine learning techniques
(Chapters Five and Six).

Stage 5: Design and develop a fuzzy decision-making system, which can predict
one of four classifications (non-congestion, recurrent congestion, semi-
recurrent congestion, and non-recurrent congestion). This was achieved by
creating two separate fuzzy decision-making systems, the first Fuzzy
decision-making system is a prototype that uses only two data sources and
has a binary classification outcome (congested and non-congested). The
second fuzzy decision-making system is an advancement on the previous
system, as it introduces four extra data sources and has four classification
outcomes (non-congestion, recurrent congestion, non-recurrent congestion,
and semi-recurrent congestion). Both fuzzy decision-making systems are
discussed in Chapter Seven.

1.8 Contributions

The research presented in this thesis makes several key contributions to the
field.

e The first contribution is the development of a novel URCC model which
conceptualises the three types of congestion: non-recurrent, semi-recurrent,
and recurrent congestion. (Chapter Three)

e The second contribution is the development of the Manchester Urban
Congestion Data (MUCD) Dataset which incorporates real-world data from
various sources, such as TFGM and the United Kingdom’s Governments
freely open data. (Chapter Four)

e The third contribution is the development of a Graphical User Interface (GUI)
visualisation toolkit called TIM that provides the user with better knowledge
of the MUCD dataset. (Chapter Five)

e The fourth contribution is the development of a binary fuzzy decision-making
system, to determine if a rule base system could identify congestion at a high
level. The two classification outputs are congestion and non-congestion.
(Chapter Six and Seven)

e The fifth contribution is the development of a multi-classification fuzzy
decision-making system that will be used to predict the type of congestion
and then validate the conceptual model. The classification outputs are non-
recurrent congestion, semi-recurrent congestion, recurrent congestion, and
non-congestion. (Chapter Seven)

The research presented in this thesis has led to the following peer-reviewed
publications at the time of submission. A copy of the publications can be
found in appendix 3 of the thesis.

Gould, N. and Abberley, L. (2017) ‘The semantics of road congestion’, In
UTSG. Dublin.

L. Abberley, N. Gould, K. Crockett and J. Cheng, ‘Modelling road congestion
using ontologies for big data analytics in smart cities’, 2017 International
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Smart Cities Conference (ISC2), 2017, pp. 1-6, Doi:
10.1109/ISC2.2017.8090795

L. Abberley, K. Crockett and J. Cheng, ‘Modelling Road Congestion Using a
Fuzzy System and Real-World Data for Connected and Autonomous
Vehicles’, 2019 Wireless Days (WD), 2019, pp. 1-8, Doi:
10.1109/WD.2019.8734238.

1.9 Thesis overview

The research in this thesis is presented over eight chapters.

Chapter Two provides a background review of existing literature and
discusses the current state of research related to the following: Concepts
of congestion, data sources used within the domain of road congestion,
and existing road congestion models.

Chapter Three will introduce the URCC model which consists of several
analogies and a universal ontology of road congestion. Moreover,
Chapter Three will introduce the critical third type of road congestion
which has been coined as semi-recurrent.

Chapter Four provides an insight into the creation of the MUCD dataset
and validates the universal ontology of road congestion through a case
study using the MUCD dataset.

Chapter Five introduces the visualisation toolkit developed for this
research called TIM and will provide examples of TIMs functionalities,
such as real-time visualisation, statistical measurements, and
unsupervised learning viewer.

Chapter Six provides insight into the patterns caused by congestion which
are of interest to stakeholders such as TfGM through the application of
clustering techniques.

Chapter Seven demonstrates the use of two rule base decision systems
for prediction congestion and validates the conceptualisation model using
the multi-classification fuzzy decision-making system. The benefit of using
a fuzzy decision-making system compared to a traditional machine
learning algorithm, such as a decision tree or a probabilistic model is the
explainability of the outcome and the meaningful context to better assist
the stakeholders.

Chapter Eight concludes by summarising the answers to the four research
guestions and proposes the format of future work.



Chapter Two: A literature review of road congestion

2.1 Introduction

This chapter presents a critical review of previous literature regarding
conceptualising and modelling urban road congestion and its causes. The
review examines several techniques, such as analogies, ontologies, and
machine learning. The review reports on various problems and challenges in
the field of road congestion and the impact on urban planning, some of which
will be addressed by the research presented in this thesis.

2.2 Overview of congestion

In the past, various dimensions (Measurements) have been used for monitoring
traffic flow, network performance, and detecting congestion. These include
journey time (Anbaroglu et al., 2014; Anbaroglu et al., 2015), density (Bauza
et al., 2010), (vehicle and traffic) speed (Bauza et al., 2010) and travel time
(Bar-Gera, 2007; Li and Chen, 2014), however, this thesis will use ‘journey
time’ to classify urban road congestion at the link level, due to the
requirements set out by Transport for Greater Manchester (TfGM).
Furthermore, the dimension ‘traffic volume’ will be used to assist with defining
and predicting urban road congestion as this is another data source used by
TfGM for conducting manual predictions.

There have been many definitions for defining types of congestion, such as
recurrent congestion, which happens when vehicles simultaneously use the
road network at peak times, and non-recurrent congestion, which happens
when an unpredictable incident occurs. However, existing literature also uses
measurements, such as severity (of congestion, weather, and accident) to
define congestion. For example, (Bauza et al., 2010) proposes to create a
novel cooperative traffic congestion detection system for highways, using
fuzzy logic to detect road traffic congestion. The paper does not specify what
type of congestion it is trying to detect and appears to classify both non-
recurrent and recurrent congestion as a single entity. Furthermore, the paper
classifies congestion into four types of severity measurements which are:
free, slight, moderate, and severe using two dimensions: Traffic density and
Vehicle speed. To validate the performance of the approach, a traffic
simulation was conducted using SUMO.

Other papers, such as the one written by Anbaroglu (Anbaroglu et al., 2014)
classifies non-recurrent congestion into three types of severity performance
measurements, using only one dimension which is journey time. The
proposed performance measurements are: high congestion, medium
congestion, low congestion, and expected journey time. Other performance
measurements for defining congestion at city scale (national) and
neighbourhood (regional) levels are fast, smooth, light congestion, medium
congestion, and severe congestion and are defined in (Chen et al., 2020).

Over many years, the multifaceted nature of congestion has been expressed in
the literature with various definitions and terms being used, such as recurrent
congestion that refers to when significant amounts of vehicles simultaneously
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use the overpopulated road space in an expected period (Arnott, 2013). For
example, on weekday mornings and afternoons at peak times, traffic jams
otherwise known as ’'rush hour’. Rush hour is defined as when substantial
amounts of road users are trying to use the same portion of the road network
to get to work and drop their children off at schools at the same time
(Emmerink et al., 1995) which can cause longer than expected journey times.
Non-recurrent congestion is a term that has previously been used to defined
unexpected, unplanned, or momentous events, such as traffic accidents,
roadworks, extreme weather conditions, and some dedicated events like
music concerts and important sports events (OECD, 2006; Djahel et al.,
2015).

Throughout the years, many methods have been used, such as diagnosis
(Latham, 2011; Uschold et al., 2011) to model different aspects of road
congestion, for example, congestion cost (Verhoef, 1999; OECD, 2006),
driver behaviour (Kilpelainen and Summala, 2007; Fernandez and Ito, 2015)
and traffic controlling (Pan et al., 2013). One limitation which was consistently
observed across most of the literature is a lack of real-world data which meant
a lot of the proposed models were created using simulated ‘dummy’ dataset
that have equal proportion of data per classification (Emmerink et al., 1995;
Sheu and Ritchie, 1998; Romilly, 1999; Arampatzis et al., 2004; L6pez et al.,
2017; Djahel, Jones, Hadjadj-aoul, et al., 2018), due to a lack of access to
reliable data sources.

In the literature, a distinction is made between ‘direct’, ‘hard' or ‘physical’ data,
which is data in the form of numbers or graphs, for instance, the speed or
volume, and ‘indirect’, ‘soft’ or ‘relative’ data, which is qualitative information
and requires interpolation and lacks the rigor that is implied in statistical data,
for instance, a tweet about a ‘major’ road accident. Nevertheless, in recent
years, there has been an increase in both hard and soft data sources, such
as Bluetooth sensors and social media. This has created more dimensions,
which can be used as measurements such as traffic behaviour, waiting time,
volume, capacity, journey time etc. These dimensions can then be used to
model certain aspects of urban road congestion by performing quantitative
and qualitative analysis that can then be used to inform stakeholders, such
as road users, policy makers, and traffic managers of potentially congested
areas in quasi-real-time.

Table 1 shows the different approaches which have been taken in the literature
regarding how congestion has been viewed and dealt with in the past. There
are five primary approaches observed in the reviewed literature, which are
optimisation, mitigation, traffic control, congestion cost, diagnosis, or a
mixture of two or more.

The key findings from the literature are as follows:

35% of literature (shown in Table 1) (Herman and Prigogine, 1979; Emmerink et
al., 1995; Sheu and Ritchie, 1998; Thomas, 1998; Sheu, 1999; Fernandez-
Caballero et al., 2008; Wang et al., 2009; Riad and Shabana, 2012; Arnott,
2013; Tsekeris and Geroliminis, 2013; Chen et al., 2014; Liang and
Wakahara, 2014; Mathew and Xavier, 2014; Othman et al., 2015; Patire et
al., 2015; Wu et al., 2015; Steenbruggen et al., 2016) had a single approach
to optimising an Intelligent ITS or a Transport Management System (TMS).
However, only a single piece of literature (Chen et al., 2014) discussed
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developing their own unique ITS, with a large amount of focus being on either
analysis or reviewing previous ITSs or TMSs for informing road users,
policymakers, or transport managers.

Indirect data sources have not been used much throughout the literature
(Emmerink et al., 1995; Koetse and Rietveld, 2009; Lécué et al., 2012; Pan
et al., 2013; Li and Chen, 2014; Djahel et al., 2015; Chen and Rakha, 2016;
Steenbruggen et al., 2016) with events information being used only twice,
weather stations being used five times and social media being used three
times.

Whilst reviewing the literature from the past 30 years it is noticeable that data
sources prior to 2000 (Herman and Prigogine, 1979; Arnott et al., 1993;
Emmerink et al., 1995; Pope et al., 1995; Gualtieri and Tartaglia, 1998; Sheu
and Ritchie, 1998; Thomas, 1998; Romilly, 1999; Sheu, 1999; Verhoef, 1999;
Yasdi, 1999) tended to have limited data available. For instance, traffic
volume data was manually collected through physical labour until the
introduction of inductive loop counters in the late 90s, which are the most
reliable method for detecting traffic flow. moreover, between 2000 and 2010
(Yuan and Cheu, 2003; Arampatzis et al., 2004; Verhoef and Rouwendal,
2004; OECD, 2006; Fernandez-Caballero et al., 2008; Wen, 2008; GUO and
HUANG, 2009; Koetse and Rietveld, 2009; Lozano et al., 2009; Wang et al.,
2009) alternative data sources became widely available and used, such as
Radio Frequency Identification Devices (RFID), probe vehicles and cameras.
Finally, post 2010 (de Palma and Lindsey, 2011; Mandal et al., 2011; Lécué
et al.,, 2012; Riad and Shabana, 2012; Arnott, 2013; Bauza and Gozalvez,
2013; Pan et al., 2013; Tsekeris and Geroliminis, 2013; Isa et al., 2014, Li
and Chen, 2014; Liang and Wakahara, 2014; Mathew and Xavier, 2014;
Agarwal and Kickhofer, 2015; Djahel et al., 2015; Othman et al., 2015; Patire
et al., 2015; Shao et al., 2015; Stefanello et al., 2015; Wang et al., 2015; Wu
et al., 2015; Chen and Rakha, 2016; Colak et al., 2016; Grote et al., 2016;
Kaddoura and Nagel, 2016; Steenbruggen et al., 2016; Zhang et al., 2016)
seen an increase of even more data sources being used, such as Bluetooth,
Global Positioning System (GPS) and Global System for Mobile
communication (GSM).

With new techniques, continually being developed within both data collection and
geospatial analysis and with the introduction of more modern data sources
and dimensions as mentioned above, there are now more ways to analyse
congestion in urban and rural areas. Finally, with the advancements in data
analytic technigques, such as big data, data fusion, data mining, and machine
learning, will allow several heterogeneous datasets to be integrated into a
single consistent dataset that can be used to model and provide a meaningful
representation of the real-world object known as congestion and the events
that cause it.
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2.3 Concepts of congestion

A transportation system is a fundamental part of society with the road network
being the linchpin that holds the other transportations modes together
(Somuyiwa et al., 2015). Unfortunately, existing road networks have become
severely congested due to the increase in new and existing drivers using their
vehicles more and the inability to develop a more resilient network (Hartgen
and Fields, 2009). The Highways Agency estimates that 65% of congestion
on the network is caused by traffic volumes at or above capacity (this is the
guantity of vehicles, per hour, per lane that the network can manage before
congestion occurs (Hall and Agyemang-Duah, 2000)), 25% of incidents and
10% by roadworks (Department for Transport, 2014).

Congestion continues to remain a long-standing problem in transportation
science with literature going back as far as 1920 by Pigou (Verhoef, 1999).
Throughout all the vast amounts of literature on the detection of congestion,
there is an apparent absence of a clear and consistent definition of what
congestion is. This is partly due to the multifaceted nature of congestion and
the different perceptions within the various disciplines conducting research,
such as Ecology, Economics, Intelligent Systems, Geography, Engineering
etc. Moreover, according to the (Department for Transport, 2013), the
definition of congestion requires both a physical and relative dimension,
because ‘a person living in a rural area might regard an unusually long queue
of traffic experienced on their daily commute as severe congestion, while
someone living in an urban area might experience much longer hold-ups on
a daily basis and regard the same length queue as being almost totally
uncongested’ (Department for Transport, 2013). Therefore, congestion is
relative and can be dependent on the road users’ personal opinions.

Road traffic congestion has previously been classified as three types: non-
recurrent, recurrent (Djahel et al., 2015), and pre-congestion state
(Somuyiwa et al., 2015). These definitions are relatively vague because
although the terms such as recurrent or non-recurrent are widely accepted,
they tend to be viewed from a more personal perspective. Table 2 shows a
definition for each type of congestion identified in the literature.
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Table 2: Classification of Congestion

Congestion Type

Definition

References

Recurrent congestion

Occurs when significant
amounts of vehicles
simultaneously use the
limited road space on a
weekday morning and
afternoons peak hours’
causing a traffic jam

(Arnott et al., 1993;
Cassidy and Bertini, 1999;
Verhoef, 1999; Verhoef
and Rouwendal, 2004;
Arnott, 2013; Fosgerau
and Small, 2013; Tsekeris
and Geroliminis, 2013;

situation. Tadeusiak, 2014)

Occurs from

unpredictable incidents
such as traffic accidents,

work zones, extreme
weather conditions and
some special events like

music concerts and
important sports events.

(Emmerink et al., 1995;
Yang, 1997; OECD, 2006;
Chen et al., 2014; Isa et
al., 2014; Li and Chen,
2014; Djahel et al., 2015)

Non-recurrent
congestion

(borderline congestion)

Occurs when free flow
conditions breakdown.
However, full congestion
has not yet occurred. This
can happen either side of
congestion and can occur
either upstream or
downstream of congestion
which is already
occurring.

Pre-congestion (Somuyiwa et al., 2015)

2.4 Data sources

A “successful” TMS or an ITS will be largely dependent on how current and newly

developing data sources are used. Moreover, it was observed in the literature
(Arnott et al., 1993; Emmerink et al., 1995; Pope et al., 1995), that before the
2000s technology was limited and data collected was primarily done
manually. During the 2000s, a few newer technologies became more
regularly available, and from the 2010s to the present-day the transport
industry exploded with more widely available data sources being used for
analysing, monitoring, and predicting traffic behaviour and events that have
a consequence of congestion. The major data sources being used are
inductive loop counters (Thomas, 1998; Sheu, 1999; Verhoef, 1999; Yasdi,
1999; Li and Chen, 2014; Djahel et al., 2015; Chen and Rakha, 2016);
Bluetooth (Mathew and Xavier, 2014; Djahel et al., 2015; Patire et al., 2015);
GPS (Riad and Shabana, 2012; Pan et al., 2013; Mathew and Xavier, 2014;
Patire et al., 2015; Chen and Rakha, 2016); RFID (Wen, 2008; Mandal et al.,
2011; Mathew and Xavier, 2014); probe vehicles (Thomas, 1998; Yuan and
Cheu, 2003; de Palma and Lindsey, 2011; Mandal et al., 2011; Bauza and
Gozalvez, 2013; Li and Chen, 2014; Chen and Rakha, 2016); GSM (de
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Palma and Lindsey, 2011; Mandal et al., 2011; Riad and Shabana, 2012;
Mathew and Xavier, 2014; Djahel et al., 2015; Wu et al., 2015; Chen and
Rakha, 2016; Steenbruggen et al., 2016); cameras (Fernandez-Caballero et
al., 2008; Lozano et al., 2009; de Palma and Lindsey, 2011; Mathew and
Xavier, 2014; Djahel et al., 2015; Wu et al., 2015); event information (Lécué
etal., 2012; Chen and Rakha, 2016); weather (Emmerink et al., 1995; Koetse
and Rietveld, 2009; Lécué et al., 2012; Li and Chen, 2014; Steenbruggen et
al., 2016) and social media (Pan et al., 2013; Chen et al., 2014, Djahel et al.,
2015).

In recent years, with the advancement of infrastructure and technology used on
the road networks and communication networks or even a combination of
both, such as the introduction of smart motorways (highways) (Department
for Transport, 2014; Highways England, 2015) and the 4G network becoming
more widely available, has allowed for the creation of modern ITSs, which
are a principal component of smart cities and is reliant on having as many
data sources as possible available in real-time. The next generation of ITSs
has started to incorporate the data sources mentioned in this chapter,
allowing for the development of Vehicular Ad-hoc Networks (VANETS) which,
is where humans, vehicles, Roadside Units (RSUs), and infrastructure have
the potential to become a data source (Golestan et al., 2015).

Va2V
<—» V2R
-<+—» V2|

Figure 2: Different types of communication in VANETs [Source: (Golestan
et al., 2015)]

Figure 2 illustrates different types of sensors and how they could potentially
communicate as a network to transmit data with the aim of improving ITSs.
In Figure 2, the connections being used are Vehicle-to-Vehicle (V2V),
Vehicle-to-RSU (V2R) and Vehicle-to-Infrastructure (V2I). Furthermore, other
possibilities are Vehicle-to-Human (V2H), and Vehicle-to-Sensor (V2S). In
recent statistics it has been noted (Golestan et al., 2015) by 2020 an
estimated 50 billion “things” will be connected to the internet, which will allow
data to be collected from various sources.
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2.4.1 Bluetooth

Within and around Greater Manchester, UK, 741 permanent passive Bluetooth
sensors have been deployed (Atkin, 2016), with the intention of measuring
the journey time on key routes to help TfGM to meet their Key Performance
Indicators (KPIs) and will be achieved through monitoring vehicles travelling
past passive Bluetooth sensors around Greater Manchester.

The benefits of passive Bluetooth sensors are the inexpensive cost of
deployment and their ability to recognise and store relevant information from
another Bluetooth device within range. Bluetooth devices are now commonly
found in cars, smart watches, and mobile phones that tend to be carried by
passengers. The main limitation of passive Bluetooth sensors is the signal is
limited and can only reach a short distance. Furthermore, due to the sensors
collecting all Media Access Control (MAC) addresses from all active
Bluetooth devices within range of the sensor location it is inevitably creating
a lot of outliers and noise. For instance, if a single vehicle is carrying multiple
people (with Bluetooth devices) within range of a sensor, this will create
duplicated records in the data. Moreover, when a pedestrian or a cyclist with
a Bluetooth device, such as a mobile phone or a smart watch passes a
sensor, the MAC address will be logged and stored in the same database as
the Bluetooth devices within a vehicle, causing some journey times to appear
slower than expected. Finally, if a vehicle is stationary at a set of traffic lights
for an extended amount of time, this will once again produce a duplicate
record.

2.4.2 Inductive loop counters

Inductive loop counters are also known as automatic data collectors (ADC),
automatic traffic recorders (ATR), and automatic traffic counters (ATC). They
are considered to be one of the most reliable and trusted methods available
for traffic detection (Djahel et al., 2015). In and around Greater Manchester,
286 permanent ATC sensors have been deployed (Atkin, 2016), to count and
classify the types of vehicles around Greater Manchester. Due to the
reliability and trustworthiness of ATCs, they have become regularly used for
the validation of other data sources (Djahel et al., 2015). One of the main
limitations of Inductive Loop Traffic Counters is the cost of deployment, which
means there is only a limited amount deployed around urban areas which in
turn restricts its use within some ITS due to the sparseness.

2.4.3 Cameras

Cameras are used to detect vehicle speeds, capacity on the roads and traffic
incidents. An example would be Automatic Number Plate Recognition
(ANPR), which is widely used in Police vehicles, area-based schemes and
are primarily used to track vehicles speeds and charging travellers for
entering a restricted area (Maruyama and Sumalee, 2007), for example,
London congestion zone. Furthermore, ANPR cameras have previously been
used for identifying traffic incidences, such as foreign objects on the road,
vehicles on the hard shoulder, vehicles that are travelling too fast, and vehicle
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that has stopped or broken down in the middle of the road (Fernandez-
Caballero et al., 2008; Lozano et al., 2009).

Moreover, ANPR cameras can be used to monitor traffic flow. This can be
achieved with various image processing techniques. Figure 3 and Figure 4
shows two different techniques for monitoring traffic flow.

b &

a

Figure 3: Road traffic monitoring images. (a) The real image is in grey
scales. (b) Segmented image. (c) Processed image. [Source:
(Fernandez-Caballero et al., 2008)]

Figure 3 is taken from the paper (Fernandez-Caballero et al., 2008) showing the
three steps of image processing that is used to analyse traffic on a highway.
Figure 3a uses a 256-grey scale image format; this is then processed to
provide a black-grey scale, where the vehicle is highlighted as white. Finally,
one final process is applied to the image to convert the vehicle shape into a
rectangle. This will enable the systems to classify the type of vehicles such
as a transit van, a lorry, a small car, or a medium car. In addition, it is possible
to calculate the speed of the vehicle depending on the time it takes to
progress through two frames captured at separate time intervals.

Figure 4: Blurred images. [Source: (Lozano et al., 2009)]
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Figure 4 is taken from the paper (Lozano et al., 2009) and shows six different
levels of traffic flow that are used to train the system. The six levels of traffic
flow are (top row of images) represented starting from left to right are free
flow, stable flow (slight delays), stable flow (acceptable delays), approaching
unstable flow (tolerable delay, occasional wait), unstable flow and forced
flow. The blurred filters are applied to represent the motion of both vehicles
and the camera. All these images are then stored in the system as a training
set.

Both papers (Fernandez-Caballero et al., 2008; Lozano et al., 2009) managed
to achieve their aims, however, it would be almost impossible to implement
either of these methods on a large scale because even though cameras are
one of the most accurate methods of collecting information and data, through
their ability to visibly record congestion and the event that caused it. It is
practically impossible to implement an automated process that allows the
valuable information to be gathered, transmitted and processed.
Furthermore, this would require a multifaceted image processing software
suite and image processing would need to be repeatedly done at regular
intervals and the cost of transmitting the data to a singular point for transport
managers to use this information is a highly expensive process. Considering
the physical cost of the infrastructure required and the excessive time
required to process and feed the relevant information back to the transport
managers would outweigh the value of information being received (Mathew
and Xavier, 2014).

2.4.4 Global Positioning System

Global Positioning Systems (GPS) is a global navigational satellite system
(GNSS) that is able to compute and provide the location of a GPS capable
device, such as a mobile phone and the time the observation was observed
from the GPS capable device regardless of weather conditions. The main
benefit of using GPS technology is devices are becoming more commonly
compatible over recent years with devices, such as satnavs, tablets, mobile
phones, smart watches, and vehicles having GPS built in.

Google has taken advantage of GPS data being more widely available within
everyday smart devices and uses GPS data to perform traffic analysis
(Google, 2016). Whilst the quality of the traffic analysis is generally good for
navigating and calculating traffic flow, it is not practical for a typical control
system, such as ramp metering, which requires a basic traffic light to be
located on the slip roads entering the highway and are designed to stop
vehicles from merging onto an overly populated highway unsafely and
typically requires density data to work (Patire et al., 2015). However, GPS
data could be merged with other data sources such as inductive loop
counters, providing the vast potential for developing a hybrid Transport
Management System (TMS). The concept of a hybrid TMS has gained
traction within recent literature (Riad and Shabana, 2012; Pan et al., 2013;
Patire et al., 2015; Chen and Rakha, 2016).
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2.4.5 Radio Frequency ldentification Devices

Radio Frequency Identification Devices (RFID) are used to automatically identify
vehicles and collect data similar to the data collected by ANPR cameras. One
of the positives of RFID is its low implementation cost, however, due to the
limited traffic information collected by the RFID, it tends to benefit from being
used in collaboration with an alternative technology such as GSM.

This theory has been tested in the following literature which was conducted by
(Mandal et al., 2011). (Mandal et al., 2011) proposed an ITS capable of
monitoring and measuring road traffic congestion using a collaboration
between both RFID and GSM technology. Calculations were performed using
the data collected from the RFID and GSM data sources, to calculate vehicle
speeds over a stretch of road and the average waiting time at an intersection.
Although RFID is a relatively old technology, it has not been implemented
extensively on all vehicles and due to the maximum range of 10 meters (m),
such systems cannot be implemented on highways (Mathew and Xavier,
2014).

2.4.6 Probe vehicles

The concept of probe vehicles, sometimes referred to as floating cars, have been
used for collecting real-time traffic data since the late 90s and early 2000s,
with a steady increase in the literature presenting probe vehicles as a solution
(Mandal et al., 2011; Li and Chen, 2014; Chen and Rakha, 2016).

Probe vehicles are extremely useful because they have numerous traffic sensing
technology provided by a single source (the vehicle) (Figure 5), such as GPS,
Velocity (speed), Bluetooth, Wipers (Weather Conditions), Lights (Lighting
Condition), and RFID. Each source has the potential to gather relevant
information that can be fed back to the central processing centre where traffic
management experts are located. These traffic management experts will then
be able to identify when a road may be closed, what the traffic flow conditions
are, whether the driver is experiencing hazardous weather and/or is the
visibility reduced due to thick fog.
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Figure 5: Probe Vehicle [Source: Author]

With vehicles becoming ‘smarter’ with the introduction of auto lights, auto wipers,
and remote diagnostics with the addition of technologies, such as OnStar
(OnStar, 2016), more vehicles have the ability to become a probe vehicle and
with more manufacturers adding the technology to be able to transmit data
back to a central point. There are still limited volumes of vehicles be used as
a probe and would require a lot more probe vehicles on the road to produce
meaningful information gain. Like other data sources, probe vehicles data is
often very noisy and can often be tough to provide an accurate reading (Chen
et al., 2014).

2.4.7 Cellular data

Cellular Data such as GSM is a standard developed by the European
Telecommunication Standards Institute which allows mobile phones to
access a digital cellular network (2G). Over the years, the cellular networks
have advanced from 2G to 3G and finally 4G. 4G has the capability to offer
potential download speeds of up to 300Mbps and upload speeds of 150Mbps.
The continuous improvement of the GSM is relevant because with the
increase of newer data sources being implemented in ITSs means more data
is being transmitted over mobile communication and having faster speeds
will provide better gains and better reliability by having faster data transfer
rates for transmitting real-time information. Additionally, the use of cellular
data is a breakthrough because the volume of people who have mobile
phones and are travelling on road networks has increased rapidly. One of the
major limitations of research being conducted into the use of Cellular data is,
a large proportion of mobile devices are not set in an active mode. Therefore,
researchers are not able to utilise the full potential of cellular data (Mathew
and Xavier, 2014).
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2.4.8 Eventinformation

When predicting traffic flow or estimating journey time with a route guidance

system (RGS) such as a satnav, it requires vital information, such as time of
day and day of the week, to allow a comparison against historical data, which
will give a more accurate estimation. For example, as part of the initial
exploratory phase with TfGM data, Figure 6 shows a comparison of a typical
journey time (along with a single link between two passive Bluetooth sensors)
against a journey time when there is a football match at the Etihad Stadium.
Figure 6 Shows the readings, which are grouped into ten minutes’ slots (x-
axis) and journey time (y-axis). The black line represents the mean of several
typical days, which in this case is four previous Tuesdays prior to the match
day. The green line is one standard deviation above and below the mean.
The blue line is the day Manchester City are playing at home (Etihad
Stadium). When comparing this line to the mean of several days, a spike in
journey time is noticeable prior to the five pm kick-off. After five pm this spike
settles back down. However, once the match has finished at nine pm and
everybody wants to leave the stadium at the same time, another large spike

occurs in the journey time.

Figure 6 shows that it may be possible to identify traffic patterns of a football

Journey time (s)

match event and that it may be possible to predict that slight congestion will
happen prior to the match starting and hypercongestion after the match
finishes.

B Mean of serveral typical days

[ 1standard deviation either way

[ Day when Manchester City are at
home |

@

10 Minutes slots

Figure 6: Comparing Journey time on a game day at the Etihad Stadium
[Source: Author]
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2.4.9 Weather

Weather can have a large impact on the road network and depending on the
severity, it can cause wear and tear (damage to the road surface),
congestion, and increased journey times which are greatly underestimated
by road users and even some researchers. Nevertheless, extreme weather
has the power to disrupt free-flowing traffic due to several things, such as
damaged infrastructure and reduced visibility which can cause drivers to
reduce their speed and may cause the typical traffic flow to change from free
flowing to congestion. An example of infrastructure damage by extreme
weather would be (News, 2015) during August 2015 in Greater Manchester,
UK.

Torrential rain spread throughout the city for days causing widespread flooding
and brought the urban road network to a standstill. The primary reason for
the impact on the urban road network was a 40ft deep sinkhole that opened
on an arterial road known as ‘Mancunian Way’ (Figure 7 and Figure 8).

TR, T o e ST e

Figure 7: Sinkhole picture 1 [Source: (News, 2015)]

The sinkhole caused one of Greater Manchester’s busiest roads to remain
closed for ten months and caused congestion around the city due to large
volumes of traffic being diverted. (News, 2015, 2016). Heavy rainfall has the
ability to affect traffic flow at an alternative location due to the reduction in
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visibility, causing a driver to reduce their speed and the driver behind them to
reduce their speed more than the person in front until traffic builds up causing
congestion (Li and Chen, 2014).

Figure 9: an example of how rain at location A would cause congestion at
location C [Source: Author]

Figure 9 shows that when heavy rainfall happens at Sensor A, vehicles speed
would be reduced over a short period and by the time the vehicles are
monitored at sensor B, the traffic flow would become a bound flow. Due to
the cause and effect of traffic flow and the reduction of vehicle speeds, it is
inevitable once vehicles reach sensor C there will be heavy traffic due to the
reduction of speed prior to sensor C, which is originally caused by the heavy
rainfall at sensor A (Li and Chen, 2014). Additionally, if the traffic is monitored
in reverse. It is possible free-flowing traffic could still exist because the rain
IS occurring at sensor A.

Extreme weather such as rainfall is one of the leading causes of non-recurrent
congestion (Changnon, 1996; Koetse and Rietveld, 2009; Department for
Transport, 2014). Thus, making it extremely difficult to predict without the
relevant data source/s to monitor weather changes in real-time and a unique
algorithm capable of identifying weather patterns changes.

2.4.10 Social media

Social media applications, such as Facebook and Twitter are becoming a more
widely used source of data for analytical and research purposes. Previously,
Twitter has been used to predict ‘am’ recurrent congestion (Yao and Qian,
2021) and was chosen to be used because it was claimed that traditional
methods, such as autoregressive and spatio-temporal models are ‘extremely
limited’. However, (Yao and Qian, 2021) noted one of the limitations of using
social media, such as Twitter is spam and advertisement posts which are
posted by bots. Although this research has demonstrated it is possible to use
social media for predicting traffic, what it demonstrated was extremely limited
as it was only capable of being able to predict traffic patterns for the next day.

Furthermore, Twitter has been used to identify non-recurrent congestion by
identifying road traffic incidents in China (Luan et al., 2021). In 2014, Twitter
was also used to monitor road traffic congestion by observing tweets, and the
use of specific words to describe road conditions, such as ‘slow’ or
‘congestion’. Then a model that uses traffic language was developed by
(Chen et al.,, 2014) to help identify large-scale events that have the
consequence of congestion. (Chen et al., 2014) observed three technical
challenges of using Twitter to monitor road traffic, this is due to the
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multifaceted nature of Twitter, which requires pedestrians, passengers, and
drivers to be treated as sensors. These ‘sensors’ are required to observe the
physical world and record observations accurately, which can cause a few
technical challenges to arise. These challenges are language ambiguity,
geographic location uncertainty, and uncertainty between the interactions of
road traffic-related incidents (Chen et al., 2014).

In addition to the challenges mentioned above, a study using Twitter to analyse

people's behaviour in a natural disaster found that people tend to add
personal feelings and options to their tweets (Hara, 2015). This is a potential
problem when identifying congestion from personal tweets.

2.5 Existing models and techniques

Ample research has been focused on a diverse set of aims such as time-saving

(Yang, 1997; Tsekeris and Geroliminis, 2013; Colak et al., 2016; Kaddoura
and Nagel, 2016); reducing the impact (Arampatzis et al., 2004; Verhoef and
Rouwendal, 2004; He et al., 2016); detecting road traffic incidents (Sheu and
Ritchie, 1998; Pan et al., 2013; Steenbruggen et al., 2016); analysing and
developing new policies for TMSs (Nankervis, 1999; Van Schijndel and
Dinwoodie, 2000; Reggiani et al., 2015) and although there are several
individual aims mentioned, they all have one primary aim in common, which
is to mitigate against the problem of road traffic congestion; using their own
unique approaches, such as developing a vehicle-to-vehicle network,
comparing similar techniques, data sources and measurements; with the aim
of finding the optimal solution by modifying parameters.
Additional approaches, such as controlling traffic (Wen, 2008; Kaddoura and
Nagel, 2016) by setting restrictions on turning, speeds, and changing signal
patterns and mitigation (Isa et al., 2014; Liu et al., 2015; Shao et al., 2015) of
traffic towards less congested areas with the objective to lessen the effects
of road traffic congestion.

Popular ‘policy’ approaches, which are an alternative to the ‘technological’
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approaches, mentioned previously are encouraging behaviour changes. For
example, charging to entering congestion zones, increasing parking charges,
creating bus-only lanes, and providing cheaper public transport or even a
hybrid of some of the mentioned approaches have been explored by
transport managers.

Models of congestion

In the earlier years of modelling congestion, a ‘Two-Fluid’ approach was

conducted by (Herman and Prigogine, 1979), which looked at the relationship
of the evolution of speed, which assesses how road users take different
approaches to achieve their desired speed. However, this tends to cause
conflict between faster and slower road users. The crucial limitation of this
approach was the fragmented and random data being manually collected
across several cities within the United States. This was due to the lack of
technology able to gather data in 1979.
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With the advancement of technology, newer data sources which are more
accurate become available. However, even with newer data sources slowly
becoming available, the focus on modelling road congestion is still primarily
done through modelling demand, using models, such as the bottleneck
model, Origin-Destination (OD) model, and the bathtub model which has
been reviews and improved up on by other researchers (Arnott and Buli,
2018; Jin, 2020; Bao et al.,, 2021). These models will now be briefly
described.

2.5.2 Bottleneck model

A review was conducted by (Arnott et al., 1993) into numerous demand models
known as ‘bottleneck models’, which were basic, used fixed number of
drivers, elastic demand, capacity arbitrary, optimal capacity and the self-
financing of capacity. The review argued that peak-period congestion is
poorly specified and focused mainly on social costs such as user demand
and available capacity; not considering the consumers’ behaviour decisions.
For instance, where a user trades the convenience of time with the
congestion cost such as queuing.

The weakness of these models is the lack of data sources capable of measuring
the decision of users and relies only on a single data source, which measures
the capacity at a link or intersection vulnerable to a bottleneck occurring.

2.5.3 Bathtub model

20 years later (Arnott, 2013) published a paper with the aim of improving the
bottleneck model and producing a new approach to the demand models. He
developed a concept of ‘A bathtub model of downtown rush-hour traffic
congestion’ that was built upon a conversation with William Vickrey a few
years before his passing. Arnott coined the term ‘bathtub model of the road
traffic congestion’ as a dynamic approach to the demand models, where a
disruption at one location can instantaneously spread to all other locations.

The Bathtub model was an improvement on his previous work by simulating a
whole city (Manhattan) and with the addition of manually collected real world
data to validate the model functionality. The model used two dimensions,
which are capacity and flow. These are essential for the model to work. Think
of the bathtub as Manhattan. In addition, cars entering Manhattan traffic
stream, come from either across the bridges, tunnels or from parking spaces
in Manhattan. These cars correspond to the inflow of water into the bathtub.
Cars leaving the traffic stream, by either entering parking spaces or exiting
Manhattan across the bridges or through the tunnels, corresponds to the
outflow of water from the bathtub. The height of the water within the bathtub
corresponds to the traffic density.

Figure 10 shows there is a clear connection between traffic velocity and traffic
density and how velocity and density relate to the three traffic flow stages,
free flow, bound flow, and congestion.
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Figure 10: Traffic Flow Diagram [Source: Author]

Equation 1 shows how traffic flow (F), which equals density (D) times velocity (V)
is used to try and prevent congestion and to retain a consistent traffic flow.

(F=D.V)
Equation 1: Traffic Flow

The number of vehicles entering the city during the morning rush hour traffic is
required to be equal or less than the number of vehicles leaving the city. If
these requirements are not met, the free flow state will change to a critical
state in which congestion will then occur. The weakness of this model is, once
the capacity within Manhattan has been reached, you cannot merely turn off
the taps to restrict the flow into the city, without causing a build-up of traffic
at the bridges and tunnels into Manhattan, creating numerous bottlenecks
around the perimeter.

2.5.4 Origin to Destination model

Numerous researchers such as Guo and Huang, (2009), Wu et al., (2015) and
Othman et al., (2015), have investigated OD (Origin to Destination) models.
OD models are then used within several TMS, such as RGS which are
designed to inform road users of the best route to complete their journey, be
it only a link or across a whole network. This is achieved by mapping all links
and intersections within a network and calculating a cost for each, with the
parameters being the cost of travel, time, speed, flow, and any road events
that could increase the time to reach the destination. RGS has been relatively
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successful over recent years and is constantly improving by implementing
new techniques, which the OD models do not incorporate. For instance, road
users’ behaviours and choices can have a large impact on the optimal route
taken by alleviating demand on the network and reducing the time required
to reach the chosen destination (Colak et al., 2016).

2.5.5 Data analysis and geospatial techniques

Over the years, many conceptual models of congestion have been developed,
using different networks sizes ranging from an intersection (Wen, 2008; Pan
et al., 2013; Djahel et al., 2015), link (Thomas, 1998; GUO and HUANG,
2009; Wu et al., 2015), highway (Sheu, 1999; Fernandez-Caballero et al.,
2008; Wang et al., 2009), city centre (Sheu and Ritchie, 1998; Riad and
Shabana, 2012; Patire et al., 2015) and a whole network (Emmerink et al.,
1995; Arnott, 2013; Chen et al., 2014). In addition to the various networks
used, various methods, data sources, and dimensions were used in
experiments with a combination of different techniques. Although throughout
the literature many techniques were observed, it is possible to
compartmentalize the techniques used into two separate categories, Data
Analysis and Geospatial aspects.

2.5.5.1 Data analysis

Data Analysis (Liang and Wakahara, 2014; Othman et al., 2015; Shekhar et al.,
2015) is the process of inspecting, cleansing, transforming, and modelling
data with the primary aim of discovering meaningful information that can be
used to help support decision-making. Data fusion, data mining, data
processing, data interpretation, and machine learning have all been
incorporated into data analysis due to the overlapping of these techniques.

Data fusion (Zheng et al., 2014; Radak et al., 2015; Wu et al., 2015) is a process
of integrating multiple data sources and dimensions representing the same
real-world objects into a consistent and meaningful representation.

Data mining (Kianfar and Edara, 2013; Pan et al., 2013; Li and Chen, 2014) is
becoming more regularly used in many disciplines, and it is primarily used
within computer science. The primary aim of data mining is to use
computational procedures to determine patterns(Pan et al., 2013; Shekhar et
al., 2015) within large data sets involving approaches at the intersection of
database systems, statistics, artificial intelligence, and machine learning.

Data processing is the carrying out of operation, by either a human or computer
to retrieve, transform, or classify information.

Data interpretation is the final stage of data analysis and is a vital stage. Data
interpretation is the process of assigning meaning to the processed data,
which will allow a conclusion to determine whether the information collected
was significant.

Machine learning is interrelated to data mining because data mining is one of the
crucial components of machine learning, and both techniques are used in an

25



attempt to find meaningful patterns within the data, however, the main
difference is machine learning tries to establish an automated correlation to
a classification.

2.5.5.2 Geospatial aspects

‘Is the geographic world a jigsaw puzzle of polygons, or a club-sandwich of data
layers?’ was a question asked by (Couclelis, 1992). Figure 11 shows a visual
representation of a GIS (Geographic Information System) as a combination
of Computer Science and Geography. GIS systems include a database with
spatial and temporal characteristics to create computer-based information
systems capable of capturing, modelling, storing, retrieving, sharing,
manipulating, analysing, and presenting geographically referenced data.

Modelling » Presentation
Users |
™ Manipulation

__

Analysis » Communications and sharing

Data capture

Figure 11: GIS Visual Representation [Source: Author]

A GIS is a simplified view of the real world and has the capability to share
geospatial data between different Information systems or even between the
various components within a single information system. For applications such
as satnav, it is crucial to give the stakeholder the optimal route from point A
to point B in an acceptable timeframe. Therefore, making it vital to have a
well-maintained database management system (DBMS) that is reliable,
accurate, consistent, technology proof and secure.

Two GIS data models are Vector and Raster. Vector data represent space as a
series of discrete entity-defined points, polylines, and polygons, which tend
to have a static representation regarding X and Y coordinates. Raster data is
more appropriate when modelling continuous geographic phenomena such
as elevation of land usage. Over the years, GIS has become increasingly
more popular and is being more frequently integrated into transportation
applications such as RGS and TMS. The use of GIS has become so popular
that transportation applications using GIS are routinely referred to as GIS-T
(Waters, 1999). An example of what GIS can be utilised for is plotting
government data on road transport accidents to identify clusters, the data is
published by the Department for Transport and is widely available at (Gov.uk,
2017). These records provide details about the circumstances of all road
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accidents in Great Britain from 1979, the types (including Make and Model)
of vehicles involved and the significant casualties. Figure 12 shows a map of
all accidents from 2015 in the Northwest (NW) of England, using the data
provided by the Department for Transport.

2015 Recorded Accidents in the NW

Figure 12: Road Traffic Accident Records for North West England 2015
[Source: Author]

Furthermore, GIS allows for the plotting of sensors such as passive sensors
(Bluetooth) and Automatic Traffic Counters in Figure 13, with the powerful
spatial analytic tools making it possible to create density maps to show where
the majority of sensors are located. See Figure 14.
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BT & ATC Sensors Across Greater Manchester

Figure 14: Manchester BT and ATC density Map [Source: Author]

28



It is vital to use network analysis to calculate the distance between two points on
a map to plan routes, calculate driving time and locate facilities. Equation 2:
Euclidean distance (d) was used to derive the distance between a and b with
the calculation (Figure 15).

d(a,b) = J(ax —by)? + (ay - bY)Z

Equation 2: Euclidean Distance
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Figure 15: Euclidean Distance Example

Although, the Euclidean distance would normally be fine to calculate the distance
between two points, such as ‘@’ and ‘b’. Assume both points were on the
same link and did not have any obstacles in the way, such as one-way
systems, a road closure due to a traffic incident, or roadworks then Euclidean
distance is an easy calculation to understand. However, if the points are on
the opposite side of a river with the next nearest bridge 1km away an
alternative method of calculating the distance would be needed to calculate
an accurate travel time and distance.

2.6 Chapter conclusion

This chapter has identified several gaps within the literature which this research
will go on to address. The first gap is the lack of a clear and consistent
definition of what is meant by ‘urban road congestion’. The second gap this
research will address will consist of trying to re-evaluate whether the ‘generic’
and ‘commonly’ used classifications of congestion known as recurrent and
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non-recurrent are still relevant and provide a true representation of urban
road congestion.

This will be achieved by ascertaining whether a more granular classification is
required to provide a better-suited definition of urban road congestion that is
clearer and more meaningful. Both the first and second identified gaps will
be addressed in chapter three with the development of the Urban Road
Congestion Conceptual (URCC) model, which will consist of several
analogies and a universal urban road congestion ontology. The third gap
identified is the lack of real-world real-time big data datasets in relation to
urban road congestion. This will be addressed in chapter four where data
from several different sources will be integrated into a single Manchester
Urban Congestion Data (MUCD) dataset. The fourth gap identified is a lack
of useful visualisation and data analysis tools that can provide high-quality
meaningful information. Therefore, a toolkit called Transport Incident
Manager (TIM) which will be used for visualising and analysing the MUCD
dataset will be introduced in chapter five.

Finally, this research will address the lack of machine learning being used to gain
meaningful qualitative information from quantitative data providing useful
context regard urban road congestion to a stakeholder. Instead of saying
“CONGESTION AHEAD EXPECT DELAYS”, it would be more beneficial to
say, “CONGESTION AHEAD IN 2 MILES, DUE TO AN MINOR ACCIDENT
AT 15:45 CAUSING INCREASED JOURNEY TIMES”. Additionally, the
review has identified a lack of interpretable prediction models of urban road
congestion using real-world, unbalanced, imperfect datasets, such as the
MUCD dataset. Both issues will be addressed in chapters six and seven
respectively.
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Chapter Three: Conceptual model; analogy and ontology

3.1 Introduction

This chapter will attempt to answer the research question (RQ1) — “Is it possible
to provide a clear conceptualisation of urban road traffic congestion using an
ontological model?” by clarifying formally and explicitly what is meant by road
congestion which has been previously difficult to clearly define. Furthermore,
to answer this question, this chapter will focus on the development of an
Urban Road Congestion Conceptual (URCC) model using a mixed-method
approach.

The URCC model will consist of two components: the first is an analogical
component and the second is an ontological component. Using this mixed-
method approach will help to provide a better understanding of the problem
as well as provide the foundation for the development of a real-world quasi-
real-time spatial-temporal big data dataset and analytics. The main problem
with modelling urban road congestion is the lack of a clear and consistent
definition of what is meant by ‘road congestion’ in an increasingly
multifaceted urban context and how it relates to the events that cause it.

Due to the complex nature of road congestion, it is not possible to find a single
definition that can be used to capture the semantics of the many diverse types
of congestion and the events that cause it. This limits both the road user and
transport managers ability to make better decisions. For instance, when
defining congestion, the UK’s Department for Transport (DfT) uses terms,
such as physical, which is characterised by considering speeds, volume,
and/or journey time on the network and relative, which is defined by the road
user's expectation to define congestion (Department for Transport, 2013,
2018). When defining congestion, the U.S Department of Transportation
(DoT) uses terms, such as clog, impede, and excessive fullness to describe
congestion (U.S Department of Transportation, 2018). Furthermore, when
academics define congestion they use terms, such as ‘recurrent’ (Chen et al.,
2014; Djahel et al., 2015; Bifulco et al., 2016), ‘non-recurrent’ (Anbaroglu et
al.,, 2014; Chen and Ahn, 2015; Chen et al., 2016), ‘pre-congestion’
(Somuyiwa et al., 2015), ‘free-flow’ (Knoop et al., 2008; Faro and Giordano,
2016), and ‘hypercongestion’ (Economics et al., 2003; Fosgerau and Small,
2013; Jin et al., 2015).

Having so many terms to define congestion without any clear and consistent
explanation of what they all mean, makes it almost impossible for all types of
stakeholders (road users, domain experts, and transportation researchers) to
comprehend what is meant by congestion and how it will impact them.
Consequently, strengthening the argument concerning the apparent absence
of consistency due to the multifaceted nature of congestion and how it is
perceived. Furthermore, it has demonstrated how important it is that a
universal model needs to be developed that is capable of providing a
consistent understanding of what is meant by congestion (including the
causes) allowing a variety of stakeholders to gain the knowledge from an
explicit and formal description of the many concepts (objects) of the complete
domain (Tadeusiak, 2014). It will also enable road users to make better-
informed choices before and during their planned journey and allows domain
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experts to be better equipped to choose an optimal response, such as
extending or reducing the traffic light sequences, using Variable Messages
Signs (VMS) to warn stakeholders of a road traffic events before they become
impacted, and/or diverting traffic to reduce the level of the impact on the
whole network based on the knowledge gained from data analytics. All this
can be achieved through the development of the URCC model being
proposed in this chapter.

This chapter is organised as follows: Section 3.2 will provide a comparison of
new concepts of congestion. Section 3.2.1 will introduce a third type of road
congestion called ‘semi-recurrent’. Section 3.3 sets out to describe the
methodology on how the URCC model is developed. Section 3.4 will provide
a brief overview of what the URCC model consists of. Section 3.4.1
introduces and evaluates the four analogies of road congestion which are
used to support the development of the associated ontology. Section 3.4.2
describes the methodology for creating the road congestion ontology. Section
3.5 introduces and evaluates the five core ontologies which are fundamental
components of the URCC model. Section 3.6 concludes the chapter.

3.2 Comparison of a new concept of congestion alongside the
traditional concepts

Road congestion is not a new phenomenon and remains an outstanding problem
for road traffic users. With every civilization comes congestion with many
unique approaches being taken to try and overcome its consequences. For
example, Julius Caesar noticed narrow city streets are becoming unsafe for
pedestrians due to the increasing use of good carts and to solve this problem
he introduced a ban on good carts during the daylight hours. Nevertheless,
this did not solve the problem, it just shifted the time period the problem
occurred (Downs, 2005). This example was used to demonstrate how
extensive road congestion has been and what seems to be a good idea does
not often solve the problem.

Road traffic congestion has a multifaceted nature, and this is evident in the way
it has previously been described by road users, domain experts, and
researchers to define the perception of congestion (Department for
Transport, 2018; U.S Department of Transportation, 2018). All the terms
mentioned in section 3.1, appear to be meaningful whilst also remaining
vague and does not provide any meaningful knowledge. Additionally, road
traffic congestion is typically distinguished between two vague types: non-
recurrent and recurrent congestion, the definitions of which are summarised
in Table 3.
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Table 3 Definition of both types of congestion currently used.

Congestion Type Definition References

Occurs from unpredictable
incidents such as traffic
accidents, work zones, extreme  (Cassidy and Bertini, 1999;

Non-recurrent weather conditions and some Verhoef and Rouwendal,
special events like music 2004; Djahel et al., 2015)
concerts and important sports
events

Occurs when significant
amounts of vehicles

simultaneously use a limited (Verhoef, 1999; Hendricks
Recurrent road space, such as on a et al., 2001; Arnott, 2013;
weekday morning and Fosgerau and Small, 2013)

afternoons peak hours’ traffic
jam situations.

However, this thesis argues there is a need for a third type of congestion called
semi-recurrent. Semi-recurrent congestion will be described in section 3.2.1.

3.2.1 The coining of semi-recurrent congestion

Figure 16 introduces the four characteristics that can be used to distinguish
between each type of congestion and convert the current binary classification
into a multiclassification. The four characteristics are: predictable, non-
predictable, cyclical, and non-cyclical. The term predictable is used when a
stakeholder has prior knowledge of an event that will have an impact on the
road network. The term cyclical is used when the event happens at the same
time of day and day of the week. Non-predictable and non-cyclical are when
there is no known knowledge or pattern for an event. For instance, a traffic
event that is predictable and non-cyclical can be distinguished separately
from events that are either predictable and cyclical or non-predictable and
non-cyclical.
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Predictable Non-Predictable

Semi-

Non-Recurrent
Recurrent

Figure 16: The proposed three types of congestion. [Source: Author]

Recurrent congestion is the consequence of events, such as ‘rush hour’ which
are predictable and cyclical occurring Monday to Friday around 8 am in the
morning and 5 pm in the evening. Non-recurrent congestion is the
consequence of random events, such as ‘road accidents’ and ‘unplanned
roadworks’. These types of events are not predictable and not cyclical
because they happen at any time of day and day of the week, meaning the
impact on traffic cannot be predicted. Semi-recurrent congestion is the
consequence of scheduled events, such as a ‘football match’, ‘music
concerts’, and ‘planned roadworks’. These types of events are not cyclical
because they do not happen at the same time or on the same day. However,
they do tend to be predictable due to schedules, which are created in
advance.

Table 4 shows a comparison of several events and each event will have its own
impact on the road network at different scales. For instance, a concert would
impact a neighbourhood around the concert hall. A marathon requires roads
to be closed causing an impact at a city scale. A road accident happens at a
single point on a link, but the impact diffuses and has a further impact on the
surrounding links (known as Point-based diffusion).
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Table 4 Comparison of events, the classification of congestion types, and
its entities by examples

Event Congestion Predictable Temporal Scales
Type
. Non- :
Concert Semi-recurrent yes . Neighbourhood
cyclical
Football Match Non-recurrent No Non- Neighbourhood
(Cup) cyclical
FESHEE [ ElE Semi-recurrent Yes No'n- Neighbourhood
(League) cyclical
Marathon Semi- Yes Non- City
Recurrent cyclical
Parade =il Yes NERE City
Recurrent cyclical
Road Traffic Non-recurrent Non- Point-based
. . No . . )
Incident congestion cyclical diffusion
Roadworks Semi-recurrent Yes Non- Point-based
(Planned) cyclical diffusion
Roadworks Non- Point-based
Non-Recurrent No . e
(Unplanned) cyclical diffusion
Rush Hour
(Wegkday S Recurrent Yes Cyclical City-scale
morning and
afternoon)
. Non- .
Terrorist Act Non-recurrent No . Variety
cyclical

3.3 Methodology for a universal conceptual model

The focus of this section is on developing a universal URCC model that allows
different types of stakeholders to understand and benefit from gaining
valuable knowledge of the multiple types of congestion, the associated
events, and the impact on an urban network.

3.3.1 Overview: Universal conceptual model methodology

The methodology for creating a universal URCC model consists of three key
stages, which are described as follows:

1) Perform a comprehensive review of the domain, analogies related to the
domain, and any relevant ontologies that could be incorporated within the new
ontology (Abberley, 2016; Abberley et al., 2017).

2) Using the review, gain an understanding of previously used concepts and
develop new analogies, which are capable of capturing the required knowledge
and explaining terminology in a manner a layperson would understand.

3) Using the knowledge gained from the analogies and comprehensive review,
develop a road congestion ontology.

35



In order to validate the universal URCC model in a real-world situation. A quasi-
real-time real-world dataset with spatial-temporal characteristics is required.
The dataset will need to consist of journey time and traffic volume data, which
is generated from real-world sensors around Greater Manchester, UK.
Furthermore, additional spatial-temporal data, such as road accident data
and event information will be collected and merged with the sensor data. The
data being collected and processed needs to be as close to real-time as
possible to be able to identify incidents and allow stakeholders to respond in
a timely manner. This dataset will be introduced in chapter four.

3.4 Urban road congestion conceptual model

To solve the vagueness surrounding congestion, modelling techniques have
previously been used to provide a certain level of clarification of what is meant
by road traffic congestion. For instance, the bathtub model of downtown rush-
hour traffic which was developed by (Arnott, 2013), only measured recurrent
congestion by simulating the volume of vehicles entering or exiting
Manhattan at peak times in the morning, which is represented by the water
flow. However, this model has numerous weaknesses, which includes only
exploring events that cause recurrent congestion, only considering a large
‘unique’ city, and only utilising a single dimension of data which was volume.

Another popular model is the bottleneck model, which signifies a limited or fixed
capacity located at a single point on a link where the number of vehicles
arriving exceeds this limit, causing congestion, i.e., an entry point to an
industrial park (Arnott et al., 1993; Kianfar and Edara, 2013). Again, this
model has several weaknesses, for instance, this study analysis a single
point on a link, which consequently, does not consider the consequence of
traffic building up on the surrounding network. Therefore, the URCC model
being introduced will try to address some of these weaknesses and will
consist of two main components which will provide two distinctive
explanations of what is meant by urban road congestion.

The first component is an analogical approach (section 3.4.1) which will provide
a high-level explanation of road congestion and explains how all the concepts
interlink with each other, in a manner a layperson would understand. The
second component is an ontological approach (section 3.4.2) which will
provide a logical solution for creating a formal and explicit definition of urban
road congestion, allowing more advanced stakeholders to gain greater
knowledge, thanks to its ability to bridge natural language (informal) and
programming language (formal).

Thanks to its high degree of expressiveness, the use of ontologies is suitable to
ensure greater interoperability among agents and different applications
involved in intelligent transportation systems (ITS) (Studer et al., 1998;
Fernandez and Ito, 2015). Ontologies also provide a common vocabulary in
a given domain and allow defining, with different levels of formality, and the
meaning of terms and the relationships between them.
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3.4.1 Analogies of congestion

Analogies are vital to producing a conceptual model that is universal and can be

understood by anyone, ranging from a layperson with no knowledge of road
congestion to a domain expert. Therefore, the use of analogies for the URCC
model was chosen. Analogies are used to simplify conceptual modelling
(Breitman et al., 2007), allowing familiar conceptual models to be broken
down into fragments and reinterpreted providing context to newer conceptual
models in alternative domains. Therefore, there is, a need to construct a
model, which encompasses a universal understanding of the multifaceted
nature of road congestion, overcoming the weaknesses of the previous
models by capturing the causes of congestion and the impact congestion has
on the network at multiple scales. For example, it can be used to explore the
impact of an accident on a local (link) level or explore the impact of a premier
league football match on a global (city-scale network) level.

The URCC model introduces a more granular classification of urban road

congestion by breaking away from the traditional two types of congestion,
which are ‘recurrent’ and ‘non-recurrent’, introducing an extremely important
third type of congestion which has been coined by the author as ‘semi-
recurrent’ and was introduced in section 3.2.1 and will be discussed further
throughout this chapter. The analogy component of the new URCC model
proposed in this chapter is made up of four interlinking analogies defined as
‘a raindrop landing on a leaf, which is floating in a bathtub with an ever-
changing water temperature’. These analogies can be broken down into three
primary concepts (bathtub, leaf, and raindrop) and one secondary (water
temperature) concept.

The four concepts are defined as follows: The first is a well-known concept called

the bathtub model (Arnott, 2013) where the bathtub represents the whole
network and the water within the bathtub represents the number of vehicles
using that network. However, due to the limitation of the bathtub model, this
research has developed three new concepts to be able to incorporate
scalability, non-recurrent congestion, and severity. These three unique
analogies are a ‘leaf model’ that represents a set of connected links along a
route, a ‘raindrop model’ that represents an event that has the consequence
of congestion, and the final concept is ‘water temperature’ that represents the
weather condition which can increase the severity of an event and will have
an impact on the network. These four analogies are individual components
that relate to each other to create a single model.

A ‘bathtub’ represents the whole network and the water that represents the
volume of vehicles using the network.

A ‘leaf’ represents a set of links between an origin and destination along the
route.

A ‘raindrop’ represents a congestion-causing event and its level of severity.
An ever-changing ‘water temperature’ represents the weather condition.

Figure 17 shows a visual representation of the concept ‘Leaf inside a Bathtub’.
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Figure 17: A conceptual model of a Leaf inside a Bathtub

3.4.1.1 Bathtub

The bathtub analogy coined by (Arnott, 2013), is used to provide an
understanding of how a major city, such as Manchester, UK. The road
network is impacted by large quantities of vehicles entering the city on a daily
basis, this phenomenon of vehicles entering the city’s urban network from the
6-lane highways that circles the city causes recurrent congestion. These
vehicles correspond to the inflow of water into the bathtub, equally, cars
leaving Manchester would correspond to the outflow of water from the
bathtub. The ever-changing, fluctuating water level corresponds to the
density of traffic within the city and as the water increases the volume of traffic
becomes higher and speed becomes slower. Once the water level reaches a
critical level, the bathtub will take an excessive amount of time to drain. This
phenomenon has been referred to as ‘hypercongestion’ (Verhoef, 1999;
Fosgerau and Small, 2013).

3.4.1.2 Leaf
The bathtub analogy provides a theoretically sound method of modelling
recurrent congestion at a city scale. However, it lacks the ability to model
congestion on a neighbourhood scale, such as a link or a set of links, which
are vulnerable to non-recurrent and semi-recurrent congestion caused by
road traffic incidents, public events, roadworks, and terrorist attacks. Non-
recurrent congestion contributes between 40% and 70% of all congestion
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(Kwon et al., 2006) and with the introduction of semi-recurrent congestion,
this research has deemed it necessary to develop the following ‘leaf model’
concept.

Figure 18 shows a leaf with an origin, O, destination, D, and six additional nodes
{1,...,6}, that represents a set of links within the whole network. The midrib
vein that travels through the centre of the leaf corresponds to an arterial road
within Manchester (UK), such as the A6 or A57. The lateral veins, which arise
from the midrib vein, correspond to the less important roads that tend to lead
through housing estates. These lesser important links tend to be used when
an incident has occurred, and stakeholders attempt to avoid congestion.
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Figure 18: Leaf Concept

3.4.1.3 Raindrop
A raindrop signifies the severity of an event that has a consequence of
congestion and has an impact on the road network, whether it is recurrent,
non-recurrent, or semi-recurrent. A number of studies have been conducted,
identifying an association between road congestion and events, such as
football matches (Isa et al.,, 2014; Gould and Abberley, 2017), concerts
(Anbaroglu et al., 2014; Anbaroglu et al., 2015), and road accidents (Wang
et al., 2009; Radak et al., 2015; Abberley et al., 2017). The impact of the
events is dependent on the severity of the event. For example, depending on
the severity, the impact of an accident could be very minimal, and the road
segment could be cleared within minutes, or it could be extremely severe and
will require several hours for the road network to return to the expected

conditions.

Table 5 shows a scale of severity with regards to a road accident, which ranges
from slight to fatality. These road accidents are recorded by local law
enforcement (Transport, 2004).
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Table 5: Instructions for completion of a road accidents report

Severity  Description

Fatal Where death occurs in less than 30 days as a result of the accident.

Injuries sustained include fracture, internal injury, severe cuts, crushing,
burns, concussion, severe general shock requiring hospital treatment,

Serious | detention in hospital as an in-patient, either immediately or later and
injuries to casualties who die 30 or more days after the accident from
injuries sustained in that accident.

Injuries sustained include sprains, neck whiplash injury, bruises, slight

Slight cuts, and slight shock requiring roadside attention.

Therefore, the size of the raindrop corresponds to the severity of the incident, for
instance, a small bump that does not require law enforcement to attend would
be represented by a small raindrop with little impact on the traffic flow, speed,
or journey time. A fatal accident usually requires several emergency services
and would be represented by a large raindrop which, causes a mass
disruption to the traffic flow, speed, and journey time of the stakeholders.
Furthermore, the concentrated incident at a point would ripple out to the
surrounding neighbourhood. Additionally, other types of events are
represented by the raindrop and have a similar profile as a road accident. For
example, a football match is similar to a road accident with a small raindrop
that has little impact being a small team league game, a large raindrop with
a moderate impact being a cup game, and a severe impact being a world-
ranking match.

3.4.1.4 Water Temperature

The weather has a passive impact on all three of the primary concepts previously
discussed above. For instance, if the temperature were to drop to minus
degrees Celsius, snow and ice would likely occur impacting on the inflow and
outflow of the water within the bathtub causing congestion and hyper-
congestion sooner than expected. Additionally, in bad weather, traffic will
become slower because of stakeholders requiring to leave extra stopping
distance, reducing speeds, and setting of earlier to reduce the chances of
being caught up in a road accident. Weather also has an impact on roads
similar to the impact it has on leaves. It causes damage to the surface and in
some cases, the damage is severe enough that it will cause non-recurrent
congestion, such as the giant sinkhole that occurred on one of Manchester’s
busiest roads (Gani, 2015).

Finally, incidents are also at the mercy of the weather, road surfaces can become
covered in snow or excessive amounts of water as a consequence of extreme
rainstorms, the correlation of a possible incident occurring increases and
causing the severity to be more serious than if it was good weather. Out of
all four concepts, the weather condition has been categorised by this
research as a secondary concept. However, it has an influence on all three
of the primary concepts.
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3.4.1.5 Summary of the four analogies of congestion

To summarise the analogies, they provide a simplistic explanation for things that
impact congestion, which can be understood by the stakeholders. For
example, the bathtub and leaf analogies refer to the spatial context of a
network, such as global scale or neighbourhood scale. The raindrop analogy
refers to an event that has different levels of severity and has the
consequence of congestion. Finally, the water temperature refers to weather
and how extreme weather can have an adverse effect on either the road
network or a specific event.

3.4.2 Ontologies of congestion

One of the gaps within the literature is a distinct lack of a clear and consistent
definition of what is meant by ‘urban road congestion’. This lack of clear and
consistent definition makes it impossible to answer simple questions with
some level of clarity, which stakeholders, such as road users or transport
managers require the answers to and tend to ask, assisting them with better
decision-making. Such questions can be as simple as ‘what is meant by
congestion’, ‘what is the cause of congestion’ and ‘where has congestion
occurred’. These questions may appear easily answered but if you asked
these questions to a layperson, they would provide an implicit and informal
response that is almost as vague as what has been identified in the literature
written by both academics and transport managers.

When transport managers and academics have previously discussed the
aspects of road traffic congestion, they have used vague terms without fully
providing a formal and explicit definition of what they mean, these terms are
‘recurrent”, “non-recurrent”, “pre-congestion”, “free flow”, “bound flow” and
“hyper-congestion”. To further support this argument, two of the world’s
leading transport departments definitions of road traffic congestion will be
evaluated. The two transport departments are as followed, the Department
for Transport (DfT) within the United Kingdom (UK) and the United States
(US) Department of Transportation (DoT). The DfT (Department for
Transport, 2013) identifies the need to provide a clear definition of road traffic
congestion, in an attempt to solve this, they provide a distinction between two
aspects, which are physical and relative congestion. The latter is defined by
the road user’s expectation rather than using a physical definition, which
considers characteristics such as speeds, capacity, and traffic flow on the
network.

Whereas the report on traffic congestion (U.S Department of Transportation,
2018) by DoT focuses primarily on a relative approach to defining congestion
using terms such as ‘clog’, ‘impede’ and ‘excessive fullness’ and adds ‘For
anyone who has ever sat in congested traffic, those words should sound
familiar’. In addition, in the same report, it is noted that congestion is typically
related to an excess of vehicles on a portion of roadway or pedestrians on a
sidewalk. Analysing both of these approaches of defining congestion has
strengthened the argument of an apparent absence of consistency, which is
largely due to the multifaceted nature of congestion and how it is perceived.
Because of this, it is vital to be able to develop a way of providing an informal
and explicit understanding of the domain, which both a person and non-
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person such as an Intelligent Transport System (ITS) will be able to
understand.

Due to the concerns mentioned above, an ontology is a logical solution, thanks
to the ontological ability to bridge natural language (informal) and
programming language (formal). In addition, its high degree of
expressiveness, makes the use of ontologies suitable to ensure greater
interoperability among agents and different applications involved in intelligent
transportation systems (Studer et al., 1998; Fernandez and Ito, 2015).
Ontologies also provide a common vocabulary in a given domain and allow
defining, with different levels of formality, and the meaning of terms and the
relationships between them.

3.4.2.1 What is an ontology?

An ontology is defined as a ‘formal, explicit specification of a shared
conceptualisation’ (Kohli et al., 2012; Gould et al., 2014) and is made up of
objects, properties, facets, and instances. Ontologies are a logical solution
for developing a conceptual model because of their ability to bridge natural
language (informal) and programming language (formal). In addition, thanks
to its high degree of expressiveness, the use of ontologies is suitable to
ensure greater interoperability among agents and different applications
involved in ITSs (Studer et al., 1998; Fernandez and Ito, 2015). Ontologies
also provide a common vocabulary in a given domain and allow for defining
with different levels of formality, the meaning of terms and the relationships
between them (Fox, 2015).

3.4.2.2 Ontological methodology

The method of using ontologies for developing a conceptual model has many
benefits due to its ability to provide a ‘formal, explicit specification of a shared
conceptualisation’ (Staab and Studer, 2007), meaning it allows integration,
decision support, semantic augmentation, and knowledge management. In
addition, ontologies provide a visual representation of the relationships
between individual objects, making it an ideal choice for developing a
multifaceted conceptual model. For the creation of the universal road
congestion ontology (which is one of the main components of the URCC
model), a highly cited methodology for creating ontologies by (Noy and
McGuinness, 2001) will be modified, which will reduce the suggested seven
stages down to five stages, these stages are:

Stage 1: Determine the domain and scope of the ontology.
Stage 2: Consider reusing existing ontologies.

Stage 3: Enumerate important terms in the ontology.
Stage 4: Define the objects and the object hierarchy.
Stage 5: Define the Object-Properties.

The two stages that are not being performed are:

Stage 6: Define the facets of the Object-Properties.
Stage 7: Create Individuals.
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Stages 6 and 7 are not being utilised because the aim of the ontology is to
explore the nature of congestion and help to define what is meant by urban
road congestion. In the proposed ontology, there are some high-level facets,
such as HighVolume and LowJourneyTime. These facets are as much detail
as a stakeholder requires and what is meant by the facets depends on the
context. Additionally, because the ontology is not being used to classify road
conditions using a reasoner?! the creation of individuals is not required. Once
the ontology has been completed, the final step is to validate the conceptual
model using information for individual events that cause road traffic
congestion. This will be achieved once the dataset is complete and through
production of a case study described in chapter four.

3.5 A universal ontology of road congestion

This section uses both the literature review that was conducted in chapter two
and the newly coined concept of ‘a raindrop landing on a leaf, which is floating
in a bathtub with an ever-changing water temperature’ set out in section 3.4.1
to help complete the five stages.

Stage 1: Determine the domain and scope of the ontology.

The scope of the ontology is to provide a well-defined understanding of the
conceptual model, which will help to identify the optimal dimensions of
congestion, indicating which data sources are required. The author with the
support of domain experts from TfGM (TfGM, n.d.) and Transport for the
North (TfN) (TfN, n.d.), in conjunction with the comprehensive literature
review conducted in chapter two and the knowledge gained from the four
analogies, created the following statements to describe the domain.

e Road accidents have a consequence of congestion on the road network, as
described by the raindrop model in section 3.4.1.3.

e Aroad network is made up of links connected by nodes similar to the leaf model
in section 3.4.1.2.

e Several dimensions can be used to measure congestion. These include traffic
volume, occupancy, speed, velocity, and journey time. Some of which have been
used in the bathtub model.

e Aroad traffic event, such as an accident is an event that has a duration.

e The event has a consequence of congestion.

e Congestion has three main types: recurrent, non-recurrent and semi-recurrent.
These have been explored throughout this chapter and extensively within the
four analogies (section 3.4.1).

e An event that has the consequence of congestion happens at a point on the road
network, which is made up of several links and nodes.

e Links can have numerous lanes and are segments of a road.

e Having more lanes on a link increases the amount of capacity, which in return
will reduce the severity of congestion caused by an event, such as an accident.

1 A Reasoner is also known as a ‘semantic reasoner’, ‘reasoning engine’ or a ‘rule engine’ and is
a piece of software that is able to understand logical consequences from a set of rules or asserted facts.
Because a reasoner is not being used.
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Stage 2: Consider reusing existing ontologies.

The following three components from existing ontologies will be reused within
the universal road congestion ontology to provide a level of consistency
across the domain. Geospatial (Lieberman et al., 2015) is reused due to its
inclusion of spatial aspects, such as point. Owl-time (Cox and Little, 2017) is
reused because it is vital for anything that has a temporal entity. The two
main objects used within Owl-Time are instant and interval. Transport
disruption (Corsar et al., 2015), which is an extension of the ontology of the
event (Raimond and Abdallah, 2007) is reused because it captures a range
of events. These types of events cause the dynamic phenomena which the
universal ontology is trying to model.

Other ontologies, which have been considered by the author, would be the urban
density ontology (Chen et al., 2018), because it introduces objects, such as
‘boundary’ and ‘zone’, which will have provided a greater spatial
understanding of events that cause road congestion in a specific zone, such
as a rural area. Other spatial ontologies (Jung et al., 2013; Jelokhani-Niaraki,
2018), introduce spatial processes, which could be useful in the future.

Stage 3: Describing the important objects within the ontology.

In total, 63 objects were used to create the universal road congestion ontology.
A list of the important concepts and their retrospective descriptions can be
found in appendix 1.1 and these concepts and their associated descriptions
were implemented using Protégé (Stanford University, 2018)2.

The use of Protégé allows the universal road congestion ontology to be
formalised using the Web Ontology Language, which is designed to
characterise rich and multifaceted knowledge about things and will allow
multiple terms to be used for the same object. This is important because it
takes into consideration a mixture of languages, such as American English
and British English, many objects could be known by multiple names. For
example, Football is also known as Soccer and a motorway is also known as
a highway.

Stage 4: Define the objects hierarchy.

Within Protégé, all 63 objects are restructured into a hierarchy based on their
relationship with other objects. For instance, Figure 19 demonstrates that
both kick-off and full-time are an instance of instant and instant is a type of
time. This is important because it demonstrates the ‘is-a’ relationship
between the many objects within the ontology. For example, in Figure 19,
‘instant’ is a type of time, but time is not an instant.

2 Protégé is an OWL editor and a knowledge management system that can be used to check the
consistency of an ontology.
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Figure 19: Snapshot of object hierarchy in Protégé

A more in-depth example can be found in appendix 1.2.
Stage 5: Define the Object-Properties

Finally, after all the objects have been described and their hierarchy structure
has been defined, the final step is to create the Object-Properties which are
used to demonstrate the ‘has-a’ relationship. For example, the properties for
the object Event are ‘has-a’ beginning and ‘has-a’ end, which relate to the
object instant. Table 20 in appendix 1.3 shows the several domains, their
properties, and the range.

3.5.1 Implementation of the universal road congestion ontology

The construction of the universal road congestion ontology is made up of five
core ontologies, which are congestion, dimensions of congestion, direction,
events, and spatial. The core ontology congestion is visually represented in
Figure 20. Recurrent, semi-recurrent, and non-recurrent all have an fis-a’
relationship with congestion. Congestion ‘is-a’ consequence of an event,
which ‘has-a’ beginning, end, and duration. Additionally, it ‘has-a’ location,
which is a spatial thing.
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Figure 20: Ontology: Congestion

The other four core ontologies are dimensions of congestion (Section 3.5.1.1),
spatial (3.5.1.2), direction (3.5.1.3), and event (3.5.1.4). Finally, how these
four ontologies relate to each other will be discussed in section 3.5.1.5.

3.5.1.1 Dimensions of congestion

Figure 21 shows a visual representation of the concept of dimensions and its
relevant objects. Congestion can be analysed using several different
dimensions, such as speed, velocity, density, capacity, volume count, journey
time, and occupancy. Occupancy and journey time are both measured using
time. Velocity has a speed in a given direction. Speed can be either speed at
a point or an average speed between two points. Additionally, dimensions
have a magnitude level that can be used to analyse the road network
performance.
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Figure 21: Ontology: Dimensions

3.5.1.2 Spatial
In Figure 22, visual representations of the spatial concepts are presented. The

spatial concept is a vital part of the road congestion ontology because it
provides a scalable description of the impact of congestion caused by an
event. For example, an accident occurs at a point on a link, which is a road
that is part of a road network, and it would impact a location.
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Figure 22: Ontology: Spatial
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3.5.1.3 Direction

Figure 23 shows the representation of the concept of direction that has two main
types, which are relative and absolute. Absolute is used to provide a precise
position of a point or direction. For example, a point has coordinates that are
made up of longitude, latitude, and altitude. Other coordinates that are used
are degrees, minutes, and seconds. Other absolute directions would be
northbound, southbound, clockwise, and anticlockwise. However, these are
absolute but at the same time, they are vague. Relative direction is used to
provide an extra layer of context that a user would be able to gain valuable
knowledge. An example, of a relative direction, would be towards and away.
These would be relative to a traveller, event, or attractor.

o> G o

relativeTo
relativeTo . relativeTo
Relative
“is a”
relationship |
) Absolute
R

HasCoordinates

7 N
|
| |

Figure 23: Ontology: Direction
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3.5.1.4 Event

Event concepts are visualised in Figure 24. It is important to be able to identify
the type of event (a football match) that has occurred and a specific instance
of an event (this football match on this day at this time and place) because
although, they all have an impact on the road network. Each event or instance
of the event has its own unique patterns that can be used to identify what
event is or has occurred and been able to predict the impact. For example,
football matches, concerts, and planned roadworks are non-cyclical but are
predictable. However, accidents, terrorist attacks, and unplanned roadworks
caused by sinkholes are non-cyclical and unpredictable. Furthermore,
congestion caused by morning AM and PM peak hours is cyclical and
predictable.
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Figure 24: Ontology: Events

3.5.1.5 Combining all four ontologies

Figure 25 demonstrates how the five core ontologies come together to create
the universal road congestion ontology which is the second component of the
URCC model. For instance, a football event happens in a spatial context,
such as a location on or a distance from a road and causes semi-recurrent
congestion, which impacts the direction of the traffic towards or away from
the event location, such as an attractor or landmark, depending on the state
of the eventi.e., pre-event, live-event, and post-event. Finally, the congestion
caused by the road traffic event can be measured using several different
dimensions, such as journey time, volume, and speed.

happensAtA

SpatialThing

Causes towards

o -
|menS|0{130 IsMeasuredWith Congestion HasDirection
Congestion

Figure 25: The relationship between the five core ontologies

3.6 Chapter conclusion

This chapter has explained the methodology for creating a URCC model using
four analogies and a universal road congestion ontology which is made up of
five core ontologies (Dimensions of congestion, events, congestion, direction.
and spatial things). Furthermore, this chapter implemented the ontology
following a modified methodology set out by (Noy and McGuinness, 2001).
Therefore, the next step is to create a dataset capable of validating the
universal road congestion ontology using data sources that have the ability
to measure the dimensions of urban road congestion, such as speed and
volume. To validate the universal road congestion ontology, several
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seemingly simple questions are proposed based on the gap within the
literature.

Questions:

e What is congestion?

e What is recurrent congestion?

e What is semi-recurrent congestion?
¢ What is non-recurrent congestion?
e What is the cause of congestion?

e Where has congestion occurred?

Although, these questions seem simple, it is vital that when the broad term
congestion is used, all stakeholders have the same clearly defined definition
because this will assist in modelling urban road congestion and allow for the
creation of a better prediction model. Furthermore, as mentioned in the
literature, even two leading transport departments (DfT and DoT) define
congestion in complete contrast to each other. Although, you could argue
each one has a valid definition, it would be impossible to gain knowledge out
of a conceptual model without formalising and providing an explicit definition.

The creation of the dataset and the case study to evaluate whether the ontology
has the ability to formally and explicitly answer the above questions will be
conducted in chapter four.
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Chapter Four: Building a dataset from the ontology to
validate the urban road congestion conceptual model

4.1 Introduction

This chapter describes the construction of a dataset which will be referred to as
the Manchester Urban Congestion Data (MUCD) dataset. The dataset is
comprised of several data elements, such as journey time, traffic volume,
weather conditions, and event information collected from multiple sources.
The MUCD dataset will be used to validate the universal road congestion
ontology which is one of the main components of the Urban Road Congestion
Conceptual (URCC) model from chapter 3.

The MUCD will attempt to address some of the challenges identified in other
studies: using simulated datasets (Yuan and Cheu, 2003; Othman et al.,
2015; Lee and Li, 2017; Rui et al., 2018), outdated datasets (Anbaroglu et
al., 2014; Anbaroglu et al., 2015), or datasets collected from expensive data
sources (Cheng et al., 2012; Anbaroglu et al., 2014; Anbaroglu et al., 2015).

Following on from the construction of the MUCD dataset, this chapter will present
a case study compromising of several experiments to validate a number of
types of congestion using specific events which have a consequence of
congestion, such as road accidents, football matches and rush hour traffic.
The case study is described in section 4.8.1.

4.2 Types of data sources used to model congestion

As mentioned in chapter 2 to create a “successful” Transport Management
System (TMS) or Intelligent Transport Systems (ITS) is largely dependent on
the quality of data sources. However, relevant data (i.e., associated with
congestion) is not widely available for research and development purposes
without several limitations. For example, accuracy of the data which can
report incorrect values because of bad weather, cost to deploy new sensors,
cost to access the data from currently deployed sensors, sensors get
disabled or forgotten about as it sometimes can cost more to maintain them
than to replace them). Furthermore, to have a reliable, dynamic, and robust
TMS or ITS it is important to use multiple data sources and dimensions in
conjunction with each other. The data used should be ethically collected and
processed, easy to interpret, and be made widely available within a
reasonable time to allow for better collaboration to help reduce the impact of
urban road congestion.

Depending on what the TMS or ITS is trying to achieve, having different
dimensions is vital, as it is critical for assessing the output from data sources
in a meaningful manner that will help to identify traffic incidents that have the
consequences of congestion. One of the benefits of using dimensional data
is the dynamic aspects that allow TMS or ITS to work with a range of different
types of data sources that measure the same dimension instead of being
restricted to a single data source. Figure 26 shows the relationship between
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the dimensions and the data sources that were considered in this research.
Where a dimension, such as a journey time can be captured and processed
from multiple data sources, such as Bluetooth sensors, Global Positioning
Systems (GPS), and road traffic cameras. where the quality of data and cost
of deployment can vary. For example, Bluetooth sensors are cheap to deploy
yet the data quality is poor compared to a road traffic camera which provides
the best quality of data but can cost ten times as much to deploy (Hooke et
al., 1996; Sen et al., 2011; Kurkcu and Ozbay, 2017).

Dimensions Data Sources

Figure 26: Relationship between dimensions and data sources

4.3 Neighbourhood network topology

A road network topology can range from a local network (two or three links
connected to each other), a global network (city scale), and a neighbourhood
network which this research is using and is larger than a local network but
smaller than a global network. Figure 27 shows the final neighbourhood
network topology that is in Manchester (UK) and will be used to test the
feasibility and usefulness of the universal road congestion ontology. The
neighbourhood network topology used was agreed with Transport for Greater
Manchester (TfGM) who assisted in the scoping as domain experts.

The reason it was important to scope out the network before creating the dataset
was to ensure the prerequisites provided by TfGM were met and to consider
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the limitations of the data. For example, one of the prerequisites was the
incorporation of the A6 which connects Manchester city centre and Stockport.
Moreover, another prerequisite was the need to incorporate event locations,
such as the Etihad Stadium. Therefore, sensors around this location were
investigated in the hopes of creating a well-distributed neighbourhood
network. However, due to some limitations with the Bluetooth sensors, such
as the data not being available at all sensors at the same time, data that had
been captured was not always complete.

These limitations were due to some Bluetooth sensors being disabled and others
being installed at a later period during the data collection phase for this
project. Therefore, a total of 25 Bluetooth sensors were used to construct a
64 (32 links in both directions) link neighbourhood network. The blue lines on
Figure 27 represent the Traffic Master routed networks in the area and the
red links represent the Bluetooth network links being analysed.

For this research, a link is a route between two Bluetooth sensors and the
topology consists of a total of 64 links in a two-directional network. Each link
is allocated a unique letter combination, such as ‘a’ and depending on the
direction a second letter will be allocated for instance upstream (au) and
downstream (ad). Amongst the 64 total links being analysed, there is an
approximate 68km of the road network with two main attractors, which are
the Etihad Stadium (football grounds) and the O2 Apollo (concert hall). Each
link has its own heterogeneous characteristics with regards to quantities of
lanes, the number of junctions, speed limits, road class, and lengths that
varies from 146m to 2,149m. In addition, the volume of traffic and observed
journey times differ at spatial and temporal states.
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Figure 27: Manchester’s neighbourhood network topology (Contains OS
data © Crown copyright and database right (2017))

4.4 The creation of Manchester urban congestion data dataset

With the volatile increase of global data in the last 20 years, the term “big data”
has become the new ‘buzzword’ within many disciplines. However, many
academics and industry experts confuse ‘big data’ for ‘large data’ due to a
lack of understanding of what is meant by big data. furthermore, due to the
multifaceted nature of big data it has previously been claimed there is no
clear definition or understanding for big data (Demchenko et al., 2013) and
the more we begin to understand it, the more complicated it becomes, for
instance, the Vs of big data, are constantly evolving from 3Vs (Jagadish,
2015), 4Vs (Philip Chen and Zhang, 2014), and 5Vs (Demchenko et al.,
2013). The 5 Vs and their characteristics are as followed, Variety
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(heterogeneity), Veracity (inconsistency and incompleteness), Volume
(scale), Velocity (timeliness), and Value (worthiness).

Big data becomes more multifaceted with the addition of geographical data,

which accounts for 80% of daily data created in the last few years (Vopham
et al., 2018), for instance, the geographical traffic data collected on a
heterogeneous urban road network within many smart cities, such as
Manchester, UK. Transport for Greater Manchester (TfGM) manages the
road network within Manchester, UK and collects data continually from
inductive loop counters, Bluetooth sensors, and more recently started
exploring the use of Google API data. It was decided not to incorporate the
Google API data into the MUCD Dataset due to cost. The API charges a fee
for each observation (at 15-minute intervals) for each pre-defined link.

Table 6. Data sources, type of data, provider, range, and location

Data

s Type of data Provider Range Location
ource
Bluetooth Sensor Journey time TfGM 20155 Manchester,
Present UK
Inductive Loop 2015- | Manchester,
Counter Volume TIGM Present UK
Accident Sl'gh.t' s thal GOV.UK AV UK
accidents details Present
Football matches,
Etihad Stadium other big events, Manchester 2017 Manchester,
City FC UK
such as concerts.
Concert Hall CTMECT] ST, 02 Apollo 2017 M TEEIED:
concerts UK
Wind speed,
humidity, Custom
Weather temperature, N/A Worldwide
Weather
weather
description
Bank holiday School bank GOV.UK 20 UK
holiday details. present

The MUCD has 17376 records, each record consisting of 127 attributes and the

data ranges from the start of January 2017 to the end of June 2017. The
MUCD is primarily an unsupervised dataset, however, for classifying what is
meant by congestion, the methodology used by TfGM was implemented to
label the dataset. The method used is ‘the Red Amber and Green’ (RAG)
method discussed in section 5.4.2.

The MUCD dataset is data collected from five different data providers. TIGM

provided access to journey time and volume data, and they are the data
owners, GOV.UK provided road traffic accident data and school bank holiday
information, Manchester City FC and O2 Apollo provided event information
for football matches and concerts respectively, and weather data was
collected from Custom weather (www.customweather.com). The data was
then stored in two places, the first is a ‘master’ file (CSV) and the second is
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a SQL Server database which was created to allow the visualisation tool,
discussed in chapter 5 to easily access the data.

4.5 Data cleaning and pre-processing

The steps to collecting the raw data are as follows:

1)

2)

3)

4)

5)

Gaining the right permissions from TfGM to be allowed to access their data
system, known as C2 that contains the relevant data.

Extraction of the raw journey time and traffic volume data from the C2 data
system. This required manual parameters to be set before each sub-dataset
can be populated and downloaded from the C2 system. For example:

a. Once logged into C2, parameters, such as (Bluetooth) node A and B
are required to be identified and set, the time frame of data observe
had to be set, the time interval for all observations is required to be set
and then the results need to be extracted in a .CSV format file. The
selection of nodes was based on the Neighbourhood Network
Topology described in section 4.3. Moreover, the selection of the
nodes within the C2 system was challenging because not all sensors
were active at the same time and there was the additional need to find
Bluetooth sensors which overlapped with inductive loop counters.

b. To cleanse this data all NULL values were replaced with ‘0’ and each
.CSV contained a single month for a single link in a single direction for
a single data source. Therefore, approximately 888 .CSV files needed
to be merged into a single .CSV and once the final dataset containing
the journey time and traffic volume data was created, it was loaded
into a database.

Event information including the dates the events occurred were collected
directly from the 02 Apollo, Manchester for music concerts and comedy
shows and the Etihad stadium for football fixtures between January 2017 and
June 2017.

a. To cleanse this data, both files (.CSV) provided by the Apollo and the

Etihad with regards to events were imported into a database.
Accident data was extracted in .CSV format from the Government website
which is populated from the stats 19 reports conducted from the police
departments.

a. To cleanse this data, all unnecessary data was removed leaving an
estimated start time, end time, severity, and longitude and latitude for
plotting the location of the accident. The data was then imported into
the database.

School term start and end times were extracted from the Government open-
source website for school around the area of the Neighbourhood Network
Topology.

a. A list of start and end times were loaded into the database.

Finally, all the data was merged into a single master file(.CSV) and then imported

into a SQL Server database table using the date and time value to join
sources together, providing an quarter-hourly picture of the Neighbourhood
Network Topology (described in section 4.3) performance.

There were restrictions and challenges in relation to using the TfGM system C2.

For example, taking into consideration the requirements of TfGM, such as
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using particular roads and attractors and then trying to find sensors in this
area which were all active at the same time. The major challenge was trying
to find links that had available data for both the Bluetooth sensors and the
inductive loop counters between two set time periods January 2017 and June
2017.

4.6 Data considerations and observations

The inductive loop counters and Bluetooth sensors are the primary data sources
used within this research along with several other data sources. This data
was collected at source; therefore, it is deemed to be the ground truth data
and is fed into the RAG method (discussed in section 5.3) where a human
being (from TFGM) classified the data (major congestion, slight congestion,
and non-congestion) as domain experts.

Despite, the MUCD dataset having several typical big data issues, such as noise,
data sparsity and missing values, the MUCD was still successful in validating
the conceptual model for three distinct case studies. Experiment One:
Bathtub and leaf modelling recurrent congestion (section 4.8.1.2).
Experiment two: Raindrop modelling semi-recurrent congestion (section
4.8.1.3). Experiment three: Raindrop modelling non-recurrent congestion
dependent on the severity (section 4.8.1.4). The observations and problems
associated with the creation of MUCD can be summarised as:

e There is alack of consistent distance between the Bluetooth sensors causing
each link to have its own heterogeneous characteristics, such as lane
guantity, speed limits, road class, number of junctions, and length (which
varies from 146m to 2,149m).

e On the urban road network, there is a limited amount of inductive loop
counters, which restricts the ability to calculate a volume count for each link.

e Due to the limited number of sensors around Manchester and their position,
it was impossible to create a complete network (many of the smaller roads
and links are not included). For the purpose of this research, a
neighbourhood network has been created and this was discussed in section
4.3

e The data quality of Bluetooth sensors is poor. For example, the capture rates
during the night-time or periods where no vehicles pass Bluetooth sensors,
the sensors will provide an incorrect average journey time when being
observed.

e In bad weather, the sensors which use a mobile network to transmit the data
to a central location, can fail and cause the dataset to have missing data.

e The Bluetooth sensor data cannot distinguish the difference characteristics
between a bus with 30 people on it or a car with just one person, which
causes the level of congestion to be overestimated on several occasions.
Therefore, TFTGM use a 25% outlier reduction to get a fairer average journey
time.

However, despite these challenges, a real word dataset was created. a full
description can be found in section 4.7.
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4.7 Final MUCD dataset description

After cleansing, the final MUCD dataset will be used throughout the remainder

of the thesis. Table 7 lists all attributes that will be used, their sources and
data types. The attribute ‘Links’ X’ represents a unique link between two
Bluetooth sensors, or the link an inductive loop counter (also known as
Automatic Traffic Counter (ATC)) is located on. In Table 7, NB is Northbound,
SB is Southbound, NS is Nearside, and OS is Offside and the total number
of records is 17376 rows.

Table 7: Attribute description of MUCD Dataset

Data

Attribute Value Source
Types

Date Date of repord TfGM Date
observation

Day of record

Day observation

TfGM String

Time of

; TfGM Time
observation

Time

Links

Upstream Average
Journey Time
between two
X Bluetooth TIGM Numerical
Downstream | sensors on each
link heading
upstream and

downstream

ATCs

NB NS Traffic volume
NB OS count for each
road link where
SB NS an ATC is
SB OS present.
X NB Total Counting TfGM Numerical
individual lanes
separately and a
SB Total sum of both
northbound and
southbound

Accident

Start date/time

End date/time Did an injury

: GOV.UK
) accident occur )
Severity Categorical

Date Time

Events | Football | Date | matches, other

Date of the

Football Manchester

City FC Date

big events, such
as concerts.
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Attribute

Value

Source

Data
Types

Start
time

Starting time of
Football
matches, other
big events, such
as concerts.

End
time

Ending time of
Football
matches, other
big events, such
as concerts

Time

Time

Date

Date of the
musical concert
or comedy
shows

Start

Concerts | .
time

Starting time of
musical concert
or comedy
shows

End
time

Ending time of
musical concert
or comedy
shows

02 Apollo

Date

Time

School
Term
Times

Start date/time

School terms
starting times

End date/time

School terms
finishing times

GOV.UK

Date Time

Weather

Temp(C)

The temperature
in degrees
Celsius

Custom
Weather

Numerical

Weather status

Recorded
weather
condition

Custom
Weather

Categorical

Wind(mph)

Wind speed in
miles per hour

Custom
Weather

Numerical

Humidity

Humidity
percentage

Custom
Weather

Numerical

Barometer

Barometer
record at
observation

Custom
Weather

Numerical

Visibility(km)

Level of visibility

Custom
Weather

Numerical
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4.8 Case Studies: validation of the universal ontology of road
congestion

Following the creation of a novel universal road congestion ontology in chapter
three, real-world data was collected to validate the ontology. The real-world
data used in this study, known as the Manchester Urban Congestion Data
(MUCD) dataset (and its associated challenges) is different compared to
other studies, which tend to use simulated datasets (Yuan and Cheu, 2003;
Othman et al.,, 2015; Lee and Li, 2017; Rui et al., 2018), longstanding
datasets(Anbaroglu et al., 2014; Anbaroglu et al., 2015), or datasets collected
from expensive data sources (Cheng et al., 2012; Anbaroglu et al., 2014,
Anbaroglu et al., 2015), which could not solve the practical issues (i.e. noise,
data sparsity and missing values) associated with real-world big data
analytics for TMS or ITS.

This case study has been developed to address the research question RQ1: Is
it possible to provide a clear conceptualisation of urban road traffic
congestion using an ontological model?

This will be achieved by validating the universal ontology of road congestion
through answering the several questions proposed in chapter three.

Questions:

What is congestion?

What is recurrent congestion?
What is semi-recurrent congestion?
What is non-recurrent congestion?
What is the cause of congestion?
Where has congestion occurred?

This section will look at a series of experiments which are designed to assess
the feasibility and usefulness, of the ontology and will investigate the three
types of congestion as defined in Chapter three. Section 4.8.1.2 is the first of
these experiments and will focus on AM peak rush hour which has the
consequence of recurrent congestion. Section 4.8.1.3 is the second
experiment that will focus on football matches, which has the consequence
of semi-recurrent congestion. Section 4.8.1.4 is the third experiment that will
focus on a fatal road accident, which has the consequence of non-recurrent
congestion.

For all three case studies, individual links from around Greater Manchester, UK
were selected from the neighbourhood network topology defined in Figure
27, and the journey times will be compared to the expected journey times
(defined in section 4.8.1). The MUCD dataset as described in section 4.4 will
be used to conduct these experiments.

4.8.1 Experimental methodology: Expected journey time detection

To assist in the visualisation of these experiments, a visualisation toolkit which
is known as Transport Incident Manager (TIM) was developed as part of this
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research. A full description of Tim, including the design and justification can
be found in chapter five.

To calculate the expected journey time for each link within the data from the
MUCD dataset that was developed throughout chapter four and the final
dataset presented in section 4.7 was processed to create a ‘typical link
journey time’ for each link. The ‘typical link journey time’ is defined by
aggregating 6 months’ of data by link and Time-of-Day-and-Day-of-Week
(TOD TOW), which is broken down into 15-minute intervals and then
multiplied or divided against the congestion factor to achieve the expected
journey time parameters. The congestion factor (c) is derived by using the
method outlined in the “Congestion Reduction in Europe: Advancing
Transport Efficiency” conducted by (Jones, 2016) and funded by the
European Union Horizon 2020 program. The methodology for the congestion
factor will be discussed in section 4.8.1.1.

Let JTyps (t,1) be the representative of the observed journey time at link 1 with
TOD DOW, t, JTys (t, 1, w) be the representative of the historical data at the
same link 1 with TOD DOW, t, however on a different week w. The typical
journey time is represented by JTy, (t,1) and is calculated by aggregating
JThis(6 L wy), JThis(E Lwsy), ..., JThis (t,1, wy,) where wy,wy, ..., w,  represent
each week in the MUCD and then multiply and divide these values by c to
create the upper and lower boundaries.

Equation 3 and Equation 4 shows how to calculate the typical link journey time
for the upper and lower boundaries.

E(upper) = px * €
Equation 3: Upper boundary

E(lower) = px)/c

Equation 4: Lower boundary

Hex) is the mean (typical) journey time for link x, c is the congestion factor, which
is a real value multiplied or divided against the typical link journey time. In
these case studies, the congestion factor is 1.7 and was calculated using the
following methodology discussed in section 4.8.1.1. Equation 5 below shows
whether an observation is expected {0} or not expected {1}.

1, ]Tobs (t' l) > ]Ttyp (t' 1) *C
f(Expected) =<0, ]Tobs (t' l) = ]Ttyp (t' 1) /C =< ]Ttyp (t' 1) *C
1, ]Tobs (t' l) < ]Ttyp (t: 1) /C

Equation 5: Function for detecting congestion

Using the combination of the mean journey time and the congestion factor, it is
possible to create a pattern of expected or not expected journey time.
Equation 5 has been implemented in Algorithm 1.
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Algorithm 1
An indicator of worse than expected journey time.

Variables: i the set of observations, T the set of time periods, L the set of
links, x;: the observation, X, is the average observed value over the time
periods, Expected: An array of outcomes. Congestion factor: 1.7.

1 forl € Ldo

2 fori €eldo

3 Expected; « false

4 ifx; = X/ @' * Congestion factor then
5 Expected; « true

6 endif

7 ifx; < — Xy * @' * Congestion factor then
8 Expected; « true

9 endif

10 end for

11 end for

12 return Expected

4.8.1.1 Methodology for the Congestion Factor
This section describes the methodology for determining the congestion factor.
The four steps are as follows:

1) For each row within the MUCD dataset, which is a total of 17376 rows and
64 links. The 95th percentile is calculated for each link journey time. The link
journey time for link a at time interval t is denoted as y3°(t).

2) The congestion factor needs to be calculated for link a at time interval t and
is denoted asc2>(t) = y2°(t) /y.(b).

3) For each link and time interval, repeat steps 1 and 2. a € Aandt €
[1,2,...,T], where A denotes the set of links and T denotes the total number
to time intervals.

4) Once the 95th percentile has been calculated for all 64-links and all 96-time

a=64
(15 minutes) intervals, the median of th% c;’E(tn) is considered the
n=1

congestion value.

The concept of a congestion factor has been implemented in a couple of studies
related to non-recurrent congestion in London (Anbaroglu et al., 2014,
Anbaroglu et al., 2015). These studies have calculated the congestion factor
to be 1.2 and 1.4, which are both lower than the 1.7 used within this research.
This is because unlike previous studies which only takes into consideration
data from within peak times (7am to 7pm), this research has used 15-minute
intervals from midnight to midnight (a total of 24 hours) for a total of six
months on a network of 64 links. Figure 28 presents a boxplot of the 95th
percentile for all 64-links at all 96-time intervals. Then the median of the
output (red line) is the congestion factor.
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Figure 28: Determining the congestion factor for Manchester case studies

topology

4.8.1.2 Experiment One: Bathtub and leaf modelling recurrent congestion
A case study has been chosen to provide a comprehensive understanding and

to validate how a universal conceptual model can be used to support
stakeholders with regards to recurrent congestion. The bathtub model (in
section 3.4.1.1) explains how recurrent congestion is impacted by the inflow
and outflow of vehicles causing the network to reach capacity, reducing
speeds, and increasing journey times. Therefore, this exploration examines
three links toward (inflow) and away (outflow) from the city centre.

This will provide the conceptual model with the ability to capture the semantics

of recurrent congestion caused by an event, such as rush hour. The three
links are from an arterial route into Manchester similar to the leaf model (in
section 3.4.1.2). Figure 29 and Figure 30 were produced using data (from the
MUCD dataset) from Tuesdays, and Wednesdays at four different time
periods for a total of six months. The x-axis is the time of day, the y-axis is
journey time for each link in seconds, the values at the top of the graph and
the red line in the centre of each boxplot is the median journey time, and the
star is the mean journey time.
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Links (a, e, and g) Journey Time for Tuesdays: 6:00, 7:00, 8:00, and 9:00.
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Figure 29: Boxplot of journey time for three links at three different
periods (Tuesday)

Links (a, e, and g) Journey Time for Wednesdays: 6:00, 7:00, 8:00, and 9:00.
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Figure 30: Boxplot of journey time for three links at three different
periods (Wednesday)

Both Figure 29 and Figure 30 demonstrate there is a clear and typical behaviour
of journey time in the morning rush hour. 6am provides the lowest journey
times with tightest clusters and at 7am there is a slightly increased journey
time, however, the clusters remain tight. Moreover, at 8am the journey time
is at the highest level in the four-hour timeframe and the clusters become
extremely sparse. Finally, 9am shows the journey time reduces but the
clusters remain sparse.

This information could be used to predict the optimal time for travellers to avoid
peak-time congestion and demonstrates what time the inflow of ‘water into
the bathtub’ reaches the critical level across specified links. Furthermore,
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Figure 31 demonstrates that the morning rush hour occurs slightly later on
the link nearest to the city centre (link ‘g’) than the link closest to the highway
(link ‘@’). Although the observations show the peak occurs at a slightly
different time, it is still noticeable that the journey time starts to increase for
both around 7:00 am. This is caused by high volumes of vehicles trying to
enter the city centre within a short period of time.
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Figure 31: Journey time on 07/06/2017. Link ‘a’ (top) and ‘g’ (bottom).
Observed journey time (blue), mean journey time (black), and
expected journey time boundaries (green)

Using the semantics captured in Figure 29, Figure 30, and Figure 31 it is possible
to validate and display a visual representation of recurrent congestion in an
ontology. See Figure 32.
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Figure 32: The semantics of a recurrent congestion impact on the road
network

When an event, such as rush hour occurs, it causes recurrent congestion, which
is predictable and cyclical because it always happens on a weekday between
7am and 9am. Rush hour causes recurrent congestion on a city scale and
impacts primarily the traffic going in the direction towards the city centre.
During pre and post recurrent congestion, the journey time is at an expected
level. However, during the live event, the magnitude triples the expected
journey time causing a worse than expected journey time. Moreover, core
objects from all five ontologies are present in the construction of Figure 32.

4.8.1.3 Experiment two: Raindrop modelling semi-recurrent congestion

To demonstrate the concept of a raindrop analogy (in section 3.4.1.3) a case
study has been chosen. The case study will provide a comprehensive
understanding whilst validating the ontology included in the universal
conceptual model that can be used to demonstrate the necessity of the newly
coined semi-recurrent congestion. The conceptual model captures the
semantics of semi-recurrent congestion caused by an event, such as but not
limited to, a football match.

For this case study, specific data is analysed from the MUCD dataset that relates
to a football match, located at the Etihad Stadium in Manchester, UK which
took place on Saturday the 13th of May 2017 with an expected kick-off at
12:30 and full-time at 14:00. A link near the attractor known as the Etihad
Stadium has been selected to analyse the journey time and is shown in
Figure 33. The expected journey time boundaries were calculated using
Algorithm 1.



Algorithm 1 considers the mean journey time on every individual link based on
Time-of-Day-and-Day-of-Week (TOD TOW) and then is multiplied by the
congestion factor.
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Figure 33: Journey time on 13/05/2017 compared to the expected journey
time

One characteristic that separates semi-recurrent congestion from non-recurrent
congestion, is semi-recurrent congestion is caused by an event that occurs
at an attractor, such as a landmark e.g., a football stadium. Examining Figure
33 shows several other unique characteristics of a football match, such as
pre-event, kick-off, live-event, full-time, and post-event. Pre-event is to the
left of the 12:30 kick-off and post-event is to the right of the 14:00 full-time
where both journey times excessively exceeds the boundaries of an expected
journey time. The Live event is between both kick-off and full-time and it is
noticeable that the journey time returns to an expected journey time.

Again, these characteristics are different compared to non-recurrent congestion,
where pre-event and the post-event journey time is typically an expected
journey time, and the live event exceeds the expected journey time
depending on the severity. Being able to identify and model these
characteristics support the validation of the road congestion ontology by
demonstrating the accuracy of the semantics presented in Figure 34 and will
help to predict semi-recurrent congestion and the events that cause it.
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Figure 34: The semantics of a semi-recurrent congestion impact on the
road network

Pre-event and post-event have a period of two to three hours of worse than
expected journey time. This is due to an increased quantity of stakeholders
travelling to and from the same attractor. During the live event, the journey
time returns to a state of expected journey time. Post-event journey time is
typically worse than pre-event, due to the high volume of stakeholders
attempting to leave and gain access to the road network all at the same time.
Figure 34 and Figure 35 presents a visual representation of the semantics of
a football match and the impact of road congestion using the dimension
journey time as a measurement of performance which confirms the
characteristics previously discussed in this section to be accurate. Moreover,
both Figure 34 and Figure 35 contain core objects from the five core
ontologies.
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Figure 35: The relationship between a football match, journey time, and
traffic volume

4.8.1.4 Experiment three: Raindrop modelling non-recurrent congestion
dependent on the severity

The final case study further explores the concept of a raindrop but showed the
difference between the large and small raindrop (discussed in section
3.4.1.3), which signifies a ‘slight’ and ‘fatal’ road accident. For this case study,
the 7th of February 2017 was selected because data analysis indicated two
separate road accidents had occurred on the same link. The first accident
was classified as ‘slight’ and the second as ‘fatal’. Figure 36 and Figure 37
shows two graphs with the journey time, expected journey time boundaries,

and both traffic accidents plotted for the same link in both directions.
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Figure 36: Journey time on 07/02/2017 compared to the expected journey
time (towards the City Centre)
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Figure 37: Journey time on 07/02/2017 compared to the expected journey
time (away from the City Centre)

Slight road accident analysis

In Figure 36 and Figure 37, the slight road accident (*) is on the left which
happened during the AM peak rush hour at around 09:00. The journey time
is noticeably worse than expected for traffic heading towards the city centre.
However, heading away from the city centre, the journey time is expected
and is not impacted by the slight road accident on the opposite side of the
road.
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Fatal road accident analysis

In Figure 36 and Figure 37, the fatal road accident (*) is on the right which
happened around 15:45. The first noticeable difference between the slight
and fatal road accident is, the aftermath of the fatal has an impact on both
directions of traffic, causing journey time to either be excessively high or not
recorded. This behaviour lasts for 4 hours, and diffuses outwards, impacting
neighbouring links. Similar to how a raindrop would cause a ripple effect

outward.
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Figure 38: The semantics of a non-recurrent congestion impact on the
road network

Figure 38 is the visual diagram of the semantics of non-recurrent congestion
caused by a road traffic accident (however, the more serious the accident,
the bigger the magnitude will be) and has been validated using the
information collected in Figure 36 and Figure 37. A road accident happens at
a point on a link, which is a location and where a road traffic incident occurs.
A road traffic incident, such as an accident causes non-recurrent congestion
because it is non-predictable and non-cyclical. Non-recurrent congestion is
the consequence of the live event, which is congested and has a duration
that varies on the severity and magnitude of the road traffic incident.
Moreover, Figure 38 contains core objects from the five core ontologies.

4.9 Chapter conclusion

This chapter has introduced a real-world big data dataset known as the MUCD,
which has many relevant characteristics for identifying events that have the
consequence of congestion, such as spatial (location) and temporal
characteristics (TOD DOW). When evaluating the five Vs of big data, the
MUCD meets all the requirements. Variety (heterogeneity) as the data is
extracted from several different sources and provides different types of data.
Veracity (inconsistency and incompleteness) as it is real-world data, it is not
perfect and contains missing data or incorrect values caused by issues with
the sensors. Volume (scale) of the dataset is not the largest data set known
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to man, however, it does contain 17376 records and 127 attributes. Velocity
(timeliness) this data can be collected in quasi-real-time and would need to
be analysed in quasi-real-time to gain any Value (worthiness).

This dataset will be used throughout the thesis to validate the universal ontology
of road congestion, to experiment with the idea of using supervised learning
to gain knowledge and qualitative information from a quantitative dataset.
This chapter has demonstrated it is possible to provide a clear
conceptualisation of road traffic congestion using both analogical and
ontological methods to develop a URCC model, providing vital knowledge to
different types of stakeholders.

The universal URCC model uses an analogical approach to provide stakeholders
with an unsophisticated explanation of congestion that even a layperson
would be able to understand. Additionally, the URCC model provides a more
advanced understanding of road traffic congestion by introducing an explicit
conceptualisation (ontological) that can be used to capture the semantics of
all three types of road congestion. Furthermore, this chapter provides a
consistent definition of the many objects that are used to create the overall
ontology and explains their relationships with each other, e.g., hierarchy (is-
a) and object properties (has-a), allowing for a better understanding of a
typical pattern for the many different road traffic events.

The conceptual model was validated using the dataset created within this
chapter and a case study which was also introduced in chapter four which
demonstrated it was possible to provide a consistent answer to questions that
have previously been vague or hard to answer (Abberley et al., 2017; Gould
and Abberley, 2017). For instance, “what is congestion?”,” what is the
cause?”, and “where has congestion occurred?”. Using the MUCD, the
universal ontology, which was validated in section 4.8.1, it is now possible to
answer these questions with clarity and consistency, as shown in Table 8.
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Table 8. Consistent answers regarding “what is congestion?”

Question

Answers

What is congestion?

What is recurrent
congestion?

What is semi-recurrent
congestion?

What is non-recurrent
congestion?

What is the cause?

Where has the
congestion
occurred?

Congestion is what impacts the stakeholder’s
journey and normally consists of excessive
journey time and traffic volumes. A more in-
depth explanation would require knowing
what type of congestion is occurring.

Recurrent congestion is the aftermath of an
event, such as rush hour (AM and PM peak).
During the AM peak, due to large volumes of
traffic entering the citing in a small timeframe,
causes excessive journey time for all
stakeholders in the direction of the city
centre.

Semi-recurrent congestion happens pre and
post events, such as football matches and
concerts impacting traffic towards and away
from an attractor. The severity of the
congestion depends on the type of event.

Non-recurrent congestion is the effect of a
random event, such as a road traffic
accident. It happens at a single point on a
road network and then diffuses over time and
impacts the local neighbourhood by
increasing the traffic volumes and the
stakeholders’ journey time. The level of
impact depends on the severity of the initial
event.

The cause of congestion is an event that
increases the stakeholder’s journey time and
causes a concentration of traffic at a single
point, neighbourhood, or city scale.

Depending on the type of congestion, the
congestion is likely to occur across the whole
city centre, at a single point on the network,
or an attractor.
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Chapter Five: Visualisation of the Manchester urban
congestion dataset using the transport incident manager

5.1 Introduction

To gain a greater understanding of how the Manchester Urban Congestion Data
(MUCD) dataset (as defined in chapter 4) and the multifaceted nature of the
Urban Road Congestion Conceptual (URCC) model (as defined in chapter 3)
interact with each other, a Transport Incident Manager better known as TIM
was developed. In this research, the main contribution of TIM is the ability to
fill the void left by the clear lack of tools that are capable of visualising real-
world big data datasets, such as MUCD and models of urban road
congestion. This chapter attempts to answer the research question (RQ3) —
“Can quantifiable big data on urban road congestion be visualised to provide
guasi-real-time insight?”

TIM will answer the research question by being a viable visualisation tool which
stakeholders could use. TIM was designed to work with spatial and temporal
data like the MUCD dataset and provide experts within the domain the ability
to visualise their own data. For example, the experts that provided a portion
of data for this research and helped to develop TIM are Transport for Greater
Manchester (TfGM). Because this data has strong spatial characteristics a
spatial measurement will be investigated and incorporated into TIM. The
spatial measurement is known as Moran’s Index (I) (Lee and Li, 2017). and
is used for determining the spatial autocorrelation between links.

5.2 What is TIM?

Due to the multifaceted nature of urban road congestion and the many
dimensions that can be used to measure road traffic performance, such as
journey time, volume, traffic flow, velocity, density, and spatial correlation.
These measurements can all be impacted by indirect consequences, such
as weather conditions, road works, social events, and road accidents. All
these characteristics have an impact on the type of congestion from non-
congestion, recurrent congestion, non-recurrent congestion, and semi-
recurrent congestion (as defined in chapter 3). Therefore, TIM was developed
to provide a method that allows stakeholders ranging from domain experts to
laypersons to visualise the performance of an urban road network or
individual road links.

5.2.1 Methodology of the development of TIM

TIM was developed in conjunction with TfGM, who specified the initial
requirements. The primary requirement requested by TfGM was the creation
of an informative dashboard that is capable of providing transport managers
a real-time overview of individual link performance, based on previous trends.
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TIM was developed over five stages with multiple different of prototypes being
created along the way:

Stage 1: TfGM to provide a list of key requirements.

The main requirements requested by TfGM was the development of an
informative dashboard that transport managers can use to analyse critical
links. Additionally, it is important that the dashboard is capable of updating in
real-time.

Stage 2: Development of an initial prototype.

The initial prototype created was an informative dashboard that provided a 24-
hour view of individual links (selectable by the user) performance. The real-
time performance is compared against the typical performance by comparing
to historical data in real-time for the same 15-minute period on the same day
of week.

Stage 3: Demonstrate prototype to TfGM.

When the initial prototype was developed, it was then presented to TfGM, who
then requested the creation of a second dashboard, which required the RAG
method for classification to be incorporated. The reason for this requirement
was to help the transport managers to better identify urban road congestion
in a timely manner when a link is performing inadequately.

Stage 4: Addressing feedback from TfGM.

This stage was conducted over many months and was iterative due to the nature
of adding extra functionality into several refined versions of TIM. these refined
versions of TIM were presented to TfGM for feedback and led to numerous
additional functionalities being incorporated. These additional functionalities
included the ability to analyse link performance over longer periods. For
example, 24 hours, three days, one week and one month. Other
functionalities, such as spatial analysis was included, to help identify high
journey time and high traffic volume clusters which are an indicator of
congestion on the network. Additionally, TfGM requested the ability to be able
to monitor the overall network performance, therefore, this was added. Lastly,
the author incorporated an unsupervised machine learning algorithm to help
classify the characteristics of traffic volume and journey time into five
classifications: Very low, Low, Median, High, and Very High.

Stage 5: validating the final prototype.

Once all the extra functionalities had been added, the author, created the ability
to visualise multiple performance metrics on the same dashboard at different
time scales. The final prototype was given to TfGM to ascertain the benefit of
having a real-time dashboard that is capable of saving transport managers
time by removing the need to collect relevant data and conduct ad hoc
analysis on individual links. After evaluating TIM, TfGM deemed TIM to be a
success because it was capable of providing instant feedback on the network
and individual link performance, allowing them to make decisions quicker
than manual operation. The only minor criticism was it was limited to only 64
links (this will be address in future work).
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5.3 What data is used in TIM?

The data used within TIM is a subset of the MUCD dataset as defined in chapter
4. The main attributes used within TIM are journey time and traffic volume
which were supplied by TfGM and non-recurrent event information, such as
a road traffic accident provided by Greater Manchester Police (through the
GOV.UK portal). However, TIM was developed with the ability to integrate
other sources of journey time, such as the API offered by Google.

The data is presented in 15-minute intervals for a period of either 24 hours, three
days, one week, or one month.
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Figure 39: Transport Incident Manager (TIM)

Figure 39 shows an example of journey time analysis for link ‘AU (‘A’
Upstream). Link ‘@’ goes upstream towards link {b} and {c} as described in
section 4.3. The analysis presented in Figure 39 is a 24-hour period on
Tuesday the 7th of February 2017 from midnight to midnight. The main
viewgraph (Figure 39) has five attributes:

e The observed journey time is plotted in 15-minute intervals.

e The typical journey time is used to plot the median journey time every 15-
minutes for link ‘AU’ every Tuesday for a six-month period.

e The top and bottom boundaries are used to plot what a typical journey time
is for each link at each 15-minute intervals.

e Finally, the main view graph in Figure 39 also plots road accidents that have
occurred anywhere on the network and are not specific to an individual link.
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Figure 40: Output when using Equation 6 and Equation 7

To determine the top and bottom boundaries, empirical experimentation was
conducted to explore a few options, such as Equation 6 and Equation 7 where
uis mean and o is the standard deviation which is multiplied by ¢ (phi) to the
power of -1 and is added and subtracted and finally multiplied by 1. Figure
40 shows the output when using Equation 6 and Equation 7. The second
option is Equation 8 and Equation 9 where M is the median journey time
multiplied and divided by 1.7.

Top=p+ (o*(@™))*1
Equation 6: Upper (Top) Boundary
Bottom = p— (o * (¢~ 1)) * 1
Equation 7: Lower (Bottom) Boundary
Top =M= 1.7
Equation 8: Upper (Top) Boundary 2

Bottom =M /1.7

Equation 9: Lower (Bottom) Boundary 2

The results for both options were provided to the domain experts from TfGM, UK
to analyse and compare the values against their currently used RAG (Red,
Amber, and Green) method (Abberley et al., 2019). Red, R, (Equation 10)
where ]JT which is the observed journey time in 15-minute intervals, is greater
than the M which is the typical (medium) journey time multiplied by 1.5.
Amber, A, (Equation 11) where M multiplied by 1.25 less than JT and JT is
less than or equal to M multiplied by 1.5. Green, G, (Equation 12) where JT
is less than or equal to M multiplied by 1.25. A decision was then made to
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use Equation 8 and Equation 9, because they are easier equations to
implement and have similar behaviour to their current method of classifying
congestion using RAG, where (R)ed is major congestion, (A)mber is slight
congestion, and (G), is non-congestion.

R=JT>M=*15
Equation 10: RAG (Red) Major Congestion
A=M=+125<]|T<M=%*1.5
Equation 11: RAG (Amber) Slight Congestion
G=]JT<M=*1.25
Equation 12: RAG (Green) No Congestion

5.4 Functionality

TIM was developed to provide a better way to visualise the multiple concepts of
urban road congestion, such as recurrent, semi-recurrent, and non-recurrent
and the events that cause urban road congestion, such as ‘rush hour’, football
matches, and road accidents.

The functionalities of TIM and the sections where each function is discussed
within this thesis can be defined as follows:

¢ Visual functionality
o Real-time (graphs) visual views (Section 5.4.1)
= Main view (Section 5.4.1.1)
» Classification (Section 5.4.1.2)
» Moran’s | (Section 5.4.1.3)
= Network performance (Section 5.4.1.4)
o Static classification (RAG) view (Section 5.4.2)
o Unsupervised learning view (Section 5.4.3)
e Temporal measurement (Section 5.4.4)
o 15-minute intervals within 24 hours
o 15-minute intervals within 3 days
o 15-minute intervals within a 1 week
o 15-minute intervals within a 1 month
e Statistical measurement (Section 5.4.5)
o Medium journey time for every 15-minute interval for individual links
over a 6-month period.
o Mean journey time for every 15-minute interval for individual links over
a 6-month period.
e Pause and resume real-time visual views.

Because of the complexity of the real-world big data (MUCD) dataset and the
different concepts of congestion, three views were explored. The first is a
real-time visual view (Section 5.4.1) which has the ability to update in real-
time as additional data is added to the database, the second is a static view
(Section 5.4.2) which is used to visualise the RAG method which is currently
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used by TfGM, UK. The final view is an unsupervised (k-means++) visualiser
(Section 5.4.3).

5.4.1 Real-time visual view

The real-time visual view, first illustrated in Figure 39, was designed with the
addition of a ticker which allows the data to refresh every 3000 milliseconds
and populates the visual views. The objective of the real-time visual views is
to provide a way for the researchers and domain experts to visualise real-
world big data and conduct urban road network performance. There are four
sub-types of real-time visual views:

1) Main view (Section 5.4.1.1)

2) Classification (Section 5.4.1.2)

3) Moran’s Index (Section 5.4.1.3)

4) Network Classification (Section 5.4.1.4).

5.4.1.1 Main view

The first real-time visual view created was the main view that was partially
discussed in section 5.2. Figure 39 Shows an example of journey time
analysis for link ‘AU’. The analysis presented in Figure 39 is one observation
every 15-minutes for a 24-hour period on Tuesday the 7th of February 2017
from midnight to midnight. In addition to the functionality discussed in section
5.2, the main view also plots road accidents that have happened anywhere
on the network and are not specific to an individual link.

5.4.1.2 Classification
The second real-time visual view (Figure 41) shows the classification of
congestion which is either ‘congestion’ (red) or ‘non-congestion’ (green) over
the period of 24-hours with observations at every 15-minute intervals. The
classification is identified when the journey time exceeds the top boundary
Equation 8, or the bottom Equation 9 boundary discussed in section 5.3.
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Figure 41: Classification of Congestion

Figure 42 shows how the four visual views can be visualised together as well as
by themselves. Figure 42 shows the classification and main view graphs
stacked on top of each other for better visualisation.
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Figure 42: Main (top) and Classification (bottom)

80



5.4.1.3 Moran’s Index

Moran’s Index (I) is used for determining spatial autocorrelation at every
observation. Moreover, Moran’s 1 is just one of many spatial statistical
measurements and has previously been used to model spatial
autocorrelation for many things, such as the impact hurricane sandy had on
HIV, pollution hotspots, and road accidents on Belgium motorways (Black
and Thomas, 1998; Zhang et al., 2008; Acharya et al., 2018; Wilt et al., 2018;
Chen, 2020). Spatial autocorrelation is extremely multifaceted because it
models the spatial correlation in a multi-dimensional space and can be multi-
directional at the same time. A good example of multi-dimensional and multi-
directional spatial correlation is a road network due to the many different road
links (multi-dimensional) and the ability for traffic to travel upstream and
downstream on these links (multi-directional).

There are two statistical versions of Moran’s I, which are global and local Moran’s
I. This research will focus on using global Moran’s I because it is designed to
identify clusters on a whole network or region instead of individual links, which
local Moran’s [ was designed to do and is used to identify the exact area the
cluster is located. (Yang et al., 2018; Xiong et al., 2021). Therefore, because
this research is trying to model the concept of urban road congestion and its
causes and not identify the location of the cause, this research, and the
development of TIM, only focused on the inclusion of Global Moran’s 1.

Global Moran’s I (Equation 13) is defined as:

B EZiZjWij(Xi —X) (% —X)
W Yi(x; — X)2

Equation 13: Global Moran's |

Where N is the number of spatial units indexed by iand j; x is the variable of
interest; X is the mean of x; w;; is a matrix of spatial weights with zeros on the
diagonal, for instance, w;; = 0; and W is the sum of all w;;. Moran’s I ranges
between -1 and +1. When I am equal to +1, it is an indication that all the
observations on the whole network or within the region are clustered in space.
However, if the I is equal to -1 then it implies all observations are randomly
scattered (Tepanosyan et al., 2019). Figure 43 shows the TIM visual view of
Moran’s | alongside the main view and the classification view.
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Figure 43: Main (top), Moran's | (centre), and Classification (bottom)

5.4.1.4 Network Performance
The network performance view provides a total journey time recorded on the
whole neighbourhood network at every 15-minute interval. The total journey
is the sum of all 64 links on the network (32 upstream and 32 downstream)
as described in section 4.3. The benefit of domain experts using the network
performance is it provides a summary of the overall performance and will
allow domain experts to easily identify anomalies on the network.
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Figure 44: Network Performance (top), Main (top centre), Moran's |
(bottom centre), and Classification (bottom)

Figure 44 shows the whole network (total journey time) performance (top) for link
‘g’ upstream on the 7th of February 2017. Below that is the main view (top
centre), next is Moran’s I (bottom centre), and finally the classification
(bottom).

5.4.2 Static classification (RAG) view

The static classification view is illustrated in Figure 45 and Figure 46, which
shows the RAG classification which is implemented by TfGM, where the red
(Equation 10) represents major congestion, amber (Equation 11) slight
congestion, and green (Equation 12) non-congestion. Figure 45 shows the
classification for the journey time upstream and Figure 46 shows the
classification for the journey time downstream on the 7th of February 2017
on link g. Each observation is at every 15-minute interval.
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Figure 46: Static classification view (downstream)
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5.4.3 Unsupervised learning visualiser view

The unsupervised learning visualiser view was developed to assist with
investigating the use of unsupervised learning to identify the characteristics
of urban road congestion in chapter six. Therefore, the supervised learning
algorithm introduced in this chapter will contribute towards answering the
research (RQ2) - “Can quantitative Big Data be used to provide qualitative
information in conjunction with a road traffic ontology with the support of
Machine Learning?”.

5.4.3.1 Why was k-means++ used?

TIM is used to visualise the unlabelled real-world big data (MUCD) dataset to
help achieve the focus of the following paper (Abberley et al., 2017), which
was to gain knowledge and understanding from an unlabelled subset of the
MUCD. Therefore, to analyse the unlabelled data an unsupervised learning
approach, such as clustering was taken. Clustering was chosen because it is
one of the most common types of machine learning algorithms used when
dealing with unlabelled data (Philip Chen and Zhang, 2014).

Some of the most popular clustering algorithms are k-means, k-medians,
Expectation Maximisation (EM), and Hierarchical Clustering (Aggarwal,
2013). However, for this research, k-means++ algorithm was chosen
because according to (Arthur and Vassilvitskii, 2007) it has previously
achieved functional values of 20% compared to k-means and performed 70%
faster when conducting experiments on four different datasets, the first two
were synthetic and are known as 'Norm-10’ and ‘Norm-25’ dataset and the
remain two are known as ‘Cloud’ and ‘Intrusion’ dataset which the latter is the
largest dataset with 494019 data points in 35 dimensions.

5.4.3.2 K-means++ algorithm
The k-means++ algorithm steps below have been adapted from the method set
out in (Arthur and Vassilvitskii, 2007). Where k is the number of centres,
which is used to defined how many clusters (c) will be created. C is a set of
clusters. X is a set of data points and x is a single data point. i and j are both
sets of observations.

la. Take one centre ¢, chosen uniformly at random from X .
(x)?

1b. Take a new centre c;, choosing x € X with probability xel))(D(x)z

where D(x)

denotes the shortest distance from a data point.
1c. Repeat Step 1b. until we have taken k centres altogether.

2. For each i € {1,...,k}, set the cluster C; to be the set of points in X that are
closer to c; then they are to ¢; for all j # i.where k centres C = {cy, 3, ..., Cx}

3. Foreach i e {1, ..., k}, set ¢; to be the centre of mass of all points in C; : ¢; =

ﬁZx € Cix.

4. Repeat steps 2 and 3 until € no longer changes.
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5.4.3.3 Example of K-means++ clustering algorithm output

Figure 47 provides an example of the K-means++ algorithm output on link ‘g’ for
every Tuesday, for a 6-month period from January 2017 and June 2017. The
output provided five classifications (which are represented by the stars (*)):
Very low (red), Low (yellow), Medium (turquoise), High (purple), and Very
high (green) journey times. These five classifications were calculated using
the method discussed in section 5.4.3.2. The distance between the points
were measured using Euclidean distance (Equation 2).
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Figure 47: K-means++ clustering

Observing Figure 47 would provide TfGM the ability to classify observed journey
times, such as a ‘high journey time’ in a statistical manner instead of using
their current ‘gut feel’ approach which is relevant to the individual at point of
analysis.

5.4.4 Temporal selection

When analysing the data and the network performance, researchers, and
domain experts such as TfGM, may want to look at the data for a longer
period than 24-hours to help identify any anomalies. Therefore, TIM was
developed to display data for four different time periods: 24-hours, three
days, one week, and one month. Figure 48 shows a three-day period from
the 12t of February 2017 till the 15™ of February 2017 on link ‘g’ at 15 minutes
intervals.
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Figure 48: Temporal selection of three days

Observing Figure 48 would provide TfGM the ability to see if any of the days
appear to be an outlier, which could be identified because it doesn’t follow
the typical behaviour of the previous days.

5.4.5 Statistical measurement

Figures 49 and 50 show the different visualisation of the mean average journey
time and median average journey time which is represented by the dark blue
line. Additionally depending on if you choose to use the mean or median
measurement, the calculation for the upper and lower boundaries would be
different and give a slightly different classification of congestion.
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5.4.5.1 Mean

# TIM - Transportation Incident Manager Tool

file Source Data TimeFrame Data Measure Resume/Pause Client Graphs  Help

Back to Dashboard Graphs
Go to Static

& Upstream
 Downstream Journey Time Analysis on o for the 2017-03-12
Enter a start date (T T
2017-03-12 .
- —— Median Journey Time
Enter a link 120 -
- —— Top Boundary
—— Bottom Boundary
“% Accidents
100 -
W
=
o 80-
9
@
2
@
E 60-
=
>
g A
E 40 -
20 -
0-
' i i i i . i ' '
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

#l €2 +Q= B

Figure 49: Statistical measurement (mean)

5.45.2 Median
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Figure 50: Statistical measurement (median)
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5.5 Why is TIM important?

There is an obvious lack of visualisation tools that are capable of visualising real-
world big data datasets, such as MUCD dataset. Furthermore, there is a lack
of tools that are capable of visualising models of urban road congestion.
Making TIM a vital component of this research because it is able to provide
a platform for visualising the MUCD dataset in several different ways.
Therefore, TIM is an essential tool kit for exploring urban road congestion,
analysing data to identify patterns and characteristics, thus, supporting the
conceptual model; analogy, and ontology discussed in chapter three. For
instance, it has been theorised that urban road congestion has three types of
congestion: recurrent, non-recurrent, and semi-recurrent (which was coined
by the author).

In the next section (5.6), an event that represents each type of congestion will
be evaluated using TIM. These events are: rush hour (recurrent), a road
accident (non-recurrent), and a football match (semi-recurrent).

5.6 Evaluation of TIM and the data set provided by TfGM.

As previously mentioned in section 5.5, this section will use the real-world big
data visualiser tool (TIM) and the MUCD to evaluate three different types of
congestion which are the consequences of three different events. The three
scenarios being presented are: rush hour (Section 5.6.1) which is classified
as recurrent congestion because it is predictable and cyclical, a road accident
(Section 5.6.2) which is classified as non-recurrent congestion because it is
non-predictable and non-cyclical, and a football match (league) (Section
5.6.3) which is classified as semi-recurrent because it is predictable but non-
cyclical.

5.6.1 Rush hour

The case study being used for the road traffic event that has the consequence
of recurrent congestion is rush hour am and pm which is predictable and
cyclical, and this example occurs on the A6 within Greater Manchester, UK,
on the 8" of March 2017 and the 9" of March 2017. Figure 51, Figure 52,
Figure 53, and Figure 54 all show a 24-hour period with 15-minute intervals
of journey time for link {z} on a Wednesday and a Thursday.
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Figure 51: Link z upstream 8" of March 2017

Journey Time Analysis (Top: Network Sum, Centre: Main View, Bottom: Classification)
400 -

350 -
300 -
250 -
200 -
150 -
100 -

50 -

03-09 00 03-09 03 03-09 06 03-09 09 03-09 12 03-09 15 03-09 18 03-09 21 03-10 00

Figure 52: Link z upstream 9" of March 2017

Looking at both Figure 51 and Figure 52 you can see an obvious increase in
journey time where the average observed journey time on both days range
from 100 to 150 seconds. However, the observed journey time between 8 am
and 9 am sharply increase to around 400 and 500 seconds. Then between 9
am and 10 am the journey time starts to revert to a typical journey time
between 100 to 150 seconds.
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Figure 53: Link z downstream 8" of March 2017
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Figure 54: Link z downstream 9" of March 2017

Figure 53 and Figure 54 shows a similar behaviour as Figure 51 and Figure 52,
however, due to this being in the opposite direction and heading out of
Manchester city centre. The pattern of journey time sharply increasing occurs
in the afternoon around 4 pm and returns to a typical journey time around 7
pm.

5.6.2 Road accident

The case study being used for the road traffic event, which has the consequence
of non-recurrent congestion is a fatal road accident that happened on the A6
within Greater Manchester, UK, on the 7th of February 2017 at 15:40 and is
non-predictable and non-cyclical. The A6 road consists of the following links
{a, ¢, e, g, 1, m, o, z} (Figure 27). However, because the fatal accident
happens on link {g}, this analysis will focus purely on this link.

91



Figure 55 and Figure 56 shows a 24-hour period on the 7" of February 2017
where two road accidents (the red star (*)) occurred on the urban road
network the first one occurred around 8:55 am which was classified as slight
and is not the focus of this section. The second road incident was classified
as fatal and caused a more significant impact on the network performance.
As you can see from both Figure 55 and Figure 56 the journey time for
upstream and downstream exceed the upper boundary significantly or is
recorded as a zero-journey time. This means traffic is not passing both
Bluetooth sensors within the 15-minute interval because the road link is
closed, and vehicles need to divert around the area of the fatal road accident.
At 19:30 the road network returned to an expected classification of non-
congestion and remain that way for the rest of the 24-hour period.
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Figure 55: fatal road accident on link {g} (upstream)
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Figure 56: fatal road accident on link {g} (downstream)
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5.6.3 Football match (league)

The case study being used for the road traffic event that has the consequence
of semi-recurrent congestion is a football match (league) which is predictable
but non-cyclical. The league match occurred at the Etihad Stadium in
Manchester, UK on the 215t of February 2017 and where Manchester City FC
were one of the last 16 teams in the champion league and beat Monaco 5-2.
Figure 57 presents an overview of the network performance between the 71
of February and the 7™ of March 2017. When viewing Figure 57, there is an
obvious anomaly of a sharply increased journey time over the whole network
which is visible in the network performance view (top row).
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Figure 57: A one-month analysis of the road network
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Figure 58: A three-day analysis of the road network

In Figure 58, link {p} (near to the Etihad stadium) would typically take around 60
seconds to travel, is now taking between 60000 to 80000 seconds and has
become extremely congested from around midday until after midnight.
Additionally, to the increase in journey time, there is an obvious spatial
autocorrelation with a Moran’s | value of 0.75 for the majority of the day.

Figure 59 shows a simplistic way to visualise the score (which is a normalise
scaling between -1 and 1) as a chess board where each square would
represent a road link. -1 represents when a high value, such as high journey
time repels other high values. 1 represents when a low or high value is
clustered nears similar values. 0 represents when the low and high values
are randomly distributed across the network. Therefore, having a constant
Moran’s | value of ~0.75 means there is a large cluster of links next to each
other with very high and high journey times. This implies something major is
impacting most of the neighbourhood network topology.
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Figure 59: Moran’s (I)ndex simplified

5.7 Chapter conclusion

This chapter has introduced the design and implementation of TIM - a visual
Transport Incident Manager tool. Furthermore, this chapter discussed the
several different functionalities of TIM, such as plotting data in real-time to
allow domain experts to have a real-time view of individual links and an
overall network performance. Other functionalities are the ability to classify
the data using the RAG method developed by TfGM, conduct unsupervised
learning, the ability to look at the data in different spatial and temporal states,
and different statistical measurements, such as mean and median.

The key contribution to this chapter is TIMs ability to fill the void left by the clear
lack of visualisation tools that are capable of visualising real-world big data
datasets, such as MUCD and models of urban road congestion, such as the
URCC. Therefore, this chapter answers the research question (RQ3) — “Can
guantifiable big data on urban road congestion be visualised to provide quasi-
real-time insight?”

This chapter has demonstrated that it is possible to take quasi-real-time data
such as journey time and implement several statistical functions to gain
insight into the behaviour and characteristics of congestion causing events,
such as rush hour, a road accident, a football match. The feedback from the
stakeholders at TFTGM with regards to the functionality of TIM were positive,
they were happy that their current RAG method was included because it was
one of their requirements for assessing performance of individual links.
Furthermore, TIGM has suggested in the future work, they would like TIM to
look at their whole network instead of the subsample chosen for this research,
and believe it would be a vital tool for daily use.
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Chapter Six: An investigation of unsupervised learning to
predict urban road congestion.

6.1 Introduction

The aim of this chapter is to investigate the use of unsupervised learning to
ascertain whether it is possible to use predictive analytics to identify the
characteristics of urban road congestion and gain (qualitative) context from
guantitative data within the Manchester Urban Congestion Data (MUCD)
dataset.

The reason it is important to extract qualitative context from the MUCD s
because current Intelligent Transport Systems (ITS) lack the capability to
provide stakeholders, such as road users with meaningful context to allow
them to make more informed and better decisions. For example, road users
when driving on a highway would notice Variable Message Signs (VMS)
declaring, “CONGESTION AHEAD EXPECT DELAYS”. However, this
message lacks any meaningful context and creates more questions for the
road users. For instance, what type of congestion? Where has the congestion
occurred? What is the cause? When did it start? When will it end? Are there
any alternative routes? How will it influence the overall journey? A more
meaningful message would be “CONGESTION AHEAD IN 2 MILES, DUE
TO AN MINOR ACCIDENT AT 15:45 CAUSING INCREASED JOURNEY
TIMES”. This would allow the road users to make better decisions, such as
coming off the highway early and diverting. This behaviour would then reduce
the consequence of the minor accident, allowing the non-recurrent
congestion to be cleared sooner.

The experiments described in this chapter attempt to answer the following
research question (RQ2) - “Can quantitative Big Data be used to provide
qualitative information in conjunction with a road traffic ontology with the
support of Machine Learning?”

This chapter will contribute to answering the question by using the Urban Road
Congestion Conceptual (URCC) model and the relevant data from within the
MUCD dataset to conduct a series of empirical experiments using k-
means++. The empirical experiments will focus on using a single road within
the Greater Manchester region which consists of several links. Once the
empirical experiments have been conducted, the outputs will be visually
interpreted to ascertain whether qualitative context can be gained from
gualitative data. This methodology can be reproduced, assuming a similar
set of links with similar data is used.

The results of this paper have been published in

e L. Abberley, N. Gould, K. Crockett and J. Cheng, "Modelling road congestion
using ontologies for big data analytics in smart cities," 2017 International
Smart  Cities  Conference  (ISC2), 2017, pp. 1-6, Doi:
10.1109/1SC2.2017.8090795
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6.2 Experimental methodology

A subset of the MUCD dataset described in Chapter Four was used for the
empirical experiments in this chapter. Two methods for classifying the data
have previously been discussed in section 4.8.1 using Algorithm 1 and
section 5.4.2 using the RAG method which has been visualised using the
MUCD dataset within TIM. The labels are: Non-congested ((G)reen) and
Congested ((R)ed and (A)mber).

The aim of the experiments described in this section is to understand the
characteristic of urban road congestion, such as ‘high journey time’. The
series of experiments will be treating the data as non-labelled. A non-labelled
dataset is best suited for working in conjunction with unsupervised learning
algorithms such as clustering (Zhang et al., 2016). Clustering is a type of
machine learning algorithm and is one of the most commonly used
techniques when a user has a non-labelled data problem and requires a
solution (Philip Chen and Zhang, 2014). Clustering models the relationship
between variables using approaches, such as centroid-based and
hierarchical. All clustering methods use the inherent structures in the data to
best organize the data into groups of maximum commonalities. Some of the
most popular clustering algorithms are k-means, k-medians, Expectation
Maximisation (EM) and Hierarchical Clustering (Aggarwal, 2013)

Traditionally, congestion has been human monitored by measuring several
different dimensions, such as speed, traffic volume, and occupancy on the
road network. However, these dimensions are not without limitations; for
example, speed as opposed to journey time is a measure at a single point on
a link and cannot be used as a constant or to evaluate the whole link due to
the possibility of a traffic incident further down the road. Traffic volume and
occupancy require frequently deployed ‘expensive’ equipment, for instance,
inductive loop counters.

The series of experiments in this chapter have used data from inexpensive
technology (e.g., Bluetooth sensors vs traffic cameras) that can be used to
calculate journey times rather than speed and identify changes in journey
time and traffic volume depending on the day and time providing information
that is more useful and meaningful.

The following hypothesis will be evaluated.

Hypothesis one

HaO: Clustering an unsupervised dataset creates clusters that make it possible
to predict journey time.

Hal: Clustering an unsupervised dataset creates clusters that cannot be used
to predict journey time.

Hypothesis two
Hs0: Clustering an unsupervised dataset creates clusters that make it possible
to identify differences between a weekday and a weekend.

Hsl: Clustering an unsupervised dataset creates clusters that cannot be used
to identify differences between a weekday and a weekend.
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6.2.1 Experimental methodology

The first step is to create a subset of the MUCD dataset, consisting of journey
time, traffic volume, and road accident data in 15-minute intervals for a 3
month (13 weeks) period (January until March 2017), and uses links on the
A6 ({a},{c},{e}.{g}.{i},{m},{o})(see Figure 60) and will be discussed in section
6.2.2. Once the subset of data was created the next step was to model this
data by performing clustering using the k-means++ algorithm, which was
discussed in section 5.4.3.

Legend
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Figure 60: Manchester’s neighbourhood network topology (Contains OS
data © Crown copyright and database right (2017))

6.2.2 Dataset

This dataset used in these series of experiments is a subset of the MUCD
dataset and consists of data for the following links on the A6 ({a}, {c}, {e}, {g},
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{i}, {m}, {0}) which can be seen in Figure 60. Furthermore, the data subset
uses three primary data sources (Bluetooth sensors, inductive loop counters,
and accident data). Table 9 shows the name of the three data sources, where
the data was extracted from, and the relevant location for the data, the time
frame the data was available from at the point of the experiments, and finally

the dimensions in relation to the data sources.

Table 9: Data Sources

Data From Location Timeframe dimension
Bluetooth TfGM Man(E‘Jr}gster, 2016-Current Journey Time
Inductive Loop TIGM Manchester, 2015-Current Traffic volume
Counter UK
Accident Data | STATS19 UK 2005-current C_:asualty
accidents only

Table 10 shows a more in-depth description of the MUCD dataset, which
describes the data, the data type, and the valid values.

Table 10: Subset of the MUCD dataset data dictionary

Data

Field Name Description Valid Value
Type
Date Date of the observation. Date DD/MM/YYYY
May only contain
letters, digits, and
Day Day of observation. Character periods with
limited variable
length.
Time of observation. ;
. Each recorded . Lowest vglue.
Time SO time 00:00:00. Highest
observation is in 15- A A
) X value: 24:00:00.
minute intervals.
Upstream Each link represents a
section of a road. The
journey time between two
Bluetooth sensors at the
Link start and end of each Integer | 0.00...999,999.99
Downstream Link is recorded in both
directions called
upstream and
downstream.
1 Volume
ATC Volume | 'O V""S"érr‘l‘seofoum & | nteger | 0.00...999,999.99
5 Volume
Accident Did an injury accident Integer 0.1

occur
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6.2.3 Methodology

The following steps were taken to conduct the empirical experiments:

A subset of data was extracted from the MUCD dataset.

Define a suitable distance measurement for k-means++. The distance
chosen for measuring the distance between the data point was Equation 14:
Euclidean Distance.

Conduct experiments to determine the optimal number of clusters using the
silhouette method. Five clusters were selected as they had the highest
silhouette score of 0.609.

Analyse the output to ascertain whether or not the clusters represent the
expected characteristics. For instance, does the expected clusters appear at
the expected time of day and provide linguistical value.

d(a,b) = \/(ax —b)? + (ay — by)z

Equation 14: Euclidean Distance

Equation 14 shows how the distance between two points in the k-means++

experiments are measured. Where a and b are both points on a multiple
dimensions plane relating to time of day, day of week, and journey time.
Where x and y are the axis in each of the series of experiments.

6.2.4 Results

The purpose of these experiments was to use unsupervised learning to identify

characteristics of urban road congestion and to gain qualitative information
from quantitative data, such as the journey time and traffic volume discussed
in section 6.2.2. Figure 61 displays 13 weeks of data in a scatter graph with
the following weekdays: Tuesday, Wednesday, and Thursday across the x-
axis, the observed journey time along the y-axis, and each data point being
grouped into four time periods are 6:0, 7:00, 8:00, and 9:00. Each period
group represents a 15-minute interval. For example, 6:00 until 6:15.

From Figure 61, it is apparent that the group 6:00 and 7:00 are a lot more

consistent with regards to journey time than 8:00 and 9:00 which appear to
have a lot more variation ranging from 0 to 2600 seconds. 9:00 is positioned
sparsely between 7:00 and 8:00 demonstrating a visible temporal pattern in
the journey time data. For instance, apart from a single outlier the 6 am and
the 7 am times are the most clustered and have the quickest journey times
throughout the morning, this is because the network is less occupied and
allows for the traffic behaviour to be considered free flow compared to 8am
and 9am where more vehicles are using the network at the same time
causing a larger variation of journey times. Therefore, the visible temporal
pattern demonstrates, it is easy to predict the expected journey time for pre-
recurrent ‘am rush hour’ congestion.
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Figure 61: Scatter graph of journey times

Following the exploration of journey time in Figure 61, the next phase was to try
to prove whether hypothesis one is true or not. This was achieved by
clustering the journey time data for a six-month period over a 24-hour period
and Figure 62 is the outcome.
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Figure 62: Clustered journey time into five categories 1) V. High JT 2)
High JT 3) Avg.JT 4) Low JT 5) V. Low JT

Figure 62 was produced by using the k-means++ algorithm to choose the initial
centroid, in addition, Euclidean distance (Equation 2) was used for calculating
the distance between points. Five clusters were selected as they had the
highest silhouette score of 0.609 which indicates that the data is well-
distributed and ‘far away’ from its nearest cluster. Additionally, using five
clusters provides a good level of resolution and resolution is vital to be able
to prove hypothesis one true because without the ability to classify journey
time into meaningful classes it would be impossible to predict the level of
journey time.
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In Figure 63 clustering has been used for the purpose of visualising the
relationships between the five classifications of journey time, Very High, High,
Average, Low and Very Low. The five classes were based on the silhouette
score. The size of each observation relates to the volume of traffic on the
network at the same time as the journey time observation. Figure 63 has
many interesting patterns, such as the journey time between 00:00 and 06:30
remained dense in the Very Low or Low journey time. Then as expected
between Monday to Friday around 7am the journey times become more
average and around 8am high journey times become more prominent, which
is expected behaviour considering the definition of recurrent congestion:
“Occurs when significant amounts of vehicles simultaneously use a limited
road space, such as on a weekday morning and afternoons peak hours’ traffic
jam situations.”.
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Figure 63: Clustered daily journey times into five categories 1) V. High JT
2) High JT 3) Avg.JT 4) Low JT 5) V. Low JT

To test hypothesis two, a different approach was used with regards to the
visualisation of the data. In Figure 63, the x-axis is used for all 7 days of the
week and the y-axis is used for time of day in 15-minute intervals. The size
of each point is used to refer to the traffic volume.

Figure 63 shows it is possible to use clustering to identify differences between
weekdays and weekends. For example, on Saturday and Sunday, there are
longer periods of lower journey times and fewer vehicles using the road in
the morning. In addition, on Monday, Tuesday, Wednesday, and Thursday
there is a noticeable High journey time at around 8:00 each morning, which
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is expected because people are going to work and dropping children off at
school. Finally, it is worth noting the volume levels typically become high at 7
am during the week and does not reduce until around 8 pm proving
hypothesis two true (Hs0) “Clustering an unsupervised dataset creates
clusters that make it possible to identify differences between a weekday and
a weekend”.

Proving both hypotheses true (Ha0) “Clustering an unsupervised dataset creates
clusters that make it possible to predict journey time” and (Hs0) “Clustering
an unsupervised dataset creates clusters that make it possible to identify
differences between a weekday and a weekend” is vital when it comes to
defining the differences between the consequence of a recurrent event such
as morning rush hour and non-recurrent event such as a road traffic accident.
It is also important to TfGM to be able to identify the differences between the
spike in journey time and a reduction in traffic volume caused by both of these
congestion types.

6.3 Case Study

A case study was chosen to attempt to answer the following research question
(RQ2) - “Can quantitative Big Data be used to provide qualitative information
in conjunction with a road traffic ontology with the support of Machine
Learning?”

The case study will look at a fatal road accident on the A6 on the 7th of February
2017, using the data sources mentioned in section 6.2.2. Figure 64 was
populated using python and shows the mean journey time, the time of the
day in 15-minute intervals, and the (road) accident (the green line). The first
(top) graph is the day of the accident, and the second (bottom) graph is the
mean of 13 weeks (January until March 2017). Looking at Figure 64, there is
a noticeable difference at the time of the fatal accident between the average
journey time, which is around 1200 seconds (low journey time), and the day
of the fatal accident that fluctuates between either O seconds (very low
journey time) and around 3500 seconds (very high journey time).

For a road user, these values mean very little but after using the clusters created
in the experimental analysis, we can say the journey time has changed from
a low journey time to either no journey time (road closed) or a very high
journey time state due to diversion, which lasts for around three hours overall
before returning to the expected journey time. Furthermore, examining the 8
am period, both the average journey time and the single day are both average
journey times according to the classification from the clustering which
matches up with the typical behaviour of recurrent congestion. Both these
examples of congestion (non-recurrent and recurrent) and the measurements
match up to what was identified in the road accident ontology within the
URCC.

105



A6 Journey Time on the 07/02/2017

0 1500
I

Mean Journey Time

T T T I
0 20 40 60 80

Time in 15 Minutes slots

A6 mean Journey Time over 13 weeks

500 1500

ACCM

|
=]
=

Mean Journey Time

T T T T T
0 20 40 60 80

Time in 15 Minutes slots

Figure 64: Journey time on the a) 7th February 2017 b) over a 13-week
period

6.4 Chapter conclusion

This chapter has introduced a series of empirical experiments which uses a
subset of data from the MUCD dataset in conjunction with the URCC and its
main component (the universal ontology of road congestion) to prove both
the hypothesis and answer the research question (RQ2) - “Can quantitative
Big Data be used to provide qualitative information in conjunction with a road
traffic ontology with the support of Machine Learning?”

This chapter has demonstrated that by interpolating the outcome of the series of
empirical experiments it is possible to prove both hypotheses.

HaO: Clustering an unsupervised dataset creates clusters that make it possible
to predict journey time.

Hs0: Clustering an unsupervised dataset creates clusters that make it possible
to identify differences between a weekday and a weekend.

And in turn, demonstrated that it is possible to take quantitative data and extract
gualitative information, which can be provided to the stakeholders, such as
road users or transport managers. The stakeholders could then use the
meaningful information to make better decisions. Therefore, contributing to
answering RQ2.

However, despite the promising results, further work is required to establish
whether it is possible to identify similar patterns within the larger MUCD
dataset and be able to predict the different types of road congestion using a
rule-based system such as a fuzzy decision system. The feasibility of using
a fuzzy decision-making system in this context is explored in chapter seven.
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Chapter Seven: Validating the conceptual model using a
fuzzy decision-making system.

7.1 Introduction

This chapter describes the conceptualisation, design, and implementation of two
fuzzy-based decision-making systems, which have been designed to validate
the Urban Road Congestion Conceptual (URCC) model (described in chapter
three). Both fuzzy systems are novel contributions of the work presented in
this thesis. First, a binary fuzzy decision-making system is proposed which
focuses on classifying a binary output between congestion (recurrent
congestion, non-recurrent congestion, and semi-recurrent congestion) and
non-congestion using only journey time and traffic volume as the inputs. This
work has been published in

e Abberley, L., Crockett, K. and Cheng, J., 2019, April. Modelling Road
Congestion Using a Fuzzy System and Real-World Data for Connected
and Autonomous Vehicles. In 2019 Wireless Days (WD) (pp. 1-8).
IEEE.

Figure 65 shows an overview of the methodology for determining if it is possible
to use the binary fuzzy decision-making system for predicting urban road
congestion. The steps were as follows:

o Extract a subset of the real-world spatial-temporal dataset, known as the
Manchester Urban Congestion Data (MUCD) dataset. This subset of data is
then processed and store within a database. (Chapter four).

e The MUCD subset was then labelled using the Red, Amber, and Green
(RAG) method proposed by Transport for Greater Manchester (TfGM)
(Chapter five).

« Membership functions within the Fuzzy decision-making system were
designed using clusters obtained from experiments in chapter five.

« The MUCD subset was then partitioned into two sets: training and test. The
training data was used to create both a decision tree and naive bayes
models. The test data was then used to predict if congestion has occurred or
not against all three types of machine learning: fuzzy decision-system,
decision tree, naive bayes (Section 7.3.6).

« Predictive results are then compared using several statistical measurements,
such as True Positive Rate (TPR), False Positive Rate (FPR), Precision, F-
measure, and Efficiency (Section 7.3.7).
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Figure 65: Methodology for the binary fuzzy decision-making system

The second fuzzy decision-making system will focus on classifying a multi-
classification output between recurrent congestion, non-recurrent
congestion, semi-recurrent congestion, and non-congestion using journey
time and volume, time-of-day, day-of-week, and distance from attractor as
the inputs.

Figure 66 shows an overview of the methodology for determining if it is possible
to use the multi-classification fuzzy decision-making system for predicting
urban road congestion. The steps are as followed:

o Extract a subset of the real-world spatial-temporal data from MUCD dataset.
This subset of data is then processed and store within a database. (Chapter
four).

e The MUCD subset was then labelled using the definitions defined in the
conceptual model (Chapter three) and the expert defined method, such as
RAG which was proposed by Transport for Greater Manchester (TfGM)
(Chapter five).

e The multi-classification Fuzzy decision-making system was built using a
percentile model to standardise the journey time and traffic volume data.
This standardised data was then used to create the required fuzzy
membership function (Section 7.4.1.4).

e The MUCD subset was then partitioned into two sets: training and test. The
training data was used to create both a decision tree and naive bayes
models. The test data was then used to predict what type of congestion has
occurred against all three types of machine learning: fuzzy decision-system,
Decision tree, Naive Bayes (Section 7.4.1.8).

¢ Results are then compared using several statistical measurements, such as
Recall, Precision, F-measure, and weighted average (Section 7.4.1.9).
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Figure 66: Methodology for the multi-classification fuzzy decision-making
system

The experiments described in this chapter attempt to answer the following
research question (RQ4) - “Can a fuzzy rule-based system be designed to
predict road congestion through validation of the Urban Road Congestion
Conceptual (URCC) model?”

7.2 Fuzzy systems in transportation

For centuries, we as people have naturally been migrating from rural to urban
areas. This natural occurrence of urbanization has contributed to one of the
biggest challenges’ societies faces each day, which is road congestion. Road
congestion in urban areas is estimated to cost the UK economy a total of
£307 billion by 2030 (Djahel, Jones, Hadjadj-Aoul, et al., 2018). Furthermore,
road congestion contributes enormously to damaging the environment, due
to air pollution which has an impact on people’s well-being (Gould and
Abberley, 2017; Rui et al., 2018).

In an attempt to reduce the impact of road congestion, many large corporations,
such as Google, Tesla, and Uber are developing ‘smart vehicles’, such as
connected and autonomous vehicles (CAVs) that will be implemented as part
of an Intelligent Transport System (ITS) of the future. Smart vehicles are
expected to reduce congestion levels and the number of fatal accidents on
the roads, with an estimated 37,000 lives a year predicted as being saved in
the United States (U.S.) alone (Mudge et al., 2018). This is due to a smart
vehicles ability to communicate faster than a human and make better
decisions based on information collected by sensors embedded within the
vehicles and infrastructure (Djahel et al., 2015). However, due to the limited
access to these smart vehicles and their associated infrastructure, this study
will use alternative data sources, which comprise of data similar to what is
collected by CAVs and Roadside Units (RSUs) that will be used withinan ITS
of the future, such as a VANETSs. Furthermore, these types of ITS will provide
data from vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) providing
a constant stream of big data (Isa et al., 2014; Djahel et al., 2015; Golestan
et al., 2015), which can be used to provide different information, such as
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volume, journey time, speed, and weather conditions, which are also known
as dimensions.

Little work has been conducted using fuzzy systems to model urban road
congestion (Pongpaibool et al., 2007; Li et al., 2018; Sun et al., 2018; Amini
et al., 2021; Singh et al., 2021; Toan and Wong, 2021). However, this limited
work has indicated that fuzzy models of road congestion are better for a
stakeholder, such as a domain expert to understand that the conventional
guantitative models previously implemented, such as the probability model
(Li, 2015) and the spatial-temporal model (Anbaroglu et al., 2015). Fuzzy sets
are the ideal choice for modelling road congestion because of their ability to
handle the ambiguity, multifaceted nature, and uncertainty within traffic data.
They have the ability to capture such characteristics through the use of
linguistic variables and hedges which are easier for a domain expert to
understand (Zadeh, 1968).

7.2.1 What is a fuzzy decision-making system?

A Fuzzy decision-making system is a typical control system based on fuzzy logic
(Chen etal., 1993; Xuan, 2022). The term “fuzzy” refers to the system’s ability
to deal with terms that are not binary or predefined and often referred to as
linguistic variables. For instance, a humans’ understanding of the phrase,
near or far, could imply very near, near, not near, far, and very far depending
on the context and the environment. Hence, fuzzy terms are subjective and
mean different things to different people. The main advantage of a Fuzzy
decision-making system is that the model itself is made up of a number of
fuzzy rules, which can model a problem, such as urban congestion and the
model can be expressed in terms a human operator can understand.

7.2.1.1 Methodology for a fuzzy decision-making system

The focus of this section is on the development of a fuzzy decision-making
system using the Mamdani fuzzy inference system method developed in
1975 (Mamdani and Assilian, 1975). Mamdani fuzzy inference systems are
typically applied to control-based problems. For example, manufacturing
(Pourjavad and Mayorga, 2019), Supply chain management (Pourjavad and
Shahin, 2018), groundwater prediction (Saberi et al., 2012) and smart city
control problems (Igbal et al., 2018).

Mamdani is one of two main fuzzy inference systems used in control base
sceanarios. The second system is known as Sugeno (Takagi and Sugeno,
1985; Sugeno and Kang, 1988) and was developed in 1985. Mamdani and
Sugeno both vary somewhat in how the outputs are determined. One of the
main differences is the way the fuzzy rules are determined. Mamdani uses a
set of linguistical control rules obtained from expert knowledge, whereas
Sugeno uses a systematic approach for generating the rules from a given
input-output dataset. Other differences are, for Mamdani there is an output
membership function. However, Sugeno has no output membership function.
Mamdani maintains a high level of interpretability due to the logistical nature
of the control rules. However, due to the systematic approach Surgeno uses
to creating the rule set, there is a loss in the interpretability of the output.
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Both fuzzy inference systems have their own merits, however, due to TfGMs
requesting the ability to be able to interpret the output and gain better
understanding, it was decided the Mamdani approach would be used. Figure
67 shows the method for creating a Fuzzy decision-making system which
consists of six stages and is described as follows:

1)
2)

3)

4)

5)

6)

The first step is to determine a set of fuzzy rules.

The second step requires fuzzification of the non-fuzzy input (crisp). The
inputs are fuzzified according to the determined membership functions.
The third step is to combine the fuzzified inputs in according to the fuzzy
rules defined in step one and establish a rule strength.

The fourth step is to calculate the consequents of each rule by applying a
fuzzy operator (and/or/not) to the antecedents (If-Then). For instance, the
top rule has two parts in the antecedent, so an AND operator was used
to identify the minimum value as the result.

The fifth step is to aggregate the consequences to get a single output
distribution.

The sixth and final step is to defuzzify (using the centroid of area method).
The single defuzzified output will be a crisp value. Although, if a crisp
classification is not needed, then this step can be skipped.

IF Rule Strength THEN
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Figure 67. Mamdani inference system [Source: Author]
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In the work presented in this thesis, the binary (section 7.3) and
multiclassification (Section 7.4) fuzzy decision-making systems have been
developed using the six stages outlined In Figure 67. Both systems will be
compared against two other algorithms. The first is a decision tree and the
second is a probabilistic algorithm. The performance of all models will be
validated using several statistical measurements, such as recall, precision f-
score, etc. mentioned in Figure 65 and Figure 66.

In addition to the methodology mentioned above, during the crucial stages, such
as determining a set of fuzzy rules, determining the membership functions
(fuzzification), and determining the final classifications or crisp value
(defuzzification) TfGM will be periodically testing both systems, providing
expert knowledge and feedback to aid the calibration of the fuzzy control rules
to manually optimise the overall performance. Furthermore, to assist with
calibrating the fuzzy control rules, empirical experiments were conducted,
such as using every combination of rules sets and using subsamples of data
to ascertain whether the output was expected or not.

7.2.2 Transport application

The approach to using a Fuzzy decision-making system within the discipline of
transportation to classify urban road traffic congestion is relatively new with
very few papers primary focus being on congestion. For instance, a study
(Bauza et al., 2010) into cooperative a vehicle to vehicle (V2V) road traffic
detection congestion on freeways. This study uses a level of service metric
created by a third party who collected aerial surveys to define the levels of
congestion: slight, moderate, and severe. The author then created a new
metric that uses four membership functions: Very Slow, Slow, Medium, and
Fast, two inputs: Speed and Density, and 16 rules to define an output for one
of three levels of congestion. However, this study does not consider non-
congestion as an output and has reported only using the model in a
simulation with simulated data, furthermore, the focus of the study is on
highways and does not reflect an urban road network, which has very
different characteristics.

Another study (Li et al., 2018), investigates road traffic anomalies that contribute
to congestion at a single junction using a one-way traffic video sequence.
This study uses two data inputs: Traffic flow and traffic density. Traffic flow
has three membership functions called low, medium, and high. These
functions are calculated using linear increasing, decreasing, and trapezoidal-
shaped membership functions with the fuzzy boundaries calculated using p +
o and u+ 20. Where u defines the mean and o defines the standard
deviation. Traffic density also has three membership functions, which are
sparse, normal, and dense. These memberships are calculated using a
statistical analysis of the pixels. This study uses a total of nine rules, which
were obtained through experience and experiments. The output
classifications were either. Normal traffic, slight congestion, and heavy
congestion. The main limitation of this experiment was only evaluating on
three different scenes and in total only had 142 observations. Another
limitation was in the results, where the authors only report the accuracy, false
detection rate, and the ‘average’ of three scenes without calculating an

112



average. The results claimed to achieve 100 per cent accuracy for normal
traffic but claims a 0.11 per cent false detection rate, which contradicts the
100 per cent claim. Furthermore, the slight congestion classification had an
accuracy of 93.4 per cent and heavy congestion had an accuracy of only 72.2
per cent.

Reviewing recent literature (Amini et al., 2021; Singh et al., 2021; Toan and

Wong, 2021) have demonstrated some of the limitations of trying to model
urban road congestion, which includes the unavailability to obtain good
quality data. Therefore, they have either simulated their own data, not used
any data, or chosen to investigate highways using toll data to count the
number of vehicles entering a zone. Another limitation of these studies was
they developed their respective fuzzy systems in a simulated environment
which would not be transferable in a real-world environment.

7.3 Binary fuzzy decision-making system

The development of a binary Fuzzy decision-making system contributes to

7.3.1

knowledge by creating a novel way to predict urban road congestion.
Additionally, the use of an unbalanced real-world big dataset is rare, as
majority of literature use synthetic balanced datasets. Furthermore, the use
of domain experts’ knowledge to construct a fuzzy model of road congestion
requires no training data for the model to learn from unlike traditional machine
learning models which require training and test data, some even require
validation data. The Fuzzy decision-making system is achieved through the
construction of a set of fuzzy membership functions and fuzzy rules that can
be used to identify road congestion. An experiment is then conducted using
the real-world data to determine whether the fuzzy model can be used to
analyse traffic data to classify congestion. Comparisons are then made with
an existing internal control centre system used by Greater Manchester
Transport authority in the UK and other known classification algorithms.

Methodology: Binary fuzzy decision-making system for predicting

urban road congestion

This section describes the methodology, which was used to develop a fuzzy

system for road congestion on an urban city network. The model utilises real-
world data from Bluetooth sensors and inductive loop counters provided by
TfGM for Manchester, UK. These data sources will provide data, which is
equivalent to what CAVs and RSUs would provide. Moreover, experts in road
congestion management from TfGM and a road congestion ontology
(Abberley et al., 2017; Gould and Abberley, 2017) were used to help define
the fuzzy sets to ensure a thorough domain coverage.

The road congestion ontology which was used to support the development of a

fuzzy system capable of classifying road congestion was presented in
(Abberley et al., 2017). The road congestion ontology states that congestion
can be measured using multiple dimensions, such as journey time and
volume. Furthermore, congestion is often the consequence of an event, such
as rush hour, a road accident, a concert, a football match, and roadworks.
Finally, depending on the severity of congestion the magnitude can vary from
very low to very high. Therefore, in this study, the magnitude ranges defined
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in the urban road congestion ontology (Abberley et al., 2017) will be used to
determine the membership functions: Very low, vz, low, £, medium, , high,
H, and very high, vFwhich will ensure coverage of the domain.

7.3.2 Data sources and variables

A subset of the real-world spatial-temporal dataset, known as the Manchester
Urban Congestion Data (MUCD) dataset was used. This subset consists of
both journey time and traffic volume dimensions, which were collected from
Bluetooth sensors and inductive loop counters and the subset has a total of
17376 records. Each record consists of two attributes and a classification that
was created using the Red, R Amber, 4, and Green, ¢, (RAG) method
implemented by TfGM, UK. Where red (Equation 10) and amber (Equation
11) are both congested and green (Equation 12) is non-congested.

The problems associated with the MUCD dataset has been discussed in section
4.6 and can be summarised as:

e Due to the limited number of inductive loops Traffic counters, the ability to
calculate the volume of traffic for each link is limited.

e The data quality of the Bluetooth sensors has many issues. For example,
capture rates; during the night periods or a period where no vehicle with a
Bluetooth device passes the sensors cause the sensors to provide an
iIncorrect average journey time when being observed.

¢ In bad weather, the sensors which use a mobile network to transmit the data
to a central location, can fail and cause the dataset to have missing data.

e One class out significantly outweighs the other, causing the MUCD dataset
classed as imbalanced, which cause challenges for machine learning
classification algorithms. Since classification algorithms are often biased
towards the majority class, which in this study is non-congestion.

7.3.3 Methodology for determining the membership functions and fuzzy rules

Stages 1 and 2 of the Mamdani methodology discussed in section 7.2.1.1
requires a set of rules to be determined and the data inputs to be fuzzified
according to the determined membership functions. Therefore, it is important
to set out a methodology for determining the membership functions and fuzzy
rule set.

To assist with the initial determination of membership functions (section 7.3.3.1)
and rules (section 7.3.3.2) an empirical approach was taken with the support
of the urban road congestion ontology (Abberley et al., 2017), (Abberley et
al., 2017), which is part of the URCC model discussed in chapter three.
During the discussions with domain experts at TfGM, it was agreed the formal
terms defined within the URCC model should be used to define the
membership functions for journey time and traffic volume (due to their
simplistic wording). This was achieved by using the magnitude concepts,
such as very low, low, medium, high, and very high presented in the urban
road congestion ontology.

Figure 68 shows the methodology for determining the membership functions and
fuzzy rules which consists of nine stages and are described as follows:
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1)

2)

3)

4)

5)
6)

7
8)

9)

Collect, process relevant data, and store the data in a database for ease
of access.
The URCC model was initially used to determine the number of
memberships and their names, however, empirical experimentation was
conducted to determine the best approach for creating the membership
functions.

a. The approaches taken are: equal size memberships, using mean
and +/- standard deviation one and two, and a unsupervised
learning algorithm called K-means++.

Initially to determine the rule set, all combinations of inputs-outputs were
used and through several iterations of empirical experimentation and
feedback from TfGM a final rule set was determined.

Using the memberships and fuzzy rules, a subsample of data is used to
evaluate the functionality of the fuzzy system.

Analyses of the subsample data.

Conducted empirical optimisation based on the analysis conducted in (5)
to refine the membership functions over several iterations.

Review the membership functions, rules, and the outcome produced
using the subsample data with TfGM using TIM for visualisation support.
Using the feedback from TfGM, a second stage of empirical optimisation
is conducted to refine the rules over several iterations.

Once the membership functions and rules are optimised, perform
predictions against the test data.
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Figure 68. Methodology for determining membership functions and rules
[Source: Author]

7.3.3.1 Membership function determination
Table 11 shows the dimensions, data sources, and the linguistic values
determined from the urban road congestion ontology (Abberley et al., 2017),
(Abberley et al., 2017). The linguistic values of the membership functions
representing journey time and traffic volume are also shown.
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Table 11: Dimensions and their linguistic values

Dimension Data sources Linguistic values
(Variables) (Membership
functions)
Journey time Bluetooth remote Very Low (Vz)
sensors Low (z)
Medium (M)
High (#)
Very High (VH)
Volume Inductive loop Very Low (VL)
counters Low (z)
Medium (M)
High (#)

Very High (VH)

Using the linguistic values identified in Table 11, the creation of the fuzzy
membership functions can be performed using three steps:

o Step 1: Perform k-means++ clustering discussed in (Abberley et al., 2017).
Section 5.4.3.2 provides the algorithm used to conduct k-means++ on both
journey time and volume data.

o Step 2: Identify the final boundary values for a set of groups where they
connect and define this value as at.

e Step 3: Using the drvalue, determine membership function domain coverage
using one of three membership functions: linear up, linear down, and
trapezoidal shape.

The primary objective of machine learning is to discover patterns within large
datasets, such as the MUCD dataset used within this study. k-means++
clustering is an unsupervised algorithm used within machine learning to find
a cluster of patterns in data. k-means++ uses the inherent structures in the
data to best organise the data into groups of maximum commonalities
(Aggarwal, 2013). This is achieved by partitioning » observations into &(in this
study £=5) clusters. The use of five clusters was chosen based upon early
empirical experiments, which found that five clusters provided sufficient
resolution (Abberley et al., 2017).
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Figure 69: Example of k clusters where k=5 being performed on 6 months
of journey time data

Figure 69 shows 17376 journey time records plotted on a 24-hour scale. Each
observation within Figure 69 belongs to the cluster with the nearest mean
value. Once k-means++ has been conducted, it becomes possible to identify
the boundary values between each cluster, which will be used to create the
membership functions in the fuzzy system.

Figure 70 shows an example pair of linear opposing membership functions,
which will be used for the vz (very low) and v# (very high) memberships for
both journey time and traffic volume. The two pairs Equation 15 and Equation
16 are both linear increasing and decreasing membership functions Z, can
be defined as (K. Crockett et al., 2006):

0, x <dm
x —dm
LT (x,dn,dn) ={—, dm < x <dn
dn —dm
1, x =dn

Equation 15: Linear increasing membership function

1, x <dm
x —dm
Ll (x,dn,dn) =41 - ———, dm < x <dn
dn —dm
0, x =dn

Equation 16: Linear decreasing membership function

Where dm is defined as dm=dt-noc and dt is the value generated by K-means
clustering on all variable irecords. nis a real number » — [0.0, «], ois the
standard deviation, and x is the value of the variable i »is empirically
determined. Additionally, dnis defined as dn=dt+no.
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Figure 70: Example of a linear pair opposing fuzzy memberships
functions

Figure 71 shows an example of a trapezoidal-shaped membership function,
which will be used for the z, #, and # memberships. The trapezoidal-shaped
membership function 7; Equation 17, may be defined as:

( 0, x < dmt
x —dm?! . L
m, dm' <x <dn
T(x,dm?, dn', dm?, dn?) = { 1, dn! < x < dm?
x — dm? 5 5
— m, dm* <x <dn
\ 0, x > dn?

Equation 17: trapezoidal-shaped membership function

Where dm1, dni, dm2, and dmz are defined using the same method as dm and dn.
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Figure 71: Example of a trapezoidal-shaped membership function

7.3.3.2 Fuzzy Rules Determination (manual and expert)

The fuzzy rules were initially created with every possible variant for each of the
five membership functions, such as Vi, z, M, A, and v for journey time and
volume. A total of 25 rules were created. However, the consequences of
using this approach were observed in early analysis of the subsample data.
It was observed from the early predictions that the results were not optimal
due to more than expected false positives producing an overall weak
performance. Therefore, with the support of the urban road congestion
ontology (Abberley et al., 2017) and domain experts, TfGM (TfGM, n.d.), the
rules were manually optimised down to just six. As a result of empirical
optimisation, it was discovered that several rules were not firing correctly due
to overlapping of rules and it was determined many rules were not relevant.
For example, if journey time was I’H then the output is congested regardless
of the volume.
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Algorithm 2 uses both antecedents and consequents membership functions to
fire six unique rules to acquire each rule strength ready for fuzzy inference.

Algorithm 2
Rules for congestion.

Antecedents: Journey Time, JT. Traffic Volume, V.

Antecedents memberships: Very Low, VL. Low, L. Medium, M. High, H.
Very High, VH.

Consequents: Congestion, C.

Consequents memberships: Congested, Con. Non-congested, Non.

1 ifJTisVH then

2 C < Con

3 ifJTisHthen

4 C « Con

5 ifJTisMandV isVH then
6 C <« Con

7 ifJTisMandV isnot VH then
8 C < Non

9 ifJTisL then

10 C < Non

11 if JT isVL then

12 C < Non

13 returnC

7.3.4 Fuzzy inference

One of the first control systems and most commonly implemented methods for
computing fuzzy inference is Mamdani (Mamdani and Assilian, 1975).
Furthermore, Mamdani was first implemented within the transport domain,
where it was used in an attempt to control a steam engine and boiler
combination (Mamdani and Assilian, 1975). In this exploratory work on fuzzy
systems, Mamdani inference was therefore selected.
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Figure 72: An example of how Mamdani fuzzy inferences works
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Figure 72 shows the composition of fuzzy inference, the four stages are:

Stage 1. Fuzzification of the non-fuzzy inputs, which are crisp, numerical, and
specific to the attribute domain. The inputs are fuzzified according to
membership functions.

Stage 2. If the antecedent of a given rule has more than one part, the application
of a fuzzy operator is required to obtain a single value that represents the
individual rule. For instance, the top rule within Figure 72 has two parts in
the antecedent, so a AND operator is used to identify the minimum value as
the result.

Stage 3. Using the single value acquired in stage 2, the consequent is reshaped
to provide the result of implication which is weighted depending on the
linguistic characteristics that are attributed to it.

Stage 4. Aggregation is the combination of the fuzzy sets that represent the
outputs of each rule into a single fuzzy set (fuzzy output distribution).

7.3.5 Defuzzification

The method centroid of area (COA), also known as the centre of gravity (COG)
(Equation 18) is one of the most commonly used methods to defuzzify a fuzzy
set (the output distribution membership in Figure 72) and output a crisp
numeric value, which in this study is the probability of congestion. To achieve
this, the total area of the output distribution membership is divided into a
number of sub-areas and then the COA is calculated for each sub-area.
Finally, all sub-areas COA are summed to find the defuzzied value
(probability of congestion). The defuzzification using COA, Z*, is the
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defuzzied value of the fuzzy sets, Z. Where pz(z) is the degree of
membership for the fuzzy set, where for all z € Z.

_ [z (2).zdz
Juz(2)dz

Equation 18: Centre of gravity

Z*

7.3.6 Experimental Methodology

The aim of the experiment is to determine whether a fuzzy system can be used
to analyse traffic data to classify congestion.

The following hypothesis will be evaluated.

Hypothesis

HaO: Using journey time and volume data, it is possible to classify congestion
using a fuzzy system.

Hal: Using journey time and volume data, it is not possible to classify congestion
using a fuzzy system.

To evaluate the performance of the fuzzy system, the binary fuzzy decision-
making system was compared against two alternative machine-learning
algorithms: The decision tree C4.5 (using the Weka implementation J48)
(Weka, 2018) and naive bayes. The decision tree C4.5 was chosen because
C4.5is explainable, and it would be useful to compare tree rules against fuzzy
rules. Naive bayes, which is a probabilistic classifier, was chosen because it
is intuitive and simple, however, the performance is strong in many cases,
and it manages all values independently. The statistical measurement to
compare the three models are: True Positive Rate, False Positive Rate,
Precision, F-score, and overall efficiency. All three models used the same
MUCD subset, which was split into two parts: training that contains 8688
records of which 6665 were classified as non-congestion and 2023 were
classified as congestion (accounting for only 23% of records). The test
dataset contains the remainder of the dataset. Datasets were mutually
exclusive.

In order to evaluate the three methods using an unbalanced dataset, five
statistical measurements were chosen, which are: True Positive Rate, 7PR,
also known as recall and sensitivity. TPR measures the proportion of actual
positives that are correctly identified. TPR is defined in Equation 19 where
TP is a true positive, and FNis a false negative.

TPR = —/———
TP +FN

Equation 19: True positive rate

False Positive Rate, FPR, measures the negative instance that is wrongly
classified as positive. FPR is defined in Equation 20 where FP is false
positive, and 7Nis a true negative.
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FPR = ————
FP+TN

Equation 20: False positive rate

Precision, also known as a positive predictive value, PPV, measures the number
of positive predictions divided by the total number of positive class values
predicted. Precision is defined in Equation 21.

PPV = 25 Fp

Equation 21: Positive predictive value

F-measure, also known as F1 Score, F1, measures the balance between the
precision and TPR. F-measure is defined in Equation 22.

_ 2%TP

~ 2xTP+FP+FN

Equation 22: F-measure

F1

Overall efficiency, also known as accuracy, measures the amount of correctly
classified instances. Overall efficiency is defined in Equation 23.

TP+TN
TP+TN+ FP+FN

Equation 23: Overall efficiency

Overall Ef ficiency =

However, due to the class imbalance as mentioned above, it is important to
provide a single value that represents the performance of both classes for
TPR, precision, and F-measure. To achieve this a weighted average will be
used and is defined in Equation 24. Where C,,, represents the statistical
measurement being weighted for the class non-congestion. C,,, represents
the statistical measurement being weighted for the class congested.

Cpon * (TP + FN) + C,op * (TN + FP)
TP + FN + TN + FP

Equation 24: Binary weighted average

W =

7.3.7 Results and Discussion

The purpose of this study was to determine whether it is possible to classify road
congestion using a fuzzy system and real-world traffic data. Table 12 shows
the results for each statistical measurement for three machine-learning
algorithms and their classes: Non-congestion (Figure 73), congested (Figure
74) and the weighted average of both classes (Figure 75).
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Table 12: Results for Fuzzy System, J48, and Naive Bayes

TP Ep i Overall
Experiment Class Rate / Rate Precision Measure Efficiency
Recall (%)
Non 94.4 | 329 90.4 92.3
Binary Fuzzy | Congested 67 5.5 78.4 72.2 88
System -
Weighted | gg | 565 | 87.6 87.6
Avg.
Non 95.2 59 84.2 89.3
Decision tree | Congested 41 4.8 72.1 52.3
(J48) . 82.5
Weighted | g5 6 | 46.4 | 814 80.7
Avg.
Non 99.8 57.8 85 91.8
Naive Bayes Congested | 42.2 0.2 98.5 59.1 86.3
Weighted
Avg. 86.4 |44.4 88.2 84.2
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Figure 73 : TP rate, FP rate, precision, F-measure, and overall efficiency
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Figure 75: Weighted average of TP rate, FP rate, precision, F-measure,
and overall efficiency

Before discussing the results, it is important to reiterate the challenges of
performing classification on an imbalanced subset of data. Global
performance measurements, such as overall efficiency, provides an
advantage to the majority class and can be misleading. For example, the
overall efficiency of the fuzzy system is 88 per cent, which seems good.
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However, assume the dataset had 100 instances, with a split of 80 for non-
congestion and 20 for congestion. Again, assume the system classifies non-
congestion as 92 instances and congested as eight instances. This means
the class, congested is only 40 per cent efficient/accurate and not 88 per
cent. Therefore, the discussion will focus on TPR, FPR, precision, F-
measure.

In addition to the challenges mentioned above, it should be noted that due to the
data considerations and concerns mention in section 4.6, such as:

e A lack of consistent distance between the Bluetooth sensors causing each
link to have its own heterogeneous characteristics.

e The data quality of Bluetooth and inductive loop counter sensors are poor.
Therefore, sensors are providing an incorrect observation value.

e In bad weather, the sensors which use a mobile network to transmit the data
to a central location, can fail and cause the dataset to have missing data.

Initial empirical experimentation was conducted to ascertain how to manage the
incorrect and missing data values. Therefore, two approaches where taken,
the first approach was to set all missing data values to zero (This approach
relates to the results in Table 12) and aligns with the manual approach taken
with TFGM. The second approach was to replace the missing and incorrect
values with the last reliable measurement.

Table 13: Empirical Experiment Results for Fuzzy System: Comparing
Handling of Missing and Incorrect Data

APPROACH  PRECISION RECALL F-MEASURE OVERALL

EFFICIENCY

(%)

ZERO 78.4 67 72.2 88
VALUES

LAST 63.1 62.7 62.9 45

RELIABLE

VALUES

DIFFERENCE 15.3 4.3 9.3 43

Table 13 shows the two different approaches and demonstrates that using the
last reliable value was 43% less efficient overall and had performed worst
across the other three measurements: Precision, Recall, and F-measure.
Therefore, it was decided that the best approach to handling the missing and
incorrect values were to set the values to zero as the performance is better
and it was truer to the expected behaviour for TTGM.

The results in Table 12 show naive bayes achieved a TPR of 99.8 per cent for
non-congestion, which is the highest TPR across all algorithms and both
classes. However, it also achieved the second highest FPR of 57.8 per cent.
This is attributed to the paradox of imbalanced datasets. The FPRs for the
minority class across all three algorithms are significantly low, for instance,
the fuzzy system is 5.5 per cent, the decision tree is 4.8 per cent, and the
naive bayes is 0.2 per cent. The FPRs for the majority class across all three
algorithms are noticeably higher, for instance, the fuzzy system is 32.9 per
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cent, the decision tree is 59 per cent, and the naive bayes is 57.8 per cent.
Because of these noticeable differences, it has been decided from this point
to only compare the weighted averages of both classes.

The TPR weighted average for the fuzzy system is 88 per cent, which is higher
than both, decision tree by =6 per cent and naive bayes by =2 per cent. The
FPR weighted average for the fuzzy system is 26.5 per cent, which is lower
than both, decision tree by =20 per cent and naive bayes by =18 per cent.
The precision weighted average for the fuzzy system is 87.6 per cent, which
is higher than the decision tree by =6 per cent, however, it was lower than
the naive bayes by =1 per cent. The F-measure weighted average for the
fuzzy system was 87.6 per cent and is higher than both the decision tree by
=7 per cent and Naive Bayes by =3 per cent. Furthermore, the fuzzy system
overall, efficiency was the highest of all three machine-learning algorithms.

Although all algorithms perform to a similar level with the fuzzy system
performing the best overall, it should be noted that each algorithm has its own
level of complexity, which some stakeholders may struggle to understand
based on the complex explainability. For instance, the easiest of the three
algorithms to implement and understand is the fuzzy system. As the system
is built using linguistic values that all stakeholders are able to understand,
and the output is a single defuzzified value (probability of congestion) where
anything above 95 per cent is congestion compared to the RAG (Section
5.4.2) method, which requires the stakeholder to compare the journey time
to three equations to identify congestion.

The second easiest to understand is the decision tree, J48, where a branch of
the tree is split based on a value of the variable being used and this is
repeated until the leaves are reached and an outcome is decided. It should
be noted the bigger the tree and the more leaves it has the hard it is to
understand the decision transparency and may make it harder for
stakeholders to follow. The decision tree model in this experiment has a tree
size of 17 and a total of 9 leaves. The 9 rules are transparent and could be
understood by a transport expert. The most complex algorithm for
stakeholders to understand is Naive Bayes because it is a probabilistic
classifier, which uses a probability distribution over a set of classes, instead
of only outputting the most likely class that an observation should belong to.

7.3.8 Conclusion

This study has proven the hypothesis, HAO: Using journey time and volume data,
it is possible to classify congestion using a fuzzy system and has
demonstrated the proof of concept. The initial results have demonstrated the
binary fuzzy systems ability to predict congestion using volume and journey
time, outperforming both the decision tree and Naive Bayes. Moreover, the
fuzzy system using only six rules was able to manage an unbalanced dataset.
Additionally, it would be possible to implement this model other urban road
networks.

The next step was to develop a multi-classification Fuzzy decision-making
system that capable of recognise one of three types of congestion (Abberley
et al., 2017): non-recurrent congestion, recurrent congestion, and semi-
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recurrent congestion plus non-congestion for when the traffic flow is good.
This is an important requirement for TFTGM who would benefit from not only
being able to identify congestion but the type of congestion, which would
allow for different mitigation strategies to be put in place. Additionally, they
will be able to measure how much of the network is, at a given time, exhibiting
signs of non-congestion, recurrent, non-recurrent, and semi-recurrent
congestion. To achieve this goal, a multi-classification fuzzy decision-making
system will be developed and discussed in section 7.4. The next fuzzy
decision-making system will focus on having multi-classifications and will
expand the linguistic variables to add times of day, days of the week, bank
holidays, distance from an attraction, and direction of traffic flow.

7.4 Multi-classification Fuzzy decision-making system

Following on from the results of the binary fuzzy decision-making system, a multi-

class fuzzy decision-making system was designed and developed.

The main differences are as follows

Instead of only being able to predict whether congestion has occurred or not.
The multi-classification model looks to predict the type of congestion,
recurrent congestion, non-recurrent, and semi recurrent as well as non-
congestion.

The system extracts a subset of the real-world spatial-temporal data from
MUCD dataset. The extra data fields being extracted are, Time-of-Day, Day-
of-Week, distance from attractor

Extract a subset of the real-world spatial-temporal dataset, known as the
Manchester Urban Congestion Data (MUCD) dataset. This subset of data is
then processed and store within a database. (Chapter four).

The binary fuzzy decision-making system was analysing single links
however, the multi-classification fuzzy decision-making system is designed
to work with all links on the network.

As the multi-classification system is predicting against all 64 links where each
link has its own characteristics, a percentile model will be created to
standardise each link, allowing it to replace the k-means++ algorithm used to
determine the memberships.

The experiments described in this chapter contribute towards answer the

following research question (RQ4) - “Can a fuzzy rule-based system be
designed to predict road congestion through validation of the Urban Road
Congestion Conceptual (URCC) model?”

This section aims to create a fuzzy Decision-making system that can model the

complex nature of urban road congestion using a real-world dataset. To
visualise the multi-classification fuzzy decision-making system, an extension
to TIM was created (Figure 76). This extension allows the user additional
functionality, such as performing an ad-hoc prediction of the type of
congestion occurring by allowing the user to set the parameters and instantly
see the outcome.
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tional automated functionalities are shown in Figure 77. These functions are

Addi
as follows: automatically classify the subset of data based on the label
definitions discussed in section 7.4.1.2. Perform the automatic predictions

using the multi-classification fuzzy decision-making system against the
training data. Automatically, statistically analysis the results using the
following statistical measurements: Recall, Precision, F-measure, and
weighted average for all 64 links individually and combined.
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Figure 77: Additional functionality
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7.4.1 Methodology: Multi-classification fuzzy decision-making system for

predicting urban road congestion type

This section describes the methodology that was used to develop the second
iteration of the fuzzy decision-making system for road congestion on an urban
city network. The model is similar to its predecessor with several differences
which have been mentioned in section 7.4.

The method for creating the multi-classification fuzzy decision-making system is
as followed:

The subset of data utilised to predict the type of urban road congestion
are from the MUCD Dataset and consists of the following, journey time
from Bluetooth sensors, traffic volume from inductive loop counters, event
information from 02 Apollo and the Etihad Stadium, distance from
attractor, road traffic accident injury statistic data (Stats19) from GOV.UK,
and local school term times from GOV.UK (Section 7.4.1.1).

Each link within the subset of data at every 15-minute intervals requires a
classification to be allocated to it. As the data is unsupervised knowledge
gain from the URCC model and with support of domain experts, such as
TfGM, definitions for each classification are specified in section 7.4.1.2.
Due to the multifaceted nature of the individual links, a new approach was
chosen for standardising each links behaviour which can then be used to
assist in the creation of the membership functions was implemented,
referred to as the percentile model (Section 7.4.1.3).

Once the relevant data had been standardised and the classification for
each link at ever 15-minute intervals for the 6-month period has been
calculated, the next step is to determine the membership functions, see
section 7.4.1.4.

After the fuzzy memberships functions have been determined, the next
step is to determine the fuzzy rules, see section 7.4.1.5.

Now the memberships and rules have been determined. A fuzzy inference
method needs to be selected in section 7.4.1.6.

The same method for performing defuzzification was discussed in section
7.3.5. the method used was centroid of area (COA), also known as the
centre of gravity (COG).

7.4.1.1 Data sources and dataset
For this study, a subset of the real-world spatial-temporal data from MUCD
dataset, which was discussed in chapter four was used. This subset of data
is then processed and stored within a database. The subset is representative
of a sub-network of 64 links, data for each link is collected every 15 minutes
for a total of six months and in its current form the MUCD is unsupervised.

The MUCD consists of several types of data, such as average journey time
between two sensors, traffic volume count at a single point, and event
information from two attractors etc. This data is provided by Transport for
Greater Manchester (TfGM), the Etihad Stadium, and the O2 Apollo. The
data is then modified to create two new datasets of equal size, one for training
and one for testing. Both datasets have a total of 555876 tuples and each
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tuple contains five attributes and one label. The attributes are as follows:
Distance from Attractor (p4), Day of Week (pow), Journey Time (/7), Time of
Day (7op), and Volume (7). The label is one of four classifications: Non-
Congestion (~¢), Recurrent Congestion (R¢), Semi-Recurrent Congestion
(src), Non-Recurrent Congestion (~RC). Each type of congestion is clearly
defined in section 7.4.1.2.

7.4.1.2 Labelling multi-classification MUCD Dataset

To

be able to predict the type of congestion, a label is required. As this research
introduces new concepts of congestion, such as semi-recurrent. It is
important to define how each label is calculated. Non-congestion (section
7.4.1.2.1), recurrent congestion (section 7.4.1.2.2), semi-recurrent
congestion (section 7.4.1.2.3), and non-recurrent congestion (section
7.4.1.2.4).

7.4.1.2.1 Non-congestion
Non-congestion, ~¢, (Equation 25) will be defined using a one of the three-

methods implemented by the domain experts at TTGM. The method for
labelling is called RAG which stands for Red, Amber, and Green. This
research will only use the green (Equation 12) to define non-congestion.

NC =JT <]JT % 1.25

Equation 25: Non-congestion

Where /Tis the average journey time for all Bluetooth enabled vehicles travelling

between two sensors on each link. The JT is the 50" percentile of journey
time for a single link within the MUCD. 1.25 is the congestion factors
boundary used by TIGM.

7.4.1.2.2 Recurrent congestion
The definition of recurrent congestion, Rr¢, (Equation 26 and Equation 27) can be

Or

summarised from literature as occurring when significant amounts of vehicles
simultaneously use a limited space on a road network on the same day and
at the same time (Verhoef, 1999; Hendricks et al., 2001; Arnott, 2013;
Fosgerau and Small, 2013). Using this description and the semantic
knowledge gained from the urban road congestion ontology (Abberley et al.,
2017; Gould and Abberley, 2017) it is possible to provide a semantic
description of recurrent congestion as: Recurrent congestion is caused by an
event that is predictable and cyclical, such as rush hour which always occurs
on a weekday between 6 am and 10 am or 3 pm and 7 pm causing worst that
expected journey time on a city-scale.

RC = TODam + DOWwd + ]Tworst + VWOTSt

Equation 26: Recurrent congestion (AM)
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RC = TOme + DOWya + JTworst + Vworst
Equation 27: Recurrent congestion (PM)

Where ¢ time-of-day, for a specific 15-minute slot on road link x, where x is all
road links on the urban network being modelled has a range of ¢+=/0.,..,247and
is an element of Time of Day, 7op, (Equation 28) which is defined as:

em, t<6
am, 6<t<10
TOD(t) =< day, 10<t<15
pm, 15<t<19
le, t>19

Equation 28: Time of day

And 4, day-of-week, for a specific 15-minute slot on road link x, where x is all
road links on the urban network being modelled has a range of d=¢1,..,72 and
is an element of Day of Week, pow, (Equation 29) which is defined as:

wd, d<5s
we, d>5

Equation 29: Day of week

DOW (d) = {

And j, journey time, (Equation 30) for a specific 15-minute slot on road link x,
where x is all road links on the urban network being modelled has a range of
j={0...,0} and is an element of Journey time, 7, which is defined as:

. expected, | < j*1.25
o) ={*7 =

worst, j>j*1.25

Equation 30: Journey time

And v, volume, (Equation 31) for a specific 15-minute slot on road link x, where
x is all road links on the urban network being modelled has a range v=/0.... o0}
and is an element of Volume, ¥, which is defined as:

expected, v<7U=x*125
worst, v>vx*1.25

V) ={
Equation 31: Traffic volume

7.4.1.2.3 Semi-recurrent congestion
Semi-recurrent congestion, src¢, (Equation 32 and Equation 33) was coined by
the author and is described as being predictable and non-cyclical unlike
recurrent congestion, which is predictable and cyclical and non-recurrent that
is non-predicable and non-cyclical. Semi-recurrent congestion is caused by
scheduled events, such as a football match and concerts, which are not
cyclical because they do not happen at the same time or on the same day.

SRC =TODie + DOW,yq + JTworst + Vworst + Dnear
Equation 32: Semi-recurrent congestion (on a weekday)

Or
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SRC = TODday/pm/le + DOWwe + ]Tworst + Vworst + DNear
Equation 33: Semi-recurrent congestion (on a weekend)

Where dis, distance (Equation 34) from attractor for road link x, where x is all
road links on the urban network being modelled has a range v=¢0.0...,.0} and
is an element of Distance, p, which is defined as:

. _ (near, dis<Z
D(dis) = { far, dis > 7

Equation 34: Distance

Where Z is determined as an empirical variable which is the distance from the
nearest attractor on a given urban network. For the purpose of this work and
for the network shown above. Following empirical experimentation, the value
Z is set at 2.5, which represents 2.5 km from the links nearest attractor.

7.4.1.2.4 Non-recurrent congestion

The definition of non-recurrent congestion, ~Nrc, (Equation 35) can be
summarised from the literature as occurring due to a non-predicable and non-
cyclical event, such as a traffic accident and unplanned road works (Cassidy
and Bertini, 1999; Verhoef and Rouwendal, 2004; Djahel et al., 2015), which
can cause expected journey times and volumes to increase around the event.
Non-recurrent congestion is defined as:

NRC = ]Tworst + VWOTSt

Equation 35: Non-recurrent congestion

7.4.1.3 Percentile Model
To standardise the performance of each link and to allow a single membership
function to be determined for both the journey time and traffic volume, a
percentile method was applied. See Equation 36, where each percentile
group is represented by P, and n is the nth percentile. For this research the
nth percentiles are broken down into 10 groups (0-10™, 10t-20t, 20t-30t,
..., 901M-100™). X is the total number of observations.

Equation 36: Percentile method

P(n) = (L) * X
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To calculate the percentile classification for journey time, use the following
algorithm 3.

Algorithm 3
Standardising journey time for each link at each 15-minute observation.

Variables: | the set of observations, L the set of links, x;: the observation, 0: An
array of outcomes.

1 forl €elLdo

2 forie€ldo

3 ifx; = 0then

4 0; <10

5 endif

6 ifx; > 0andx; < P(10) then

7 0; <1

8 endif

9 ifx; > P(10) and x; < P(20) then
11 endif

12 if x; > P(20) and x; < P(30) then
14 endif

15 if x; > P(30) and x; < P(40) then
17 endif

18 if x; > P(40) and x; < P(50) then
19 0; <5

20 endif

21  if x; > P(50) and x; < P(60) then
23 end if

24 if x; > P(60) and x; < P(70) then
26 end if

27 if x; > P(70) and x; < P(80) then
29 end if

30 if x; > P(80) and x; < P(90) then
32 end if

33 if x; > P(90) and x; < P(100) then
34 0; <10

35 end if

36 end for

37 end for

38 return O
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To calculate the percentile classification for traffic volume, use the following
algorithm 4.

Algorithm 4
standardising traffic volume for each link at each 15-minute observation.

Variables: | the set of observations, L the set of links, x;: the observation, 0: An
array of outcomes.

1 forl €elLdo

2 forie€ldo

3 ifx; = 0then

4 0; <10

5 endif

6 ifx; > 0andx; < P(10) then

7 0; <1

8 endif

9 ifx; > P(10) and x; < P(20) then
11 endif

12 if x; > P(20) and x; < P(30) then
14 endif

15 if x; > P(30) and x; < P(40) then
17 endif

18 if x; > P(40) and x; < P(50) then
19 0; <5

20 endif

21  if x; > P(50) and x; < P(60) then
23 end if

24 if x; > P(60) and x; < P(70) then
26 end if

27 if x; > P(70) and x; < P(80) then
29 end if

30 if x; > P(80) and x; < P(90) then
32 end if

33 if x; > P(90) and x; < P(100) then
34 0; <10

35 end if

36 end for

37 end for

38 return O
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7.4.1.4 Membership Function Determination
Table 14 shows the dimensions, data sources, and the linguistic values
determined from the urban road congestion ontology. The linguistic values of
the membership functions representing journey time, traffic volume, distance
from attractor, time of day, and day of the week are also shown.

Table 14: Dimensions and their linguistically values.

Linguistic values

D'(rcaerr;zﬁgs) Data sources (I\;Iem b_ership
unctions)
Very Low (VL)
Low (z)
Journey time BUSTEi FEmerE Medium (M)
sensors High ()
Very High (VH)
Very Low (VL)
Inductive loop Low (2)
Volume counters Medium (M)
High (#)
Very High (VH)
Very Near (VN)
Distance from . Near (N)
Attractor Sl Al Far ()
Very Far (VF)
Early Morning (£M)
AM Peak (4Mm)
Time of day Temp?ral value of Day ()
instance PM Peak (74)
Late Evening (LE)
Recorded day of Weekday (WD)
DEY @7 Uil WEE instance Weekend (WE)

Using the linguistic values identified in Table 14, the creation of the fuzzy
membership functions can be performed using three steps:

Step 1: Perform the percentile model algorithms discussed in section 7.4.1.3 on
the journey time and traffic volume data.

Step 2: Identify the final boundary values for a set of groups where they connect
and define this value as dt

Step 3: Using the drvalue, determine membership function domain coverage
using one of three membership functions: linear up, linear down, and
trapezoidal shape.

The primary objective of using the percentile model (step 1) was to standardise
the observed journey times and traffic volume for each link and sensors,
regardless of the behavioural characteristics. Therefore, the journey time for
the 10" percentile on one link could be 200 seconds and on another it could
be 2000 seconds. By standardising these boundaries, it will allow for a single
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membership function to be created that covers all links instead of requiring a

membership function for every link.
Using the fuzzy system extension to TIM, it is possible to visualise the
membership functions. These use the same three fuzzy membership function

as discussed in section 7.3.3.1. The three types of functions are: linear
increasing membership, linear decreasing membership, and trapezoidal-

shaped membership.
Figure 78 and Figure 79 shows the memberships for both journey time and traffic
volume, where very low is calculated using linear decreasing (Equation 16).
Low, medium, and high is calculated using trapezoidal-shaped (Equation 17)

Very high is calculated using linear increasing (Equation 15).

1.0 A —

\ —— verylow |

low [

—— medium ,"

0.8 |II —— high |

\‘ —— veryhigh
\ II|' I|I
2 0.6 - ‘. |
'E:J \ f
a |'
£ \ |
k) |
£ 0.4 \ .'
|
\ |
\
0.2 1 \ f
III
III
0.0 II. :' ; '. . .
2 3 4 5 6 7 8 9
Journey time

Figure 78: Journey time membership function
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Figure 79: Traffic volume membership function

Figure 80 shows the membership for school bank holidays, where ‘no’ is
calculated using linear decreasing (Equation 16) and ‘yes’ is calculated using

linear increasing (Equation 15).
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Figure 80: School term (bank holiday) membership function

Figure 81 shows the memberships for day of the week, where weekday is
calculated using linear decreasing (Equation 16) and weekend is calculated
using linear increasing (Equation 15).
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Figure 81: Day of week membership function

Figure 82 shows the memberships for time of the day, where early morning (em)
is calculated using linear decreasing (Equation 16). am, day, and pm is
calculated using trapezoidal-shaped (Equation 17). Late evening (le) is
calculated using linear increasing (Equation 15).
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Figure 82: Time of day membership function

Figure 83 shows the memberships for distance from attractor, where very near
is calculated using linear decreasing (Equation 16). Near and far are
calculated using trapezoidal-shaped (Equation 17). Very Far is calculated
using linear increasing (Equation 15).
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7.4.1.5 Fuzzy Rules Determination (manual and expert)

The fuzzy rules were created with the knowledge gained from the URCC model
in chapter three, by visualising the data using TIM in chapter four, and using
expert knowledge (TfGM). A series of empirical experiments was conducted
with feedback from TfGM to ascertain that a total of 12 rules were required
for the initial multi-classification decision-making system.

Algorithm 5 uses both antecedents and consequents membership functions to
fire 12 unique rules to acquire each rule strength ready for fuzzy inference.
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Algorithm 5
Rules for predicting congestion type.

Antecedents: Journey Time, JT. Traffic Volume, V. Distance from attractor,
Dis. Bank holidays, BH. Day of week, DoW, Time of day, ToD.
Antecedents memberships: Very Low, VL. Low, L. Medium, M. High, H.
Very High, VH. Very Near, VN. Near, N. Far, F. Very Far, VR. No, NO, Yes,
Y. Weekday, WD. Weekend, WE. Early Morning, EM. AM, A, Day, D, PM, P.
Late Evening, LE.

Consequents: Congestion Type, CT.

Consequents memberships: Non-congestion, NC. Recurrent Congestion,
RC. Semi-Recurrent Congestion, SRC. Non-Recurrent Congestion, NRC.

1 ifJTisMandV is NOT VH then

2 CT « NC

3 ifJTisLor]TisVLthen

4 CT « NC

5 if JTisVHor]T isH)and (ToD is Aor ToD is P)

6 and DoW is WD then

7 CT < RC

8 ifJTisMandV isVH and (ToD is A or ToD is P)

9 and DoW is WD then

10 CT < RC

11 if JTisVH or JT is H) and (ToD is NOT A and ToD is NOT P)
12 and DoW is WD and (Dis is NOT N or Disis NOT VN) then
13 CT < NRC

14 if JT is M andV is VH and (ToD is NOT A or ToD is NOT P)
15 and DoW is WD and (Dis is NOT N or Dis is NOT VN) then
16 CT < NRC

17 if JT isVH or JT is H) and DoW is WE

18 and (Disis NOT N or Dis is NOT VN) then

19 CT < NRC

20 if JTisMandV is VH and DoW is WE

21 and (Dis is NOT N or Dis is NOT VN) then

22 CT < NRC

23 if JTisVHor T is H) and ToD is LE and DoW is WD
24 and (Dis is N or Dis is VN) then
25 CT < SRC

26 if JTisMandV isVH and ToD is LE and DoW is WD
27 and (Dis is N or Disis VN) then

28 (T <« SRC

29 if JTisVHor T is H) and (ToD is D or ToD is LE) and DoW is WE
30 and (Dis is N or Disis VN) then

31 (T <« SRC

32 ifJTisMandV isVH and (ToD is D or ToD is LE) and DoW is WE
33 and (Dis is N or Disis VN) then

34 CT < SRC

35 return CT
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7.4.1.6 Fuzzy inference
The same fuzzy inference as the binary Fuzzy decision-making system was
used. The implemented methods for computing fuzzy inference known as
Mamdani (Mamdani and Assilian, 1975) was discussed in section 7.3.4.

7.4.1.7 Defuzzification
The same method for performing defuzzification was discussed in section 7.3.5.
the method used was centroid of area (COA), also known as the centre of
gravity (COG).

7.4.1.8 Experimental methodology
An empirical study was undertaken to evaluate the multi-classification fuzzy
decision-making system. The aim of the experiment is to determine whether
a fuzzy system can be used to analyse traffic data to classify congestion.

The following hypothesis will be evaluated.

Hypothesis

HgO: It is possible to accurately identify the type of road traffic congestion using
a Fuzzy system.

Hsl: It is not possible to accurately identify the type of road traffic congestion
using a Fuzzy system.

To evaluate the performance of the fuzzy system, it was compared against two
alternative machine-learning algorithms: decision tree C4.5 (using the Weka
implementation J48) (Weka, 2018) and naive bayes, which both algorithms
used the same subset of data as the fuzzy system. The justification for their
selection was given in section 7.3.6.

In order to evaluate the three methods using the MUCD dataset, three statistical
measurements were chosen, which are: Precision (Equation 21), Recall
(Equation 19), and F-score (Equation 22). In addition to these measurements
a weighted variables will be calculated for all three statistics which takes into
consideration all four classifications: non-congestion, recurrent congestion,
semi-recurrent congestion, and non-recurrent congestion.

Equation 37 shows how the weighted average for recall value is calculated.
Where TP is the diagonal value in the confusion matrix presented in Table
15. For example, where actual and prediction equal the same value, such as
‘NC’ or ‘NRC’. FP is the sum of the column minus the TP value. FN is the
sum of the row minus the TP.

Cne(TPR) * Cyc(TP + FN) + Cyre(TPR) % Cyge(TP + FN)
+ Cspc(TPR) % Cspe (TP + FN) + Cre(TPR) * Cre(TP + FN)
TP + FN + TN + FP

Equation 37: Multi-classification weighted average (recall)

Wrecau =
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Equation 38 shows how the weighted average for the precision value is
calculated.

Cnc(PPV) % Cyc(TP + FN) + Cype(PPV) * Cygc(TP + FN)
W _ *Cspc(PPV) * Cspc(TP + FN) + Cac(PPV) * Crc(TP + FN)
prectsion TP + FN + TN + FP

Equation 38: Multi-classification weighted average (precision)

Equation 39 shows how the weighted average for the F-score value is calculated.

Cyc(Fscore) x Cyc(TP 4+ FN) + Cyrc(Fscore) * Cygc (TP + FN)
W _ + Cspc(Fscore) * Cspe (TP + FN) + Cpe(Fscore) * Cpc (TP + FN)
Fscore ™ TP + FN + TN + FP

Equation 39: Multi-classification weighted average (F-score)

7.4.1.9 Results and Discussion
Table 15 presents the confusion matrix for the classification of the types of
congestion. In the confusion matrix, the four classifications are: Non-
congestion (NC), non-recurrent congestion (NRC), semi-recurrent
congestion (SRC), and recurrent congestion (RC).

Table 15: Multiclassification confusion matrix

Prediction
.~ NC NRC SRC RC
NC | 247094 102202 24352 33282
 NRC 1752 65821 1296 113
SRC = 216 = 4097 9318 19
~ RC 708 9020 5481 51106

Actual

Table 21 in Appendix 2 shows the performance of each individual link which each
of the link’s locations are plotted on Figure 60. Each link in Figure 60 have
two directions, therefore, link ‘a’ relates to both ‘AU’ (upstream) and ‘AD’
(downstream) in Table 21 in Appendix 2. In addition to presenting the results
of everything, it is important to present the results for individual links as well
because this helps to demonstrate the impact of the data concerns on the
overall perform. Taking into consideration these concerns some links and
types were easier to predict that others.

To validate the URCC model a fuzzy system was developed, using the subset
of data extracted from the MUCD dataset which contains the dimensions
identified in the URCC. The subset of data was used to predict the types of
congestion. Some links and types were easier to predict than others. This is
because of several contributing factors, such as quality of the data, location
of Bluetooth and Inductive Loop Counters sensors. Using Table 16 and the
graph presented in Figure 84.

146



Table 16: Each link predicted accuracy

Link TP #Of Accuracy Link TP #Of  Accuracy
Obvs Obvs
au | 12150 17376  69.92% ad = 11899 17376  68.48%
bu 9660 17376  55.59%  bd 9710 17376  55.88%
cu 12861 17376  74.02% cd 12750 17376  73.38%
du 9228 17376  53.11% dd 9299 17376  53.52%
eu 12756 17376  73.41% ed 12492 17376  71.89%
fu 10148 17376  58.40% fd 10714 17376  61.66%
gu 13842 17376  79.66% gd 13597 17376  78.25%
hu 11756 17376  67.66% hd 12157 17376  69.96%
i 14308 17376  82.34%  id 14360 17376  82.64%
ju 11697 17376  67.32%  jd 11751 17376  67.63%
ku 9282 17376  53.42%  kd 9692 17376  55.78%
lu 11228 17376  64.62%  Id 11376 17376  65.47%
mu | 11992 17376  69.01% md 12200 17376  70.21%
nu | 13259 17376  76.31% nd 13243 17376  76.21%
ou 11136 17376 64.09% od 11643 17376  67.01%
pu 9646 17376  55.51% pd 9778 17376  56.27%
qu 11763 17376 67.70% qd 11565 17376  66.56%
ru | 13348 17376  76.82% rd | 13312 17376  76.61%
su 11807 17376 67.95% sd 11655 17376  67.08%
tu 11381 17376 65.50% td = 11355 17376  65.35%
uu 13894 17376  79.96% ud 14019 17376  80.68%
vu | 13615 17376  78.36% vd 13656 17376  78.59%
wu 11987 17376  68.99% wd 12118 17376  69.74%
xu | 11655 17376  67.08% xd = 11949 17376  68.77%
yu 9922 17376  57.10% yd 9869 17376  56.80%
zu | 10052 17376  57.85% zd 10252 17376  59.00%
aau 13084 17376  75.30% aad 12871 17376  74.07%
abu | 11669 17376  67.16% abd = 11838 17376  68.13%
acu 9787 17376  56.32% acd 9707 17376  55.86%
adu | 11563 17376  66.55% add = 11209 17376  64.51%
aeu 12745 17376  73.35% aed 12316 17376  70.88%
afu | 12516 17376  72.03% afd 12844 17376  73.92%
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Figure 84: Graph of recall, precision, F-score for all 64 links
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The first thing to notice when looking at the accuracy of all 64 links in Table 16
is that upstream and downstream are relatively similar to each other. Link ‘U’
and ‘v’ which connects the two attractors both had high accuracy and the
weighted recall, precision and f-scores were predominantly in the ~0.80
which suggests predicting the type of congestion on these links was relatively
precise. However, links, such as ‘b’ and ‘d’, which are connecting links and
are not main roads have a lower level of accuracy and weighted precision,
recall and f-score. This could be caused by the characteristics of the roads
not being main routes and also the lack of nearby inductive loop counters is
likely to of impacted the accuracy of the predictions, which unlike u and v that
achieved ~79%, b and d only achieved ~54% accuracy.

7.4.1.10 Comparison of multi class fuzzy decision-system against other
methods
The purpose of this experiment was to determine whether it is possible to classify
they types of urban road congestion, recurrent, semi-recurrent, and non-
recurrent using a fuzzy system and real-world data extracted from the MUCD
dataset. Table 17 shows the results for each statistical measurement, recall,
precision, F-score (Fl1) for three different types of machine-learning
algorithms rule-based system (fuzzy), decision tree (J48) and a probabilistic
(naive bayes (NB)) and their classes: non-congestion (NC), recurrent
congestion (RC), semi-recurrent congestion (SRC), and non-recurrent
congestion (NRC) the weighted average of all classes.

It is important to compare the fuzzy decision-making system against other
machine learning algorithms because it allows the performance from one
model to be compared again others to identify similarities or extreme
differences which could demonstrate a model over or under performing.
Performing the analysis against other type of models may give inspiration to
future work, for instance, a ‘fuzzy decision-making decision tree’.

As the aim of the comparison was to identify how the fuzzy system compared
against traditional machine learning algorithms, the Decision tree C4.5 (using
the Weka implementation J48) (Weka, 2018) and naive bayes algorithms
were used implemented using the same subset of data as the fuzzy system.

Table 17: Results for Fuzzy System, J48, and Naive Bayes (multi-
classification)

NC RC SRC NRC WAVQ

Recall 99 64 24 35.8 85.1
Fuzzy Precision 61 77 68.2 95.7 67.7
F1 76 70 35.4 52.1 71.1
Recall 94 93 78.7 81.4 92
J48 Precision 95 87 70.3 84.7 92.1
F1 95 90 74.3 83 92
Recall 90 79 47.6 16.6 78.5
NB Precision 89 50 42.8 48 78
F1 89 61 45.1 24.7 76.9
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The results in Table 17 shows the three algorithms all perform to an adequate

level. However, the Decision tree C4.5 (J48) performs the most consistently
in predicting the types of congestion by achieving an overall weighted
average of ~92 per cent for all three recall, precision, and F-score (F1)
compared to the multi-classification fuzzy decision-making system which
achieved 85.1 per cent for the weighted recall, 67.7 per cent for the weighted
precision, and 71.1 per cent for the weighted F-score. Furthermore, Naive
Bayes achieved 78.5 per cent for weighted recall, 78 per cent for precision,
and 76.9 for the F-score. Additionally, it was noticed that the multi-
classification Fuzzy decision-making system achieved the highest recall (99
per cent) for non-congestion, meaning it identified the majority of data points
within the relevant class. Furthermore, the fuzzy model was able to achieve
95.7 per cent for non-recurrent congestion in regard to precision, meaning it
was able to predict the most accurately within the relevant class.

7.4.1.11 Examples of misclassifications

The observations shown in Table 18 demonstrate six instances when the

multiclassification fuzzy decision-making system misclassified the
observations.

Table 18: Observations of misclassification

Observation Class DfA DoWw JT Time Volume Result
1 NRC 1.877965492 6 9 10 7 SRC

2 NRC 5.140836974 7 6 13 8 NC

3 RC 1.877965492 2 9 15.25 9 SRC

4 RC 1.877965492 2 10 18.25 8 SRC

5 SRC 1.07647663 7 9 16.75 8 NRC

6 SRC 1.641062935 3 6 21.75 5 NC

Figure 85 shows a visualisation in TIM of an observation that was expected to

be identified as non-recurrent congestion, however, instead the
multiclassification fuzzy system misclassified the observation as semi-
recurrent congestion. Furthermore, Figure 85 shows that the fuzzy system
was able to identify the observation as both semi-recurrent and non-recurrent
congestion, however, due to the degree of membership being stronger for
semi-recurrent congestion the final crisp outcome was semi-recurrent
congestion. The control rule for this outcome was “when journey time is high
or very high, time of day is daytime or late evening, day of the week is the
weekend, and distance from the attractor is near or very near then semi-
recurrent congestion”.
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Figure 85: Observation 1: NRC classified as SRC

Figure 86 shows a visualisation in TIM of an observation that was expected to

identified as
multiclassification fuzzy system misclassified the observation as non-
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congestion. The reason for the misclassification was due to one of the control
rules being overly dominant causing this outcome, which was “when journey

time is medium, and volume is very high then non-congestion”.
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Figure 86: Observation 2: NRC classified as NC

Figure 87 shows a visualisation in TIM of an observation that was expected to
be identified as recurrent congestion, however, instead the multiclassification
fuzzy system misclassified the observation as semi-recurrent congestion.
The reason for the misclassification was due to multiple fuzzy rules having
an equal degree of membership and the defuzzification step that uses

centroid of area to create a single crisp output value, in this instance the
centre of the aggregation of the consequences is non-recurrent even though

it only has a zero of degree of membership.
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Figure 87: Observation 3: RC classified as SRC

Figure 88 shows a visualisation in TIM of an observation that was expected to
be identified as recurrent congestion, however, instead the multiclassification
fuzzy system misclassified the observation as semi-recurrent congestion.
The reason for the misclassification was due to multiple fuzzy rules firing and
creating a consequence for all three classifications: recurrent, semi-recurrent,
and non-recurrent congestion with various degree of memberships. Although,

the expected classification of recurrent congestion has the highest degree of
membership, due to using the centroid defuzzification method, this

observation was misclassified.
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Figure 88: Observation 4: RC classified as SRC

Figure 89 shows a visualisation in TIM of an observation that was expected to

be identified as semi-recurrent

congestion,

however, instead the

multiclassification fuzzy system misclassified the observation as non-
recurrent congestion. The reason for this misclassification is due to the
following control rule which identified the observation as non-recurrent
congestion with a ~0.3 degree of membership. The rule is “If journey time is
high or very high, day of week is weekend, and distance from attractor is not

near or very near then non-recurrent congestion”.
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Figure 89: Observation 5: SRC classified as NRC

Figure 90 shows a visualisation in TIM of an observation that was expected to
be identified as recurrent congestion, however, instead the multiclassification
fuzzy system misclassified the observation as non-congestion. The reason
for this misclassification is due to the ambiguous non-congestion rule being

too loose and taking dominance over the semi-recurrent rules. The non-
congestion rule that caused this misclassification is “if journey time is medium

and volume is not very high then non-congestion”.
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status

Therefore, after observing the misclassification of the six observations
mentioned in Table 18. It was observed that to improve the performance of
the multiclassification fuzzy system would require additional fuzzy control
rules and optimisations of the membership function boundaries. One of the
observations that would benefit from extra rules would be observation 5
which requires a rule similar to a non-recurrent congestion rule, however with
the addition of distance from attractor and time of day to reduce the false
positives when predicting semi-recurrent. Furthermore, it should be noted
that additional rules would reduce the fuzzy system efficiency and
explainability, making it more multifaceted and harder for the layperson to

understand.

In addition to adding extra control rules to the multiclassification fuzzy system, a
more efficient way to determine the membership functions would be to
employ a search-based optimization technique known as a Genetic Algorithm
(GA) over the manual approached currently used. Alternative approaches for
defuzzification may also resolve some of these problems and will be
considered in future work. The addition of extra defined rules and GA will be
explored in the future (further work) in the hopes of creating a better
performing multiclassification fuzzy system at predicting the type of

congestion.
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7.4.1.12 Conclusion

In conclusion, the multi-classification fuzzy decision-making system did not
achieve the same level of performance as the J48 algorithm and performed
similarly to the naive bayes model, even outperforming it some areas, such
as predicting recurrent congestion and non-recurrent congestion. However,
although, the J48 algorithm tends to be easy to interpret, the overall size of
the tree is 2367 and the tree contains 1184 leaves. Consequently, this has
generated 1184 rules which create an extra level of complexity when it comes
to understand the outcome and lack explainability which is key for a
stakeholder to understands the outcome of the model compared with the 12
rules used in the multi-classification fuzzy decision-making system discussed
in section 7.4.1.5.

Therefore, although the multi-classification fuzzy decision-making system did not
outperform both the J48 and naive bayes, it is easier for explainability,
interpretation, and providing useful qualitive context back to stakeholders
which naive bayes is known to struggle with due to characteristic of
probabilistic model which tend to struggle with big datasets. It is also
important to note that the fuzzy system was only manually optimised and
further work would employ techniques such as genetic algorithms to optimise
membership functions.

7.5 Chapter conclusion

In conclusion, this chapter has demonstrated it is possible to use knowledge
gained from the URCC model and the creation of a non-optimised multi-
classification fuzzy decision-making system to predict urban road congestion
validating concepts defined in the universal road congestion ontology. This
was achieved used a combination of expert knowledge, an unsupervised
learning technique known as clustering, and a percentile model to construct
two fuzzy decision-making systems.

The outcome of both fuzzy decision-making systems has proven both
hypotheses true. The first hypothesis HaO: Using journey time and volume
data, it is possible to classify congestion using a fuzzy system was not only
proven true, but it also demonstrated the initial proof of concept setting the
groundwork for the second Fuzzy decision-making system. Although, the
second system did not perform as strong as the J48 decision tree, it did
however, perform at an acceptable level to prove the second hypothesis HgO:
It is possible to accurately identify the type of road traffic congestion using a
Fuzzy system true. Furthermore, the multi-classification decision-making
system is easier to interpret and provide meaningful context compared to the
J48 and naive bayes models. This is because the multi-classification fuzzy
decision-making system only uses 12 rules compared to the J48 decision
tree which has a total 1184 rules.

In further work, the author plans to increase the performance of the multi-
classification fuzzy decision-making system by focusing two main areas,
which are data quality and optimisation. To improve the data quality, it is
important to address some of the data considerations mentioned in section
4.6. The main consideration the author would like to address is the lack of
consistent distance between two Bluetooth sensors and the point the
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Bluetooth sensors do not always align with the location of the inductive loop
counters.

To achieve this a new topology will be developed with a more flexible alternative
data source to the Bluetooth sensors used within this research will be
explored. The alternative data source being considered is Googles traffic
data (The Directions API) because although, it charges for each API request,
it allows the user to define each point to create a link without being limited by
physical hardware. Additionally, it should help to remove some of the noise
created by pedestrians and cyclists with an active Bluetooth device being
recorded as a journey time as Google collects data directly from apps such
as google maps and Android auto.

Finally, to optimise the multi-classification fuzzy decision-making system, the
techniques known as a genetic algorithm (GA) will be explored as it has
previously been used to optimise fuzzy membership functions (Crockett et
al., 2013) and the fuzzy inference parameters (K. A. Crockett et al., 2006).
Additionally, GAs have been successfully used in other domains than fuzzy
systems for the purpose of optimisation. For example, a GA was used within
a scheduling-based system for medical treatment (Squires et al., 2022).
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Chapter Eight: Conclusion and further work

The research in this thesis has developed a formal and explicit conceptualisation
of urban road congestion, which has a multifaceted nature. Analogical and
ontological methods were used to conceptualise urban road congestion and
produce an Urban Road Congestion Conceptual (URCC) model. The
research presented validates this conceptual model using a real-world big
data dataset and a custom-built fuzzy decision-making system. In this
chapter, a discussion of each research question is provided, and the overall
contributions of this thesis are presented.

8.1 Overview

The research presented in this thesis aimed to answer the following four
research questions:

RQ1: Is it possible to provide a clear conceptualisation of urban road traffic
congestion using an ontological model?

RQ2: Can quantitative Big Data be used to provide qualitative information in
conjunction with a road traffic ontology with the support of Machine Learning?

RQ3: Can quantifiable big data on urban road congestion be visualised to
provide quasi-real-time insight?

RQ4: Can a Fuzzy rule-based system be designed to predict road congestion
through validation of the Urban Road Congestion Conceptual (URCC)
model?

How each question has been addressed will now be discussed.

8.1.1 RQ1: Is it possible to provide a clear conceptualisation of urban road
traffic congestion using an ontological model?

The main problem with modelling urban road congestion is the lack of a clear
and consistent definition of what is meant by ‘road congestion’ in an
increasingly multifaceted urban context and how it relates to the events that
cause it. To address this problem, an Urban Road Congestion Conceptual
(URCC) model was created, using four analogies and a universal road
congestion ontology which is made up of five core ontologies (Dimensions of
congestion, events, congestion, direction. and spatial things). One of the
limitations of the current literature regarding urban road congestion became
apparent with the development of the URCC model, which identified there to
be a lack of granularity between the types of congestion being presented.

Therefore, this research introduced a third type of congestion coined as ‘semi-
recurrent congestion’. Another key finding was established through the
comprehensive review of the literature, these seemingly simple questions,
such as What is congestion? What is the cause of congestion? Where has
congestion occurred? did not have a clear and consistent way to answer.
Using the developed URCC model, these question can now be answered in
the same manner every time in a formal and explicit way. Thus, the research
guestion (RQ1) — “Is it possible to provide a clear conceptualisation of urban
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8.1.2

To

road traffic congestion using an ontological model?” was address in chapter
three and four.

RQ2: Can quantitative Big Data be used to provide qualitative
information in conjunction with a road traffic ontology with the support
of Machine Learning?

answer this question, it was vital that a real-world quasi-real-time big data
dataset was created. The data was collected from several sources and
merged into a dataset known as the Manchester Urban Congestion Data
(MUCD) dataset and was introduced in chapter three. The MUCD dataset
has typical data issues associated with big data, such as noise, data sparsity
and missing values. However, there were other unique challenges, such as
each link having its own different characteristics, such as length size, number
of lanes, and different speed limits. Each of these characteristics will cause
the expected journey times and traffic volume counts to differ dramatically.
Furthermore, another challenge was trying to design a topology which had
sufficient coverage of Bluetooth sensors and inductive loop counters whilst
encompassing the requirements set out by TfGM, such as focusing on the
A6 road and Etihad Stadium.

Once the MUCD dataset has been created, it was important to identify which

8.1.3

To

unsupervised learning algorithm was going to be used. Therefore, in chapter
five, the decision was taken to implement k-mean++. A series of empirical
experiments were conducted in chapter six in conjunction with the URCC
model to identify the characteristics of urban road congestion. The key finding
was clustering an unsupervised dataset made it possible to predict expected
journey time and identify the differences between a weekday and a weekend.
Therefore, this demonstrated that it is possible to take quantitative data and
extract qualitative information, which can be provided to the stakeholders,
such as road users or transport managers. The stakeholders (in this case
TfGM) could then use the meaningful information to make better decisions.
Therefore, answering (RQ2) — “Can quantitative Big Data be used to provide
qualitative information in conjunction with a road traffic ontology with the
support of Machine Learning?”

RQ3: Can quantifiable big data on urban road congestion be visualised
to provide quasi-real-time insight?

answer RQ3, the development of a visualisation tool was needed. Therefore,
chapter three describes the development of the visualisation tool called
Transport Incident Manager (TIM). TIM is a tool developed by the author
using SQL Server and Python to visualise the statistical performance of the
urban road network within Manchester, UK. Some of the functionalities
created were real-time view of individual links and overall network
performance, spatial autocorrelation, classification, and the ability to look at
the data in different temporal states. Therefore, TIM has managed to
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demonstrate to the stakeholders at TfGM it is possible to visualises their
guasi-real-time data, such as journey time.

TIM included the implementation of several statistical functions to gain insight

8.1.4

To

into the behaviour and characteristics of congestion and the events that
cause it, such as rush hour, a road accident, a football match. The
development of TIM and validation by the expert stakeholders at TIGM
answers the research question (RQ3) — “Can quantifiable big data on urban
road congestion be visualised to provide quasi-real-time insight?”. TIM is an
adaptable system, which has impact beyond this project and be used to
visually model road congestion in wider national / international locations.

RQ4: Can a fuzzy rule-based system be designed to predict road
congestion through validation of the Urban Road Congestion
Conceptual (URCC) model?

answer RD4, two fuzzy systems were developed. The first fuzzy decision-
making system was a binary classification system, which used the
unsupervised learning classifications to assist with determining the
membership function for journey time and traffic volume. This system focused
purely on a single link, using only two data sources and two classifications
(congestion or non-congestion). Once, this system was developed and was
proven to be a success, the next step was to develop a second fuzzy
decision-making system which is more complex and useful to the
stakeholders at TIGM.

The second fuzzy system, incorporated data from multiple sources and predicted

on the whole neighbourhood network to classify the road conditions, non-
congestion, recurrent, congestion, semi-recurrent, non-recurrent congestion.
This system is a great way for TfGM to analysis their network at link level and
depending on the type of congestion being identified they can respond in a
more meaningful manner. Making the network more resilient. The URCC
model was used to create the memberships and rules ensuring the fuzzy
system results are consistent with what is defined as urban road congestion.
Therefore, the development of a non-optimised multi-classification Fuzzy
decision-making system made it possible to answer the research question
(RQ4) — “Can a fuzzy rule-based system be designed to predict road
congestion through validation of the Urban Road Congestion Conceptual
(URCC) model?”

8.2 Research Contributions

This research has produced some significant contributions in the field of

transportation.

e Firstly, the development of a novel Urban Road Congestion Conceptual
(URCC) model which conceptualises the three types of congestion: non-
recurrent, semi-recurrent, and recurrent congestion. Being able to
conceptualise the events that causes these types of congestion is an
important contribution to the stakeholders. It will give them the ability to
respond to semi-recurrent causing event such as planned roadworks
differently to non-recurrent events, such as unplanned roadworks, which

161



were previously all classified as the same type of congestion. (Chapter
Three).

e Secondly, the development of the Manchester Urban Congestion Data
(MUCD) Dataset which incorporates real-world data from several
sources, such as Transport for Greater Manchester (TFGM) and the
United Kingdom’s Governments freely open data. The MUCD dataset is
the first dataset to combine data from low costing devices, such as
Bluetooth sensors with openly free data, such as accident and event data,
and more expensive sources, such as inductive loop counters. Being able
to integrate these extra data sources with TfGM current data, provides
them better opportunity to gain greater knowledge with regards to their
network performance. (Chapter Four)

e The third contribution is the development of a visualisation toolkit
Graphical User Interface (GUI) called Transport Incident Manager (TIM)
which will provide the stakeholders, such as TfGM the ability to visualise
and perform statistical analysis on individual links or the whole network in
quasi-real-time, this will allow them to respond in a timelier manner
making the network more resilient. Additionally, TIM has the ability to feed
data from any data source which has the capability to monitor the relevant
dimensions, such as journey time and volume. (Chapter Five)

e The fourth contribution is the development of a binary fuzzy decision
system to determine if a rule base system could identify congestion at a
high level. It was found through empirical experimentation that using a
fuzzy system was more efficient than traditional methods such as a
decision tree or probabilistic model. Not only was a fuzzy system more
efficient, but it also has better explainability for stakeholders to understand
as it uses only six linguistical rules to make the prediction of either
congestion or non-congestion. (Chapter Six and Seven)

e The fifth contribution is a continuation to the fourth as it involves
developing another one-of-a-kind fuzzy decision-making system,
however, this fuzzy system is developed to classify multiple types of
congestion. The classifications are non-recurrent congestion, semi-
recurrent congestion, recurrent congestion, and non-congestion. The
novelty of this system is similar to the binary fuzzy decision-making
system, as it doesn’t require training data to teach the model what
patterns to look for. The fuzzy systems are developed using expert
knowledge and one of the main benefits of the multi-classification model
is it uses only 12 linguistically rules making it easier to explain the
outcome of the predictions compared to the decision tree which has 1184
leaves which would need to be explained to understand the prediction.
(Chapter Seven)

The research in this thesis has led to the following peer-reviewed publications at
the time of submission.

Gould, N. and Abberley, L. (2017) ‘The semantics of road congestion.’ In
UTSG. Dublin.

L. Abberley, N. Gould, K. Crockett and J. Cheng, ‘Modelling road congestion
using ontologies for big data analytics in smart cities,’ 2017 International Smart
Cities Conference (ISC2), 2017, pp. 1-6, Doi: 10.1109/1SC2.2017.8090795

L. Abberley, K. Crockett and J. Cheng, ‘Modelling Road Congestion Using a
162



Fuzzy System and Real-World Data for Connected and Autonomous Vehicles,’
2019 Wireless Days (WD), 2019, pp. 1-8, Doi: 10.1109/WD.2019.8734238.

The following paper is currently being resubmitted to Transportation Research
Interdisciplinary Perspectives following corrections.

e L. Abberley, N. Gould, K. Crockett, J. Cheng (2022) “Development and
validation of a conceptual model for different types of road congestion:
recurrent, non-recurrent, and semi-recurrent congestion”

8.3 Future Work

8.3.1 Improve the Manchester Urban Congestion Data (MUCD) Dataset

The first focus with regards to future work is improving on the MUCD Dataset by
firstly, increasing the number of links within the Manchester’s neighbourhood
network topology which is currently 64. The second improvement would be
to incorporate more data sources that are in line with the relevant dimensions
used to predict urban road congestion, such as traffic volume and journey
time. Other data sources include Googles Directions API and Traffic master
(https://www.basemap.co.uk/trafficmaster-data/), which both rely on GPS
data source and can contribute three main dimensions: Speed, journey time,
and traffic volume. The final improvement would be to gain access to more
accurate weather in real-time, which will provide more meaningful data to
predict the impact of severe weather on urban road congestion.

8.3.2 Extend the Urban Road Congestion Conceptual (URCC)

The second focus with regards to further work would be to advance the ontology.
This will be achieved by incorporating new objects to implement prediction
techniques and to explore agent-based modelling to simulate the interactions
between the different stakeholder (agent) and how they will use URCC. Each
stakeholder will have their own properties (attributes) and will use will interact
with the URCC in different ways, such as a road user will be focused on a
journey on several between A and B, but a traffic manager is likely to focus
on the performance of the overall road network. Additional it would be
beneficial to explore the relationship between natural language which is
informal, the formal and explicit definitions presented in the universal
ontology, and the data being used to predict urban road congestion. Figure
91 shows the concept of how informal information can be processed for the
use of prediction an output urban road congestion and how that raw output
data can then be translated back into a meaningful informal description of
congestion which a stakeholder would find useful.
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Figure 91: Relationship between informal, formal, and data

8.3.3 Advancements to Transport Incident Manager (TIM)

The third focus with regards to further work would follow further improvements
to the MUCD and would consist of incorporating additional data sources,
such as Googles Directions APl which can provide journey times for self-
defined links into TIM. Other additions would be to allow users to save their
session configurations and to incorporate additional statistics such as an
average journey time over multiple self-defined links, for instance, link {a, b,
c} to form a new larger ‘temporary link’ that incorporates several smaller links.

8.3.4 Optimisation of the membership functions

The fourth focus with regards to further work would be to research and
incorporate a Genetic algorithm into the multi-classification decision-making
system to optimise the membership functions to achieve better performance
at prediction the type of congestion occurring. In the first instance, this could
involve coding the lower and upper bounds of all membership functions in the
system onto a chromosome and defining a fitness function which maximises
the prediction accuracy. The challenges will lie in coding the problem and
determining the most suitable fitness function.

8.4 Overall conclusion

In conclusion, this chapter has clearly stated the main research questions and
explained how they were address (section 8.1), discussed the significant
contributions in the field of transportation (section 8.3), and discussed the
limitation of this research and made recommendation for future work (section
8.3). This has posed three concluding thoughts that need to be address.
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The first thought is how can the proposed approach be generalised to address
other situations?

The proposed method of conceptualising urban road congestion using
ontologies to assist with the creation of a fuzzy system capable of predicting
congestion and what type has occurred is scalable as long as the data is
present, however, reliable data sources would need to be considered.
Additionally, the proposed method already takes into consideration the
different characteristics of each road (link), such as road length, speed limit,
capacity, direction, distance from attractors, etc. Therefore, a percentile
approach was taken to generalise journey time and volume. So regardless of
each link characteristics, very high journey time means the same thing on
each link, making it possible for this approach to be extended to highways
and rural areas, however, more concepts may need to be added to account
for different road behaviours.

The second thought is what is the model transferability?

The proposed fuzzy system has the ability to work in other countries and other
major cities in the United Kingdom, such as Birmingham and London.
However, a few considerations that need to be considered are: alternative
data sources and city specific constraints, such as London’s congestion
charge and Birmingham’s zero emissions zones would need to be modelled
in the urban road congestion ontology and the fuzzy system to maintain
performance.

Finally, what calibration is necessary to use the proposed method on other data?

The benefit of the proposed method is it has been developed around selected
dimensions rather than specific data sources. For instance, the dimension
known as journey time can use any of the several different data sources, such
as Bluetooth sensors, ANPR cameras, and GPS. As part of early
experimental exploration, Google API (GPS) data was explored, and it was
noted that the journey time from Bluetooth sensors and Google API were both
capable of working with the approach. However, the limitation of Google API
is the expensive cost of each API request.
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Appendices

Appendix 1

This appendix has material related to chapter 3.

1.1 Enumerate important terms in the ontology

Table 19 shows a list of all the concepts being used and their associated
descriptions that have been defined in the associated ontologies.

Table 19: Concepts and description of the road traffic congestion

ontology

Concepts Descriptions

Road Network A network of roads that help vehicles to travel
easily around a country.

Link A link is a segment or segment of a road and can
have several lanes going upstream and
downstream.

Road | A set of links with the same name e.g. A6.

Lanes A lane is a part of a road that is selected for use
by a single row of vehicles.

City Centre Area of a city where business, entertainment,

shopping, and Political powers are
concentrated. In addition, the city centre is
also known as “downtown” in America or
“Central Business District” in Australia.
Junction Junctions are classified based on the number of
roads that are involved. For example, a three-
way intersection is known as a “T junction” or
a “fork”. A four-way junction is known as a

“crossroads”.
Highway | A set of links that has a minimum of 6 lanes.
Point A point, typically described using a coordinate
system relative to Earth, such as WGS84.
Spatial Thing Anything with spatial extent, i.e., size, shape, or

position. E.g., people, places, bowling balls, as
well as abstract areas like cubes.

Event An arbitrary classification of space/time region, by
a
cognitive agent. An event may have actively
participating agents, passive factors, products,
and a location in space and time.

Instant | A temporal entity with zero extents or duration.
Interval A temporal entity with an extent or duration
Consequence | A result or effect, normally one that is unwanted.
Congestion The state of a congested road.

Recurrent | Occurring often or repeatedly.
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Concepts

Descriptions

Non-recurrent
Semi-recurrent

Occurring at an unknown time.

An event that occurs repeatedly but often at a
different time and day or an event with an
expected start and end time.

Dimensions
Occupancy

Density
Traffic Volume Count

Average Speed

A way to measure.

The percentage of the time the detection zone of
a detector is occupied by some vehicle

A spatial measure that describes the number of
vehicles occupying a section of a road.

The number of vehicles passing a point in a given
period of time.

The rate at which someone or something moves
or operates or can move or operate over a
selected distance.

Speed

Speed At a Point

The rate at which someone or something moves
Or operates or can move or operate.

The rate at which someone or something moves
Or operates or can move or operate at a given
point.

Velocity
Capacity

Journey Time
Time Frame

A speed in a given direction.

The maximum number of vehicles per unit of time
that can be accommodated under given
conditions with a reasonable expectation of
occurrence.

The time it takes to go from origin to destination.

A specified period of time in which something
occurs or is planned to take place.

Time

Public Events

Roadworks

Terrorist Incident
Road Traffic Incident
Concert

Football Match
Parade

Marathon

Accident

Direction

Absolute

The indefinite continued progress of existence and
events in the past, present, and future are
regarded as a whole.

The organised public event, which could disrupt
traffic.

Road maintenance or improvement activity of an
unspecified nature, which may potentially
cause disruption to travel.

A situation related to a perceived or actual threat
of terrorism, which could disrupt traffic.

An event that causes disruption to the road
network.

Concert event that could disrupt traffic.

Football match that could disrupt traffic

Formal display of organized procession, which
could disrupt traffic.

Marathon, cross-country or road running event
that could disrupt traffic.

Accidents are situations in which one or more
vehicles lose control and do not recover.

A course along which someone or something
moves

Location of a fixed point on earth.
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Concepts

Descriptions

Relative To Event
Relative To Traveller

A location that is relative to an event location.
A location that is relative to the traveller.

Relative To a A location that is relative to a functional site.
Functional Site

Magnitude The severity of something.

Region An area, especially the part of a country or the

world having definable characteristics but not
always fixed boundaries.

1.2 Define the classes and the class hierarchy

< Time
> Instant
> Interval

«» Consequence
» Congestion
= Recurrent
= Non-recurrent
=  Semi-recurrent
+» Dimensions

Capacity

Density

Journey Time
Occupancy

Speed

= Average Speed

VVVYYYVY

Traffic Volume Count

= Speed at A Point

» Velocity
+»+ Direction

» Absolute

> Relative

= Relative to Event

= Relative to Traveller

= Relative to Functional Site

< Event
» Public Events
= Concert
=  Football Match
= Marathon
= Parade

> Road Traffic Incident

= Accident
» Roadworks
» Terrorist Incident
% Highway
+ Junction
< Lanes
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X/
L X4

X/
*

X/
L %4

X/
L %4

DS

Link
Magnitude
» Very Low
> Low
» Average
» High
» Very High
Road
Set of Links
Spatial Thing
» Point
» Region
= City Centre
» Road Network
Time Frame

1.3 Define the Classes-Properties

Table 20: Class-Properties (Domain, Properties, and Range)

Domain Property Range
Events Happens at a Point
Traffic Volume Has a Capacity
Count
Velocity Has a Speed
Velocity Has a Direction
Lane Has a Capacity
Congestion Has a beginning Instant
Event Has a Consequence
consequence
of
Congestion Has a duration Interval
Congestion Has an end Instant
Link Has numerous Lanes
Set Of Links Has multiple Link
Congestion Has a network Set Of Links
scope
Congestion Analysed using Dimensions
Consequence Is a consequence Events
of
Highway Is a part of Road
Network
Junction Is a part of Road
Network
Link Is a part of Road
Set Of Links Is a part of Road
Network
Time Frame Is a part of Time
Dimensions Measured by Magnitude
Journey Time Measured by Time
Occupancy Measured by Time
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Appendix 2

Table 21 shows the performance of the multi-classification Fuzzy decision-making
system and presents the prediction per link, per direction.

Table 21: Individual links performance, Precision, Recall, and F-score.

Link NC RC
AU  Recall 1 0.65808
Precision 0.6557 0.8602
F-score  0.792 0.74569
BU  Recall 1 062312
Precision 0.3963 0.68075
F-score 0.5677 0.65066
CU Recall 1  0.7803
Precision 0.6962 0.81348
F-score  0.8209 0.79654
DU Recall | 0.7317 0.6535
Precision 0.2997 0.57629
F-score | 0.4252 0.61247
EU Recall 1 058884
Precision 0.6929 0.74717
F-score  0.8186 0.65863
FU Recall 1 0.65852
Precision 0.4453 0.74344
F-score 0.6162 0.69841
GU Recal 1 065813
Precision = 0.7654 0.68424
F-score  0.8671 0.67093
HU  Recall 1 070111
Precision 0.5586 0.65284
F-score 0.7168 0.67612
IU  Recall 1  0.75998
Precision 0.8022 0.70599
F-score  0.8903 0.73199
JU  Recall 0.9594 0.71125
Precision 0.5261 0.66381
F-score 0.6795 0.68671
KU Recall 1 052305
Precision 0.493 0.73111
F-score  0.6604 0.60982
LU Recall  0.8966 0.57341
Precision 0.4852 0.60334
F-score | 0.6296 0.588
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Link NC RC SRC  NRC  wAvg
MU Recall 1 063989 0  0.2452 0.85899
Precision 0.6904 0.73372 0 1 0.69015
F-score 08169 0.6836 0  0.3938 0.73439
NU  Recall 1 | 07735 0.35159 0.3996 0.88107
Precision 0.7273 0.78987 0.84091 0.9542  0.76306
F-score  0.8421 0.7816 0.49586 0.5633 0.79174
OU Recal 1 05639 0.26137 0.3012 0.85876
Precision 0.5708 0.8075 0.84953 0.9347  0.64088
F-score 0.7268 0.66406 0.39975 0.4556  0.68248
PU  Recall 1 056082 0.15083 0.1514 0.89189
Precision 0.4811 0.89127 0.89461 0.9108  0.55513
F-score  0.6497 0.68844 0.25813 0.2597 0.62516
QU Recall 1 041577 0.29626 0.2839  0.87906
Precision 0.6361 0.81708 0.83967 0.9196 0.67697
F-score 0.7776 0.55111 0.43799 0.4338  0.72356
RU  Recall 1  0.66768 0.36392 0.4166 0.88209
Precision 0.7339 0.84451 0.84477 0.9267 0.76819
F-score 0.8465 0.74575 0.5087 0.5748  0.79528
SU Recall 1 075304 0 02592 0.82712
Precision = 0.692 0.76508 0 1 0.6795
F-score 0.818 0.75901 0 0.4117  0.71316
TU  Recall 1 060758 0.41404 0.3477  0.8379
Precision 0.5524 0.86525 0.8812 0.9192  0.65498
F-score 0.7117 0.71388 0.56337 0.5045 0.67899
UU Recall 1 071147 0.28863 0.4619 0.89758
Precision 0.7716 0.88052 0.85714 0.918 0.79961
F-score 0.8711 0.78702 0.43184 0.6146  0.82554
VU  Recall 1 | 07222 0.49907 0.4238 0.87872
Precision 0.7428 0.8699 0.87184 0.9225  0.78355
F-score  0.8524 0.7892 0.63477 0.5808  0.80467
WU Recall 1 06436 0.2845 0.3224 0.87155
Precision 0.6194 0.86635 0.91774 0.9497  0.68986
F-score  0.7649 0.73854 0.43435 0.4814  0.72631
XU  Recall 1 053571 0.16677 0.2043  0.90245
Precision 0.6269 0.8802 0.83333 0.96  0.67075
F-score  0.7707 0.66605 0.27793 0.3369  0.7308
YU Recall 0841 0.68269 0.44374 0.4036 0.69101
Precision 0.3843 0.79806 0.80496 0.7994  0.57102
F-score 05275 0.73588 0.57211 0.5364  0.56543
ZU  Recall 1 043722 0.07543 0.0678  0.92446
Precision 0.5391 0.87161 0.82741 0.9422  0.5785
F-score 0.7006 0.58233 0.13825 0.1265 0.67451
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Link NC RC SRC  NRC  wAvg
AAU Recall = 1  0.64644 0.17371 0.1966 0.91855
Precision 0.7248 0.88606 0.79692 0.9805  0.75299
F-score  0.8405 0.74752 0.28524 0.3275  0.80383
ABU  Recall 1 061913 0.22253 0.3288 0.86761
Precision 0.6098 0.79037 0.8277 0.9779  0.67156
F-score  0.7576 0.69435 0.35075 0.4922 0.71334
ACU Recall 1 048811 0.06689 0.1113 0.91579
Precision 0.5019 0.95078 0.93143 0.9615 0.56325
F-score 0.6684 0.64506 0.12481 0.1995  0.64796
ADU  Recall 1 074505 0 03099  0.878
Precision 0.5925 0.74969 0 1 0.66546
F-score 0.7441 074736 0  0.4732  0.71054
AEU Recall 1 077352 0  0.4289 0.87497
Precision 0.6726 0.72412 0 1 0.73348
F-score 0.8043 0.74801 0  0.6003 0.76301
AFU  Recall 1 052965 0 03519 0.88389
Precision 0.6866 0.68541 0 1 0.7203
F-score 0.8142 059755 0 05206 0.76125
AD Recall 1 059077 0  0.2044 0.91005
Precision 0.6421 0.84832 0 1 0.6848
F-score 0.782 0.69649 0 0.3394  0.74653
BD  Recall 1 064968 0 03549 0.82355
Precision 0.3964 0.70232 0 1 0.55882
F-score 0.5678 0.67497 0 05239 057208
CD Recall 1 079434 0 0.2929  0.90815
Precision | 0.6852 0.83196 0 1 0.73377
F-score 08132 0.81271 0  0.4531 0.78096
DD  Recall 07262 067784 0 0459  0.63019
Precision 0.3115 057189 0  0.8706 0.53516
F-score  0.436 0.62037 0 0.6011  0.51737
ED Recall 1 055897 0  0.3481 0.88643
Precision 0.6774 0.73518 0 1 0.71892
F-score 0.8077 0.63508 0 05164 0.75915
FD  Recall 1 067877 0 03672 0.84144
Precision 0.4932 072227 0 1 0.6166
F-score 0.6606 0.69985 0 05371 0.64255
GD Recall 1 063571 0 05066 0.88044
Precision 0.7508 0.66649 O 1 0.78252
F-score 0.8577 0.65074 0  0.6725 0.80531
HD  Recall 1 075513 0 04878 0.84494
Precision 0.5929 0.66901 0 1 0.69964
F-score 0.7444 070947 0 006557 0.71862
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Link NC RC SRC  NRC  wAvg
ID  Recal 1 075692 0 05857 0.89718
Precision | 0.8052 0.70308 0 1 0.82643
F-score 08921 0729 0 07387  0.84487
JD  Recall 09457 0.76082 0 0521  0.79807
Precision 0.5396 0.65329 0  0.9596 0.67628
F-score 0.6871 070296 0  0.6753 0.68586
KD Recall 1 058031 0 0.187  0.83919
Precision 0.5205 0.72035 0 1 0.55778
F-score 06846 0.64279 0 03151 0.61727
LD  Recall 0.8897 0.63684 0 05537  0.7478
Precision 0.5003 0.61694 0  0.9198  0.6547
F-score 0.6404 0.62673 0  0.6912  0.65595
MD Recall 1 064333 0 0.24  0.87194
Precision 0.7036 0.70349 0 1 0.70212
F-score 0.826 0.67207 0  0.3872  0.74973
ND  Recall 1 077823 0.3157 0.3983 0.88343
Precision 0.7264 0.7997 0.82681 0.9468  0.76214
F-score 0.8415 0.78882 0.45693 0.5607  0.79235
OD Recall 1 062495 0.27803 0.3411 0.85845
Precision 0.604 0.79269 0.84111 0.9419  0.67006
F-score 0.7531 0.6989 0.41792 0.5008 0.70735
PD  Recall 1 053211 0.15782 0.1567 0.89111
Precision 0.4918 0.88275 0.91029 0.924  0.56273
F-score 0.6593 0.66398 0.26901 0.268  0.63144
QD Recall 1 042429 0.28073 0.2364 0.88701
Precision 0.6262 0.82935 0.84572 0.9117  0.66557
F-score  0.7701 0.56138 0.42153 0.3754  0.71889
RD  Recall 1 065725 0.34965 0.3951  0.8839
Precision 0.7351 0.83503 0.82023 0.9357  0.76611
F-score  0.8473 0.73555 0.4903 0.5556  0.79509
SD Recall 1 070488 0 02556 0.82577
Precision 0.6787 0.75455 0 1 0.67075
F-score 0.8086 0.72887 0  0.4071  0.7061
TD  Recall 1  0.63657 0.4302 0.3505 0.83447
Precision 0.5434 0.84998 0.88702 0.9239  0.65349
F-score  0.7042 0.72796 0.5794 05082 0.67573
UD Recall 1 073377 0.32413 0.4793 0.89794
Precision 0.7773 0.86774 0.88939 0.9453  0.8068
F-score  0.8747 0.79515 0.47511 0.6361 0.83015
VD  Recall 1 0.68877 0.4908 0.4221 0.87932
Precision 0.7514 0.86895 0.86815 0.9014  0.78591
F-score 0.8581 0.76844 0.62709 0575  0.80738
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Link NC RC SRC  NRC  wAvg
WD Recall =~ 1  0.66278 0.30781 0.3193 0.87314
Precision 0.6286 0.87134 0.90405 0.9489  0.6974
F-score  0.7719 0.75288 0.45925 0.4778  0.73325
XD Recall 1 057028 0.17659 0.2223  0.90196
Precision 0.642 0.89747 0.87755 0.9478  0.68767
F-score  0.7819 0.6974 0.29402 0.3602  0.74291
YD  Recall 0.8397 0.68192 0.44166 0.4016 0.68905
Precision 0.3761 0.8061 0.78729 0.8057  0.56797
F-score 05195 0.73883 0.56587 0.536  0.56125
ZD  Recall 1 04482 0.12644 0.0798 0.91786
Precision 0.5523 0.83849 0.83898 0.9475  0.59001
F-score  0.7116 0.58415 0.21976 0.1473  0.68017
AAD Recall 1 067282 0.15917 0.1559  0.92424
Precision 0.7094 0.9032 0.78457 0.9703  0.74073
F-score  0.83 0.77117 0.26464 0.2687  0.79869
ABD  Recall 1 06121 0.24944 0.3587 0.86162
Precision 0.6189 0.79034 0.82836 0.9687  0.68129
F-score  0.7646 0.68989 0.38342 0.5235 0.71823
ACD Recal 1 050895 0.05669 0.1035 0.91788
Precision 0.4949 0.9559 0.9085 0.9725 0.55864
F-score 0.6621 0.66424 0.10672 0.187  0.64547
ADD  Recall 1 073651 0 03037 0.87305
Precision 0.5644 0.73867 1 0.64509
F-score  0.7215 0.73759 0.4659  0.69039
AED Recall 1  0.76037 0.4079  0.8697
Precision 0.6361 0.72618 1 0.70879
F-score  0.7776 0.74288 0.5795  0.73986
AFD  Recall 1 057198 0.4049  0.8814
Precision 0.7057 0.66931 1 0.73918
F-score 0.8275 0.61683 0.5764  0.77437

0
0
0
0
0
0
0
0
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Abstract - Road congestion is estimated to cost the United
Kingdom £307 billion by 2030. Furthermore, congestion
contributes enormously to damaging the environment and
people’s health. In an attempt to combat the damage
congestion is causing, new technologies are being developed,
such as intelligent infrastruciures and smart vehicles. The
aim of this study is to develop a fuzzy system that can
classify congestion using a real-world dataset referred to as
Manchester Urban Congestion Dataset, which contains
data similar to that collected by connected and autonomous
vehicles. A set of fzzy membership functions and rules
were developed using a road congestion ontology and in
conjunction  with domain experts. Experiments are
conducted to evaluate the fuzzy svstem in terms of its
precision and recall in classifving congestion. Comparisons
are made in terms of performance with traditional
classification algorithms decision trees and Nafve Baves
using the Red, Amber. and Green classification methods
currently  implemented by Transport for Greater
Manchester to label the dataset. The resulis have shown the
fuzey system has the ability to predict road congestion using
volume and journey time, outperforming both decision
trees and Nalive Bayes.

Keywords - Intelligent Transport Systems; Big Data; Fuzzy
System; Urban Road Network; Congestion

L INTRODLUCTION

For centuries, people have naturally been migrating from
rural to urban areas causing the natural occurrence of
urbanization, which has contributed to one of the biggest
challenges’ society faces each day, which is road congestion.
Road congestion in urban areas is estimated to cost the UK
economy a total of £307 billion by 2030 [1]. Furthermore, road
congestion  contnibutes  enormously  to damaging  the
environment, due to air pollution which has an impact on
peoples well-being 2], [3].

In an attempt to reduce the impact of road congestion, many
large corporations, such as Google, Tesla, and Uber are
developing  ‘smart  welicfes’, such as connected and
autonomous vehicles (CAVs) that will be implemented as part
of an Intelligent Transpont System (ITS) of the future. Smart
wichicles are expected to reduce congestion levels and the
number of fatal accidents on the roads, with an estimated
37,000 lives a vear predicted as being saved in the United States
(LL.5.) alone [4]. This 15 due to sman vehicles being able to
communicate faster than a human and make better decisions

based on information collected by sensors embedded within
vehicles with other vehicles and infrastructure |5). However,
due to the hmited access to these smart vehicles and their
associated infrastructure, this study will use alternative data
sources, which comprise of data similar to what is collected by
CAVs and Road Side Units (RSUs) that will be used within ITS
of the future, such as a VANETs. Furthermore, these types of
ITS will provide data from vehicle to vehicle (V2V) and vehicle
to infrastructure (V21) providing a constant stream of big data
[5]-[7], which can be wsed to provide different information,
such as volume, journey time, speed, and weather conditions,
which are alzo known as dimensions.

Little work has been conducted using fuzzy systems to model
rogd congestion [E]-[10]. However, this limited work has
indicated that fuzzy models of road congestion are better for a
stakeholder, such as a domain expert to understand that the
conventional quanttative models previously implemented,
such as the probability model [11] and the spatial-temporal
maodel [12]. Fuzzy sets are the ideal choice for modelling road
congestion because of their ability to handle the ambiguity,
multifaceted nature, and uncertainty within traffic data, such as
journey time, speed, traffic flow, accidents, road works ete.
They have the ability to capture such variables through the use
of linguistic variables and hedges which are easier for a domain
expert to understand [13].

The contribution of this paper is taking an unbalanced real-
world big dataset with the support of an ontology and domain
experts to construct a fuzzy model of road congestion. This is
achieved through the construction of fuzzy systems comprises
of a set of fuzzy membership functions and fuzzy rules that can
be used to identify road congestion. An experiment is
conducted to determine whether the fuzzy model can be used to
analyse traffic data to classify congestion. Comparisons are
made with an existing system used by Greater Manchester
Transport authority in the UK and other known classification
algorithms,

This paper is organised as follows: Section 11 provides a
brief overview of recent studies of fuzzy systems within the
field of transportation. Section III provides an in-depth
explanation for developing a fuzzy system capable of capturing
the levels of congestion on an urban road network. Section IV
presents the experimental methodology and Section V provides
the resulis and a comparative discussion. Section ¥1 concludes
this study and provides insight into further work.
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I Fuzzy SYSTEMS IN TRANSPORTATION

A, What is a_fuzzy system?

A fuzzy system is typically a control system based on fuzzy
logic. The term “fuzzy” refers to the system's ability to deal
with terms that are not binary or predefined- often referred to as
linguistic vanables [13]. For instance, a humans” understanding
of the phrase, near or far, could imply: very near, near, not near,
far, and very far. Hence, fuzzy terms are subjective and mean
different things w different people. The main advantage of a
fuzzy system is that the model itself is made up of a number of
fuzzy rules, which can model a problem, such as congestion that
can be expressed in terms a human operator can undersiand.

B, Transport applications

The approach to use fuzzy systems within the discipline of
transportation to classify road traffic congestion is a relatively
new field. For instance, a study was presented in |14] into a
cooperative V2V road traffic detection congestion on freeways,
The study uses a level of service metric created by a third party
that collected aerial surveys to define the levels of congestion:
slight, moderate, and severe. The author then created a new
metric that uses four membership function: VerySlow, Slow,
Medium, and Fast, two inputs: Speed and Density, and sixteen
rules to define an output for one of three levels of congestion.
However, this study does not consider non-congestion as an
output and has described only testing the model in a simulation
with simulated data, furthermore, the focus of the study is on
highways and does not reflect an urban road network, which has
very different characteristics, Another study [ 9], examined road
traffic anomalies that contribute to congestion at a single
junction using a one-way traffic video sequence. This study
uses two data inputs: Traffic flow and traffic density. Traffic
flow has three membership functions called low, medium, and
high. Traffic density also has three membership functions
{sparse, normal, and dense) which are calculated using a
statistical analysis of the pixels. This study uses nine rules,
which were obtained through experts and empirical
experiments and has an output of either: normal twraffic, slight
congestion, and heavy congestion. However, one of the
limitations of this experiment is it was only tested on 3 different
scenes and in total had 142 observations, Although the use of
fuzzy systems is very new, despite limitations in current work,
fuzzy set representation of the vanables that model congestion
encapsulate a greater human understanding of a multifaceted
and dynamic environment,

III.  DEVELOPING A FUZZY SYSTEM FOR CONGESTION

This section describes the methodology that was used to
develop a fuzzy system for road congestion on an urban city
network, The model utilises real-world data from Bluetooth
sensors and inductive loop counters provided by Transport for
Gireater Manchester (TGM) for Manchester, UK. These data
sources will provide data that 1s equivalent to what will be
provided by CAVs and R5Us. Moreover, experts in road
congestion management (THGM) and a road congestion
ontology [3], [15] was used to help define the fuzzy sets to
ensure thorough domain coverage. The road congestion
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ontology which was used to support the development of a fuzzy
system capable of classifying road congestion was presented in
[15]. The road congestion ontology states that congestion can
be measured using multiple dimensions, such as journey time
and volume. Furthermore, congestion is often the consequence
of an event, such as rush hour, a road accident, a concert, a
football match and roadworks. Finally, depending on the
severity of congestion the magnitude can vary from very low to
very high. Therefore, in this study, the magnitude ranges
defined in the urban road congestion ontology [ 15] will be used
to determine the membership functions: Very low, VL low, L,
medium, M, high, & and very high, F#A which will ensure
coverage of the domain.

A. Dara Seurces and Variables

For this study, a real-world spatial-temporal dataset, known
as the Manchester Urban Congestion dataset (MUCD) was
used. The dataset consists of journey time, volume, weather,
bank holidays, and event information. However, due to the
nature of this study, only journey time and volume data
collected from Bluetooth sensors and IDC will be used to
simulate data collected by CAVs and RSUs. The MUCD has
17376 records and each record consists of 126 atiributes,
Furthermore, the MUCD dataset is labelled using the Red, &
Amber, A and Green, & (RAG) method implemented by
THGM, UK. Where (Gjreen is non-congestion (1), (A)mber is
slight congestion (2), and {R)ed is major congestion (3),

i = JT = median = 1.25 ()
A = Median = 1.25 < JT = Median = 1.5 (2)
R =]T = Median = 1.5 (3)

Where T is the average journey time for all Bluetooth
enabled vehicles travelling between two sensors on each link,
The Median is the 30" percentile of journey time for a single
link within the MUCD. 1.25 and 1.5 are the congestion factors
that THGM experts use to measure network performance. The
problems associated with the MUCD can be summarised as:

¢ Due to the limited number of inductive loops
counters, the ability to calculate the volume of traffic
for each link in the network is limited.

s  The data quality of the Bluetooth sensors has many
issues. For example, capiure rates; during the night
periods or a period where no vehicle with a Bluetooth
device passes the sensors cause the sensors to provide
an incomrect average journey time when being
observed.

¢ In bad weather, the sensors which use a mwobhile
network to transmit the data to a central location, can
fail amd cause the dataset to have missing data.

#  The non-congestion class significantly outweighs the
other, causing the MUCD dataset to be imbalanced,
which imposes challenges for machine leaming
classification algorithms that is a problem because
classification algorithms are often biased towards the
majority class, which in this study is non-congestion.



TABLE L. DIMENSIONS AND THEIR LINGUISTIC VALUES.

Data
sources

Dimension
(Variables)

Linguistic
values
(Membership
functions)

Very Low
(VL)

Low (L)
Medium (M)
High (A)
Very High

(VH)
Very Low
(VL)

Low (L)
Medium (M)
High (H)
Very High

(VH)

Bluetooth
remote sensors

Journey time

Volume Inductive

loop counters

B. Membership Function Determination

Table I shows the dimensions, data sources, and linguistic
values determined from the urban road congestion ontology
[15]. The linguistic values of the membership functions
representing journey time and volume are also shown.

Using the linguistic values identified in Table I, the creation
of the fuzzy membership functions can be performed using
three steps:

e Step 1: Perform K-means clustering [16] on both
Journey time and volume data.

e  Step 2: Identify the final boundary values for a set of
clusters (referred to in this work as groups) where they
connect and define this value as dt (boundary
threshold).

e Step 3: Using the df value, determine membership
function domain coverage using one of three
membership functions: linear increasing, linear
decreasing, and trapezoidal.

The primary objective of data mining is to discover patterns
within large datasets, such as the MUCD dataset used within
this study. K-means clustering is an unsupervised algorithm
used within data mining to find a cluster of patterns in data. K-
means uses the inherent structures in the data to best organise
the data into groups of maximum commonalities [17]. This is
achieved by partitioning 2 observations into & (in this study
k=5) clusters. Five clusters were used based upon early
empirical experiments which found that five clusters provided
sufficient resolution [15]. Figure I shows, as an example, 17376
journey time records plotted on a 24-hour scale. Each
observation within Figure 1 belongs to the cluster with the
nearest mean value. Once K-means has been performed, it
becomes possible to identify the boundary values between each
cluster, which will be used to create the membership functions
in the fuzzy system.

K-means Clustering on Journey Time

4
[

Journey tame in soconds
»
=3
3

Time of Day

Figure 1: Example of k-means clusters on 6 months” worth of journey time data where k=5.
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Figure 2 shows an example pair of linear opposing
membership functions, which will be used for the VL and VA
memberships. The two pairs (4) and (5) are both linear
increasing and decreasing membership functions Z, can be
defined as [18]:

0, x<dm
x—dm
Lt (x,dmdn)={———, <x <
( ) dn—dm Sx<dn )
1, x=dn
+ N x<dm
Li(x,dm,dn)= l—ﬂ, dm<x <dn (3)
dn —dm
0, x=dn

Where dm is defined as dm=dt-no and dt is the value
generated by K-means clustering on all variable jrecords. nis
a real number n — [0.0, »], ois the standard deviation, and x
is the value of the variable £ n 1s empirically determined.
Additionally, dn is defined as dn=dt+no.

1

Membership

0 25 5 75 10
Value

Figure 2: Example of a linear pair opposing fuzzy
memberships functions.

Figure 3 shows an example of a trapezoidal-shaped
membership function, which will be used for the L, M, and #
memberships. The trapezoidal-shaped membership function T
(6), may be defined as:

0, x<dm!

x —dm'
—_ oy < 1
I —dmt’ dm' <x <dn
T(x,dm?, dn®,dm? dn?) = 1, dn'<x<dm® (6)
x —dm*
-G —gm M sxsde

0, x = dn*

Where dml, dnl, dmZ, and dmZ are defined using the
same methnd as dmand dn

Membership

10

Figure 3: Example of a trapezoidal-shaped membership
function.

C. Fuzzy Rules Determination (manual and expert)

The fuzzy rules were initially created with every possible
vanation of each five membership functions, such as VL, L, M,
H, and VH for journey time and volume, which gave a total of
25 rules. However, with the support of the urban road
congestion ontology [15] and domain experts, TfGM [19], the
rules were humanly optimised down to just six. This manual
optimisation revealed that several rules were not firing so
therefore, they were not relevant. For example, if journey time
was VH then the output is congested regardless of the volume.

Algorithm 1 uses both antecedents and consequents
membership functions to fire six unique rules to acquire each
rule strength ready for fuzzy inference.

Algorithm 1
Rules for congestion

Antecedents: Journey time, /7° Volume, V.

Antecedents memberships: Very low, VL Low, L. Medium, M,
High, H. Very high, VA.

Consequents: Congestion, €.

Consequents memberships: Congested, Con. Non-congested,
Non.

IF JT is VH THEN Con

IF JT is H THEN Con

IF JT is M AND V is VH THEN Con

IF JT is M AND V 1s NOT VH THEN Non
IF JT 1s L THEN Non

IF JT is VL. THEN Non

D. Fuzzy inference

One of the first control systems and most commonly
implemented methods for computing fuzzy inference is
Mamdani [20]. Furthermore, Mamdani was first implemented
within the transport domain, where it was used in an attempt to
control a steam engine and boiler combination [20].
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Figure 4: A example of how Mamdani fuzzy inferences
works.

Figure 4 shows the composition of fuzzy inference, the four
stages are:

Stage 1. Fuzzification of the non-fuzzy inputs (the average
Journey time and volume over a 15-minute slot for one link in
the network), which are crisp, numerical, and specific to the
attribute domain. The inputs are fuzzified according to
membership functions.

Stage 2. If the antecedent of a given rule has more than one
part, the application of a fuzzy operator is required to obtain a
single value that represents the individual rule. For instance,
the top rule within Figure 4 has two parts in the antecedent, so
a AND operator is used to identify the minimum value as the
result.

Stage 3. Using the single value acquired in stage 2, the
consequent is reshaped to provide the result of implication
which is weighted depending on the linguistic characteristics
that are attributed to it.

Stage 4. Aggregation is the combination of the fuzzy sets
that represent the outputs of each rule into a single fuzzy set
(fuzzy output distribution).

Stage 5. The input for defuzzification is the single
aggregated fuzzy set and the output is a single value. This is
discussed in more detail in section E.

E. Defuzzification

The method centroid of area (COA), also known as the
centre of gravity (COG) (7) 1s used to defuzzify the final output
fuzzy set (Figure 4) and output a crisp numeric value, which in
this study is the probability of congestion. To achieve this, the
total area of the output distribution membership is divided into
a number of sub-areas and then the COA is calculated for each
sub-area. Finally, all sub-areas COA are summed together to
find the defuzzied value (probability of congestion).

- [ s (2).zdz

= (7)
Jwi(2)dz
Where p is defined as the degree of membership (y-axis), z
is defined as the value on the x-axis, A4 is the fuzzy set, and dz
1s the derivative of z

IV. EXPERIMENTAL METHODOLOGY

The aim of the expeniment is to determine whether a fuzzy
system can be used to analyse traffic data to classify congestion.
The hypothesis for this study is H): Using journey time and
volume data, it 1s possible to classify congestion using a fuzzy
system. To evaluate the performance of the fuzzy system, it was
compared against two alternative machine-learning algorithms:
The decision tree C4.5 (using the Weka implementation J48)
|21] and Naive Bayes, on the MUCD dataset. The training and
testing strategy is described as follows: the MUCD dataset was
split into two parts: Training Set containing 8688 records of
which 6665 were classified as non-congestion and 2023 were
classified as congestion, which accounts for only 23% of
records. The test set containing the remainder of the dataset.
Datasets were mutually exclusive.

In order to evaluate the three methods using an unbalanced
dataset, five statistical measurements were chosen, which are:
True Positive Rate, TPR, also known as recall and sensitivity.
TPR measures the proportion of actual positives that are
correctly identified. TPR is defined in equation (8) where TP is
true positive, and FNVis false negative.

TP
TPR =353 7N

(8)

False Positive Rate, FPR, measures the negative instance
that is wrongly classified as positive. FPR 1s defined in equation
(9) where FPis false positive, and 7V is true negative.

FP
FPR =5 7w )

Precision, also known as positive predictive value, PPV,
measures the number of positive predictions divided by the total
number of positive class values predicted. Precision is defined
in equation (10). 5

PPV =15+

(10)

F-measure, also known as F1 Score, FI, measures the
balance between the precision and TPR. F-measure is defined
in equation (11). -

U P Y (11)

Overall efficiency, also known as accuracy measures the
amount of correctly classified instances. Overall efficiency is
defined in equation (12)

Overall Ef ficiency = TeATY

TP+TN+FP+FN (12)
However, due to the class imbalance as mentioned above, it
is important to provide a single value that represents the
performance of both classes for TPR, False Positive Rate,
precision, and F-measure. To achieve this a weighted average
will be used and i1s defined in equation (13). Where Cy,p
represents the statistical measurement being weighted for the
class non-congestion. C_,, represents the statistical
measurement being weighted for the class congested.

Coon * (TP + FN) + Coy * (TN + FP)

TP+FN+TN+FP (13

W=
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V.  RESULTS AND DNSCUSSION

The purpose of this study was to determine whether it is
possible to classify road congestion using a fuzzy system and
real-world traffic data. Table Il shows the results for each
statistical measurement for the three machine-leaming
algorithms and their classes: Non-congestion (Figure 5) and
Congested (Figure 6) and the weighted average of both classes
{Figure 7) defined in equation (13).

Before discussing the results, the authors would like to
reiterate the challenges of performing classification on an
imbalanced dataset. Global performance measurements, such as
overall efficiency, provides an advantage to the majority class
and can be misleading. For example, the overall efficiency of
the fuzzy system is 8% per cent, which seems good. However,
assume the dataset had 100 instances, with a split of 80 for non-
congestion and 20 for congestion. Assume the system classifies
non-congestion as 492 instances and congested as eight
instances. This means the class, congested is only 40 per cent
efficient/accurate and not 88 per cent. Therefore, the discussion
will focus on TPR, FPR, precision, F-measure.

The results show Naive Bayes achieved a TPR of 99.8 per
cent for non-congestion, which is the higher TPR across all
algorithms and both classes. However, it achieved the second
highest FPR of 578 per cent. This is attributed to the paradox
of imbalanced datasets. The FPRs for the minority class across
all three algorithms are significantly low, for instance, the fuzzy
system 15 3.5 per cent, the decision tree 15 4.8 per cent, and the
Maive Bayes is 0.2 per cent. The FPRs for the majority class
across all three algorithms are noticeably higher, for instance,
the fuzey system is 32.9 per cent, the decision tree is 59 per
cent, and the Naive Bayes is 57.8 per cenl. Because of these
noticeable differences, it has been decided from this point to
only compare the weighted averages of both classes. The TPR
weighted average for the fuzzy system is 88 per cent, which is
higher than both, the decision tree by =6 per cent and Natve
Bayes by =2 per cent. The FPR weighted average for the fuzzy
system 15 26.5 per cent, which is lower than both, the decision
treg by =20 per cent and Natve Bayes by =18 per cent. The
precision weighted average for the fuzzy system is 87.6 per
cent, which is higher than the decision tree by =6 per cent,
howewver, it was lower than the Nafve Bayes by =1 per cent. The
F-measure weighted average for the fuzzy system was 87.6 per
cent and 15 higher than both the decision tree by =7 per cent and
Maive Bayes by =3 per cent. Furthermore, the fuzzy system

overall efficiency was the highest of all three machine-leamning
algorithms,

Although all algorithms perform to a similar level with the
fuzzy system performing the best overall, it should be noted that
each algorithm has its own level of complexity with some
stakeholders possibly struggling to understand how the model
produces an explainable decision. For instance, the easiest of
the three algorithms for a stakeholder to understand is the fuzzy
system. This is because the rules are comprised of linguistic
variables, which are easier to understand and interprer by
stakeholders. The single defuzzied output of the fuzzy system
gives a measure of the probability that congestion oceurs in a
specifie 15-minute slot on road link x, where xis 2 road link on
the urban network being modelled. The second easiest to
understand is the decision tree, J4%, where a branch of the tree
is split based on a value of the variable being used and this is
repeated until the leaves are reached and an outcome is decided.
It should be noted the bigger the tree and the more leaves (and
hence rules) the harder it 15 to understand the decision
transparency and hence, may become harder for stakeholders to
follow. The decision tree model in this experiment has a tree
size of 17 and a total of 9 leaves. The 9 rules are transparent and
could be understood by a transport expert. The most complex
algorithm for a stakeholder to undersiand is Naive Bayes
because it is a probabilistic classifier, which uses a probability
distribution over a set of classes, instead of only cutputting the
most likely class that the observation should belong to.
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Figure 5: TP rate, FP rate, precision, F-measure, and
overall efficiency for non-congestion.

TABLE Il. ResULTS Pok FUZEY SYSTEM, M8, aND NAIVE BAYES,
Fxperiment | Class TP Rate /| FP Rate Precision F-Measure g;::;:::ﬂ-
pe ’ Reeall (%) (%a) {%a) {%a) (%) d
Non 044 320 Q0.4 923
Fuzzy Congested 67.0 35 754 72.2 280
System Weighted | gq 265 876 87.6
Avg.
Nowi 05.2 50.0 8242 29.3
Decision Congested 41.0 4.8 72.1 523 %15
trec (J48) | Weighted | ¢ ¢ 46.4 81.4 80.7
Avg.
Non o0 8 5TR 825.0 91.8
Nalve Bayes ;bng:ﬁ:d 422 0.2 OR.5 59.1 6.3
eig 86,4 444 882 842
Avg.
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Figure 7: Weighted average of TP rate, FP rate, precision,
F-measure, and overall efficiency.

VL. CONCLUSION AND FURTHER WORK

This study has proven the hypothesis, H; Using journey
time and volume data, it is possible to classify congestion using
a fuzzy system and has demonstrated a proof of concept fuzzy
model. The initial results have demonstrated the fuzzy systems
ability to predict congestion using volume and journey time,
outperforming both the decision tree and Naive Bayes.
Moreover, the fuzzy system using, only six rules was able to
handle an unbalanced dataset. Additionally, the author believes
it would be possible to implement this model on other urban
road networks. To further this study, the authors are currently
working on expanding the system to classify the three types of
congestion [ 15]: Non-recurrent, Recurrent, and Semi-recurrent.
This is an important requirement for TfGM who would benefit
from not only being able to identify congestion but the type of
congestion, which would allow for different mitigation
strategies to be put in place. Additionally, they will be able to
measure how much of the network is, at a given time, exhibiting
signs of non-congestion, recurrent, non-recurrent, and semi-
recurrent congestion. To achieve this goal, the fuzzy system
will be expanded to add linguistic variables for different times
of day, different days of the week, bank holidays, distance from
an attraction, and direction of traffic flow.
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Absreer—Intellizent Transport Syvstemn: are a vital component
within Smart Citie: bot rarely provide the confext that is required
bv the road uwzer or network manager that will help :upport
decizion making. Such sviteny: need to be able to collect data from
multiple heterogemeons zources and anabvze thiz information,
providimg it to stakeholders in a timely manner. The focns of thiz
work iz to nze Big Data anahtics to gain knowledge about road
accidents, which are a major confributor to now-recorrent
congesfion. The gim iz fo develop 8 model capable of capturing the
semantics of road accidents within an ontology. With the support
of the ontology, selective dimenzions and Big Data :oorces will be
chozen to populate a model of non-recurrent congestion. Initial Big
Data anabv:iz will be performed on the data collected from two
different semzor type: in Greater Aanchester, UK to determine
whether it iz poasible toidentifv chasters bazed on journey fime and
traffic volomees.

Eepwords—EBig Daea; Ineelligene Trangpere Systems; Cluscering;
Oneolagy;

L INTROCUCTICRY

Currently one of the bigzast challenzes: scciety faces sach
dav 12 road congestion, which has an enonmous impact on health
because of pollutants beimg releazed from vehicles that ars stuck
m road congestion worldwide for a totzl of 4.8 hillion howrs [1].
Im addition, road congestion cosfe the Eoropean Union an
estimzted 1-2% GDP (£100-200 bilhon) each year [1]. [2].
Howavar, the most crucial conzequences of road congeshion are
the premzture deaths cavsed by deadly chemucal: bemns
ralazeed and the delave cauzed to the Smergency services using
the road network. The road network is the linchpin that holds
the other transport networks together [3]; makme if vitzl to
alleviate some of the high demand put on it. Two ways to
zchiava this would ba to firstly, provada road users with battar
nultimodal informetion allowing road usars to make betfer
choices such as takmg an alternative transpert mode. Sacondly,
it would be useful to develop an Intellizent Transport System
(ITS) or a componant of one, which iz capable of handlins
multipls heterczeneonz datz sowrces. ITS5:z are an mmovatiee
application, which aims to provade traffic managers and read
uzers with better information, allowins for “smarter’ use of
transport metworks. Current ITSs lack the capahiliy of bemz
dymamne by nzms ymltiple hererogensows data sources 1n near
raal-timse. Nioreovar, the most noticeable weakmesz of IT8s 1=
the lack of context they provide to road users becanze of the
guantizaiive data beinz processed and a lack of gualirarive
informarion. For example, read users driving on 2 hughoay
Thiz rezsarch was parthy furdad by Transpon for Greater Aanchester, TE
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currently  would notice  vanzble-messaze ziEns  stating,
“CONGESTION AHEAD EXPECT DELAYS® but this
mezzage lacks awy uzefunl context creating more questions than
answers. For mstance, what fype of congestion” Where 1= the
congastion? What is the cauze” When did it start? When will &t
end? Are thers any altemative routes” How will it influencs the
ovarzll joumney? A mors mformatve meszzze would be
“CONGESTION AHEAD IN 2 MILES, DUE TO AN MINOR
%ﬁ%ﬂw AT 15:43 CAUSING INCREASED JOURNEY
Thiz research atternpfz fo answer the gqueshen: “Can
quantitatrve Big Data be used to provide quahtative information
1 conpunction with a road traffic ontolosy with the support of
MMachine Learmmg?"

Figura 1 shows the research methodology followad m ordar
to attampt to answer thiz research question.
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Figure [ Rasearch methodology

*  Stape 1 1z the fornmulation of a conceptual medel of
congestion leading fo the davelopment of an ontelogy fo
provide a formal and explicit comcaptualization of
congestion and i parheular, the mmpact of road accidents.

*  Stage 2 From the ontology, the dimensions that dszcnbe
the comgestion caunzad by accidemts are 1dantifisd, im
particular, journey time and fraffic vohomes.

¢ Stage A Now the dimensions have been 1dentifiad through
tha developmeant of the cntology, i 15 possible to identify
which Big Data sources are relevant by reviewing which
data sources have bean previously used to caleulats the
journey tme and taffic volume. Journey tume has
praviously baen caleulated vsing Blustooth sansors, Global
Posthoning Svstems (GPS), cameras, and traffic volume
with Fzadic-frequancy Identification (RFIDY and Inductive
Loop Counters.

Stage 4 Utilizsing the relevant dimensions and thewr Bis
Data Sources, analyhies 12 performed to 1denhfy patferns in



the traffic volmnes and journey tirmes, which can be usad
to franslate quantitative data into qualitative information.

The ramamdar of thiz paper =5 orgamsed as fellows. The
concepts of congestion zre infroduced m Section IT. In Section
T, the road acoident catology will be prasented Sechion IV
will dizenss the Big Data sources this research uses. Section V
will infroducs the experimental desien and analyvz:, Section VI
will dizenzs the experimental results. Finzlly, we concluda and
suggest firther work m Saction VIL

II. CONCEPTS OF COWCESTION

Althoush congsstion 15 not 2 new phenomencn_ and it has
been an outstanding problem for every envilization including
anmeant Fome, which the Cassars noted [4] The passags QJ"
soods caris oM RaYFOV CEV Sivests o congested fher r.rlq
becoms impazsable and wasafe for pederprians fo confimus
The UK’s Departmeant for Transpert (DfT) makes a distinction
between plysical congestion that can be characterizad by
considering  average speeds on the network and relmive
congastion that 15 definad by the road usar’s expectation [3].
For exampls a person who regularly drives a certain routs,
which 1z regolarly congestad. would comsider thiz nommal
Howavar, a differant parson driving the same route for the first
time may consider it to be severaly conzested [6] A report into
traffic congeshon by the U8 Department of Transportation
DeT) focusss primarily on a relative appreach to dafinins
congastion using terme such az clog’, ‘mpeds and ‘sxceszive
fullrez: " and 2dd:s For arpons whe has ever sat in congested
waffic. thoss words 'nﬂar.la’ sound familior.” [7]. The zame
raport noted how congestion Jsh‘pma]h ralated t{:- an axcess of
vehicles on a perfion of roadway or pedesfrians on a sidewalk.
There 1z still an apparent absemce of consiztency of how
congastion iz defined. This iz partly due fo the rmbtifacetad
nature of congestion and hew it 1= parcaived.

In this research road traffic congestion iz disfinguizhad
betwasn two vague types: non-recurrent amd  recurrant
congastion. Vague because, althoush the terms such as
racurrant or mon-recurrant are widely accepted by acadermies
and transport manzsement. the relative views and indmadusl
perspectives shehth diffar. Table I shows 2 defimition for each

type of congestion.

TABLEI DCerparion of ComeEsmiom
Cungﬁtiun Defimirion Feferences
Rau_"ezt | CGooms when significee amowms of vekicles | [3]10]
congestion | simmuliznepusly uze 2 limited spece of road
Tudh 2z weskdzy momtnz and aftemoon:
| pesl howrs” traffic jam simmims
Mo Ocom: from 2 read taiffic incdent moch as [ll [11].
T=0TEnt traffic accdemiz, wodk zome:s, exivems | L]
ronzsstion | weather condifions and soms sperial events
likz mm=ic concert: and Impartant sparts
s

M.  ANONTOLOGY FOR COMNCESTION
Ontologies have bacome an area of mterest within many
fields such 2z Computing [13], [14], Geography [13], [16] and
Tramsportation [2], [17], [18]. The main motive for using an
outology i the wav # allows data and algonthms to be
described in a formal and explicit way foremg clanification and

mproving kmowledee manapement and deciion-makimg [19]
whilst remaming accurate, conflict free and fatthfill to each
indiriduzl domain [20].

The oatology showm in Figare 2 was developed by
performing an extensive hiterature review info many concapts
of congestion and road aceidents and using data collected from
Transport for Greater Manchester, UK (TEEM) fo perform a2
datz exploration of 2 road =zecident that happened on 1st
Movembar 2016 on the A5103 road m Manchester, UK
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Figze 1: Ontolozy: Foad Acrident

The ontolozy (Figure 1), explaims the relationship betwean
am event, for example a read accident and its conzequence,
which 1= non-recurrent congestion. From the ontolozy, we
kmow zn accident 1= 2 road traffic incident, wiuch 1z a tvpe of
event. These types of event have tempaoral aspects, which are
inztant, and interval.

Road Accident Timeline

Interval

Arokleeil - = Hrcident
(5mn Eneli
- Altaraflect |':1'|'|51'q|.ﬂ‘|'lﬁ_l -
t -*
1 =
Instamt nelant

Fimze 3: Accident tempoml aspact sxmmpls

Fizure 3 provides avisual example of the temporal aspects of a
rozd accident. rl 1= the imstant of a vehicle impact anothar
object, 1 1z the instant where the traffic flow retums fo
“mormal” and the mterval between these two instances 1z the
conzequence of 1mpact on the zet of road network linls,
which lazts an amount of fime (interval). Addmonally, non-
recurrent congeztion 1= the conzequence of the event and has
2 network scope, which criginates from a spatial thing such as
z point on 2 link that the aceident coowrad. Finally, we defme
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congeztion caused by 2 road accident az having masnitodes
such z: a2 high jouwrney time and low traffic volumes.

IV. BIzDATA SOURCES
Mamy research projects and comemercizl tocl: such as
Google Traffic provide a dimension of congestion wath terms
hike “free flow’ and “bound flow’ [21] and rozad speeds m guasi-
real 1:i1:|:|.aL b us:inﬂ data {:ullad fn:-m mobile phons users.
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Howevar, Fizura 4 shows the mformation that a Google traffic
uzer would see whers links are hishlishted with cne of four
colours that relata to the averaze spead on that limk However,
thers 1z 2 clear zhzence of context What speads do the four
colours refer too? Do slow speeds mean the link = congested?
If conzestion has oceurred then what 15 the canza? When did 1t
start and when will it andT Ara these speads normal for the day
and tima? According te [22], it is important to be able to
identify the cauze of congestion, ez, A road accident

Thiz research will usze the dztz presented i Table II and
will focus on a 4 5-mile saction of the A6 read, which commects
Stockport to Manchester ity centre, UK. Table I shows which
data sources, where the data was zcquired, the area covered,
tmeframe and dimension saned.

TABLEIL Tagre oF DlaTa

From | Ledation Timeframe | dimensicn
T M[anchaztar, 2006- Joamay Tima

| LK Crurrent |
T A[mchesztar, A005- Trific volmns

LE Currert

arAIsl | Uk JLE3- Czsnalfy
o] b aocidents pnly |

Theze dzta sources have been discussed and previously
med m ressarch which ammed to maprove TTS[1], [23].
Inductrre Loop Cowters have been dizcuszzed and used to zave
traval time and datect anomalies [9], [24]. The accident datz 1=
bemnz uzad to provide an understandmz of histonical accidents
to help 1dantfy new accidents i guasi-razl-tme However,
what makees thiz resezrch novel is the combination of dzta from
multiple senzor scwurces to idemtify the ocourrence of road
zccidents, and providing this mformation to road nsers in 2
qualitztive format These data sources do come wiath their
chzllanges. Blustooth sensors are mot 100% reliable smee a zero

second Jourmey fime could be dus to several reazoms. For
exxzmapla, thare were no vehicles with a Blustooth devics that
had driven past zt least two zenzors; also, the mohile network
uzed to transmut semzor data to the ceatral server could have
been affectad by bad weather; also, Blostooth MAC address
may have been zllocatad to moultipls devices, which could cause
auuue&:pe-:tedjaumex time. Iudun:iiel.e-:-pﬂauuters.are
sparsely depleved m the studv area. An accident 1= omly
racorded if thers are one or more casualties and a police officer
has attended, which means that an accident that may have
caused congestion mught not be n the dataset. This 1z defined
25 an mcomplete datasat

V. EXPERIMENTAL DESIGN AND ANALYEIS

For thiz rezearch. 2 non-labellad datzzet has bean crazted
uzing all the datz sources mentioned m Table I A non-lzbellad
datazet iz best suited to being analysed with an unsupervised
leamning algorithm such as clustering [25]. Clustering is a type
of machine learning algerithm and 1z one of the most commonly
mzed algonthms when a usar haz a non-labelled data problem
that requires a solufion [26]. Clustering modals the relationship
betwaen variables uzine approaches such as centroid-bazed and
hierarchocal. All clustanns methods use the inherent structures
m the data to best orzamze the data mto sroups of maxnmmm
commonalie:. Some of the most popular clustering algonthms
zre k-DMzame, k-DJedians Expaclauc-u Maemization (EM) and
Hierarchical Clusterme [27].

Traditionzlly, conzestion has been azzszzad by mezzurmz
speed, volume, and occupancy on the road network However,
these diomenszions are not without lmutzhons; for esampls
speed (2= oppozed to mean speed)) 15 @ measure at a singls point
on a link and cammot be uzed 2z 2 constant dus to the possibality
of a road block or modent which could caunse a vehicle to
raduce their spead before regaiming speed before soing pazzad
another spead checkpoint. Veolume and occupancy require
frequently deploved ‘expensive’ esquipment, for mstance,
Inductive Loop Counters. Therefore, the followmz Iil.'\'pl'_‘th:.E.
will use data from inexpensive technology that can be used to
talculatelcnum.e'. times rather than :peed and wdentifi chanses
in journey time and fraffic volume depending on day and time
providing mformation that 15 mors uzafil.

Hypothesiz One

HO: Chistering zn unsuparvized dataset creates clasters that
make 1t possible to predict joumey timea.

Hl: Clustering an msuperised dataset creates clusters that
carmof be used to predict journey fimea.

Hypothesiz Two

HO: Clusterning an unsupervized datazet creatss clusters that
make 1t poszible to 1dantf differances betwreen 2 waskday and
2 weskend.

Hl: Clustering an mmsuperised dataset creates clusters that
carmet be uzed to identify diffsrences between a weskdzy and
= weskend.

A Methodology

The first stap is to collect the data, which is recorded when
2 vehicle or an cccupant with a Blustooth enabled device pazzes
numercus sensors. Lhe DIAC address of the velucls or a

Blustooth enzbled davice being carmied by an occupant are
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recorded m a raw data fil= called Per Valuele Eacord (FVE).
Theze MAC addrezzez are then uszed to caleulate the joumsy
time of zavaral nzar: between zn onizin and destmation m 13-
mumts intervals. Once sufficient data has been collected and
processed; imeolving the comversion of mean joumey times into
seconds from a time stamp, the sourcs fils 15 nported wie 2
datzbzze. Fimally, modelling vall be parformed using the K-
Means++ algortthm which 1z an mmsopervizad learmmz method
with 2 non-labellad datazat K-hlsans+— alzorithm was chosan
because according to [23] it has previously achieving fimctional
vahies 20%: better than K-Maans and performed 70% faster.
VI. EESULTS AND DISCUSSION

The purpese of this expenment was to discover patterns 1n
the journey time and traffic velumes to help pradict and clazafy
Journay fima. Fisure 5 dizplave 13 weeks of data i a scatter
zraph with Tuesdzy, Wednesday and acress the x-axsz, joumey
time aleng the v-amz zand grouped mmto four time pemiods that
ara §:00, 7200, B:00 and 9:00. Each group reprezentz z 13
runtas slot. For example, 6:00 wtil 6:13.

From Fizure 3, it 1= apparent that the groop 6:00 and 7:00
are a lof more consistant with regards to journey fime than 8:00
and %00 that zppear to have a lot more variation rangmg from
0 to 2600 zeconds. 5:00 1= positioned sparsely batwean 7:00 and
3:00 demenstrating a visible temporal pattern m the joumey
time data.
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Figuze 3 Bcatter sraph of joumsy times

Following the exploration of jouwmey time . Figure 3, the
next phase was to try fo prove whather lvpothesis one 15 trus or

not. To achieve this clustarmg wang the K-Asans-— algonthm
was chozan.

Figura 6§ was produced by uzing K-Aleans++ o chooze the
mitizl seeds and 2 suclidsan distance was uzed. Five clusters
ware chosan for two reazons. Firstlv, 1t achieves the zscond
highest milhouatts score with 0.60%. Secondly, after zm mitial
attempt with three clusters that did not provide sufficient
razohufton, o waz decided fo use five chisters imstead.
Resclution 15 wital fo be able to prove lnpothesiz one tros,
berause withowt the ability to cleaafy jouney tme mio
mezningznl clazzez 1t would be 1mpezzible to pradict the level
of joumey fime. In Figare & the five classifications are Very
Hizh High, Avarase Low and Very Low joumey time. In
zddition, to the five classifications, Fizure 6 has many
mferasting paftems, such as, joumey time between 0000 until
06:30 remammad denzely in the Very Low or Low jowrney time.
In addiion, during the remamdar of the day Jourmey timme
bacomes less Low joumey fime and more Averags and High
Joumay time. Finally, around 5:00 vou can see a Very High
Journay time spika.
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Figure §: Clostered joumey tims into five catazories 13V High IT 2 Hish IT
3 Avz IT 4 Low IT £V Low IT

Te be able fo prove hypothesis two etther true or net a
slightly different approach was used conceming how it was
presented visuallv. In Fizurs 7, the x-axs 12 uzed for all 7 days
of the week and the v-axas 15 used for time of dav mn 1 5-mimate
mtervals. The size of each point 15 used fo refer to the fraffic
volume and the five classifications remam the sams.
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Fizure 7 shows it 15 possible to use clustering to 1dentify
diffarances betwesn weskdavs and weekend. For sxample, on
Saturday and Sunday, there are lonz periods of low joumay
times and fewer vehicles wsing the road m the mommnz. In
zddition, on Monday, Tuesday, Wednesday, and Thursday there
15 noticeable High journsy time at around 8:00 each momings,
which 15 expectsd because people are zoinz to work and

dropping children off at school. Finally, it iz worth noting the
volume levels typically become high at 7 am during the wesk
and does not reduce until zround § pm proving hypothesis two
trua. Proving these hypethazas true 13 vital for when we attempt
to 1dentify the diffarence between z spike n journey tima and a
raduction i traffic volume caused by 2 read accident or a
racurrent event such as moming rush hour.

A caze study was chozen to attempt to answer the rezsarch
quastion as to whether the 1mpact of a road zcaident could be
identifiad i the sensor data. The case study is from z fatal road
accident on the A6 on the Tth of February 2017, Usmg the data
sources mentioned i Table II, journey time and the time of the
zccident was plotted on two timelines, the first is the day of the
accident and the second is the mean of 13 weeks (January until
March 2017). Looking at Fizurs 8, thers 1z a noticezble
daﬁamceatﬂ)ehmeofthe&talacudentbetwemﬂ:ejom
time average, which 1s arcund 2000 zaconds (Average JT), and
the day of the fatal accident that fluctuates betwsen etther 0
second(\ Low JT) or around 3500 seconds (V. High JT). For
a road user, these valuss mean very liftle but after using the
clusters created m the expermmental analy:sis, we can zay the
joumsy time has changzed from an zverage joumey time to
erthar no journey (road closad) or a very high joumey time stats,
which lasts for around 3 hours overzll before retuming to the
expected journsy time. In addition, these measuraments match
up to what was proposed m the road zccident ontology.

g AG Journey Time on the 07/02/2017
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Figwre § Joumey tme on the 2) |t February 2017 b) Over 2 13 wesk pericd
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VI CONCLUSION AND FURTHER WORE

Thiz paper has discussed the many concepts of congestion,
which wera used alons with the support of TEGM to develop
the road accidet ontolegy. The two dimensions that were
chosen with the suppart of the ontelosy ware usad to identify
which data zources are best to be used fo perform the
experimeantal analzis that helped to prove both Inpothesiz and
the research guestton. In zdditon, this ressarch  has
demonstrated that 1t 15 poszsible to take guanritasive data and
extract gualizerive information, which a road usar or transport
manzger could use to help support decizion-makims. Howaver,
despita the promising rasultz, firther work 1z regmred to
establish whether it 1z pozuble to identfe simelar patterns
within a spatictemporal datazet that can identify the shockwave
caused by fraffic svents such as accidents. Then develop an
earby warmng syvstem that can detect such events, which cause
non-recurrent congestion and pradict the impact sevvarity.
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Abstract

Mest live road traffic information systems, such as Google Traffic, do not provide the user
with the context of congestion. To usefully support decigion making, by drivers and network
managers, such sysiemsz need to provide information such as the probable cause of the
congestion and itz likely tims epan. The focus of this work iz on non-recurent congestion.

We aim to develop a gystem that caplures the 2emantics of road congestion by interpreting
sensor data collected in the Greater Manchester region. This data consizsts of journey time
data (collected by Bluetooth sensors) and wolume, or count, data collected by induction
loops. Rather than supplying information such as the cumrent journey time on a pariicular
road link, which iz meaningless without confext, we aim to provide confexit sensitive
imformation such as increasing, abnormal, journey times near the foothall stadium, in the
direction of the football stadium.

Clusters of anomalous sensor readings are identifisd using an agglomerative hisrarchical
clustering algorithm im R, The main challenge iz in determining which readings are
ancmalous. The characieristics of the largest clusters are then taken as typical of that kind of
congestion causing event.  Initial work has involved identifying the joumey time and volume
patterns of a kmown atfractor, a football match and we sim to extend the work to
autoratically identify unplanned evenis such as road accidentis, using the sensor data.

Introduction

The impact of read congestion on the economy, on air quality and on well-being {Office for
Maticnal Stafistics, 2014), is enormouws. Congestion can be classed as recument (such as
that experienced in the “rush hour"y and non-recurrent, that caused by incidents such as
road accidents. Traffic agencies define the two differenily but the quaniity of non-recurrent
congestion has been esiimated at between 40% and 70% of total congestion (Kwon &t al.,
2006). Furthermore, a reduction of recument congestion invalves policy and the
encouragement of behavioural change such az a modal shift to public tfransport. Could it be
that the previous focus on recurrent congestion was based on the view that congestion was
an urban planning problem and could be solved by planning and enginesring approaches?
Meon-recurrent congestions now seems an easier target, especially with the availability of
new near realtime data sources. Although that is not to say that solutions designed to
reduce recurrent congestion will not influence mon-recument congestion; a gensral reduction
im road trafiic will reduce the impact of unpredictable eventz and lead to a8 more resilient
network (Reggiani, 2013).

To begin to sclve the problem of non-recurrent congestion, howewer, still requires the
identification of congestion, but thiz iz difficult without a clear measure. Furthermors, the
actuality of congestion iz dependent on circumstances and the road users perception. Low
speeds on the rcad network near a football stadium will be perceived az expected by the
match attendee but a5 congestion by the non-attendse. The UK's Department for Transport
recognises this in its distinction betwesen physical congestion that can be characterized by
considering average speeds on the network, and relztive congestion that iz defined by the
road user's expectation (Department for Transport, 2015).

Teols such as Google Traffic provide snapshots of road speeds in near real-time by using
GPS data culled from mobile phone users (Figure 1). Howewver, this information dizplays only
average speeds on road links; there iz a lack of context here. To what extent do slow speeds

This paper is produced and cimwlat=d privately snd ids inclusion
in the conference does nof conshiute publization 1
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on particular links represent congestion? If thers is congestion then what caused it? When
did it start? When is it likely to finish? There is alzo no depiction of congestion as a relative
phemomena. Figurs 1 displays low speeds at major road junctions, but is that not just an
expected downside of city centre driving?

Context can be provided by identifying the cause of the congestion. The road user stuck in
heawy traffic would benefit from the knowledge that the congsstion iz caused by a foothall
match that will kick off in five minutes time and after that, the congestion will reduce.
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Figure 1 Google Traffic in Manchester City Centre (copyright Google 2016)

Many different sources can now be used to identify traffic congestion in addition to that data
collected from =zenszors installed by municipalities: Google uses data from GPS enabled
smart phones; fleet vehicles or high-end cars fitted with GPS can provide historical joumey
time data; Uber has started to make itz GPS data available to city planners.

However, these sources may not persist. For example, data services may suffer temporary
outages or be permanently withdrawn, sources that were once free to use may start
extracting a charge or change their terms and conditions. It is therefore necessary to ensure
that any model can embrace multiple data sources.

We =suggest therefore that a purely numerical model iz not sufficient to capture the
complexities of road congestion, in particular the relative dimension. I order to understand
congestion we require an opsn model that is nesither reliant on opague data sources, nor
limited to road network sensors, but can be expandsd to incorporate other data sources such
as weather forecasts, air quality measurements and social media.

Ultimately more contextual information about road congestion can support multi-rmodal travel
information systems:; a driver might be informed that their route to the city centre is heavily
congested owing to a serious road accident but five minutes drive away is a light-rail station
with & car park that is 30% full and a zervice to the city cenfre due in fiftesn minutes. Users
of all modes of transport complain about the lack of detail in times of disruption; the more
information provided to travellers will enable them to make appropriate decisions. If we are to
rezpond fo a congestion event effectively. we need to understand its cause as well as itz
naturs.

To react appropriately in order to alleviste congestion we nesd disgnosis (Lécué et al.,
2012), this requires an understanding of the causes and characteristics. Therefore, it is not
sufficient simply to report the current state of the network (ag for example Google maps can).
To react to a storm that has been identified by sensors we nesd to know the characteristics
of the storm - strength, gize, direction - in order to mitigate against it, but we nesd not know
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its cause. We cannat avoid it. With congestion, if we know its cause we may be able to halt it
or at least reduce ife scope.

This leads us to conclude that 8 more nuanced description of congestion than cumrent
speeds on road links iz necessary; in particular, there is a need fo explain the context of road
congestion. Ultimately, iz it possible to use sensor data to allow traffic managers o alleviate
congestion when it occurs, for example, by changing signal timings and pricrities or by
imforming drivers using \ariable Message Signs (WVMS) and other tools?

A semantic approach to road congestion

Context is part of the semantics of a domsin, we can define the concepts and the
relationships between those concepts using semantics and we adopt the definifion of Kuhn
[2005) of semantice a5 the meaning of expressions in a language. The expression of a
concept in a language aids understanding. We proposse using an onfology to describe the
characteristics and causesz of congestion. A&n ontology can provide a formal, machine-
readable, representation that makes intended meaning computable (Yim, 2015).

In our road network, we may have different senzor types that are influenced by road traffic.
For example. Bluetooth senzors can be used to determine the mean journsy time between
two points on the network. This is an immediate and direction measure of congestion; the
higher the journsy fime the worss the congestion. Induction loops, buried in the road can be
used to accurately count the number of cars passing the loop. Thiz count is not, however, a
direct measure of congestion. Contrarily, a higher than normal volume can mean the
opposite; that the traffic is flowing smoothly. However, it can be an indicator of future
congestion if, for example, the flow is in the direction of an attractor. Other sensors such as
rain gauges are not (dirsctly) influenced by fraffic but can be used as a predicior of possible
congestion since weather conditions have an impact on demand (Creemers et al., 2015).

L&cug et &l (2012) use a semantic matching approach to compare the current road
conditiong with historic condifions. For example, if thers iz congestion on road x near event y
and that has happened in the past then we can infer that the reccourrence of the eventis the
cause of the congestion. However, they do not define pattems of congestion. Anicic &t al.
(2012} describe a semantic event processing system that tries to identify trafiic bottlenecks
in near real-time but describe congestion purely in terms of speeds on particular roads; there
i no recognition of the relative nature of congestion.

Llaves and Kuhn (2014) separate event types and event paiterns in the formslization of
knowledge. Event patterns are not included in ontologies. For example, the type might be
hesvy rainfall and the psattern rainfall above 4mm per hour This allows for flexibility:
Transport for Greater Manchester and Transport for London can both have the conception of
“high journey times” but can have different measures of them. This iz the approach used by
this research.

Method

Congestion before and after a football maich at the Etihad stadium, East of Manchester city
centre was used as the first case study. The football match represents a relatively
predictable cause of non-recurrent congestion, with a known attractor (the stadium) and start
and end times (kick-off and full-time). The aim was to identify and formalise patterns of
congestion related to football matches in the senzor data. The intention is to modsl more
unpredictable events, such as road accidents, in future work.

The data is supplied by TIGM and consists of journey time data on links collected from
passive Bluetooth sensors and traffic volume data from permmanent induction loops. For both
data sources, the data was agaregated infto 10-minuie time slots?. This was a fairly arbitrary
selection but any larger and the regclution would be too emall to allow for real-time reactions
by traffic managers to events, and any smaller and sample sizes would be too small.

' Thus, slot 1 will represent the 10 minutes between 12 midmght and 10 mimites past pudright and
slot 144 vall represent the 10-mimate slot prior to mudnight.

Thiz paper is produced and circwst=d privafely snd ids nclusion
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Figurs 2 shows the mean journsy times between two different Blustooth sensors om a
section of road to the Morth East of the stadium on two different days - one a match day
{cirzles) and one a non-match day (crosses). On both days the pattem in the early part of the
day ig similar, both exhibiting the moming rugh hour, where journey fimes increase. On
match day (13" January 201€), relatively high journsy times over a relatively long time prior
to kick-off can be seen, followed by a very high spike afier the match finishes. This pattern is
expected since zome supporters make there way to the game early where cthers amive just
in time, whereas all supporiers tend to leave at a similar time.
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Figure 2 Mean jourmey time between fwo Bluetooth 2ensors on 13% January (o) and
207 January 2016 (x) from Gam to midnight

The mean joumey times betwssn pairs of 2enzors were analyssd, following outlisr removal.
Zince we are interested in mon-recurrent, or atypical, congestion a measure of recurrent, or
typical, congestion iz required. As well az the time of day, road agencies typically allow for
differences in demand on weskdaysiweskends and holidays/non-holidays. Since this study
focuszez on Wednesday evening footbsll matches, the data for typical iraffic was based on
four non-match day Wednesdays. This =election is relatively arbitrary, and the selection of
“typical® road conditions is worthy of a siudy in iizelf. The more “typical” days used then the
better the measure of “lypical® conditions, however if we go too far back info the past then
we will end vp ignoning medium and longer term frends in the data. For exampls, we may
end up including data from when a road link was conirclled differently from when it was on
the study date. Given these caveats, Figure 3 shows the journey times on & link on a match
day (circle) compared to the mean of four “typical® days (cross) and one standard deviation
gither side of that mean (square).
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Figure 3 Journey times on a match day compared to typical days from 1pm

The next step is to clagsify the abnomal journsy times using relative terms. The
characteristics of the journey time on any road section between two sensors that are
considered are magnituds, direction and proximidy to the attractor, in this case the stadium.
Thi= approach allows for the generalisation of the approach; “high® jourmey times in
Manchester city centre will have very different abzolute valuss from a city such as London,
say but with this approach we can use the same language.

Firstly, the magnitude of the joumey times on the match day are classified using their
differences from the mean value of the typical days in any particular time slot. For example, if
the journey time is between ons and two standard deviations from the typical day mean then
that reading is classed ag “high®. This foo is arbifrary but at least it allows for the relative
nature of congestion.

Journey time magnitude
. very low ) fow » nene o o L Tigh . wery high .
2 stancard 1 =tarudard Mean of joumney 1 standard 2 standard
doviations belme  deviation below  Time readings on devistion abowe  deviations sbove
mean Fe i ‘typical’ days far reEamn ean
thils [ink &t thes
tme =it

Figure 4 Clazsifying journey time magnitude

The next step iz to classify the distance of each road link from the footbsll stadium, or more
exacily the distance of the mid point of each road link to the enfrance of the stadium car
park. Therefore, for example, the distance of the link befween sensors MAC4065MR and
MAC1313 and the stadivm is the sum of 5 and b. (Figure 5. The entrance of the main car

This paper is produced and cirswsted privafely and /s mclusion
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park was used az a proxy for the cenfre of the attractor rather than the stadium itself.
Obviously, this does not account for the fact that there are muliiple car parks and informal
street parking near the stadium.

L]
BACY 189MR

Man car park entranoe & 5

5

Etihad Stadium & b -
L Y j MAC1313
. \
e
* '4_,_,--"' d
BT DS IR

Figure & Measuring the distance {a + b) of a link from the stadium (small dots are mid-
points of links, large dots are sensor locations)

The diztances were placed in quantiles, based on thirds, and allocated a relative distance of
near, very near and far. This allows for a richer, and scalable, description of distance than
the caleulating of Euclidean diztance between link centre points.

Finally, each link was as=igned a relative direction - towards the stadium or away from the
stadium. For example, traffic fraversing the link between sensors MAC4065MR and
MAZ13123 {Figure %) is designated as away fram the sfadivm (main car park) and in the
reverse direction (RMAC12313 to MAC4065MR) a3 fowards the sfagivm. Again, thiz iz & more
semantically rich designation than using compass peints, for example (West and East for this
link).

A similar technigue was used to ideniify anomalies in the wehicle count {volume) data
Abnormal wolurmne magnitudes were claszsified in the same way (Figure 4) and a distance to
the stadium was assigned to ezch counter location and a direction (towards or away from the
stadium) was gensrated.

In any one ten minute time =lot there are differences in the characteristics of each link even if
they share the same distance and direction in relastion to the stadium, given the
unpredictable nature of traffic flow. The next step, thersfore, is to identify clusters of journey
times and volumes on links sharing the same characteristics in terms of magnitude, distance
and direction. The DAISY algorthm (Kaufman and Rousseeuw, 2005}, as implemented in R
{Maschler et al., 2015), was used to create a dissimilarity matrix for the anomalous joumey
times based on magnitude, distance and direction. This matrx was used as input to the
AGHMES agglomerative hierarchical clustering algorithm (Kaufman and Rousseeuw, 2003)
which generated the clusters and the frese. A cluster iz categorised as the journey time
readings in that time slot that share the same magnitude, distance from the stadium and
relative direction.

208
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Rezsults

Dendrograms for each time slot were created from the clusters identified. Figure & shows an
example dendrogram generated from hierarchical clustering for the anomaliss in a 10-minute
time =lot starting just prior to kick off. Each itern in the cluster represents a journey fime on a
road segment. The clusters at the lowest level {height = 0) are where there are exact
matches of magnitude, relative distance from =tadium, and relative direction. The largest
clugter of links, of 5 readings are of the form high jouwmney times, very near the stadium and in
the direction fowsrds the stadium, which matches expectations so near to kick off
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Figure & Vehicle journey time clusters prior to Kick-off on 13® January 2016

Figure 7 shows a dendrogram for the 10-minute time slot starting at 21:530, =oms 15 minutes
after full time. Here the largest cluster (6 members) is of the form very high joumey times,
very near to the stadium but thiz time fravelling awsy from the stadium, which is, again, what
would be expected following the end of the match. Mote that the next most significant cluster
ig for high jourmey times, wvery near fo the stadium but fowsrds the stadium. This
demonztrates that the area saround the stadium is congested even for those heading towards
the stadium.
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Figure T Vehicle journey time clusters after full-time on 13" January 2016

Az with the journey time data clusters based on magnitude, direction and distance for traffic
volurme (count) were identified. Figure 8 and Figure 9 show the dendrogramsz for vehicle
count clusters for the =ame time slots a5 Figure 6 and Figure 7. Traffic volume counters are
relatively few in the study ares compared to Bluetooth sensors and subsequently, relatively
fewer clusters are identified in comparizon to the journey time data and those clusters that
are identified, have significantly fewer mambers. For the time =slot displayed in Figure S, for
example, there are no perfect clusters (where Height = 0).

Count clusters for skot: 19:40

=
= |
= | |
= —_— g g
o B 2
5 5 il = 5 5
& E 2 5 kR T it
) E ] - - ] ¥
L 5 : & & = &
] -] | z E E
A ] S & n b
~ L
3 : E 8 c c
: ] = b &
B E I =
4 - 2 3
= =
= Fa
E E

pouniResuts
Aggomoraive Cooffoant = 3 A7

Figure 8 Vehicle count clusters prior to kick-off on 13" January 2016
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Figure 9 Vehicle count clusters after full-time on 13" January 2018

An analyzis of the data on other Wednesday, evening kick-off match days, at the stadium
(215 October 2015 and 27 January 2016) reveals similar patterns.

Mow we have a betier, althocugh =till simplified, understanding of road congeslion caused by
football matches, we can capture the semantics of congestion in an ontology. Formmalisation,
using an cntology, will eventually allow for automation of the response to congestion. A term
such as “high congestion™ on itzell is meaningless. We nesd to vse terms 2uch az “high
journey times" or “high volumes®. We nesd not add absolute values to these terms when
defining them in the ontology. Llaves and Kuhn (2014) make the distinction between event
tvpes and svent patterns, whers the latier has no place in the oniclogy. The same applies to
our concept of “very high journsy™ times. We can include the concept in the common, shared
ontology but the definition used above (Figures 4) would be part of a local implementation of a
syatem that uses the ontology.

Some of the relevant concepts, such a5 Football MMatch are defined in the Transport
Disruption Ontology (Corsar et al., 2013). The ontology lacks the concept of congestion but
has the concepts of Heavy Traffic, Queuing Trafic, Siow Traffic and Stationary Traffic taken
from the DATEX |l specification (wwaw datex.eu). However, these concepts are defined in
terms of a percentage of free-flow traffic; Stationary Trafiic is defined as “average speed is
less tham 10% of its free-flow level”, for example. These terms provide too simplifisd a view
of congestion. There are also other gaps, for exampls the ontology has the concept Football
Mafch but not Football Sfsaiur. The latter is necessary in our case =ince we refer to the
relative diztance from the stadium. The football stadium has two roles, when it is hosting a
football maich it acts az an Affracfor to traffic, in other times it serves as a Landmark,
providing context. Elements of the OWL-Time ontology (N3G, 20068) were used fo describe
the temporal aspects of the football match and its resuliant congestion (Figure 10). Concepts
and relationshipz borrowsd from the Trangport Dizruption and OWL-Time ontologies are
prefixed i and of respectively.

This papsr s produced and circwsfed privafely and ifs inclusion
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Figure 10 An ontolegy of the impact of a football match on read congestion

The oniology also describes the relationship beteeen the football match and traffic count
values (Figurs 11). Here the post match relationship haz been omitied for brevity. As stated
garlier, high count valuses are not a direct indicator of congestion but more likely an indicator
of future congestion, a2 drivers head for an attractor. Traffic count= play an entirely different
role when the cause is & road accident; prior to the accident there will b2 no abnormal count,
after the accident the count will reduce. Thege pattems, as identified by the sensors, can
help distinguish between the causes of congestion providing diagnosis.

Figure 11 The relationship between traffic counts and an attractor

The start and end times of the congestion phenomena are defined using instances but could
be reprezented uging the OWL-Time Inferval concept, to allow for a degree of fuzziness. The
ontology should be extended and perhaps revised: iz it the football match or the foothall
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stadium that is the aftractor? Other congestion causzing evenizs could be described in 2
similar mannsr, an unpredictable event such as road accident would only have
FPostEvertCongestion. If each type of event has a sufficiently distinct profile then the data
sources could be potentially used to identify the cause of a congestion and thus help to
glleviate it.

Dizscussion and further work

There iz much work to be done on both the data analysiz and the ontology. The definition of
the magnituds of abnormal joumey times - high, very high - (Figure 4) lacks the resclution o
capture the difference between the significant differences in magnitude before and after the
match (Figure 3). Rather than look at the data by time slot, it would be useful to include a
temporal classification of each reading; for example, very near to the event start, a long time
after the event end.

Also missing is a technique o describe the relative differences in the durabion of the high
journsy times pre and post-match. Another consideration iz whether the derivative of the
magnitude of the journey times iz more useful than the absclute values; i.e. is the journsy
time increasing or decreasing?

The classification of distance and direction presume that the location of the source of the
congestion, in this case an attractor, i= known. Further work is required to determine if it is
possible to identify the scume from sensor readings for eventz such as accidents and
roadworks.

Ideally, the model should be able fo infer the importance of the stadium and other reference
points (e.g. motorway junctions) and include them where necessary. The stadium iz only an
attractor before and after a football fixture, however, it iz a landmark at all imes. We need fo
add cther relevant festures (attractors and landmarks) into the modsl and then determine the
relative distance of the sensor sites from them and also the relative direction (towards/away )
of the meazured traffic.
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