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Abstract 

Urban road congestion is not a new phenomenon and remains an outstanding problem that 
continues to impact people around the world. Road congestion costs the European Union an 
estimated 1-2% of GDP each year and is responsible for 27% of deadly C02 emissions. In 
addition, it can cause life-threatening delays in the emergency services response time. 

 Road congestion has a multifaceted nature and lacks a clear and explicit definition. This makes 
the problem of tackling it very subjective, time and context dependent. There have been 
several approaches to both modelling and predicting road congestion. From a physical 
perspective, road congestion has been modelled using speed, capacity, velocity, and journey 
time; relatively road congestion has been classified using terms such as non-recurrent and 
recurrent congestion which tend to be relative to each stakeholder; conceptual models such 
as the bathtub, traffic flow, and origin to the destination have been used to ascertain the 
impact of road congestion on a city scale.    

 This research presented tackles the problem of defining what is meant by congestion within an 
urban road network through defining a conceptual model that captures the semantics of road 
traffic congestion and its causes. The model is validated through the construction of a real-
world dataset and the development of a visual tool which can be used to identify and alleviate 
congestion. The final stage of the project uses both the model and the dataset to investigate 
and implement a series of fuzzy systems to classify three types of congestion (non-recurrent, 
recurrent, and semi-recurrent). The fuzzy system results are then validated against human 
methods of classifying congestion.  

The main contributions of this thesis to world knowledge can be summarised as follows: The 
design and development of a novel universal Urban Road Congestion Conceptual (URCC) 
model. The URCC model is broken down into two main components: Analogical 
conceptualisation which builds upon the famous ‘bathtub’ model and will integrate with other 
analogies to create ‘a raindrop hitting a leaf inside the bathtub with ever changing water 
temperatures’. The second component is an ontological approach to modelling congestion 
thus providing a better understanding for decision-makers through providing a formal and 
explicit explanation for concepts within the domain of urban road congestion. Another 
contribution is the development of a real-world spatiotemporal quasi-real-time big data 
dataset known as the Manchester Urban Congestion Data (MUCD) dataset which was used 
to validate the URCC. A visualisation graphical user interface called TIM (Transport Incident 
Manager) was developed with stakeholders TfGM (Transport for Greater Manchester). TIM 
has the ability to fill the void left by the clear lack of visualisation tools that are capable of 
visualising real-world big data datasets, such as the MUCD and models of urban road 
congestion. The final contribution to knowledge is the design and development of two fuzzy 
decision-making systems which are not only capable of predicting urban road congestion on 
a link but the type of congestion occurring on a network of links. Using a fuzzy decision-
making system allows for explainable and interpretable decisions, and also provided useful 
and meaningful qualitative context back to the relevant TfGM stakeholders. The non-
optimised multi-classification fuzzy system had slightly worst accuracy than the J48 decision 
tree algorithm, however, the fuzzy system is easier to interpret and provides meaningful 
context compared to the J48 algorithm due to only requiring 12 rules compared to the 1184 
learned rules in the J48 decision tree. Furthermore, once the fuzzy system has been 
optimised (future work) it is likely to have similar if not better performance than the J48 
decision tree. 
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Chapter One: Introduction to research 

1.1 The importance of a resilient road network 

Resilient transport networks are vital for sustainable development and therefore 
the focus of this research is on road networks. The major threat to resilient 
road networks is congestion, which has an estimated cost of 1-2% of GDP 
across the European Union and 3-4% within the United Kingdom 
(Department for Transport, 2020), including reduced productivity and 
increased transport costs (Somuyiwa et al., 2015). Congestion also has a 
major impact on air quality and the quality of life in general. Congestion has 
two known forms, non-recurrent congestion, which can be the result of a road 
traffic incident such as traffic accidents and roadworks, and recurrent 
congestion, which can occur at well-known bottlenecks where traffic demand 
exceeds capacity (Van Schijndel and Dinwoodie, 2000).  

This research will focus on conceptualising and validating the differences 
between the traditional types of congestion; non-recurrent congestion, 
recurrent congestion, and semi-recurrent congestion which is a third type of 
congestion that will be coined within this thesis. Semi-recurrent congestion is 
the consequence of scheduled events, such as a ‘football match’, ‘music 
concert’, and ‘planned roadworks’. These types of events are not cyclical 
because they do not happen at the same time or on the same day. However, 
they do tend to be predictable due to schedules, which are created in 
advance. The coining of semi-recurrent congestion is one of the contributions 
of this thesis which will help stakeholders to be able to distinguish the 
difference between a road accident, a ‘cup’ football match, and unplanned 
roadworks compared to a concert, ‘league’ football match, and planned road 
works. Allowing stakeholders, to respond more adequately depending on the 
type of congestion. Which traditionally, all the above have been treated as 
non-recurrent congestion. 

There are multiple models of congestion that currently exist, including the 
‘Bathtub’ model (Arnott, 2013), a data-driven agent-based model (Othman et 
al., 2015) and a dynamic ‘bottleneck’ model (Silva et al., 2014). However, to 
help reduce congestion there needs to be more work done to improve the 
level of resilience, which requires being prepared for a road traffic incident 
and/or action a recovery plan within an acceptable period, restoring the 
network to the same level or better. The development of a conceptual 
framework that can be used for developing an Intelligent Transport System 
(ITS) which will increase the quality of information being provided to 
stakeholders, such as transport managers allowing for a faster response to 
congestion.  

 

1.2 Measurements of congestion 

To model urban road congestion, relevant dimensions, such as journey time, 
density, (vehicle and traffic) speed, and travel time are required. The 
appropriate dimension/s are determined by academics, researchers, and 
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traffic managers and will depend on what the problem is being solved and 
what the technical limitations are. 

In recent studies various dimensions, such as journey time (Anbaroglu et al., 
2014; Anbaroğlu et al., 2015), density (Bauza et al., 2010), (vehicle and 
traffic) speed  (Bauza et al., 2010) and travel time (Bar-Gera, 2007; Li and 
Chen, 2014) have been used to measure and define urban road congestion 
on different scales. In this thesis, the adopted dimension for classifying urban 
road congestion was journey time. This was due to the requirements set out 
by Transport for Greater Manchester (TfGM). A more in-depth discussion can 
be found in Chapter Two. 

 

1.3 Scope 

This project was 50% funded by TfGM, who provided two data sources that were 
used in this research. These are the Bluetooth passive sensors and 
Automatic Traffic Counters (ATC). Due to the location of the data sources 
and the project sponsor, the domain for this research will be Greater 
Manchester, UK. 

 

1.4 Problem statement 

Transportation systems are a fundamental part of society, providing people with 
ways to explore the world, commute to work, and visit shops for everyday 
essentials. There are several types of transport systems, such as land, rail, 
water, air, space, and intermodal. Intermodal transportation is when one or 
more mode of transportation is used within the same system, for instance, 
goods being transported from America to the United Kingdom may travel on 
a ship and then be loaded onto a lorry to be delivered to the destination.  

Land transportation is the linchpin that holds the other modes together 
(Somuyiwa et al., 2015), however, it generates several challenges, such as 
bad air quality due to vehicles being stuck in congestion (Transport 2020, 
2016), a financial burden that costs the European Union 1-2% GDP (Djahel 
et al., 2015), and wasting limited fuel resources (Djahel et al., 2015). The 
crucial issue that these challenges all revolve around is road congestion that 
many approaches are being taken to address road congestion; however, 
road congestion remains a multifaceted issue due to existing road networks 
becoming increasingly more congested because of the growth in the number 
of people that are using vehicles; and the inability to develop a more 
sustainable and resilient network (Hartgen and Fields, 2009).  

The Highways Agency estimates that 65% of congestion is caused by traffic 
volumes at or above capacity, 25% as a result of incidents, and 10% by 
roadworks (Department for Transport, 2014). In 2020, the Department for 
Transport (DfT) released a further report based on 2019 figures that shows 
the overall volumes on the road network have increased by an average of 2% 
compared to the previous year (2018) and in some cases, such as the 
highway, where the traffic volume has increased by 14.1% compared to 10 
years ago (Department for Transport, 2020).  Furthermore, transportation is 
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responsible for 28% of all greenhouse gas emissions within the UK, which 
has only reduced by 3% in 30 years (Waite, 2020).  

Road congestion has been a problem for many years with literature going back 
as far as 1920 by Pigou (Verhoef, 1999) and although there is a vast amount 
of literature addressing road congestion there still remains a clear absence 
of a formal and explicit understanding of road congestion. Consequently, this 
research will attempt to develop a formal and explicit conceptualisation of 
urban road congestion. To achieve this, the research presented in this thesis 
will explore the use of analogical and ontological methods to conceptualise 
urban road congestion and the conceptual model will be validated using a 
real-world big data dataset and a custom-built fuzzy decision-making system. 

 

1.5 Research questions 

This work attempts to address the following research questions:   

RQ1: Is it possible to provide a clear conceptualisation of urban road traffic 
congestion using an ontological model? 

RQ2: Can quantitative big data be used to provide qualitative information in 
conjunction with a road traffic ontology with the support of machine learning? 

RQ3: Can quantifiable big data on urban road congestion be visualised to 
provide quasi-real-time insight? 

RQ4: Can a fuzzy rule-based system be designed to predict road congestion 
through validation of the Urban Road Congestion Conceptual (URCC) 
model? 

 

1.6 Research aim and objectives 

The aim of this research is ‘To develop a conceptual model that captures the 
semantics of road traffic congestion and its causes and to use the model to 
better identify and alleviate congestion.’ 

To achieve the research aim, the following objectives have been set:  

1) Conduct a comprehensive review of what defines congestion, and how 
conceptual models have been used with the support of resilience to reduce 
congestion.  

2) Develop an Urban Road Congestion Conceptual model using analogical and 
ontological approaches that identify the key concepts and the relationships 
between them.  

3) Develop a quasi-real-time dataset using real-world data that has the 
capability of supporting complexity and volume at a ‘big data’ level.  

4) Conduct an unsupervised learning experiment on the dataset developed in 
objective three, to ascertain whether it is possible to use predictive analytics 
to predict urban road congestion. 

5) Investigate, design, and develop a fuzzy rule-based decision system to 
validate the Urban Road Congestion Conceptual model. 
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6) Develop a case study using real-time data provided by Transport for Greater 
Manchester to conduct a critical evaluation of the conceptual framework and 
its ability to support resilience in response to a road network event.  

 

1.7 Research methodology 

This section details the approach undertaken to achieve the research aim and 
answer the four research questions. The research is experimental in nature, 
building on the key findings and gaps in knowledge identified in Chapter Two: 
A literature review of road congestion. Figure 1 shows the five key stages of 
the research methodology and the associated chapters.  

 

Figure 1: Research Methodology 

Each stage will now be briefly described:  

Stage 1: Is the formulation of an urban road conceptual model of congestion 
leading to the development of an ontology to provide a formal and explicit 
conceptualisation of congestion and in particular, the impact of road 
accidents. This rationale, justification, and methodology for the development 
of this conceptual model is described in Chapter Three. 

Stage 2: Identifies the different dimensions capable of defining the distinct types 
of urban road congestion caused by traffic events by using the ontology 
proposed in Chapter Three. The specific research methodology for this stage 
is described in Chapters Three and Four. 

Stage 3: Now that the dimensions of congestion have been identified due to the 
development of the ontology, it is possible to distinguish which big data 
sources are relevant by evaluating the data sources described in Chapter 
Two and Four. This stage investigates whether it is possible to calculate 
journey time using Bluetooth sensors, Global Positioning Systems (GPS), 
cameras, and traffic volume with Radio-frequency Identification (RFID) and 
Automatic Traffic Counters (ATC). However, this research will only use 
Bluetooth sensors and ATC. The complete dataset will be presented in 
Chapter Four. 

Stage 4: Introduces a statistical visualisation toolkit which was developed as part 
of this research and called Transport Incident Manager (TIM). TIM will utilise 
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the relevant dimensions and their data sources to perform analytics to identify 
patterns in the traffic volumes and journey times, which can be used to 
translate quantitative data into qualitative information. Moreover, the 
conceptual model is also validated using machine learning techniques 
(Chapters Five and Six). 

Stage 5: Design and develop a fuzzy decision-making system, which can predict 
one of four classifications (non-congestion, recurrent congestion, semi-
recurrent congestion, and non-recurrent congestion). This was achieved by 
creating two separate fuzzy decision-making systems, the first Fuzzy 
decision-making system is a prototype that uses only two data sources and 
has a binary classification outcome (congested and non-congested). The 
second fuzzy decision-making system is an advancement on the previous 
system, as it introduces four extra data sources and has four classification 
outcomes (non-congestion, recurrent congestion, non-recurrent congestion, 
and semi-recurrent congestion). Both fuzzy decision-making systems are 
discussed in Chapter Seven. 

 

1.8 Contributions  

The research presented in this thesis makes several key contributions to the 
field.  

• The first contribution is the development of a novel URCC model which 
conceptualises the three types of congestion: non-recurrent, semi-recurrent, 
and recurrent congestion. (Chapter Three)  

• The second contribution is the development of the Manchester Urban 
Congestion Data (MUCD) Dataset which incorporates real-world data from 
various sources, such as TFGM and the United Kingdom’s Governments 
freely open data. (Chapter Four) 

• The third contribution is the development of a Graphical User Interface (GUI) 
visualisation toolkit called TIM that provides the user with better knowledge 
of the MUCD dataset. (Chapter Five) 

• The fourth contribution is the development of a binary fuzzy decision-making 
system, to determine if a rule base system could identify congestion at a high 
level. The two classification outputs are congestion and non-congestion. 
(Chapter Six and Seven) 

• The fifth contribution is the development of a multi-classification fuzzy 
decision-making system that will be used to predict the type of congestion 
and then validate the conceptual model. The classification outputs are non-
recurrent congestion, semi-recurrent congestion, recurrent congestion, and 
non-congestion. (Chapter Seven) 

The research presented in this thesis has led to the following peer-reviewed 
publications at the time of submission. A copy of the publications can be 
found in appendix 3 of the thesis. 

Gould, N. and Abberley, L. (2017) ‘The semantics of road congestion’, In 
UTSG. Dublin. 

L. Abberley, N. Gould, K. Crockett and J. Cheng, ‘Modelling road congestion 
using ontologies for big data analytics in smart cities’, 2017 International 
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Smart Cities Conference (ISC2), 2017, pp. 1-6, Doi: 
10.1109/ISC2.2017.8090795 

L. Abberley, K. Crockett and J. Cheng, ‘Modelling Road Congestion Using a 
Fuzzy System and Real-World Data for Connected and Autonomous 
Vehicles’, 2019 Wireless Days (WD), 2019, pp. 1-8, Doi: 
10.1109/WD.2019.8734238. 

 

1.9 Thesis overview 

The research in this thesis is presented over eight chapters.  

• Chapter Two provides a background review of existing literature and 
discusses the current state of research related to the following: Concepts 
of congestion, data sources used within the domain of road congestion, 
and existing road congestion models. 

• Chapter Three will introduce the URCC model which consists of several 
analogies and a universal ontology of road congestion. Moreover, 
Chapter Three will introduce the critical third type of road congestion 
which has been coined as semi-recurrent. 

• Chapter Four provides an insight into the creation of the MUCD dataset 
and validates the universal ontology of road congestion through a case 
study using the MUCD dataset. 

• Chapter Five introduces the visualisation toolkit developed for this 
research called TIM and will provide examples of TIMs functionalities, 
such as real-time visualisation, statistical measurements, and 
unsupervised learning viewer. 

• Chapter Six provides insight into the patterns caused by congestion which 
are of interest to stakeholders such as TfGM through the application of 
clustering techniques.  

• Chapter Seven demonstrates the use of two rule base decision systems 
for prediction congestion and validates the conceptualisation model using 
the multi-classification fuzzy decision-making system. The benefit of using 
a fuzzy decision-making system compared to a traditional machine 
learning algorithm, such as a decision tree or a probabilistic model is the 
explainability of the outcome and the meaningful context to better assist 
the stakeholders. 

• Chapter Eight concludes by summarising the answers to the four research 
questions and proposes the format of future work. 
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Chapter Two: A literature review of road congestion 

2.1 Introduction 

This chapter presents a critical review of previous literature regarding 
conceptualising and modelling urban road congestion and its causes. The 
review examines several techniques, such as analogies, ontologies, and 
machine learning. The review reports on various problems and challenges in 
the field of road congestion and the impact on urban planning, some of which 
will be addressed by the research presented in this thesis.  

 

2.2 Overview of congestion 

In the past, various dimensions (Measurements) have been used for monitoring 
traffic flow, network performance, and detecting congestion. These include 
journey time (Anbaroglu et al., 2014; Anbaroğlu et al., 2015), density (Bauza 
et al., 2010), (vehicle and traffic) speed (Bauza et al., 2010) and travel time 
(Bar-Gera, 2007; Li and Chen, 2014), however, this thesis will use ‘journey 
time’ to classify urban road congestion at the link level, due to the 
requirements set out by Transport for Greater Manchester (TfGM). 
Furthermore, the dimension ‘traffic volume’ will be used to assist with defining 
and predicting urban road congestion as this is another data source used by 
TfGM for conducting manual predictions. 

There have been many definitions for defining types of congestion, such as 
recurrent congestion, which happens when vehicles simultaneously use the 
road network at peak times, and non-recurrent congestion, which happens 
when an unpredictable incident occurs. However, existing literature also uses 
measurements, such as severity (of congestion, weather, and accident) to 
define congestion. For example, (Bauza et al., 2010) proposes to create a 
novel cooperative traffic congestion detection system for highways, using 
fuzzy logic to detect road traffic congestion. The paper does not specify what 
type of congestion it is trying to detect and appears to classify both non-
recurrent and recurrent congestion as a single entity. Furthermore, the paper 
classifies congestion into four types of severity measurements which are: 
free, slight, moderate, and severe using two dimensions: Traffic density and 
Vehicle speed. To validate the performance of the approach, a traffic 
simulation was conducted using SUMO. 

Other papers, such as the one written by Anbaroglu (Anbaroglu et al., 2014) 
classifies non-recurrent congestion into three types of severity performance 
measurements, using only one dimension which is journey time. The 
proposed performance measurements are: high congestion, medium 
congestion, low congestion, and expected journey time. Other performance 
measurements for defining congestion at city scale (national) and 
neighbourhood (regional) levels are fast, smooth, light congestion, medium 
congestion, and severe congestion and are defined in (Chen et al., 2020). 

Over many years, the multifaceted nature of congestion has been expressed in 
the literature with various definitions and terms being used, such as recurrent 
congestion that refers to when significant amounts of vehicles simultaneously 
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use the overpopulated road space in an expected period (Arnott, 2013). For 
example, on weekday mornings and afternoons at peak times, traffic jams 
otherwise known as ’rush hour’. Rush hour is defined as when substantial 
amounts of road users are trying to use the same portion of the road network 
to get to work and drop their children off at schools at the same time 
(Emmerink et al., 1995) which can cause longer than expected journey times. 
Non-recurrent congestion is a term that has previously been used to defined 
unexpected, unplanned, or momentous events, such as traffic accidents, 
roadworks, extreme weather conditions, and some dedicated events like 
music concerts and important sports events (OECD, 2006; Djahel et al., 
2015).  

Throughout the years, many methods have been used, such as diagnosis 
(Latham, 2011; Uschold et al., 2011) to model different aspects of road 
congestion, for example, congestion cost (Verhoef, 1999; OECD, 2006), 
driver behaviour (Kilpeläinen and Summala, 2007; Fernandez and Ito, 2015) 
and traffic controlling (Pan et al., 2013). One limitation which was consistently 
observed across most of the literature is a lack of real-world data which meant 
a lot of the proposed models were created using simulated  ‘dummy’ dataset 
that have equal proportion of data per classification (Emmerink et al., 1995; 
Sheu and Ritchie, 1998; Romilly, 1999; Arampatzis et al., 2004; López et al., 
2017; Djahel, Jones, Hadjadj-aoul, et al., 2018), due to a lack of access to 
reliable data sources.  

In the literature, a distinction is made between ‘direct’, ‘hard' or ‘physical’ data, 
which is data in the form of numbers or graphs, for instance, the speed or 
volume, and ‘indirect’, ‘soft’ or ‘relative’ data, which is qualitative information 
and requires interpolation and lacks the rigor that is implied in statistical data, 
for instance, a tweet about a ‘major’ road accident. Nevertheless, in recent 
years, there has been an increase in both hard and soft data sources, such 
as Bluetooth sensors and social media. This has created more dimensions, 
which can be used as measurements such as traffic behaviour, waiting time, 
volume, capacity, journey time etc. These dimensions can then be used to 
model certain aspects of urban road congestion by performing quantitative 
and qualitative analysis that can then be used to inform stakeholders, such 
as road users, policy makers, and traffic managers of potentially congested 
areas in quasi-real-time. 

Table 1 shows the different approaches which have been taken in the literature 
regarding how congestion has been viewed and dealt with in the past. There 
are five primary approaches observed in the reviewed literature, which are 
optimisation, mitigation, traffic control, congestion cost, diagnosis, or a 
mixture of two or more.  

The key findings from the literature are as follows: 

35% of literature (shown in Table 1) (Herman and Prigogine, 1979; Emmerink et 
al., 1995; Sheu and Ritchie, 1998; Thomas, 1998; Sheu, 1999; Fernandez-
Caballero et al., 2008; Wang et al., 2009; Riad and Shabana, 2012; Arnott, 
2013; Tsekeris and Geroliminis, 2013; Chen et al., 2014; Liang and 
Wakahara, 2014; Mathew and Xavier, 2014; Othman et al., 2015; Patire et 
al., 2015; Wu et al., 2015; Steenbruggen et al., 2016) had a single approach 
to optimising an Intelligent ITS or a Transport Management System (TMS). 
However, only a single piece of literature (Chen et al., 2014) discussed 
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developing their own unique ITS, with a large amount of focus being on either 
analysis or reviewing previous ITSs or TMSs for informing road users, 
policymakers, or transport managers.  

Indirect data sources have not been used much throughout the literature 
(Emmerink et al., 1995; Koetse and Rietveld, 2009; Lécué et al., 2012; Pan 
et al., 2013; Li and Chen, 2014; Djahel et al., 2015; Chen and Rakha, 2016; 
Steenbruggen et al., 2016) with events information being used only twice, 
weather stations being used five times and social media being used three 
times.  

Whilst reviewing the literature from the past 30 years it is noticeable that data 
sources prior to 2000 (Herman and Prigogine, 1979; Arnott et al., 1993; 
Emmerink et al., 1995; Pope et al., 1995; Gualtieri and Tartaglia, 1998; Sheu 
and Ritchie, 1998; Thomas, 1998; Romilly, 1999; Sheu, 1999; Verhoef, 1999; 
Yasdi, 1999) tended to have limited data available. For instance, traffic 
volume data was manually collected through physical labour until the 
introduction of inductive loop counters in the late 90s, which are the most 
reliable method for detecting traffic flow. moreover, between 2000 and 2010 
(Yuan and Cheu, 2003; Arampatzis et al., 2004; Verhoef and Rouwendal, 
2004; OECD, 2006; Fernandez-Caballero et al., 2008; Wen, 2008; GUO and 
HUANG, 2009; Koetse and Rietveld, 2009; Lozano et al., 2009; Wang et al., 
2009) alternative data sources became widely available and used, such as 
Radio Frequency Identification Devices (RFID), probe vehicles and cameras. 
Finally, post 2010 (de Palma and Lindsey, 2011; Mandal et al., 2011; Lécué 
et al., 2012; Riad and Shabana, 2012; Arnott, 2013; Bauza and Gozalvez, 
2013; Pan et al., 2013; Tsekeris and Geroliminis, 2013; Isa et al., 2014; Li 
and Chen, 2014; Liang and Wakahara, 2014; Mathew and Xavier, 2014; 
Agarwal and Kickhöfer, 2015; Djahel et al., 2015; Othman et al., 2015; Patire 
et al., 2015; Shao et al., 2015; Stefanello et al., 2015; Wang et al., 2015; Wu 
et al., 2015; Chen and Rakha, 2016; Colak et al., 2016; Grote et al., 2016; 
Kaddoura and Nagel, 2016; Steenbruggen et al., 2016; Zhang et al., 2016) 
seen an increase of even more data sources being used, such as Bluetooth, 
Global Positioning System (GPS) and Global System for Mobile 
communication (GSM). 

With new techniques, continually being developed within both data collection and 
geospatial analysis and with the introduction of more modern data sources 
and dimensions as mentioned above, there are now more ways to analyse 
congestion in urban and rural areas. Finally, with the advancements in data 
analytic techniques, such as big data, data fusion, data mining, and machine 
learning, will allow several heterogeneous datasets to be integrated into a 
single consistent dataset that can be used to model and provide a meaningful 
representation of the real-world object known as congestion and the events 
that cause it. 
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Table 1: Literature Review of Congestion 
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2.3 Concepts of congestion 

A transportation system is a fundamental part of society with the road network 
being the linchpin that holds the other transportations modes together 
(Somuyiwa et al., 2015). Unfortunately, existing road networks have become 
severely congested due to the increase in new and existing drivers using their 
vehicles more and the inability to develop a more resilient network (Hartgen 
and Fields, 2009). The Highways Agency estimates that 65% of congestion 
on the network is caused by traffic volumes at or above capacity (this is the 
quantity of vehicles, per hour, per lane that the network can manage before 
congestion occurs (Hall and Agyemang-Duah, 2000)), 25% of incidents and 
10% by roadworks (Department for Transport, 2014).  

Congestion continues to remain a long-standing problem in transportation 
science with literature going back as far as 1920 by Pigou (Verhoef, 1999). 
Throughout all the vast amounts of literature on the detection of congestion, 
there is an apparent absence of a clear and consistent definition of what 
congestion is. This is partly due to the multifaceted nature of congestion and 
the different perceptions within the various disciplines conducting research, 
such as Ecology, Economics, Intelligent Systems, Geography, Engineering 
etc. Moreover, according to the (Department for Transport, 2013), the 
definition of congestion requires both a physical and relative dimension, 
because ‘a person living in a rural area might regard an unusually long queue 
of traffic experienced on their daily commute as severe congestion, while 
someone living in an urban area might experience much longer hold-ups on 
a daily basis and regard the same length queue as being almost totally 
uncongested’ (Department for Transport, 2013). Therefore, congestion is 
relative and can be dependent on the road users’ personal opinions. 

Road traffic congestion has previously been classified as three types: non-
recurrent, recurrent (Djahel et al., 2015), and pre-congestion state 
(Somuyiwa et al., 2015). These definitions are relatively vague because 
although the terms such as recurrent or non-recurrent are widely accepted, 
they tend to be viewed from a more personal perspective. Table 2 shows a 
definition for each type of congestion identified in the literature. 
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Table 2: Classification of Congestion 

Congestion Type  Definition References 

Recurrent congestion 

Occurs when significant 
amounts of vehicles 

simultaneously use the 
limited road space on a 
weekday morning and 
afternoons peak hours’ 

causing a traffic jam 
situation.  

(Arnott et al., 1993; 
Cassidy and Bertini, 1999; 

Verhoef, 1999; Verhoef 
and Rouwendal, 2004; 
Arnott, 2013; Fosgerau 

and Small, 2013; Tsekeris 
and Geroliminis, 2013; 

Tadeusiak, 2014)  

Non-recurrent 
congestion 

Occurs from 
unpredictable incidents 

such as traffic accidents, 
work zones, extreme 

weather conditions and 
some special events like 

music concerts and 
important sports events. 

(Emmerink et al., 1995; 
Yang, 1997; OECD, 2006; 
Chen et al., 2014; Isa et 
al., 2014; Li and Chen, 

2014; Djahel et al., 2015) 

Pre-congestion 
(borderline congestion) 

Occurs when free flow 
conditions breakdown. 

However, full congestion 
has not yet occurred. This 
can happen either side of 
congestion and can occur 

either upstream or 
downstream of congestion 

which is already 
occurring. 

(Somuyiwa et al., 2015) 

 

2.4 Data sources 

A “successful” TMS or an ITS will be largely dependent on how current and newly 
developing data sources are used. Moreover, it was observed in the literature 
(Arnott et al., 1993; Emmerink et al., 1995; Pope et al., 1995), that before the 
2000s technology was limited and data collected was primarily done 
manually. During the 2000s, a few newer technologies became more 
regularly available, and from the 2010s to the present-day the transport 
industry exploded with more widely available data sources being used for 
analysing, monitoring, and predicting traffic behaviour and events that have 
a consequence of congestion.  The major data sources being used are 
inductive loop counters (Thomas, 1998; Sheu, 1999; Verhoef, 1999; Yasdi, 
1999; Li and Chen, 2014; Djahel et al., 2015; Chen and Rakha, 2016); 
Bluetooth (Mathew and Xavier, 2014; Djahel et al., 2015; Patire et al., 2015); 
GPS (Riad and Shabana, 2012; Pan et al., 2013; Mathew and Xavier, 2014; 
Patire et al., 2015; Chen and Rakha, 2016); RFID (Wen, 2008; Mandal et al., 
2011; Mathew and Xavier, 2014); probe vehicles (Thomas, 1998; Yuan and 
Cheu, 2003; de Palma and Lindsey, 2011; Mandal et al., 2011; Bauza and 
Gozalvez, 2013; Li and Chen, 2014; Chen and Rakha, 2016); GSM (de 
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Palma and Lindsey, 2011; Mandal et al., 2011; Riad and Shabana, 2012; 
Mathew and Xavier, 2014; Djahel et al., 2015; Wu et al., 2015; Chen and 
Rakha, 2016; Steenbruggen et al., 2016); cameras (Fernandez-Caballero et 
al., 2008; Lozano et al., 2009; de Palma and Lindsey, 2011; Mathew and 
Xavier, 2014; Djahel et al., 2015; Wu et al., 2015); event information (Lécué 
et al., 2012; Chen and Rakha, 2016); weather (Emmerink et al., 1995; Koetse 
and Rietveld, 2009; Lécué et al., 2012; Li and Chen, 2014; Steenbruggen et 
al., 2016) and social media (Pan et al., 2013; Chen et al., 2014; Djahel et al., 
2015). 

In recent years, with the advancement of infrastructure and technology used on 
the road networks and communication networks or even a combination of 
both, such as the introduction of smart motorways (highways) (Department 
for Transport, 2014; Highways England, 2015) and the 4G network becoming 
more widely available, has allowed for the creation of modern ITSs, which 
are a principal component of smart cities and is reliant on having as many 
data sources as possible available in real-time. The next generation of ITSs 
has started to incorporate the data sources mentioned in this chapter, 
allowing for the development of Vehicular Ad-hoc Networks (VANETs) which, 
is where humans, vehicles, Roadside Units (RSUs), and infrastructure have 
the potential to become a data source (Golestan et al., 2015).  

 

Figure 2: Different types of communication in VANETs [Source: (Golestan 
et al., 2015)] 

Figure 2 illustrates different types of sensors and how they could potentially 
communicate as a network to transmit data with the aim of improving ITSs. 
In Figure 2, the connections being used are Vehicle-to-Vehicle (V2V), 
Vehicle-to-RSU (V2R) and Vehicle-to-Infrastructure (V2I). Furthermore, other 
possibilities are Vehicle-to-Human (V2H), and Vehicle-to-Sensor (V2S). In 
recent statistics it has been noted (Golestan et al., 2015) by 2020 an 
estimated 50 billion “things” will be connected to the internet, which will allow 
data to be collected from various sources. 
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2.4.1 Bluetooth 

Within and around Greater Manchester, UK, 741 permanent passive Bluetooth 
sensors have been deployed (Atkin, 2016), with the intention of measuring 
the journey time on key routes to help TfGM to meet their Key Performance 
Indicators (KPIs) and will be achieved through monitoring vehicles travelling 
past passive Bluetooth sensors around Greater Manchester.  

The benefits of passive Bluetooth sensors are the inexpensive cost of 
deployment and their ability to recognise and store relevant information from 
another Bluetooth device within range. Bluetooth devices are now commonly 
found in cars, smart watches, and mobile phones that tend to be carried by 
passengers. The main limitation of passive Bluetooth sensors is the signal is 
limited and can only reach a short distance. Furthermore, due to the sensors 
collecting all Media Access Control (MAC) addresses from all active 
Bluetooth devices within range of the sensor location it is inevitably creating 
a lot of outliers and noise. For instance, if a single vehicle is carrying multiple 
people (with Bluetooth devices) within range of a sensor, this will create 
duplicated records in the data. Moreover, when a pedestrian or a cyclist with 
a Bluetooth device, such as a mobile phone or a smart watch passes a 
sensor, the MAC address will be logged and stored in the same database as 
the Bluetooth devices within a vehicle, causing some journey times to appear 
slower than expected. Finally, if a vehicle is stationary at a set of traffic lights 
for an extended amount of time, this will once again produce a duplicate 
record. 

 

2.4.2 Inductive loop counters 

Inductive loop counters are also known as automatic data collectors (ADC), 
automatic traffic recorders (ATR), and automatic traffic counters (ATC). They 
are considered to be one of the most reliable and trusted methods available 
for traffic detection (Djahel et al., 2015). In and around Greater Manchester, 
286 permanent ATC sensors have been deployed (Atkin, 2016), to count and 
classify the types of vehicles around Greater Manchester. Due to the 
reliability and trustworthiness of ATCs, they have become regularly used for 
the validation of other data sources (Djahel et al., 2015). One of the main 
limitations of Inductive Loop Traffic Counters is the cost of deployment, which 
means there is only a limited amount deployed around urban areas which in 
turn restricts its use within some ITS due to the sparseness. 

 

2.4.3 Cameras 

Cameras are used to detect vehicle speeds, capacity on the roads and traffic 
incidents. An example would be Automatic Number Plate Recognition 
(ANPR), which is widely used in Police vehicles, area-based schemes and 
are primarily used to track vehicles speeds and charging travellers for 
entering a restricted area (Maruyama and Sumalee, 2007), for example, 
London congestion zone. Furthermore, ANPR cameras have previously been 
used for identifying traffic incidences, such as foreign objects on the road, 
vehicles on the hard shoulder, vehicles that are travelling too fast, and vehicle 
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that has stopped or broken down in the middle of the road (Fernandez-
Caballero et al., 2008; Lozano et al., 2009).  

Moreover, ANPR cameras can be used to monitor traffic flow. This can be 
achieved with various image processing techniques. Figure 3 and Figure 4 
shows two different techniques for monitoring traffic flow. 

 

Figure 3: Road traffic monitoring images. (a) The real image is in grey 
scales. (b) Segmented image. (c) Processed image. [Source: 

(Fernandez-Caballero et al., 2008)] 

Figure 3 is taken from the paper (Fernandez-Caballero et al., 2008) showing the 
three steps of image processing that is used to analyse traffic on a highway. 
Figure 3a uses a 256-grey scale image format; this is then processed to 
provide a black-grey scale, where the vehicle is highlighted as white. Finally, 
one final process is applied to the image to convert the vehicle shape into a 
rectangle. This will enable the systems to classify the type of vehicles such 
as a transit van, a lorry, a small car, or a medium car. In addition, it is possible 
to calculate the speed of the vehicle depending on the time it takes to 
progress through two frames captured at separate time intervals. 

 

Figure 4: Blurred images. [Source: (Lozano et al., 2009)] 
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Figure 4 is taken from the paper (Lozano et al., 2009) and shows six different 
levels of traffic flow that are used to train the system. The six levels of traffic 
flow are (top row of images) represented starting from left to right are free 
flow, stable flow (slight delays), stable flow (acceptable delays), approaching 
unstable flow (tolerable delay, occasional wait), unstable flow and forced 
flow. The blurred filters are applied to represent the motion of both vehicles 
and the camera. All these images are then stored in the system as a training 
set. 

Both papers (Fernandez-Caballero et al., 2008; Lozano et al., 2009) managed 
to achieve their aims, however, it would be almost impossible to implement 
either of these methods on a large scale because even though cameras are 
one of the most accurate methods of collecting information and data, through 
their ability to visibly record congestion and the event that caused it. It is 
practically impossible to implement an automated process that allows the 
valuable information to be gathered, transmitted and processed. 
Furthermore, this would require a multifaceted image processing software 
suite and image processing would need to be repeatedly done at regular 
intervals and the cost of transmitting the data to a singular point for transport 
managers to use this information is a highly expensive process. Considering 
the physical cost of the infrastructure required and the excessive time 
required to process and feed the relevant information back to the transport 
managers would outweigh the value of information being received (Mathew 
and Xavier, 2014). 

 

2.4.4 Global Positioning System 

Global Positioning Systems (GPS) is a global navigational satellite system 
(GNSS) that is able to compute and provide the location of a GPS capable 
device, such as a mobile phone and the time the observation was observed 
from the GPS capable device regardless of weather conditions. The main 
benefit of using GPS technology is devices are becoming more commonly 
compatible over recent years with devices, such as satnavs, tablets, mobile 
phones, smart watches, and vehicles having GPS built in.  

Google has taken advantage of GPS data being more widely available within 
everyday smart devices and uses GPS data to perform traffic analysis 
(Google, 2016). Whilst the quality of the traffic analysis is generally good for 
navigating and calculating traffic flow, it is not practical for a typical control 
system, such as ramp metering, which requires a basic traffic light to be 
located on the slip roads entering the highway and are designed to stop 
vehicles from merging onto an overly populated highway unsafely and 
typically requires density data to work (Patire et al., 2015). However, GPS 
data could be merged with other data sources such as inductive loop 
counters, providing the vast potential for developing a hybrid Transport 
Management System (TMS). The concept of a hybrid TMS has gained 
traction within recent literature (Riad and Shabana, 2012; Pan et al., 2013; 
Patire et al., 2015; Chen and Rakha, 2016). 
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2.4.5 Radio Frequency Identification Devices 

Radio Frequency Identification Devices (RFID) are used to automatically identify 
vehicles and collect data similar to the data collected by ANPR cameras. One 
of the positives of RFID is its low implementation cost, however, due to the 
limited traffic information collected by the RFID, it tends to benefit from being 
used in collaboration with an alternative technology such as GSM.  

This theory has been tested in the following literature which was conducted by 
(Mandal et al., 2011). (Mandal et al., 2011) proposed an ITS capable of 
monitoring and measuring road traffic congestion using a collaboration 
between both RFID and GSM technology. Calculations were performed using 
the data collected from the RFID and GSM data sources, to calculate vehicle 
speeds over a stretch of road and the average waiting time at an intersection. 
Although RFID is a relatively old technology, it has not been implemented 
extensively on all vehicles and due to the maximum range of 10 meters (m), 
such systems cannot be implemented on highways (Mathew and Xavier, 
2014). 

 

2.4.6 Probe vehicles  

The concept of probe vehicles, sometimes referred to as floating cars, have been 
used for collecting real-time traffic data since the late 90s and early 2000s, 
with a steady increase in the literature presenting probe vehicles as a solution 
(Mandal et al., 2011; Li and Chen, 2014; Chen and Rakha, 2016).  

Probe vehicles are extremely useful because they have numerous traffic sensing 
technology provided by a single source (the vehicle) (Figure 5), such as GPS, 
Velocity (speed), Bluetooth, Wipers (Weather Conditions), Lights (Lighting 
Condition), and RFID. Each source has the potential to gather relevant 
information that can be fed back to the central processing centre where traffic 
management experts are located. These traffic management experts will then 
be able to identify when a road may be closed, what the traffic flow conditions 
are, whether the driver is experiencing hazardous weather and/or is the 
visibility reduced due to thick fog. 
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Figure 5: Probe Vehicle [Source: Author] 

With vehicles becoming ‘smarter’ with the introduction of auto lights, auto wipers, 
and remote diagnostics with the addition of technologies, such as OnStar 
(OnStar, 2016), more vehicles have the ability to become a probe vehicle and 
with more manufacturers adding the technology to be able to transmit data 
back to a central point. There are still limited volumes of vehicles be used as 
a probe and would require a lot more probe vehicles on the road to produce 
meaningful information gain. Like other data sources, probe vehicles data is 
often very noisy and can often be tough to provide an accurate reading (Chen 
et al., 2014). 

 

2.4.7 Cellular data  

Cellular Data such as GSM is a standard developed by the European 
Telecommunication Standards Institute which allows mobile phones to 
access a digital cellular network (2G). Over the years, the cellular networks 
have advanced from 2G to 3G and finally 4G. 4G has the capability to offer 
potential download speeds of up to 300Mbps and upload speeds of 150Mbps. 
The continuous improvement of the GSM is relevant because with the 
increase of newer data sources being implemented in ITSs means more data 
is being transmitted over mobile communication and having faster speeds 
will provide better gains and better reliability by having faster data transfer 
rates for transmitting real-time information. Additionally, the use of cellular 
data is a breakthrough because the volume of people who have mobile 
phones and are travelling on road networks has increased rapidly. One of the 
major limitations of research being conducted into the use of Cellular data is, 
a large proportion of mobile devices are not set in an active mode. Therefore, 
researchers are not able to utilise the full potential of cellular data (Mathew 
and Xavier, 2014). 
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2.4.8 Event information 

When predicting traffic flow or estimating journey time with a route guidance 
system (RGS) such as a satnav, it requires vital information, such as time of 
day and day of the week, to allow a comparison against historical data, which 
will give a more accurate estimation. For example, as part of the initial 
exploratory phase with TfGM data, Figure 6 shows a comparison of a typical 
journey time (along with a single link between two passive Bluetooth sensors) 
against a journey time when there is a football match at the Etihad Stadium. 
Figure 6 Shows the readings, which are grouped into ten minutes’ slots (x-
axis) and journey time (y-axis). The black line represents the mean of several 
typical days, which in this case is four previous Tuesdays prior to the match 
day. The green line is one standard deviation above and below the mean. 
The blue line is the day Manchester City are playing at home (Etihad 
Stadium). When comparing this line to the mean of several days, a spike in 
journey time is noticeable prior to the five pm kick-off. After five pm this spike 
settles back down. However, once the match has finished at nine pm and 
everybody wants to leave the stadium at the same time, another large spike 
occurs in the journey time.  

Figure 6 shows that it may be possible to identify traffic patterns of a football 
match event and that it may be possible to predict that slight congestion will 
happen prior to the match starting and hypercongestion after the match 
finishes.  

 

 

Figure 6: Comparing Journey time on a game day at the Etihad Stadium 
[Source: Author] 
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2.4.9 Weather 

Weather can have a large impact on the road network and depending on the 
severity, it can cause wear and tear (damage to the road surface), 
congestion, and increased journey times which are greatly underestimated 
by road users and even some researchers. Nevertheless, extreme weather 
has the power to disrupt free-flowing traffic due to several things, such as 
damaged infrastructure and reduced visibility which can cause drivers to 
reduce their speed and may cause the typical traffic flow to change from free 
flowing to congestion. An example of infrastructure damage by extreme 
weather would be (News, 2015) during August 2015 in Greater Manchester, 
UK.  

Torrential rain spread throughout the city for days causing widespread flooding 
and brought the urban road network to a standstill. The primary reason for 
the impact on the urban road network was a 40ft deep sinkhole that opened 
on an arterial road known as ‘Mancunian Way’ (Figure 7 and Figure 8). 

 

Figure 7: Sinkhole picture 1 [Source: (News, 2015)] 

 

Figure 8: sinkhole picture 2 [Source: (News, 2015)] 

The sinkhole caused one of Greater Manchester’s busiest roads to remain 
closed for ten months and caused congestion around the city due to large 
volumes of traffic being diverted. (News, 2015, 2016). Heavy rainfall has the 
ability to affect traffic flow at an alternative location due to the reduction in 
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visibility, causing a driver to reduce their speed and the driver behind them to 
reduce their speed more than the person in front until traffic builds up causing 
congestion (Li and Chen, 2014).  

 

Figure 9: an example of how rain at location A would cause congestion at 
location C [Source: Author] 

Figure 9 shows that when heavy rainfall happens at Sensor A, vehicles speed 
would be reduced over a short period and by the time the vehicles are 
monitored at sensor B, the traffic flow would become a bound flow. Due to 
the cause and effect of traffic flow and the reduction of vehicle speeds, it is 
inevitable once vehicles reach sensor C there will be heavy traffic due to the 
reduction of speed prior to sensor C, which is originally caused by the heavy 
rainfall at sensor A (Li and Chen, 2014). Additionally, if the traffic is monitored 
in reverse. It is possible free-flowing traffic could still exist because the rain 
is occurring at sensor A.  

Extreme weather such as rainfall is one of the leading causes of non-recurrent 
congestion (Changnon, 1996; Koetse and Rietveld, 2009; Department for 
Transport, 2014). Thus, making it extremely difficult to predict without the 
relevant data source/s to monitor weather changes in real-time and a unique 
algorithm capable of identifying weather patterns changes.  

 

2.4.10 Social media 

Social media applications, such as Facebook and Twitter are becoming a more 
widely used source of data for analytical and research purposes. Previously, 
Twitter has been used to predict ‘am’ recurrent congestion (Yao and Qian, 
2021) and was chosen to be used because it was claimed that traditional 
methods, such as autoregressive and spatio-temporal models are ‘extremely 
limited’. However, (Yao and Qian, 2021) noted one of the limitations of using 
social media, such as Twitter is spam and advertisement posts which are 
posted by bots. Although this research has demonstrated it is possible to use 
social media for predicting traffic, what it demonstrated was extremely limited 
as it was only capable of being able to predict traffic patterns for the next day. 

 Furthermore, Twitter has been used to identify non-recurrent congestion by 
identifying road traffic incidents in China (Luan et al., 2021). In 2014, Twitter 
was also used to monitor road traffic congestion by observing tweets, and the 
use of specific words to describe road conditions, such as ‘slow’ or 
‘congestion’. Then a model that uses traffic language was developed by 
(Chen et al., 2014) to help identify large-scale events that have the 
consequence of congestion. (Chen et al., 2014) observed three technical 
challenges of using Twitter to monitor road traffic, this is due to the 
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multifaceted nature of Twitter, which requires pedestrians, passengers, and 
drivers to be treated as sensors. These ‘sensors’ are required to observe the 
physical world and record observations accurately, which can cause a few 
technical challenges to arise. These challenges are language ambiguity, 
geographic location uncertainty, and uncertainty between the interactions of 
road traffic-related incidents (Chen et al., 2014).  

In addition to the challenges mentioned above, a study using Twitter to analyse 
people's behaviour in a natural disaster found that people tend to add 
personal feelings and options to their tweets (Hara, 2015). This is a potential 
problem when identifying congestion from personal tweets. 

 

2.5 Existing models and techniques  

Ample research has been focused on a diverse set of aims such as time-saving 
(Yang, 1997; Tsekeris and Geroliminis, 2013; Colak et al., 2016; Kaddoura 
and Nagel, 2016); reducing the impact (Arampatzis et al., 2004; Verhoef and 
Rouwendal, 2004; He et al., 2016); detecting road traffic incidents (Sheu and 
Ritchie, 1998; Pan et al., 2013; Steenbruggen et al., 2016); analysing and 
developing new policies for TMSs (Nankervis, 1999; Van Schijndel and 
Dinwoodie, 2000; Reggiani et al., 2015) and although there are several 
individual aims mentioned, they all have one primary aim in common, which 
is to mitigate against the problem of road traffic congestion; using their own 
unique approaches, such as developing a vehicle-to-vehicle network, 
comparing similar techniques, data sources and measurements; with the aim 
of finding the optimal solution by modifying parameters.  
Additional approaches, such as controlling traffic (Wen, 2008; Kaddoura and 
Nagel, 2016) by setting restrictions on turning, speeds, and changing signal 
patterns and mitigation (Isa et al., 2014; Liu et al., 2015; Shao et al., 2015) of 
traffic towards less congested areas with the objective to lessen the effects 
of road traffic congestion.  

Popular ‘policy’ approaches, which are an alternative to the ‘technological’ 
approaches, mentioned previously are encouraging behaviour changes. For 
example, charging to entering congestion zones, increasing parking charges, 
creating bus-only lanes, and providing cheaper public transport or even a 
hybrid of some of the mentioned approaches have been explored by 
transport managers. 

 

2.5.1 Models of congestion 

In the earlier years of modelling congestion, a ‘Two-Fluid’ approach was 
conducted by (Herman and Prigogine, 1979), which looked at the relationship 
of the evolution of speed, which assesses how road users take different 
approaches to achieve their desired speed. However, this tends to cause 
conflict between faster and slower road users. The crucial limitation of this 
approach was the fragmented and random data being manually collected 
across several cities within the United States. This was due to the lack of 
technology able to gather data in 1979.  
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With the advancement of technology, newer data sources which are more 
accurate become available. However, even with newer data sources slowly 
becoming available, the focus on modelling road congestion is still primarily 
done through modelling demand, using models, such as the bottleneck 
model, Origin-Destination (OD) model, and the bathtub model which has 
been reviews and improved up on by other researchers (Arnott and Buli, 
2018; Jin, 2020; Bao et al., 2021). These models will now be briefly 
described. 

 

2.5.2 Bottleneck model 

A review was conducted by (Arnott et al., 1993) into numerous demand models 
known as ‘bottleneck models’, which were basic, used fixed number of 
drivers, elastic demand, capacity arbitrary, optimal capacity and the self-
financing of capacity. The review argued that peak-period congestion is 
poorly specified and focused mainly on social costs such as user demand 
and available capacity; not considering the consumers’ behaviour decisions. 
For instance, where a user trades the convenience of time with the 
congestion cost such as queuing.  

The weakness of these models is the lack of data sources capable of measuring 
the decision of users and relies only on a single data source, which measures 
the capacity at a link or intersection vulnerable to a bottleneck occurring.  

 

2.5.3 Bathtub model 

20 years later (Arnott, 2013) published a paper with the aim of improving the 
bottleneck model and producing a new approach to the demand models. He 
developed a concept of ‘A bathtub model of downtown rush-hour traffic 
congestion’ that was built upon a conversation with William Vickrey a few 
years before his passing. Arnott coined the term ‘bathtub model of the road 
traffic congestion’ as a dynamic approach to the demand models, where a 
disruption at one location can instantaneously spread to all other locations.  

The Bathtub model was an improvement on his previous work by simulating a 
whole city (Manhattan) and with the addition of manually collected real world 
data to validate the model functionality. The model used two dimensions, 
which are capacity and flow. These are essential for the model to work. Think 
of the bathtub as Manhattan. In addition, cars entering Manhattan traffic 
stream, come from either across the bridges, tunnels or from parking spaces 
in Manhattan. These cars correspond to the inflow of water into the bathtub. 
Cars leaving the traffic stream, by either entering parking spaces or exiting 
Manhattan across the bridges or through the tunnels, corresponds to the 
outflow of water from the bathtub. The height of the water within the bathtub 
corresponds to the traffic density.  

Figure 10 shows there is a clear connection between traffic velocity and traffic 
density and how velocity and density relate to the three traffic flow stages, 
free flow, bound flow, and congestion.  
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Figure 10: Traffic Flow Diagram [Source: Author] 

Equation 1 shows how traffic flow (F), which equals density (D) times velocity (V) 
is used to try and prevent congestion and to retain a consistent traffic flow. 

(F = D. V) 

Equation 1: Traffic Flow 

The number of vehicles entering the city during the morning rush hour traffic is 
required to be equal or less than the number of vehicles leaving the city. If 
these requirements are not met, the free flow state will change to a critical 
state in which congestion will then occur. The weakness of this model is, once 
the capacity within Manhattan has been reached, you cannot merely turn off 
the taps to restrict the flow into the city, without causing a build-up of traffic 
at the bridges and tunnels into Manhattan, creating numerous bottlenecks 
around the perimeter.  

 

2.5.4 Origin to Destination model 

Numerous researchers such as Guo and Huang, (2009), Wu et al., (2015) and 
Othman et al., (2015), have investigated OD (Origin to Destination) models. 
OD models are then used within several TMS, such as RGS which are 
designed to inform road users of the best route to complete their journey, be 
it only a link or across a whole network. This is achieved by mapping all links 
and intersections within a network and calculating a cost for each, with the 
parameters being the cost of travel, time, speed, flow, and any road events 
that could increase the time to reach the destination. RGS has been relatively 
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successful over recent years and is constantly improving by implementing 
new techniques, which the OD models do not incorporate. For instance, road 
users’ behaviours and choices can have a large impact on the optimal route 
taken by alleviating demand on the network and reducing the time required 
to reach the chosen destination (Colak et al., 2016). 

 

2.5.5 Data analysis and geospatial techniques 

Over the years, many conceptual models of congestion have been developed, 
using different networks sizes ranging from an intersection (Wen, 2008; Pan 
et al., 2013; Djahel et al., 2015), link (Thomas, 1998; GUO and HUANG, 
2009; Wu et al., 2015), highway (Sheu, 1999; Fernandez-Caballero et al., 
2008; Wang et al., 2009), city centre (Sheu and Ritchie, 1998; Riad and 
Shabana, 2012; Patire et al., 2015) and a whole network (Emmerink et al., 
1995; Arnott, 2013; Chen et al., 2014). In addition to the various networks 
used, various methods, data sources, and dimensions were used in 
experiments with a combination of different techniques. Although throughout 
the literature many techniques were observed, it is possible to 
compartmentalize the techniques used into two separate categories, Data 
Analysis and Geospatial aspects. 

 

2.5.5.1 Data analysis 
 

Data Analysis (Liang and Wakahara, 2014; Othman et al., 2015; Shekhar et al., 
2015) is the process of inspecting, cleansing, transforming, and modelling 
data with the primary aim of discovering meaningful information that can be 
used to help support decision-making. Data fusion, data mining, data 
processing, data interpretation, and machine learning have all been 
incorporated into data analysis due to the overlapping of these techniques.  

Data fusion (Zheng et al., 2014; Radak et al., 2015; Wu et al., 2015) is a process 
of integrating multiple data sources and dimensions representing the same 
real-world objects into a consistent and meaningful representation.  

Data mining (Kianfar and Edara, 2013; Pan et al., 2013; Li and Chen, 2014) is 
becoming more regularly used in many disciplines, and it is primarily used 
within computer science. The primary aim of data mining is to use 
computational procedures to determine patterns(Pan et al., 2013; Shekhar et 
al., 2015) within large data sets involving approaches at the intersection of 
database systems, statistics, artificial intelligence, and machine learning.  

Data processing is the carrying out of operation, by either a human or computer 
to retrieve, transform, or classify information.  

Data interpretation is the final stage of data analysis and is a vital stage. Data 
interpretation is the process of assigning meaning to the processed data, 
which will allow a conclusion to determine whether the information collected 
was significant.  

Machine learning is interrelated to data mining because data mining is one of the 
crucial components of machine learning, and both techniques are used in an 
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attempt to find meaningful patterns within the data, however, the main 
difference is machine learning tries to establish an automated correlation to 
a classification. 

 

2.5.5.2 Geospatial aspects 
 

‘Is the geographic world a jigsaw puzzle of polygons, or a club-sandwich of data 
layers?’ was a question asked by (Couclelis, 1992). Figure 11 shows a visual 
representation of a GIS (Geographic Information System) as a combination 
of Computer Science and Geography. GIS systems include a database with 
spatial and temporal characteristics to create computer-based information 
systems capable of capturing, modelling, storing, retrieving, sharing, 
manipulating, analysing, and presenting geographically referenced data. 

 

 

Figure 11: GIS Visual Representation [Source: Author] 

A GIS is a simplified view of the real world and has the capability to share 
geospatial data between different Information systems or even between the 
various components within a single information system. For applications such 
as satnav, it is crucial to give the stakeholder the optimal route from point A 
to point B in an acceptable timeframe. Therefore, making it vital to have a 
well-maintained database management system (DBMS) that is reliable, 
accurate, consistent, technology proof and secure.  

Two GIS data models are Vector and Raster. Vector data represent space as a 
series of discrete entity-defined points, polylines, and polygons, which tend 
to have a static representation regarding X and Y coordinates. Raster data is 
more appropriate when modelling continuous geographic phenomena such 
as elevation of land usage. Over the years, GIS has become increasingly 
more popular and is being more frequently integrated into transportation 
applications such as RGS and TMS. The use of GIS has become so popular 
that transportation applications using GIS are routinely referred to as GIS-T 
(Waters, 1999). An example of what GIS can be utilised for is plotting 
government data on road transport accidents to identify clusters, the data is 
published by the Department for Transport and is widely available at (Gov.uk, 
2017). These records provide details about the circumstances of all road 
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accidents in Great Britain from 1979, the types (including Make and Model) 
of vehicles involved and the significant casualties. Figure 12 shows a map of 
all accidents from 2015 in the Northwest (NW) of England, using the data 
provided by the Department for Transport. 

 

Figure 12: Road Traffic Accident Records for North West England 2015 
[Source: Author] 

Furthermore, GIS allows for the plotting of sensors such as passive sensors 
(Bluetooth) and Automatic Traffic Counters in Figure 13, with the powerful 
spatial analytic tools making it possible to create density maps to show where 
the majority of sensors are located. See  Figure 14.  
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Figure 13: Manchester BT and ATC Sensors Map [Source: Author] 

 

Figure 14: Manchester BT and ATC density Map [Source: Author] 
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It is vital to use network analysis to calculate the distance between two points on 
a map to plan routes, calculate driving time and locate facilities. Equation 2: 
Euclidean distance (d) was used to derive the distance between a and b with 
the calculation (Figure 15).  

 

d(a, b) = √(ax − bx)2 + (ay − by)
2
 

Equation 2: Euclidean Distance 

 

 

Figure 15: Euclidean Distance Example 

Although, the Euclidean distance would normally be fine to calculate the distance 
between two points, such as ‘a’ and ‘b’. Assume both points were on the 
same link and did not have any obstacles in the way, such as one-way 
systems, a road closure due to a traffic incident, or roadworks then Euclidean 
distance is an easy calculation to understand. However, if the points are on 
the opposite side of a river with the next nearest bridge 1km away an 
alternative method of calculating the distance would be needed to calculate 
an accurate travel time and distance. 

 

2.6 Chapter conclusion 

This chapter has identified several gaps within the literature which this research 
will go on to address. The first gap is the lack of a clear and consistent 
definition of what is meant by ‘urban road congestion’. The second gap this 
research will address will consist of trying to re-evaluate whether the ‘generic’ 
and ‘commonly’ used classifications of congestion known as recurrent and 
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non-recurrent are still relevant and provide a true representation of urban 
road congestion.  

This will be achieved by ascertaining whether a more granular classification is 
required to provide a better-suited definition of urban road congestion that is 
clearer and more meaningful. Both the first and second identified gaps will 
be addressed in chapter three with the development of the Urban Road 
Congestion Conceptual (URCC) model, which will consist of several 
analogies and a universal urban road congestion ontology. The third gap 
identified is the lack of real-world real-time big data datasets in relation to 
urban road congestion. This will be addressed in chapter four where data 
from several different sources will be integrated into a single Manchester 
Urban Congestion Data (MUCD) dataset. The fourth gap identified is a lack 
of useful visualisation and data analysis tools that can provide high-quality 
meaningful information. Therefore, a toolkit called Transport Incident 
Manager (TIM) which will be used for visualising and analysing the MUCD 
dataset will be introduced in chapter five.  

Finally, this research will address the lack of machine learning being used to gain 
meaningful qualitative information from quantitative data providing useful 
context regard urban road congestion to a stakeholder. Instead of saying 
“CONGESTION AHEAD EXPECT DELAYS”, it would be more beneficial to 
say, “CONGESTION AHEAD IN 2 MILES, DUE TO AN MINOR ACCIDENT 
AT 15:45 CAUSING INCREASED JOURNEY TIMES”. Additionally, the 
review has identified a lack of interpretable prediction models of urban road 
congestion using real-world, unbalanced, imperfect datasets, such as the 
MUCD dataset. Both issues will be addressed in chapters six and seven 
respectively.  
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Chapter Three: Conceptual model; analogy and ontology 

3.1 Introduction 

This chapter will attempt to answer the research question (RQ1) – “Is it possible 
to provide a clear conceptualisation of urban road traffic congestion using an 
ontological model?” by clarifying formally and explicitly what is meant by road 
congestion which has been previously difficult to clearly define. Furthermore, 
to answer this question, this chapter will focus on the development of an 
Urban Road Congestion Conceptual (URCC) model using a mixed-method 
approach.  

The URCC model will consist of two components: the first is an analogical 
component and the second is an ontological component. Using this mixed-
method approach will help to provide a better understanding of the problem 
as well as provide the foundation for the development of a real-world quasi-
real-time spatial-temporal big data dataset and analytics. The main problem 
with modelling urban road congestion is the lack of a clear and consistent 
definition of what is meant by ‘road congestion’ in an increasingly 
multifaceted urban context and how it relates to the events that cause it. 

Due to the complex nature of road congestion, it is not possible to find a single 
definition that can be used to capture the semantics of the many diverse types 
of congestion and the events that cause it. This limits both the road user and 
transport managers ability to make better decisions. For instance, when 
defining congestion, the UK’s Department for Transport (DfT) uses terms, 
such as physical, which is characterised by considering speeds, volume, 
and/or journey time on the network and relative, which is defined by the road 
user’s expectation to define congestion (Department for Transport, 2013, 
2018). When defining congestion, the U.S Department of Transportation 
(DoT) uses terms, such as clog, impede, and excessive fullness to describe 
congestion (U.S Department of Transportation, 2018). Furthermore, when 
academics define congestion they use terms, such as ‘recurrent’ (Chen et al., 
2014; Djahel et al., 2015; Bifulco et al., 2016), ‘non-recurrent’ (Anbaroglu et 
al., 2014; Chen and Ahn, 2015; Chen et al., 2016), ‘pre-congestion’ 
(Somuyiwa et al., 2015), ‘free-flow’ (Knoop et al., 2008; Faro and Giordano, 
2016), and ‘hypercongestion’ (Economics et al., 2003; Fosgerau and Small, 
2013; Jin et al., 2015).  

Having so many terms to define congestion without any clear and consistent 
explanation of what they all mean, makes it almost impossible for all types of 
stakeholders (road users, domain experts, and transportation researchers) to 
comprehend what is meant by congestion and how it will impact them. 
Consequently, strengthening the argument concerning the apparent absence 
of consistency due to the multifaceted nature of congestion and how it is 
perceived. Furthermore, it has demonstrated how important it is that a 
universal model needs to be developed that is capable of providing a 
consistent understanding of what is meant by congestion (including the 
causes) allowing a variety of stakeholders to gain the knowledge from an 
explicit and formal description of the many concepts (objects) of the complete 
domain (Tadeusiak, 2014). It will also enable road users to make better-
informed choices before and during their planned journey and allows domain 
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experts to be better equipped to choose an optimal response, such as 
extending or reducing the traffic light sequences, using Variable Messages 
Signs (VMS) to warn stakeholders of a road traffic events before they become 
impacted, and/or diverting traffic to reduce the level of the impact on the 
whole network based on the knowledge gained from data analytics. All this 
can be achieved through the development of the URCC model being 
proposed in this chapter.  

This chapter is organised as follows: Section 3.2 will provide a comparison of 
new concepts of congestion. Section 3.2.1 will introduce a third type of road 
congestion called ‘semi-recurrent’. Section 3.3 sets out to describe the 
methodology on how the URCC model is developed. Section 3.4 will provide 
a brief overview of what the URCC model consists of. Section 3.4.1 
introduces and evaluates the four analogies of road congestion which are 
used to support the development of the associated ontology. Section 3.4.2 
describes the methodology for creating the road congestion ontology. Section 
3.5 introduces and evaluates the five core ontologies which are fundamental 
components of the URCC model. Section 3.6 concludes the chapter. 

 

3.2 Comparison of a new concept of congestion alongside the 

traditional concepts 

Road congestion is not a new phenomenon and remains an outstanding problem 
for road traffic users. With every civilization comes congestion with many 
unique approaches being taken to try and overcome its consequences. For 
example, Julius Caesar noticed narrow city streets are becoming unsafe for 
pedestrians due to the increasing use of good carts and to solve this problem 
he introduced a ban on good carts during the daylight hours. Nevertheless, 
this did not solve the problem, it just shifted the time period the problem 
occurred (Downs, 2005). This example was used to demonstrate how 
extensive road congestion has been and what seems to be a good idea does 
not often solve the problem.  

Road traffic congestion has a multifaceted nature, and this is evident in the way 
it has previously been described by road users, domain experts, and 
researchers to define the perception of congestion (Department for 
Transport, 2018; U.S Department of Transportation, 2018). All the terms 
mentioned in section 3.1, appear to be meaningful whilst also remaining 
vague and does not provide any meaningful knowledge. Additionally, road 
traffic congestion is typically distinguished between two vague types: non-
recurrent and recurrent congestion, the definitions of which are summarised 
in Table 3. 
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Table 3 Definition of both types of congestion currently used. 

Congestion Type  Definition  References  

Non-recurrent  

Occurs from unpredictable 
incidents such as traffic 

accidents, work zones, extreme 
weather conditions and some 

special events like music 
concerts and important sports 

events 

(Cassidy and Bertini, 1999; 
Verhoef and Rouwendal, 
2004; Djahel et al., 2015) 

Recurrent  

Occurs when significant 
amounts of vehicles 

simultaneously use a limited 
road space, such as on a 

weekday morning and 
afternoons peak hours’ traffic 

jam situations. 

(Verhoef, 1999; Hendricks 
et al., 2001; Arnott, 2013; 

Fosgerau and Small, 2013) 

 

However, this thesis argues there is a need for a third type of congestion called 
semi-recurrent. Semi-recurrent congestion will be described in section 3.2.1. 

 

3.2.1 The coining of semi-recurrent congestion 

Figure 16 introduces the four characteristics that can be used to distinguish 
between each type of congestion and convert the current binary classification 
into a multiclassification. The four characteristics are: predictable, non-
predictable, cyclical, and non-cyclical. The term predictable is used when a 
stakeholder has prior knowledge of an event that will have an impact on the 
road network. The term cyclical is used when the event happens at the same 
time of day and day of the week. Non-predictable and non-cyclical are when 
there is no known knowledge or pattern for an event. For instance, a traffic 
event that is predictable and non-cyclical can be distinguished separately 
from events that are either predictable and cyclical or non-predictable and 
non-cyclical. 
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Predictable Non-Predictable

Cyclical Non-Cyclical

Recurrent Non-Recurrent
Semi-

Recurrent

 

Figure 16: The proposed three types of congestion. [Source: Author] 

Recurrent congestion is the consequence of events, such as ‘rush hour’ which 
are predictable and cyclical occurring Monday to Friday around 8 am in the 
morning and 5 pm in the evening. Non-recurrent congestion is the 
consequence of random events, such as ‘road accidents’ and ‘unplanned 
roadworks’. These types of events are not predictable and not cyclical 
because they happen at any time of day and day of the week, meaning the 
impact on traffic cannot be predicted. Semi-recurrent congestion is the 
consequence of scheduled events, such as a ‘football match’, ‘music 
concerts’, and ‘planned roadworks’. These types of events are not cyclical 
because they do not happen at the same time or on the same day. However, 
they do tend to be predictable due to schedules, which are created in 
advance.  

Table 4 shows a comparison of several events and each event will have its own 
impact on the road network at different scales. For instance, a concert would 
impact a neighbourhood around the concert hall. A marathon requires roads 
to be closed causing an impact at a city scale. A road accident happens at a 
single point on a link, but the impact diffuses and has a further impact on the 
surrounding links (known as Point-based diffusion). 
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Table 4 Comparison of events, the classification of congestion types, and 
its entities by examples 

Event 
Congestion 

Type 
Predictable Temporal Scales 

Concert Semi-recurrent yes 
Non-

cyclical 
Neighbourhood 

Football Match 
(Cup) 

Non-recurrent No 
Non-

cyclical 
Neighbourhood 

Football Match 
(League) 

Semi-recurrent Yes 
Non-

cyclical 
Neighbourhood 

Marathon 
Semi-

Recurrent 
Yes 

Non-
cyclical 

City 

Parade 
Semi-

Recurrent 
Yes 

Non-
cyclical 

City 

Road Traffic 
Incident 

Non-recurrent 
congestion 

No 
Non-

cyclical 
Point-based 

diffusion 

Roadworks 
(Planned) 

Semi-recurrent Yes 
Non-

cyclical 
Point-based 

diffusion 

Roadworks 
(Unplanned) 

Non-Recurrent No 
Non-

cyclical 
Point-based 

diffusion 

Rush Hour 
(Weekday’s 
morning and 
afternoon) 

Recurrent Yes Cyclical City-scale 

Terrorist Act Non-recurrent No 
Non-

cyclical 
Variety 

 

3.3 Methodology for a universal conceptual model 

The focus of this section is on developing a universal URCC model that allows 
different types of stakeholders to understand and benefit from gaining 
valuable knowledge of the multiple types of congestion, the associated 
events, and the impact on an urban network.  

 

3.3.1 Overview: Universal conceptual model methodology 

The methodology for creating a universal URCC model consists of three key 
stages, which are described as follows: 

1) Perform a comprehensive review of the domain, analogies related to the 
domain, and any relevant ontologies that could be incorporated within the new 
ontology (Abberley, 2016; Abberley et al., 2017).  

2) Using the review, gain an understanding of previously used concepts and 
develop new analogies, which are capable of capturing the required knowledge 
and explaining terminology in a manner a layperson would understand.  

3) Using the knowledge gained from the analogies and comprehensive review, 
develop a road congestion ontology.  
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In order to validate the universal URCC model in a real-world situation. A quasi-

real-time real-world dataset with spatial-temporal characteristics is required. 
The dataset will need to consist of journey time and traffic volume data, which 
is generated from real-world sensors around Greater Manchester, UK. 
Furthermore, additional spatial-temporal data, such as road accident data 
and event information will be collected and merged with the sensor data. The 
data being collected and processed needs to be as close to real-time as 
possible to be able to identify incidents and allow stakeholders to respond in 
a timely manner. This dataset will be introduced in chapter four. 

 

3.4 Urban road congestion conceptual model 

To solve the vagueness surrounding congestion, modelling techniques have 
previously been used to provide a certain level of clarification of what is meant 
by road traffic congestion. For instance, the bathtub model of downtown rush-
hour traffic which was developed by (Arnott, 2013), only measured recurrent 
congestion by simulating the volume of vehicles entering or exiting 
Manhattan at peak times in the morning, which is represented by the water 
flow. However, this model has numerous weaknesses, which includes only 
exploring events that cause recurrent congestion, only considering a large 
‘unique’ city, and only utilising a single dimension of data which was volume.  

Another popular model is the bottleneck model, which signifies a limited or fixed 
capacity located at a single point on a link where the number of vehicles 
arriving exceeds this limit, causing congestion, i.e., an entry point to an 
industrial park (Arnott et al., 1993; Kianfar and Edara, 2013). Again, this 
model has several weaknesses, for instance, this study analysis a single 
point on a link, which consequently, does not consider the consequence of 
traffic building up on the surrounding network. Therefore, the URCC model 
being introduced will try to address some of these weaknesses and will 
consist of two main components which will provide two distinctive 
explanations of what is meant by urban road congestion.  

The first component is an analogical approach (section 3.4.1) which will provide 
a high-level explanation of road congestion and explains how all the concepts 
interlink with each other, in a manner a layperson would understand. The 
second component is an ontological approach (section 3.4.2) which will 
provide a logical solution for creating a formal and explicit definition of urban 
road congestion, allowing more advanced stakeholders to gain greater 
knowledge, thanks to its ability to bridge natural language (informal) and 
programming language (formal).  

Thanks to its high degree of expressiveness, the use of ontologies is suitable to 
ensure greater interoperability among agents and different applications 
involved in intelligent transportation systems (ITS) (Studer et al., 1998; 
Fernandez and Ito, 2015). Ontologies also provide a common vocabulary in 
a given domain and allow defining, with different levels of formality, and the 
meaning of terms and the relationships between them. 
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3.4.1 Analogies of congestion 

Analogies are vital to producing a conceptual model that is universal and can be 
understood by anyone, ranging from a layperson with no knowledge of road 
congestion to a domain expert. Therefore, the use of analogies for the URCC 
model was chosen. Analogies are used to simplify conceptual modelling 
(Breitman et al., 2007), allowing familiar conceptual models to be broken 
down into fragments and reinterpreted providing context to newer conceptual 
models in alternative domains. Therefore, there is, a need to construct a 
model, which encompasses a universal understanding of the multifaceted 
nature of road congestion, overcoming the weaknesses of the previous 
models by capturing the causes of congestion and the impact congestion has 
on the network at multiple scales. For example, it can be used to explore the 
impact of an accident on a local (link) level or explore the impact of a premier 
league football match on a global (city-scale network) level.  

The URCC model introduces a more granular classification of urban road 
congestion by breaking away from the traditional two types of congestion, 
which are ‘recurrent’ and ‘non-recurrent’, introducing an extremely important 
third type of congestion which has been coined by the author as ‘semi-
recurrent’ and was introduced in section 3.2.1 and will be discussed further 
throughout this chapter. The analogy component of the new URCC model 
proposed in this chapter is made up of four interlinking analogies defined as 
‘a raindrop landing on a leaf, which is floating in a bathtub with an ever-
changing water temperature’. These analogies can be broken down into three 
primary concepts (bathtub, leaf, and raindrop) and one secondary (water 
temperature) concept.  

The four concepts are defined as follows: The first is a well-known concept called 
the bathtub model (Arnott, 2013) where the bathtub represents the whole 
network and the water within the bathtub represents the number of vehicles 
using that network. However, due to the limitation of the bathtub model, this 
research has developed three new concepts to be able to incorporate 
scalability, non-recurrent congestion, and severity. These three unique 
analogies are a ‘leaf model’ that represents a set of connected links along a 
route, a ‘raindrop model’ that represents an event that has the consequence 
of congestion, and the final concept is ‘water temperature’ that represents the 
weather condition which can increase the severity of an event and will have 
an impact on the network. These four analogies are individual components 
that relate to each other to create a single model. 

i. A ‘bathtub’ represents the whole network and the water that represents the 
volume of vehicles using the network. 

ii. A ‘leaf’ represents a set of links between an origin and destination along the 
route. 

iii. A ‘raindrop’ represents a congestion-causing event and its level of severity. 
iv. An ever-changing ‘water temperature’ represents the weather condition.  

Figure 17 shows a visual representation of the concept ‘Leaf inside a Bathtub’. 
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Figure 17: A conceptual model of a Leaf inside a Bathtub 

 

3.4.1.1 Bathtub 
The bathtub analogy coined by (Arnott, 2013), is used to provide an 

understanding of how a major city, such as Manchester, UK. The road 
network is impacted by large quantities of vehicles entering the city on a daily 
basis, this phenomenon of vehicles entering the city’s urban network from the 
6-lane highways that circles the city causes recurrent congestion. These 
vehicles correspond to the inflow of water into the bathtub, equally, cars 
leaving Manchester would correspond to the outflow of water from the 
bathtub. The ever-changing, fluctuating water level corresponds to the 
density of traffic within the city and as the water increases the volume of traffic 
becomes higher and speed becomes slower. Once the water level reaches a 
critical level, the bathtub will take an excessive amount of time to drain. This 
phenomenon has been referred to as ‘hypercongestion’ (Verhoef, 1999; 
Fosgerau and Small, 2013).  

 

3.4.1.2 Leaf 
The bathtub analogy provides a theoretically sound method of modelling 

recurrent congestion at a city scale. However, it lacks the ability to model 
congestion on a neighbourhood scale, such as a link or a set of links, which 
are vulnerable to non-recurrent and semi-recurrent congestion caused by 
road traffic incidents, public events, roadworks, and terrorist attacks. Non-
recurrent congestion contributes between 40% and 70% of all congestion 
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(Kwon et al., 2006) and with the introduction of semi-recurrent congestion, 
this research has deemed it necessary to develop the following ‘leaf model’ 
concept.  

Figure 18 shows a leaf with an origin, O, destination, D, and six additional nodes 
{1,...,6}, that represents a set of links within the whole network. The midrib 
vein that travels through the centre of the leaf corresponds to an arterial road 
within Manchester (UK), such as the A6 or A57. The lateral veins, which arise 
from the midrib vein, correspond to the less important roads that tend to lead 
through housing estates. These lesser important links tend to be used when 
an incident has occurred, and stakeholders attempt to avoid congestion.  

 

Figure 18: Leaf Concept 

 

3.4.1.3 Raindrop 
A raindrop signifies the severity of an event that has a consequence of 

congestion and has an impact on the road network, whether it is recurrent, 
non-recurrent, or semi-recurrent. A number of studies have been conducted, 
identifying an association between road congestion and events, such as 
football matches (Isa et al., 2014; Gould and Abberley, 2017), concerts 
(Anbaroglu et al., 2014; Anbaroğlu et al., 2015), and road accidents (Wang 
et al., 2009; Radak et al., 2015; Abberley et al., 2017). The impact of the 
events is dependent on the severity of the event. For example, depending on 
the severity, the impact of an accident could be very minimal, and the road 
segment could be cleared within minutes, or it could be extremely severe and 
will require several hours for the road network to return to the expected 
conditions.  

Table 5 shows a scale of severity with regards to a road accident, which ranges 
from slight to fatality. These road accidents are recorded by local law 
enforcement (Transport, 2004). 
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Table 5: Instructions for completion of a road accidents report 

Severity Description 

Fatal Where death occurs in less than 30 days as a result of the accident. 

Serious 

Injuries sustained include fracture, internal injury, severe cuts, crushing, 
burns, concussion, severe general shock requiring hospital treatment, 
detention in hospital as an in-patient, either immediately or later and 
injuries to casualties who die 30 or more days after the accident from 
injuries sustained in that accident. 

Slight 
Injuries sustained include sprains, neck whiplash injury, bruises, slight 
cuts, and slight shock requiring roadside attention. 

 

Therefore, the size of the raindrop corresponds to the severity of the incident, for 
instance, a small bump that does not require law enforcement to attend would 
be represented by a small raindrop with little impact on the traffic flow, speed, 
or journey time. A fatal accident usually requires several emergency services 
and would be represented by a large raindrop which, causes a mass 
disruption to the traffic flow, speed, and journey time of the stakeholders. 
Furthermore, the concentrated incident at a point would ripple out to the 
surrounding neighbourhood. Additionally, other types of events are 
represented by the raindrop and have a similar profile as a road accident. For 
example, a football match is similar to a road accident with a small raindrop 
that has little impact being a small team league game, a large raindrop with 
a moderate impact being a cup game, and a severe impact being a world-
ranking match. 

 

3.4.1.4 Water Temperature 
The weather has a passive impact on all three of the primary concepts previously 

discussed above. For instance, if the temperature were to drop to minus 
degrees Celsius, snow and ice would likely occur impacting on the inflow and 
outflow of the water within the bathtub causing congestion and hyper-
congestion sooner than expected. Additionally, in bad weather, traffic will 
become slower because of stakeholders requiring to leave extra stopping 
distance, reducing speeds, and setting of earlier to reduce the chances of 
being caught up in a road accident. Weather also has an impact on roads 
similar to the impact it has on leaves. It causes damage to the surface and in 
some cases, the damage is severe enough that it will cause non-recurrent 
congestion, such as the giant sinkhole that occurred on one of Manchester’s 
busiest roads (Gani, 2015).  

Finally, incidents are also at the mercy of the weather, road surfaces can become 
covered in snow or excessive amounts of water as a consequence of extreme 
rainstorms, the correlation of a possible incident occurring increases and 
causing the severity to be more serious than if it was good weather. Out of 
all four concepts, the weather condition has been categorised by this 
research as a secondary concept. However, it has an influence on all three 
of the primary concepts. 
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3.4.1.5 Summary of the four analogies of congestion 
To summarise the analogies, they provide a simplistic explanation for things that 

impact congestion, which can be understood by the stakeholders. For 
example, the bathtub and leaf analogies refer to the spatial context of a 
network, such as global scale or neighbourhood scale. The raindrop analogy 
refers to an event that has different levels of severity and has the 
consequence of congestion. Finally, the water temperature refers to weather 
and how extreme weather can have an adverse effect on either the road 
network or a specific event.  

 

3.4.2 Ontologies of congestion 

One of the gaps within the literature is a distinct lack of a clear and consistent 
definition of what is meant by ‘urban road congestion’. This lack of clear and 
consistent definition makes it impossible to answer simple questions with 
some level of clarity, which stakeholders, such as road users or transport 
managers require the answers to and tend to ask, assisting them with better 
decision-making. Such questions can be as simple as ‘what is meant by 
congestion’, ‘what is the cause of congestion’ and ‘where has congestion 
occurred’. These questions may appear easily answered but if you asked 
these questions to a layperson, they would provide an implicit and informal 
response that is almost as vague as what has been identified in the literature 
written by both academics and transport managers.  

When transport managers and academics have previously discussed the 
aspects of road traffic congestion, they have used vague terms without fully 
providing a formal and explicit definition of what they mean, these terms are 
“recurrent”, “non-recurrent”, “pre-congestion”, “free flow”, “bound flow” and 
“hyper-congestion”. To further support this argument, two of the world’s 
leading transport departments definitions of road traffic congestion will be 
evaluated. The two transport departments are as followed, the Department 
for Transport (DfT) within the United Kingdom (UK) and the United States 
(US) Department of Transportation (DoT). The DfT (Department for 
Transport, 2013) identifies the need to provide a clear definition of road traffic 
congestion, in an attempt to solve this, they provide a distinction between two 
aspects, which are physical and relative congestion. The latter is defined by 
the road user’s expectation rather than using a physical definition, which 
considers characteristics such as speeds, capacity, and traffic flow on the 
network.  

Whereas the report on traffic congestion (U.S Department of Transportation, 
2018) by DoT focuses primarily on a relative approach to defining congestion 
using terms such as ‘clog’, ‘impede’ and ‘excessive fullness’ and adds ‘For 
anyone who has ever sat in congested traffic, those words should sound 
familiar’. In addition, in the same report, it is noted that congestion is typically 
related to an excess of vehicles on a portion of roadway or pedestrians on a 
sidewalk. Analysing both of these approaches of defining congestion has 
strengthened the argument of an apparent absence of consistency, which is 
largely due to the multifaceted nature of congestion and how it is perceived.  
Because of this, it is vital to be able to develop a way of providing an informal 
and explicit understanding of the domain, which both a person and non-
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person such as an Intelligent Transport System (ITS) will be able to 
understand. 

Due to the concerns mentioned above, an ontology is a logical solution, thanks 
to the ontological ability to bridge natural language (informal) and 
programming language (formal). In addition, its high degree of 
expressiveness, makes the use of ontologies suitable to ensure greater 
interoperability among agents and different applications involved in intelligent 
transportation systems (Studer et al., 1998; Fernandez and Ito, 2015). 
Ontologies also provide a common vocabulary in a given domain and allow 
defining, with different levels of formality, and the meaning of terms and the 
relationships between them. 

 

3.4.2.1 What is an ontology? 
An ontology is defined as a ‘formal, explicit specification of a shared 

conceptualisation’ (Kohli et al., 2012; Gould et al., 2014) and is made up of 
objects, properties, facets, and instances. Ontologies are a logical solution 
for developing a conceptual model because of their ability to bridge natural 
language (informal) and programming language (formal). In addition, thanks 
to its high degree of expressiveness, the use of ontologies is suitable to 
ensure greater interoperability among agents and different applications 
involved in ITSs (Studer et al., 1998; Fernandez and Ito, 2015). Ontologies 
also provide a common vocabulary in a given domain and allow for defining 
with different levels of formality, the meaning of terms and the relationships 
between them (Fox, 2015). 

 

3.4.2.2 Ontological methodology 
The method of using ontologies for developing a conceptual model has many 

benefits due to its ability to provide a ‘formal, explicit specification of a shared 
conceptualisation’ (Staab and Studer, 2007), meaning it allows integration, 
decision support, semantic augmentation, and knowledge management. In 
addition, ontologies provide a visual representation of the relationships 
between individual objects, making it an ideal choice for developing a 
multifaceted conceptual model. For the creation of the universal road 
congestion ontology (which is one of the main components of the URCC 
model), a highly cited methodology for creating ontologies by (Noy and 
McGuinness, 2001) will be modified, which will reduce the suggested seven 
stages down to five stages, these stages are:   

Stage 1: Determine the domain and scope of the ontology. 
Stage 2: Consider reusing existing ontologies. 
Stage 3: Enumerate important terms in the ontology. 
Stage 4: Define the objects and the object hierarchy. 
Stage 5: Define the Object-Properties. 
 
The two stages that are not being performed are: 

Stage 6: Define the facets of the Object-Properties. 
Stage 7: Create Individuals. 
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Stages 6 and 7 are not being utilised because the aim of the ontology is to 
explore the nature of congestion and help to define what is meant by urban 
road congestion. In the proposed ontology, there are some high-level facets, 
such as HighVolume and LowJourneyTime. These facets are as much detail 
as a stakeholder requires and what is meant by the facets depends on the 
context. Additionally, because the ontology is not being used to classify road 
conditions using a reasoner1 the creation of individuals is not required. Once 
the ontology has been completed, the final step is to validate the conceptual 
model using information for individual events that cause road traffic 
congestion. This will be achieved once the dataset is complete and through 
production of a case study described in chapter four. 

 

3.5 A universal ontology of road congestion 

This section uses both the literature review that was conducted in chapter two 
and the newly coined concept of ‘a raindrop landing on a leaf, which is floating 
in a bathtub with an ever-changing water temperature’ set out in section 3.4.1 
to help complete the five stages. 

Stage 1: Determine the domain and scope of the ontology. 

The scope of the ontology is to provide a well-defined understanding of the 
conceptual model, which will help to identify the optimal dimensions of 
congestion, indicating which data sources are required. The author with the 
support of domain experts from TfGM (TfGM, n.d.) and Transport for the 
North (TfN) (TfN, n.d.), in conjunction with the comprehensive literature 
review conducted in chapter two and the knowledge gained from the four 
analogies, created the following statements to describe the domain. 

• Road accidents have a consequence of congestion on the road network, as 
described by the raindrop model in section 3.4.1.3. 

• A road network is made up of links connected by nodes similar to the leaf model 
in section 3.4.1.2. 

• Several dimensions can be used to measure congestion. These include traffic 
volume, occupancy, speed, velocity, and journey time. Some of which have been 
used in the bathtub model. 

• A road traffic event, such as an accident is an event that has a duration.  

• The event has a consequence of congestion. 

• Congestion has three main types: recurrent, non-recurrent and semi-recurrent. 
These have been explored throughout this chapter and extensively within the 
four analogies (section 3.4.1).  

• An event that has the consequence of congestion happens at a point on the road 
network, which is made up of several links and nodes.  

• Links can have numerous lanes and are segments of a road. 

• Having more lanes on a link increases the amount of capacity, which in return 
will reduce the severity of congestion caused by an event, such as an accident. 

 

 
1 A Reasoner is also known as a ‘semantic reasoner’, ‘reasoning engine’ or a ‘rule engine’ and is 

a piece of software that is able to understand logical consequences from a set of rules or asserted facts.  

Because a reasoner is not being used. 
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Stage 2: Consider reusing existing ontologies. 

The following three components from existing ontologies will be reused within 
the universal road congestion ontology to provide a level of consistency 
across the domain. Geospatial (Lieberman et al., 2015) is reused due to its 
inclusion of spatial aspects, such as point. Owl-time  (Cox and Little, 2017) is 
reused because it is vital for anything that has a temporal entity. The two 
main objects used within Owl-Time are instant and interval. Transport 
disruption (Corsar et al., 2015), which is an extension of the ontology of the 
event (Raimond and Abdallah, 2007) is reused because it captures a range 
of events. These types of events cause the dynamic phenomena which the 
universal ontology is trying to model.  

Other ontologies, which have been considered by the author, would be the urban 
density ontology (Chen et al., 2018), because it introduces objects, such as 
‘boundary’ and ‘zone’, which will have provided a greater spatial 
understanding of events that cause road congestion in a specific zone, such 
as a rural area. Other spatial ontologies (Jung et al., 2013; Jelokhani-Niaraki, 
2018), introduce spatial processes, which could be useful in the future. 

Stage 3: Describing the important objects within the ontology. 

In total, 63 objects were used to create the universal road congestion ontology. 
A list of the important concepts and their retrospective descriptions can be 
found in appendix 1.1 and these concepts and their associated descriptions 
were implemented using Protégé (Stanford University, 2018)2.  

The use of Protégé allows the universal road congestion ontology to be 
formalised using the Web Ontology Language, which is designed to 
characterise rich and multifaceted knowledge about things and will allow 
multiple terms to be used for the same object. This is important because it 
takes into consideration a mixture of languages, such as American English 
and British English, many objects could be known by multiple names. For 
example, Football is also known as Soccer and a motorway is also known as 
a highway. 

Stage 4: Define the objects hierarchy. 

Within Protégé, all 63 objects are restructured into a hierarchy based on their 
relationship with other objects. For instance, Figure 19 demonstrates that 
both kick-off and full-time are an instance of instant and instant is a type of 
time. This is important because it demonstrates the ‘is-a’ relationship 
between the many objects within the ontology. For example, in Figure 19, 
‘instant’ is a type of time, but time is not an instant. 

 
2 Protégé is an OWL editor and a knowledge management system that can be used to check the 

consistency of an ontology. 
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Figure 19: Snapshot of object hierarchy in Protégé 

A more in-depth example can be found in appendix 1.2. 

Stage 5: Define the Object-Properties 

Finally, after all the objects have been described and their hierarchy structure 
has been defined, the final step is to create the Object-Properties which are 
used to demonstrate the ‘has-a’ relationship. For example, the properties for 
the object Event are ‘has-a’ beginning and ‘has-a’ end, which relate to the 
object instant. Table 20 in appendix 1.3 shows the several domains, their 
properties, and the range. 

 

3.5.1 Implementation of the universal road congestion ontology 

The construction of the universal road congestion ontology is made up of five 
core ontologies, which are congestion, dimensions of congestion, direction, 
events, and spatial. The core ontology congestion is visually represented in 
Figure 20. Recurrent, semi-recurrent, and non-recurrent all have an ‘is-a’ 
relationship with congestion. Congestion ‘is-a’ consequence of an event, 
which ‘has-a’ beginning, end, and duration. Additionally, it ‘has-a’ location, 
which is a spatial thing. 



46 

 

Congestion

Non-Recurrent

 is a  relationship

Consequence
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ot:hasEnd
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Geo:SpatialThing HappensAt ot:IntervalHasDuration

Dimensions

AnalysedUsing

 

Figure 20: Ontology: Congestion 

The other four core ontologies are dimensions of congestion (Section 3.5.1.1), 
spatial (3.5.1.2), direction (3.5.1.3), and event (3.5.1.4). Finally, how these 
four ontologies relate to each other will be discussed in section 3.5.1.5. 

 

3.5.1.1 Dimensions of congestion 
Figure 21 shows a visual representation of the concept of dimensions and its 

relevant objects. Congestion can be analysed using several different 
dimensions, such as speed, velocity, density, capacity, volume count, journey 
time, and occupancy. Occupancy and journey time are both measured using 
time. Velocity has a speed in a given direction. Speed can be either speed at 
a point or an average speed between two points. Additionally, dimensions 
have a magnitude level that can be used to analyse the road network 
performance. 
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Figure 21: Ontology: Dimensions 

 

3.5.1.2  Spatial 
In Figure 22, visual representations of the spatial concepts are presented. The 

spatial concept is a vital part of the road congestion ontology because it 
provides a scalable description of the impact of congestion caused by an 
event. For example, an accident occurs at a point on a link, which is a road 
that is part of a road network, and it would impact a location. 
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Figure 22: Ontology: Spatial 
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3.5.1.3 Direction 
Figure 23 shows the representation of the concept of direction that has two main 

types, which are relative and absolute. Absolute is used to provide a precise 
position of a point or direction. For example, a point has coordinates that are 
made up of longitude, latitude, and altitude. Other coordinates that are used 
are degrees, minutes, and seconds. Other absolute directions would be 
northbound, southbound, clockwise, and anticlockwise. However, these are 
absolute but at the same time, they are vague. Relative direction is used to 
provide an extra layer of context that a user would be able to gain valuable 
knowledge. An example, of a relative direction, would be towards and away. 
These would be relative to a traveller, event, or attractor.  

 

Direction

HasCoordinates

Absolute

Relative

Coordinates

Longitude Latitude Altitude

Event:Event Attractor traveller

relativeTo

relativeTo

relativeTo
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relationship

 

Figure 23: Ontology: Direction 

 

3.5.1.4 Event 
Event concepts are visualised in Figure 24. It is important to be able to identify 

the type of event (a football match) that has occurred and a specific instance 
of an event (this football match on this day at this time and place) because 
although, they all have an impact on the road network. Each event or instance 
of the event has its own unique patterns that can be used to identify what 
event is or has occurred and been able to predict the impact. For example, 
football matches, concerts, and planned roadworks are non-cyclical but are 
predictable. However, accidents, terrorist attacks, and unplanned roadworks 
caused by sinkholes are non-cyclical and unpredictable. Furthermore, 
congestion caused by morning AM and PM peak hours is cyclical and 
predictable. 
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Figure 24: Ontology: Events 

 

3.5.1.5 Combining all four ontologies 
Figure 25  demonstrates how the five core ontologies come together to create 

the universal road congestion ontology which is the second component of the 
URCC model. For instance, a football event happens in a spatial context, 
such as a location on or a distance from a road and causes semi-recurrent 
congestion, which impacts the direction of the traffic towards or away from 
the event location, such as an attractor or landmark, depending on the state 
of the event i.e., pre-event, live-event, and post-event. Finally, the congestion 
caused by the road traffic event can be measured using several different 
dimensions, such as journey time, volume, and speed. 

 

event:Event geo:SpatialThing

Congestion Direction
DimensionsOf

Congestion

Causes
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Figure 25: The relationship between the five core ontologies 

 

3.6 Chapter conclusion 

This chapter has explained the methodology for creating a URCC model using 
four analogies and a universal road congestion ontology which is made up of 
five core ontologies (Dimensions of congestion, events, congestion, direction. 
and spatial things). Furthermore, this chapter implemented the ontology 
following a modified methodology set out by (Noy and McGuinness, 2001). 
Therefore, the next step is to create a dataset capable of validating the 
universal road congestion ontology using data sources that have the ability 
to measure the dimensions of urban road congestion, such as speed and 
volume. To validate the universal road congestion ontology, several 
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seemingly simple questions are proposed based on the gap within the 
literature.  

Questions: 

• What is congestion? 

• What is recurrent congestion? 

• What is semi-recurrent congestion? 

• What is non-recurrent congestion? 

• What is the cause of congestion? 

• Where has congestion occurred? 

Although, these questions seem simple, it is vital that when the broad term 
congestion is used, all stakeholders have the same clearly defined definition 
because this will assist in modelling urban road congestion and allow for the 
creation of a better prediction model. Furthermore, as mentioned in the 
literature, even two leading transport departments (DfT and DoT) define 
congestion in complete contrast to each other. Although, you could argue 
each one has a valid definition, it would be impossible to gain knowledge out 
of a conceptual model without formalising and providing an explicit definition. 

The creation of the dataset and the case study to evaluate whether the ontology 
has the ability to formally and explicitly answer the above questions will be 
conducted in chapter four. 
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Chapter Four: Building a dataset from the ontology to 

validate the urban road congestion conceptual model  

4.1 Introduction 

This chapter describes the construction of a dataset which will be referred to as 
the Manchester Urban Congestion Data (MUCD) dataset. The dataset is 
comprised of several data elements, such as journey time, traffic volume, 
weather conditions, and event information collected from multiple sources. 
The MUCD dataset will be used to validate the universal road congestion 
ontology which is one of the main components of the Urban Road Congestion 
Conceptual (URCC) model from chapter 3.  

The MUCD will attempt to address some of the challenges identified in other 
studies: using simulated datasets (Yuan and Cheu, 2003; Othman et al., 
2015; Lee and Li, 2017; Rui et al., 2018), outdated datasets (Anbaroglu et 
al., 2014; Anbaroğlu et al., 2015), or datasets collected from expensive data 
sources (Cheng et al., 2012; Anbaroglu et al., 2014; Anbaroğlu et al., 2015). 

Following on from the construction of the MUCD dataset, this chapter will present 
a case study compromising of several experiments to validate a number of 
types of congestion using specific events which have a consequence of 
congestion, such as road accidents, football matches and rush hour traffic. 
The case study is described in section 4.8.1. 

 

4.2 Types of data sources used to model congestion 

As mentioned in chapter 2 to create a “successful” Transport Management 
System (TMS) or Intelligent Transport Systems (ITS) is largely dependent on 
the quality of data sources. However, relevant data (i.e., associated with 
congestion) is not widely available for research and development purposes 
without several limitations. For example, accuracy of the data which can 
report incorrect values because of bad weather, cost to deploy new sensors, 
cost to access the data from currently deployed sensors, sensors get 
disabled or forgotten about as it sometimes can cost more to maintain them 
than to replace them). Furthermore, to have a reliable, dynamic, and robust 
TMS or ITS it is important to use multiple data sources and dimensions in 
conjunction with each other. The data used should be ethically collected and 
processed, easy to interpret, and be made widely available within a 
reasonable time to allow for better collaboration to help reduce the impact of 
urban road congestion. 

Depending on what the TMS or ITS is trying to achieve, having different 
dimensions is vital, as it is critical for assessing the output from data sources 
in a meaningful manner that will help to identify traffic incidents that have the 
consequences of congestion. One of the benefits of using dimensional data 
is the dynamic aspects that allow TMS or ITS to work with a range of different 
types of data sources that measure the same dimension instead of being 
restricted to a single data source. Figure 26 shows the relationship between 
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the dimensions and the data sources that were considered in this research. 
Where a dimension, such as a journey time can be captured and processed 
from multiple data sources, such as Bluetooth sensors, Global Positioning 
Systems (GPS), and road traffic cameras. where the quality of data and cost 
of deployment can vary. For example, Bluetooth sensors are cheap to deploy 
yet the data quality is poor compared to a road traffic camera which provides 
the best quality of data but can cost ten times as much to deploy (Hooke et 
al., 1996; Sen et al., 2011; Kurkcu and Ozbay, 2017).  

 

Figure 26: Relationship between dimensions and data sources 

 

4.3 Neighbourhood network topology 

A road network topology can range from a local network (two or three links 
connected to each other), a global network (city scale), and a neighbourhood 
network which this research is using and is larger than a local network but 
smaller than a global network. Figure 27 shows the final neighbourhood 
network topology that is in Manchester (UK) and will be used to test the 
feasibility and usefulness of the universal road congestion ontology. The 
neighbourhood network topology used was agreed with Transport for Greater 
Manchester (TfGM) who assisted in the scoping as domain experts.  

The reason it was important to scope out the network before creating the dataset 
was to ensure the prerequisites provided by TfGM were met and to consider 
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the limitations of the data. For example, one of the prerequisites was the 
incorporation of the A6 which connects Manchester city centre and Stockport. 
Moreover, another prerequisite was the need to incorporate event locations, 
such as the Etihad Stadium. Therefore, sensors around this location were 
investigated in the hopes of creating a well-distributed neighbourhood 
network. However, due to some limitations with the Bluetooth sensors, such 
as the data not being available at all sensors at the same time, data that had 
been captured was not always complete.  

These limitations were due to some Bluetooth sensors being disabled and others 
being installed at a later period during the data collection phase for this 
project. Therefore, a total of 25 Bluetooth sensors were used to construct a 
64 (32 links in both directions) link neighbourhood network. The blue lines on 
Figure 27 represent the Traffic Master routed networks in the area and the 
red links represent the Bluetooth network links being analysed.  

For this research, a link is a route between two Bluetooth sensors and the 
topology consists of a total of 64 links in a two-directional network. Each link 
is allocated a unique letter combination, such as ‘a’ and depending on the 
direction a second letter will be allocated for instance upstream (au) and 
downstream (ad). Amongst the 64 total links being analysed, there is an 
approximate 68km of the road network with two main attractors, which are 
the Etihad Stadium (football grounds) and the O2 Apollo (concert hall). Each 
link has its own heterogeneous characteristics with regards to quantities of 
lanes, the number of junctions, speed limits, road class, and lengths that 
varies from 146m to 2,149m. In addition, the volume of traffic and observed 
journey times differ at spatial and temporal states.  
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Figure 27: Manchester’s neighbourhood network topology (Contains OS 
data © Crown copyright and database right (2017)) 

 

4.4 The creation of Manchester urban congestion data dataset 

With the volatile increase of global data in the last 20 years, the term “big data” 
has become the new ‘buzzword’ within many disciplines. However, many 
academics and industry experts confuse ‘big data’ for ‘large data’ due to a 
lack of understanding of what is meant by big data. furthermore, due to the 
multifaceted nature of big data it has previously been claimed there is no 
clear definition or understanding for big data (Demchenko et al., 2013) and 
the more we begin to understand it, the more complicated it becomes, for 
instance, the Vs of big data, are constantly evolving from 3Vs (Jagadish, 
2015), 4Vs (Philip Chen and Zhang, 2014), and 5Vs (Demchenko et al., 
2013). The 5 Vs and their characteristics are as followed, Variety 
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(heterogeneity), Veracity (inconsistency and incompleteness), Volume 
(scale), Velocity (timeliness), and Value (worthiness).  

Big data becomes more multifaceted with the addition of geographical data, 
which accounts for 80% of daily data created in the last few years (Vopham 
et al., 2018), for instance, the geographical traffic data collected on a 
heterogeneous urban road network within many smart cities, such as 
Manchester, UK. Transport for Greater Manchester (TfGM) manages the 
road network within Manchester, UK and collects data continually from 
inductive loop counters, Bluetooth sensors, and more recently started 
exploring the use of Google API data. It was decided not to incorporate the 
Google API data into the MUCD Dataset due to cost. The API charges a fee 
for each observation (at 15-minute intervals) for each pre-defined link. 

Table 6. Data sources, type of data, provider, range, and location 

Data 
Source 

Type of data Provider Range Location 

Bluetooth Sensor Journey time TfGM 
2015-

Present 
Manchester, 

UK 

Inductive Loop 
Counter 

Volume TfGM 
2015-

Present 
Manchester, 

UK 

Accident 
Slight, Serve, Fatal 
accidents details 

GOV.UK 
2010-

Present 
UK 

Etihad Stadium 
Football matches, 
other big events, 
such as concerts. 

Manchester 
City FC 

2017 
Manchester, 

UK 

Concert Hall 
Comedy shows, 

concerts 
O2 Apollo 2017   

Manchester, 
UK 

Weather 

Wind speed, 
humidity, 

temperature, 
weather 

description 

Custom 
Weather 

N/A Worldwide 

Bank holiday 
School bank 

holiday details. 
GOV.UK 

2017-
present 

UK 

 

The MUCD has 17376 records, each record consisting of 127 attributes and the 
data ranges from the start of January 2017 to the end of June 2017. The 
MUCD is primarily an unsupervised dataset, however, for classifying what is 
meant by congestion, the methodology used by TfGM was implemented to 
label the dataset. The method used is ‘the Red Amber and Green’ (RAG) 
method discussed in section 5.4.2. 

The MUCD dataset is data collected from five different data providers. TfGM 
provided access to journey time and volume data, and they are the data 
owners, GOV.UK provided road traffic accident data and school bank holiday 
information, Manchester City FC and O2 Apollo provided event information 
for football matches and concerts respectively, and weather data was 
collected from Custom weather (www.customweather.com). The data was 
then stored in two places, the first is a ‘master’ file (CSV) and the second is 
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a SQL Server database which was created to allow the visualisation tool, 
discussed in chapter 5 to easily access the data. 

 

4.5 Data cleaning and pre-processing 

The steps to collecting the raw data are as follows: 

1) Gaining the right permissions from TfGM to be allowed to access their data 
system, known as C2 that contains the relevant data. 

2) Extraction of the raw journey time and traffic volume data from the C2 data 
system. This required manual parameters to be set before each sub-dataset 
can be populated and downloaded from the C2 system. For example: 

a. Once logged into C2, parameters, such as (Bluetooth) node A and B 
are required to be identified and set, the time frame of data observe 
had to be set, the time interval for all observations is required to be set 
and then the results need to be extracted in a .CSV format file. The 
selection of nodes was based on the Neighbourhood Network 
Topology described in section 4.3. Moreover, the selection of the 
nodes within the C2 system was challenging because not all sensors 
were active at the same time and there was the additional need to find 
Bluetooth sensors which overlapped with inductive loop counters. 

b. To cleanse this data all NULL values were replaced with ‘0’ and each 
.CSV contained a single month for a single link in a single direction for 
a single data source. Therefore, approximately 888 .CSV files needed 
to be merged into a single .CSV and once the final dataset containing 
the journey time and traffic volume data was created, it was loaded 
into a database. 

3) Event information including the dates the events occurred were collected 
directly from the o2 Apollo, Manchester for music concerts and comedy 
shows and the Etihad stadium for football fixtures between January 2017 and 
June 2017. 

a. To cleanse this data, both files (.CSV) provided by the Apollo and the 
Etihad with regards to events were imported into a database. 

4) Accident data was extracted in .CSV format from the Government website 
which is populated from the stats 19 reports conducted from the police 
departments. 

a. To cleanse this data, all unnecessary data was removed leaving an 
estimated start time, end time, severity, and longitude and latitude for 
plotting the location of the accident. The data was then imported into 
the database. 

5) School term start and end times were extracted from the Government open-
source website for school around the area of the Neighbourhood Network 
Topology.  

a. A list of start and end times were loaded into the database. 

Finally, all the data was merged into a single master file(.CSV) and then imported 
into a SQL Server database table using the date and time value to join 
sources together, providing an quarter-hourly picture of the Neighbourhood 
Network Topology (described in section 4.3) performance. 

There were restrictions and challenges in relation to using the TfGM system C2.  
For example, taking into consideration the requirements of TfGM, such as 
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using particular roads and attractors and then trying to find sensors in this 
area which were all active at the same time. The major challenge was trying 
to find links that had available data for both the Bluetooth sensors and the 
inductive loop counters between two set time periods January 2017 and June 
2017. 

 

4.6 Data considerations and observations 

The inductive loop counters and Bluetooth sensors are the primary data sources 
used within this research along with several other data sources. This data 
was collected at source; therefore, it is deemed to be the ground truth data 
and is fed into the RAG method (discussed in section 5.3) where a human 
being (from TFGM) classified the data (major congestion, slight congestion, 
and non-congestion) as domain experts.  

Despite, the MUCD dataset having several typical big data issues, such as noise, 
data sparsity and missing values, the MUCD was still successful in validating 
the conceptual model for three distinct case studies. Experiment One: 
Bathtub and leaf modelling recurrent congestion (section 4.8.1.2). 
Experiment two: Raindrop modelling semi-recurrent congestion (section 
4.8.1.3). Experiment three: Raindrop modelling non-recurrent congestion 
dependent on the severity (section 4.8.1.4). The observations and problems 
associated with the creation of MUCD can be summarised as:  

• There is a lack of consistent distance between the Bluetooth sensors causing 
each link to have its own heterogeneous characteristics, such as lane 
quantity, speed limits, road class, number of junctions, and length (which 
varies from 146m to 2,149m).  

• On the urban road network, there is a limited amount of inductive loop 
counters, which restricts the ability to calculate a volume count for each link. 

• Due to the limited number of sensors around Manchester and their position, 
it was impossible to create a complete network (many of the smaller roads 
and links are not included). For the purpose of this research, a 
neighbourhood network has been created and this was discussed in section 
4.3 

• The data quality of Bluetooth sensors is poor. For example, the capture rates 
during the night-time or periods where no vehicles pass Bluetooth sensors, 
the sensors will provide an incorrect average journey time when being 
observed.  

• In bad weather, the sensors which use a mobile network to transmit the data 
to a central location, can fail and cause the dataset to have missing data. 

• The Bluetooth sensor data cannot distinguish the difference characteristics 
between a bus with 30 people on it or a car with just one person, which 
causes the level of congestion to be overestimated on several occasions. 
Therefore, TfGM use a 25% outlier reduction to get a fairer average journey 
time.  
 

However, despite these challenges, a real word dataset was created. a full 
description can be found in section 4.7.  
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4.7 Final MUCD dataset description 

After cleansing, the final MUCD dataset will be used throughout the remainder 
of the thesis. Table 7 lists all attributes that will be used, their sources and 
data types. The attribute ‘Links’ ‘X’ represents a unique link between two 
Bluetooth sensors, or the link an inductive loop counter (also known as 
Automatic Traffic Counter (ATC)) is located on. In Table 7, NB is Northbound, 
SB is Southbound, NS is Nearside, and OS is Offside and the total number 
of records is 17376 rows. 

Table 7: Attribute description of MUCD Dataset 

Attribute Value Source 
Data 

Types 

Date 
Date of record 

observation 
TfGM Date 

Day 
Day of record 
observation 

TfGM String 

Time 
Time of 

observation 
TfGM Time 

Links X 

Upstream Average 
Journey Time 
between two 

Bluetooth 
sensors on each 

link heading 
upstream and 
downstream 

TfGM Numerical 
Downstream 

ATCs X 

NB NS Traffic volume 
count for each 
road link where 

an ATC is 
present. 
Counting 

individual lanes 
separately and a 

sum of both 
northbound and 

southbound 

TfGM Numerical 

NB OS 

SB NS 

SB OS 

NB Total 

SB Total 

Accident 

Start date/time 

Did an injury 
accident occur 

GOV.UK 

Date Time 
End date/time 

Severity Categorical 

Events Football Date 

Date of the 
Football 

matches, other 
big events, such 

as concerts. 

Manchester 
City FC 

Date 
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Attribute Value Source 
Data 

Types 

Start 
time 

Starting time of 
Football 

matches, other 
big events, such 

as concerts. 

Time 

End 
time 

Ending time of 
Football 

matches, other 
big events, such 

as concerts 

Time 

Concerts 

Date 

Date of the 
musical concert 

or comedy 
shows 

O2 Apollo 

Date 

Start 
time 

Starting time of 
musical concert 

or comedy 
shows 

Time 

End 
time 

Ending time of 
musical concert 

or comedy 
shows 

School 
Term 
Times 

Start date/time 
School terms 
starting times 

GOV.UK Date Time 

End date/time 
School terms 
finishing times 

Weather 

Temp(C) 
The temperature 

in degrees 
Celsius 

Custom 
Weather 

Numerical 

Weather status 
Recorded 
weather 
condition 

Custom 
Weather 

Categorical 

Wind(mph) 
Wind speed in 
miles per hour 

Custom 
Weather 

Numerical 

Humidity 
Humidity 

percentage 
Custom 
Weather 

Numerical 

Barometer 
Barometer 
record at 

observation 

Custom 
Weather 

Numerical 

Visibility(km) Level of visibility 
Custom 
Weather 

Numerical 
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4.8 Case Studies: validation of the universal ontology of road 

congestion 

Following the creation of a novel universal road congestion ontology in chapter 
three, real-world data was collected to validate the ontology. The real-world 
data used in this study, known as the Manchester Urban Congestion Data 
(MUCD) dataset (and its associated challenges) is different compared to 
other studies, which tend to use simulated datasets (Yuan and Cheu, 2003; 
Othman et al., 2015; Lee and Li, 2017; Rui et al., 2018), longstanding 
datasets(Anbaroglu et al., 2014; Anbaroğlu et al., 2015), or datasets collected 
from expensive data sources (Cheng et al., 2012; Anbaroglu et al., 2014; 
Anbaroğlu et al., 2015), which could not solve the practical issues (i.e. noise, 
data sparsity and missing values) associated with real-world big data 
analytics for TMS or ITS.  

This case study has been developed to address the research question RQ1: Is 
it possible to provide a clear conceptualisation of urban road traffic 
congestion using an ontological model? 

This will be achieved by validating the universal ontology of road congestion 
through answering the several questions proposed in chapter three. 

Questions: 

• What is congestion? 

• What is recurrent congestion? 

• What is semi-recurrent congestion? 

• What is non-recurrent congestion? 

• What is the cause of congestion? 

• Where has congestion occurred? 

This section will look at a series of experiments which are designed to assess 
the feasibility and usefulness, of the ontology and will investigate the three 
types of congestion as defined in Chapter three. Section 4.8.1.2 is the first of 
these experiments and will focus on AM peak rush hour which has the 
consequence of recurrent congestion. Section 4.8.1.3 is the second 
experiment that will focus on football matches, which has the consequence 
of semi-recurrent congestion. Section 4.8.1.4 is the third experiment that will 
focus on a fatal road accident, which has the consequence of non-recurrent 
congestion.  

For all three case studies, individual links from around Greater Manchester, UK 
were selected from the neighbourhood network topology defined in Figure 
27, and the journey times will be compared to the expected journey times 
(defined in section 4.8.1). The MUCD dataset as described in section 4.4 will 
be used to conduct these experiments.  

 

4.8.1 Experimental methodology: Expected journey time detection 

To assist in the visualisation of these experiments, a visualisation toolkit which 
is known as Transport Incident Manager (TIM) was developed as part of this 
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research. A full description of Tim, including the design and justification can 
be found in chapter five.  

To calculate the expected journey time for each link within the data from the 
MUCD dataset that was developed throughout chapter four and the final 
dataset presented in section 4.7 was processed to create a ‘typical link 
journey time’ for each link. The ‘typical link journey time’ is defined by 
aggregating 6 months’ of data by link and Time-of-Day-and-Day-of-Week 
(TOD TOW), which is broken down into 15-minute intervals and then 
multiplied or divided against the congestion factor to achieve the expected 
journey time parameters. The congestion factor (c)  is derived by using the 
method outlined in the “Congestion Reduction in Europe: Advancing 
Transport Efficiency” conducted by (Jones, 2016) and funded by the 
European Union Horizon 2020 program. The methodology for the congestion 
factor will be discussed in section 4.8.1.1.  

Let JTobs(t, l) be the representative of the observed journey time at link l with 
TOD DOW, t, JThis(t, l, w) be the representative of the historical data at the 
same link l with TOD DOW, t, however on a different week w. The typical 
journey time is represented by JTtyp(t, l) and is calculated by aggregating 

JThis(t, l, w1) , JThis(t, l, w2) , … , JThis(t, l, wn) where w1, w2, … ,wn  represent 

each week in the MUCD and then multiply and divide these values by c to 
create the upper and lower boundaries. 

Equation 3 and Equation 4 shows how to calculate the typical link journey time 
for the upper and lower boundaries. 

E(upper) = μ(X) ∗ c 

Equation 3: Upper boundary 

E(lower) = μ(X)/c 

Equation 4: Lower boundary 

μ(X) is the mean (typical) journey time for link x, c is the congestion factor, which 

is a real value multiplied or divided against the typical link journey time.  In 
these case studies, the congestion factor is 1.7 and was calculated using the 
following methodology discussed in section 4.8.1.1. Equation 5 below shows 
whether an observation is expected {0} or not expected {1}. 

f(Expected) = {

1, JTobs(t, l) >  JTtyp(t, l) ∗ c

0, JTobs(t, l) ≥ JTtyp(t, l)/c ≤  JTtyp(t, l) ∗ c

1, JTobs(t, l) < JTtyp(t, l)/c

 

Equation 5: Function for detecting congestion 

 

Using the combination of the mean journey time and the congestion factor, it is 
possible to create a pattern of expected or not expected journey time. 
Equation 5 has been implemented in Algorithm 1. 
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Algorithm 1 
An indicator of worse than expected journey time. 

 
Variables: i the set of observations, T the set of time periods, L the set of 
links, xi: the observation, x̅l,tis the average observed value over the time 

periods, Expected: An array of outcomes. Congestion factor: 1.7. 

1  forl ∈ Ldo 

2      fori ∈ Ido 
3Expectedi ← false 
4ifxi ≥  x̅l,t/φ

−1 ∗ Congestionfactorthen  

5Expectedi ← true 
6endif 
7ifxi ≤ −x̅l,t ∗ φ

−1 ∗ Congestionfactorthen  

8Expectedi ← true 
9endif 
10endfor 
11 end for 
12 returnExpected 

 
 

4.8.1.1 Methodology for the Congestion Factor  
This section describes the methodology for determining the congestion factor. 

The four steps are as follows: 

1) For each row within the MUCD dataset, which is a total of 17376 rows and 
64 links. The 95th percentile is calculated for each link journey time. The link 

journey time for link a at time interval t is denoted asya
95(t). 

2) The congestion factor needs to be calculated for link a at time interval t and 

is denoted asca
95(t) =  ya

95(t)/y̅a(t). 
3) For each link and time interval, repeat steps 1 and 2. a ∈ Aandt ∈

[1, 2, . . . , T], where A denotes the set of links and T denotes the total number 
to time intervals. 

4) Once the 95th percentile has been calculated for all 64-links and all 96-time 

(15 minutes) intervals, the median of ∑ can
95(tn)

a=64
t=96

n=1
 is considered the 

congestion value. 

The concept of a congestion factor has been implemented in a couple of studies 
related to non-recurrent congestion in London (Anbaroglu et al., 2014; 
Anbaroğlu et al., 2015). These studies have calculated the congestion factor 
to be 1.2 and 1.4, which are both lower than the 1.7 used within this research. 
This is because unlike previous studies which only takes into consideration 
data from within peak times (7am to 7pm), this research has used 15-minute 
intervals from midnight to midnight (a total of 24 hours) for a total of six 
months on a network of 64 links. Figure 28 presents a boxplot of the 95th 
percentile for all 64-links at all 96-time intervals. Then the median of the 
output (red line) is the congestion factor. 
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Figure 28: Determining the congestion factor for Manchester case studies 
topology 

 

4.8.1.2 Experiment One: Bathtub and leaf modelling recurrent congestion 
A case study has been chosen to provide a comprehensive understanding and 

to validate how a universal conceptual model can be used to support 
stakeholders with regards to recurrent congestion. The bathtub model (in 
section 3.4.1.1) explains how recurrent congestion is impacted by the inflow 
and outflow of vehicles causing the network to reach capacity, reducing 
speeds, and increasing journey times. Therefore, this exploration examines 
three links toward (inflow) and away (outflow) from the city centre.  

This will provide the conceptual model with the ability to capture the semantics 
of recurrent congestion caused by an event, such as rush hour. The three 
links are from an arterial route into Manchester similar to the leaf model (in 
section 3.4.1.2). Figure 29 and Figure 30 were produced using data (from the 
MUCD dataset) from Tuesdays, and Wednesdays at four different time 
periods for a total of six months. The x-axis is the time of day, the y-axis is 
journey time for each link in seconds, the values at the top of the graph and 
the red line in the centre of each boxplot is the median journey time, and the 
star is the mean journey time. 
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Figure 29: Boxplot of journey time for three links at three different 
periods (Tuesday) 

 

Figure 30: Boxplot of journey time for three links at three different 
periods (Wednesday) 

Both Figure 29 and Figure 30 demonstrate there is a clear and typical behaviour 
of journey time in the morning rush hour. 6am provides the lowest journey 
times with tightest clusters and at 7am there is a slightly increased journey 
time, however, the clusters remain tight. Moreover, at 8am the journey time 
is at the highest level in the four-hour timeframe and the clusters become 
extremely sparse. Finally, 9am shows the journey time reduces but the 
clusters remain sparse.   

This information could be used to predict the optimal time for travellers to avoid 
peak-time congestion and demonstrates what time the inflow of ‘water into 
the bathtub’ reaches the critical level across specified links. Furthermore, 
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Figure 31 demonstrates that the morning rush hour occurs slightly later on 
the link nearest to the city centre (link ‘g’) than the link closest to the highway 
(link ‘a’). Although the observations show the peak occurs at a slightly 
different time, it is still noticeable that the journey time starts to increase for 
both around 7:00 am. This is caused by high volumes of vehicles trying to 
enter the city centre within a short period of time. 

 

 

Figure 31: Journey time on 07/06/2017. Link ‘a’ (top) and ‘g’ (bottom). 
Observed journey time (blue), mean journey time (black), and 

expected journey time boundaries (green) 

Using the semantics captured in Figure 29, Figure 30, and Figure 31 it is possible 
to validate and display a visual representation of recurrent congestion in an 
ontology. See Figure 32.  
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Morning 
RushHour

causes

Recurrent
Congestion

“is a” relationship

occursAt
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Direction

Magnitude

hasDirection

Towards SetOfLinks

hasNetworkScope

partOf

hasMagnitude

PreEvent

LiveEvent

PostEventisNotCongested

isCongested

isNotCongested

 

Figure 32: The semantics of a recurrent congestion impact on the road 
network 

When an event, such as rush hour occurs, it causes recurrent congestion, which 
is predictable and cyclical because it always happens on a weekday between 
7am and 9am. Rush hour causes recurrent congestion on a city scale and 
impacts primarily the traffic going in the direction towards the city centre. 
During pre and post recurrent congestion, the journey time is at an expected 
level. However, during the live event, the magnitude triples the expected 
journey time causing a worse than expected journey time. Moreover, core 
objects from all five ontologies are present in the construction of Figure 32. 

 

4.8.1.3 Experiment two: Raindrop modelling semi-recurrent congestion 
To demonstrate the concept of a raindrop analogy (in section 3.4.1.3) a case 

study has been chosen. The case study will provide a comprehensive 
understanding whilst validating the ontology included in the universal 
conceptual model that can be used to demonstrate the necessity of the newly 
coined semi-recurrent congestion. The conceptual model captures the 
semantics of semi-recurrent congestion caused by an event, such as but not 
limited to, a football match.  

For this case study, specific data is analysed from the MUCD dataset that relates 
to a football match, located at the Etihad Stadium in Manchester, UK which 
took place on Saturday the 13th of May 2017 with an expected kick-off at 
12:30 and full-time at 14:00. A link near the attractor known as the Etihad 
Stadium has been selected to analyse the journey time and is shown in 
Figure 33. The expected journey time boundaries were calculated using 
Algorithm 1.  
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Algorithm 1 considers the mean journey time on every individual link based on 
Time-of-Day-and-Day-of-Week (TOD TOW) and then is multiplied by the 
congestion factor.  

 

Figure 33: Journey time on 13/05/2017 compared to the expected journey 
time 

One characteristic that separates semi-recurrent congestion from non-recurrent 
congestion, is semi-recurrent congestion is caused by an event that occurs 
at an attractor, such as a landmark e.g., a football stadium. Examining Figure 
33 shows several other unique characteristics of a football match, such as 
pre-event, kick-off, live-event, full-time, and post-event.  Pre-event is to the 
left of the 12:30 kick-off and post-event is to the right of the 14:00 full-time 
where both journey times excessively exceeds the boundaries of an expected 
journey time. The Live event is between both kick-off and full-time and it is 
noticeable that the journey time returns to an expected journey time.  

Again, these characteristics are different compared to non-recurrent congestion, 
where pre-event and the post-event journey time is typically an expected 
journey time, and the live event exceeds the expected journey time 
depending on the severity. Being able to identify and model these 
characteristics support the validation of the road congestion ontology by 
demonstrating the accuracy of the semantics presented in Figure 34 and will 
help to predict semi-recurrent congestion and the events that cause it. 
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Figure 34: The semantics of a semi-recurrent congestion impact on the 
road network 

Pre-event and post-event have a period of two to three hours of worse than 
expected journey time. This is due to an increased quantity of stakeholders 
travelling to and from the same attractor. During the live event, the journey 
time returns to a state of expected journey time. Post-event journey time is 
typically worse than pre-event, due to the high volume of stakeholders 
attempting to leave and gain access to the road network all at the same time. 
Figure 34 and Figure 35 presents a visual representation of the semantics of 
a football match and the impact of road congestion using the dimension 
journey time as a measurement of performance which confirms the 
characteristics previously discussed in this section to be accurate. Moreover, 
both Figure 34 and Figure 35 contain core objects from the five core 
ontologies. 
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Figure 35: The relationship between a football match, journey time, and 
traffic volume 

 

4.8.1.4 Experiment three: Raindrop modelling non-recurrent congestion 
dependent on the severity 

The final case study further explores the concept of a raindrop but showed the 
difference between the large and small raindrop (discussed in section 
3.4.1.3), which signifies a ‘slight’ and ‘fatal’ road accident. For this case study, 
the 7th of February 2017 was selected because data analysis indicated two 
separate road accidents had occurred on the same link. The first accident 
was classified as ‘slight’ and the second as ‘fatal’. Figure 36 and Figure 37 
shows two graphs with the journey time, expected journey time boundaries, 
and both traffic accidents plotted for the same link in both directions. 
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Figure 36: Journey time on 07/02/2017 compared to the expected journey 
time (towards the City Centre) 

 

Figure 37: Journey time on 07/02/2017 compared to the expected journey 
time (away from the City Centre) 

Slight road accident analysis 

In Figure 36 and Figure 37, the slight road accident (*) is on the left which 
happened during the AM peak rush hour at around 09:00. The journey time 
is noticeably worse than expected for traffic heading towards the city centre. 
However, heading away from the city centre, the journey time is expected 
and is not impacted by the slight road accident on the opposite side of the 
road. 
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Fatal road accident analysis 

In Figure 36 and Figure 37, the fatal road accident (*) is on the right which 
happened around 15:45.  The first noticeable difference between the slight 
and fatal road accident is, the aftermath of the fatal has an impact on both 
directions of traffic, causing journey time to either be excessively high or not 
recorded. This behaviour lasts for 4 hours, and diffuses outwards, impacting 
neighbouring links. Similar to how a raindrop would cause a ripple effect 
outward. 

 

Non-Recurrent
“is a” relationship

RoadTrafficIncident

td:Accident

Consequence

event:Event

isConsequenceOf hasConsequenceOf
Point Link
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ot:hasEnd
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causes

MagnitudehasMagnitude

PreEvent

LiveEvent

PostEvent

isNotCongested

isCongested

isNotCongested

 

Figure 38: The semantics of a non-recurrent congestion impact on the 
road network 

Figure 38 is the visual diagram of the semantics of non-recurrent congestion 
caused by a road traffic accident (however, the more serious the accident, 
the bigger the magnitude will be) and has been validated using the 
information collected in Figure 36 and Figure 37. A road accident happens at 
a point on a link, which is a location and where a road traffic incident occurs. 
A road traffic incident, such as an accident causes non-recurrent congestion 
because it is non-predictable and non-cyclical. Non-recurrent congestion is 
the consequence of the live event, which is congested and has a duration 
that varies on the severity and magnitude of the road traffic incident. 
Moreover, Figure 38 contains core objects from the five core ontologies. 

 

4.9 Chapter conclusion 

This chapter has introduced a real-world big data dataset known as the MUCD, 
which has many relevant characteristics for identifying events that have the 
consequence of congestion, such as spatial (location) and temporal 
characteristics (TOD DOW). When evaluating the five Vs of big data, the 
MUCD meets all the requirements. Variety (heterogeneity) as the data is 
extracted from several different sources and provides different types of data. 
Veracity (inconsistency and incompleteness) as it is real-world data, it is not 
perfect and contains missing data or incorrect values caused by issues with 
the sensors. Volume (scale) of the dataset is not the largest data set known 
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to man, however, it does contain 17376 records and 127 attributes. Velocity 
(timeliness) this data can be collected in quasi-real-time and would need to 
be analysed in quasi-real-time to gain any Value (worthiness).  

This dataset will be used throughout the thesis to validate the universal ontology 
of road congestion, to experiment with the idea of using supervised learning 
to gain knowledge and qualitative information from a quantitative dataset. 
This chapter has demonstrated it is possible to provide a clear 
conceptualisation of road traffic congestion using both analogical and 
ontological methods to develop a URCC model, providing vital knowledge to 
different types of stakeholders.  

The universal URCC model uses an analogical approach to provide stakeholders 
with an unsophisticated explanation of congestion that even a layperson 
would be able to understand. Additionally, the URCC model provides a more 
advanced understanding of road traffic congestion by introducing an explicit 
conceptualisation (ontological) that can be used to capture the semantics of 
all three types of road congestion. Furthermore, this chapter provides a 
consistent definition of the many objects that are used to create the overall 
ontology and explains their relationships with each other, e.g., hierarchy (is-
a) and object properties (has-a), allowing for a better understanding of a 
typical pattern for the many different road traffic events.  

The conceptual model was validated using the dataset created within this 
chapter and a case study which was also introduced in chapter four which 
demonstrated it was possible to provide a consistent answer to questions that 
have previously been vague or hard to answer (Abberley et al., 2017; Gould 
and Abberley, 2017). For instance, “what is congestion?”,” what is the 
cause?”, and “where has congestion occurred?”. Using the MUCD, the 
universal ontology, which was validated in section 4.8.1, it is now possible to 
answer these questions with clarity and consistency, as shown in Table 8.  
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Table 8. Consistent answers regarding “what is congestion?” 

Question Answers 

What is congestion? Congestion is what impacts the stakeholder’s 
journey and normally consists of excessive 
journey time and traffic volumes. A more in-
depth explanation would require knowing 
what type of congestion is occurring. 

What is recurrent 
congestion? 

Recurrent congestion is the aftermath of an 
event, such as rush hour (AM and PM peak). 
During the AM peak, due to large volumes of 
traffic entering the citing in a small timeframe, 
causes excessive journey time for all 
stakeholders in the direction of the city 
centre. 

What is semi-recurrent 
congestion? 

Semi-recurrent congestion happens pre and 
post events, such as football matches and 
concerts impacting traffic towards and away 
from an attractor. The severity of the 
congestion depends on the type of event. 

What is non-recurrent 
congestion? 

Non-recurrent congestion is the effect of a 
random event, such as a road traffic 
accident. It happens at a single point on a 
road network and then diffuses over time and 
impacts the local neighbourhood by 
increasing the traffic volumes and the 
stakeholders’ journey time. The level of 
impact depends on the severity of the initial 
event. 

What is the cause? The cause of congestion is an event that 
increases the stakeholder’s journey time and 
causes a concentration of traffic at a single 
point, neighbourhood, or city scale. 

Where has the 
congestion 
occurred? 

Depending on the type of congestion, the 
congestion is likely to occur across the whole 
city centre, at a single point on the network, 
or an attractor. 
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Chapter Five: Visualisation of the Manchester urban 

congestion dataset using the transport incident manager 

5.1 Introduction 

To gain a greater understanding of how the Manchester Urban Congestion Data 
(MUCD) dataset (as defined in chapter 4) and the multifaceted nature of the 
Urban Road Congestion Conceptual (URCC) model (as defined in chapter 3) 
interact with each other, a Transport Incident Manager better known as TIM 
was developed. In this research, the main contribution of TIM is the ability to 
fill the void left by the clear lack of tools that are capable of visualising real-
world big data datasets, such as MUCD and models of urban road 
congestion. This chapter attempts to answer the research question (RQ3) – 
“Can quantifiable big data on urban road congestion be visualised to provide 
quasi-real-time insight?” 

TIM will answer the research question by being a viable visualisation tool which 
stakeholders could use. TIM was designed to work with spatial and temporal 
data like the MUCD dataset and provide experts within the domain the ability 
to visualise their own data. For example, the experts that provided a portion 
of data for this research and helped to develop TIM are Transport for Greater 
Manchester (TfGM). Because this data has strong spatial characteristics a 
spatial measurement will be investigated and incorporated into TIM. The 
spatial measurement is known as Moran’s Index (I) (Lee and Li, 2017). and 
is used for determining the spatial autocorrelation between links. 

 

5.2  What is TIM? 

Due to the multifaceted nature of urban road congestion and the many 
dimensions that can be used to measure road traffic performance, such as 
journey time, volume, traffic flow, velocity, density, and spatial correlation. 
These measurements can all be impacted by indirect consequences, such 
as weather conditions, road works, social events, and road accidents. All 
these characteristics have an impact on the type of congestion from non-
congestion, recurrent congestion, non-recurrent congestion, and semi-
recurrent congestion (as defined in chapter 3). Therefore, TIM was developed 
to provide a method that allows stakeholders ranging from domain experts to 
laypersons to visualise the performance of an urban road network or 
individual road links. 

 

5.2.1 Methodology of the development of TIM 

TIM was developed in conjunction with TfGM, who specified the initial 
requirements. The primary requirement requested by TfGM was the creation 
of an informative dashboard that is capable of providing transport managers 
a real-time overview of individual link performance, based on previous trends.  
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TIM was developed over five stages with multiple different of prototypes being 
created along the way: 

Stage 1: TfGM to provide a list of key requirements. 

The main requirements requested by TfGM was the development of an 
informative dashboard that transport managers can use to analyse critical 
links. Additionally, it is important that the dashboard is capable of updating in 
real-time.  

Stage 2: Development of an initial prototype. 

The initial prototype created was an informative dashboard that provided a 24-
hour view of individual links (selectable by the user) performance. The real-
time performance is compared against the typical performance by comparing 
to historical data in real-time for the same 15-minute period on the same day 
of week. 

Stage 3: Demonstrate prototype to TfGM. 

When the initial prototype was developed, it was then presented to TfGM, who 
then requested the creation of a second dashboard, which required the RAG 
method for classification to be incorporated. The reason for this requirement 
was to help the transport managers to better identify urban road congestion 
in a timely manner when a link is performing inadequately.  

Stage 4: Addressing feedback from TfGM. 

This stage was conducted over many months and was iterative due to the nature 
of adding extra functionality into several refined versions of TIM. these refined 
versions of TIM were presented to TfGM for feedback and led to numerous 
additional functionalities being incorporated. These additional functionalities 
included the ability to analyse link performance over longer periods. For 
example, 24 hours, three days, one week and one month. Other 
functionalities, such as spatial analysis was included, to help identify high 
journey time and high traffic volume clusters which are an indicator of 
congestion on the network. Additionally, TfGM requested the ability to be able 
to monitor the overall network performance, therefore, this was added. Lastly, 
the author incorporated an unsupervised machine learning algorithm to help 
classify the characteristics of traffic volume and journey time into five 
classifications: Very low, Low, Median, High, and Very High. 

Stage 5: validating the final prototype.  

Once all the extra functionalities had been added, the author, created the ability 
to visualise multiple performance metrics on the same dashboard at different 
time scales. The final prototype was given to TfGM to ascertain the benefit of 
having a real-time dashboard that is capable of saving transport managers 
time by removing the need to collect relevant data and conduct ad hoc 
analysis on individual links. After evaluating TIM, TfGM deemed TIM to be a 
success because it was capable of providing instant feedback on the network 
and individual link performance, allowing them to make decisions quicker 
than manual operation. The only minor criticism was it was limited to only 64 
links (this will be address in future work). 
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5.3 What data is used in TIM? 

The data used within TIM is a subset of the MUCD dataset as defined in chapter 
4. The main attributes used within TIM are journey time and traffic volume 
which were supplied by TfGM and non-recurrent event information, such as 
a road traffic accident provided by Greater Manchester Police (through the 
GOV.UK portal). However, TIM was developed with the ability to integrate 
other sources of journey time, such as the API offered by Google.  

The data is presented in 15-minute intervals for a period of either 24 hours, three 
days, one week, or one month. 

 

Figure 39: Transport Incident Manager (TIM) 

 Figure 39 shows an example of journey time analysis for link ‘AU’ (‘A’ 
Upstream). Link ‘a’ goes upstream towards link {b} and {c} as described in 
section 4.3. The analysis presented in Figure 39 is a 24-hour period on 
Tuesday the 7th of February 2017 from midnight to midnight. The main 
viewgraph (Figure 39) has five attributes: 

• The observed journey time is plotted in 15-minute intervals.  

• The typical journey time is used to plot the median journey time every 15-
minutes for link ‘AU’ every Tuesday for a six-month period.  

• The top and bottom boundaries are used to plot what a typical journey time 
is for each link at each 15-minute intervals. 

• Finally, the main view graph in Figure 39 also plots road accidents that have 
occurred anywhere on the network and are not specific to an individual link.  
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Figure 40: Output when using Equation 6 and Equation 7 

To determine the top and bottom boundaries, empirical experimentation was 
conducted to explore a few options, such as Equation 6 and Equation 7 where 
μ is mean and σ is the standard deviation which is multiplied by φ (phi) to the 
power of -1 and is added and subtracted and finally multiplied by 1. Figure 
40 shows the output when using Equation 6 and Equation 7. The second 
option is Equation 8 and Equation 9 where M is the median journey time 
multiplied and divided by 1.7. 

Top = μ + (σ ∗ (φ−1)) ∗ 1 

Equation 6: Upper (Top) Boundary 

Bottom = μ − (σ ∗ (φ−1)) ∗ 1 

Equation 7: Lower (Bottom) Boundary 

Top = M ∗ 1.7 

Equation 8: Upper (Top) Boundary 2 

Bottom = M/1.7 

Equation 9: Lower (Bottom) Boundary 2 

The results for both options were provided to the domain experts from TfGM, UK 
to analyse and compare the values against their currently used RAG (Red, 
Amber, and Green) method (Abberley et al., 2019). Red, R, (Equation 10) 
where JT which is the observed journey time in 15-minute intervals, is greater 

than the M which is the typical (medium) journey time multiplied by 1.5. 
Amber, A, (Equation 11) where M multiplied by 1.25 less than JT and JT is 
less than or equal to M multiplied by 1.5. Green, G, (Equation 12) where JT 
is less than or equal to M multiplied by 1.25. A decision was then made to 
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use Equation 8 and Equation 9, because they are easier equations to 
implement and have similar behaviour to their current method of classifying 
congestion using RAG, where (R)ed is major congestion, (A)mber is slight 
congestion, and (G), is non-congestion. 

R = JT > M ∗ 1.5 

Equation 10: RAG (Red) Major Congestion 

A = M ∗ 1.25 < JT ≤ M ∗ 1.5 

Equation 11: RAG (Amber) Slight Congestion 

G = JT ≤ M ∗ 1.25 

Equation 12: RAG (Green) No Congestion 

 

5.4 Functionality 

TIM was developed to provide a better way to visualise the multiple concepts of 
urban road congestion, such as recurrent, semi-recurrent, and non-recurrent 
and the events that cause urban road congestion, such as ‘rush hour’, football 
matches, and road accidents. 

The functionalities of TIM and the sections where each function is discussed 
within this thesis can be defined as follows:  

• Visual functionality 
o Real-time (graphs) visual views (Section 5.4.1) 

▪ Main view (Section 5.4.1.1) 
▪ Classification (Section 5.4.1.2) 
▪ Moran’s I (Section 5.4.1.3) 
▪ Network performance (Section 5.4.1.4) 

o Static classification (RAG) view (Section 5.4.2) 
o Unsupervised learning view (Section 5.4.3) 

• Temporal measurement (Section 5.4.4) 
o 15-minute intervals within 24 hours 
o 15-minute intervals within 3 days 
o 15-minute intervals within a 1 week 
o 15-minute intervals within a 1 month 

• Statistical measurement (Section 5.4.5) 
o Medium journey time for every 15-minute interval for individual links 

over a 6-month period. 
o Mean journey time for every 15-minute interval for individual links over 

a 6-month period. 

• Pause and resume real-time visual views. 

Because of the complexity of the real-world big data (MUCD) dataset and the 
different concepts of congestion, three views were explored. The first is a 
real-time visual view (Section 5.4.1) which has the ability to update in real-
time as additional data is added to the database, the second is a static view 
(Section 5.4.2) which is used to visualise the RAG method which is currently 



79 

 

used by TfGM, UK. The final view is an unsupervised (k-means++) visualiser 
(Section 5.4.3). 

 

5.4.1 Real-time visual view 

The real-time visual view, first illustrated in Figure 39, was designed with the 
addition of a ticker which allows the data to refresh every 3000 milliseconds 
and populates the visual views. The objective of the real-time visual views is 
to provide a way for the researchers and domain experts to visualise real-
world big data and conduct urban road network performance. There are four 
sub-types of real-time visual views:  

1) Main view (Section 5.4.1.1)  

2) Classification (Section 5.4.1.2)  

3) Moran’s Index (Section 5.4.1.3)  

4) Network Classification (Section 5.4.1.4). 

 

5.4.1.1 Main view 
The first real-time visual view created was the main view that was partially 

discussed in section 5.2. Figure 39 Shows an example of journey time 
analysis for link ‘AU’. The analysis presented in Figure 39 is one observation 
every 15-minutes for a 24-hour period on Tuesday the 7th of February 2017 
from midnight to midnight. In addition to the functionality discussed in section 
5.2, the main view also plots road accidents that have happened anywhere 
on the network and are not specific to an individual link. 

 

5.4.1.2 Classification 
The second real-time visual view (Figure 41) shows the classification of 

congestion which is either ‘congestion’ (red) or ‘non-congestion’ (green) over 
the period of 24-hours with observations at every 15-minute intervals. The 
classification is identified when the journey time exceeds the top boundary 
Equation 8, or the bottom Equation 9 boundary discussed in section 5.3.  
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Figure 41: Classification of Congestion 

Figure 42 shows how the four visual views can be visualised together as well as 
by themselves. Figure 42 shows the classification and main view graphs 
stacked on top of each other for better visualisation.  

 

 

Figure 42: Main (top) and Classification (bottom) 
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5.4.1.3 Moran’s Index   
Moran’s Index (I) is used for determining spatial autocorrelation at every 

observation. Moreover, Moran’s I is just one of many spatial statistical 
measurements and has previously been used to model spatial 
autocorrelation for many things, such as the impact hurricane sandy had on 
HIV, pollution hotspots, and road accidents on Belgium motorways (Black 
and Thomas, 1998; Zhang et al., 2008; Acharya et al., 2018; Wilt et al., 2018; 
Chen, 2020). Spatial autocorrelation is extremely multifaceted because it 
models the spatial correlation in a multi-dimensional space and can be multi-
directional at the same time. A good example of multi-dimensional and multi-
directional spatial correlation is a road network due to the many different road 
links (multi-dimensional) and the ability for traffic to travel upstream and 
downstream on these links (multi-directional). 

There are two statistical versions of Moran’s I, which are global and local Moran’s 
I. This research will focus on using global Moran’s I because it is designed to 
identify clusters on a whole network or region instead of individual links, which 
local Moran’s I was designed to do and is used to identify the exact area the 
cluster is located. (Yang et al., 2018; Xiong et al., 2021). Therefore, because 
this research is trying to model the concept of urban road congestion and its 
causes and not identify the location of the cause, this research, and the 
development of TIM, only focused on the inclusion of Global Moran’s I. 

Global Moran’s I (Equation 13) is defined as: 

I =
N

W

∑ i∑ jwij(xi − x̅)(xj − x̅)

∑ i (xi − x̅)2
 

Equation 13: Global Moran's I 

Where N is the number of spatial units indexed by iand j; x is the variable of 
interest; x̅ is the mean of x;wij is a matrix of spatial weights with zeros on the 

diagonal, for instance, wij = 0; and Wis the sum of all wij. Moran’s I ranges 

between -1 and +1. When I am equal to +1, it is an indication that all the 
observations on the whole network or within the region are clustered in space. 
However, if the I is equal to -1 then it implies all observations are randomly 
scattered (Tepanosyan et al., 2019). Figure 43 shows the TIM visual view of 
Moran’s I alongside the main view and the classification view.  
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Figure 43: Main (top), Moran's I (centre), and Classification (bottom) 

 

5.4.1.4 Network Performance 
The network performance view provides a total journey time recorded on the 

whole neighbourhood network at every 15-minute interval. The total journey 
is the sum of all 64 links on the network (32 upstream and 32 downstream) 
as described in section 4.3. The benefit of domain experts using the network 
performance is it provides a summary of the overall performance and will 
allow domain experts to easily identify anomalies on the network. 
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Figure 44: Network Performance (top), Main (top centre), Moran's I 
(bottom centre), and Classification (bottom) 

Figure 44 shows the whole network (total journey time) performance (top) for link 
‘g’ upstream on the 7th of February 2017. Below that is the main view (top 
centre), next is Moran’s I (bottom centre), and finally the classification 
(bottom).  

 

5.4.2 Static classification (RAG) view 

The static classification view is illustrated in Figure 45 and Figure 46, which 
shows the RAG classification which is implemented by TfGM, where the red 
(Equation 10) represents major congestion, amber (Equation 11) slight 
congestion, and green (Equation 12) non-congestion. Figure 45 shows the 
classification for the journey time upstream and Figure 46 shows the 
classification for the journey time downstream on the 7th of February 2017 
on link g. Each observation is at every 15-minute interval. 
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Figure 45: Static classification view (upstream) 

 

 

Figure 46: Static classification view (downstream) 
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5.4.3 Unsupervised learning visualiser view 

The unsupervised learning visualiser view was developed to assist with 
investigating the use of unsupervised learning to identify the characteristics 
of urban road congestion in chapter six. Therefore, the supervised learning 
algorithm introduced in this chapter will contribute towards answering the 
research (RQ2) - “Can quantitative Big Data be used to provide qualitative 
information in conjunction with a road traffic ontology with the support of 
Machine Learning?”. 

 

5.4.3.1 Why was k-means++ used? 
TIM is used to visualise the unlabelled real-world big data (MUCD) dataset to 

help achieve the focus of the following paper (Abberley et al., 2017), which 
was to gain knowledge and understanding from an unlabelled subset of the 
MUCD. Therefore, to analyse the unlabelled data an unsupervised learning 
approach, such as clustering was taken. Clustering was chosen because it is 
one of the most common types of machine learning algorithms used when 
dealing with unlabelled data (Philip Chen and Zhang, 2014).  

Some of the most popular clustering algorithms are k-means, k-medians, 
Expectation Maximisation (EM), and Hierarchical Clustering (Aggarwal, 
2013). However, for this research, k-means++ algorithm was chosen 
because according to (Arthur and Vassilvitskii, 2007) it has previously 
achieved functional values of 20% compared to k-means and performed 70% 
faster when conducting experiments on four different datasets, the first two 
were synthetic and are known as ’Norm-10’ and ‘Norm-25’ dataset and the 
remain two are known as ‘Cloud’ and ‘Intrusion’ dataset which the latter is the 
largest dataset with 494019 data points in 35 dimensions. 

 

5.4.3.2 K-means++ algorithm 
The k-means++ algorithm steps below have been adapted from the method set 

out in (Arthur and Vassilvitskii, 2007). Where 𝑘 is the number of centres, 
which is used to defined how many clusters (𝑐) will be created.  𝐶 is a set of 
clusters. 𝑋 is a set of data points and 𝑥 is a single data point. i and 𝑗 are both 
sets of observations. 

1a. Take one centre 𝑐1, chosen uniformly at random from 𝑋 .  

1b. Take a new centre 𝑐𝑖, choosing 𝑥 ∈ 𝑋 with probability 
𝐷(𝑥)2

𝑥∈𝑋𝐷(𝑥)2
 where 𝐷(𝑥) 

denotes the shortest distance from a data point.  
1c. Repeat Step 1b. until we have taken k centres altogether.  
 
2. For each 𝑖 ∈ {1, . . . , 𝑘}, set the cluster 𝐶𝑖 to be the set of points in 𝑋 that are 

closer to 𝑐𝑖 then they are to 𝑐𝑗 for all 𝑗 ≠ 𝑖.where 𝑘 centres 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}. 

3. For each 𝑖 ∈ {1,… , 𝑘}, set 𝑐𝑖 to be the centre of mass of all points in 𝐶𝑖 ∶ 𝑐𝑖 =


1

|𝐶𝑖|
∑𝑥 ∈ 𝐶𝑖

𝑥. 

4. Repeat steps 2 and 3 until 𝐶 no longer changes. 
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5.4.3.3 Example of K-means++ clustering algorithm output 
Figure 47 provides an example of the K-means++ algorithm output on link ‘g’ for 

every Tuesday, for a 6-month period from January 2017 and June 2017. The 
output provided five classifications (which are represented by the stars (*)): 
Very low (red), Low (yellow), Medium (turquoise), High (purple), and Very 
high (green) journey times. These five classifications were calculated using 
the method discussed in section 5.4.3.2. The distance between the points 
were measured using Euclidean distance (Equation 2). 

 

Figure 47: K-means++ clustering 

Observing Figure 47 would provide TfGM the ability to classify observed journey 
times, such as a ‘high journey time’ in a statistical manner instead of using 
their current ‘gut feel’ approach which is relevant to the individual at point of 
analysis.  

 

5.4.4 Temporal selection 

When analysing the data and the network performance, researchers, and 
domain experts such as TfGM, may want to look at the data for a longer 
period than 24-hours to help identify any anomalies. Therefore, TIM was 
developed to display data for four different time periods: 24-hours, three 
days, one week, and one month. Figure 48 shows a three-day period from 
the 12th of February 2017 till the 15th of February 2017 on link ‘g’ at 15 minutes 
intervals. 



87 

 

 

Figure 48: Temporal selection of three days 

Observing Figure 48 would provide TfGM the ability to see if any of the days 
appear to be an outlier, which could be identified because it doesn’t follow 
the typical behaviour of the previous days. 

 

5.4.5 Statistical measurement 

Figures 49 and 50 show the different visualisation of the mean average journey 
time and median average journey time which is represented by the dark blue 
line. Additionally depending on if you choose to use the mean or median 
measurement, the calculation for the upper and lower boundaries would be 
different and give a slightly different classification of congestion.  
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5.4.5.1 Mean 
 

 

Figure 49: Statistical measurement (mean) 

 

5.4.5.2 Median 
 

 

Figure 50: Statistical measurement (median) 
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5.5 Why is TIM important? 

There is an obvious lack of visualisation tools that are capable of visualising real-
world big data datasets, such as MUCD dataset. Furthermore, there is a lack 
of tools that are capable of visualising models of urban road congestion. 
Making TIM a vital component of this research because it is able to provide 
a platform for visualising the MUCD dataset in several different ways. 
Therefore, TIM is an essential tool kit for exploring urban road congestion, 
analysing data to identify patterns and characteristics, thus, supporting the 
conceptual model; analogy, and ontology discussed in chapter three. For 
instance, it has been theorised that urban road congestion has three types of 
congestion: recurrent, non-recurrent, and semi-recurrent (which was coined 
by the author).  

In the next section (5.6), an event that represents each type of congestion will 
be evaluated using TIM. These events are: rush hour (recurrent), a road 
accident (non-recurrent), and a football match (semi-recurrent). 

 

5.6 Evaluation of TIM and the data set provided by TfGM.  

As previously mentioned in section 5.5, this section will use the real-world big 
data visualiser tool (TIM) and the MUCD to evaluate three different types of 
congestion which are the consequences of three different events. The three 
scenarios being presented are: rush hour (Section 5.6.1) which is classified 
as recurrent congestion because it is predictable and cyclical, a road accident 
(Section 5.6.2) which is classified as non-recurrent congestion because it is 
non-predictable and non-cyclical, and a football match (league) (Section 
5.6.3) which is classified as semi-recurrent because it is predictable but non-
cyclical. 

 

5.6.1 Rush hour 

The case study being used for the road traffic event that has the consequence 
of recurrent congestion is rush hour am and pm which is predictable and 
cyclical, and this example occurs on the A6 within Greater Manchester, UK, 
on the 8th of March 2017 and the 9th of March 2017. Figure 51, Figure 52, 
Figure 53, and Figure 54 all show a 24-hour period with 15-minute intervals 
of journey time for link {z} on a Wednesday and a Thursday.  
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Figure 51: Link z upstream 8th of March 2017 

 

Figure 52: Link z upstream 9th of March 2017 

Looking at both Figure 51 and Figure 52 you can see an obvious increase in 
journey time where the average observed journey time on both days range 
from 100 to 150 seconds. However, the observed journey time between 8 am 
and 9 am sharply increase to around 400 and 500 seconds. Then between 9 
am and 10 am the journey time starts to revert to a typical journey time 
between 100 to 150 seconds. 
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Figure 53: Link z downstream 8th of March 2017 

 

Figure 54: Link z downstream 9th of March 2017 

Figure 53 and Figure 54 shows a similar behaviour as Figure 51 and Figure 52, 
however, due to this being in the opposite direction and heading out of 
Manchester city centre. The pattern of journey time sharply increasing occurs 
in the afternoon around 4 pm and returns to a typical journey time around 7 
pm. 

 

5.6.2 Road accident 

The case study being used for the road traffic event, which has the consequence 
of non-recurrent congestion is a fatal road accident that happened on the A6 
within Greater Manchester, UK, on the 7th of February 2017 at 15:40 and is 
non-predictable and non-cyclical. The A6 road consists of the following links 
{a, c, e, g, i, m, o, z} (Figure 27). However, because the fatal accident 
happens on link {g}, this analysis will focus purely on this link.  
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Figure 55 and Figure 56 shows a 24-hour period on the 7th of February 2017 
where two road accidents (the red star (*)) occurred on the urban road 
network the first one occurred around 8:55 am which was classified as slight 
and is not the focus of this section. The second road incident was classified 
as fatal and caused a more significant impact on the network performance. 
As you can see from both Figure 55 and Figure 56 the journey time for 
upstream and downstream exceed the upper boundary significantly or is 
recorded as a zero-journey time. This means traffic is not passing both 
Bluetooth sensors within the 15-minute interval because the road link is 
closed, and vehicles need to divert around the area of the fatal road accident. 
At 19:30 the road network returned to an expected classification of non-
congestion and remain that way for the rest of the 24-hour period. 

 

Figure 55: fatal road accident on link {g} (upstream) 

 

Figure 56: fatal road accident on link {g} (downstream) 
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5.6.3 Football match (league) 

The case study being used for the road traffic event that has the consequence 
of semi-recurrent congestion is a football match (league) which is predictable 
but non-cyclical. The league match occurred at the Etihad Stadium in 
Manchester, UK on the 21st of February 2017 and where Manchester City FC 
were one of the last 16 teams in the champion league and beat Monaco 5-2. 
Figure 57 presents an overview of the network performance between the 7th 
of February and the 7th of March 2017. When viewing Figure 57, there is an 
obvious anomaly of a sharply increased journey time over the whole network 
which is visible in the network performance view (top row). 

 

 

Figure 57: A one-month analysis of the road network 
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Figure 58: A three-day analysis of the road network 

In Figure 58, link {p} (near to the Etihad stadium) would typically take around 60 
seconds to travel, is now taking between 60000 to 80000 seconds and has 
become extremely congested from around midday until after midnight. 
Additionally, to the increase in journey time, there is an obvious spatial 
autocorrelation with a Moran’s I value of 0.75 for the majority of the day.  

Figure 59 shows a simplistic way to visualise the score (which is a normalise 
scaling between -1 and 1) as a chess board where each square would 
represent a road link. -1 represents when a high value, such as high journey 
time repels other high values. 1 represents when a low or high value is 
clustered nears similar values. 0 represents when the low and high values 
are randomly distributed across the network. Therefore, having a constant 
Moran’s I value of ~0.75 means there is a large cluster of links next to each 
other with very high and high journey times. This implies something major is 
impacting most of the neighbourhood network topology. 

 



95 

 

 

Figure 59: Moran’s (I)ndex simplified 

 

5.7 Chapter conclusion 

This chapter has introduced the design and implementation of TIM - a visual 
Transport Incident Manager tool. Furthermore, this chapter discussed the 
several different functionalities of TIM, such as plotting data in real-time to 
allow domain experts to have a real-time view of individual links and an 
overall network performance. Other functionalities are the ability to classify 
the data using the RAG method developed by TfGM, conduct unsupervised 
learning, the ability to look at the data in different spatial and temporal states, 
and different statistical measurements, such as mean and median.  

The key contribution to this chapter is TIMs ability to fill the void left by the clear 
lack of visualisation tools that are capable of visualising real-world big data 
datasets, such as MUCD and models of urban road congestion, such as the 
URCC. Therefore, this chapter answers the research question (RQ3) – “Can 
quantifiable big data on urban road congestion be visualised to provide quasi-
real-time insight?”  

This chapter has demonstrated that it is possible to take quasi-real-time data 
such as journey time and implement several statistical functions to gain 
insight into the behaviour and characteristics of congestion causing events, 
such as rush hour, a road accident, a football match. The feedback from the 
stakeholders at TfGM with regards to the functionality of TIM were positive, 
they were happy that their current RAG method was included because it was 
one of their requirements for assessing performance of individual links. 
Furthermore, TfGM has suggested in the future work, they would like TIM to 
look at their whole network instead of the subsample chosen for this research, 
and believe it would be a vital tool for daily use. 
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Chapter Six: An investigation of unsupervised learning to 

predict urban road congestion. 

6.1 Introduction  

The aim of this chapter is to investigate the use of unsupervised learning to 
ascertain whether it is possible to use predictive analytics to identify the 
characteristics of urban road congestion and gain (qualitative) context from 
quantitative data within the Manchester Urban Congestion Data (MUCD) 
dataset.  

The reason it is important to extract qualitative context from the MUCD is 
because current Intelligent Transport Systems (ITS) lack the capability to 
provide stakeholders, such as road users with meaningful context to allow 
them to make more informed and better decisions. For example, road users 
when driving on a highway would notice Variable Message Signs (VMS) 
declaring, “CONGESTION AHEAD EXPECT DELAYS”. However, this 
message lacks any meaningful context and creates more questions for the 
road users. For instance, what type of congestion? Where has the congestion 
occurred? What is the cause? When did it start? When will it end? Are there 
any alternative routes? How will it influence the overall journey? A more 
meaningful message would be “CONGESTION AHEAD IN 2 MILES, DUE 
TO AN MINOR ACCIDENT AT 15:45 CAUSING INCREASED JOURNEY 
TIMES”. This would allow the road users to make better decisions, such as 
coming off the highway early and diverting. This behaviour would then reduce 
the consequence of the minor accident, allowing the non-recurrent 
congestion to be cleared sooner. 

The experiments described in this chapter attempt to answer the following 
research question (RQ2) - “Can quantitative Big Data be used to provide 
qualitative information in conjunction with a road traffic ontology with the 
support of Machine Learning?” 

This chapter will contribute to answering the question by using the Urban Road 
Congestion Conceptual (URCC) model and the relevant data from within the 
MUCD dataset to conduct a series of empirical experiments using k-
means++. The empirical experiments will focus on using a single road within 
the Greater Manchester region which consists of several links.  Once the 
empirical experiments have been conducted, the outputs will be visually 
interpreted to ascertain whether qualitative context can be gained from 
qualitative data. This methodology can be reproduced, assuming a similar 
set of links with similar data is used.  

The results of this paper have been published in  

• L. Abberley, N. Gould, K. Crockett and J. Cheng, "Modelling road congestion 
using ontologies for big data analytics in smart cities," 2017 International 
Smart Cities Conference (ISC2), 2017, pp. 1-6, Doi: 
10.1109/ISC2.2017.8090795 
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6.2 Experimental methodology  

A subset of the MUCD dataset described in Chapter Four was used for the 
empirical experiments in this chapter. Two methods for classifying the data 
have previously been discussed in section 4.8.1 using Algorithm 1 and 
section 5.4.2 using the RAG method which has been visualised using the 
MUCD dataset within TIM. The labels are: Non-congested ((G)reen) and 
Congested ((R)ed and (A)mber). 

 The aim of the experiments described in this section is to understand the 
characteristic of urban road congestion, such as ‘high journey time’. The 
series of experiments will be treating the data as non-labelled. A non-labelled 
dataset is best suited for working in conjunction with unsupervised learning 
algorithms such as clustering (Zhang et al., 2016). Clustering is a type of 
machine learning algorithm and is one of the most commonly used 
techniques when a user has a non-labelled data problem and requires a 
solution (Philip Chen and Zhang, 2014). Clustering models the relationship 
between variables using approaches, such as centroid-based and 
hierarchical. All clustering methods use the inherent structures in the data to 
best organize the data into groups of maximum commonalities. Some of the 
most popular clustering algorithms are k-means, k-medians, Expectation 
Maximisation (EM) and Hierarchical Clustering (Aggarwal, 2013)  

Traditionally, congestion has been human monitored by measuring several 
different dimensions, such as speed, traffic volume, and occupancy on the 
road network. However, these dimensions are not without limitations; for 
example, speed as opposed to journey time is a measure at a single point on 
a link and cannot be used as a constant or to evaluate the whole link due to 
the possibility of a traffic incident further down the road. Traffic volume and 
occupancy require frequently deployed ‘expensive’ equipment, for instance, 
inductive loop counters.  

The series of experiments in this chapter have used data from inexpensive 
technology (e.g., Bluetooth sensors vs traffic cameras) that can be used to 
calculate journey times rather than speed and identify changes in journey 
time and traffic volume depending on the day and time providing information 
that is more useful and meaningful. 

The following hypothesis will be evaluated. 

Hypothesis one 

HA0: Clustering an unsupervised dataset creates clusters that make it possible 
to predict journey time. 

HA1:  Clustering an unsupervised dataset creates clusters that cannot be used 
to predict journey time. 

Hypothesis two 

HB0: Clustering an unsupervised dataset creates clusters that make it possible 
to identify differences between a weekday and a weekend. 

HB1:  Clustering an unsupervised dataset creates clusters that cannot be used 
to identify differences between a weekday and a weekend. 
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6.2.1 Experimental methodology 

The first step is to create a subset of the MUCD dataset, consisting of journey 
time, traffic volume, and road accident data in 15-minute intervals for a 3 
month (13 weeks) period (January until March 2017), and uses links on the 
A6 ({a},{c},{e},{g},{i},{m},{o})(see Figure 60) and will be discussed in section 
6.2.2. Once the subset of data was created the next step was to model this 
data by performing clustering using the k-means++ algorithm, which was 
discussed in section 5.4.3.  

 

Figure 60: Manchester’s neighbourhood network topology (Contains OS 
data © Crown copyright and database right (2017)) 

6.2.2 Dataset 

This dataset used in these series of experiments is a subset of the MUCD 
dataset and consists of data for the following links on the A6 ({a}, {c}, {e}, {g}, 
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{i}, {m}, {o}) which can be seen in Figure 60. Furthermore, the data subset 
uses three primary data sources (Bluetooth sensors, inductive loop counters, 
and accident data). Table 9 shows the name of the three data sources, where 
the data was extracted from, and the relevant location for the data, the time 
frame the data was available from at the point of the experiments, and finally 
the dimensions in relation to the data sources. 

Table 9: Data Sources 

Data From Location Timeframe dimension 

Bluetooth TfGM 
Manchester, 

UK 
2016-Current Journey Time 

Inductive Loop 
Counter 

TfGM 
Manchester, 

UK 
2015-Current Traffic volume 

Accident Data STATS19 UK 2005-current 
Casualty 

accidents only 

 

Table 10 shows a more in-depth description of the MUCD dataset, which 
describes the data, the data type, and the valid values. 

Table 10: Subset of the MUCD dataset data dictionary 

Field Name Description 
Data 
Type 

Valid Value 

Date Date of the observation. Date DD/MM/YYYY 

Day Day of observation. Character 

May only contain 
letters, digits, and 

periods with 
limited variable 

length. 

Time 

Time of observation. 
Each recorded 

observation is in 15-
minute intervals. 

time 
Lowest value: 

00:00:00. Highest 
value: 24:00:00. 

Link 

Upstream Each link represents a 
section of a road. The 

journey time between two 
Bluetooth sensors at the 

start and end of each 
Link is recorded in both 

directions called 
upstream and 
downstream. 

Integer 0.00…999,999.99 
Downstream 

ATC 

1 Volume 
Total volume count at 

Sensor 
Integer 0.00…999,999.99 … Volume 

5 Volume 

Accident 
Did an injury accident 

occur 
Integer 0,1 
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6.2.3 Methodology 

The following steps were taken to conduct the empirical experiments: 

• A subset of data was extracted from the MUCD dataset. 

• Define a suitable distance measurement for k-means++. The distance 
chosen for measuring the distance between the data point was Equation 14: 
Euclidean Distance. 

• Conduct experiments to determine the optimal number of clusters using the 
silhouette method. Five clusters were selected as they had the highest 
silhouette score of 0.609. 

• Analyse the output to ascertain whether or not the clusters represent the 
expected characteristics. For instance, does the expected clusters appear at 
the expected time of day and provide linguistical value. 

𝑑(𝑎, 𝑏) = √(𝑎𝑥 − 𝑏𝑥)
2 + (𝑎𝑦 − 𝑏𝑦)

2
 

Equation 14: Euclidean Distance 

Equation 14 shows how the distance between two points in the k-means++ 
experiments are measured. Where 𝑎 and 𝑏 are both points on a multiple 
dimensions plane relating to time of day, day of week, and journey time. 
Where 𝑥 and 𝑦 are the axis in each of the series of experiments. 

6.2.4 Results 

The purpose of these experiments was to use unsupervised learning to identify 
characteristics of urban road congestion and to gain qualitative information 
from quantitative data, such as the journey time and traffic volume discussed 
in section 6.2.2. Figure 61 displays 13 weeks of data in a scatter graph with 
the following weekdays: Tuesday, Wednesday, and Thursday across the x-
axis, the observed journey time along the y-axis, and each data point being 
grouped into four time periods are 6:0, 7:00, 8:00, and 9:00. Each period 
group represents a 15-minute interval. For example, 6:00 until 6:15.   

From Figure 61, it is apparent that the group 6:00 and 7:00 are a lot more 
consistent with regards to journey time than 8:00 and 9:00 which appear to 
have a lot more variation ranging from 0 to 2600 seconds. 9:00 is positioned 
sparsely between 7:00 and 8:00 demonstrating a visible temporal pattern in 
the journey time data. For instance, apart from a single outlier the 6 am and 
the 7 am times are the most clustered and have the quickest journey times 
throughout the morning, this is because the network is less occupied and 
allows for the traffic behaviour to be considered free flow compared to 8am 
and 9am where more vehicles are using the network at the same time 
causing a larger variation of journey times. Therefore, the visible temporal 
pattern demonstrates, it is easy to predict the expected journey time for pre-
recurrent ‘am rush hour’ congestion. 
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Figure 61: Scatter graph of journey times 

Following the exploration of journey time in Figure 61, the next phase was to try 
to prove whether hypothesis one is true or not. This was achieved by 
clustering the journey time data for a six-month period over a 24-hour period 
and Figure 62 is the outcome. 
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Figure 62: Clustered journey time into five categories 1) V. High JT 2) 
High JT 3) Avg. JT 4) Low JT 5) V. Low JT 

Figure 62 was produced by using the k-means++ algorithm to choose the initial 
centroid, in addition, Euclidean distance (Equation 2) was used for calculating 
the distance between points. Five clusters were selected as they had the 
highest silhouette score of 0.609 which indicates that the data is well-
distributed and ‘far away’ from its nearest cluster. Additionally, using five 
clusters provides a good level of resolution and resolution is vital to be able 
to prove hypothesis one true because without the ability to classify journey 
time into meaningful classes it would be impossible to predict the level of 
journey time. 
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 In Figure 63 clustering has been used for the purpose of visualising the 
relationships between the five classifications of journey time, Very High, High, 
Average, Low and Very Low. The five classes were based on the silhouette 
score. The size of each observation relates to the volume of traffic on the 
network at the same time as the journey time observation. Figure 63 has 
many interesting patterns, such as the journey time between 00:00 and 06:30 
remained dense in the Very Low or Low journey time. Then as expected 
between Monday to Friday around 7am the journey times become more 
average and around 8am high journey times become more prominent, which 
is expected behaviour considering the definition of recurrent congestion: 
“Occurs when significant amounts of vehicles simultaneously use a limited 
road space, such as on a weekday morning and afternoons peak hours’ traffic 
jam situations.”. 
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Figure 63: Clustered daily journey times into five categories 1) V. High JT 
2) High JT 3) Avg. JT 4) Low JT 5) V. Low JT 

To test hypothesis two, a different approach was used with regards to the 
visualisation of the data. In Figure 63, the x-axis is used for all 7 days of the 
week and the y-axis is used for time of day in 15-minute intervals. The size 
of each point is used to refer to the traffic volume.  

Figure 63 shows it is possible to use clustering to identify differences between 
weekdays and weekends. For example, on Saturday and Sunday, there are 
longer periods of lower journey times and fewer vehicles using the road in 
the morning. In addition, on Monday, Tuesday, Wednesday, and Thursday 
there is a noticeable High journey time at around 8:00 each morning, which 
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is expected because people are going to work and dropping children off at 
school. Finally, it is worth noting the volume levels typically become high at 7 
am during the week and does not reduce until around 8 pm proving 
hypothesis two true (HB0) “Clustering an unsupervised dataset creates 
clusters that make it possible to identify differences between a weekday and 
a weekend”.  

Proving both hypotheses true (HA0) “Clustering an unsupervised dataset creates 
clusters that make it possible to predict journey time” and (HB0) “Clustering 
an unsupervised dataset creates clusters that make it possible to identify 
differences between a weekday and a weekend” is vital when it comes to 
defining the differences between the consequence of a recurrent event such 
as morning rush hour and non-recurrent event such as a road traffic accident. 
It is also important to TfGM to be able to identify the differences between the 
spike in journey time and a reduction in traffic volume caused by both of these 
congestion types. 

6.3 Case Study  

A case study was chosen to attempt to answer the following research question 
(RQ2) - “Can quantitative Big Data be used to provide qualitative information 
in conjunction with a road traffic ontology with the support of Machine 
Learning?”  

The case study will look at a fatal road accident on the A6 on the 7th of February 
2017, using the data sources mentioned in section 6.2.2. Figure 64 was 
populated using python and shows the mean journey time, the time of the 
day in 15-minute intervals, and the (road) accident (the green line). The first 
(top) graph is the day of the accident, and the second (bottom) graph is the 
mean of 13 weeks (January until March 2017). Looking at Figure 64, there is 
a noticeable difference at the time of the fatal accident between the average 
journey time, which is around 1200 seconds (low journey time), and the day 
of the fatal accident that fluctuates between either 0 seconds (very low 
journey time) and around 3500 seconds (very high journey time).  

For a road user, these values mean very little but after using the clusters created 
in the experimental analysis, we can say the journey time has changed from 
a low journey time to either no journey time (road closed) or a very high 
journey time state due to diversion, which lasts for around three hours overall 
before returning to the expected journey time. Furthermore, examining the 8 
am period, both the average journey time and the single day are both average 
journey times according to the classification from the clustering which 
matches up with the typical behaviour of recurrent congestion. Both these 
examples of congestion (non-recurrent and recurrent) and the measurements 
match up to what was identified in the road accident ontology within the 
URCC. 
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Figure 64: Journey time on the a) 7th February 2017 b) over a 13-week 
period 

6.4 Chapter conclusion 

This chapter has introduced a series of empirical experiments which uses a 
subset of data from the MUCD dataset in conjunction with the URCC and its 
main component (the universal ontology of road congestion) to prove both 
the hypothesis and answer the research question (RQ2) - “Can quantitative 
Big Data be used to provide qualitative information in conjunction with a road 
traffic ontology with the support of Machine Learning?” 

This chapter has demonstrated that by interpolating the outcome of the series of 
empirical experiments it is possible to prove both hypotheses.  

HA0: Clustering an unsupervised dataset creates clusters that make it possible 
to predict journey time. 

HB0: Clustering an unsupervised dataset creates clusters that make it possible 
to identify differences between a weekday and a weekend. 

And in turn, demonstrated that it is possible to take quantitative data and extract 
qualitative information, which can be provided to the stakeholders, such as 
road users or transport managers. The stakeholders could then use the 
meaningful information to make better decisions. Therefore, contributing to 
answering RQ2. 

However, despite the promising results, further work is required to establish 
whether it is possible to identify similar patterns within the larger MUCD 
dataset and be able to predict the different types of road congestion using a 
rule-based system such as a fuzzy decision system. The feasibility of using 
a fuzzy decision-making system in this context is explored in chapter seven. 
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Chapter Seven: Validating the conceptual model using a 

fuzzy decision-making system. 

7.1 Introduction  

This chapter describes the conceptualisation, design, and implementation of two 
fuzzy-based decision-making systems, which have been designed to validate 
the Urban Road Congestion Conceptual (URCC) model (described in chapter 
three).  Both fuzzy systems are novel contributions of the work presented in 
this thesis.  First, a binary fuzzy decision-making system is proposed which 
focuses on classifying a binary output between congestion (recurrent 
congestion, non-recurrent congestion, and semi-recurrent congestion) and 
non-congestion using only journey time and traffic volume as the inputs. This 
work has been published in  

• Abberley, L., Crockett, K. and Cheng, J., 2019, April. Modelling Road 
Congestion Using a Fuzzy System and Real-World Data for Connected 
and Autonomous Vehicles. In 2019 Wireless Days (WD) (pp. 1-8). 
IEEE.  

Figure 65 shows an overview of the methodology for determining if it is possible 
to use the binary fuzzy decision-making system for predicting urban road 
congestion. The steps were as follows: 

• Extract a subset of the real-world spatial-temporal dataset, known as the 
Manchester Urban Congestion Data (MUCD) dataset. This subset of data is 
then processed and store within a database. (Chapter four). 

• The MUCD subset was then labelled using the Red, Amber, and Green 
(RAG) method proposed by Transport for Greater Manchester (TfGM) 
(Chapter five). 

• Membership functions within the Fuzzy decision-making system were 
designed using clusters obtained from experiments in chapter five. 

• The MUCD subset was then partitioned into two sets: training and test. The 
training data was used to create both a decision tree and naïve bayes 
models. The test data was then used to predict if congestion has occurred or 
not against all three types of machine learning: fuzzy decision-system, 
decision tree, naïve bayes (Section 7.3.6). 

• Predictive results are then compared using several statistical measurements, 
such as True Positive Rate (TPR), False Positive Rate (FPR), Precision, F-
measure, and Efficiency (Section 7.3.7). 
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Figure 65: Methodology for the binary fuzzy decision-making system 

The second fuzzy decision-making system will focus on classifying a multi-
classification output between recurrent congestion, non-recurrent 
congestion, semi-recurrent congestion, and non-congestion using journey 
time and volume, time-of-day, day-of-week, and distance from attractor as 
the inputs.  

Figure 66 shows an overview of the methodology for determining if it is possible 
to use the multi-classification fuzzy decision-making system for predicting 
urban road congestion. The steps are as followed: 

• Extract a subset of the real-world spatial-temporal data from MUCD dataset. 
This subset of data is then processed and store within a database. (Chapter 
four). 

• The MUCD subset was then labelled using the definitions defined in the 
conceptual model (Chapter three) and the expert defined method, such as 
RAG which was proposed by Transport for Greater Manchester (TfGM) 
(Chapter five). 

• The multi-classification Fuzzy decision-making system was built using a 
percentile model to standardise the journey time and traffic volume data. 
This standardised data was then used to create the required fuzzy 
membership function (Section 7.4.1.4). 

• The MUCD subset was then partitioned into two sets: training and test. The 
training data was used to create both a decision tree and naïve bayes 
models. The test data was then used to predict what type of congestion has 
occurred against all three types of machine learning: fuzzy decision-system, 
Decision tree, Naïve Bayes (Section 7.4.1.8). 

• Results are then compared using several statistical measurements, such as 
Recall, Precision, F-measure, and weighted average (Section 7.4.1.9). 
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Figure 66: Methodology for the multi-classification fuzzy decision-making 
system 

The experiments described in this chapter attempt to answer the following 
research question (RQ4) - “Can a fuzzy rule-based system be designed to 
predict road congestion through validation of the Urban Road Congestion 
Conceptual (URCC) model?” 

 

7.2 Fuzzy systems in transportation 

For centuries, we as people have naturally been migrating from rural to urban 
areas. This natural occurrence of urbanization has contributed to one of the 
biggest challenges’ societies faces each day, which is road congestion. Road 
congestion in urban areas is estimated to cost the UK economy a total of 
£307 billion by 2030 (Djahel, Jones, Hadjadj-Aoul, et al., 2018). Furthermore, 
road congestion contributes enormously to damaging the environment, due 
to air pollution which has an impact on people’s well-being (Gould and 
Abberley, 2017; Rui et al., 2018). 

In an attempt to reduce the impact of road congestion, many large corporations, 
such as Google, Tesla, and Uber are developing ‘smart vehicles’, such as 
connected and autonomous vehicles (CAVs) that will be implemented as part 
of an Intelligent Transport System (ITS) of the future. Smart vehicles are 
expected to reduce congestion levels and the number of fatal accidents on 
the roads, with an estimated 37,000 lives a year predicted as being saved in 
the United States (U.S.) alone (Mudge et al., 2018). This is due to a smart 
vehicles ability to communicate faster than a human and make better 
decisions based on information collected by sensors embedded within the 
vehicles and infrastructure (Djahel et al., 2015). However, due to the limited 
access to these smart vehicles and their associated infrastructure, this study 
will use alternative data sources, which comprise of data similar to what is 
collected by CAVs and Roadside Units (RSUs) that will be used within an ITS 
of the future, such as a VANETs. Furthermore, these types of ITS will provide 
data from vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) providing 
a constant stream of big data  (Isa et al., 2014; Djahel et al., 2015; Golestan 
et al., 2015), which can be used to provide different information, such as 
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volume, journey time, speed, and weather conditions, which are also known 
as dimensions.  

Little work has been conducted using fuzzy systems to model urban road 
congestion (Pongpaibool et al., 2007; Li et al., 2018; Sun et al., 2018; Amini 
et al., 2021; Singh et al., 2021; Toan and Wong, 2021). However, this limited 
work has indicated that fuzzy models of road congestion are better for a 
stakeholder, such as a domain expert to understand that the conventional 
quantitative models previously implemented, such as the probability model 
(Li, 2015) and the spatial-temporal model (Anbaroğlu et al., 2015). Fuzzy sets 
are the ideal choice for modelling road congestion because of their ability to 
handle the ambiguity, multifaceted nature, and uncertainty within traffic data. 
They have the ability to capture such characteristics through the use of 
linguistic variables and hedges which are easier for a domain expert to 
understand (Zadeh, 1968). 

 

7.2.1 What is a fuzzy decision-making system? 

A Fuzzy decision-making system is a typical control system based on fuzzy logic 
(Chen et al., 1993; Xuan, 2022). The term “fuzzy” refers to the system’s ability 
to deal with terms that are not binary or predefined and often referred to as 
linguistic variables. For instance, a humans’ understanding of the phrase, 
near or far, could imply very near, near, not near, far, and very far depending 
on the context and the environment. Hence, fuzzy terms are subjective and 
mean different things to different people. The main advantage of a Fuzzy 
decision-making system is that the model itself is made up of a number of 
fuzzy rules, which can model a problem, such as urban congestion and the 
model can be expressed in terms a human operator can understand. 

7.2.1.1 Methodology for a fuzzy decision-making system 
The focus of this section is on the development of a fuzzy decision-making 

system using the Mamdani fuzzy inference system method developed in 
1975 (Mamdani and Assilian, 1975). Mamdani fuzzy inference systems are 
typically applied to control-based problems. For example, manufacturing 
(Pourjavad and Mayorga, 2019), Supply chain management (Pourjavad and 
Shahin, 2018), groundwater prediction (Saberi et al., 2012) and smart city 
control problems (Iqbal et al., 2018). 

 Mamdani is one of two main fuzzy inference systems used in control base 
sceanarios. The second system is known as Sugeno (Takagi and Sugeno, 
1985; Sugeno and Kang, 1988) and was developed in 1985. Mamdani and 
Sugeno both vary somewhat in how the outputs are determined. One of the 
main differences is the way the fuzzy rules are determined. Mamdani uses a 
set of linguistical control rules obtained from expert knowledge, whereas 
Sugeno uses a systematic approach for generating the rules from a given 
input-output dataset. Other differences are, for Mamdani there is an output 
membership function. However, Sugeno has no output membership function. 
Mamdani maintains a high level of interpretability due to the logistical nature 
of the control rules. However, due to the systematic approach Surgeno uses 
to creating the rule set, there is a loss in the interpretability of the output. 
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Both fuzzy inference systems have their own merits, however, due to TfGMs 
requesting the ability to be able to interpret the output and gain better 
understanding, it was decided the Mamdani approach would be used. Figure 
67 shows the method for creating a Fuzzy decision-making system which 
consists of six stages and is described as follows: 

1) The first step is to determine a set of fuzzy rules. 
2) The second step requires fuzzification of the non-fuzzy input (crisp). The 

inputs are fuzzified according to the determined membership functions. 
3) The third step is to combine the fuzzified inputs in according to the fuzzy 

rules defined in step one and establish a rule strength. 
4) The fourth step is to calculate the consequents of each rule by applying a 

fuzzy operator (and/or/not) to the antecedents (If-Then). For instance, the 
top rule has two parts in the antecedent, so an AND operator was used 
to identify the minimum value as the result. 

5) The fifth step is to aggregate the consequences to get a single output 
distribution. 

6) The sixth and final step is to defuzzify (using the centroid of area method). 
The single defuzzified output will be a crisp value. Although, if a crisp 
classification is not needed, then this step can be skipped. 

 

Figure 67. Mamdani inference system [Source: Author] 
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In the work presented in this thesis, the binary (section 7.3) and 
multiclassification (Section 7.4) fuzzy decision-making systems have been 
developed using the six stages outlined In Figure 67. Both systems will be 
compared against two other algorithms. The first is a decision tree and the 
second is a probabilistic algorithm. The performance of all models will be 
validated using several statistical measurements, such as recall, precision f-
score, etc. mentioned in Figure 65 and Figure 66. 

In addition to the methodology mentioned above, during the crucial stages, such 
as determining a set of fuzzy rules, determining the membership functions 
(fuzzification), and determining the final classifications or crisp value 
(defuzzification) TfGM will be periodically testing both systems, providing 
expert knowledge and feedback to aid the calibration of the fuzzy control rules 
to manually optimise the overall performance. Furthermore, to assist with 
calibrating the fuzzy control rules, empirical experiments were conducted, 
such as using every combination of rules sets and using subsamples of data 
to ascertain whether the output was expected or not. 

 

7.2.2 Transport application  

The approach to using a Fuzzy decision-making system within the discipline of 
transportation to classify urban road traffic congestion is relatively new with 
very few papers primary focus being on congestion. For instance, a study 
(Bauza et al., 2010) into cooperative a vehicle to vehicle (V2V) road traffic 
detection congestion on freeways. This study uses a level of service metric 
created by a third party who collected aerial surveys to define the levels of 
congestion: slight, moderate, and severe. The author then created a new 
metric that uses four membership functions: Very Slow, Slow, Medium, and 
Fast, two inputs: Speed and Density, and 16 rules to define an output for one 
of three levels of congestion. However, this study does not consider non-
congestion as an output and has reported only using the model in a 
simulation with simulated data, furthermore, the focus of the study is on 
highways and does not reflect an urban road network, which has very 
different characteristics.  

Another study (Li et al., 2018), investigates road traffic anomalies that contribute 
to congestion at a single junction using a one-way traffic video sequence. 
This study uses two data inputs: Traffic flow and traffic density. Traffic flow 
has three membership functions called low, medium, and high. These 
functions are calculated using linear increasing, decreasing, and trapezoidal-
shaped membership functions with the fuzzy boundaries calculated using µ ±
𝜎 and µ ± 2𝜎. Where µ defines the mean and 𝜎 defines the standard 
deviation. Traffic density also has three membership functions, which are 
sparse, normal, and dense. These memberships are calculated using a 
statistical analysis of the pixels. This study uses a total of nine rules, which 
were obtained through experience and experiments. The output 
classifications were either: Normal traffic, slight congestion, and heavy 
congestion. The main limitation of this experiment was only evaluating on 
three different scenes and in total only had 142 observations. Another 
limitation was in the results, where the authors only report the accuracy, false 
detection rate, and the ‘average’ of three scenes without calculating an 
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average. The results claimed to achieve 100 per cent accuracy for normal 
traffic but claims a 0.11 per cent false detection rate, which contradicts the 
100 per cent claim. Furthermore, the slight congestion classification had an 
accuracy of 93.4 per cent and heavy congestion had an accuracy of only 72.2 
per cent.  

Reviewing recent literature (Amini et al., 2021; Singh et al., 2021; Toan and 
Wong, 2021) have demonstrated some of the limitations of trying to model 
urban road congestion, which includes the unavailability to obtain good 
quality data. Therefore, they have either simulated their own data, not used 
any data, or chosen to investigate highways using toll data to count the 
number of vehicles entering a zone. Another limitation of these studies was 
they developed their respective fuzzy systems in a simulated environment 
which would not be transferable in a real-world environment. 

7.3 Binary fuzzy decision-making system 

The development of a binary Fuzzy decision-making system contributes to 
knowledge by creating a novel way to predict urban road congestion. 
Additionally, the use of an unbalanced real-world big dataset is rare, as 
majority of literature use synthetic balanced datasets. Furthermore, the use 
of domain experts’ knowledge to construct a fuzzy model of road congestion 
requires no training data for the model to learn from unlike traditional machine 
learning models which require training and test data, some even require 
validation data. The Fuzzy decision-making system is achieved through the 
construction of a set of fuzzy membership functions and fuzzy rules that can 
be used to identify road congestion. An experiment is then conducted using 
the real-world data to determine whether the fuzzy model can be used to 
analyse traffic data to classify congestion. Comparisons are then made with 
an existing internal control centre system used by Greater Manchester 
Transport authority in the UK and other known classification algorithms.   

7.3.1 Methodology: Binary fuzzy decision-making system for predicting 

urban road congestion 

 This section describes the methodology, which was used to develop a fuzzy 
system for road congestion on an urban city network. The model utilises real-
world data from Bluetooth sensors and inductive loop counters provided by 
TfGM for Manchester, UK. These data sources will provide data, which is 
equivalent to what CAVs and RSUs would provide. Moreover, experts in road 
congestion management from TfGM and a road congestion ontology 
(Abberley et al., 2017; Gould and Abberley, 2017) were used to help define 
the fuzzy sets to ensure a thorough domain coverage.  

The road congestion ontology which was used to support the development of a 
fuzzy system capable of classifying road congestion was presented in 
(Abberley et al., 2017). The road congestion ontology states that congestion 
can be measured using multiple dimensions, such as journey time and 
volume. Furthermore, congestion is often the consequence of an event, such 
as rush hour, a road accident, a concert, a football match, and roadworks. 
Finally, depending on the severity of congestion the magnitude can vary from 
very low to very high. Therefore, in this study, the magnitude ranges defined 
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in the urban road congestion ontology (Abberley et al., 2017) will be used to 
determine the membership functions: Very low, VL, low, L, medium, M, high, 
H, and very high, VH which will ensure coverage of the domain. 

7.3.2 Data sources and variables 

A subset of the real-world spatial-temporal dataset, known as the Manchester 
Urban Congestion Data (MUCD) dataset was used. This subset consists of 
both journey time and traffic volume dimensions, which were collected from 
Bluetooth sensors and inductive loop counters and the subset has a total of 
17376 records. Each record consists of two attributes and a classification that 
was created using the Red, R, Amber, A, and Green, G, (RAG) method 
implemented by TfGM, UK. Where red (Equation 10) and amber (Equation 
11) are both congested and green (Equation 12) is non-congested. 

The problems associated with the MUCD dataset has been discussed in section 
4.6 and can be summarised as: 

• Due to the limited number of inductive loops Traffic counters, the ability to 
calculate the volume of traffic for each link is limited. 

• The data quality of the Bluetooth sensors has many issues. For example, 
capture rates; during the night periods or a period where no vehicle with a 
Bluetooth device passes the sensors cause the sensors to provide an 
incorrect average journey time when being observed. 

• In bad weather, the sensors which use a mobile network to transmit the data 
to a central location, can fail and cause the dataset to have missing data. 

• One class out significantly outweighs the other, causing the MUCD dataset 
classed as imbalanced, which cause challenges for machine learning 
classification algorithms. Since classification algorithms are often biased 
towards the majority class, which in this study is non-congestion. 

 

7.3.3 Methodology for determining the membership functions and fuzzy rules 

Stages 1 and 2 of the Mamdani methodology discussed in section 7.2.1.1 
requires a set of rules to be determined and the data inputs to be fuzzified 
according to the determined membership functions. Therefore, it is important 
to set out a methodology for determining the membership functions and fuzzy 
rule set. 

To assist with the initial determination of membership functions (section 7.3.3.1) 
and rules (section 7.3.3.2) an empirical approach was taken with the support 
of the urban road congestion ontology (Abberley et al., 2017), (Abberley et 
al., 2017), which is part of the URCC model discussed in chapter three. 
During the discussions with domain experts at TfGM, it was agreed the formal 
terms defined within the URCC model should be used to define the 
membership functions for journey time and traffic volume (due to their 
simplistic wording). This was achieved by using the magnitude concepts, 
such as very low, low, medium, high, and very high presented in the urban 
road congestion ontology. 

Figure 68 shows the methodology for determining the membership functions and 
fuzzy rules which consists of nine stages and are described as follows: 
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1) Collect, process relevant data, and store the data in a database for ease 
of access. 

2) The URCC model was initially used to determine the number of 
memberships and their names, however, empirical experimentation was 
conducted to determine the best approach for creating the membership 
functions. 

a. The approaches taken are: equal size memberships, using mean 
and +/- standard deviation one and two, and a unsupervised 
learning algorithm called K-means++. 

3) Initially to determine the rule set, all combinations of inputs-outputs were 
used and through several iterations of empirical experimentation and 
feedback from TfGM a final rule set was determined. 

4) Using the memberships and fuzzy rules, a subsample of data is used to 
evaluate the functionality of the fuzzy system. 

5) Analyses of the subsample data. 
6) Conducted empirical optimisation based on the analysis conducted in (5) 

to refine the membership functions over several iterations. 
7) Review the membership functions, rules, and the outcome produced 

using the subsample data with TfGM using TIM for visualisation support.  
8) Using the feedback from TfGM, a second stage of empirical optimisation 

is conducted to refine the rules over several iterations.  
9) Once the membership functions and rules are optimised, perform 

predictions against the test data. 
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Figure 68. Methodology for determining membership functions and rules 
[Source: Author] 

 

7.3.3.1 Membership function determination 
Table 11 shows the dimensions, data sources, and the linguistic values 

determined from the urban road congestion ontology (Abberley et al., 2017), 
(Abberley et al., 2017). The linguistic values of the membership functions 
representing journey time and traffic volume are also shown. 
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Table 11: Dimensions and their linguistic values 

Dimension 
(Variables) 

Data sources Linguistic values 
(Membership 

functions) 

Journey time 
 
 

Bluetooth remote 
sensors 

Very Low (VL) 
Low (L) 
Medium (M) 
High (H) 
Very High (VH) 

Volume Inductive loop 
counters 

Very Low (VL) 
Low (L) 
Medium (M) 
High (H) 
Very High (VH) 

 

Using the linguistic values identified in Table 11, the creation of the fuzzy 
membership functions can be performed using three steps:  

• Step 1: Perform k-means++ clustering discussed in (Abberley et al., 2017). 
Section 5.4.3.2 provides the algorithm used to conduct k-means++ on both 
journey time and volume data. 

• Step 2: Identify the final boundary values for a set of groups where they 
connect and define this value as dt. 

• Step 3: Using the dt value, determine membership function domain coverage 
using one of three membership functions: linear up, linear down, and 
trapezoidal shape. 

 
The primary objective of machine learning is to discover patterns within large 

datasets, such as the MUCD dataset used within this study. k-means++ 
clustering is an unsupervised algorithm used within machine learning to find 
a cluster of patterns in data. k-means++ uses the inherent structures in the 
data to best organise the data into groups of maximum commonalities 
(Aggarwal, 2013). This is achieved by partitioning n observations into k (in this 
study k=5) clusters. The use of five clusters was chosen based upon early 
empirical experiments, which found that five clusters provided sufficient 
resolution (Abberley et al., 2017).  
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Figure 69: Example of k clusters where k=5 being performed on 6 months 
of journey time data  

 

Figure 69 shows 17376 journey time records plotted on a 24-hour scale. Each 
observation within Figure 69 belongs to the cluster with the nearest mean 
value. Once k-means++ has been conducted, it becomes possible to identify 
the boundary values between each cluster, which will be used to create the 
membership functions in the fuzzy system.  

Figure 70 shows an example pair of linear opposing membership functions, 
which will be used for the VL (very low) and VH (very high) memberships for 
both journey time and traffic volume.  The two pairs Equation 15 and Equation 
16 are both linear increasing and decreasing membership functions L, can 
be defined as (K. Crockett et al., 2006):  

𝐿 ↑ (𝑥, 𝑑𝑚, 𝑑𝑛) = {

0, 𝑥 ≤ 𝑑𝑚
𝑥 − 𝑑𝑚

𝑑𝑛 − 𝑑𝑚
, 𝑑𝑚 < 𝑥 < 𝑑𝑛

1, 𝑥 ≥ 𝑑𝑛

 

Equation 15: Linear increasing membership function 

𝐿 ↓ (𝑥, 𝑑𝑚, 𝑑𝑛) = {

1, 𝑥 ≤ 𝑑𝑚

1 −
𝑥 − 𝑑𝑚

𝑑𝑛 − 𝑑𝑚
, 𝑑𝑚 < 𝑥 < 𝑑𝑛

0, 𝑥 ≥ 𝑑𝑛

 

Equation 16: Linear decreasing membership function 

Where dm is defined as dm=dt-nσ and dt is the value generated by K-means 
clustering on all variable i records. n is a real number n → [0.0, ∞], σis the 
standard deviation, and x is the value of the variable i. n is empirically 
determined. Additionally, dn is defined as dn=dt+nσ. 
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Figure 70: Example of a linear pair opposing fuzzy memberships 
functions 

 

Figure 71 shows an example of a trapezoidal-shaped membership function, 
which will be used for the L, M, and H memberships. The trapezoidal-shaped 
membership function T, Equation 17, may be defined as:  

𝑇(𝑥, 𝑑𝑚1, 𝑑𝑛1, 𝑑𝑚2, 𝑑𝑛2) =

{
 
 
 

 
 
 

0, 𝑥 ≤ 𝑑𝑚1

𝑥 − 𝑑𝑚1

𝑑𝑛1 − 𝑑𝑚1
, 𝑑𝑚1 < 𝑥 < 𝑑𝑛1

1, 𝑑𝑛1 ≤ 𝑥 ≤ 𝑑𝑚2

1 −
𝑥 − 𝑑𝑚2

𝑑𝑛2 − 𝑑𝑚2
, 𝑑𝑚2 < 𝑥 < 𝑑𝑛2

0, 𝑥 ≥ 𝑑𝑛2

 

Equation 17: trapezoidal-shaped membership function 

Where dm1, dn1, dm2, and dm2 are defined using the same method as dm and dn.  
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Figure 71: Example of a trapezoidal-shaped membership function 

 

7.3.3.2 Fuzzy Rules Determination (manual and expert) 
The fuzzy rules were initially created with every possible variant for each of the 

five membership functions, such as VL, L, M, H, and VH for journey time and 
volume. A total of 25 rules were created. However, the consequences of 
using this approach were observed in early analysis of the subsample data. 
It was observed from the early predictions that the results were not optimal 
due to more than expected false positives producing an overall weak 
performance. Therefore, with the support of the urban road congestion 
ontology (Abberley et al., 2017) and domain experts, TfGM (TfGM, n.d.),  the 
rules were manually optimised down to just six. As a result of empirical 
optimisation, it was discovered that several rules were not firing correctly due 
to overlapping of rules and it was determined many rules were not relevant. 
For example, if journey time was VH then the output is congested regardless 
of the volume. 
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Algorithm 2 uses both antecedents and consequents membership functions to 
fire six unique rules to acquire each rule strength ready for fuzzy inference.  

 

Algorithm 2 
Rules for congestion. 

 
Antecedents: Journey Time, 𝐽𝑇. Traffic Volume, 𝑉. 
Antecedents memberships: Very Low, 𝑉𝐿. Low, 𝐿. Medium, 𝑀. High, 𝐻. 
Very High, 𝑉𝐻. 
Consequents: Congestion, 𝐶. 

Consequents memberships: Congested, 𝐶𝑜𝑛. Non-congested, 𝑁𝑜𝑛. 

1     𝒊𝒇𝐽𝑇𝑖𝑠𝑉𝐻𝒕𝒉𝒆𝒏 
2         𝐶 ← 𝐶𝑜𝑛 

3     𝒊𝒇𝐽𝑇𝑖𝑠𝐻𝒕𝒉𝒆𝒏 
4         𝐶 ← 𝐶𝑜𝑛  
5    𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑉𝐻𝒕𝒉𝒆𝒏 
6         𝐶 ← 𝐶𝑜𝑛 
7    𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑛𝑜𝑡𝑉𝐻𝒕𝒉𝒆𝒏 

8         𝐶 ← 𝑁𝑜𝑛 
9    𝒊𝒇𝐽𝑇𝑖𝑠𝐿𝒕𝒉𝒆𝒏 
10      𝐶 ← 𝑁𝑜𝑛 
11  𝒊𝒇𝐽𝑇𝑖𝑠𝑉𝐿𝒕𝒉𝒆𝒏 
12     𝐶 ← 𝑁𝑜𝑛 

13  𝑟𝑒𝑡𝑢𝑟𝑛𝐶 

 

 

7.3.4 Fuzzy inference  

One of the first control systems and most commonly implemented methods for 
computing fuzzy inference is Mamdani (Mamdani and Assilian, 1975).  
Furthermore, Mamdani was first implemented within the transport domain, 
where it was used in an attempt to control a steam engine and boiler 
combination (Mamdani and Assilian, 1975). In this exploratory work on fuzzy 
systems, Mamdani inference was therefore selected.  
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Figure 72: An example of how Mamdani fuzzy inferences works 

 

 Figure 72 shows the composition of fuzzy inference, the four stages are:  

Stage 1. Fuzzification of the non-fuzzy inputs, which are crisp, numerical, and 
specific to the attribute domain. The inputs are fuzzified according to 
membership functions. 

Stage 2. If the antecedent of a given rule has more than one part, the application 
of a fuzzy operator is required to obtain a single value that represents the 
individual rule.  For instance, the top rule within  Figure 72 has two parts in 
the antecedent, so a AND operator is used to identify the minimum value as 
the result. 

Stage 3. Using the single value acquired in stage 2, the consequent is reshaped 
to provide the result of implication which is weighted depending on the 
linguistic characteristics that are attributed to it. 

Stage 4. Aggregation is the combination of the fuzzy sets that represent the 
outputs of each rule into a single fuzzy set (fuzzy output distribution). 

 

7.3.5 Defuzzification 

The method centroid of area (COA), also known as the centre of gravity (COG) 
(Equation 18) is one of the most commonly used methods to defuzzify a fuzzy 
set (the output distribution membership in Figure 72) and output a crisp 
numeric value, which in this study is the probability of congestion. To achieve 
this, the total area of the output distribution membership is divided into a 
number of sub-areas and then the COA is calculated for each sub-area. 
Finally, all sub-areas COA are summed to find the defuzzied value 
(probability of congestion). The defuzzification using COA, 𝑍∗, is the 
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defuzzied value of the fuzzy sets, 𝑍. Where µ�̅�(𝑧) is the degree of 
membership for the fuzzy set, where for all 𝑧 ∈ 𝑍. 

𝑍∗ =
∫ µ�̅� (𝑧). 𝑧𝑑𝑧

∫ µ�̅� (𝑧)𝑑𝑧
 

Equation 18: Centre of gravity 

 

7.3.6 Experimental Methodology 

The aim of the experiment is to determine whether a fuzzy system can be used 
to analyse traffic data to classify congestion.  

The following hypothesis will be evaluated. 

Hypothesis 

HA0: Using journey time and volume data, it is possible to classify congestion 
using a fuzzy system. 

HA1:  Using journey time and volume data, it is not possible to classify congestion 
using a fuzzy system. 

To evaluate the performance of the fuzzy system, the binary fuzzy decision-
making system was compared against two alternative machine-learning 
algorithms: The decision tree C4.5 (using the Weka implementation J48) 
(Weka, 2018) and naïve bayes. The decision tree C4.5 was chosen because 
C4.5 is explainable, and it would be useful to compare tree rules against fuzzy 
rules. Naïve bayes, which is a probabilistic classifier, was chosen because it 
is intuitive and simple, however, the performance is strong in many cases, 
and it manages all values independently. The statistical measurement to 
compare the three models are: True Positive Rate, False Positive Rate, 
Precision, F-score, and overall efficiency. All three models used the same 
MUCD subset, which was split into two parts: training that contains 8688 
records of which 6665 were classified as non-congestion and 2023 were 
classified as congestion (accounting for only 23% of records). The test 
dataset contains the remainder of the dataset. Datasets were mutually 
exclusive. 

In order to evaluate the three methods using an unbalanced dataset, five 
statistical measurements were chosen, which are: True Positive Rate, TPR, 
also known as recall and sensitivity. TPR measures the proportion of actual 
positives that are correctly identified. TPR is defined in Equation 19 where 
TP is a true positive, and FN is a false negative. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 19: True positive rate 

 False Positive Rate, FPR, measures the negative instance that is wrongly 
classified as positive. FPR is defined in Equation 20 where FP is false 
positive, and TN is a true negative. 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Equation 20: False positive rate 

Precision, also known as a positive predictive value, PPV, measures the number 
of positive predictions divided by the total number of positive class values 
predicted. Precision is defined in Equation 21. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 21: Positive predictive value  

F-measure, also known as F1 Score, F1, measures the balance between the 
precision and TPR. F-measure is defined in Equation 22. 

𝐹1 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Equation 22: F-measure  

Overall efficiency, also known as accuracy, measures the amount of correctly 
classified instances. Overall efficiency is defined in Equation 23. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 23: Overall efficiency 

However, due to the class imbalance as mentioned above, it is important to 
provide a single value that represents the performance of both classes for 
TPR, precision, and F-measure. To achieve this a weighted average will be 
used and is defined in Equation 24. Where 𝐶𝑛𝑜𝑛 represents the statistical 

measurement being weighted for the class non-congestion. 𝐶𝑐𝑜𝑛 represents 
the statistical measurement being weighted for the class congested. 

𝑊 =
𝐶𝑛𝑜𝑛 ∗ (𝑇𝑃 + 𝐹𝑁) + 𝐶𝑐𝑜𝑛 ∗ (𝑇𝑁 + 𝐹𝑃)

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Equation 24: Binary weighted average 

 

7.3.7 Results and Discussion 

The purpose of this study was to determine whether it is possible to classify road 
congestion using a fuzzy system and real-world traffic data. Table 12 shows 
the results for each statistical measurement for three machine-learning 
algorithms and their classes: Non-congestion (Figure 73), congested (Figure 
74) and the weighted average of both classes (Figure 75). 
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Table 12: Results for Fuzzy System, J48, and Naïve Bayes 

Experiment Class 
TP 

Rate / 
Recall  

FP 
Rate 

Precision  
F-

Measure  

Overall 
Efficiency 
(%) 

Binary Fuzzy 
System 

Non 94.4 32.9 90.4 92.3 

88 
Congested 67 5.5 78.4 72.2 

Weighted 
Avg. 

88 26.5 87.6 87.6 

Decision tree 
(J48) 

Non 95.2 59 84.2 89.3 

82.5 
Congested 41 4.8 72.1 52.3 

Weighted 
Avg. 

82.6 46.4 81.4 80.7 

Naïve Bayes 

Non 99.8 57.8 85 91.8 

86.3 
Congested 42.2 0.2 98.5 59.1 

Weighted 
Avg. 

86.4 44.4 88.2 84.2 

 

 

Figure 73 : TP rate, FP rate, precision, F-measure, and overall efficiency 
for non-congestion 
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Figure 74: TP rate, FP rate, precision, F-measure, and overall efficiency 
for congested 

 

 

Figure 75: Weighted average of TP rate, FP rate, precision, F-measure, 
and overall efficiency 

 

 Before discussing the results, it is important to reiterate the challenges of 
performing classification on an imbalanced subset of data. Global 
performance measurements, such as overall efficiency, provides an 
advantage to the majority class and can be misleading. For example, the 
overall efficiency of the fuzzy system is 88 per cent, which seems good. 
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However, assume the dataset had 100 instances, with a split of 80 for non-
congestion and 20 for congestion. Again, assume the system classifies non-
congestion as 92 instances and congested as eight instances. This means 
the class, congested is only 40 per cent efficient/accurate and not 88 per 
cent. Therefore, the discussion will focus on TPR, FPR, precision, F-
measure.  

In addition to the challenges mentioned above, it should be noted that due to the 
data considerations and concerns mention in section 4.6, such as: 

• A lack of consistent distance between the Bluetooth sensors causing each 
link to have its own heterogeneous characteristics.  

• The data quality of Bluetooth and inductive loop counter sensors are poor. 
Therefore, sensors are providing an incorrect observation value. 

• In bad weather, the sensors which use a mobile network to transmit the data 
to a central location, can fail and cause the dataset to have missing data. 

 
Initial empirical experimentation was conducted to ascertain how to manage the 

incorrect and missing data values. Therefore, two approaches where taken, 
the first approach was to set all missing data values to zero (This approach 
relates to the results in Table 12) and aligns with the manual approach taken 
with TfGM. The second approach was to replace the missing and incorrect 
values with the last reliable measurement. 

 
Table 13: Empirical Experiment Results for Fuzzy System: Comparing 

Handling of Missing and Incorrect Data 

APPROACH PRECISION RECALL F-MEASURE OVERALL 
EFFICIENCY 

(%) 

ZERO 
VALUES 

78.4 67 72.2 88 

LAST 
RELIABLE 
VALUES 

63.1 62.7 62.9 45 

DIFFERENCE 15.3 4.3 9.3 43 
 

Table 13 shows the two different approaches and demonstrates that using the 
last reliable value was 43% less efficient overall and had performed worst 
across the other three measurements: Precision, Recall, and F-measure. 
Therefore, it was decided that the best approach to handling the missing and 
incorrect values were to set the values to zero as the performance is better 
and it was truer to the expected behaviour for TfGM. 

The results in Table 12 show naïve bayes achieved a TPR of 99.8 per cent for 
non-congestion, which is the highest TPR across all algorithms and both 
classes. However, it also achieved the second highest FPR of 57.8 per cent. 
This is attributed to the paradox of imbalanced datasets. The FPRs for the 
minority class across all three algorithms are significantly low, for instance, 
the fuzzy system is 5.5 per cent, the decision tree is 4.8 per cent, and the 
naïve bayes is 0.2 per cent. The FPRs for the majority class across all three 
algorithms are noticeably higher, for instance, the fuzzy system is 32.9 per 
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cent, the decision tree is 59 per cent, and the naïve bayes is 57.8 per cent. 
Because of these noticeable differences, it has been decided from this point 
to only compare the weighted averages of both classes.  

The TPR weighted average for the fuzzy system is 88 per cent, which is higher 
than both, decision tree by ≈6 per cent and naïve bayes by ≈2 per cent. The 
FPR weighted average for the fuzzy system is 26.5 per cent, which is lower 
than both, decision tree by ≈20 per cent and naïve bayes by ≈18 per cent. 
The precision weighted average for the fuzzy system is 87.6 per cent, which 
is higher than the decision tree by ≈6 per cent, however, it was lower than 
the naïve bayes by ≈1 per cent. The F-measure weighted average for the 
fuzzy system was 87.6 per cent and is higher than both the decision tree by 
≈7 per cent and Naïve Bayes by ≈3 per cent. Furthermore, the fuzzy system 
overall, efficiency was the highest of all three machine-learning algorithms. 

Although all algorithms perform to a similar level with the fuzzy system 
performing the best overall, it should be noted that each algorithm has its own 
level of complexity, which some stakeholders may struggle to understand 
based on the complex explainability. For instance, the easiest of the three 
algorithms to implement and understand is the fuzzy system. As the system 
is built using linguistic values that all stakeholders are able to understand, 
and the output is a single defuzzified value (probability of congestion) where 
anything above 95 per cent is congestion compared to the RAG (Section 
5.4.2) method, which requires the stakeholder to compare the journey time 
to three equations to identify congestion.  

The second easiest to understand is the decision tree, J48, where a branch of 
the tree is split based on a value of the variable being used and this is 
repeated until the leaves are reached and an outcome is decided. It should 
be noted the bigger the tree and the more leaves it has the hard it is to 
understand the decision transparency and may make it harder for 
stakeholders to follow. The decision tree model in this experiment has a tree 
size of 17 and a total of 9 leaves. The 9 rules are transparent and could be 
understood by a transport expert. The most complex algorithm for 
stakeholders to understand is Naïve Bayes because it is a probabilistic 
classifier, which uses a probability distribution over a set of classes, instead 
of only outputting the most likely class that an observation should belong to.  

 

7.3.8 Conclusion  

This study has proven the hypothesis, HA0: Using journey time and volume data, 
it is possible to classify congestion using a fuzzy system and has 
demonstrated the proof of concept. The initial results have demonstrated the 
binary fuzzy systems ability to predict congestion using volume and journey 
time, outperforming both the decision tree and Naïve Bayes. Moreover, the 
fuzzy system using only six rules was able to manage an unbalanced dataset. 
Additionally, it would be possible to implement this model other urban road 
networks.  

The next step was to develop a multi-classification Fuzzy decision-making 
system that capable of recognise one of three types of congestion (Abberley 
et al., 2017): non-recurrent congestion, recurrent congestion, and semi-
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recurrent congestion plus non-congestion for when the traffic flow is good. 
This is an important requirement for TfGM who would benefit from not only 
being able to identify congestion but the type of congestion, which would 
allow for different mitigation strategies to be put in place. Additionally, they 
will be able to measure how much of the network is, at a given time, exhibiting 
signs of non-congestion, recurrent, non-recurrent, and semi-recurrent 
congestion. To achieve this goal, a multi-classification fuzzy decision-making 
system will be developed and discussed in section 7.4. The next fuzzy 
decision-making system will focus on having multi-classifications and will 
expand the linguistic variables to add times of day, days of the week, bank 
holidays, distance from an attraction, and direction of traffic flow. 

 

7.4 Multi-classification Fuzzy decision-making system 

Following on from the results of the binary fuzzy decision-making system, a multi-
class fuzzy decision-making system was designed and developed. 

The main differences are as follows 

• Instead of only being able to predict whether congestion has occurred or not. 
The multi-classification model looks to predict the type of congestion, 
recurrent congestion, non-recurrent, and semi recurrent as well as non-
congestion. 

• The system extracts a subset of the real-world spatial-temporal data from 
MUCD dataset. The extra data fields being extracted are, Time-of-Day, Day-
of-Week, distance from attractor  

• Extract a subset of the real-world spatial-temporal dataset, known as the 
Manchester Urban Congestion Data (MUCD) dataset. This subset of data is 
then processed and store within a database. (Chapter four). 

• The binary fuzzy decision-making system was analysing single links 
however, the multi-classification fuzzy decision-making system is designed 
to work with all links on the network. 

• As the multi-classification system is predicting against all 64 links where each 
link has its own characteristics, a percentile model will be created to 
standardise each link, allowing it to replace the k-means++ algorithm used to 
determine the memberships. 

The experiments described in this chapter contribute towards answer the 
following research question (RQ4) - “Can a fuzzy rule-based system be 
designed to predict road congestion through validation of the Urban Road 
Congestion Conceptual (URCC) model?” 

This section aims to create a fuzzy Decision-making system that can model the 
complex nature of urban road congestion using a real-world dataset. To 
visualise the multi-classification fuzzy decision-making system, an extension 
to TIM was created (Figure 76). This extension allows the user additional 
functionality, such as performing an ad-hoc prediction of the type of 
congestion occurring by allowing the user to set the parameters and instantly 
see the outcome. 
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Figure 76: TIM - Fuzzy system 

 

Additional automated functionalities are shown in Figure 77. These functions are 
as follows: automatically classify the subset of data based on the label 
definitions discussed in section 7.4.1.2. Perform the automatic predictions 
using the multi-classification fuzzy decision-making system against the 
training data. Automatically, statistically analysis the results using the 
following statistical measurements: Recall, Precision, F-measure, and 
weighted average for all 64 links individually and combined. 

 

Figure 77: Additional functionality 
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7.4.1 Methodology: Multi-classification fuzzy decision-making system for 

predicting urban road congestion type 

This section describes the methodology that was used to develop the second 
iteration of the fuzzy decision-making system for road congestion on an urban 
city network. The model is similar to its predecessor with several differences 
which have been mentioned in section 7.4.  

The method for creating the multi-classification fuzzy decision-making system is 
as followed: 

• The subset of data utilised to predict the type of urban road congestion 
are from the MUCD Dataset and consists of the following, journey time 
from Bluetooth sensors, traffic volume from inductive loop counters, event 
information from o2 Apollo and the Etihad Stadium, distance from 
attractor, road traffic accident injury statistic data (Stats19) from GOV.UK, 
and local school term times from GOV.UK (Section 7.4.1.1). 

• Each link within the subset of data at every 15-minute intervals requires a 
classification to be allocated to it. As the data is unsupervised knowledge 
gain from the URCC model and with support of domain experts, such as 
TfGM, definitions for each classification are specified in section 7.4.1.2. 

• Due to the multifaceted nature of the individual links, a new approach was 
chosen for standardising each links behaviour which can then be used to 
assist in the creation of the membership functions was implemented, 
referred to as the percentile model (Section 7.4.1.3). 

• Once the relevant data had been standardised and the classification for 
each link at ever 15-minute intervals for the 6-month period has been 
calculated, the next step is to determine the membership functions, see 
section 7.4.1.4. 

• After the fuzzy memberships functions have been determined, the next 
step is to determine the fuzzy rules, see section 7.4.1.5. 

• Now the memberships and rules have been determined. A fuzzy inference 
method needs to be selected in section 7.4.1.6. 

• The same method for performing defuzzification was discussed in section 
7.3.5. the method used was centroid of area (COA), also known as the 
centre of gravity (COG). 

  

7.4.1.1 Data sources and dataset 
For this study, a subset of the real-world spatial-temporal data from MUCD 

dataset, which was discussed in chapter four was used. This subset of data 
is then processed and stored within a database. The subset is representative 
of a sub-network of 64 links, data for each link is collected every 15 minutes 
for a total of six months and in its current form the MUCD is unsupervised. 

The MUCD consists of several types of data, such as average journey time 
between two sensors, traffic volume count at a single point, and event 
information from two attractors etc. This data is provided by Transport for 
Greater Manchester (TfGM), the Etihad Stadium, and the O2 Apollo. The 
data is then modified to create two new datasets of equal size, one for training 
and one for testing. Both datasets have a total of 555876 tuples and each 
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tuple contains five attributes and one label. The attributes are as follows: 
Distance from Attractor (DfA), Day of Week (DoW), Journey Time (JT), Time of 
Day (ToD), and Volume (V). The label is one of four classifications: Non-
Congestion (NC), Recurrent Congestion (RC), Semi-Recurrent Congestion 
(SRC), Non-Recurrent Congestion (NRC). Each type of congestion is clearly 
defined in section 7.4.1.2. 

 

7.4.1.2 Labelling multi-classification MUCD Dataset 
To be able to predict the type of congestion, a label is required. As this research 

introduces new concepts of congestion, such as semi-recurrent. It is 
important to define how each label is calculated. Non-congestion (section 
7.4.1.2.1), recurrent congestion (section 7.4.1.2.2), semi-recurrent 
congestion (section 7.4.1.2.3), and non-recurrent congestion (section 
7.4.1.2.4). 

 

7.4.1.2.1 Non-congestion 
Non-congestion, NC, (Equation 25) will be defined using a one of the three-

methods implemented by the domain experts at TfGM. The method for 
labelling is called RAG which stands for Red, Amber, and Green. This 
research will only use the green (Equation 12) to define non-congestion. 

𝑁𝐶 = 𝐽𝑇 ≤ 𝐽�̃� ∗ 1.25 

Equation 25: Non-congestion 

Where JT is the average journey time for all Bluetooth enabled vehicles travelling 

between two sensors on each link. The 𝐽�̃�is the 50th percentile of journey 
time for a single link within the MUCD. 1.25 is the congestion factors 
boundary used by TfGM. 

 

7.4.1.2.2 Recurrent congestion 
The definition of recurrent congestion, RC, (Equation 26 and Equation 27) can be 

summarised from literature as occurring when significant amounts of vehicles 
simultaneously use a limited space on a road network on the same day and 
at the same time (Verhoef, 1999; Hendricks et al., 2001; Arnott, 2013; 
Fosgerau and Small, 2013). Using this description and the semantic 
knowledge gained from the urban road congestion ontology (Abberley et al., 
2017; Gould and Abberley, 2017) it is possible to provide a semantic 
description of recurrent congestion as: Recurrent congestion is caused by an 
event that is predictable and cyclical, such as rush hour which always occurs 
on a weekday between 6 am and 10 am or 3 pm and 7 pm causing worst that 
expected journey time on a city-scale.  

𝑅𝐶 = 𝑇𝑂𝐷𝑎𝑚 +𝐷𝑂𝑊𝑤𝑑 +𝐽𝑇𝑤𝑜𝑟𝑠𝑡 + 𝑉𝑊𝑜𝑟𝑠𝑡 

Equation 26: Recurrent congestion (AM) 

Or 
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𝑅𝐶 = 𝑇𝑂𝐷𝑝𝑚 + 𝐷𝑂𝑊𝑤𝑑 +𝐽𝑇𝑤𝑜𝑟𝑠𝑡 + 𝑉𝑊𝑜𝑟𝑠𝑡 

Equation 27: Recurrent congestion (PM) 

Where t, time-of-day, for a specific 15-minute slot on road link x, where x is all 
road links on the urban network being modelled has a range of t={0,…,24}and 

is an element of Time of Day, TOD, (Equation 28) which is defined as:  

 

𝑇𝑂𝐷(𝑡) =

{
 
 

 
 
𝑒𝑚, 𝑡 < 6
𝑎𝑚, 6 ≤ 𝑡 < 10
𝑑𝑎𝑦, 10 ≤ 𝑡 < 15
𝑝𝑚, 15 ≤ 𝑡 < 19
𝑙𝑒, 𝑡 ≥ 19

 

Equation 28: Time of day 

And d, day-of-week, for a specific 15-minute slot on road link x, where x is all 
road links on the urban network being modelled has a range of d= {1,…,7} and 
is an element of Day of Week, DOW, (Equation 29) which is defined as: 

𝐷𝑂𝑊(𝑑) = {
𝑤𝑑, 𝑑 ≤ 5
𝑤𝑒, 𝑑 > 5

 

Equation 29: Day of week 

And j, journey time, (Equation 30) for a specific 15-minute slot on road link x, 
where x is all road links on the urban network being modelled has a range of 
j= {0,…,∞} and is an element of Journey time, JT, which is defined as: 

𝐽𝑇(𝑗) = {
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝑗 ≤ 𝑗̃ ∗ 1.25

𝑤𝑜𝑟𝑠𝑡, 𝑗 > 𝑗̃ ∗ 1.25
 

Equation 30: Journey time 

And v, volume, (Equation 31) for a specific 15-minute slot on road link x, where 
x is all road links on the urban network being modelled has a range v={0,…,∞} 
and is an element of Volume, V, which is defined as: 

𝑉(𝑣) = {
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝑣 ≤ �̃� ∗ 1.25

𝑤𝑜𝑟𝑠𝑡, 𝑣 > 𝑣 ∗ 1.25
 

Equation 31: Traffic volume 

7.4.1.2.3 Semi-recurrent congestion 
Semi-recurrent congestion, SRC, (Equation 32 and Equation 33) was coined by 

the author and is described as being predictable and non-cyclical unlike 
recurrent congestion, which is predictable and cyclical and non-recurrent that 
is non-predicable and non-cyclical. Semi-recurrent congestion is caused by 
scheduled events, such as a football match and concerts, which are not 
cyclical because they do not happen at the same time or on the same day.  

𝑆𝑅𝐶 = 𝑇𝑂𝐷𝑙𝑒 + 𝐷𝑂𝑊𝑤𝑑 +𝐽𝑇𝑤𝑜𝑟𝑠𝑡 +𝑉𝑤𝑜𝑟𝑠𝑡 + 𝐷𝑁𝑒𝑎𝑟 

Equation 32: Semi-recurrent congestion (on a weekday) 

Or 
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𝑆𝑅𝐶 = 𝑇𝑂𝐷𝑑𝑎𝑦/𝑝𝑚/𝑙𝑒 + 𝐷𝑂𝑊𝑤𝑒 +𝐽𝑇𝑤𝑜𝑟𝑠𝑡 +𝑉𝑤𝑜𝑟𝑠𝑡 + 𝐷𝑁𝑒𝑎𝑟 

Equation 33: Semi-recurrent congestion (on a weekend) 

Where dis, distance (Equation 34) from attractor for road link x, where x is all 
road links on the urban network being modelled has a range v={0.0,…,∞} and 
is an element of Distance, D, which is defined as: 

𝐷(𝑑𝑖𝑠) = {
𝑛𝑒𝑎𝑟, 𝑑𝑖𝑠 ≤ 𝑍
𝑓𝑎𝑟, 𝑑𝑖𝑠 > 𝑍

 

Equation 34: Distance 

Where 𝑍 is determined as an empirical variable which is the distance from the 
nearest attractor on a given urban network. For the purpose of this work and 
for the network shown above. Following empirical experimentation, the value 
𝑍 is set at 2.5, which represents 2.5 km from the links nearest attractor. 

 

7.4.1.2.4 Non-recurrent congestion 
 

The definition of non-recurrent congestion, NRC, (Equation 35) can be 
summarised from the literature as occurring due to a non-predicable and non-
cyclical event, such as a traffic accident and unplanned road works (Cassidy 
and Bertini, 1999; Verhoef and Rouwendal, 2004; Djahel et al., 2015), which 
can cause expected journey times and volumes to increase around the event. 
Non-recurrent congestion is defined as: 

𝑁𝑅𝐶 = 𝐽𝑇𝑤𝑜𝑟𝑠𝑡 + 𝑉𝑊𝑜𝑟𝑠𝑡 

Equation 35: Non-recurrent congestion 

 

7.4.1.3 Percentile Model 
To standardise the performance of each link and to allow a single membership 

function to be determined for both the journey time and traffic volume, a 
percentile method was applied. See Equation 36, where each percentile 
group is represented by 𝑃, and 𝑛 is the 𝑛th percentile. For this research the 
𝑛th percentiles are broken down into 10 groups (0-10th, 10th-20th, 20th-30th, 
…, 90th-100th). 𝑋 is the total number of observations. 

Equation 36: Percentile method 

𝑃(𝑛) = (
𝑛

100
) ∗ 𝑋 
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To calculate the percentile classification for journey time, use the following 
algorithm 3. 

 

Algorithm 3 
Standardising journey time for each link at each 15-minute observation. 

 
Variables: I the set of observations, L the set of links, 𝑥𝑖: the observation, 𝑂: An 
array of outcomes. 

1  𝒇𝒐𝒓𝑙 ∈ 𝐿𝒅𝒐 
2      𝒇𝒐𝒓𝑖 ∈ 𝐼𝒅𝒐 
3𝐢𝐟𝑥𝑖 = 0𝐭𝐡𝐞𝐧 

4𝑂𝑖 ← 10 
5     𝐞𝐧𝐝𝐢𝐟 
6𝐢𝐟𝑥𝑖 > 0𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(10)𝐭𝐡𝐞𝐧 
7        𝑂𝑖 ← 1      
8      𝐞𝐧𝐝𝐢𝐟 
9     𝐢𝐟𝑥𝑖 > 𝑃(10)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(20)𝐭𝐡𝐞𝐧 
10 𝑂𝑖 ← 2      
11      𝐞𝐧𝐝𝐢𝐟 
12𝐢𝐟𝑥𝑖 > 𝑃(20)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(30)𝐭𝐡𝐞𝐧 
13         𝑂𝑖 ← 3   
14      𝐞𝐧𝐝𝐢𝐟 
15𝐢𝐟𝑥𝑖 > 𝑃(30)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(40)𝐭𝐡𝐞𝐧 
16𝑂𝑖 ← 4   
17      𝐞𝐧𝐝𝐢𝐟 
18𝐢𝐟𝑥𝑖 > 𝑃(40)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(50)𝐭𝐡𝐞𝐧 
19𝑂𝑖 ← 5   
20      𝐞𝐧𝐝𝐢𝐟 
21𝐢𝐟𝑥𝑖 > 𝑃(50)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(60)𝐭𝐡𝐞𝐧 
22𝑂𝑖 ← 6   
23        𝐞𝐧𝐝𝐢𝐟 
24       𝐢𝐟𝑥𝑖 > 𝑃(60)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(70)𝐭𝐡𝐞𝐧 

25𝑂𝑖 ← 7   
26        𝐞𝐧𝐝𝐢𝐟 
27       𝐢𝐟𝑥𝑖 > 𝑃(70)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(80)𝐭𝐡𝐞𝐧 
28𝑂𝑖 ← 8   
29        𝐞𝐧𝐝𝐢𝐟 
30       𝐢𝐟𝑥𝑖 > 𝑃(80)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(90)𝐭𝐡𝐞𝐧 

31𝑂𝑖 ← 9   
32        𝐞𝐧𝐝𝐢𝐟 
33𝐢𝐟𝑥𝑖 > 𝑃(90)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(100)𝐭𝐡𝐞𝐧 

34𝑂𝑖 ← 10   
35         𝐞𝐧𝐝𝐢𝐟 
36   𝐞𝐧𝐝𝐟𝐨𝐫 
37 end for 

38 returnO
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To calculate the percentile classification for traffic volume, use the following 
algorithm 4. 

 

Algorithm 4 
standardising traffic volume for each link at each 15-minute observation. 

 
Variables: I the set of observations, L the set of links, 𝑥𝑖: the observation, 𝑂: An 
array of outcomes. 

1  𝒇𝒐𝒓𝑙 ∈ 𝐿𝒅𝒐 
2      𝒇𝒐𝒓𝑖 ∈ 𝐼𝒅𝒐 
3𝐢𝐟𝑥𝑖 = 0𝐭𝐡𝐞𝐧 

4𝑂𝑖 ← 10 
5     𝐞𝐧𝐝𝐢𝐟 
6𝐢𝐟𝑥𝑖 > 0𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(10)𝐭𝐡𝐞𝐧 
7        𝑂𝑖 ← 1      
8      𝐞𝐧𝐝𝐢𝐟 
9     𝐢𝐟𝑥𝑖 > 𝑃(10)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(20)𝐭𝐡𝐞𝐧 
10 𝑂𝑖 ← 2      
11      𝐞𝐧𝐝𝐢𝐟 
12𝐢𝐟𝑥𝑖 > 𝑃(20)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(30)𝐭𝐡𝐞𝐧 
13         𝑂𝑖 ← 3   
14      𝐞𝐧𝐝𝐢𝐟 
15𝐢𝐟𝑥𝑖 > 𝑃(30)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(40)𝐭𝐡𝐞𝐧 
16𝑂𝑖 ← 4   
17      𝐞𝐧𝐝𝐢𝐟 
18𝐢𝐟𝑥𝑖 > 𝑃(40)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(50)𝐭𝐡𝐞𝐧 
19𝑂𝑖 ← 5   
20      𝐞𝐧𝐝𝐢𝐟 
21𝐢𝐟𝑥𝑖 > 𝑃(50)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(60)𝐭𝐡𝐞𝐧 
22𝑂𝑖 ← 6   
23        𝐞𝐧𝐝𝐢𝐟 
24       𝐢𝐟𝑥𝑖 > 𝑃(60)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(70)𝐭𝐡𝐞𝐧 

25𝑂𝑖 ← 7   
26        𝐞𝐧𝐝𝐢𝐟 
27       𝐢𝐟𝑥𝑖 > 𝑃(70)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(80)𝐭𝐡𝐞𝐧 
28𝑂𝑖 ← 8   
29        𝐞𝐧𝐝𝐢𝐟 
30       𝐢𝐟𝑥𝑖 > 𝑃(80)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(90)𝐭𝐡𝐞𝐧 

31𝑂𝑖 ← 9   
32        𝐞𝐧𝐝𝐢𝐟 
33𝐢𝐟𝑥𝑖 > 𝑃(90)𝑎𝑛𝑑𝑥𝑖 ≤ 𝑃(100)𝐭𝐡𝐞𝐧 

34𝑂𝑖 ← 10   
35         𝐞𝐧𝐝𝐢𝐟 
36   𝐞𝐧𝐝𝐟𝐨𝐫 
37 end for 

38 returnO 
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7.4.1.4 Membership Function Determination 
Table 14 shows the dimensions, data sources, and the linguistic values 

determined from the urban road congestion ontology. The linguistic values of 
the membership functions representing journey time, traffic volume, distance 
from attractor, time of day, and day of the week are also shown. 

 

Table 14: Dimensions and their linguistically values. 

Dimension 
(Variables) 

Data sources 
Linguistic values 

(Membership 
functions) 

Journey time 
Bluetooth remote 

sensors 

Very Low (VL) 
Low (L) 

Medium (M) 
High (H) 

Very High (VH) 

Volume 
Inductive loop 

counters 

Very Low (VL) 
Low (L) 

Medium (M) 
High (H) 

Very High (VH) 

Distance from 
Attractor 

GIS analysis 

Very Near (VN) 
Near (N) 
Far (F) 

Very Far (VF) 

Time of day 
Temporal value of 

instance 

Early Morning (EM) 
AM Peak (AM) 

Day (D) 
PM Peak (PM) 

Late Evening (LE) 

Day of the week 
Recorded day of 

instance 
Weekday (WD) 
Weekend (WE) 

 

Using the linguistic values identified in Table 14, the creation of the fuzzy 
membership functions can be performed using three steps:  

Step 1: Perform the percentile model algorithms discussed in section 7.4.1.3 on 
the journey time and traffic volume data. 

Step 2: Identify the final boundary values for a set of groups where they connect 
and define this value as dt. 

Step 3: Using the dt value, determine membership function domain coverage 
using one of three membership functions: linear up, linear down, and 
trapezoidal shape. 

 

The primary objective of using the percentile model (step 1) was to standardise 
the observed journey times and traffic volume for each link and sensors, 
regardless of the behavioural characteristics. Therefore, the journey time for 
the 10th percentile on one link could be 200 seconds and on another it could 
be 2000 seconds. By standardising these boundaries, it will allow for a single 
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membership function to be created that covers all links instead of requiring a 
membership function for every link.  

Using the fuzzy system extension to TIM, it is possible to visualise the 
membership functions. These use the same three fuzzy membership function 
as discussed in section 7.3.3.1. The three types of functions are: linear 
increasing membership, linear decreasing membership, and trapezoidal-
shaped membership. 

Figure 78 and Figure 79 shows the memberships for both journey time and traffic 
volume, where very low is calculated using linear decreasing (Equation 16). 
Low, medium, and high is calculated using trapezoidal-shaped (Equation 17). 
Very high is calculated using linear increasing (Equation 15). 

 

 

Figure 78: Journey time membership function 



139 

 

 

Figure 79: Traffic volume membership function 

 

Figure 80 shows the membership for school bank holidays, where ‘no’ is 
calculated using linear decreasing (Equation 16) and ‘yes’ is calculated using 
linear increasing (Equation 15). 
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Figure 80: School term (bank holiday) membership function 

 

Figure 81 shows the memberships for day of the week, where weekday is 
calculated using linear decreasing (Equation 16) and weekend is calculated 
using linear increasing (Equation 15). 
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Figure 81: Day of week membership function 

 

Figure 82 shows the memberships for time of the day, where early morning (em) 
is calculated using linear decreasing (Equation 16). am, day, and pm is 
calculated using trapezoidal-shaped (Equation 17). Late evening (le) is 
calculated using linear increasing (Equation 15). 
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Figure 82: Time of day membership function 

 

Figure 83 shows the memberships for distance from attractor, where very near 
is calculated using linear decreasing (Equation 16). Near and far are 
calculated using trapezoidal-shaped (Equation 17). Very Far is calculated 
using linear increasing (Equation 15). 
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Figure 83: Distance from Attractor 

 

7.4.1.5 Fuzzy Rules Determination (manual and expert) 
The fuzzy rules were created with the knowledge gained from the URCC model 

in chapter three, by visualising the data using TIM in chapter four, and using 
expert knowledge (TfGM). A series of empirical experiments was conducted 
with feedback from TfGM to ascertain that a total of 12 rules were required 
for the initial multi-classification decision-making system.  

Algorithm 5 uses both antecedents and consequents membership functions to 
fire 12 unique rules to acquire each rule strength ready for fuzzy inference.  
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Algorithm 5  
Rules for predicting congestion type. 

 
Antecedents: Journey Time, 𝐽𝑇. Traffic Volume, 𝑉. Distance from attractor, 

𝐷𝑖𝑠. Bank holidays, 𝐵𝐻. Day of week, 𝐷𝑜𝑊, Time of day, 𝑇𝑜𝐷. 
Antecedents memberships: Very Low, 𝑉𝐿. Low, 𝐿. Medium, 𝑀. High, 𝐻. 
Very High, 𝑉𝐻. Very Near, 𝑉𝑁. Near, 𝑁. Far, 𝐹. Very Far, 𝑉𝑅. No, 𝑁𝑂, Yes, 
𝑌. Weekday, 𝑊𝐷. Weekend, 𝑊𝐸. Early Morning, 𝐸𝑀. AM, 𝐴, Day, 𝐷, PM, 𝑃. 

Late Evening, 𝐿𝐸. 
Consequents: Congestion Type, 𝐶𝑇. 
Consequents memberships: Non-congestion, 𝑁𝐶. Recurrent Congestion, 
𝑅𝐶. Semi-Recurrent Congestion, 𝑆𝑅𝐶. Non-Recurrent Congestion, 𝑁𝑅𝐶. 

1     𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑁𝑂𝑇𝑉𝐻𝒕𝒉𝒆𝒏 
2         𝐶𝑇 ← 𝑁𝐶 

3     𝒊𝒇𝐽𝑇𝑖𝑠𝐿𝒐𝒓𝐽𝑇𝑖𝑠𝑉𝐿𝒕𝒉𝒆𝒏 
4         𝐶𝑇 ← 𝑁𝐶  
5    𝒊𝒇(𝐽𝑇𝑖𝑠𝑉𝐻𝒐𝒓𝐽𝑇𝑖𝑠𝐻)𝒂𝒏𝒅(𝑇𝑜𝐷𝑖𝑠𝐴𝒐𝒓𝑇𝑜𝐷𝑖𝑠𝑃) 
6                                         𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐷𝒕𝒉𝒆𝒏 
7         𝐶𝑇 ← 𝑅𝐶 
8    𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑉𝐻𝒂𝒏𝒅(𝑇𝑜𝐷𝑖𝑠𝐴𝒐𝒓𝑇𝑜𝐷𝑖𝑠𝑃) 
9                                        𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐷𝒕𝒉𝒆𝒏 

10         𝐶𝑇 ← 𝑅𝐶 
11  𝒊𝒇(𝐽𝑇𝑖𝑠𝑉𝐻𝒐𝒓𝐽𝑇𝑖𝑠𝐻)𝒂𝒏𝒅(𝑇𝑜𝐷𝑖𝑠𝑁𝑂𝑇𝐴𝒂𝒏𝒅𝑇𝑜𝐷𝑖𝑠𝑁𝑂𝑇𝑃) 
12         𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐷𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑉𝑁)𝒕𝒉𝒆𝒏 
13      𝐶𝑇 ← 𝑁𝑅𝐶 

14  𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑉𝐻𝒂𝒏𝒅(𝑇𝑜𝐷𝑖𝑠𝑁𝑂𝑇𝐴𝒐𝒓𝑇𝑜𝐷𝑖𝑠𝑁𝑂𝑇𝑃) 
15      𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐷𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑉𝑁)𝒕𝒉𝒆𝒏 
16     𝐶𝑇 ← 𝑁𝑅𝐶 
17  𝒊𝒇(𝐽𝑇𝑖𝑠𝑉𝐻𝒐𝒓𝐽𝑇𝑖𝑠𝐻)𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐸 
18      𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑉𝑁)𝒕𝒉𝒆𝒏  
19    𝐶𝑇 ← 𝑁𝑅𝐶 
20  𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑉𝐻𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐸 
21                  𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑁𝑂𝑇𝑉𝑁)𝒕𝒉𝒆𝒏 
22    𝐶𝑇 ← 𝑁𝑅𝐶 

23   𝒊𝒇(𝐽𝑇𝑖𝑠𝑉𝐻𝒐𝒓𝐽𝑇𝑖𝑠𝐻)𝒂𝒏𝒅𝑇𝑜𝐷𝑖𝑠𝐿𝐸𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐷 
24                                        𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑉𝑁)𝒕𝒉𝒆𝒏 
25    𝐶𝑇 ← 𝑆𝑅𝐶 
26   𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑉𝐻𝒂𝒏𝒅𝑇𝑜𝐷𝑖𝑠𝐿𝐸𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐷 
27                                       𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝑜𝑟𝐷𝑖𝑠𝑖𝑠𝑉𝑁)𝒕𝒉𝒆𝒏 

28     𝐶𝑇 ← 𝑆𝑅𝐶 
29   𝒊𝒇(𝐽𝑇𝑖𝑠𝑉𝐻𝑜𝑟𝐽𝑇𝑖𝑠𝐻)𝒂𝒏𝒅(𝑇𝑜𝐷𝑖𝑠𝐷𝒐𝒓𝑇𝑜𝐷𝑖𝑠𝐿𝐸)𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐸 
30                                        𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑉𝑁)𝒕𝒉𝒆𝒏 

31     𝐶𝑇 ← 𝑆𝑅𝐶 
32   𝒊𝒇𝐽𝑇𝑖𝑠𝑀𝒂𝒏𝒅𝑉𝑖𝑠𝑉𝐻𝒂𝒏𝒅(𝑇𝑜𝐷𝑖𝑠𝐷𝒐𝒓𝑇𝑜𝐷𝑖𝑠𝐿𝐸)𝒂𝒏𝒅𝐷𝑜𝑊𝑖𝑠𝑊𝐸 
33                                       𝒂𝒏𝒅(𝐷𝑖𝑠𝑖𝑠𝑁𝒐𝒓𝐷𝑖𝑠𝑖𝑠𝑉𝑁)𝒕𝒉𝒆𝒏 
 34     𝐶𝑇 ← 𝑆𝑅𝐶 

35  𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑇 
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7.4.1.6 Fuzzy inference 
The same fuzzy inference as the binary Fuzzy decision-making system was 

used. The implemented methods for computing fuzzy inference known as 
Mamdani (Mamdani and Assilian, 1975) was discussed in section 7.3.4.  

  

7.4.1.7 Defuzzification 
The same method for performing defuzzification was discussed in section 7.3.5. 

the method used was centroid of area (COA), also known as the centre of 
gravity (COG). 

  

7.4.1.8 Experimental methodology 
An empirical study was undertaken to evaluate the multi-classification fuzzy 

decision-making system. The aim of the experiment is to determine whether 
a fuzzy system can be used to analyse traffic data to classify congestion. 

The following hypothesis will be evaluated. 

Hypothesis 

HB0: It is possible to accurately identify the type of road traffic congestion using 
a Fuzzy system. 

HB1: It is not possible to accurately identify the type of road traffic congestion 
using a Fuzzy system. 

 To evaluate the performance of the fuzzy system, it was compared against two 
alternative machine-learning algorithms: decision tree C4.5 (using the Weka 
implementation J48) (Weka, 2018) and naïve bayes, which both algorithms 
used the same subset of data as the fuzzy system. The justification for their 
selection was given in section 7.3.6. 

In order to evaluate the three methods using the MUCD dataset, three statistical 
measurements were chosen, which are: Precision (Equation 21), Recall 
(Equation 19), and F-score (Equation 22). In addition to these measurements 
a weighted variables will be calculated for all three statistics which takes into 
consideration all four classifications: non-congestion, recurrent congestion, 
semi-recurrent congestion, and non-recurrent congestion.  

Equation 37 shows how the weighted average for recall value is calculated. 
Where TP is the diagonal value in the confusion matrix presented in Table 
15. For example, where actual and prediction equal the same value, such as 
‘NC’ or ‘NRC’. FP is the sum of the column minus the TP value. FN is the 
sum of the row minus the TP. 

𝑊𝑟𝑒𝑐𝑎𝑙𝑙 =

𝐶𝑁𝐶(𝑇𝑃𝑅) ∗ 𝐶𝑁𝐶(𝑇𝑃 + 𝐹𝑁) + 𝐶𝑁𝑅𝐶(𝑇𝑃𝑅) ∗ 𝐶𝑁𝑅𝐶(𝑇𝑃 + 𝐹𝑁)

+𝐶𝑆𝑅𝐶(𝑇𝑃𝑅) ∗ 𝐶𝑆𝑅𝐶(𝑇𝑃 + 𝐹𝑁) + 𝐶𝑅𝐶(𝑇𝑃𝑅) ∗ 𝐶𝑅𝐶(𝑇𝑃 + 𝐹𝑁)

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Equation 37: Multi-classification weighted average (recall) 
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Equation 38 shows how the weighted average for the precision value is 
calculated.  

𝑊𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝐶𝑁𝐶(𝑃𝑃𝑉) ∗ 𝐶𝑁𝐶(𝑇𝑃 + 𝐹𝑁) + 𝐶𝑁𝑅𝐶(𝑃𝑃𝑉) ∗ 𝐶𝑁𝑅𝐶(𝑇𝑃 + 𝐹𝑁)

+𝐶𝑆𝑅𝐶(𝑃𝑃𝑉) ∗ 𝐶𝑆𝑅𝐶(𝑇𝑃 + 𝐹𝑁) + 𝐶𝑅𝐶(𝑃𝑃𝑉) ∗ 𝐶𝑅𝐶(𝑇𝑃 + 𝐹𝑁)

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Equation 38: Multi-classification weighted average (precision) 

Equation 39 shows how the weighted average for the F-score value is calculated. 

𝑊𝐹𝑠𝑐𝑜𝑟𝑒 =

𝐶𝑁𝐶(𝐹𝑠𝑐𝑜𝑟𝑒) ∗ 𝐶𝑁𝐶(𝑇𝑃 + 𝐹𝑁) + 𝐶𝑁𝑅𝐶(𝐹𝑠𝑐𝑜𝑟𝑒) ∗ 𝐶𝑁𝑅𝐶(𝑇𝑃 + 𝐹𝑁)

+𝐶𝑆𝑅𝐶(𝐹𝑠𝑐𝑜𝑟𝑒) ∗ 𝐶𝑆𝑅𝐶(𝑇𝑃 + 𝐹𝑁) + 𝐶𝑅𝐶(𝐹𝑠𝑐𝑜𝑟𝑒) ∗ 𝐶𝑅𝐶(𝑇𝑃 + 𝐹𝑁)

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Equation 39: Multi-classification weighted average (F-score) 

 

7.4.1.9 Results and Discussion 
Table 15 presents the confusion matrix for the classification of the types of 

congestion. In the confusion matrix, the four classifications are: Non-
congestion (NC), non-recurrent congestion (NRC), semi-recurrent 
congestion (SRC), and recurrent congestion (RC). 

 

Table 15: Multiclassification confusion matrix 

 Prediction 

NC NRC SRC RC 

Actual  

NC 247094 102202 24352 33282 

NRC 1752 65821 1296 113 

SRC 216 4097 9318 19 

RC 708 9020 5481 51106 

 

Table 21 in Appendix 2 shows the performance of each individual link which each 
of the link’s locations are plotted on Figure 60. Each link in Figure 60 have 
two directions, therefore, link ‘a’ relates to both ‘AU’ (upstream) and ‘AD’ 
(downstream) in Table 21 in Appendix 2. In addition to presenting the results 
of everything, it is important to present the results for individual links as well 
because this helps to demonstrate the impact of the data concerns on the 
overall perform. Taking into consideration these concerns some links and 
types were easier to predict that others.  

To validate the URCC model a fuzzy system was developed, using the subset 
of data extracted from the MUCD dataset which contains the dimensions 
identified in the URCC. The subset of data was used to predict the types of 
congestion. Some links and types were easier to predict than others. This is 
because of several contributing factors, such as quality of the data, location 
of Bluetooth and Inductive Loop Counters sensors. Using Table 16 and the 
graph presented in Figure 84.  
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Table 16: Each link predicted accuracy 

Link TP # Of 
Obvs 

Accuracy Link TP # Of 
Obvs 

Accuracy 

au 12150 17376 69.92% ad 11899 17376 68.48% 

bu 9660 17376 55.59% bd 9710 17376 55.88% 

cu 12861 17376 74.02% cd 12750 17376 73.38% 

du 9228 17376 53.11% dd 9299 17376 53.52% 

eu 12756 17376 73.41% ed 12492 17376 71.89% 

fu 10148 17376 58.40% fd 10714 17376 61.66% 

gu 13842 17376 79.66% gd 13597 17376 78.25% 

hu 11756 17376 67.66% hd 12157 17376 69.96% 

iu 14308 17376 82.34% id 14360 17376 82.64% 

ju 11697 17376 67.32% jd 11751 17376 67.63% 

ku 9282 17376 53.42% kd 9692 17376 55.78% 

lu 11228 17376 64.62% ld 11376 17376 65.47% 

mu 11992 17376 69.01% md 12200 17376 70.21% 

nu 13259 17376 76.31% nd 13243 17376 76.21% 

ou 11136 17376 64.09% od 11643 17376 67.01% 

pu 9646 17376 55.51% pd 9778 17376 56.27% 

qu 11763 17376 67.70% qd 11565 17376 66.56% 

ru 13348 17376 76.82% rd 13312 17376 76.61% 

su 11807 17376 67.95% sd 11655 17376 67.08% 

tu 11381 17376 65.50% td 11355 17376 65.35% 

uu 13894 17376 79.96% ud 14019 17376 80.68% 

vu 13615 17376 78.36% vd 13656 17376 78.59% 

wu 11987 17376 68.99% wd 12118 17376 69.74% 

xu 11655 17376 67.08% xd 11949 17376 68.77% 

yu 9922 17376 57.10% yd 9869 17376 56.80% 

zu 10052 17376 57.85% zd 10252 17376 59.00% 

aau 13084 17376 75.30% aad 12871 17376 74.07% 

abu 11669 17376 67.16% abd 11838 17376 68.13% 

acu 9787 17376 56.32% acd 9707 17376 55.86% 

adu 11563 17376 66.55% add 11209 17376 64.51% 

aeu 12745 17376 73.35% aed 12316 17376 70.88% 

afu 12516 17376 72.03% afd 12844 17376 73.92% 
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Figure 84: Graph of recall, precision, F-score for all 64 links 
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The first thing to notice when looking at the accuracy of all 64 links in Table 16 
is that upstream and downstream are relatively similar to each other. Link ‘u’ 
and ‘v’ which connects the two attractors both had high accuracy and the 
weighted recall, precision and f-scores were predominantly in the ~0.80 
which suggests predicting the type of congestion on these links was relatively 
precise. However, links, such as ‘b’ and ‘d’, which are connecting links and 
are not main roads have a lower level of accuracy and weighted precision, 
recall and f-score. This could be caused by the characteristics of the roads 
not being main routes and also the lack of nearby inductive loop counters is 
likely to of impacted the accuracy of the predictions, which unlike u and v that 
achieved ~79%, b and d only achieved ~54% accuracy. 

 

7.4.1.10 Comparison of multi class fuzzy decision-system against other 
methods 

The purpose of this experiment was to determine whether it is possible to classify 
they types of urban road congestion, recurrent, semi-recurrent, and non-
recurrent using a fuzzy system and real-world data extracted from the MUCD 
dataset. Table 17 shows the results for each statistical measurement, recall, 
precision, F-score (F1) for three different types of machine-learning 
algorithms rule-based system (fuzzy), decision tree (J48) and a probabilistic 
(naïve bayes (NB)) and their classes: non-congestion (NC), recurrent 
congestion (RC), semi-recurrent congestion (SRC), and non-recurrent 
congestion (NRC) the weighted average of all classes. 

It is important to compare the fuzzy decision-making system against other 
machine learning algorithms because it allows the performance from one 
model to be compared again others to identify similarities or extreme 
differences which could demonstrate a model over or under performing. 
Performing the analysis against other type of models may give inspiration to 
future work, for instance, a ‘fuzzy decision-making decision tree’. 

As the aim of the comparison was to identify how the fuzzy system compared 
against traditional machine learning algorithms, the Decision tree C4.5 (using 
the Weka implementation J48) (Weka, 2018) and naïve bayes algorithms 
were used implemented using the same subset of data as the fuzzy system. 

 

Table 17: Results for Fuzzy System, J48, and Naïve Bayes (multi-
classification) 

    NC RC SRC NRC wAvg 

Fuzzy 

Recall 99 64 24 35.8 85.1 

Precision 61 77 68.2 95.7 67.7 

F1 76 70 35.4 52.1 71.1 

J48 

Recall 94 93 78.7 81.4 92 

Precision 95 87 70.3 84.7 92.1 

F1 95 90 74.3 83 92 

NB 

Recall 90 79 47.6 16.6 78.5 

Precision 89 50 42.8 48 78 

F1 89 61 45.1 24.7 76.9   
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The results in Table 17 shows the three algorithms all perform to an adequate 
level. However, the Decision tree C4.5 (J48) performs the most consistently 
in predicting the types of congestion by achieving an overall weighted 
average of ~92 per cent for all three recall, precision, and F-score (F1) 
compared to the multi-classification fuzzy decision-making system which 
achieved 85.1 per cent for the weighted recall, 67.7 per cent for the weighted 
precision, and 71.1 per cent for the weighted F-score. Furthermore, Naïve 
Bayes achieved 78.5 per cent for weighted recall, 78 per cent for precision, 
and 76.9 for the F-score. Additionally, it was noticed that the multi-
classification Fuzzy decision-making system achieved the highest recall (99 
per cent) for non-congestion, meaning it identified the majority of data points 
within the relevant class. Furthermore, the fuzzy model was able to achieve 
95.7 per cent for non-recurrent congestion in regard to precision, meaning it 
was able to predict the most accurately within the relevant class. 

 

7.4.1.11 Examples of misclassifications 
The observations shown in Table 18 demonstrate six instances when the 

multiclassification fuzzy decision-making system misclassified the 
observations.  

 

Table 18: Observations of misclassification 

Observation Class DfA DoW JT Time Volume Result 

1 NRC 1.877965492 6 9 10 7 SRC 

2 NRC 5.140836974 7 6 13 8 NC 

3 RC 1.877965492 2 9 15.25 9 SRC 

4 RC 1.877965492 2 10 18.25 8 SRC 

5 SRC 1.07647663 7 9 16.75 8 NRC 

6 SRC 1.641062935 3 6 21.75 5 NC 

 

Figure 85 shows a visualisation in TIM of an observation that was expected to 
be identified as non-recurrent congestion, however, instead the 
multiclassification fuzzy system misclassified the observation as semi-
recurrent congestion. Furthermore, Figure 85 shows that the fuzzy system 
was able to identify the observation as both semi-recurrent and non-recurrent 
congestion, however, due to the degree of membership being stronger for 
semi-recurrent congestion the final crisp outcome was semi-recurrent 
congestion. The control rule for this outcome was “when journey time is high 
or very high, time of day is daytime or late evening, day of the week is the 
weekend, and distance from the attractor is near or very near then semi-
recurrent congestion”. 
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Figure 85: Observation 1: NRC classified as SRC 

 

Figure 86 shows a visualisation in TIM of an observation that was expected to 
be identified as non-recurrent congestion, however, instead the 
multiclassification fuzzy system misclassified the observation as non-
congestion. The reason for the misclassification was due to one of the control 
rules being overly dominant causing this outcome, which was “when journey 
time is medium, and volume is very high then non-congestion”. 
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Figure 86: Observation 2: NRC classified as NC 

 

Figure 87 shows a visualisation in TIM of an observation that was expected to 
be identified as recurrent congestion, however, instead the multiclassification 
fuzzy system misclassified the observation as semi-recurrent congestion. 
The reason for the misclassification was due to multiple fuzzy rules having 
an equal degree of membership and the defuzzification step that uses 
centroid of area to create a single crisp output value, in this instance the 
centre of the aggregation of the consequences is non-recurrent even though 
it only has a zero of degree of membership. 
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Figure 87: Observation 3: RC classified as SRC 

 

Figure 88 shows a visualisation in TIM of an observation that was expected to 
be identified as recurrent congestion, however, instead the multiclassification 
fuzzy system misclassified the observation as semi-recurrent congestion. 
The reason for the misclassification was due to multiple fuzzy rules firing and 
creating a consequence for all three classifications: recurrent, semi-recurrent, 
and non-recurrent congestion with various degree of memberships. Although, 
the expected classification of recurrent congestion has the highest degree of 
membership, due to using the centroid defuzzification method, this 
observation was misclassified. 
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Figure 88: Observation 4: RC classified as SRC 

 

Figure 89 shows a visualisation in TIM of an observation that was expected to 
be identified as semi-recurrent congestion, however, instead the 
multiclassification fuzzy system misclassified the observation as non-
recurrent congestion. The reason for this misclassification is due to the 
following control rule which identified the observation as non-recurrent 
congestion with a ~0.3 degree of membership. The rule is “If journey time is 
high or very high, day of week is weekend, and distance from attractor is not 
near or very near then non-recurrent congestion”. 
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Figure 89: Observation 5: SRC classified as NRC 

 

Figure 90 shows a visualisation in TIM of an observation that was expected to 
be identified as recurrent congestion, however, instead the multiclassification 
fuzzy system misclassified the observation as non-congestion. The reason 
for this misclassification is due to the ambiguous non-congestion rule being 
too loose and taking dominance over the semi-recurrent rules. The non-
congestion rule that caused this misclassification is “if journey time is medium 
and volume is not very high then non-congestion”. 
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Figure 90: Observation 6: SRC classified as NC 

 

Therefore, after observing the misclassification of the six observations 
mentioned in Table 18. It was observed that to improve the performance of 
the multiclassification fuzzy system would require additional fuzzy control 
rules and optimisations of the membership function boundaries. One of the 
observations that would benefit from extra rules would be observation 5 
which requires a rule similar to a non-recurrent congestion rule, however with 
the addition of distance from attractor and time of day to reduce the false 
positives when predicting semi-recurrent. Furthermore, it should be noted 
that additional rules would reduce the fuzzy system efficiency and 
explainability, making it more multifaceted and harder for the layperson to 
understand.  

In addition to adding extra control rules to the multiclassification fuzzy system, a 
more efficient way to determine the membership functions would be to 
employ a search-based optimization technique known as a Genetic Algorithm 
(GA) over the manual approached currently used. Alternative approaches for 
defuzzification may also resolve some of these problems and will be 
considered in future work. The addition of extra defined rules and GA will be 
explored in the future (further work) in the hopes of creating a better 
performing multiclassification fuzzy system at predicting the type of 
congestion. 
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7.4.1.12 Conclusion 
In conclusion, the multi-classification fuzzy decision-making system did not 

achieve the same level of performance as the J48 algorithm and performed 
similarly to the naïve bayes model, even outperforming it some areas, such 
as predicting recurrent congestion and non-recurrent congestion. However, 
although, the J48 algorithm tends to be easy to interpret, the overall size of 
the tree is 2367 and the tree contains 1184 leaves. Consequently, this has 
generated 1184 rules which create an extra level of complexity when it comes 
to understand the outcome and lack explainability which is key for a 
stakeholder to understands the outcome of the model compared with the 12 
rules used in the multi-classification fuzzy decision-making system discussed 
in section 7.4.1.5.  

Therefore, although the multi-classification fuzzy decision-making system did not 
outperform both the J48 and naïve bayes, it is easier for explainability, 
interpretation, and providing useful qualitive context back to stakeholders 
which naïve bayes is known to struggle with due to characteristic of 
probabilistic model which tend to struggle with big datasets. It is also 
important to note that the fuzzy system was only manually optimised and 
further work would employ techniques such as genetic algorithms to optimise 
membership functions.  

 

7.5 Chapter conclusion  

In conclusion, this chapter has demonstrated it is possible to use knowledge 
gained from the URCC model and the creation of a non-optimised multi-
classification fuzzy decision-making system to predict urban road congestion 
validating concepts defined in the universal road congestion ontology. This 
was achieved used a combination of expert knowledge, an unsupervised 
learning technique known as clustering, and a percentile model to construct 
two fuzzy decision-making systems.  

The outcome of both fuzzy decision-making systems has proven both 
hypotheses true. The first hypothesis HA0: Using journey time and volume 
data, it is possible to classify congestion using a fuzzy system was not only 
proven true, but it also demonstrated the initial proof of concept setting the 
groundwork for the second Fuzzy decision-making system. Although, the 
second system did not perform as strong as the J48 decision tree, it did 
however, perform at an acceptable level to prove the second hypothesis HB0: 
It is possible to accurately identify the type of road traffic congestion using a 
Fuzzy system true. Furthermore, the multi-classification decision-making 
system is easier to interpret and provide meaningful context compared to the 
J48 and naïve bayes models. This is because the multi-classification fuzzy 
decision-making system only uses 12 rules compared to the J48 decision 
tree which has a total 1184 rules.  

In further work, the author plans to increase the performance of the multi-
classification fuzzy decision-making system by focusing two main areas, 
which are data quality and optimisation. To improve the data quality, it is 
important to address some of the data considerations mentioned in section 
4.6. The main consideration the author would like to address is the lack of 
consistent distance between two Bluetooth sensors and the point the 
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Bluetooth sensors do not always align with the location of the inductive loop 
counters.  

To achieve this a new topology will be developed with a more flexible alternative 
data source to the Bluetooth sensors used within this research will be 
explored. The alternative data source being considered is Googles traffic 
data (The Directions API) because although, it charges for each API request, 
it allows the user to define each point to create a link without being limited by 
physical hardware. Additionally, it should help to remove some of the noise 
created by pedestrians and cyclists with an active Bluetooth device being 
recorded as a journey time as Google collects data directly from apps such 
as google maps and Android auto.  

Finally, to optimise the multi-classification fuzzy decision-making system, the 
techniques known as a genetic algorithm (GA) will be explored as it has 
previously been used to optimise fuzzy membership functions (Crockett et 
al., 2013) and the fuzzy inference parameters (K. A. Crockett et al., 2006). 
Additionally, GAs have been successfully used in other domains than fuzzy 
systems for the purpose of optimisation. For example, a GA was used within 
a scheduling-based system for medical treatment (Squires et al., 2022).  
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Chapter Eight: Conclusion and further work 

The research in this thesis has developed a formal and explicit conceptualisation 
of urban road congestion, which has a multifaceted nature. Analogical and 
ontological methods were used to conceptualise urban road congestion and 
produce an Urban Road Congestion Conceptual (URCC) model. The 
research presented validates this conceptual model using a real-world big 
data dataset and a custom-built fuzzy decision-making system. In this 
chapter, a discussion of each research question is provided, and the overall 
contributions of this thesis are presented. 

8.1 Overview 

The research presented in this thesis aimed to answer the following four 
research questions: 

RQ1: Is it possible to provide a clear conceptualisation of urban road traffic 
congestion using an ontological model? 

RQ2: Can quantitative Big Data be used to provide qualitative information in 
conjunction with a road traffic ontology with the support of Machine Learning? 

RQ3: Can quantifiable big data on urban road congestion be visualised to 
provide quasi-real-time insight? 

RQ4: Can a Fuzzy rule-based system be designed to predict road congestion 
through validation of the Urban Road Congestion Conceptual (URCC) 
model?  

How each question has been addressed will now be discussed.  

8.1.1 RQ1: Is it possible to provide a clear conceptualisation of urban road 

traffic congestion using an ontological model? 

The main problem with modelling urban road congestion is the lack of a clear 
and consistent definition of what is meant by ‘road congestion’ in an 
increasingly multifaceted urban context and how it relates to the events that 
cause it. To address this problem, an Urban Road Congestion Conceptual 
(URCC) model was created, using four analogies and a universal road 
congestion ontology which is made up of five core ontologies (Dimensions of 
congestion, events, congestion, direction. and spatial things). One of the 
limitations of the current literature regarding urban road congestion became 
apparent with the development of the URCC model, which identified there to 
be a lack of granularity between the types of congestion being presented. 

Therefore, this research introduced a third type of congestion coined as ‘semi-
recurrent congestion’. Another key finding was established through the 
comprehensive review of the literature, these seemingly simple questions, 
such as What is congestion? What is the cause of congestion? Where has 
congestion occurred? did not have a clear and consistent way to answer. 
Using the developed URCC model, these question can now be answered in 
the same manner every time in a formal and explicit way. Thus, the research 
question (RQ1) – “Is it possible to provide a clear conceptualisation of urban 
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road traffic congestion using an ontological model?” was address in chapter 
three and four. 

 

8.1.2 RQ2: Can quantitative Big Data be used to provide qualitative 

information in conjunction with a road traffic ontology with the support 

of Machine Learning? 

To answer this question, it was vital that a real-world quasi-real-time big data 
dataset was created. The data was collected from several sources and 
merged into a dataset known as the Manchester Urban Congestion Data 
(MUCD) dataset and was introduced in chapter three. The MUCD dataset 
has typical data issues associated with big data, such as noise, data sparsity 
and missing values. However, there were other unique challenges, such as 
each link having its own different characteristics, such as length size, number 
of lanes, and different speed limits. Each of these characteristics will cause 
the expected journey times and traffic volume counts to differ dramatically. 
Furthermore, another challenge was trying to design a topology which had 
sufficient coverage of Bluetooth sensors and inductive loop counters whilst 
encompassing the requirements set out by TfGM, such as focusing on the 
A6 road and Etihad Stadium. 

 Once the MUCD dataset has been created, it was important to identify which 
unsupervised learning algorithm was going to be used. Therefore, in chapter 
five, the decision was taken to implement k-mean++. A series of empirical 
experiments were conducted in chapter six in conjunction with the URCC 
model to identify the characteristics of urban road congestion. The key finding 
was clustering an unsupervised dataset made it possible to predict expected 
journey time and identify the differences between a weekday and a weekend. 
Therefore, this demonstrated that it is possible to take quantitative data and 
extract qualitative information, which can be provided to the stakeholders, 
such as road users or transport managers. The stakeholders (in this case 
TfGM) could then use the meaningful information to make better decisions. 
Therefore, answering (RQ2) – “Can quantitative Big Data be used to provide 
qualitative information in conjunction with a road traffic ontology with the 
support of Machine Learning?” 

8.1.3 RQ3: Can quantifiable big data on urban road congestion be visualised 

to provide quasi-real-time insight? 

To answer RQ3, the development of a visualisation tool was needed. Therefore, 
chapter three describes the development of the visualisation tool called 
Transport Incident Manager (TIM). TIM is a tool developed by the author 
using SQL Server and Python to visualise the statistical performance of the 
urban road network within Manchester, UK. Some of the functionalities 
created were real-time view of individual links and overall network 
performance, spatial autocorrelation, classification, and the ability to look at 
the data in different temporal states. Therefore, TIM has managed to 
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demonstrate to the stakeholders at TfGM it is possible to visualises their 
quasi-real-time data, such as journey time.  

TIM included the implementation of several statistical functions to gain insight 
into the behaviour and characteristics of congestion and the events that 
cause it, such as rush hour, a road accident, a football match. The 
development of TIM and validation by the expert stakeholders at TfGM 
answers the research question (RQ3) – “Can quantifiable big data on urban 
road congestion be visualised to provide quasi-real-time insight?”. TIM is an 
adaptable system, which has impact beyond this project and be used to 
visually model road congestion in wider national / international locations.  

8.1.4 RQ4: Can a fuzzy rule-based system be designed to predict road 

congestion through validation of the Urban Road Congestion 

Conceptual (URCC) model?  

To answer RD4, two fuzzy systems were developed. The first fuzzy decision-
making system was a binary classification system, which used the 
unsupervised learning classifications to assist with determining the 
membership function for journey time and traffic volume. This system focused 
purely on a single link, using only two data sources and two classifications 
(congestion or non-congestion). Once, this system was developed and was 
proven to be a success, the next step was to develop a second fuzzy 
decision-making system which is more complex and useful to the 
stakeholders at TfGM.  

The second fuzzy system, incorporated data from multiple sources and predicted 
on the whole neighbourhood network to classify the road conditions, non-
congestion, recurrent, congestion, semi-recurrent, non-recurrent congestion. 
This system is a great way for TfGM to analysis their network at link level and 
depending on the type of congestion being identified they can respond in a 
more meaningful manner. Making the network more resilient. The URCC 
model was used to create the memberships and rules ensuring the fuzzy 
system results are consistent with what is defined as urban road congestion. 
Therefore, the development of a non-optimised multi-classification Fuzzy 
decision-making system made it possible to answer the research question 
(RQ4) – “Can a fuzzy rule-based system be designed to predict road 
congestion through validation of the Urban Road Congestion Conceptual 
(URCC) model?” 

8.2 Research Contributions 

This research has produced some significant contributions in the field of 
transportation. 

• Firstly, the development of a novel Urban Road Congestion Conceptual 
(URCC) model which conceptualises the three types of congestion: non-
recurrent, semi-recurrent, and recurrent congestion. Being able to 
conceptualise the events that causes these types of congestion is an 
important contribution to the stakeholders. It will give them the ability to 
respond to semi-recurrent causing event such as planned roadworks 
differently to non-recurrent events, such as unplanned roadworks, which 
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were previously all classified as the same type of congestion. (Chapter 
Three). 

• Secondly, the development of the Manchester Urban Congestion Data 
(MUCD) Dataset which incorporates real-world data from several 
sources, such as Transport for Greater Manchester (TFGM) and the 
United Kingdom’s Governments freely open data. The MUCD dataset is 
the first dataset to combine data from low costing devices, such as 
Bluetooth sensors with openly free data, such as accident and event data, 
and more expensive sources, such as inductive loop counters. Being able 
to integrate these extra data sources with TfGM current data, provides 
them better opportunity to gain greater knowledge with regards to their 
network performance. (Chapter Four) 

• The third contribution is the development of a visualisation toolkit 
Graphical User Interface (GUI) called Transport Incident Manager (TIM) 
which will provide the stakeholders, such as TfGM the ability to visualise 
and perform statistical analysis on individual links or the whole network in 
quasi-real-time, this will allow them to respond in a timelier manner 
making the network more resilient. Additionally, TIM has the ability to feed 
data from any data source which has the capability to monitor the relevant 
dimensions, such as journey time and volume. (Chapter Five) 

• The fourth contribution is the development of a binary fuzzy decision 
system to determine if a rule base system could identify congestion at a 
high level. It was found through empirical experimentation that using a 
fuzzy system was more efficient than traditional methods such as a 
decision tree or probabilistic model. Not only was a fuzzy system more 
efficient, but it also has better explainability for stakeholders to understand 
as it uses only six linguistical rules to make the prediction of either 
congestion or non-congestion. (Chapter Six and Seven) 

• The fifth contribution is a continuation to the fourth as it involves 
developing another one-of-a-kind fuzzy decision-making system, 
however, this fuzzy system is developed to classify multiple types of 
congestion. The classifications are non-recurrent congestion, semi-
recurrent congestion, recurrent congestion, and non-congestion. The 
novelty of this system is similar to the binary fuzzy decision-making 
system, as it doesn’t require training data to teach the model what 
patterns to look for. The fuzzy systems are developed using expert 
knowledge and one of the main benefits of the multi-classification model 
is it uses only 12 linguistically rules making it easier to explain the 
outcome of the predictions compared to the decision tree which has 1184 
leaves which would need to be explained to understand the prediction. 
(Chapter Seven) 

The research in this thesis has led to the following peer-reviewed publications at 
the time of submission. 

Gould, N. and Abberley, L. (2017) ‘The semantics of road congestion.’ In 
UTSG. Dublin. 

L. Abberley, N. Gould, K. Crockett and J. Cheng, ‘Modelling road congestion 
using ontologies for big data analytics in smart cities,’ 2017 International Smart 
Cities Conference (ISC2), 2017, pp. 1-6, Doi: 10.1109/ISC2.2017.8090795 

L. Abberley, K. Crockett and J. Cheng, ‘Modelling Road Congestion Using a 
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Fuzzy System and Real-World Data for Connected and Autonomous Vehicles,’ 
2019 Wireless Days (WD), 2019, pp. 1-8, Doi: 10.1109/WD.2019.8734238. 

The following paper is currently being resubmitted to Transportation Research 
Interdisciplinary Perspectives following corrections.  

• L. Abberley, N. Gould, K. Crockett, J. Cheng (2022) “Development and 
validation of a conceptual model for different types of road congestion: 
recurrent, non-recurrent, and semi-recurrent congestion” 

8.3 Future Work 

8.3.1 Improve the Manchester Urban Congestion Data (MUCD) Dataset 

The first focus with regards to future work is improving on the MUCD Dataset by 
firstly, increasing the number of links within the Manchester’s neighbourhood 
network topology which is currently 64. The second improvement would be 
to incorporate more data sources that are in line with the relevant dimensions 
used to predict urban road congestion, such as traffic volume and journey 
time. Other data sources include Googles Directions API and Traffic master 
(https://www.basemap.co.uk/trafficmaster-data/), which both rely on GPS 
data source and can contribute three main dimensions: Speed, journey time, 
and traffic volume. The final improvement would be to gain access to more 
accurate weather in real-time, which will provide more meaningful data to 
predict the impact of severe weather on urban road congestion. 

8.3.2 Extend the Urban Road Congestion Conceptual (URCC) 

The second focus with regards to further work would be to advance the ontology. 
This will be achieved by incorporating new objects to implement prediction 
techniques and to explore agent-based modelling to simulate the interactions 
between the different stakeholder (agent) and how they will use URCC. Each 
stakeholder will have their own properties (attributes) and will use will interact 
with the URCC in different ways, such as a road user will be focused on a 
journey on several between A and B, but a traffic manager is likely to focus 
on the performance of the overall road network. Additional it would be 
beneficial to explore the relationship between natural language which is 
informal, the formal and explicit definitions presented in the universal 
ontology, and the data being used to predict urban road congestion. Figure 
91 shows the concept of how informal information can be processed for the 
use of prediction an output urban road congestion and how that raw output 
data can then be translated back into a meaningful informal description of 
congestion which a stakeholder would find useful. 
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Figure 91: Relationship between informal, formal, and data 

 

8.3.3 Advancements to Transport Incident Manager (TIM) 

The third focus with regards to further work would follow further improvements 
to the MUCD and would consist of incorporating additional data sources, 
such as Googles Directions API which can provide journey times for self-
defined links into TIM. Other additions would be to allow users to save their 
session configurations and to incorporate additional statistics such as an 
average journey time over multiple self-defined links, for instance, link {a, b, 
c} to form a new larger ‘temporary link’ that incorporates several smaller links.  

8.3.4 Optimisation of the membership functions  

The fourth focus with regards to further work would be to research and 
incorporate a Genetic algorithm into the multi-classification decision-making 
system to optimise the membership functions to achieve better performance 
at prediction the type of congestion occurring. In the first instance, this could 
involve coding the lower and upper bounds of all membership functions in the 
system onto a chromosome and defining a fitness function which maximises 
the prediction accuracy. The challenges will lie in coding the problem and 
determining the most suitable fitness function. 

8.4 Overall conclusion 

In conclusion, this chapter has clearly stated the main research questions and 
explained how they were address (section 8.1), discussed the significant 
contributions in the field of transportation (section 8.3), and discussed the 
limitation of this research and made recommendation for future work (section 
8.3). This has posed three concluding thoughts that need to be address.  
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The first thought is how can the proposed approach be generalised to address 
other situations?  

The proposed method of conceptualising urban road congestion using 
ontologies to assist with the creation of a fuzzy system capable of predicting 
congestion and what type has occurred is scalable as long as the data is 
present, however, reliable data sources would need to be considered. 
Additionally, the proposed method already takes into consideration the 
different characteristics of each road (link), such as road length, speed limit, 
capacity, direction, distance from attractors, etc. Therefore, a percentile 
approach was taken to generalise journey time and volume. So regardless of 
each link characteristics, very high journey time means the same thing on 
each link, making it possible for this approach to be extended to highways 
and rural areas, however, more concepts may need to be added to account 
for different road behaviours.  

The second thought is what is the model transferability? 

The proposed fuzzy system has the ability to work in other countries and other 
major cities in the United Kingdom, such as Birmingham and London. 
However, a few considerations that need to be considered are: alternative 
data sources and city specific constraints, such as London’s congestion 
charge and Birmingham’s zero emissions zones would need to be modelled 
in the urban road congestion ontology and the fuzzy system to maintain 
performance.  

Finally, what calibration is necessary to use the proposed method on other data? 

The benefit of the proposed method is it has been developed around selected 
dimensions rather than specific data sources. For instance, the dimension 
known as journey time can use any of the several different data sources, such 
as Bluetooth sensors, ANPR cameras, and GPS. As part of early 
experimental exploration, Google API (GPS) data was explored, and it was 
noted that the journey time from Bluetooth sensors and Google API were both 
capable of working with the approach. However, the limitation of Google API 
is the expensive cost of each API request. 
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Appendices 

Appendix 1 

This appendix has material related to chapter 3. 

1.1 Enumerate important terms in the ontology 

Table 19 shows a list of all the concepts being used and their associated 
descriptions that have been defined in the associated ontologies. 

Table 19: Concepts and description of the road traffic congestion 
ontology 

Concepts Descriptions 

Road Network A network of roads that help vehicles to travel 
easily around a country.  

Link A link is a segment or segment of a road and can 
have several lanes going upstream and 
downstream.  

Road A set of links with the same name e.g. A6. 
Lanes A lane is a part of a road that is selected for use 

by a single row of vehicles. 
City Centre Area of a city where business, entertainment, 

shopping, and Political powers are 
concentrated. In addition, the city centre is 
also known as “downtown” in America or 
“Central Business District” in Australia. 

Junction Junctions are classified based on the number of 
roads that are involved. For example, a three-
way intersection is known as a “T junction” or 
a “fork”. A four-way junction is known as a 
“crossroads”. 

Highway A set of links that has a minimum of 6 lanes. 
Point A point, typically described using a coordinate 

system relative to Earth, such as WGS84. 
Spatial Thing Anything with spatial extent, i.e., size, shape, or 

position. E.g., people, places, bowling balls, as 
well as abstract areas like cubes. 

Event An arbitrary classification of space/time region, by 
a  
cognitive agent. An event may have actively 
participating agents, passive factors, products, 
and a location in space and time. 

Instant A temporal entity with zero extents or duration. 
Interval A temporal entity with an extent or duration 
Consequence A result or effect, normally one that is unwanted. 
Congestion The state of a congested road. 
Recurrent Occurring often or repeatedly. 
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Concepts Descriptions 
Non-recurrent Occurring at an unknown time. 
Semi-recurrent An event that occurs repeatedly but often at a 

different time and day or an event with an 
expected start and end time. 

Dimensions A way to measure. 
Occupancy The percentage of the time the detection zone of 

a detector is occupied by some vehicle 
Density A spatial measure that describes the number of 

vehicles occupying a section of a road. 
Traffic Volume Count The number of vehicles passing a point in a given 

period of time. 
Average Speed The rate at which someone or something moves 

or operates or can move or operate over a 
selected distance. 

Speed The rate at which someone or something moves 
or operates or can move or operate. 

Speed At a Point The rate at which someone or something moves 
or operates or can move or operate at a given 
point. 

Velocity A speed in a given direction. 
Capacity The maximum number of vehicles per unit of time 

that can be accommodated under given 
conditions with a reasonable expectation of 
occurrence. 

Journey Time The time it takes to go from origin to destination. 
Time Frame A specified period of time in which something 

occurs or is planned to take place. 
Time The indefinite continued progress of existence and 

events in the past, present, and future are 
regarded as a whole. 

Public Events The organised public event, which could disrupt 
traffic. 

Roadworks Road maintenance or improvement activity of an 
unspecified nature, which may potentially 
cause disruption to travel. 

Terrorist Incident A situation related to a perceived or actual threat 
of terrorism, which could disrupt traffic. 

Road Traffic Incident An event that causes disruption to the road 
network. 

Concert Concert event that could disrupt traffic. 
Football Match Football match that could disrupt traffic 
Parade Formal display of organized procession, which 

could disrupt traffic. 
Marathon Marathon, cross-country or road running event 

that could disrupt traffic. 
Accident Accidents are situations in which one or more 

vehicles lose control and do not recover. 
Direction A course along which someone or something 

moves 
Absolute Location of a fixed point on earth. 
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1.2 Define the classes and the class hierarchy 

❖ Time 
➢ Instant 
➢ Interval 

❖ Consequence 
➢ Congestion 

▪ Recurrent 
▪ Non-recurrent 
▪ Semi-recurrent 

❖ Dimensions 
➢ Traffic Volume Count 
➢ Capacity 
➢ Density 
➢ Journey Time 
➢ Occupancy 
➢ Speed 

▪ Average Speed 
▪ Speed at A Point 

➢ Velocity 
❖ Direction 

➢ Absolute 
➢ Relative 

▪ Relative to Event 
▪ Relative to Traveller 
▪ Relative to Functional Site 

❖ Event 
➢ Public Events 

▪ Concert 
▪ Football Match 
▪ Marathon 
▪ Parade 

➢ Road Traffic Incident 
▪ Accident 

➢ Roadworks 
➢ Terrorist Incident 

❖ Highway 
❖ Junction 
❖ Lanes 

Concepts Descriptions 
Relative To Event A location that is relative to an event location. 
Relative To Traveller A location that is relative to the traveller. 
Relative To a 

Functional Site 
A location that is relative to a functional site. 

Magnitude The severity of something. 
Region An area, especially the part of a country or the 

world having definable characteristics but not 
always fixed boundaries. 
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❖ Link 
❖ Magnitude 

➢ Very Low 
➢ Low 
➢ Average 
➢ High 
➢ Very High 

❖ Road 
❖ Set of Links 
❖ Spatial Thing 

➢ Point 
➢ Region 

▪ City Centre 
➢ Road Network 

❖ Time Frame 

1.3 Define the Classes-Properties 

Table 20: Class-Properties (Domain, Properties, and Range) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Domain Property Range 

Events Happens at a Point 
Traffic Volume 

Count 
Has a Capacity 

Velocity Has a Speed 
Velocity Has a Direction 
Lane Has a Capacity 
Congestion Has a beginning Instant 
Event Has a 

consequence 
of 

Consequence 

Congestion Has a duration Interval 
Congestion Has an end Instant 
Link Has numerous Lanes 

Set Of Links Has multiple Link 
Congestion Has a network 

scope 
Set Of Links 

Congestion  Analysed using Dimensions 
Consequence Is a consequence 

of 
Events 

Highway Is a part of Road 
Network 

Junction Is a part of Road 
Network 

Link Is a part of Road 
Set Of Links Is a part of Road 

Network 
Time Frame Is a part of Time 
Dimensions Measured by Magnitude 
Journey Time Measured by Time 
Occupancy Measured by Time 
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Appendix 2 

Table 21 shows the performance of the multi-classification Fuzzy decision-making 
system and presents the prediction per link, per direction. 

Table 21: Individual links performance, Precision, Recall, and F-score. 

Link   NC RC SRC NRC wAvg 

AU Recall 1 0.65808 0 0.2052 0.91409 

Precision 0.6557 0.8602 0 1 0.69924 

F-score 0.792 0.74569 0 0.3406 0.7599 

BU Recall 1 0.62312 0 0.3554 0.82058 

Precision 0.3963 0.68075 0 1 0.55594 

F-score 0.5677 0.65066 0 0.5244 0.56889 

CU Recall 1 0.7803 0 0.3018 0.90608 

Precision 0.6962 0.81348 0 1 0.74016 

F-score 0.8209 0.79654 0 0.4637 0.78546 

DU Recall 0.7317 0.6535 0 0.4583 0.6293 

Precision 0.2997 0.57629 0 0.8761 0.53108 

F-score 0.4252 0.61247 0 0.6018 0.51033 

 EU  Recall 1 0.58884 0 0.3702 0.8865 

Precision 0.6929 0.74717 0 1 0.73412 

F-score 0.8186 0.65863 0 0.5404 0.77056 

FU Recall 1 0.65852 0 0.3439 0.83736 

Precision 0.4453 0.74344 0 1 0.58402 

F-score 0.6162 0.69841 0 0.5118 0.60771 

GU Recall 1 0.65813 0 0.5385 0.88324 

Precision 0.7654 0.68424 0 1 0.79662 

F-score 0.8671 0.67093 0 0.7001 0.81684 

HU Recall 1 0.70111 0 0.4756 0.83391 

Precision 0.5586 0.65284 0 1 0.67657 

F-score 0.7168 0.67612 0 0.6446 0.694 

IU Recall 1 0.75998 0 0.5736 0.89662 

Precision 0.8022 0.70599 0 1 0.82344 

F-score 0.8903 0.73199 0 0.729 0.84247 

JU Recall 0.9594 0.71125 0 0.5242 0.80145 

Precision 0.5261 0.66381 0 0.9724 0.67317 

F-score 0.6795 0.68671 0 0.6812 0.68093 

KU Recall 1 0.52305 0 0.1728 0.84026 

Precision 0.493 0.73111 0 1 0.53419 

F-score 0.6604 0.60982 0 0.2947 0.5963 

LU Recall 0.8966 0.57341 0 0.5497 0.74615 

Precision 0.4852 0.60334 0 0.9322 0.64618 

F-score 0.6296 0.588 0 0.6916 0.64556 
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Link   NC RC SRC NRC wAvg 

MU Recall 1 0.63989 0 0.2452 0.85899 

Precision 0.6904 0.73372 0 1 0.69015 

F-score 0.8169 0.6836 0 0.3938 0.73439 

NU Recall 1 0.7735 0.35159 0.3996 0.88107 

Precision 0.7273 0.78987 0.84091 0.9542 0.76306 

F-score 0.8421 0.7816 0.49586 0.5633 0.79174 

OU Recall 1 0.5639 0.26137 0.3012 0.85876 

Precision 0.5708 0.8075 0.84953 0.9347 0.64088 

F-score 0.7268 0.66406 0.39975 0.4556 0.68248 

PU Recall 1 0.56082 0.15083 0.1514 0.89189 

Precision 0.4811 0.89127 0.89461 0.9108 0.55513 

F-score 0.6497 0.68844 0.25813 0.2597 0.62516 

QU Recall 1 0.41577 0.29626 0.2839 0.87906 

Precision 0.6361 0.81708 0.83967 0.9196 0.67697 

F-score 0.7776 0.55111 0.43799 0.4338 0.72356 

RU Recall 1 0.66768 0.36392 0.4166 0.88209 

Precision 0.7339 0.84451 0.84477 0.9267 0.76819 

F-score 0.8465 0.74575 0.5087 0.5748 0.79528 

SU Recall 1 0.75304 0 0.2592 0.82712 

Precision 0.692 0.76508 0 1 0.6795 

F-score 0.818 0.75901 0 0.4117 0.71316 

TU Recall 1 0.60758 0.41404 0.3477 0.8379 

Precision 0.5524 0.86525 0.8812 0.9192 0.65498 

F-score 0.7117 0.71388 0.56337 0.5045 0.67899 

UU Recall 1 0.71147 0.28863 0.4619 0.89758 

Precision 0.7716 0.88052 0.85714 0.918 0.79961 

F-score 0.8711 0.78702 0.43184 0.6146 0.82554 

VU Recall 1 0.7222 0.49907 0.4238 0.87872 

Precision 0.7428 0.8699 0.87184 0.9225 0.78355 

F-score 0.8524 0.7892 0.63477 0.5808 0.80467 

WU Recall 1 0.6436 0.2845 0.3224 0.87155 

Precision 0.6194 0.86635 0.91774 0.9497 0.68986 

F-score 0.7649 0.73854 0.43435 0.4814 0.72631 

XU Recall 1 0.53571 0.16677 0.2043 0.90245 

Precision 0.6269 0.8802 0.83333 0.96 0.67075 

F-score 0.7707 0.66605 0.27793 0.3369 0.7308 

YU Recall 0.841 0.68269 0.44374 0.4036 0.69101 

Precision 0.3843 0.79806 0.80496 0.7994 0.57102 

F-score 0.5275 0.73588 0.57211 0.5364 0.56543 

ZU Recall 1 0.43722 0.07543 0.0678 0.92446 

Precision 0.5391 0.87161 0.82741 0.9422 0.5785 

F-score 0.7006 0.58233 0.13825 0.1265 0.67451 
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Link   NC RC SRC NRC wAvg 

AAU Recall 1 0.64644 0.17371 0.1966 0.91855 

Precision 0.7248 0.88606 0.79692 0.9805 0.75299 

F-score 0.8405 0.74752 0.28524 0.3275 0.80383 

ABU Recall 1 0.61913 0.22253 0.3288 0.86761 

Precision 0.6098 0.79037 0.8277 0.9779 0.67156 

F-score 0.7576 0.69435 0.35075 0.4922 0.71334 

ACU Recall 1 0.48811 0.06689 0.1113 0.91579 

Precision 0.5019 0.95078 0.93143 0.9615 0.56325 

F-score 0.6684 0.64506 0.12481 0.1995 0.64796 

ADU Recall 1 0.74505 0 0.3099 0.878 

Precision 0.5925 0.74969 0 1 0.66546 

F-score 0.7441 0.74736 0 0.4732 0.71054 

AEU Recall 1 0.77352 0 0.4289 0.87497 

Precision 0.6726 0.72412 0 1 0.73348 

F-score 0.8043 0.74801 0 0.6003 0.76301 

AFU Recall 1 0.52965 0 0.3519 0.88389 

Precision 0.6866 0.68541 0 1 0.7203 

F-score 0.8142 0.59755 0 0.5206 0.76125 

AD Recall 1 0.59077 0 0.2044 0.91005 

Precision 0.6421 0.84832 0 1 0.6848 

F-score 0.782 0.69649 0 0.3394 0.74653 

BD Recall 1 0.64968 0 0.3549 0.82355 

Precision 0.3964 0.70232 0 1 0.55882 

F-score 0.5678 0.67497 0 0.5239 0.57208 

CD Recall 1 0.79434 0 0.2929 0.90815 

Precision 0.6852 0.83196 0 1 0.73377 

F-score 0.8132 0.81271 0 0.4531 0.78096 

DD Recall 0.7262 0.67784 0 0.459 0.63019 

Precision 0.3115 0.57189 0 0.8706 0.53516 

F-score 0.436 0.62037 0 0.6011 0.51737 

ED Recall 1 0.55897 0 0.3481 0.88643 

Precision 0.6774 0.73518 0 1 0.71892 

F-score 0.8077 0.63508 0 0.5164 0.75915 

FD Recall 1 0.67877 0 0.3672 0.84144 

Precision 0.4932 0.72227 0 1 0.6166 

F-score 0.6606 0.69985 0 0.5371 0.64255 

GD Recall 1 0.63571 0 0.5066 0.88044 

Precision 0.7508 0.66649 0 1 0.78252 

F-score 0.8577 0.65074 0 0.6725 0.80531 

HD Recall 1 0.75513 0 0.4878 0.84494 

Precision 0.5929 0.66901 0 1 0.69964 

F-score 0.7444 0.70947 0 0.6557 0.71862 
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Link   NC RC SRC NRC wAvg 

ID Recall 1 0.75692 0 0.5857 0.89718 

Precision 0.8052 0.70308 0 1 0.82643 

F-score 0.8921 0.729 0 0.7387 0.84487 

JD Recall 0.9457 0.76082 0 0.521 0.79807 

Precision 0.5396 0.65329 0 0.9596 0.67628 

F-score 0.6871 0.70296 0 0.6753 0.68586 

KD Recall 1 0.58031 0 0.187 0.83919 

Precision 0.5205 0.72035 0 1 0.55778 

F-score 0.6846 0.64279 0 0.3151 0.61727 

LD Recall 0.8897 0.63684 0 0.5537 0.7478 

Precision 0.5003 0.61694 0 0.9198 0.6547 

F-score 0.6404 0.62673 0 0.6912 0.65595 

MD Recall 1 0.64333 0 0.24 0.87194 

Precision 0.7036 0.70349 0 1 0.70212 

F-score 0.826 0.67207 0 0.3872 0.74973 

ND Recall 1 0.77823 0.3157 0.3983 0.88343 

Precision 0.7264 0.7997 0.82681 0.9468 0.76214 

F-score 0.8415 0.78882 0.45693 0.5607 0.79235 

OD Recall 1 0.62495 0.27803 0.3411 0.85845 

Precision 0.604 0.79269 0.84111 0.9419 0.67006 

F-score 0.7531 0.6989 0.41792 0.5008 0.70735 

PD Recall 1 0.53211 0.15782 0.1567 0.89111 

Precision 0.4918 0.88275 0.91029 0.924 0.56273 

F-score 0.6593 0.66398 0.26901 0.268 0.63144 

QD Recall 1 0.42429 0.28073 0.2364 0.88701 

Precision 0.6262 0.82935 0.84572 0.9117 0.66557 

F-score 0.7701 0.56138 0.42153 0.3754 0.71889 

RD Recall 1 0.65725 0.34965 0.3951 0.8839 

Precision 0.7351 0.83503 0.82023 0.9357 0.76611 

F-score 0.8473 0.73555 0.4903 0.5556 0.79509 

SD Recall 1 0.70488 0 0.2556 0.82577 

Precision 0.6787 0.75455 0 1 0.67075 

F-score 0.8086 0.72887 0 0.4071 0.7061 

TD Recall 1 0.63657 0.4302 0.3505 0.83447 

Precision 0.5434 0.84998 0.88702 0.9239 0.65349 

F-score 0.7042 0.72796 0.5794 0.5082 0.67573 

UD Recall 1 0.73377 0.32413 0.4793 0.89794 

Precision 0.7773 0.86774 0.88939 0.9453 0.8068 

F-score 0.8747 0.79515 0.47511 0.6361 0.83015 

VD Recall 1 0.68877 0.4908 0.4221 0.87932 

Precision 0.7514 0.86895 0.86815 0.9014 0.78591 

F-score 0.8581 0.76844 0.62709 0.575 0.80738 
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Link   NC RC SRC NRC wAvg 

WD Recall 1 0.66278 0.30781 0.3193 0.87314 

Precision 0.6286 0.87134 0.90405 0.9489 0.6974 

F-score 0.7719 0.75288 0.45925 0.4778 0.73325 

XD Recall 1 0.57028 0.17659 0.2223 0.90196 

Precision 0.642 0.89747 0.87755 0.9478 0.68767 

F-score 0.7819 0.6974 0.29402 0.3602 0.74291 

YD Recall 0.8397 0.68192 0.44166 0.4016 0.68905 

Precision 0.3761 0.8061 0.78729 0.8057 0.56797 

F-score 0.5195 0.73883 0.56587 0.536 0.56125 

ZD Recall 1 0.4482 0.12644 0.0798 0.91786 

Precision 0.5523 0.83849 0.83898 0.9475 0.59001 

F-score 0.7116 0.58415 0.21976 0.1473 0.68017 

AAD Recall 1 0.67282 0.15917 0.1559 0.92424 

Precision 0.7094 0.9032 0.78457 0.9703 0.74073 

F-score 0.83 0.77117 0.26464 0.2687 0.79869 

ABD Recall 1 0.6121 0.24944 0.3587 0.86162 

Precision 0.6189 0.79034 0.82836 0.9687 0.68129 

F-score 0.7646 0.68989 0.38342 0.5235 0.71823 

ACD Recall 1 0.50895 0.05669 0.1035 0.91788 

Precision 0.4949 0.9559 0.9085 0.9725 0.55864 

F-score 0.6621 0.66424 0.10672 0.187 0.64547 

ADD Recall 1 0.73651 0 0.3037 0.87305 

Precision 0.5644 0.73867 0 1 0.64509 

F-score 0.7215 0.73759 0 0.4659 0.69039 

AED Recall 1 0.76037 0 0.4079 0.8697 

Precision 0.6361 0.72618 0 1 0.70879 

F-score 0.7776 0.74288 0 0.5795 0.73986 

AFD Recall 1 0.57198 0 0.4049 0.8814 

Precision 0.7057 0.66931 0 1 0.73918 

F-score 0.8275 0.61683 0 0.5764 0.77437 

Appendix 3 

This appendix has a copy of each published paper related to work within this 
thesis. 
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L. Abberley, N. Gould, K. Crockett and J. Cheng, ‘Modelling road congestion 
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10.1109/ISC2.2017.8090795 
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