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A B S T R A C T   

Diabetic retinopathy (DR) is an incurable retinal condition caused by excessive blood sugar that, if left untreated, 
can result in even blindness. A novel automated technique for DR detection has been proposed in this paper. To 
accentuate the lesions, the fundus images (FIs) were preprocessed using Contrast Limited Adaptive Histogram 
Equalization (CLAHE). A parallel convolutional neural network (PCNN) was employed for feature extraction and 
then the extreme learning machine (ELM) technique was utilized for the DR classification. In comparison to the 
similar CNN structure, the PCNN design uses fewer parameters and layers, which minimizes the time required to 
extract distinctive features. The effectiveness of the technique was evaluated on two datasets (Kaggle DR 2015 
competition (Dataset 1; 34,984 FIs) and APTOS 2019 (3,662 FIs)), and the results are promising. For the two 
datasets mentioned, the proposed technique attained accuracies of 91.78 % and 97.27 % respectively. However, 
one of the study’s subsidiary discoveries was that the proposed framework demonstrated stability for both larger 
and smaller datasets, as well as for balanced and imbalanced datasets. Furthermore, in terms of classifier per-
formance metrics, model parameters and layers, and prediction time, the suggested approach outscored existing 
state-of-the-art models, which would add significant benefit for the medical practitioners in accurately identi-
fying the DR.   

1. Introduction 

Diabetic retinopathy (DR) is a chronic retinal disease that is regarded 
as the sixth most common cause of blindness worldwide. It’s a hidden 
progressive chronic disease among the diabetic patients. According to 
the 2013 statistics, 382 million people are affected by diabetes-related 
retinal disease, and by 2025, it is projected to exceed 592 million 
(Pandey & Sharma, 2018). DR shows no clear early sign of appearance; 
as the condition degrades, complete blindness is basically the obvious 
end result. Regular screening can help to identify the DR at an early 
stage, which can help in arresting any further damage through appro-
priate medication. Fundus images (FIs) with high resolution are utilized 
for detecting the teensy lesions and grading the severity level. Non- 
proliferative DR (NPDR) and proliferative DR (PDR) are the two 

primary forms of the DR. Again, NPDR can be classified with four 
severity levels: No DR, Mild stage, Moderate stage, and Severe stage 
(Mumtaz et al., 2018). Fig. 1 reveals some common symptoms of the DR 
(Mumtaz et al., 2018). The small dark reddish dot-like lesion is visible 
near the blood vessel’s terminal point, called a microaneurysm (MA). 
Hypertension and blockage of the retinal veins cause retinal hemorrhage 
(HM), another DR consequence. Small HMs might look a lot similar to 
the MAs at times. Exudates are yellow flicks that filter out the injured 
capillaries and are made up of lipids and protein residues. 

In its later phases, the DR is difficult to treat. There are only a few 
microaneurysms that appear in the Mild NPDR. In contrast, multiple 
MAs, hemorrhages, and venous beading occur in the moderate NPDR, 
leading patients’ capacity to transfer blood to the retina to be compro-
mised. Severe NPDR is defined by the appearance of more than 20 intra- 
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retinal hemorrhages in each of the four quadrants, visible venous 
beading in two or more quadrants, and substantial intraretinal micro-
vascular abnormality (IRMA) in one or more quadrants. New blood 
vessels are formed in the PDR stage, along with the aforementioned 
anomalies (Chudzik et al., 2018). 

DR is diagnosed using fundus images. Expert ophthalmologists find 
existing lesions on the images based on which they grade the DR level 
and suggest appropriate treatment accordingly. As the lesions are small 
and often having an overlapping boundaries between the consecutive 
DR grades, even the expert ophthalmologists cannot provide consistent 
diagnosis for the same fundus images and it is also a time-consuming 
process. Therefore, an urgent need for a computer-aided system has 
been realized by the research community. 

Various computer-aided systems have been proposed so far for the 
DR screening. Ophthalmologists grade the severity level by screening 
the lesions present in FIs and providing treatment based on the level. 
Some lesion segmentation techniques were developed to copy this style 
to mark out these tiny lesions and assist the ophthalmologists in correct 
diagnosis. Image processing techniques were frequently used for seg-
menting lesions of FIs. Using image processing techniques, Mumtaz et al. 
(2018), showed the automatic identification of one of the red lesions, i. 
e., hemorrhage, which is one of the most recognizable symptoms of 
retinal disorders among diabetic patients. Akram et al. (2014), detected 
the MA from small patches extracted from the FIs while PCA was used 
for dimensionality reduction. Rahim et al. (2016), used fuzzy C-means 
(FCM) image processing techniques to provide a novel automated 
diagnosis of the DR and maculopathy in eye fundus pictures. Kar and 
Maity (2017), developed a four-part lesion detection technique that 
included extraction of vessels and removal of the optic disc, pre- 
processing, detection of candidate lesion, and post-processing. The 
dark lesions were separated from the weakly lit retinal backgrounds 
using curvelet-based edge enhancement, while the contrast between the 
bright lesions and the background was improved using a well-designed 
wideband bandpass filter. Subsequently, the mutual information of the 
maximum matched filter response and the maximum Laplacian of 
Gaussian response was maximized together. Finally, morphology-based 
post-processing was used to exclude the candidate pixels that were 
incorrectly identified. Umapathy et al. (2019), extracted texture features 
using the image processing and classified by Decision Tree (DT) classi-
fier. For the second method the authors utilized the transfer learning 
method. As the complex features were extracted using the image pro-
cessing technique, the accuracy was not so high. For this, deep learning 
models were also proposed for the lesion segmentation. For the seg-
mentation of microaneurysms, Chudzik et al. (2018), presented a patch- 
based Convolutional Neural Network (CNN) with batch normalization 
layers and a dice loss function Pixel-wise exudate detection with a deep 
CNN was proposed by Yu et al. (2017). Gondal et al. (2017), presented a 
weakly-supervised CNN model that highlighted denoting regions of the 
retinal images. The authors obtained high classification and sensitivity 
scores. The Mask-RCNN model was proposed to segment small lesions 
(MA and exudates) by Shenavarmasouleh and Arabnia (2007). The 

authors utilized the transfer learning (TL) approach to reuse the pre- 
trained model ResNet101′s weights and achieved an mAP score of 45 
%. Besides segmentation, image-level classification is also popular for 
the DR grading. The whole image is classified into its classification 
grades based on unique features in the image-level classification. 

Several of the studies utilized traditional machine learning (ML) 
methods such as DT, support vector machine (SVM), Random forests 
(RF), logistic regression (LR), and Gaussian Naïve Bayes (GNB). For 
using traditional ML-based classification, features were extracted using 
image processing techniques later deployed to develop the models. For 
example, Lachure et al. (2015), used morphological image processing 
like erosion, dilation, opening, closing, etc., to segment MAs and exu-
dates. Later the features were fed to the SVM and k-nearest neighbors 
(KNN) classifiers for grading the FIs. Asha and Karpagavalli (2015), 
detected retinal exudates using machine learning techniques where the 
FIs were segmented using the fuzzy C means algorithm, then exudates 
features were detected from the Luv color space. The classifiers utilized 
included NB, Multilayer Perceptron (MLP), and Extreme Learning Ma-
chine (ELM), with ELM providing the best results. ML techniques for 
automatically identifying and categorizing the DR from the retina im-
ages were studied by Honnungar et al. (2016). The proposed method 
entailed image preprocessing (Contrast Limited Adaptive Histogram 
Equalization, CLAHE), feature extraction using the bag of visual words 
model, and image classification into distinct DR phases using a multi- 
class classifier (logistic regression, SVM, and RF). Raman et al. applied 
CLAHE to enhance the images, then Sobel operator and contour with 
circular hough transformation for optic disk segmentation, morpholog-
ical operation for blood vessel segmentation, regions growing for exu-
dates segmentation, and a mixture model for microaneurysm 
segmentation (Raman et al., 2016). Finally, an artificial neural network 
(ANN) was used as a classifier. Carrera et al. (2017), utilized image 
processing to isolate blood vessels, microaneurysms, and hard exudates 
for extracting features, which were later deployed to the SVM classifier. 
They obtained a sensitivity of 95 % and an accuracy of 94 %. Soma-
sundaram and Ali (2017), developed a ML bagging ensemble classifier 
(ML-BEC) and extracted t-distribution Stochastic Neighbor Embedding 
(t-SNE) features. Ramani et al. (2017), proposed a two-level classifica-
tion for the DR grading. Ensemble of Best First Trees (BFTs) was used, 
whereas misclassified instances were removed and deployed to second 
level ensemble classifiers with J48 Graft Trees. Using Local Ternary 
Pattern (LTP) and Local Energy-based Shape Histogram, Chetoui et al. 
(2018), identified texture characteristics (LESH). For classification, SVM 
was used with various kernel functions. For feature representation, a 
histogram binning method was utilized. They demonstrated that using 
SVM with an RBF kernel, LESH is the best method, with an accuracy of 
90 %. ML approaches for segmentation and categorization of the DR 
were presented by Ali et al. (2020). They proposed a new regional- 
growing paradigm based on clustering. They used four types of char-
acteristics for texture analysis: histogram (H), wavelet (W), co- 
occurrence matrix (COM), and run-length matrix (RLM). The authors 
utilized data fusion to create hybrid-feature datasets to increase classi-
fication accuracy. To obtain 13 optimal features, they used Fisher, 
correlation-based feature selection, mutual information, and probability 
of error plus average correlation. Finally, five classifiers were used: SMO 
(sequential minimum optimization), Lg (logistic), MLP (multilayer 
perceptron), and SLg (simple logistic). Gayathri et al. (2021), designed a 
multipath convolutional neural network (M− CNN) for extracting global 
and local features from fundus images. Then SVM, RF, and J48 classifiers 
were used for the final DR grade prediction. The M− CNN network ob-
tained the best result with the J48 classifier. Mahmoud et al. (2021), 
introduced a hybrid inductive ML algorithm (HIMLA) for automatic DR 
detection. 

Color FIs were normalized and a convolutional encoder-decoder was 
used for segmenting blood vessels. A multiple instance learning tech-
nique was utilized for feature extraction and classification. Reddy et al. 
(2020), experimented with an ensemble learning method with 

Fig. 1. Fundus image with various lesions for DR classification.  
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Adaboost, RF, DT, KNN, and Logistic Regression. The authors used the 
grid search technique for hyperparameter tuning. Odeh et al. (2016), 
proposed an ensemble method using RF for robust and powerful 
learning, NN for improving precision, and SVM for accurate, time-saving 
prediction. For feature selection, the authors used info gain attribute 
evaluation and wrapper subset evaluation algorithms. 

One problem with the traditional ML is that the complex features 
need to be extracted first. This manual feature extraction using image 
processing sometimes fail to capture all the complex features necessary 
for an accurate classification. Here comes the deep learning (DL) 
approach, which is used for imaging in a wide range of applications 
nowadays. DL models were also deployed in the DR identification with 
significant success through accurate extraction of the complex feature 
using the convolution layers. A 4 × 4 kernel-based CNN architecture 
with some preprocessing and augmentation methods was proposed by 
Islam et al. (2018), for detecting the DR where the authors employed L2 
regularizer and dropout to eliminate overfitting and achieved 98 % 
sensitivity and 94 % specificity with a kappa score of 85 %. Zhou et al. 
(2018), proposed a multitasking deep learning model for the DR 
grading. Because of the interrelationship among the DR stages, the au-
thors followed the multitasking approach that predicted the labels with 
both the classification and regression and got a kappa score of 84 %. A 
Siamese-like architecture was also proposed for the DR detection by 
Zeng et al. (2019). The model used binocular fundus images as input and 
was trained with a transfer learning strategy. An attention-based DL 
model, BiRA-Net was proposed by Zhao et al. (2019). Islam et al. (2020), 
proposed a VGG16 based transfer learning approach with a color pre-
processing version. The authors used stratified K-fold cross-validation to 
reduce the overfitting problem. For a smaller Kaggle dataset, Samanta 
et al. (2020), suggested transfer learning-based DenseNet and attained a 
kappa score of 0.8836 on the validation set. On the Messidor-1 and 
APTOS datasets, Gangwar and Ravi (2021), used a pre-trained model, 
Inception-ResNet-v2, and built a custom layer on top, achieving an ac-
curacy of 72.33 % and 82.18 % respectively. Islam et al. (2021), 
developed a customized VGG19 model and down sampling technique for 
DR detection. Majumder and Kehtarnavaz (2021), proposed a multi-
tasking deep learning model to detect the five grades of the DR 
composed of one regression model, one classification model, and one 
regression model for inter-dependency. For the APTOS and EyePACS 
datasets, they achieved a kappa score of 90 % and 88 %. Also, an inte-
grated shallow network was proposed by Chen et al. (2020). 

Though various models have been developed, still further improve-
ment is required particularly in the case of multiclass classification. 
Several ML models were employed in some research, but in this case, the 
classification performance was not satisfactory despite the model 
complexity being lower than the existing DL models. Researchers used 
different transfer learning (TL) models to achieve higher classification 
performance to overcome these shortcomings. However, the TL models 
have a vast number of parameters, layers and consume a lot of time for 
training. Therefore, this study proposes a framework that makes a trade- 
off between the ML and DL models, increasing classification perfor-
mance and reducing the vast number of parameters and layers, which 
reduces the processing time. In this study, the FIs were preprocessed 
using CLAHE to highlight the lesions of DR. A lightweight parallel CNN 
model has been developed to extract the most discriminant features, 
which are standardized using a standard scaler. Finally, a single-layer 
ML algorithm model named ELM has been used for classification of 
the DR. The proposed framework brings its novelty through a smaller 
number of parameters, layers, and comparatively lower processing time. 
The proposed framework also offers versatile capabilities in any domain, 
for instance, small or large datasets, balanced or imbalanced datasets, 
and low-resolution FIs. 

2. Dataset description 

In this study, two prevalent datasets were used: Kaggle DR 2015 

competition (Dataset 1) and APTOS, 2019 respectively provided by 
EyePACS and Aravind Eye Hospital via Kaggle (California Healthcare 
Foundation, 2019; APTOS, 2019). The datasets contained five grades of 
the DR to detect with 34,984 FIs in Dataset 1 and 3,662 images in 
APTOS, 2019. 80 % of the data was used for training, and the rest was for 
testing. During image extraction from the Kaggle DR 2015 dataset, some 
FIs were lost. As both the datasets were collected from Kaggle compe-
tition, their corresponding test images were kept in private. Hence, only 
the trained data was used for the DR classification. The trained dataset 
then further split into both training and testing set for carried out the 
classification task. Table 1 shows the number of FIs per class for both 
datasets. Representative samples from each class are demonstrated in 
Fig. 2. 

3. Proposed framework 

An adequate framework was proposed in this study for severity 
grading of the DR. The benefits of ML and DL algorithms were merged to 
develop a robust framework with a trade-off between the model’s pro-
cessing performance and classification performance. Fig. 3 exhibits the 
proposed framework to detect DR from the FIs. First, the FIs were pre-
processed using CLAHE to highlight the lesions more clearly, then 
normalized and finally reshaped. Afterward, a lightweight CNN model 
was developed to extract the most discriminant features from the pro-
cessed FIs. The extracted features were standardized to be fed into the 
ELM algorithm, which to classify the severity level of the DR. In the 
subsequent sections, all components of the framework have been 
explained comprehensively. 

3.1. Pre-processing 

Image preprocessing is crucial for medical image analysis because 
the classification performance varies depending on how well the image 
has been preprocessed. CLAHE reveals a favorable result for enhancing 
image quality in the case of medical image preprocessing (Nahiduzza-
man et al., 2021a,b). Since the datasets contained different quality of 
images, hence for improving the quality of low contrast images while 
focusing on the lesions of FIs, CLAHE was utilized. The intensification in 
CLAHE was controlled by clipping the histogram at a user-defined value 
called the clip limit. The clipping level determined the amount of 
distortion in the histogram should be eliminated and this defined the 
limit of contrast adjustment. In this study, the tile size was (4 × 4), and 
the clip limit was 2.0 while using the color version of the CLAHE. After 
applying CLAHE, the FIs have been normalized dividing by 255 to make 
each image range between 0 and 1, which also reduced the complexity 
of the model. Since the datasets contained diverse FIs, making the FIs 
with the same size was an essential step to follow. Hence, the FIs were 
resized to (124 × 124) to fit into the CNN model. Fig. 4 shows the effect 
of CLAHE in the FIs. 

3.2. Features extraction using parallel convolutional layers 

One of the main focuses of this study was to design a CNN that 
reduced both parameters and layers, which eventually shortened the 
processing time while extracting the most prominent features. The 

Table 1 
The number of FIs per class for Dataset-1 and APTOS, 2019.  

Level Dataset-1 (Image Ratio) APTOS, 2019 (Image Ratio) 

No DR 25,707 (0.73) 1,805 (0.49) 
Mild DR 2,435 (0.07) 370 (0.10) 
Moderate DR 5,268 (0.15) 999 (0.27) 
Severe DR 869 (0.025) 193 (0.05) 
PDR 705 (0.02) 295 (0.08) 
Total 34,984 3,662  
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notable features assisted the ELM model in accurately detecting the 
levels of DR. Basically, in CNN, the convolutional layer (CL) was posi-
tioned sequentially for obtaining the best features. For instance, select-
ing a small number of CL layers might result in the loss of some 

discriminant features, whereas a large number of CL layers might lead to 
overfitting the model. Hence, the number of CL layers needed to be 
chosen adequately to extract the most relevant features. In this study, six 
CL layers were selected to extract the prominent features while reducing 

Fig. 2. Samples of No DR, Mild, Moderate, Severe, and PDR from Dataset-1 and APTOS, 2019.  

Fig. 3. A proposed framework to detect the five levels of DR.  

Fig. 4. Five levels of FIs without preprocessing and preprocessing with CLAHE.  
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overfitting. The lightweight parallax CNN has been shown in Fig. 5. 
In the lightweight parallel CNN, four CLs were placed in parallel, 

which resulted in lowering the parameters and processing time. Since 
the four CLs were run in parallel, which could be considered as a single 
CL but performed just like four CLs. The size of each CL was 64. The 
kernel sizes of the first, second, third, and fourth CLs were 9 × 9, 7 × 7, 
5 × 5, and 3 × 3, respectively and the activation function was ReLU. In 
this study, the padding size was kept the same in the first four CLs to 
check the border element. As sometimes the border element might hold 
important information in the FIs which were checked using the same 
padding. Afterwards, the result of these parallel CLs were concatenated 
and fed into the sequential CNN. The sizes of the last two CLs were 32 
and 16, respectively, with a kernel size of 3 × 3. The padding size in the 
rest of the CLs was kept “valid”. Each CL was followed by batch 
normalization, activation, and a max-pooling layer. Max-pooling with 2 
× 2 filters was used to extract the most important regions of the FIs by 
obtaining the highest value in each region at the CLs. There were two 
fully connected (FC) layers, and the features were extracted from the last 
FC layer. Two dropouts were used with a 0.5 probability: one after the 
last CL and another after the first FC layer. Dropout was used to reduce 
overfitting and speed up the training process by randomly skipping 50 % 
of all nodes. For extracting the features, the CNN model was run for 50 
epochs with a batch size 64 while considering the learning rate of 0.001 
with the ADAM optimizer and handling the loss using sparse categorical 
cross-entropy. A total of 120 features were selected from the last FC 
layer by using a trial-and-error process. The summary of the CNN model 
is shown in Table 2. 

3.3. Extreme learning machine 

Before fitting the features into ELM, features were standardized by 
subtracting the mean and scaling to mean–variance. The standard scaler 
was employed to regularize the extracted features, which improved the 
classification performance of the models (), (Nahiduzzaman et al., 
2019). The standard score for the sample x has been calculated using Eq. 
(1) (Farrell and Saloner, 1985). 

y =
x − x

σ (1)  

where x is the mean of the samples and σ is the standard deviation of the 
samples. 

Huang et al. (2006), proposed ELM, a forward feed network-based 
neural network. The standardized 120 features were classified using a 
single hidden layer. The number of nodes in the hidden layer for Dataset- 
1 and APTOS, 2019 were 1000 and 200, respectively, which were 
selected by trial-and-error method. The number of nodes in the input 
and output layers of the ELM model for both datasets were 120 and 5, 
respectively, whereas the ReLU was used as an activation function. Due 
to the absence of backpropagation, the training time was a thousand 
times faster than the typical NN, resulting in better generalization power 
and higher classification performance (Huang et al. (2006); Nahi-
duzzaman et al., 2021a,b). The parameters from the input to the hidden 
layer were calculated randomly, whereas the parameters from the hid-
den layer to the output layer were calculated using pseudoinverse. For 
extracting features using lightweight CNN, the entire trainable param-
eters for the DR classification are 3, 505,939. For classification using 
Dataset-1 and APTOS, 2019, the complete parameters of the ELM were 
125,500, and 25,000, resulting in total trainable parameters of 3, 630, 
939, and 3,530, 939, respectively. 

Fig. 5. The lightweight parallel CNN to extract the features from FIs.  

Table 2 
Summary of proposed lightweight CNN for feature extraction.  

Layer (Type) Output Shape Parameters 

model (Functional) (None, 124, 124, 256) 31, 744 
conv5 (Conv2D) (None, 122, 122, 32) 73, 760 
bn1 (BatchNormalization) (None, 122, 122, 32) 128 
av5 (Activation) (None, 122, 122, 32) 0 
mp1 (MaxPooling2D) (None, 61, 61, 32) 0 
conv6 (Conv2D) (None, 59, 59, 16) 4, 624 
bn2 (BatchNormalization) (None, 59, 59, 16) 64 
av2 (Activation) (None, 59, 59, 16) 0 
mp2 (MaxPooling2D) (None, 29, 29, 16) 0 
dp1 (Dropout) (None, 29, 29, 16) 0 
ft (Flatten) (None, 13456) 0 
dense (Dense) (None, 250) 3, 364, 250 
bn4 (BatchNormalization) (None, 250) 1, 000 
av4 (Activation) (None, 250) 0 
dp2 (Dropout) (None, 250) 0 
Feature Extraction (Dense) (None, 120) 30, 120 
Total Parameters 3, 506, 775 
Trainable Parameters 3, 505, 939 
Non-trainable Parameters 836  
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Algorithm 1: Extreme Learning Machine  

X(n,m) =

⎡

⎢
⎢
⎢
⎢
⎣

x(1,1) x(1,2) ⋯ x(1,m)

x(2,1) x(2,2) ⋯ x(1,m)

x(3,1) x(3,2) ⋯ x(1,m)

⋮ ⋮ ⋱ ⋮
x(n,1) x(n,2) ⋯ x(n,m)

⎤

⎥
⎥
⎥
⎥
⎦

Y(n,t) =

⎡

⎢
⎢
⎢
⎢
⎣

y(1,1) y(1,2) ⋯ y(1,t)
y(2,1) y(2,2) ⋯ y(1,t)
y(3,1) y(3,2) ⋯ y(1,t)

⋮ ⋮ ⋱ ⋮
y(n,1) y(n,2) ⋯ y(n,t)

⎤

⎥
⎥
⎥
⎥
⎦

1: Randomly generates the input weight W(m,N) and bias B(1,N) matrix. 

W(m,N) =

⎡

⎢
⎢
⎢
⎢
⎣

w(1,1) w(1,2) ⋯ w(1,N)

w(2,1) w(2,2) ⋯ w(1,N)

w(3,1) w(3,2) ⋯ w(1,N)

⋮ ⋮ ⋱ ⋮
w(m,1) w(m,2) ⋯ w(m,N)

⎤

⎥
⎥
⎥
⎥
⎦

B(1,N) =
[

b(1,1) b(1,2) ⋯ b(1,N)

]

2: Determine the output H(n,N) of the hidden layer. 
H(n,N) = G(X(n,m)⋅W(m,N) + B(1,N))

H(n,N) =

⎡

⎢
⎢
⎢
⎢
⎣

h(1,1) h(1,2) ⋯ h(1,N)

h(2,1) h(2,2) ⋯ h(1,N)

h(3,1) h(3,2) ⋯ h(1,N)

⋮ ⋮ ⋱ ⋮
h(n,1) h(n,2) ⋯ h(n,N)

⎤

⎥
⎥
⎥
⎥
⎦

3: Determine the output weight matrix β(N,t)

β(N,t) = H†

(N,n)⋅T(n,t)

4: Make prediction using β(N,t)

4. Result and discussion 

Several performance metrics, such as accuracy, precision, recall, f1- 
score, and Area Under the Curve (AUC) curve, were used to evaluate the 
performance of the proposed framework. Equations (2) through Equa-
tion (6) can be used to define the metrics (Powers, 2010). 

Accuracy =
TP + TN

TP + TN + FP + FN
(2)  

Precision =
TP

TP + FP
(3)  

Recall =
TP

TN + FP
(4)  

F1 − Score =
2 × (Precision × Recall)

Precision + Recall
(5)  

AUC =
1
2
(

TP

TP + FN
+

TN

TN + FP
) (6)  

where true positives, true negatives, false positives, and false negatives 
are symbolized as TP, TN, FP and FN, respectively. True positives indi-
cated that the normal patients were correctly detected as normal, true 
negatives indicated that the DR affected patients were correctly identi-
fied as DR whereas false positives indicated that the normal patients 
were wrongly detected as DR and false negatives indicated that the DR 
patients were wrongly detected as normal. 

PyCharm Community Edition (2021.2.3) software was used to run all 
of the codes, which were written in the python programming language. 
Keras was used to build the CNN model, with TensorFlow as the back-
end. The ELM models were trained and tested on a PC with a 64-bit 
Windows 10 Pro operating system, an Intel (R) Core (TM) i9-11900 
CPU @ 2.50 GHz, 32 GB of RAM, and an NVIDIA GeForce, RTX 3090 
24 GB GPU. 

In this section, the different types of performance were investigated 
to show the robustness of the proposed framework. A lightweight 
customized CNN has extracted 120 prominent features from the pre-
processed FIs. These prominent features were further preprocessed and 
fitted into the ELM model to classify different levels of DR. In abridge-
ment, the feature deriving capability was incorporated with the ELM. 
The proposed combination was examined with two datasets. 

4.1. Results of Dataset-1 

The ELM model was trained using 27,978 FIs, whereas the numbers 
of No DR, Mild, Moderate, Severe, and PDR FIs were 20566, 1948, 4214, 
695, and 564 respectively. The training process required only one iter-
ation as there was no backpropagation in the ELM. Therefore, the ELM 
training process was faster than the traditional neural network (NN) and 
the DL models. Another point that needs to be noted was that to classify 
the DR levels correctly, a number of iterations needs to be carried out to 
train the NN and DL models. However, in this study, the proposed ELM 
achieved a promising result for only one epoch for both the datasets. 
After completing the training, 6,997 FIs (No DR: 5141, Mild: 487, 
Moderate: 1054, Severe: 174, and PDR: 141) were employed for 
assessing the classification performance of the ELM model. The CM 
obtained by the ELM for Dataset-1 is shown in Fig. 6. Clearly, in the case 
moderate level, misclassified number of images were much higher than 
the other levels. 

The average precision, recall, f1-score, and accuracy of the ELM for 
dataset-1 were 0.91, 0.83, 0.87, and 91.78 %, respectively, as shown in 
Table 3. Furthermore, to demonstrate the superior performance of ELM 
in this study, five well-known ML algorithms such as SVM, GNB, RF, DT 
and LR were also employed to obtain the classification results as pre-
sented in Tables 3–5 and Fig. 7. The best classification results were 
obtained from SVM among these five models. The average precision, 
recall, f1-score, and accuracy of the SVM were 0.58, 0.44, 0.49, 75.83 % 
respectively which were also quite lower than ELM. In fact, SVM pro-
duced good results during the binary classification whereas NN models 
showed good results for multiclass classifications (Nahiduzzaman et al., 
2019). As ELM is like traditional NN except the back-propagation al-
gorithm and for that reason ELM is faster and the rate of learning and 
generalization are more effective. This provides promising results in the 
case of multiclass classifications (Afza et al., 2021; Alenezi et al., 2023). 

The average AUC of the ELM for the Dataset-1 was 95.08 %, whereas 
the class-wise AUCs of the ELM are demonstrated in Fig. 7. It was 
observed that each class contributed almost equally to the final classi-
fication result (AUC values for all classes higher than 92 %). It could be 
concluded that though the class distribution was imbalanced, the pro-
posed framework showed its consistency in detecting every class of DR. 

Fig. 6. Confusion Matrix (CM) of ELM for Dataset-1.  
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4.2. Results of APTOS, 2019 Dataset 

In the previous section, the proposed framework revealed promising 
results for the Dataset-1, which contained a total of 34,984 FIs. Since the 
DL models worked well for larger datasets, the proposed framework 
validated this by showing favorable classification performance. In this 
study, it was also checked whether the proposed framework could 
achieve promising classification performance with a small dataset. 
Hence, a small dataset, APTOS, 2019 was used that contained FIs, almost 
ten times less than the Dataset-1. 

Among the total 3,662 FIs, 2,929 FIs were used for training the ELM 

and other five ML models, whereas the numbers of No DR, Mild, Mod-
erate, Severe, and PDR were 1444, 296, 799, 154, and 236, respectively. 
For evaluating the ELM classification performance, a CM was developed 
using 733 FIs (No DR: 361, Mild: 74, Moderate: 200, Severe: 39, and 
PDR: 59). The level-wise precision, f1-score and recall shown in 
Tables 6–8 demonstrated that the ELM model performed well in the case 
of the imbalance or smaller dataset. The best accuracy (97.27 %) was 
achieved by ELM model for the APTOS, 2019 dataset with a recall of 95 

Table 3 
Classification performance comparison by Precision for Dataset-1.  

DR Level Precision 

ELM SVM GNB RF DT LR 

No DR  0.93  0.82  0.86  0.82  0.82  0.82 
Mild  0.87  0.42  0.24  0.42  0.28  0.41 
Moderate  0.87  0.48  0.40  0.47  0.44  0.47 
Severe  0.95  0.56  0.47  0.55  0.46  0.52 
PDR  0.94  0.61  0.56  0.64  0.61  0.65 
Average  0.91  0.58  0.50  0.58  0.52  0.57  

Table 4 
Classification performance comparison by F-1Precision for Dataset-1.  

DR Level F1-Score 

ELM SVM GNB RF DT LR 

No DR  0.95  0.86  0.82  0.86  0.85  0.86 
Mild  0.77  0.31  0.28  0.30  0.25  0.31 
Moderate  0.82  0.43  0.45  0.43  0.41  0.43 
Severe  0.89  0.39  0.40  0.39  0.36  0.39 
PDR  0.91  0.46  0.46  0.47  0.44  0.49 
Average  0.87  0.49  0.48  0.49  0.46  0.49  

Table 5 
Classification performance comparison by Recall for Dataset-1.  

DR Level Recall 

ELM SVM GNB RF DT LR 

No DR  0.97  0.91  0.78  0.90  0.87  0.90 
Mild  0.70  0.24  0.33  0.24  0.23  0.25 
Moderate  0.78  0.39  0.52  0.40  0.39  0.39 
Severe  0.84  0.30  0.35  0.30  0.29  0.31 
PDR  0.89  0.37  0.39  0.37  0.34  0.39 
Average  0.83  0.44  0.48  0.44  0.43  0.45  

Fig. 7. Accuracies of employed ML techniques for Dataset-1.  

Table 6 
Classification performance comparison by Precision for APTOS, 2019 dataset.  

DR Level Precision 

ELM SVM GNB RF DT LR 

No DR  1.0  0.96  0.96  0.97  0.96  0.97 
Mild  0.99  0.74  0.74  0.79  0.74  0.75 
Moderate  0.94  0.8  0.8  0.79  0.79  0.8 
Severe  0.9  0.75  0.75  0.71  0.69  0.71 
PDR  0.96  0.73  0.73  0.68  0.57  0.72 
Average  0.96  0.8  0.8  0.79  0.75  0.79  

Table 7 
Classification performance comparison by F-1Precision for APTOS, 2019 
dataset.  

DR Level F1-Score 

ELM SVM GNB RF DT LR 

No DR  0.99  0.97  0.97  0.98  0.97  0.98 
Mild  0.97  0.72  0.72  0.74  0.7  0.73 
Moderate  0.96  0.84  0.84  0.83  0.81  0.83 
Severe  0.92  0.68  0.68  0.63  0.59  0.63 
PDR  0.92  0.62  0.62  0.6  0.58  0.63 
Average  0.95  0.77  0.77  0.76  0.73  0.76  

Table 8 
Classification performance comparison by Recall for APTOS, 2019 dataset.  

DR Level Recall 

ELM SVM GNB RF DT LR 

No DR  0.99  0.98  0.98  0.99  0.97  0.98 
Mild  0.96  0.7  0.7  0.7  0.66  0.7 
Moderate  0.97  0.88  0.88  0.87  0.83  0.88 
Severe  0.95  0.62  0.62  0.56  0.51  0.56 
PDR  0.88  0.54  0.54  0.54  0.59  0.56 
Average  0.95  0.74  0.74  0.73  0.72  0.74  

Fig. 8. Receiver Operating Characteristic (ROC) curve of ELM for Dataset-1.  
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% and a precision of 96 % (Fig. 10). Whereas the best accuracy obtained 
by SVM (87.04 %) among other models was almost 10 % lower than the 
ELM model. In the case of medical image analysis, the recall must be 
maximized i.e., the affected patient should be identified accurately. 

The class-wise ROC is shown in Fig. 9 to assess the ELM’s ability to 
distinguish between the DR levels. The estimated ROC of the ELM model 
for the APTOS, 2019 dataset was 98.87 %. The ROC of each class was 
quite good even if the dataset was unbalanced, demonstrating the 
model’s robustness (See Fig. 11). 

A graphical illustration is shown in Fig. 10 to make the results more 
legible and comparable between the two datasets. The suggested 
framework is compatible in any setting, such as smaller (APTOS, 2019) 
or larger (Dataset 1) datasets. This was accomplished by employing 
CLAHE to highlight the lesions. Hence, it is easy for the parallel CNN 
model to extract the most discriminating features and the ELM based on 
deep learning mechanism can accurately detected the DR levels. The 
framework was also straightforward to use as it performed well even 
when dealing with an unbalanced dataset, which is common with real- 
world medical data (See Fig. 12). 

4.3. Comparison with previous works 

Tables 9 and 10 show the classification performance compared with 
previous state-of-the-art (SOTA) models for both the datasets. For 
Dataset-1, the proposed framework (PF) was compared with two studies. 
Pratt et al. processed the FIs using color normalization, and developed a 
CNN with 10 CLs and two FC layers (Pratt et al., 2016). The number of 
filters in 10 CLs were 32, 32, 64, 64, 128, 128, 256, 256, 512, and 512, 
respectively, and both the FC layers had 1,024 nodes. Apart from these, 
they used 5,000 FIs (the shape of the FIs were 512 × 512) for testing and 
achieved an overall accuracy and sensitivity (recall) of 75 % and 30 %, 
respectively. In contrast, Qummar et al. (2019), used five TL models: 
Resnet50, Inceptionv3, Xception, Dense121, and Dense169 for classi-
fying DR from the FIs. In addition, they ensemble these five TL models 
for final prediction. They also resized the FIs into 512 × 512 and ach-
ieved an accuracy, recall, precision, and f1-score of 80.8 %, 51.5 %, 
63.85 %, and 53.74 %, respectively, while testing the model on 5,608 FIs 
and performing up and down sampling. The proposed PCNN-ELM has 
only 8 CLs with 3.6 million parameters, which was quite fewer than the 
other two works. Again, the contrast of the FIs were enhanced using 
CLAHE, and for that reason, the lesion was highlighted as shown in 
Fig. 4. Finally, the FIs were resized into 124 × 124 and the framework 
has been tested using 5608 FIs and achieved an accuracy of 91.88 %, 
which is 10 % higher than the previous study, and a recall of 83 %, 
which is almost 30 % higher than the previous study. The prior two 
research were significantly affected by the imbalanced dataset. No DR 

Fig. 9. Confusion matrix of ELM for APTOS, 2019 dataset.  

Fig. 10. Accuracies of employed ML techniques for Dataset-1.  

Fig. 11. ROC matrix of ELM for APTOS, 2019 dataset.  

Fig. 12. Graphical illustration of the classification performance of pro-
posed framework. 
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level highly dominated the final classification result and showed a 
preliminary result in the case of other classes as seen in Table 9. On the 
contrary, each class almost equally contributed to the final classification 
result, which validated the handling capability of the unbalanced 
dataset of the proposed framework. Pratt et al. (2016), showed that their 
proposed methodology required 0.04 s to classify-one FI. In contrast, the 
proposed framework required only 0.0009987 s to test the total of 5608 
FIs, whereas 2 μs were required for classifying one FI. These two studies 
reshaped the FIs by 512 × 512, whereas this study used 124 × 124 but 
still ensuring a promising result with a calculated AUC of 92.10 % 
(Qummar et al. achieved an average AUC of 86.8 %) that showed the 
robustness of the proposed model. 

Several researchers used the APTOS, 2019 dataset to detect the levels 
of DR. Table 10 shows the average classification performance of the 
SOTA models for the APTOS, 2019 dataset as class wise results were not 
available. Sikder et al. achieved the highest classification accuracy of 
94.20 %, and the highest AUC of 97.90 % was achieved by Alyoubi et al. 
(2021), from the SOTA models (Sikder et al., 2021). In contrast, the 
proposed framework outperformed all the SOTA models with an 

accuracy and an AUC of 97.27 % and 98.87 %, respectively. Table 11 
shows the comparison of the proposed framework’s performance with 
the previous works. From the table, most of the SOTA models employed 
transfer learning (TL) models to extract the features and classify the DR 
from the FIs. The TL models have many layers and parameters; for 
instance, the VGG16 model has almost 138.3 million parameters, and 
DenseNet-169 has 169 layers, which are too many. They also required 
high-resolution FIs (512 × 512, 380 × 380, 224 × 224, etc.) to distin-
guish the DR levels correctly. 

In contrast, the proposed framework only employed six CLs, where 
four of them were run in parallel, which was considered a single CL. 
Hence, there were total eight layers, including four CLs, two FC layers, 
and three from the ELM. The total parameters of the proposed frame-
work are almost 3.6 million, including both the parallel CNN and ELM 
model parameters that validated the lightweight capability of the CNN. 
This framework required an image size of 124 × 124, which was another 
objective of this study to detect DR levels using low-resolution FIs. 
Table 11 shows that the proposed framework has the lowest number of 
parameters and layers, which could be the main reason for shorter 
processing time. 

From the above comparison, it was concluded that the proposed 
framework could classify the levels of DR accurately with lower pa-
rameters, layers, low-resolution FIs, and relatively shorter time. It was 
also revealed that the framework is capable of adapting to any dataset 
environment, small or large, balanced or imbalanced and that classi-
fying a FI requires only 2 μs seconds, allowing for real-time patient 
feedback. 

In fact, the diabetic retinopathy datasets used in this study were 
highly imbalanced particularly for the multiclass classification due to 
the unavailability of the PDR images. Since in real life consideration, the 
number of PDR patients are not many, and most datasets contain small 
portion of PDR images with respect to the other classes. Since the dataset 
was fairly imbalanced, some researchers used data augmentation and 
other techniques (adding weight to the poorly detected class, up sam-
pling, down sampling) to improve the classification performance (Pratt 
et al., 2016; Dondeti. al., 2020). However, the results were not better 
than the findings obtained by the proposed framework. Using data 
augmentation, more data can be produced, but it needs additional time 
for processing. Most studies, while using these two imbalanced datasets, 
reported results without any data balancing (Nahiduzzaman et al., 
2021a,b; Pratt et al., 2016; Dondeti. al., 2020; Bodapati et al., 2020; 
Bodapati et al., 2021). Apart from these, the results presented for 
Dataset-1 in Table 4 to Table 6, it was observed that the precision, recall 
and f1-score of PDR images were 0.94, 0.91 and 0.89 respectively which 
were quite satisfactory. Though there were a smaller number of PDR 
images, but the classification results were similar to the normal images 
(precision, f1-score and recall of No DR images are 0.93, 0.97 and 0.95 
respectively). Again, similar observations were made for the APTOS, 
2019 dataset. In addition, from Fig. 8, it was found that the class wise 
ROC of PDR was 97.73 % whereases for No DR it was 94.51 % in the case 
of Dataset-1. Therefore, it can be concluded that without implementing 
any data augmentation technique, the proposed CNN-ELM model 
detected the DR accurately without producing any biased results due to 

Table 9 
Class-wise classification performance of the proposed framework (PF) compared with the previous studies for the Dataset-1.  

Level/ 
Ref. No. 

Precision Recall F1-Score AUC 

(Pratt 
et al., 
2016) 

(Qummar 
et al., 2019) 

PF (Pratt 
et al., 
2016) 

(Qummar 
et al., 2019) 

PF (Pratt 
et al., 
2016) 

(Qummar 
et al., 2019) 

PF (Pratt 
et al., 
2016) 

(Qummar 
et al., 2019) 

PF 

No DR  0.78  0.84  0.93  0.95  0.97  0.97  0.85  0.90  0.95 –  0.85  0.94 
Mild  0.00  0.51  0.89  0.00  0.80  0.68  0.00  0.15  0.78 –  0.71  0.92 
Moderate  0.23  0.65  0.87  0.23  0.41  0.78  0.29  0.50  0.82 –  0.85  0.95 
Severe  0.78  0.48  0.92  0.78  0.51  0.83  0.10  0.49  0.88 –  0.96  0.96 
PDR  0.44  0.69  0.93  0.44  0.56  0.88  0.37  0.62  0.90 –  0.97  0.97  

Table 10 
Classification performance compared with SOTA models for the APTOS, 2019.  

Ref. No. Precision (%) Recall (%) Accuracy (%) AUC (%) 

(Dondeti et al., 2020)  76.00  77.00  77.90  – 
(Bodapati et al., 2020)  80.00  81.00  81.70  – 
(Liu et al., 2020)  91.37  –  86.34  – 
(Kassani et al., 2019)  87.00  88.24  83.09  91.80 
(Bodapati et al., 2021)  82.00  83.00  82.54  79.00 
(Sikder et al., 2021)  94.34  92.69  94.20  – 
(Alyoubi et al., 2021)  89.00  –  89.00  97.90 
Proposed Framework  96.00  95.00  97.27  98.87  

Table 11 
Simplicity of the proposed framework compared with SOTA models.  

Model Name [Ref. No.] No. of 
Layers 

No. of Parameters 
(million) 

ResNet 50 (Qummar et al., 2019; Kassani et al., 
2019) 

50  25.6 

Inception-V3 (Qummar et al., 2019; Kassani 
et al., 2019) 

48  23.8 

Xception (Qummar et al., 2019; Bodapati et al., 
2020; Liu et al., 2020; Kassani et al., 2019; 
Bodapati et al., 2021) 

71  22.9 

Dense 121 (Qummar et al., 2019) 121  8.0 
Dense 169 (Qummar et al., 2019) 169  14.3 
VGG16 (Bodapati et al., 2020; Bodapati et al., 

2021) 
16  138.3 

NasNet-Large (Bodapati et al., 2020; Liu et al., 
2020) 

–  88.9 

Inception Resnet V2 (Bodapati et al., 2020; Liu 
et al., 2020) 

164  55.8 

EfficientNetB4 (Liu et al., 2020) –  19.4 
EfficientNetB5 (Liu et al., 2020) –  30.5 
CNN512 (Alyoubi et al., 2021) 9  8.2 
Proposed Framework 8  3.6  
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the imbalanced datasets. The proposed framework achieved a promising 
outcome based on the performance metrics considered in this study and 
eliminated additional time required for data augmentation. 

5. Conclusion 

This study proposed a novel framework to enable fast and accurate 
detection of the levels of DR from the FIs, which can aid diabetic patients 
in preventing or delaying vision loss. CLAHE was adopted to make the 
lesson clear so that a CNN model can easily extract the most discrimi-
nating features. 120 features were extracted using a lightweight parallel 
CNN to reduce processing time and complexity. Finally, these features 
were standardized and fit into the ELM model to adequately distinguish 
the different levels of the DR. The proposed framework exhibited a 
promising result in the cases of 34,984 (Dataset-1) and 3,662 (APTOS, 
2019) FI datasets with not only higher classification performance but 
also lowering the parameters, layers, and processing time significantly. 
The framework also outperformed the existing SOTA models for both the 
datasets. The proposed model can accurately detect the severity degree 
of the DR earlier on, hence reducing vision loss of the patients and saving 
valuable time of the medical practitioners. 
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